151
|
Yan HX, Li WW, Zhang Y, Wei XW, Fu LX, Shen GB, Yin T, Li XY, Shi HS, Wan Y, Zhang QY, Li J, Yang SY, Wei YQ. Accumulation of FLT3+ CD11c+ dendritic cells in psoriatic lesions and the anti-psoriatic effect of a selective FLT3 inhibitor. Immunol Res 2014; 60:112-26. [DOI: 10.1007/s12026-014-8521-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
152
|
NrasG12D oncoprotein inhibits apoptosis of preleukemic cells expressing Cbfβ-SMMHC via activation of MEK/ERK axis. Blood 2014; 124:426-36. [PMID: 24894773 DOI: 10.1182/blood-2013-12-541730] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Acute myeloid leukemia (AML) results from the activity of driver mutations that deregulate proliferation and survival of hematopoietic stem cells (HSCs). The fusion protein CBFβ-SMMHC impairs differentiation in hematopoietic stem and progenitor cells and induces AML in cooperation with other mutations. However, the combined function of CBFβ-SMMHC and cooperating mutations in preleukemic expansion is not known. Here, we used Nras(LSL-G12D); Cbfb(56M) knock-in mice to show that allelic expression of oncogenic Nras(G12D) and Cbfβ-SMMHC increases survival of preleukemic short-term HSCs and myeloid progenitor cells and maintains the differentiation block induced by the fusion protein. Nras(G12D) and Cbfβ-SMMHC synergize to induce leukemia in mice in a cell-autonomous manner, with a shorter median latency and higher leukemia-initiating cell activity than that of mice expressing Cbfβ-SMMHC. Furthermore, Nras(LSL-G12D); Cbfb(56M) leukemic cells were sensitive to pharmacologic inhibition of the MEK/ERK signaling pathway, increasing apoptosis and Bim protein levels. These studies demonstrate that Cbfβ-SMMHC and Nras(G12D) promote the survival of preleukemic myeloid progenitors primed for leukemia by activation of the MEK/ERK/Bim axis, and define Nras(LSL-G12D); Cbfb(56M) mice as a valuable genetic model for the study of inversion(16) AML-targeted therapies.
Collapse
|
153
|
Ramkumar C, Kong Y, Trabucco SE, Gerstein RM, Zhang H. Smurf2 regulates hematopoietic stem cell self-renewal and aging. Aging Cell 2014; 13:478-86. [PMID: 24494704 PMCID: PMC4032599 DOI: 10.1111/acel.12195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2013] [Indexed: 12/26/2022] Open
Abstract
The age-dependent decline in the self-renewal capacity of stem cells plays a critical role in aging, but the precise mechanisms underlying this decline are not well understood. By limiting proliferative capacity, senescence is thought to play an important role in age-dependent decline of stem cell self-renewal, although direct evidence supporting this hypothesis is largely lacking. We have previously identified the E3 ubiquitin ligase Smurf2 as a critical regulator of senescence. In this study, we found that mice deficient in Smurf2 had an expanded hematopoietic stem cell (HSC) compartment in bone marrow under normal homeostatic conditions, and this expansion was associated with enhanced proliferation and reduced quiescence of HSCs. Surprisingly, increased cycling and reduced quiescence of HSCs in Smurf2-deficient mice did not lead to premature exhaustion of stem cells. Instead, HSCs in aged Smurf2-deficient mice had a significantly better repopulating capacity than aged wild-type HSCs, suggesting that decline in HSC function with age is Smurf2 dependent. Furthermore, Smurf2-deficient HSCs exhibited elevated long-term self-renewal capacity and diminished exhaustion in serial transplantation. As we found that the expression of Smurf2 was increased with age and in response to regenerative stress during serial transplantation, our findings suggest that Smurf2 plays an important role in regulating HSC self-renewal and aging.
Collapse
Affiliation(s)
- Charusheila Ramkumar
- Department of Cell and Developmental BiologyUniversity of Massachusetts Medical School Worcester MA 01655 USA
| | - Yahui Kong
- Department of Cell and Developmental BiologyUniversity of Massachusetts Medical School Worcester MA 01655 USA
| | - Sally E. Trabucco
- Department of Cell and Developmental BiologyUniversity of Massachusetts Medical School Worcester MA 01655 USA
| | - Rachel M. Gerstein
- Microbiology and Physiological Systems University of Massachusetts Medical School Worcester MA 01655USA
| | - Hong Zhang
- Department of Cell and Developmental BiologyUniversity of Massachusetts Medical School Worcester MA 01655 USA
| |
Collapse
|
154
|
Tsuneto M, Kajikhina E, Seiler K, Reimer A, Tornack J, Bouquet C, Simmons S, Knoll M, Wolf I, Tokoyoda K, Hauser A, Hara T, Tani-ichi S, Ikuta K, Grün JR, Grützkau A, Engels N, Wienands J, Yanagisawa Y, Ohnishi K, Melchers F. Reprint of: Environments of B cell development. Immunol Lett 2014; 160:109-12. [PMID: 24852107 DOI: 10.1016/j.imlet.2014.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B lymphocyte development in the mouse begins with the generation of long-term reconstituting, pluripotent hematopoietic stem cells, over multipotent myeloid/lymphoid progenitors and common lymphoid progenitors to B-lineage committed pro/pre B and pre B cells, which first express pre B cell receptors and then immunoglobulins, B cell receptors, to generate the repertoires of peripheral B cells. This development is influenced and guided by cells of non-hematopoietic and hematopoietic origins. We review here some of the recent developments, and our contributions in this fascinating field of developmental immunology.
Collapse
Affiliation(s)
- Motokazu Tsuneto
- Max Planck Institute for Infection Biology, Lymphocyte Development Group, Berlin, Germany
| | - Ekaterina Kajikhina
- Max Planck Institute for Infection Biology, Lymphocyte Development Group, Berlin, Germany
| | - Katharina Seiler
- Max Planck Institute for Infection Biology, Lymphocyte Development Group, Berlin, Germany
| | - Andreas Reimer
- Max Planck Institute for Infection Biology, Lymphocyte Development Group, Berlin, Germany
| | - Julia Tornack
- Max Planck Institute for Infection Biology, Lymphocyte Development Group, Berlin, Germany
| | - Corinne Bouquet
- Max Planck Institute for Infection Biology, Lymphocyte Development Group, Berlin, Germany
| | - Szandor Simmons
- Max Planck Institute for Infection Biology, Lymphocyte Development Group, Berlin, Germany
| | - Marko Knoll
- Max Planck Institute for Infection Biology, Lymphocyte Development Group, Berlin, Germany
| | - Ingrid Wolf
- Max Planck Institute for Infection Biology, Lymphocyte Development Group, Berlin, Germany
| | - Koji Tokoyoda
- German Rheumatism Research Center (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Anja Hauser
- German Rheumatism Research Center (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Takahiro Hara
- Laboratory of Biological Protection, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Shizue Tani-ichi
- Laboratory of Biological Protection, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Koichi Ikuta
- Laboratory of Biological Protection, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Joachim R Grün
- German Rheumatism Research Center (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Andreas Grützkau
- German Rheumatism Research Center (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Niklas Engels
- Cellular and Molecular Immunology, University of Göttingen, Germany
| | - Jürgen Wienands
- Cellular and Molecular Immunology, University of Göttingen, Germany
| | - Yuki Yanagisawa
- Department of Immunology, National Institutes of Infectious Diseases, Tokyo, Japan
| | - Kazuo Ohnishi
- Department of Immunology, National Institutes of Infectious Diseases, Tokyo, Japan
| | - Fritz Melchers
- Max Planck Institute for Infection Biology, Lymphocyte Development Group, Berlin, Germany.
| |
Collapse
|
155
|
Paul F, Amit I. Plasticity in the transcriptional and epigenetic circuits regulating dendritic cell lineage specification and function. Curr Opin Immunol 2014; 30:1-8. [PMID: 24820527 DOI: 10.1016/j.coi.2014.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 04/09/2014] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DC) are critical and functionally versatile innate immune sentinels. Here, we coarsely partition the adult DC lineage into three developmental subtypes and argue that pioneer transcription factors and chromatin remodeling are responsible for specification and plasticity between the DC subsets. Subsequently, intricate signaling-dependent transcription factor networks generate different functional states in response to pathogen stimuli within a specified DC subtype. To expand our understanding of lineage heterogeneity and functional activation states, we discuss the use of single cell genomics approaches in the context of a newly emerging systems immunology era, complementing the dichotomous definition of immune cells based solely on their surface marker expression. Rapid developments in single cell genomics are beginning to provide us with robust tools to potentially revise the working models of DC specification and the common hematopoietic tree.
Collapse
Affiliation(s)
- Franziska Paul
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
156
|
De Barros SC, Zimmermann VS, Taylor N. Concise review: hematopoietic stem cell transplantation: targeting the thymus. Stem Cells 2014; 31:1245-51. [PMID: 23554173 DOI: 10.1002/stem.1378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/15/2013] [Indexed: 12/28/2022]
Abstract
Allogeneic hematopoietic stem cell (HSC) transplantation can cure patients suffering from diverse genetic and acquired diseases as well as cancers. Nevertheless, under conditions where T-cell reconstitution is critical, the entry of donor progenitors into the thymus remains a major bottleneck. It is assumed that following the intravenous injection of HSC, they first home to the BM. More committed progenitors can then be exported to the thymus in response to a myriad of signals regulating thymus seeding. Notably although, the thymus is not continually receptive to the import of hematopoietic progenitors. Furthermore, as stem cells with self-renewing capacity do not take up residence in the thymus under physiological conditions, the periodic colonization of the thymus is essential for the sustained differentiation of T lymphocytes. As such, we and others have invested significant efforts into exploring avenues that might foster a long-term thymus-autonomous differentiation. Here, we review strategic approaches that have resulted in long-term T-cell differentiation in immunodeficient (SCID) mice, even across histocompatibility barriers. These include the forced thymic entry of BM precursors by their direct intrathymic injection as well as the transplantation of neonatal thymi. The capacity of the thymus to support hematopoietic progenitors with renewal potential will hopefully promote the development of new therapeutic strategies aimed at enhancing T-cell differentiation in patients undergoing HSC transplantation.
Collapse
Affiliation(s)
- Stéphanie C De Barros
- Institut de Génétique Moléculaire de Montpellier, Université Montpellier , Montpellier, France
| | | | | |
Collapse
|
157
|
Choukrallah MA, Matthias P. The Interplay between Chromatin and Transcription Factor Networks during B Cell Development: Who Pulls the Trigger First? Front Immunol 2014; 5:156. [PMID: 24782862 PMCID: PMC3990105 DOI: 10.3389/fimmu.2014.00156] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/25/2014] [Indexed: 01/25/2023] Open
Abstract
All mature blood cells derive from hematopoietic stem cells through gradual restriction of their cell fate potential and acquisition of specialized functions. Lineage specification and cell commitment require the establishment of specific transcriptional programs involving the activation of lineage-specific genes and the repression of lineage-inappropriate genes. This process requires the concerted action of transcription factors (TFs) and epigenetic modifying enzymes. Within the hematopoietic system, B lymphopoiesis is one of the most-studied differentiation programs. Loss of function studies allowed the identification of many TFs and epigenetic modifiers required for B cell development. The usage of systematic analytical techniques such as transcriptome determination, genome-wide mapping of TF binding and epigenetic modifications, and mass spectrometry analyses, allowed to gain a systemic description of the intricate networks that guide B cell development. However, the precise mechanisms governing the interaction between TFs and chromatin are still unclear. Generally, chromatin structure can be remodeled by some TFs but in turn can also regulate (i.e., prevent or promote) the binding of other TFs. This conundrum leads to the crucial questions of who is on first, when, and how. We review here the current knowledge about TF networks and epigenetic regulation during hematopoiesis, with an emphasis on B cell development, and discuss in particular the current models about the interplay between chromatin and TFs.
Collapse
Affiliation(s)
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research , Basel , Switzerland ; Faculty of Sciences, University of Basel , Basel , Switzerland
| |
Collapse
|
158
|
Iida R, Welner RS, Zhao W, Alberola-lla J, Medina KL, Zhao ZJ, Kincade PW. Stem and progenitor cell subsets are affected by JAK2 signaling and can be monitored by flow cytometry. PLoS One 2014; 9:e93643. [PMID: 24699465 PMCID: PMC3974768 DOI: 10.1371/journal.pone.0093643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/05/2014] [Indexed: 12/31/2022] Open
Abstract
Although extremely rare, hematopoietic stem cells (HSCs) are divisible into subsets that differ with respect to differentiation potential and cell surface marker expression. For example, we recently found that CD86(-) CD150(+) CD48(-) HSCs have limited potential for lymphocyte production. This could be an important new tool for studying hematological abnormalities. Here, we analyzed HSC subsets with a series of stem cell markers in JAK2V617F transgenic (Tg) mice, where the mutation is sufficient to cause myeloproliferative neoplasia with lymphocyte deficiency. Total numbers of HSC were elevated 3 to 20 fold in bone marrow of JAK2V617F mice. Careful analysis suggested the accumulation involved multiple HSC subsets, but particularly those characterized as CD150(HI) CD86(-) CD18(L)°CD41(+) and excluding Hoechst dye. Real-Time PCR analysis of their HSC revealed that the erythropoiesis associated gene transcripts Gata1, Klf1 and Epor were particularly high. Flow cytometry analyses based on two differentiation schemes for multipotent progenitors (MPP) also suggested alteration by JAK2 signals. The low CD86 on HSC and multipotent progenitors paralleled the large reductions we found in lymphoid progenitors, but the few that were produced functioned normally when sorted and placed in culture. Either of two HSC subsets conferred disease when transplanted. Thus, flow cytometry can be used to observe the influence of abnormal JAK2 signaling on stem and progenitor subsets. Markers that similarly distinguish categories of human HSCs might be very valuable for monitoring such conditions. They could also serve as indicators of HSC fitness and suitability for transplantation.
Collapse
Affiliation(s)
- Ryuji Iida
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Robert S. Welner
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Wanke Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - José Alberola-lla
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Kay L. Medina
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Zhizhuang Joe Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Paul W. Kincade
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
159
|
Rosborough BR, Mathews LR, Matta BM, Liu Q, Raïch-Regué D, Thomson AW, Turnquist HR. Cutting edge: Flt3 ligand mediates STAT3-independent expansion but STAT3-dependent activation of myeloid-derived suppressor cells. THE JOURNAL OF IMMUNOLOGY 2014; 192:3470-3. [PMID: 24639346 DOI: 10.4049/jimmunol.1300058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Flt3-Flt3 ligand (Flt3L) pathway is critically involved in the differentiation and homeostasis of myeloid cells, including dendritic cells (DC); however, its role in the expansion and function of myeloid-derived suppressor cells (MDSC) has not been determined. In this article, we describe the ability of Flt3L to expand and activate murine MDSC capable of suppressing allograft rejection upon adoptive transfer. Although Flt3L expands and augments the stimulatory capacity of myeloid DC, MDSC expanded by Flt3L have increased suppressive activity. Although STAT3 is considered the central transcription factor for MDSC expansion, inhibition and genetic ablation of STAT3 did not block, but rather augmented, Flt3L-mediated MDSC expansion. MDSC suppressive function, preserved when STAT3 inhibition was removed, was reduced by genetic STAT3 deletion. Both STAT3 inhibition and deletion reduced Flt3L-mediated DC expansion, signifying that STAT3 had reciprocal effects on suppressive MDSC and immunostimulatory DC expansion. Together, these findings enhance our understanding of the immunomodulatory properties of Flt3L.
Collapse
Affiliation(s)
- Brian R Rosborough
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | | | | | | | | | | | | |
Collapse
|
160
|
Serafini M, Sacchetti B, Pievani A, Redaelli D, Remoli C, Biondi A, Riminucci M, Bianco P. Establishment of bone marrow and hematopoietic niches in vivo by reversion of chondrocyte differentiation of human bone marrow stromal cells. Stem Cell Res 2014; 12:659-72. [PMID: 24675053 DOI: 10.1016/j.scr.2014.01.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 01/22/2014] [Accepted: 01/29/2014] [Indexed: 02/02/2023] Open
Abstract
Human bone marrow stromal cells (BMSCs, also known as bone marrow-derived "mesenchymal stem cells") can establish the hematopoietic microenvironment within heterotopic ossicles generated by transplantation at non-skeletal sites. Here we show that non-mineralized cartilage pellets formed by hBMSCs ex vivo generate complete ossicles upon heterotopic transplantation in the absence of exogenous scaffolds. These ossicles display a remarkable degree of architectural fidelity, showing that an exogenous conductive scaffold is not an absolute requirement for bone formation by transplanted BMSCs. Marrow cavities within the ossicles include erythroid, myeloid and granulopoietic lineages, clonogenic hematopoietic progenitors and phenotypic HSCs, indicating that complete stem cell niches and hematopoiesis are established. hBMSCs (CD146(+) adventitial reticular cells) are established in the heterotopic chimeric bone marrow through a unique process of endochondral bone marrow formation, distinct from physiological endochondral bone formation. In this process, chondrocytes remain viable and proliferate within the pellet, are released from cartilage, and convert into bone marrow stromal cells. Once explanted in secondary culture, these cells retain phenotype and properties of skeletal stem cells ("MSCs"), including the ability to form secondary cartilage pellets and secondary ossicles upon serial transplantation. Ex vivo, hBMSCs initially induced to form cartilage pellets can be reestablished in adherent culture and can modulate gene expression between cartilage and stromal cell phenotypes. These data show that so-called "cartilage differentiation" of BMSCs in vitro is a reversible phenomenon, which is actually reverted, in vivo, to the effect of generating stromal cells supporting the homing of hematopoietic stem cells and progenitors.
Collapse
Affiliation(s)
- Marta Serafini
- Dulbecco Telethon Institute at Tettamanti Research Center, Pediatric Department, University of Milano - Bicocca, Monza, Italy; Tettamanti Research Center, Pediatric Department, University of Milano - Bicocca, San Gerardo Hospital, Monza, Italy
| | - Benedetto Sacchetti
- Stem Cell Lab, Department of Molecular Medicine, Sapienza University of Rome, Italy
| | - Alice Pievani
- Dulbecco Telethon Institute at Tettamanti Research Center, Pediatric Department, University of Milano - Bicocca, Monza, Italy; Tettamanti Research Center, Pediatric Department, University of Milano - Bicocca, San Gerardo Hospital, Monza, Italy
| | - Daniela Redaelli
- Dulbecco Telethon Institute at Tettamanti Research Center, Pediatric Department, University of Milano - Bicocca, Monza, Italy; Tettamanti Research Center, Pediatric Department, University of Milano - Bicocca, San Gerardo Hospital, Monza, Italy
| | - Cristina Remoli
- Stem Cell Lab, Department of Molecular Medicine, Sapienza University of Rome, Italy
| | - Andrea Biondi
- Tettamanti Research Center, Pediatric Department, University of Milano - Bicocca, San Gerardo Hospital, Monza, Italy
| | - Mara Riminucci
- Stem Cell Lab, Department of Molecular Medicine, Sapienza University of Rome, Italy
| | - Paolo Bianco
- Stem Cell Lab, Department of Molecular Medicine, Sapienza University of Rome, Italy.
| |
Collapse
|
161
|
Determining Lineage Pathways from Cellular Barcoding Experiments. Cell Rep 2014; 6:617-24. [DOI: 10.1016/j.celrep.2014.01.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/09/2013] [Accepted: 01/14/2014] [Indexed: 11/21/2022] Open
|
162
|
Tsapogas P, Swee LK, Nusser A, Nuber N, Kreuzaler M, Capoferri G, Rolink H, Ceredig R, Rolink A. In vivo evidence for an instructive role of fms-like tyrosine kinase-3 (FLT3) ligand in hematopoietic development. Haematologica 2014; 99:638-46. [PMID: 24463214 DOI: 10.3324/haematol.2013.089482] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cytokines are essential regulators of hematopoiesis, acting in an instructive or permissive way. Fms-like tyrosine kinase 3 ligand (FLT3L) is an important cytokine for the development of several hematopoietic populations. Its receptor (FLT3) is expressed on both myeloid and lymphoid progenitors and deletion of either the receptor or its ligand leads to defective developmental potential of hematopoietic progenitors. In vivo administration of FLT3L promotes expansion of progenitors with combined myeloid and lymphoid potential. To investigate further the role of this cytokine in hematopoietic development, we generated transgenic mice expressing high levels of human FLT3L. These transgenic mice displayed a dramatic expansion of dendritic and myeloid cells, leading to splenomegaly and blood leukocytosis. Bone marrow myeloid and lymphoid progenitors were significantly increased in numbers but retained their developmental potential. Furthermore, the transgenic mice developed anemia together with a reduction in platelet numbers. FLT3L was shown to rapidly reduce the earliest erythroid progenitors when injected into wild-type mice, indicating a direct negative role of the cytokine on erythropoiesis. We conclude that FLT3L acts on multipotent progenitors in an instructive way, inducing their development into myeloid/lymphoid lineages while suppressing their megakaryocyte/erythrocyte potential.
Collapse
|
163
|
Sonoda Y. Human CD34-negative Hematopoietic Stem Cells. STEM CELL BIOLOGY AND REGENERATIVE MEDICINE 2014. [DOI: 10.1007/978-1-4939-1001-4_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
164
|
Abstract
T, B, and NK lymphocytes are generated from pluripotent hematopoietic stem cells through a successive series of lineage restriction processes. Many regulatory components, such as transcription factors, cytokines/cytokine receptors, and signal transduction molecules orchestrate cell fate specification and determination. In particular, transcription factors play a key role in regulating lineage-associated gene programs. Recent findings suggest the involvement of epigenetic factors in the maintenance of cell fate. Here, we review the early developmental events during lymphocyte lineage determination, focusing on the transcriptional networks and epigenetic regulation. Finally, we also discuss the developmental relationship between acquired and innate lymphoid cells.
Collapse
Affiliation(s)
- Tomokatsu Ikawa
- Laboratory for Immune Regeneration, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan,
| |
Collapse
|
165
|
Pang SHM, Carotta S, Nutt SL. Transcriptional control of pre-B cell development and leukemia prevention. Curr Top Microbiol Immunol 2014; 381:189-213. [PMID: 24831348 DOI: 10.1007/82_2014_377] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The differentiation of early B cell progenitors is controlled by multiple transcriptional regulators and growth-factor receptors. The triad of DNA-binding proteins, E2A, EBF1, and PAX5 is critical for both the early specification and commitment of B cell progenitors, while a larger number of secondary determinants, such as members of the Ikaros, ETS, Runx, and IRF families have more direct roles in promoting stage-specific pre-B gene-expression program. Importantly, it is now apparent that mutations in many of these transcription factors are associated with the progression to acute lymphoblastic leukemia. In this review, we focus on recent studies that have shed light on the transcriptional hierarchy that controls efficient B cell commitment and differentiation as well as focus on the oncogenic consequences of the loss of many of the same factors.
Collapse
Affiliation(s)
- Swee Heng Milon Pang
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | | | | |
Collapse
|
166
|
Hoggatt J, Tate TA, Pelus LM. Hematopoietic stem and progenitor cell mobilization in mice. Methods Mol Biol 2014; 1185:43-64. [PMID: 25062621 DOI: 10.1007/978-1-4939-1133-2_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hematopoietic stem cell transplantation (HSCT) can be performed with hematopoietic stem and progenitor cells (HSPC) acquired directly from bone marrow, from umbilical cord blood or placental tissue, or from the peripheral blood after treatment of the donor with agents that enhance egress of HSPC into the circulation, a process known as "mobilization." Mobilized peripheral blood stem cells (PBSC) have become the predominate hematopoietic graft for HSCT, particularly for autologous transplants. Despite the success of PBSC transplant, many patients and donors do not achieve optimal levels of mobilization. Thus, accurate animal models and basic laboratory investigations are needed to further investigate the mechanisms that lead to PBSC mobilization and define improved or new mobilizing agents and/or strategies to enhance PBSC mobilization and transplant. This chapter outlines assays and techniques for exploration of hematopoietic mobilization using mice as a model organism.
Collapse
Affiliation(s)
- Jonathan Hoggatt
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Sherman Fairchild Room 201, Cambridge, MA, 02138, USA,
| | | | | |
Collapse
|
167
|
Kyryk VM, State Institute of Genetic and Regenerative Medicine of the National Academy of Medical Sciences of Ukraine, Kyiv. PHENOTYPING AND SORTING OF MURINE BONE MARROW HAEMATOPOIETIC STEM CELLS USING FLOW CYTOMETRY. BIOTECHNOLOGIA ACTA 2014. [DOI: 10.15407/biotech7.06.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
168
|
Flk2/Flt3 promotes both myeloid and lymphoid development by expanding non-self-renewing multipotent hematopoietic progenitor cells. Exp Hematol 2013; 42:218-229.e4. [PMID: 24333663 DOI: 10.1016/j.exphem.2013.11.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/22/2013] [Accepted: 11/22/2013] [Indexed: 12/21/2022]
Abstract
Defining differentiation pathways is central to understanding the pathogenesis of hematopoietic disorders, including leukemia. The function of the receptor tyrosine kinase Flk2 (Flt3) in promoting myeloid development remains poorly defined, despite being commonly mutated in acute myeloid leukemia. We investigated the effect of Flk2 deficiency on myelopoiesis, focusing on specification of progenitors between HSC and mature cells. We provide evidence that Flk2 is critical for proliferative expansion of multipotent progenitors that are common precursors for all lymphoid and myeloid lineages, including megakaryocyte/erythroid (MegE) cells. Flk2 deficiency impaired the generation of both lymphoid and myeloid progenitors by abrogating propagation of their common upstream precursor. At steady state, downstream compensatory mechanisms masked the effect of Flk2 deficiency on mature myeloid output, whereas transplantation of purified progenitors revealed impaired generation of all mature lineages. Flk2 deficiency did not affect lineage choice, thus dissociating the role of Flk2 in promoting cell expansion and regulating cell fate. Surprisingly, despite impairing myeloid development, Flk2 deficiency afforded protection against myeloablative insult. This survival advantage was attributed to reduced cell cycling and proliferation of progenitors in Flk2-deficient mice. Our data support the existence of a common Flk2(+) intermediate for all hematopoietic lineages and provide insight into how activating Flk2 mutations promote hematopoietic malignancy by non-Flk2-expressing myeloid cells.
Collapse
|
169
|
Abstract
B lymphocyte development in the mouse begins with the generation of long-term reconstituting, pluripotent hematopoietic stem cells, over multipotent myeloid/lymphoid progenitors and common lymphoid progenitors to B-lineage committed pro/pre B and pre B cells, which first express pre B cell receptors and then immunoglobulins, B cell receptors, to generate the repertoires of peripheral B cells. This development is influenced and guided by cells of non-hematopoietic and hematopoietic origins. We review here some of the recent developments, and our contributions in this fascinating field of developmental immunology.
Collapse
|
170
|
Santos PM, Ding Y, Borghesi L. Cell-intrinsic in vivo requirement for the E47-p21 pathway in long-term hematopoietic stem cells. THE JOURNAL OF IMMUNOLOGY 2013; 192:160-8. [PMID: 24259504 DOI: 10.4049/jimmunol.1302502] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Major regulators of long-term hematopoietic stem cell (LT-HSC) self-renewal and proliferation have been identified, but knowledge of their in vivo interaction in a linear pathway is lacking. In this study, we show a direct genetic link between the transcription factor E47 and the major cell cycle regulator p21 in controlling LT-HSC integrity in vivo under repopulation stress. Numerous studies have shown that E47 activates p21 transcription in hematopoietic subsets in vitro, and we now reveal the in vivo relevance of the E47-p21 pathway by reducing the gene dose of each factor individually (E47(het) or p21(het)) versus in tandem (E47(het)p21(het)). E47(het)p21(het) LT-HSCs and downstream short-term hematopoietic stem cells exhibit hyperproliferation and preferential susceptibility to mitotoxin compared to wild-type or single haploinsufficient controls. In serial adoptive transfers that rigorously challenge self-renewal, E47(het)p21(het) LT-HSCs dramatically and progressively decline, indicating the importance of cell-intrinsic E47-p21 in preserving LT-HSCs under stress. Transient numeric recovery of downstream short-term hematopoietic stem cells enabled the production of functionally competent myeloid but not lymphoid cells, as common lymphoid progenitors were decreased, and peripheral lymphocytes were virtually ablated. Thus, we demonstrate a developmental compartment-specific and lineage-specific requirement for the E47-p21 pathway in maintaining LT-HSCs, B cells, and T cells under hematopoietic repopulation stress in vivo.
Collapse
Affiliation(s)
- Patricia M Santos
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | | | | |
Collapse
|
171
|
Abstract
PURPOSE OF REVIEW Cells of the immune system are replaced in large numbers throughout life, and the underlying mechanisms have been extensively studied. Whereas the pace of discovery in this area is unprecedented, many questions remain, particularly with respect to lymphocyte formation. RECENT FINDINGS While transcription factors have long been a focus of investigation, microRNAs are also being implicated in lymphopoiesis. Lymphocytes are normally replaced in correct proportion to other blood cells, but ratios change dramatically during infections. Long-standing issues relating to T versus B lineage divergence remain but have been enriched with remarkable new findings about thymus seeding. There are indications that at least some age-related changes in lymphopoiesis may be reversible. Finally, knowledge obtained from studies of mice is slowly being extended to humans. SUMMARY We can now appreciate that new lymphoid progenitors are drawn from a heterogeneous collection of hematopoietic stem cells through asynchronous patterns of gene expression. Complex interactions then occur between the gene products, preparing lymphoid progenitors to respond to environmental cues. Whereas unique markers describe the process of lymphocyte formation in humans, fundamental information now available should suggest ways to promote rebound from chemotherapy or transplantation and reverse declines associated with aging.
Collapse
|
172
|
The control of hematopoietic stem cell maintenance, self-renewal, and differentiation by Mysm1-mediated epigenetic regulation. Blood 2013; 122:2812-22. [PMID: 24014243 DOI: 10.1182/blood-2013-03-489641] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Epigenetic histone modifications play critical roles in the control of self-renewal and differentiation of hematopoietic stem cells (HSCs). Mysm1 is a recently identified histone H2A deubiquitinase with essential and intrinsic roles for maintaining functional HSCs. In this study, in addition to confirming this function of Mysm1, by using Mysm1-deficient (Mysm1(-/-)) mice, we provide more evidence for how Mysm1 controls HSC homeostasis. Mysm1 deletion drives HSCs from quiescence into rapid cycling and increases their apoptotic rate, resulting in an exhaustion of the stem cell pool, which leads to an impaired self-renewal and lineage reconstituting abilities in the Mysm1-deficient mice. Our study identified Gfi1 as one of the candidate genes responsible for the HSC defect in Mysm1-deficient mice. Mechanistic studies revealed that Mysm1 modulates histone modifications and directs the recruitment of key transcriptional factors such as Gata2 and Runx1 to the Gfi1 locus in HSCs. We found that Mysm1 directly associates with the Gfi1 enhancer element and promotes its transcription through Gata2 and Runx1 transactivation. Thus, our study not only elaborates on the initial reports of Mysm1 association with HSC homeostasis but also delineates a possible epigenetic mechanism through which Mysm1 carries out this function in the HSCs.
Collapse
|
173
|
Rundberg Nilsson A, Bryder D, Pronk CJH. Frequency determination of rare populations by flow cytometry: A hematopoietic stem cell perspective. Cytometry A 2013; 83:721-7. [DOI: 10.1002/cyto.a.22324] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 05/31/2013] [Accepted: 06/05/2013] [Indexed: 12/16/2022]
Affiliation(s)
| | - David Bryder
- Immunology Unit, Institution for Experimental Medical Research, Lund University; 221 84; Lund; Sweden
| | | |
Collapse
|
174
|
The Tetraspanin CD9 Affords High-Purity Capture of All Murine Hematopoietic Stem Cells. Cell Rep 2013; 4:642-8. [DOI: 10.1016/j.celrep.2013.07.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/05/2013] [Accepted: 07/17/2013] [Indexed: 11/17/2022] Open
|
175
|
Bai L, Shi G, Zhang X, Dong W, Zhang L. Transgenic expression of BRCA1 disturbs hematopoietic stem and progenitor cells quiescence and function. Exp Cell Res 2013; 319:2739-46. [PMID: 23850973 DOI: 10.1016/j.yexcr.2013.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/19/2013] [Accepted: 06/22/2013] [Indexed: 10/26/2022]
Abstract
The balance between quiescence and proliferation of HSCs is an important regulator of hematopoiesis. Loss of quiescence frequently results in HSCs exhaustion, which underscores the importance of tight regulation of proliferation in these cells. Studies have indicated that cyclin-dependent kinases are involved in the regulation of quiescence in HSCs. BRCA1 plays an important role in the repair of DNA double-stranded breaks, cell cycle, apoptosis and transcription. BRCA1 is expressed in the bone marrow. However, the function of BRCA1 in HSCs is unknown. In our study, we generated BRCA1 transgenic mice to investigate the effects of BRCA1 on the mechanisms of quiescence and differentiation in HSCs. The results demonstrate that over-expression of BRCA1 in the bone marrow impairs the development of B lymphocytes. Furthermore, BRCA1 induced an increase in the number of LSKs, LT-HSCs, ST-HSCs and MPPs. A competitive transplantation assay found that BRCA1 transgenic mice failed to reconstitute hematopoiesis. Moreover, BRCA1 regulates the expression of p21(waf1)/cip1 and p57(kip2), which results in a loss of quiescence in LSKs. Together, over-expression of BRCA1 in bone marrow disrupted the quiescent of LSKs, induced excessive accumulation of LSKs, and disrupted differentiation of the HSCs, which acts through the down-regulated of p21(waf1)/cip1 and p57(kip2).
Collapse
Affiliation(s)
- Lin Bai
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Chao Yang Strict, Pan Jia Yuan Nan Li No.5, Beijing 100021, China
| | | | | | | | | |
Collapse
|
176
|
The Src homology 2 protein Shb promotes cell cycle progression in murine hematopoietic stem cells by regulation of focal adhesion kinase activity. Exp Cell Res 2013; 319:1852-1864. [DOI: 10.1016/j.yexcr.2013.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/13/2013] [Accepted: 03/17/2013] [Indexed: 11/22/2022]
|
177
|
Merad M, Sathe P, Helft J, Miller J, Mortha A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 2013; 31:563-604. [PMID: 23516985 DOI: 10.1146/annurev-immunol-020711-074950] [Citation(s) in RCA: 1756] [Impact Index Per Article: 146.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dendritic cells (DCs) form a remarkable cellular network that shapes adaptive immune responses according to peripheral cues. After four decades of research, we now know that DCs arise from a hematopoietic lineage distinct from other leukocytes, establishing the DC system as a unique hematopoietic branch. Recent work has also established that tissue DCs consist of developmentally and functionally distinct subsets that differentially regulate T lymphocyte function. This review discusses major advances in our understanding of the regulation of DC lineage commitment, differentiation, diversification, and function in situ.
Collapse
Affiliation(s)
- Miriam Merad
- Department of Oncological Sciences, Mount Sinai Medical School, New York, NY 10029, USA.
| | | | | | | | | |
Collapse
|
178
|
An N, Lin YW, Mahajan S, Kellner JN, Wang Y, Li Z, Kraft AS, Kang Y. Pim1 serine/threonine kinase regulates the number and functions of murine hematopoietic stem cells. Stem Cells 2013; 31:1202-1212. [PMID: 23495171 PMCID: PMC3664117 DOI: 10.1002/stem.1369] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 01/25/2013] [Indexed: 01/01/2023]
Abstract
The genes and pathways that govern the functions and expansion of hematopoietic stem cells (HSC) are not completely understood. In this study, we investigated the roles of serine/threonine Pim kinases in hematopoiesis in mice. We generated PIM1 transgenic mice (Pim1-Tx) overexpressing human PIM1 driven by vav hematopoietic promoter/regulatory elements. Compared to wild-type littermates, Pim1-Tx mice showed enhanced hematopoiesis as demonstrated by increased numbers of Lin(-) Sca-1 (+) c-Kit (+) (LSK) hematopoietic stem/progenitor cells and cobblestone area forming cells, higher BrdU incorporation in long-term HSC population, and a better ability to reconstitute lethally irradiated mice. We then extended our study using Pim1(-/-), Pim2(-/-), Pim3(-/-) single knockout (KO) mice. HSCs from Pim1(-/-) KO mice showed impaired long-term hematopoietic repopulating capacity in secondary and competitive transplantations. Interestingly, these defects were not observed in HSCs from Pim2(-/-) or Pim3(-/-) KO mice. Limiting dilution competitive transplantation assay estimated that the frequency of LSKCD34(-) HSCs was reduced by approximately 28-fold in Pim1(-/-) KO mice compared to wild-type littermates. Mechanistic studies demonstrated an important role of Pim1 kinase in regulating HSC cell proliferation and survival. Finally, our polymerase chain reaction (PCR) array and confirmatory real-time PCR (RT-PCR) studies identified several genes including Lef-1, Pax5, and Gata1 in HSCs that were affected by Pim1 deletion. Our data provide the first direct evidence for the important role of Pim1 kinase in the regulation of HSCs. Our study also dissects out the relative role of individual Pim kinase in HSC functions and regulation.
Collapse
Affiliation(s)
- Ningfei An
- Division of Hematology-Oncology, Department of Medicine, Medical University of South Carolina
| | - Ying-Wei Lin
- Department of Pediatrics, Date Red Cross Hospital, Hokkaido, Japan
| | | | - Joshua N. Kellner
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Yong Wang
- Department of Pathology, Medical University of South Carolina, Charleston, SC 29425
| | - Zihai Li
- Division of Hematology-Oncology, Department of Medicine, Medical University of South Carolina
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Andrew S. Kraft
- Division of Hematology-Oncology, Department of Medicine, Medical University of South Carolina
| | - Yubin Kang
- Division of Hematology-Oncology, Department of Medicine, Medical University of South Carolina
| |
Collapse
|
179
|
Rossi L, Lin KK, Boles NC, Yang L, King KY, Jeong M, Mayle A, Goodell MA. Less is more: unveiling the functional core of hematopoietic stem cells through knockout mice. Cell Stem Cell 2013; 11:302-17. [PMID: 22958929 DOI: 10.1016/j.stem.2012.08.006] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hematopoietic stem cells (HSCs) represent one of the first recognized somatic stem cell types. As such, nearly 200 genes have been examined for roles in HSC function in knockout mice. In this review, we compile the majority of these reports to provide a broad overview of the functional modules revealed by these genetic analyses and highlight some key regulatory pathways involved, including cell cycle control, Tgf-β signaling, Pten/Akt signaling, Wnt signaling, and cytokine signaling. Finally, we propose recommendations for characterization of HSC function in knockout mice to facilitate cross-study comparisons that would generate a more cohesive picture of HSC biology.
Collapse
Affiliation(s)
- Lara Rossi
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
180
|
Ge Y, Waldemer RJ, Nalluri R, Nuzzi PD, Chen J. Flt3L is a novel regulator of skeletal myogenesis. J Cell Sci 2013; 126:3370-9. [PMID: 23704355 DOI: 10.1242/jcs.123950] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Various cues initiate multiple signaling pathways to regulate the highly coordinated process of skeletal myogenesis. Myoblast differentiation comprises a series of ordered events starting with cell cycle withdrawal and ending with myocyte fusion, with each step probably controlled by multiple extracellular signals and intracellular signaling pathways. Here we report the identification of Fms-like tyrokine kinase 3 ligand (Flt3L) signaling as a novel regulator of skeletal myogenesis. Flt3L is a multifunctional cytokine in immune cells, but its involvement in skeletal muscle formation has not been reported. We found that Flt3L is expressed in C2C12 myoblasts, with levels increasing throughout differentiation. Knockdown of Flt3L, or its receptor Flt3, suppresses myoblast differentiation, which is rescued by recombinant Flt3L or Flt3, respectively. Differentiation is not rescued, however, by recombinant ligand when the receptor is knocked down, or vice versa, suggesting that Flt3L and Flt3 function together. Flt3L knockdown also inhibits differentiation in mouse primary myoblasts. Both Flt3L and Flt3 are highly expressed in nascent myofibers during muscle regeneration in vivo, and Flt3L siRNA impairs muscle regeneration, validating the physiological significance of Flt3L function in myogenesis. We have identified a cellular mechanism for the myogenic function of Flt3L, as we show that Flt3L promotes cell cycle exit that is necessary for myogenic differentiation. Furthermore, we identify Erk as a relevant target of Flt3L signaling during myogenesis, and demonstrate that Flt3L suppresses Erk signaling through p120RasGAP. In summary, our work reveals an unexpected role for an immunoregulatory cytokine in skeletal myogenesis and a new myogenic pathway.
Collapse
Affiliation(s)
- Yejing Ge
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Avenue B107, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
181
|
Guermonprez P, Helft J, Claser C, Deroubaix S, Karanje H, Gazumyan A, Darasse-Jèze G, Telerman SB, Breton G, Schreiber HA, Frias-Staheli N, Billerbeck E, Dorner M, Rice CM, Ploss A, Klein F, Swiecki M, Colonna M, Kamphorst AO, Meredith M, Niec R, Takacs C, Mikhail F, Hari A, Bosque D, Eisenreich T, Merad M, Shi Y, Ginhoux F, Rénia L, Urban BC, Nussenzweig MC. Inflammatory Flt3l is essential to mobilize dendritic cells and for T cell responses during Plasmodium infection. Nat Med 2013; 19:730-8. [PMID: 23685841 DOI: 10.1038/nm.3197] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/12/2013] [Indexed: 12/12/2022]
Abstract
Innate sensing mechanisms trigger a variety of humoral and cellular events that are essential to adaptive immune responses. Here we describe an innate sensing pathway triggered by Plasmodium infection that regulates dendritic cell homeostasis and adaptive immunity through Flt3 ligand (Flt3l) release. Plasmodium-induced Flt3l release in mice requires Toll-like receptor (TLR) activation and type I interferon (IFN) production. We found that type I IFN supports the upregulation of xanthine dehydrogenase, which metabolizes the xanthine accumulating in infected erythrocytes to uric acid. Uric acid crystals trigger mast cells to release soluble Flt3l from a pre-synthesized membrane-associated precursor. During infection, Flt3l preferentially stimulates expansion of the CD8-α(+) dendritic cell subset or its BDCA3(+) human dendritic cell equivalent and has a substantial impact on the magnitude of T cell activation, mostly in the CD8(+) compartment. Our findings highlight a new mechanism that regulates dendritic cell homeostasis and T cell responses to infection.
Collapse
Affiliation(s)
- Pierre Guermonprez
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Parekh C, Crooks GM. Critical differences in hematopoiesis and lymphoid development between humans and mice. J Clin Immunol 2013; 33:711-5. [PMID: 23274800 PMCID: PMC3633618 DOI: 10.1007/s10875-012-9844-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 11/26/2012] [Indexed: 12/21/2022]
Abstract
During the last five decades, elegant mouse models of hematopoiesis have yielded most of the seminal insights into this complex biological system of self-renewal and lineage commitment. More recent advances in assays to measure human stem and progenitor cells as well as high resolution RNA profiling have revealed that although the basic roadmap of blood development is generally conserved across mammals, evolutionary pressures have generated many differences between the species that have important biological and translational implications. To enhance the utility of the mouse as a model organism, it is more important than ever that research data are presented with regard to how they might be influenced by the species of origin as well as the developmental source of the hematopoietic tissue.
Collapse
Affiliation(s)
- Chintan Parekh
- Division of Pediatric Hematology/Oncology, Children’s Hospital Los Angeles
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles
| | - Gay M. Crooks
- Department of Pathology & Laboratory Medicine, Geffen School of Medicine, University of California Los Angeles (UCLA)
- Jonsson Comprehensive Cancer Center, UCLA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, UCLA
| |
Collapse
|
183
|
Abstract
Transcription factors critical for normal hematopoietic stem cell functions are frequently mutated in acute leukemia leading to an aberrant re-programming of normal hematopoietic progenitor/stem cells into leukemic stem cells. Among them, re-arrangements of the mixed lineage leukemia gene (MLL), including chimeric fusion, partial tandem duplication (PTD), amplification and internal exonic deletion, represent one of the most common recurring oncogenic events and associate with very poor prognosis in human leukemias. Extensive research on wild type MLL and MLL-fusions has significant advanced our knowledge about their functions in normal and malignant hematopoiesis, which also provides a framework for the underlying pathogenic role of MLL re-arrangements in human leukemias. In contrast, research progress on MLL-PTD, MLL amplification and internal exonic deletion remains stagnant, in particular for the last two abnormalities where mouse model is not yet available. In this article, we will review the key features of both wild-type and re-arranged MLL proteins with particular focuses on MLL-PTD and MLL amplification for their roles in normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Bon Ham Yip
- Leukemia and Stem Cell Biology Lab, Department of Haematological Medicine, King's College London, Denmark Hill, London SE5 9NU, UK
| | | |
Collapse
|
184
|
An N, Kraft AS, Kang Y. Abnormal hematopoietic phenotypes in Pim kinase triple knockout mice. J Hematol Oncol 2013; 6:12. [PMID: 23360755 PMCID: PMC3610283 DOI: 10.1186/1756-8722-6-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 01/25/2013] [Indexed: 11/25/2022] Open
Abstract
Background Pim (proviral insertion in murine lymphoma) kinases are a small family of constitutively active, highly conservative serine/threonine oncogenic kinases and have 3 members: Pim1, Pim2, and Pim3. Pim kinases are also implicated in the regulation of B- and T- cell responses to cytokines and hematopoietic growth factors. The roles of Pim kinases in the regulation of primitive hematopoietic stem cells (HSCs) are largely unknown. Methods In the current study, Pim1−/−2−/−3−/− triple knockout (TKO) mice were used to determine the role of Pim kinases in hematopoiesis. Peripheral blood hematological parameters were measured in Pim TKO mice and age-matched wild-type (WT) controls. Primary, secondary, and competitive transplantations were performed to assay the long-term repopulating HSCs in Pim TKO mice. In vivo BrdU incorporation assay and ex vivo Ki67 staining and caspase 3 labeling were performed to evaluate the proliferation and apoptosis of HSCs in Pim TKO mice. Results Compared to age-matched WT controls, Pim TKO mice had lower peripheral blood platelet count and exhibited erythrocyte hypochromic microcytosis. The bone marrow cells from Pim TKO mice demonstrated decreased hematopoietic progenitor colony-forming ability. Importantly, Pim TKO bone marrow cells had significantly impaired capacity in rescuing lethally irradiated mice and reconstituting hematopoiesis in primary, secondary and competitive transplant models. In vivo BrdU incorporation in long-term HSCs was reduced in Pim TKO mice. Finally, cultured HSCs from Pim TKO mice showed reduced proliferation evaluated by Ki67 staining and higher rate of apoptosis via caspase 3 activation. Conclusions Pim kinases are not only essential in the hematopoietic lineage cell development, but also important in HSC expansion, self-renewal, and long-term repopulation.
Collapse
Affiliation(s)
- Ningfei An
- Division of Hematology-Oncology, Department of Medicine, Medical University of South Carolina, 86 Jonathan Lucas Street, Hollings Cancer Center Rm# HO307, Charleston, SC 29425, USA
| | | | | |
Collapse
|
185
|
Hematopoietic Stem Cells. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
186
|
Abstract
The use of flow cytometry has been critical in establishing methods to isolate and characterize hematopoietic stem cells (HSCs) and their progenitors. For more than 30 years, researchers have been uncovering novel markers that when used in combination significantly enhance the purification of HSCs from murine and human bone marrow. The complex interface between HSCs, the lymphohematopoietic system, and their niches, has made identification of HSC markers critical to understanding their biological nature, more so than other adult stem cell populations. Here we review the phenotypic markers and strategies used to purify HSCs, the appropriateness of using these markers for comparisons of HSC function at different stages of ontogeny, and their utility in defining the lineage bias in the HSC compartment.
Collapse
Affiliation(s)
- Kyle Rector
- Departments of Physiology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| | | | | |
Collapse
|
187
|
Nagano MC, Yeh JR. The Identity and Fate Decision Control of Spermatogonial Stem Cells. Curr Top Dev Biol 2013; 102:61-95. [DOI: 10.1016/b978-0-12-416024-8.00003-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
188
|
Abstract
The continuous production of T lymphocytes requires that hematopoietic progenitors developing in the bone marrow migrate to the thymus. Rare progenitors egress from the bone marrow into the circulation, then traffic via the blood to the thymus. It is now evident that thymic settling is tightly regulated by selectin ligands, chemokine receptors, and integrins, among other factors. Identification of these signals has enabled progress in identifying specific populations of hematopoietic progenitors that can settle the thymus. Understanding the nature of progenitor cells and the molecular mechanisms involved in thymic settling may allow for therapeutic manipulation of this process, and improve regeneration of the T lineage in patients with impaired T cell numbers.
Collapse
Affiliation(s)
- Shirley L Zhang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 264 John Morgan Building 3620 Hamilton Walk, Philadelphia, PA, USA
| | | |
Collapse
|
189
|
Divergent effects of supraphysiologic Notch signals on leukemia stem cells and hematopoietic stem cells. Blood 2012; 121:905-17. [PMID: 23115273 DOI: 10.1182/blood-2012-03-416503] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The leukemia stem cell (LSC) hypothesis proposes that a subset of cells in the bulk leukemia population propagates the leukemia.We tested the LSC hypothesis in a mouse model of Notch-induced T-cell acute lymphoblastic leukemia (T-ALL) in which the tumor cells were largely CD4+ CD8+ T cells. LSC activity was enriched but rare in the CD8+ CD4 HSA(hi) immature single-positive T-cell subset. Although our murine T-ALL model relies on transduction of HSCs, we were unable to isolate Notch-activated HSCs to test for LSC activity. Further analysis showed that Notch activation in HSCs caused an initial expansion of hematopoietic and T-cell progenitors and loss of stem cell quiescence, which was followed by progressive loss of long-term HSCs and T-cell production over several weeks. Similar results were obtained in a conditional transgenic model in which Notch activation is induced in HSCs by Cre recombinase. We conclude that although supraphysiologic Notch signaling in HSCs promotes LSC activity in T-cell progenitors, it extinguishes self-renewal of LT-HSCs. These results provide further evidence for therapeutically targeting T-cell progenitors in T-ALL while also underscoring the need to tightly regulate Notch signaling to expand normal HSC populations for clinical applications.
Collapse
|
190
|
Satake S, Hirai H, Hayashi Y, Shime N, Tamura A, Yao H, Yoshioka S, Miura Y, Inaba T, Fujita N, Ashihara E, Imanishi J, Sawa T, Maekawa T. C/EBPβ is involved in the amplification of early granulocyte precursors during candidemia-induced "emergency" granulopoiesis. THE JOURNAL OF IMMUNOLOGY 2012; 189:4546-55. [PMID: 23024276 DOI: 10.4049/jimmunol.1103007] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Granulopoiesis is tightly regulated to meet host demands during both "steady-state" and "emergency" situations, such as infections. The transcription factor CCAAT/enhancer binding protein β (C/EBPβ) plays critical roles in emergency granulopoiesis, but the precise developmental stages in which C/EBPβ is required are unknown. In this study, a novel flow cytometric method was developed that successfully dissected mouse bone marrow cells undergoing granulopoiesis into five distinct subpopulations (#1-5) according to their levels of c-Kit and Ly-6G expression. After the induction of candidemia, rapid mobilization of mature granulocytes and an increase in early granulocyte precursors accompanied by cell cycle acceleration was followed by a gradual increase in granulocytes originating from the immature populations. Upon infection, C/EBPβ was upregulated at the protein level in all the granulopoietic subpopulations. The rapid increase in immature subpopulations #1 and #2 observed in C/EBPβ knockout mice at 1 d postinfection was attenuated. Candidemia-induced cell cycle acceleration and proliferation of hematopoietic stem/progenitors were also impaired. Taken together, these data suggest that C/EBPβ is involved in the efficient amplification of early granulocyte precursors during candidemia-induced emergency granulopoiesis.
Collapse
Affiliation(s)
- Sakiko Satake
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Pello OM, Chèvre R, Laoui D, De Juan A, Lolo F, Andrés-Manzano MJ, Serrano M, Van Ginderachter JA, Andrés V. In vivo inhibition of c-MYC in myeloid cells impairs tumor-associated macrophage maturation and pro-tumoral activities. PLoS One 2012; 7:e45399. [PMID: 23028984 PMCID: PMC3447925 DOI: 10.1371/journal.pone.0045399] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 08/22/2012] [Indexed: 12/23/2022] Open
Abstract
Although tumor-associated macrophages (TAMs) are involved in tumor growth and metastasis, the mechanisms controlling their pro-tumoral activities remain largely unknown. The transcription factor c-MYC has been recently shown to regulate in vitro human macrophage polarization and be expressed in macrophages infiltrating human tumors. In this study, we exploited the predominant expression of LysM in myeloid cells to generate c-Mycfl/fl LysMcre/+ mice, which lack c-Myc in macrophages, to investigate the role of macrophage c-MYC expression in cancer. Under steady-state conditions, immune system parameters in c-Mycfl/fl LysMcre/+ mice appeared normal, including the abundance of different subsets of bone marrow hematopoietic stem cells, precursors and circulating cells, macrophage density, and immune organ structure. In a model of melanoma, however, TAMs lacking c-Myc displayed a delay in maturation and showed an attenuation of pro-tumoral functions (e.g., reduced expression of VEGF, MMP9, and HIF1α) that was associated with impaired tissue remodeling and angiogenesis and limited tumor growth in c-Mycfl/fl LysMcre/+ mice. Macrophage c-Myc deletion also diminished fibrosarcoma growth. These data identify c-Myc as a positive regulator of the pro-tumoral program of TAMs and suggest c-Myc inactivation as an attractive target for anti-cancer therapy.
Collapse
Affiliation(s)
- Oscar M Pello
- Department of Epidemiology, Atherothrombosis and Imaging, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Halim TYF, MacLaren A, Romanish MT, Gold MJ, McNagny KM, Takei F. Retinoic-acid-receptor-related orphan nuclear receptor alpha is required for natural helper cell development and allergic inflammation. Immunity 2012; 37:463-74. [PMID: 22981535 DOI: 10.1016/j.immuni.2012.06.012] [Citation(s) in RCA: 316] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 05/30/2012] [Accepted: 06/08/2012] [Indexed: 01/23/2023]
Abstract
Natural helper (NH) cells are innate lymphoid cells (ILCs) that produce T helper-2 (Th2)-cell-type cytokines in the lung- and gut-associated lymphoid tissues. Currently, the lineage relationship between NH cells in different tissues and between NH cells and interleukin-22 (IL-22)-producing retinoic-acid-receptor-related orphan receptor (ROR)γt-positive ILCs is unclear. Here, we report that NH cells express RORα, but not RORγt. RORα-deficient, but not RORγt-deficient, mice lacked NH cells in all tissues, whereas all other lymphocytes, including RORγt(+) ILCs, were unaffected. NH-cell-deficient mice generated by RORα-deficient bone-marrow transplantation had normal Th2 cell responses but failed to develop acute lung inflammation in response to protease allergen, thus confirming the essential role of NH cells in allergic lung inflammation. We have also identified RORα-dependent NH cell progenitors in the bone marrow. Thus, all NH cells belong to a unique RORα-dependent cell lineage separate from other lymphoid cell lineages.
Collapse
Affiliation(s)
- Timotheus Y F Halim
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | | | | | | | | | | |
Collapse
|
193
|
Pereira de Sousa A, Berthault C, Granato A, Dias S, Ramond C, Kee BL, Cumano A, Vieira P. Inhibitors of DNA binding proteins restrict T cell potential by repressing Notch1 expression in Flt3-negative common lymphoid progenitors. THE JOURNAL OF IMMUNOLOGY 2012; 189:3822-30. [PMID: 22972921 DOI: 10.4049/jimmunol.1103723] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lineage commitment is regulated during hematopoiesis, with stepwise loss of differentiation potential ultimately resulting in lineage commitment. In this study we describe a novel population of B/NK bipotent precursors among common lymphoid progenitors in the fetal liver and the bone marrow. The absence of T cell precursor potential, both in vivo and in vitro, is due to low Notch1 expression and secondary to inhibition of E2A activity by members of the inhibitor of DNA binding (Id) protein family. Our results demonstrate a new, Id protein-dependent, molecular mechanism of Notch1 repression, operative in both fetal and adult common lymphoid progenitors, where T cell potential is selectively inhibited without affecting either the B or NK programs. This study identifies Id proteins as negative regulators of T cell specification, before B and NK commitment, and provides important insights into the transcriptional networks orchestrating hematopoiesis.
Collapse
|
194
|
Chu SH, Heiser D, Li L, Kaplan I, Collector M, Huso D, Sharkis SJ, Civin C, Small D. FLT3-ITD knockin impairs hematopoietic stem cell quiescence/homeostasis, leading to myeloproliferative neoplasm. Cell Stem Cell 2012; 11:346-58. [PMID: 22958930 PMCID: PMC3725984 DOI: 10.1016/j.stem.2012.05.027] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 01/30/2012] [Accepted: 05/24/2012] [Indexed: 11/25/2022]
Abstract
Internal tandem duplication (ITD) mutations within the FMS-like tyrosine kinase-3 (FLT3) render the receptor constitutively active driving proliferation and survival in leukemic blasts. Expression of FLT3-ITD from the endogenous promoter in a murine knockin model results in progenitor expansion and a myeloproliferative neoplasm. In this study, we show that this expansion begins with overproliferation within a compartment of normally quiescent long-term hematopoietic stem cells (LT-HSCs), which become rapidly depleted. This depletion is reversible upon treatment with the small molecule inhibitor Sorafenib, which also ablates the disease. Although the normal LT-HSC has been defined as FLT3(-) by flow cytometric detection, we demonstrate that FLT3 is capable of playing a role within this compartment by examining the effects of constitutively activated FLT3-ITD. This indicates an important link between stem cell quiescence/homeostasis and myeloproliferative disease while also giving novel insight into the emergence of FLT3-ITD mutations in the evolution of leukemic transformation.
Collapse
Affiliation(s)
- S. Haihua Chu
- Department of Oncology; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore MD 21231, USA
| | - Diane Heiser
- Department of Oncology; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore MD 21231, USA
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore MD 21201, USA
| | - Li Li
- Department of Oncology; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore MD 21231, USA
| | - Ian Kaplan
- Department of Oncology; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore MD 21231, USA
- Pediatric Oncology; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore MD 21231, USA
| | - Michael Collector
- Department of Oncology; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore MD 21231, USA
| | - David Huso
- Department of Oncology; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore MD 21231, USA
- Molecular and Comparative Pathobiology; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore MD 21231, USA
| | - Saul J Sharkis
- Department of Oncology; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore MD 21231, USA
| | - Curt Civin
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore MD 21201, USA
| | - Don Small
- Department of Oncology; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore MD 21231, USA
- Pediatric Oncology; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore MD 21231, USA
| |
Collapse
|
195
|
Blau O, Berenstein R, Sindram A, Blau IW. Molecular analysis of different FLT3-ITD mutations in acute myeloid leukemia. Leuk Lymphoma 2012; 54:145-52. [PMID: 22721497 DOI: 10.3109/10428194.2012.704999] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mutation of the FMS-like tyrosine kinase-3 (FLT3) gene occurs with a frequency of 20-25% in acute myeloid leukemia (AML). Different studies have reported conflicting results, stating the importance of the length, position and number of internal tandem duplications (ITDs) for prognostic significance. In the present study, FLT3-ITD mutations were found in 51 (23%) of 218 patients with AML. Using sequence analysis we categorized ITD integration sites according to functional regions of the FLT3 receptor. Median ITD size was 61 bp. The insertion site was strongly correlated with ITD size: more C-terminal located inserted fragments were significantly bigger. Our data confirm that FLT3-ITD mutations identify a subset of young patients with AML with normal cytogenetics but with inferior outcome. Patients with AML with mutation localization outside the juxtamembrane domain showed no correlation with worse prognosis. A high mutant/wild-type ratio appears to have a major impact on the prognostic relevance.
Collapse
Affiliation(s)
- Olga Blau
- Department of Hematology and Oncology, Charité University School of Medicine, Berlin, Germany.
| | | | | | | |
Collapse
|
196
|
Boyer SW, Beaudin AE, Forsberg EC. Mapping differentiation pathways from hematopoietic stem cells using Flk2/Flt3 lineage tracing. Cell Cycle 2012; 11:3180-8. [PMID: 22895180 DOI: 10.4161/cc.21279] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Genetic fate-mapping approaches provide a unique opportunity to assess differentiation pathways under physiological conditions. We have recently employed a lineage tracing approach to define hematopoietic differentiation pathways in relation to expression of the tyrosine kinase receptor Flk2.1 Based on our examination of reporter activity across all stem, progenitor and mature populations in our Flk2-Cre lineage model, we concluded that all mature blood lineages are derived through a Flk2+ intermediate, both at steady-state and under stress conditions. Here, we re-examine in depth our initial conclusions and perform additional experiments to test alternative options of lineage specification. Our data unequivocally support the conclusion that onset of Flk2 expression results in loss of self-renewal but preservation of multilineage differentiation potential. We discuss the implications of these data for defining stem cell identity and lineage potential among hematopoietic populations.
Collapse
Affiliation(s)
- Scott W Boyer
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | | | | |
Collapse
|
197
|
Mayle A, Luo M, Jeong M, Goodell MA. Flow cytometry analysis of murine hematopoietic stem cells. Cytometry A 2012; 83:27-37. [PMID: 22736515 DOI: 10.1002/cyto.a.22093] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/15/2012] [Accepted: 06/03/2012] [Indexed: 12/22/2022]
Abstract
Hematopoietic stem cells (HSCs) remain the most well-characterized adult stem cell population both in terms of markers for purification and assays to assess functional potential. However, despite over 40 years of research, working with HSCs in the mouse remains challenging because of the relative abundance (or lack thereof) of these cells in the bone marrow. The frequency of HSCs in murine bone marrow is about 0.01% of total nucleated cells and ∼5,000 can be isolated from an individual mouse depending on the age, sex, and strain of mice as well as purification scheme utilized. Adding to the challenge is the continual reporting of new markers for HSC purification, which makes it difficult for the uninitiated in the field to know which purification strategies yield the highest proportion of long-term, multilineage HSCs. In this updated version of our review from 2009, we review different strategies for hematopoietic stem and progenitor cell identification and purification. We will also discuss methods for rapid flow cytometric analysis of peripheral blood cell types, and novel strategies for working with rare cell populations such as HSCs in the analysis of cell cycle status by BrdU, Ki-67, and Pyronin Y staining. The purpose of updating this review is to provide insight into some of the recent experimental and technical advances in mouse hematopoietic stem cell biology.
Collapse
Affiliation(s)
- Allison Mayle
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
198
|
Abstract
Despite its complexity, blood is probably the best understood developmental system, largely due to seminal experimentation in the mouse. Clinically, hematopoietic stem cell (HSC) transplantation represents the most widely deployed regenerative therapy, but human HSCs have only been characterized relatively recently. The discovery that immune-deficient mice could be engrafted with human cells provided a powerful approach for studying HSCs. We highlight 2 decades of studies focusing on isolation and molecular regulation of human HSCs, therapeutic applications, and early lineage commitment steps, and compare mouse and humanized models to identify both conserved and species-specific mechanisms that will aid future preclinical research.
Collapse
Affiliation(s)
- Sergei Doulatov
- Division of Stem Cell and Developmental Biology, Campbell Family Institute for Cancer Research/Ontario Cancer Institute, Toronto, ON M5G 1L7, Canada
| | | | | | | |
Collapse
|
199
|
Heffner GC, Clutter MR, Nolan GP, Weissman IL. Novel hematopoietic progenitor populations revealed by direct assessment of GATA1 protein expression and cMPL signaling events. Stem Cells 2012; 29:1774-82. [PMID: 21898686 DOI: 10.1002/stem.719] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hematopoietic stem cells (HSCs) must exhibit tight regulation of both self-renewal and differentiation to maintain homeostasis of the hematopoietic system as well as to avoid aberrations in growth that may result in leukemias or other disorders. In this study, we sought to understand the molecular basis of lineage determination, with particular focus on factors that influence megakaryocyte/erythrocyte-lineage commitment, in hematopoietic stem and progenitor cells. We used intracellular flow cytometry to identify two novel hematopoietic progenitor populations within the mouse bone-marrow cKit(+) Lineage (-) Sca1(+) (KLS) Flk2 (+) compartment that differ in their protein-level expression of GATA1, a critical megakaryocyte/erythrocyte-promoting transcription factor. GATA1-high repopulating cells exhibited the cell surface phenotype KLS Flk2(+ to int), CD150(int), CD105(+), cMPL(+), and were termed "FSE cells." GATA1-low progenitors were identified as KLS Flk2(+), CD150(-), and cMPL(-), and were termed "Flk(+) CD150(-) cells." FSE cells had increased megakaryocyte/platelet potential in culture and transplant settings and exhibited a higher clonal frequency of colony-forming unit-spleen activity compared with Flk(+) CD150(-) cells, suggesting functional consequences of GATA1 upregulation in promoting megakaryocyte and erythroid lineage priming. Activation of ERK and AKT signal-transduction cascades was observed by intracellular flow cytometry in long-term HSCs and FSE cells, but not in Flk(+) CD150(-) cells in response to stimulation with thrombopoietin, an important megakaryocyte-promoting cytokine. We provide a mechanistic rationale for megakaryocyte/erythroid bias within KLS Flk2(+) cells, and demonstrate how assessment of intracellular factors and signaling events can be used to refine our understanding of lineage commitment during early definitive hematopoiesis.
Collapse
Affiliation(s)
- Garrett C Heffner
- Program in Immunology, Ludwig Center at Stanford, Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | |
Collapse
|
200
|
Extracellular matrix protein tenascin-C is required in the bone marrow microenvironment primed for hematopoietic regeneration. Blood 2012; 119:5429-37. [PMID: 22553313 DOI: 10.1182/blood-2011-11-393645] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The BM microenvironment is required for the maintenance, proliferation, and mobilization of hematopoietic stem and progenitor cells (HSPCs), both during steady-state conditions and hematopoietic recovery after myeloablation. The ECM meshwork has long been recognized as a major anatomical component of the BM microenvironment; however, the molecular signatures and functions of the ECM to support HSPCs are poorly understood. Of the many ECM proteins, the expression of tenascin-C (TN-C) was found to be dramatically up-regulated during hematopoietic recovery after myeloablation. The TN-C gene was predominantly expressed in stromal cells and endothelial cells, known as BM niche cells, supporting the function of HSPCs. Mice lacking TN-C (TN-C(-/-)) mice showed normal steady-state hematopoiesis; however, they failed to reconstitute hematopoiesis after BM ablation and showed high lethality. The capacity to support transplanted wild-type hematopoietic cells to regenerate hematopoiesis was reduced in TN-C(-/-) recipient mice. In vitro culture on a TN-C substratum promoted the proliferation of HSPCs in an integrin α9-dependent manner and up-regulated the expression of the cyclins (cyclinD1 and cyclinE1) and down-regulated the expression of the cyclin-dependent kinase inhibitors (p57(Kip2), p21(Cip1), p16(Ink4a)). These results identify TN-C as a critical component of the BM microenvironment that is required for hematopoietic regeneration.
Collapse
|