151
|
Mease PJ, Helliwell PS, Hjuler KF, Raymond K, McInnes I. Brodalumab in psoriatic arthritis: results from the randomised phase III AMVISION-1 and AMVISION-2 trials. Ann Rheum Dis 2021; 80:185-193. [PMID: 33106286 PMCID: PMC7815636 DOI: 10.1136/annrheumdis-2019-216835] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To compare the efficacy and safety of brodalumab, an interleukin-17 receptor subunit A inhibitor, with placebo, in patients with psoriatic arthritis (PsA). METHODS Adult patients with active PsA and inadequate response to, or intolerance to, conventional treatment were enrolled into two phase III studies (NCT02029495 and NCT02024646) and randomised 1:1:1 to receive subcutaneous brodalumab 140 mg or 210 mg or placebo at weeks 0, 1 and every 2 weeks up to 24 weeks. About 30% of patients had prior use of biologics. The primary endpoint for both studies was the American College of Rheumatology 20 (ACR20) response at week 16. RESULTS 962 patients were randomised across the studies prior to early termination due to sponsor decision. The primary endpoint was met in both studies. Based on comparable design and eligibility criteria, data from both studies were pooled. Significantly more patients achieved ACR20 at week 16 in both brodalumab treatment groups (45.8% and 47.9% for 140 mg and 210 mg, respectively) versus placebo (20.9%) (p<0.0001). Similar results were observed at week 24. Significantly higher proportions of patients receiving brodalumab achieved ACR50/70, Psoriasis Area and Severity Index 75/90/100 and resolution of dactylitis and enthesitis versus placebo (p<0.01). Adverse event rates were similar across treatments at week 16 (54.4%, 51.6% and 54.5% for placebo, brodalumab 140 mg and 210 mg, respectively). No new safety signals were reported. CONCLUSION Brodalumab was associated with rapid and significant improvements in signs and symptoms of PsA versus placebo. Brodalumab was well tolerated, with a safety profile consistent with other interleukin-17 inhibitors.
Collapse
Affiliation(s)
- Philip J Mease
- Rheumatology Research, Swedish Medical Center, Seattle, Washington, USA
| | - Philip S Helliwell
- Academic Unit of Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | | | - Kyle Raymond
- Medical Department, Leo Pharma, Ballerup, Denmark
| | - Iain McInnes
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
152
|
Yuan F, Jiang L, Li Q, Sokulsky L, Wanyan Y, Wang L, Liu X, Zhou L, Tay HL, Zhang G, Yang M, Li F. A Selective α7 Nicotinic Acetylcholine Receptor Agonist, PNU-282987, Attenuates ILC2s Activation and Alternaria-Induced Airway Inflammation. Front Immunol 2021; 11:598165. [PMID: 33597946 PMCID: PMC7883686 DOI: 10.3389/fimmu.2020.598165] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/16/2020] [Indexed: 01/02/2023] Open
Abstract
Background The anti-inflammatory effect of an α7nAChR agonist, PNU-282987, has previously been explored in the context of inflammatory disease. However, the effects of PNU-282987 on type 2 innate lymphoid cells (ILC2s)-mediated allergic airway inflammation has not yet been established. Aims To determine the effects of PNU-282987 on the function of ILC2s in the context of IL-33– or Alternaria Alternata (AA)– induced airway inflammation. Methods PNU-282987 was administered to mice that received recombinant IL-33 or AA intranasal challenges. Lung histological analysis and flow cytometry were performed to determine airway inflammation and the infiltration and activation of ILC2s. The previously published α7nAChR agonist GTS-21 was employed as a comparable reagent. ILC2s were isolated from murine lung tissue and cultured in vitro in the presence of IL-33, IL-2, and IL-7 with/without either PNU-282987 or GTS-21. The expression of the transcription factors GATA3, IKK, and NF-κB were also determined. Results PNU-282987 and GTS-21 significantly reduced goblet cell hyperplasia in the airway, eosinophil infiltration, and ILC2s numbers in BALF, following IL-33 or AA challenge. In vitro IL-33 stimulation of isolated lung ILC2s showed a reduction of GATA3 and Ki67 in response to PNU-282987 or GTS-21 treatments. There was a significant reduction in IKK and NF-κB phosphorylation in the PNU-282987–treated group when compared to the GTS-21–treated ILC2s. Conclusion PNU-282987 inhibits ILC2-associated airway inflammation, where its effects were comparable to that of GTS-21.
Collapse
Affiliation(s)
- Fang Yuan
- Academy of Medical Sciences and Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Department of Medical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lili Jiang
- Academy of Medical Sciences and Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qianyang Li
- Academy of Medical Sciences and Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Leon Sokulsky
- Priority Research Centre for Healthy Lungs, Faculty of Health and Hunter Medical Research Institute, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Yuanyuan Wanyan
- Academy of Medical Sciences and Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lingli Wang
- Academy of Medical Sciences and Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaojie Liu
- Academy of Medical Sciences and Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lujia Zhou
- Academy of Medical Sciences and Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hock L Tay
- Priority Research Centre for Healthy Lungs, Faculty of Health and Hunter Medical Research Institute, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Guojun Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ming Yang
- Academy of Medical Sciences and Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Priority Research Centre for Healthy Lungs, Faculty of Health and Hunter Medical Research Institute, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Fuguang Li
- Academy of Medical Sciences and Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
153
|
Borowczyk J, Shutova M, Brembilla NC, Boehncke WH. IL-25 (IL-17E) in epithelial immunology and pathophysiology. J Allergy Clin Immunol 2021; 148:40-52. [PMID: 33485651 DOI: 10.1016/j.jaci.2020.12.628] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
IL-25, also known as IL-17E, is a unique cytokine of the IL-17 family. Indeed, IL-25 exclusively was shown to strongly induce expression of the cytokines associated with type 2 immunity. Although produced by several types of immune cells, such as T cells, dendritic cells, or group 2 innate lymphoid cells, a vast amount of IL-25 derives from epithelial cells. The functions of IL-25 have been actively studied in the context of physiology and pathology of various organs including skin, airways and lungs, gastrointestinal tract, and thymus. Accumulating evidence suggests that IL-25 is a "barrier surface" cytokine whose expression depends on extrinsic environmental factors and when upregulated may lead to inflammatory disorders such as atopic dermatitis, psoriasis, or asthma. This review summarizes the progress of the recent years regarding the effects of IL-25 on the regulation of immune response and the balance between its homeostatic and pathogenic role in various epithelia. We revisit IL-25's general and tissue-specific mechanisms of action, mediated signaling pathways, and transcription factors activated in immune and resident cells. Finally, we discuss perspectives of the IL-25-based therapies for inflammatory disorders and compare them with the mainstream ones that target IL-17A.
Collapse
Affiliation(s)
- Julia Borowczyk
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Maria Shutova
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | - Wolf-Henning Boehncke
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland; Division of Dermatology and Venereology, University Hospitals of Geneva, Geneva, Switzerland.
| |
Collapse
|
154
|
Mechanistic Implications of Biomass-Derived Particulate Matter for Immunity and Immune Disorders. TOXICS 2021; 9:toxics9020018. [PMID: 33498426 PMCID: PMC7909393 DOI: 10.3390/toxics9020018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/04/2021] [Accepted: 01/15/2021] [Indexed: 12/29/2022]
Abstract
Particulate matter (PM) is a major and the most harmful component of urban air pollution, which may adversely affect human health. PM exposure has been associated with several human diseases, notably respiratory and cardiovascular diseases. In particular, recent evidence suggests that exposure to biomass-derived PM associates with airway inflammation and can aggravate asthma and other allergic diseases. Defective or excess responsiveness in the immune system regulates distinct pathologies, such as infections, hypersensitivity, and malignancies. Therefore, PM-induced modulation of the immune system is crucial for understanding how it causes these diseases and highlighting key molecular mechanisms that can mitigate the underlying pathologies. Emerging evidence has revealed that immune responses to biomass-derived PM exposure are closely associated with the risk of diverse hypersensitivity disorders, including asthma, allergic rhinitis, atopic dermatitis, and allergen sensitization. Moreover, immunological alteration by PM accounts for increased susceptibility to infectious diseases, such as tuberculosis and coronavirus disease-2019 (COVID-19). Evidence-based understanding of the immunological effects of PM and the molecular machinery would provide novel insights into clinical interventions or prevention against acute and chronic environmental disorders induced by biomass-derived PM.
Collapse
|
155
|
Lei TY, Ye YZ, Zhu XQ, Smerin D, Gu LJ, Xiong XX, Zhang HF, Jian ZH. The immune response of T cells and therapeutic targets related to regulating the levels of T helper cells after ischaemic stroke. J Neuroinflammation 2021; 18:25. [PMID: 33461586 PMCID: PMC7814595 DOI: 10.1186/s12974-020-02057-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/09/2020] [Indexed: 12/21/2022] Open
Abstract
Through considerable effort in research and clinical studies, the immune system has been identified as a participant in the onset and progression of brain injury after ischaemic stroke. Due to the involvement of all types of immune cells, the roles of the immune system in stroke pathology and associated effects are complicated. Past research concentrated on the functions of monocytes and neutrophils in the pathogenesis of ischaemic stroke and tried to demonstrate the mechanisms of tissue injury and protection involving these immune cells. Within the past several years, an increasing number of studies have elucidated the vital functions of T cells in the innate and adaptive immune responses in both the acute and chronic phases of ischaemic stroke. Recently, the phenotypes of T cells with proinflammatory or anti-inflammatory function have been demonstrated in detail. T cells with distinctive phenotypes can also influence cerebral inflammation through various pathways, such as regulating the immune response, interacting with brain-resident immune cells and modulating neurogenesis and angiogenesis during different phases following stroke. In view of the limited treatment options available following stroke other than tissue plasminogen activator therapy, understanding the function of immune responses, especially T cell responses, in the post-stroke recovery period can provide a new therapeutic direction. Here, we discuss the different functions and temporal evolution of T cells with different phenotypes during the acute and chronic phases of ischaemic stroke. We suggest that modulating the balance between the proinflammatory and anti-inflammatory functions of T cells with distinct phenotypes may become a potential therapeutic approach that reduces the mortality and improves the functional outcomes and prognosis of patients suffering from ischaemic stroke.
Collapse
Affiliation(s)
- Tian-Yu Lei
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Ying-Ze Ye
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Xi-Qun Zhu
- Department of Head and Neck and Neurosurgery, Hubei Cancer Hospital, Wuhan, 430079, Hubei Province, People's Republic of China
| | - Daniel Smerin
- University of Central Florida College of Medicine, Orlando, FL, 32827, USA
| | - Li-Juan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Xiao-Xing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Hong-Fei Zhang
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| | - Zhi-Hong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China.
| |
Collapse
|
156
|
Liu EG, Yin X, Swaminathan A, Eisenbarth SC. Antigen-Presenting Cells in Food Tolerance and Allergy. Front Immunol 2021; 11:616020. [PMID: 33488627 PMCID: PMC7821622 DOI: 10.3389/fimmu.2020.616020] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Food allergy now affects 6%-8% of children in the Western world; despite this, we understand little about why certain people become sensitized to food allergens. The dominant form of food allergy is mediated by food-specific immunoglobulin E (IgE) antibodies, which can cause a variety of symptoms, including life-threatening anaphylaxis. A central step in this immune response to food antigens that differentiates tolerance from allergy is the initial priming of T cells by antigen-presenting cells (APCs), primarily different types of dendritic cells (DCs). DCs, along with monocyte and macrophage populations, dictate oral tolerance versus allergy by shaping the T cell and subsequent B cell antibody response. A growing body of literature has shed light on the conditions under which antigen presentation occurs and how different types of T cell responses are induced by different APCs. We will review APC subsets in the gut and discuss mechanisms of APC-induced oral tolerance versus allergy to food identified using mouse models and patient samples.
Collapse
Affiliation(s)
- Elise G. Liu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
- Section of Rheumatology, Allergy & Immunology, Yale University School of Medicine, New Haven, CT, United States
| | - Xiangyun Yin
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | - Anush Swaminathan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | - Stephanie C. Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
- Section of Rheumatology, Allergy & Immunology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
157
|
Mullin MJ, Wilkinson C, Hiles I, Smith KJ. Improved secretion of recombinant human IL-25 in HEK293 cells using a signal peptide-pro-peptide domain derived from Trypsin-1. Biotechnol Lett 2021; 43:757-765. [PMID: 33415569 DOI: 10.1007/s10529-020-03072-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/14/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To compare the effects of human Trypsin-1 signal peptide and pro-peptide on the expression and secretion efficiency of human Interleukin-25 from mammalian cells. RESULTS The signal peptide and combined signal peptide-pro-peptide sequence of human Trypsin-1 improved the secretion of human IL-25 from 1.7 to 3.2 µg/ml and 1.7 to 8.2 µg/ml, respectively. Deletion analysis identified the minimal Trypsin-1 derived secretion domain that maintains improved human Interleukin-25 production and secretion. The presence of Trypsin-1 pro-peptide sequence does not affect the function of secreted human Interleukin-25. CONCLUSION The Trypsin-1 signal peptide-pro-peptide sequence increased human IL-25 expression and secretion in mammalian cells by fivefold.
Collapse
Affiliation(s)
- Michael J Mullin
- Protein Technologies Group, GlaxoSmithKline Research & Development, Gunnels Wood Road, Stevenage, SG1 2NY, Hertfordshire, UK. .,Department of Protein & Cellular Sciences, GlaxoSmithKline Research & Development, Gunnels Wood Road, Stevenage, SG1 2NY, Hertfordshire, UK.
| | - Claire Wilkinson
- Protein Technologies Group, GlaxoSmithKline Research & Development, Gunnels Wood Road, Stevenage, SG1 2NY, Hertfordshire, UK.,Department of Protein & Cellular Sciences, GlaxoSmithKline Research & Development, Gunnels Wood Road, Stevenage, SG1 2NY, Hertfordshire, UK
| | - Ian Hiles
- Reagent Design Group, GlaxoSmithKline Research & Development, Gunnels Wood Road, Stevenage, SG1 2NY, Hertfordshire, UK.,Department of Protein & Cellular Sciences, GlaxoSmithKline Research & Development, Gunnels Wood Road, Stevenage, SG1 2NY, Hertfordshire, UK
| | - Kathrine J Smith
- Department of Protein & Cellular Sciences, GlaxoSmithKline Research & Development, Gunnels Wood Road, Stevenage, SG1 2NY, Hertfordshire, UK
| |
Collapse
|
158
|
McCullough RW. Barrier therapies supporting the biology of the mucosal barrier-medical devices for common clinical mucosal disorders. Transl Gastroenterol Hepatol 2021; 6:15. [PMID: 33409409 PMCID: PMC7724181 DOI: 10.21037/tgh.2020.02.02] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/18/2020] [Indexed: 12/12/2022] Open
Abstract
Recently mucosal barrier therapies have been either CE marked or licensed by Food and Drug Administration (FDA) as medical devices. A barrier therapy (BT) uses a physical non-drug mode of action as its sole mechanism to manage a clinical syndrome. A BT is verified as technically or biologically safe having efficacy that has been proven by valid clinical trials. However, it remains unclear what anatomical portions of the mucosa are physically engaged by any given BT. Therefore, this article clarifies the physical basis for clinical efficacy of any given mucosal BT's. Current regulatory classification of medical devices is defined. More importantly, the biology of mucosal barrier is detailed by structure, compartmental elements and function. A live-function or cross-sectional anatomical perspective of the mucosa is provided. A cross-sectional anatomical perspective of the mucosa is provided in order to highlight the physical point of contact for any given mucosal BT's. Five traits of an effective mucosal BT are proposed to assess traits of fitness for any given BT. A BT is either classical, possessing four to five traits, or non-classical, possessing three or fewer traits. Among 16 commercially available mucosal BT's which share nine distinct formulations, most are non-classical BT while two (alginate and polymeric sucralfate) are classical mucosal BT's.
Collapse
Affiliation(s)
- Ricky W McCullough
- Translational Medicine Clinic and Research Center at Storrs, Storrs, CT, USA
| |
Collapse
|
159
|
Cellular and functional heterogeneity of the airway epithelium. Mucosal Immunol 2021; 14:978-990. [PMID: 33608655 PMCID: PMC7893625 DOI: 10.1038/s41385-020-00370-7] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/15/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
The airway epithelium protects us from environmental insults, which we encounter with every breath. Not only does it passively filter large particles, it also senses potential danger and alerts other cells, including immune and nervous cells. Together, these tissues orchestrate the most appropriate response, balancing the need to eliminate the danger with the risk of damage to the host. Each cell subset within the airway epithelium plays its part, and when impaired, may contribute to the development of respiratory disease. Here we highlight recent advances regarding the cellular and functional heterogeneity along the airway epithelium and discuss how we can use this knowledge to design more effective, targeted therapeutics.
Collapse
|
160
|
Immune Regulatory Roles of Cells Expressing Taste Signaling Elements in Nongustatory Tissues. Handb Exp Pharmacol 2021; 275:271-293. [PMID: 33945029 DOI: 10.1007/164_2021_468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
G protein-coupled taste receptors and their downstream signaling elements, including Gnat3 (also known as α-gustducin) and TrpM5, were first identified in taste bud cells. Subsequent studies, however, revealed that some cells in nongustatory tissues also express taste receptors and/or their signaling elements. These nongustatory-tissue-expressed taste receptors and signaling elements play important roles in a number of physiological processes, including metabolism and immune responses. Special populations of cells expressing taste signaling elements in nongustatory tissues have been described as solitary chemosensory cells (SCCs) and tuft cells, mainly based on their morphological features and their expression of taste signaling elements as a critical molecular signature. These cells are typically scattered in barrier epithelial tissues, and their functions were largely unknown until recently. Emerging evidence shows that SCCs and tuft cells play important roles in immune responses to microbes and parasites. Additionally, certain immune cells also express taste receptors or taste signaling elements, suggesting a direct link between chemosensation and immune function. In this chapter, we highlight our current understanding of the functional roles of these "taste-like" cells and taste signaling pathways in different tissues, focusing on their activities in immune regulation.
Collapse
|
161
|
Panova V, Gogoi M, Rodriguez-Rodriguez N, Sivasubramaniam M, Jolin HE, Heycock MWD, Walker JA, Rana BMJ, Drynan LF, Hodskinson M, Pannell R, King G, Wing M, Easton AJ, Oedekoven CA, Kent DG, Fallon PG, Barlow JL, McKenzie ANJ. Group-2 innate lymphoid cell-dependent regulation of tissue neutrophil migration by alternatively activated macrophage-secreted Ear11. Mucosal Immunol 2021; 14:26-37. [PMID: 32457448 PMCID: PMC7790759 DOI: 10.1038/s41385-020-0298-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/13/2020] [Accepted: 04/22/2020] [Indexed: 02/04/2023]
Abstract
Type-2 immunity is characterised by interleukin (IL)-4, IL-5 and IL-13, eosinophilia, mucus production, IgE, and alternatively activated macrophages (AAM). However, despite the lack of neutrophil chemoattractants such as CXCL1, neutrophils, a feature of type-1 immunity, are observed in type-2 responses. Consequently, alternative mechanisms must exist to ensure that neutrophils can contribute to type-2 immune reactions without escalation of deleterious inflammation. We now demonstrate that type-2 immune-associated neutrophil infiltration is regulated by the mouse RNase A homologue, eosinophil-associated ribonuclease 11 (Ear11), which is secreted by AAM downstream of IL-25-stimulated ILC2. Transgenic overexpression of Ear11 resulted in tissue neutrophilia, whereas Ear11-deficient mice have fewer resting tissue neutrophils, whilst other type-2 immune responses are not impaired. Notably, administration of recombinant mouse Ear11 increases neutrophil motility and recruitment. Thus, Ear11 helps maintain tissue neutrophils at homoeostasis and during type-2 reactions when chemokine-producing classically activated macrophages are infrequently elicited.
Collapse
Affiliation(s)
- Veera Panova
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK ,grid.451388.30000 0004 1795 1830Present Address: The Francis Crick Institute, London, NW1 1AT UK
| | - Mayuri Gogoi
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Noe Rodriguez-Rodriguez
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Meera Sivasubramaniam
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Helen E. Jolin
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Morgan W. D. Heycock
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Jennifer A. Walker
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Batika M. J. Rana
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Lesley F. Drynan
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Michael Hodskinson
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Richard Pannell
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Gareth King
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Mark Wing
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| | - Andrew J. Easton
- grid.7372.10000 0000 8809 1613School of Life Sciences, University of Warwick, Coventry, CV4 7AL UK
| | | | - David G. Kent
- Stem Cell Institute, Clifford-Allbutt Building, Hills Road, Cambridge, CB2 0AH UK ,grid.5685.e0000 0004 1936 9668Present Address: Department of Biology, University of York, Wentworth Way, York, YO10 5DD UK
| | - Padraic G. Fallon
- grid.8217.c0000 0004 1936 9705Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Jillian L. Barlow
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK ,grid.5685.e0000 0004 1936 9668Present Address: Department of Biology, University of York, Wentworth Way, York, YO10 5DD UK
| | - Andrew N. J. McKenzie
- grid.42475.300000 0004 0605 769XMedical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH UK
| |
Collapse
|
162
|
Cork MJ, Danby SG, Ogg GS. Atopic dermatitis epidemiology and unmet need in the United Kingdom. J DERMATOL TREAT 2020; 31:801-809. [PMID: 31631717 PMCID: PMC7573657 DOI: 10.1080/09546634.2019.1655137] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/31/2019] [Indexed: 01/17/2023]
Abstract
Atopic dermatitis (AD), also known as atopic eczema, is a chronic inflammatory skin condition associated with a significant health-related and socioeconomic burden, and is characterized by intense itch, disruption of the skin barrier, and upregulation of type 2-mediated immune responses. The United Kingdom (UK) has a high prevalence of AD, affecting 11-20% of children and 5-10% of adults. Approximately 2% of all cases of childhood AD in the UK are severe. Despite this, most AD treatments are performed at home, with little contact with healthcare providers or services. Here, we discuss the course of AD, treatment practices, and unmet need in the UK. Although the underlying etiology of the disease is still emerging, AD is currently attributed to skin barrier dysfunction and altered inflammatory responses. Management of AD focuses on avoiding triggers, improving skin hydration, managing exacerbating factors, and reducing inflammation through topical and systemic immunosuppressants. However, there is a significant unmet need to improve the overall management of AD and help patients gain control of their disease through safe and effective treatments. Approaches that target individual inflammatory pathways (e.g. dupilumab, anti-interleukin (IL)-4 receptor α) are emerging and likely to provide further therapeutic opportunities for patient benefit.
Collapse
Affiliation(s)
- Michael J. Cork
- Sheffield Dermatology Research, Department of Infection, Immunity & Cardiovascular Disease, Faculty of Medicine, Dentistry & Health, The University of Sheffield, Sheffield, UK
- Sheffield Children’s Hospital and Sheffield Teaching Hospitals Clinical Research Facilities, Sheffield, UK
| | - Simon G. Danby
- Sheffield Dermatology Research, Department of Infection, Immunity & Cardiovascular Disease, Faculty of Medicine, Dentistry & Health, The University of Sheffield, Sheffield, UK
- Sheffield Children’s Hospital and Sheffield Teaching Hospitals Clinical Research Facilities, Sheffield, UK
| | - Graham S. Ogg
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
163
|
Brevi A, Cogrossi LL, Grazia G, Masciovecchio D, Impellizzieri D, Lacanfora L, Grioni M, Bellone M. Much More Than IL-17A: Cytokines of the IL-17 Family Between Microbiota and Cancer. Front Immunol 2020; 11:565470. [PMID: 33244315 PMCID: PMC7683804 DOI: 10.3389/fimmu.2020.565470] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022] Open
Abstract
The interleukin-(IL-)17 family of cytokines is composed of six members named IL-17A, IL-17B, IL-17C, IL-17D, IL-17E, and IL-17F. IL-17A is the prototype of this family, and it was the first to be discovered and targeted in the clinic. IL-17A is essential for modulating the interplay between commensal microbes and epithelial cells at our borders (i.e., skin and mucosae), and yet, for protecting us from microbial invaders, thus preserving mucosal and skin integrity. Interactions between the microbiota and cells producing IL-17A have also been implicated in the pathogenesis of immune mediated inflammatory diseases and cancer. While interactions between microbiota and IL-17B-to-F have only partially been investigated, they are by no means less relevant. The cellular source of IL-17B-to-F, their main targets, and their function in homeostasis and disease distinguish IL-17B-to-F from IL-17A. Here, we intentionally overlook IL-17A, and we focus instead on the role of the other cytokines of the IL-17 family in the interplay between microbiota and epithelial cells that may contribute to cancer pathogenesis and immune surveillance. We also underscore differences and similarities between IL-17A and IL-17B-to-F in the microbiota-immunity-cancer axis, and we highlight therapeutic strategies that directly or indirectly target IL-17 cytokines in diseases.
Collapse
Affiliation(s)
- Arianna Brevi
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Laura Lucia Cogrossi
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy.,Department of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Giulia Grazia
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Desirée Masciovecchio
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Daniela Impellizzieri
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Lucrezia Lacanfora
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Matteo Grioni
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Matteo Bellone
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
164
|
Medara N, Lenzo JC, Walsh KA, Reynolds EC, Darby IB, O'Brien-Simpson NM. A review of T helper 17 cell-related cytokines in serum and saliva in periodontitis. Cytokine 2020; 138:155340. [PMID: 33144024 DOI: 10.1016/j.cyto.2020.155340] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/21/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022]
Abstract
Periodontitis is a chronic inflammatory disease with a complex underlying immunopathology. Cytokines, as molecular mediators of inflammation, play a role in all stages of disease progression. T helper 17 (Th17) cells are thought to play a role in periodontitis. Th17 cell development and maintenance requires a pro-inflammatory cytokine milieu, with many of the cytokines implicated in the pathogenesis of periodontitis. Serum and saliva are easily accessible biofluids which can represent the systemic and local environment to promote the development of Th17 cells. Here we review human clinical studies that investigate IL-1β, IL-4, IL-6, IL-10, IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, IFN-γ, sCD40L and TNF-α in serum and saliva in periodontitis. We highlight their putative role in the pathogenesis of periodontitis and place them within a wider context of animal and other clinical studies.
Collapse
Affiliation(s)
- Nidhi Medara
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Jason C Lenzo
- Centre for Oral Health Research, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Katrina A Walsh
- Department of Surgery, The University of Melbourne, Austin Health, Lance Townsend Building, Level 8, 145 Studley Road, Heidelberg, VIC 3084, Australia.
| | - Eric C Reynolds
- Centre for Oral Health Research, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Ivan B Darby
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Neil M O'Brien-Simpson
- Centre for Oral Health Research, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| |
Collapse
|
165
|
Hong H, Liao S, Chen F, Yang Q, Wang D. Role of IL-25, IL-33, and TSLP in triggering united airway diseases toward type 2 inflammation. Allergy 2020; 75:2794-2804. [PMID: 32737888 DOI: 10.1111/all.14526] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 12/25/2022]
Abstract
Under the concept of "united airway diseases," the airway is a single organ wherein upper and lower airway diseases are commonly comorbid. The upper and lower airways are lined with respiratory epithelium that plays a vital role in immune surveillance and modulation as the first line of defense to various infective pathogens, allergens, and physical insults. Recently, there is a common hypothesis emphasizing epithelium-derived cytokines, namely IL-25, IL-33, and TSLP, as key regulatory factors that link in immune-pathogenic mechanisms of allergic rhinitis (AR), chronic rhinosinusitis (CRS), and asthma, mainly involving in type 2 inflammatory responses and linking innate and adaptive immunities. Herein, we review studies that elucidated the role of epithelium-derived triple cytokines in both upper and lower airways with the purpose of expediting better clinical treatments and managements of AR, CRS, asthma, and other associated allergic diseases via applications of the modulators of these cytokines.
Collapse
Affiliation(s)
- Haiyu Hong
- Department of Otolaryngology Allergy Center The Fifth Affiliated Hospital of Sun Yat‐sen University Zhuhai China
- Department of Otolaryngology National University of Singapore National University Health System Singapore Singapore
| | - Shumin Liao
- Department of Otolaryngology Allergy Center The Fifth Affiliated Hospital of Sun Yat‐sen University Zhuhai China
| | - Fenghong Chen
- Otorhinolaryngology Hospital The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Qintai Yang
- Department of Otolaryngology The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - De‐Yun Wang
- Department of Otolaryngology National University of Singapore National University Health System Singapore Singapore
| |
Collapse
|
166
|
Chen W, Shu Q, Fan J. Neural Regulation of Interactions Between Group 2 Innate Lymphoid Cells and Pulmonary Immune Cells. Front Immunol 2020; 11:576929. [PMID: 33193374 PMCID: PMC7658006 DOI: 10.3389/fimmu.2020.576929] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022] Open
Abstract
Emerging evidence supports the involvement of nervous system in the regulation of immune responses. Group 2 innate lymphoid cells (ILC2), which function as a crucial bridge between innate and adaptive immunity, are present in large numbers in barrier tissues. Neuropeptides and neurotransmitters have been found to participate in the regulation of ILC2, adding a new dimension to neuroimmunity. However, a comprehensive and detailed overview of the mechanisms of neural regulation of ILC2, associated with previous findings and prospects for future research, is still lacking. In this review, we compile existing information that supports neurons as yet poorly understood regulators of ILC2 in the field of lung innate and adaptive immunity, focusing on neural regulation of the interaction between ILC2 and pulmonary immune cells.
Collapse
Affiliation(s)
- Weiwei Chen
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Qiang Shu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jie Fan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
167
|
Morianos I, Semitekolou M. Dendritic Cells: Critical Regulators of Allergic Asthma. Int J Mol Sci 2020; 21:ijms21217930. [PMID: 33114551 PMCID: PMC7663753 DOI: 10.3390/ijms21217930] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/15/2020] [Accepted: 10/25/2020] [Indexed: 12/17/2022] Open
Abstract
Allergic asthma is a chronic inflammatory disease of the airways characterized by airway hyperresponsiveness (AHR), chronic airway inflammation, and excessive T helper (Th) type 2 immune responses against harmless airborne allergens. Dendritic cells (DCs) represent the most potent antigen-presenting cells of the immune system that act as a bridge between innate and adaptive immunity. Pertinent to allergic asthma, distinct DC subsets are known to play a central role in initiating and maintaining allergen driven Th2 immune responses in the airways. Nevertheless, seminal studies have demonstrated that DCs can also restrain excessive asthmatic responses and thus contribute to the resolution of allergic airway inflammation and the maintenance of pulmonary tolerance. Notably, the transfer of tolerogenic DCs in vivo suppresses Th2 allergic responses and protects or even reverses established allergic airway inflammation. Thus, the identification of novel DC subsets that possess immunoregulatory properties and can efficiently control aberrant asthmatic responses is critical for the re-establishment of tolerance and the amelioration of the asthmatic disease phenotype.
Collapse
|
168
|
Kaewsarabhumi S, Proungvitaya T, Limpaiboon T, Tippayawat P, Tummanatsakun D, Titapun A, Sa-Ngaimwibool P, Proungvitaya S. Interleukin 25 (IL-25) expression in cholangiocarcinoma. Mol Clin Oncol 2020; 13:84. [PMID: 33163180 PMCID: PMC7642803 DOI: 10.3892/mco.2020.2154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 06/02/2020] [Indexed: 12/15/2022] Open
Abstract
Various cytokines are involved in carcinogenesis and tumor progression. Some tumor cells produce cytokines by themselves. Using secretome analysis, a high expression of APEX-1 was found in cholangiocarcinoma (CCA) cell lines. During this secretome analysis, it was found that CCA cell lines overexpressed some cytokines and related molecules, including interleukin 25 (IL-25). In the present study, we first performed precise secretome analysis on cytokines and related molecules in CCA cell lines and identified that IL-25 was overexpressed in CCA cell lines. Then, using immunohistochemical methods, we investigated the expression of IL-25 in the cancer tissues from 20 CCA patients in Northeast Thailand. Correlation between IL-25 expression levels and patients' clinical parameters were analyzed. The results showed that IL-25 expression was significantly (P<0.0001) higher in cancerous tissues than in the normal bile ducts and in the adjacent tissues. Overexpression of IL-25 protein in CCA tissue was confirmed using western blot analysis. Moreover, IL-25 expression in cancerous tissues was significantly (P<0.0015) higher in CCA patients with metastasis than in CCA patients without metastasis. Survival analysis revealed that a high expression of IL-25 was correlated with shorter survival time of CCA patients (P=0.0260). Aberrant expression of IL-25 in CCA tissue was associated with tumor metastasis and poor prognosis, suggesting that IL-25 is a potential prognostic biomarker. Biological roles of IL-25 in CCA genesis and progression should be explored in future.
Collapse
Affiliation(s)
- Supakit Kaewsarabhumi
- Centre of Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tanakorn Proungvitaya
- Centre of Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute (CARI), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Temduang Limpaiboon
- Centre of Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute (CARI), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Patcharaporn Tippayawat
- Centre of Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute (CARI), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Doungdean Tummanatsakun
- Centre of Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute (CARI), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Attapol Titapun
- Cholangiocarcinoma Research Institute (CARI), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Prakasit Sa-Ngaimwibool
- Cholangiocarcinoma Research Institute (CARI), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Siriporn Proungvitaya
- Centre of Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute (CARI), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
169
|
Roles of Type 2 Immune Response-Initiating Cytokines and Detection of Type 2 Innate Lymphoid Cells in Mouse Models of Allergic Conjunctivitis. Cornea 2020; 39 Suppl 1:S47-S50. [PMID: 33038152 DOI: 10.1097/ico.0000000000002548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Allergic conjunctivitis is one the most common global diseases and affects many people worldwide. It has been reported that 15% to 20% of the total population in Japan suffers from allergic conjunctival disease. Although TH2 cytokines suchs as interleukin (IL)-4, IL-5, and IL-13 have long been known as causes of allergic conjunctivitis, new cytokines involved in allergic diseases have been identified since 2000. The discovery of type 2 immune response-initiating cytokines, such as IL-25, IL-33, and thymic stromal lymphopoietin, and type 2 innate lymphoid cells has suggested that allergic diseases can arise from not only T cells but also barrier function disruption. In this article, we summarize the results of experiments in mouse models of ragweed-induced experimental allergic conjunctivitis and papain-soaked contact lens-induced conjunctivitis.
Collapse
|
170
|
Heterogeneity in the initiation, development and function of type 2 immunity. Nat Rev Immunol 2020; 20:603-614. [PMID: 32367051 PMCID: PMC9773851 DOI: 10.1038/s41577-020-0301-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
Abstract
Type 2 immune responses operate under varying conditions in distinct tissue environments and are crucial for protection against helminth infections and for the maintenance of tissue homeostasis. Here we explore how different layers of heterogeneity influence type 2 immunity. Distinct insults, such as allergens or infections, can induce type 2 immune responses through diverse mechanisms, and this can have heterogeneous consequences, ranging from acute or chronic inflammation to deficits in immune regulation and tissue repair. Technological advances have provided new insights into the molecular heterogeneity of different developmental lineages of type 2 immune cells. Genetic and environmental heterogeneity also contributes to the varying magnitude and quality of the type 2 immune response during infection, which is an important determinant of the balance between pathology and disease resolution. Hence, understanding the mechanisms underlying the heterogeneity of type 2 immune responses between individuals and between different tissues will be crucial for treating diseases in which type 2 immunity is an important component.
Collapse
|
171
|
Liu X, Zhang D, Cai Q, Liu D, Sun S. Involvement of nuclear factor erythroid 2‑related factor 2 in neonatal intestinal interleukin‑17D expression in hyperoxia. Int J Mol Med 2020; 46:1423-1432. [PMID: 32945417 PMCID: PMC7447302 DOI: 10.3892/ijmm.2020.4697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
Interleukin 17D (IL‑17D) plays an important role in host defense against inflammation and infection. In the present study, the role of nuclear factor erythroid 2‑related factor 2 (Nrf2) in regulating the production of IL‑17D was investigated under hyperoxia. For this purpose, neonatal rats were randomized into two groups; the model group was exposed to hyperoxia (80‑85% O2), while the control group was maintained under normoxic conditions (21% O2). Small intestine tissue was collected on postnatal days 3, 7, 10 and 14. IL‑17D expression was detected by immunofluorescence, immunohistochemistry and western blotting. The levels of Nrf2 and kelch‑like ECH‑associated protein 1 (keap1) were detected by immunohistochemistry and western blotting. Results showed that IL‑17D expression in intestine epithelial cells increased steadily, reaching a peak on day 7, and decreased gradually on days 10 and 14 under hyperoxia. Nrf2 expression was consistent with IL‑17D, and it was positively correlated with IL‑17D. However, on postnatal days 10 and 14, the number of CD4+ T cells and CD19+ B cells expressing IL‑17D was increased, and positive cells of the model group were significantly more than that of the control group. Keap1 levels were lower at the early stage. In conclusion, the expression levels of intestinal IL‑17D and Nrf2 were altered simultaneously following neonatal rat development in hyperoxia, indicating that Nrf2 may be involved in regulating the expression of IL‑17D in intestinal epithelial cells. Moreover, IL‑17D in intestinal epithelial cells may play a unique immunological role during hyperoxia.
Collapse
Affiliation(s)
- Xuying Liu
- Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases
| | - Dongyang Zhang
- Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases
| | - Qing Cai
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Dongyan Liu
- Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases
| | - Siyu Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
172
|
Chen J, Liu X, Zhong Y. Interleukin-17A: The Key Cytokine in Neurodegenerative Diseases. Front Aging Neurosci 2020; 12:566922. [PMID: 33132897 PMCID: PMC7550684 DOI: 10.3389/fnagi.2020.566922] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases are characterized by the loss of neurons and/or myelin sheath, which deteriorate over time and cause dysfunction. Interleukin 17A is the signature cytokine of a subset of CD4+ helper T cells known as Th17 cells, and the IL-17 cytokine family contains six cytokines and five receptors. Recently, several studies have suggested a pivotal role for the interleukin-17A (IL-17A) cytokine family in human inflammatory or autoimmune diseases and neurodegenerative diseases, including psoriasis, rheumatoid arthritis (RA), Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and glaucoma. Studies in recent years have shown that the mechanism of action of IL-17A is more subtle than simply causing inflammation. Although the specific mechanism of IL-17A in neurodegenerative diseases is still controversial, it is generally accepted now that IL-17A causes diseases by activating glial cells. In this review article, we will focus on the function of IL-17A, in particular the proposed roles of IL-17A, in the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Junjue Chen
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohong Liu
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
173
|
Zhu Y, Liu Y, Zhu X, Wang Z, Wang M. Upregulation of miR-155 regulates group 2 innate lymphoid cells by targeting c-maf in allergic rhinitis. Eur J Pharmacol 2020; 887:173564. [PMID: 32946865 DOI: 10.1016/j.ejphar.2020.173564] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022]
Abstract
Group 2 innate lymphoid cells (ILC2s) and Th2 type immune response are critically involved in the pathogenesis of allergic rhinitis (AR), and this pathological process is influenced by microRNAs-mediated post-transcriptional regulation. The present study investigated the adaptation and function of miR-155 in AR patients and mouse model. We found that significantly increased miR-155 expression (1.63 ± 0.12 vs. 0.92 ± 0.11 in human, and 1.68 ± 0.15 vs. 1.06 ± 0.06 in mice) and ILC2s activity in nasal mucosa and serum in AR patients and mice. Administration of miR-155 antagomir significantly reduced the activity of ILC2s in nasal mucosa, suppressed the production of Th2 cytokines in serum and nasal mucosa, and alleviated the airway inflammation and allergic symptoms in AR mice, while miR-155 agomir increased ILC2s activity and production of Th2 cytokines and induced airway inflammation and allergic symptoms in control mice. Meanwhile, the expression of transcriptional factor c-Maf (0.57 ± 0.05 vs. 0.37 ± 0.04) in nasal mucosa in AR mice, which was significantly recovered by miR-155 antagomir (0.56 ± 0.04). Treatment with miR-155 agomir decreased c-Maf expression in nasal mucosa in control mice. This synchronized with the similar pattern in the current observations that miR-155 regulated Th2 cytokine (IL-4, IL-5, IL-9 and IL-13) production, airway inflammation and allergic symptoms in AR mice. Together, upregulation miR-155 suppressed the expression of transcriptional factor c-Maf and was critically involved in the ILC2s activation, which contributed to the airway inflammation and allergic symptoms in AR.
Collapse
Affiliation(s)
- Yaqiong Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Yuehui Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Second Affiliated Hospital of Nanchang University, Jiangxi, China.
| | - Xinhua Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Zhi Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Meiqun Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Second Affiliated Hospital of Nanchang University, Jiangxi, China
| |
Collapse
|
174
|
Abstract
The incidence of allergic diseases continues to rise. Cross-sectional and longitudinal studies have indicated that allergic diseases occur in a time-based order: from atopic dermatitis and food allergy in infancy to gradual development into allergic asthma and allergic rhinitis in childhood. This phenomenon is defined as the "atopic march". Some scholars have suggested that the atopic march does not progress completely in a temporal pattern with genetic and environmental factors. Also, the mechanisms underlying the atopic march are incompletely understood. Nevertheless, the concept of the atopic march provides a new perspective for the mechanistic research, prediction, prevention, and treatment of atopic diseases. Here, we review the epidemiology, related diseases, mechanistic studies, and treatment strategies for the atopic march.
Collapse
Affiliation(s)
- Lan Yang
- Institute of Pediatrics, Children's Hospital of Fudan University, The Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jinrong Fu
- Institute of Pediatrics, Children's Hospital of Fudan University, The Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yufeng Zhou
- Institute of Pediatrics, Children's Hospital of Fudan University, The Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| |
Collapse
|
175
|
Pan S, Zhang Z, Li C, Yang D. Interleukin-25 regulates matrix metalloproteinase-2 and -9 expression in periodontal fibroblast cells through ERK and P38MAPK pathways. Cell Biol Int 2020; 44:2220-2230. [PMID: 32716065 DOI: 10.1002/cbin.11430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/14/2020] [Accepted: 07/25/2020] [Indexed: 11/11/2022]
Abstract
Interleukin-25 (IL-25) has been recognized as a new member of the IL-17 family and implicated in various inflammatory pathology. We aimed to investigate the effects of IL-25 on the expression of matrix metalloproteinase-2 (MMP-2), MMP-8, and MMP-9 in periodontal fibroblast cells (PFCs), cell migration, cytoskeleton F-actin, and to explore the involved extracellular-regulated protein kinases (ERKs), P38 mitogen-activated protein kinase (P38MAPK) signaling pathways, and IL-17 receptor. To evaluate the expression of MMP-2, MMP-8, MMP-9, and F-actin, PFCs were treated by various doses of IL-25 (0, 20, 50, 100, and 500 ng/ml). Protein expression of extracellular metalloproteinase inducer (EMMPRIN) was also evaluated by western blot. Cell scratches experiment was performed to test the cell migration ability. ERK, P38MAPK, and Jun N-terminal kinase signal pathways and related expression of P-ERK and P-P38MAPK were examined after treatment of different doses of IL-25 and after treatment of inhibitors of ERK and P38MAPK. Immunofluorescence of MMP-2, MMP-9, and F-actin were evaluated after inhibitor treatment. IL-17RB small interfering RNA was used to examine the receptor of IL-25. IL-25 increased the protein expression of MMP-2 and MMP-9. MMP-8 and EMMPRIN expressions were not regulated by IL-25 in PFCs. Positive IF staining extended strongly from the central part to the whole cell. IL-25 mediated MMP-2, MMP-9, F-actin expressions and cell migration were regulated by P38MAPK and ERK pathways, and IL-17RB. SB203580 and U0126 blocked the effects of IL-25 through the inhibition of ERK, P38MAPK, P-ERK, and P-P38MAPK. The data indicate that IL-25 could regulate cell migration, MMP-2, and MMP-9 expression, but not MMP-8 expression, in PFCs. Moreover, the regulation effects were involved in ERK and P38MAPK pathways, and receptor IL-17RB.
Collapse
Affiliation(s)
- Suxun Pan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Periodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Periodontics, Hospital of Stomatology, SunYat-sen University, Guangzhou, China
| | - Zhen Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Periodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chengzhang Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Periodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Dong Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Periodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
176
|
Lee S, Han EH, Lim MK, Lee SH, Yu HJ, Lim YH, Kang S. Fermented Platycodon grandiflorum Extracts Relieve Airway Inflammation and Cough Reflex Sensitivity In Vivo. J Med Food 2020; 23:1060-1069. [PMID: 32758004 DOI: 10.1089/jmf.2019.4595] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Platycodon grandiflorum (PG) has been extensively utilized as an herb to relieve phlegm. In this study, the effects of PG root extracts on airway inflammation and cough reflex were investigated, especially using fermented PG extracts (FPE) to increase an active compound, platycodin D by fermentation. FPE significantly reduced the numbers of eosinophils and total cells in the bronchoalveolar lavage fluid (BALF) obtained from lipopolysaccharide/ovalbumin (LPS/OVA)-induced asthma mice versus those of vehicle control. Moreover, in the BALF and the serum, FPE significantly reduced the concentration of IL-17E, a proinflammatory cytokine that causes TH2 immunity, including eosinophil amplification. It was also demonstrated that FPE might relieve inflammations through histological analysis of the lung separated from each mouse. Furthermore, in cough reflex guinea pigs induced by citric acid treatment, FPE treatment significantly reduced the number of coughs versus that of vehicle control, and consequently decreased cough reflex sensitivity. In addition, the total cell number and eosinophils significantly decreased in the BALF obtained from each guinea pig versus that of vehicle control. In in vitro study, pretreatment with FPE in LPS-stimulated RAW264.7 cells significantly reduced the levels of proinflammatory cytokines such as TNF-α, IL-6, and IL-1β, and inducible nitric oxide synthases (iNOS). Therefore, we demonstrated that FPE relieved airway inflammation and cough reflex sensitivity in vivo, and exhibited anti-inflammatory effects through suppression of iNOS and several proinflammatory cytokines. These findings suggest that FPE might have a beneficial effect on respiratory health, and may be useful as a functional food to prevent respiratory diseases.
Collapse
Affiliation(s)
- Soyeon Lee
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea.,Department of Research & Development, Koreaeundan Healthcare Co. Ltd., Ansan, Gyeonggido, Korea
| | - Eun Hye Han
- Department of Research & Development, Koreaeundan Healthcare Co. Ltd., Ansan, Gyeonggido, Korea.,Department of Integrated Biomedical and Life Sciences, College of Health Science, Korea University, Seoul, Korea
| | - Mi-Kyung Lim
- Department of Research & Development, Koreaeundan Co., Seongnam, Gyeonggido, Korea
| | - Sang-Ho Lee
- Department of Research & Development, Koreaeundan Healthcare Co. Ltd., Ansan, Gyeonggido, Korea.,Department of Integrated Biomedical and Life Sciences, College of Health Science, Korea University, Seoul, Korea
| | - Heui Jong Yu
- Research & Development Center, SKbioland Co., Ltd., Ansan, Gyeonggido, Korea
| | - Young Hee Lim
- Department of Integrated Biomedical and Life Sciences, College of Health Science, Korea University, Seoul, Korea
| | - Seongman Kang
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| |
Collapse
|
177
|
Dai L, Perera DS, Burcher E, Liu L. Hemokinin-1 and substance P stimulate production of inflammatory cytokines and chemokines in human colonic mucosa via both NK 1 and NK 2 tachykinin receptors. Neuropeptides 2020; 82:102061. [PMID: 32600668 DOI: 10.1016/j.npep.2020.102061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/05/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
There is increasing focus on the involvement of tachykinins in immune and inflammatory responses. Hemokinin-1 (HK-1) is a recently identified tachykinin that originates primarily from immune cells, and has structural similarities to substance P (SP), found mainly in neurons. However, there are species differences in HK-1, and the role of HK-1 in humans, particularly the intestine, has received minimal attention. The aim of this study was to investigate the inflammatory role of human HK-1 in the human colon. The effects of HK-1 and SP were compared on the production of multiple inflammatory cytokines and chemokines from human colonic mucosal explants. Data generated by Procarta multiplex assay and QuantiGene assay demonstrated that 4 h incubation with HK-1 (0.1 μM) significantly stimulated transcript expression and release of MCP-1, MIP-1α and β, RANTES, TNF-α, IL-1β and IL-6 from the mucosa. SP (0.1 μM) had comparable actions, but had no effect on MCP-1 or RANTES. These effects were inhibited separately by tachykinin NK1 and NK2 receptor antagonists SR140333 and SR48968 (both 0.1 μM), suggesting that these responses were mediated by both NK1 and NK2 receptors. In conclusion, these data support a novel inflammatory role for HK-1 in human colon, signaling via NK1 and NK2 receptors (and possibly other tachykinin-preferring receptors) to regulate the release of a broad spectrum of proinflammatory mediators. The study suggests that along with SP, HK-1 is also a proinflammatory mediator, likely involved in colonic inflammation, including inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Liying Dai
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - D Shevy Perera
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Elizabeth Burcher
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lu Liu
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
178
|
Ge Y, Huang M, Yao YM. Biology of Interleukin-17 and Its Pathophysiological Significance in Sepsis. Front Immunol 2020; 11:1558. [PMID: 32849528 PMCID: PMC7399097 DOI: 10.3389/fimmu.2020.01558] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022] Open
Abstract
The interleukin (IL)-17 family includes six structure-related cytokines (A-F). To date, majority of studies have focused on IL-17A. IL-17A plays a pivotal role in various infectious diseases, inflammatory and autoimmune disorders, and cancer. Several recent studies have indicated that IL-17A is a biomarker as well as a therapeutic target in sepsis. In the current review, we summarize the biological functions of IL-17, including IL-17-mediated responses and signal transduction pathways, with particular emphasis on clinical relevance to sepsis.
Collapse
Affiliation(s)
- Yun Ge
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Man Huang
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yong-Ming Yao
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Trauma Research Center, Fourth Medical Center and Medical Innovation Research Department of the Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
179
|
Medara N, Lenzo JC, Walsh KA, Darby IB, O'Brien-Simpson NM, Reynolds EC. T helper 17 cell-related cytokines in serum and saliva during management of periodontitis. Cytokine 2020; 134:155186. [PMID: 32717609 DOI: 10.1016/j.cyto.2020.155186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/27/2022]
Abstract
AIM T helper (Th)17 cells are implicated in the pathogenesis of periodontitis. This study investigated the effect of periodontal management on fifteen Th17-related cytokines in serum and saliva in periodontitis patients. MATERIALS AND METHODS Periodontal parameters, serum and saliva were collected from 40 healthy controls and 54 periodontitis subjects before treatment, and 3-, 6- and 12-months post-treatment. Cytokine concentrations of IL-1β, IL-4, IL-6, IL-10, IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, IFN-γ, sCD40L and TNF-α were determined by Luminex assay. RESULTS IL-1β, IL-6, sCD40L and TNF-α in serum, and IL-1β, IL-6, IL-25 and IL-31 in saliva were significantly higher at baseline compared to health and decreased with treatment. In contrast, serum IL-31 was significantly lower at baseline compared to health and increased with treatment. In addition, salivary IL-10, IL-17A, IL-17F, IL-23, IL-33, IFN-γ and TNF-α also displayed treatment-related reduction. Correlation networks showed that cytokines in saliva displayed a higher number of correlations compared to serum in periodontitis. CONCLUSION Treatment generally decreased cytokine concentrations except for serum IL-31 which showed a treatment-related increase. Serum cytokine concentrations may not be reflective of salivary cytokines. Saliva may be a better medium for cytokine detection compared to serum. Serum IL-31 and salivary IL-1β, IL-6, IL-10 and TNF-α were significant predictors for mean probing depth and may be potential biomarkers of interest in the pathogenesis of periodontitis.
Collapse
Affiliation(s)
- Nidhi Medara
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Jason C Lenzo
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; Centre for Oral Health Research, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Katrina A Walsh
- Austin Hospital, 145 Studley Rd, Heidelberg, VIC 3084, Australia.
| | - Ivan B Darby
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Neil M O'Brien-Simpson
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; Centre for Oral Health Research, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Eric C Reynolds
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; Centre for Oral Health Research, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| |
Collapse
|
180
|
Miller MM, Reinhardt RL. The Heterogeneity, Origins, and Impact of Migratory iILC2 Cells in Anti-helminth Immunity. Front Immunol 2020; 11:1594. [PMID: 32793230 PMCID: PMC7390839 DOI: 10.3389/fimmu.2020.01594] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Soil-transmitted helminths represent a major global health burden with infections and infection-related comorbidities causing significant reductions in the quality of life for individuals living in endemic areas. Repeated infections and chronic colonization by these large extracellular worms in mammals led to the evolution of type-2 immunity characterized by the production of the type-2 cytokines interleukin (IL)-4, IL-5, and IL-13. Although a number of adaptive and innate immune cells produce type-2 cytokines, a key cellular source in the context of helminth infection is group 2 innate lymphoid cells (ILC2s). ILC2s promote mucosal barrier homeostasis, integrity, and repair by rapidly responding to epithelial cues in mucosal tissues. Though tissue-resident ILC2s (nILC2s) have been studied in detail over the last decade, considerably less is known with regard to a subset of inflammatory ILC2s (iILC2s) that migrate to the lungs of mice early after Nippostrongylus brasiliensis infection and are potent early producers of type-2 cytokines. This review will discuss the relationship and differences between nILC2s and iILC2s that establish their unique roles in anti-helminth immunity. We have placed particular emphasis on studies investigating iILC2 origin, function, and their potential long-term contribution to tissue-resident ILC2 reservoirs in settings of helminth infection.
Collapse
Affiliation(s)
- Mindy M Miller
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| | - R Lee Reinhardt
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado-Anschutz Medical, Aurora, CO, United States
| |
Collapse
|
181
|
Iacob SA, Olariu MC, Iacob DG. Eosinophilic Colitis and Clostridioides difficile Sepsis With Rapid Remission After Antimicrobial Treatment; A Rare Coincidence and Its Pathogenic Implications. Front Med (Lausanne) 2020; 7:328. [PMID: 32903297 PMCID: PMC7396602 DOI: 10.3389/fmed.2020.00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 06/03/2020] [Indexed: 11/24/2022] Open
Abstract
Eosinophilic colitis is a rare inflammatory disorder of the digestive tract with chronic evolution and unknown pathophysiological mechanisms. The article describes the case of a 64-year old woman with a history of asthma and hypereosinophilia, who presented to a surgical department for persistent abdominal pain in the past 4 months, weight loss and malabsorption. She was diagnosed with eosinophilic colitis based on the colonoscopic result indicating extensive eosinophilic infiltration of the colonic mucosa correlated with the laboratory data and abdominal CT scan results. Following the colonoscopy, the patient developed fever, hypotension and diarrhea and was transferred to an Infectious Diseases Department with a presumptive diagnosis of abdominal sepsis. Treatment with ertapenem was immediately started. Metronidazole was also added due to a PCR positive stool test for Clostridioides difficile toxins encoding-genes. The patient displayed a rapid remission of the fever and of the intestinal complaints following antibiotic therapy and was discharged after 14 days. During a 3 months follow-up, the patient remained asymptomatic with normal values of laboratory parameters except for a persistent hypereosinophilia. The case outlines two distinguishing features: a histopathologic diagnosis of eosinophilic colitis, a rare diagnosis of a patient with chronic abdominal pain and an unexpected and rapid remission of the eosinophilic colitis following the antibiotic treatment and the restoration of the intestinal eubiosis.
Collapse
Affiliation(s)
- Simona Alexandra Iacob
- Infectious Diseases Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Infectious Diseases Department, The National Institute of Infectious Diseases "Matei Bals", Bucharest, Romania
| | - Mihaela Cristina Olariu
- Infectious Diseases Department, The National Institute of Infectious Diseases "Matei Bals", Bucharest, Romania.,Gastroenterology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Diana Gabriela Iacob
- Infectious Diseases Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
182
|
Zhang H, Zhu X, Liu X, Wang Y, Liu Y. Long non-coding RNA FOXD3-AS1 regulates the expression and secretion of IL-25 in nasal epithelial cells to inhibit Th2 type immunoreaction in allergic rhinitis. Mol Cell Biochem 2020; 473:239-246. [PMID: 32671514 DOI: 10.1007/s11010-020-03825-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/03/2020] [Indexed: 12/19/2022]
Abstract
Long non-coding RNA FOXD3-AS1 is associated with allergic rhinitis (AR). This article aims to demystify the role of FOXD3-AS1 in AR. We compared FOXD3-AS1 expression in nasal mucosas between AR patients and healthy control. Next, nasal epithelial cells (NECs) were incubated with lipopolysaccharide or recombinant IL-25, and then the supernatant of the NECs was incubated with CD4+ T cells. Th2 cell proportions were assessed by flow cytometry. The levels of gene and cytokines were detected by real-time quantitative PCR or enzyme linked immunosorbent assay. FOXD3-AS1 was downregulated in nasal mucosas of AR patients, whereas Th2 cell proportions and the levels of IL-25, IL-4, and IL-13 were enhanced in peripheral blood of AR patients. FOXD3-AS1 overexpression inhibited the expression and secretion of IL-25 in NECs. The levels of IL-4 and IL-13 and Th2 cell proportions in CD4+ T cells were enhanced by recombinant IL-25, which was effectively abolished by the supernatant of FOXD3-AS1-overexpressed NECs treatment. Our study demonstrates that FOXD3-AS1 is downregulated in nasal mucosas of AR patients, and FOXD3-AS1 represses the expression and secretion IL-25 in NECs, thereby inhibiting Th2 type immunoreaction in AR. Thus, our data provide a novel target gene for AR treatment.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Xinhua Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Xiao Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yaojie Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yuehui Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
183
|
Wu K, Wang X, Keeler SP, Gerovac BJ, Agapov EV, Byers DE, Gilfillan S, Colonna M, Zhang Y, Holtzman MJ. Group 2 Innate Lymphoid Cells Must Partner with the Myeloid-Macrophage Lineage for Long-Term Postviral Lung Disease. THE JOURNAL OF IMMUNOLOGY 2020; 205:1084-1101. [PMID: 32641386 DOI: 10.4049/jimmunol.2000181] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/05/2020] [Indexed: 12/16/2022]
Abstract
Group 2 innate lymphoid cells (ILC2s) are implicated in host defense and inflammatory disease, but these potential functional roles need more precise definition, particularly using advanced technologies to better target ILC2s and engaging experimental models that better manifest both acute infection and chronic, even lifelong, disease. In this study, we use a mouse model that applies an improved genetic definition of ILC2s via IL-7r-conditional Rora gene targeting and takes advantage of a distinct progression from acute illness to chronic disease, based on a persistent type 2 immune response to respiratory infection with a natural pathogen (Sendai virus). We first show that ILC2s are activated but are not required to handle acute illness after respiratory viral infection. In contrast, we find that this type of infection also activates ILC2s chronically for IL-13 production and consequent asthma-like disease traits that peak and last long after active viral infection is cleared. However, to manifest this type of disease, the Csf1-dependent myeloid-macrophage lineage is also active at two levels: first, at a downstream level, this lineage provides lung tissue macrophages (interstitial macrophages and tissue monocytes) that represent a major site of Il13 gene expression in the diseased lung; and second, at an upstream level, this same lineage is required for Il33 gene induction that is necessary to activate ILC2s for participation in disease at all, including IL-13 production. Together, these findings provide a revised scheme for understanding and controlling the innate immune response leading to long-term postviral lung diseases with features of asthma and related progressive conditions.
Collapse
Affiliation(s)
- Kangyun Wu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Xinyu Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Shamus P Keeler
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Benjamin J Gerovac
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Eugene V Agapov
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Derek E Byers
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Yong Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael J Holtzman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110; .,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
184
|
Brown EM, Kenny DJ, Xavier RJ. Gut Microbiota Regulation of T Cells During Inflammation and Autoimmunity. Annu Rev Immunol 2020; 37:599-624. [PMID: 31026411 DOI: 10.1146/annurev-immunol-042718-041841] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The intestinal microbiota plays a crucial role in influencing the development of host immunity, and in turn the immune system also acts to regulate the microbiota through intestinal barrier maintenance and immune exclusion. Normally, these interactions are homeostatic, tightly controlled, and organized by both innate and adaptive immune responses. However, a combination of environmental exposures and genetic defects can result in a break in tolerance and intestinal homeostasis. The outcomes of these interactions at the mucosal interface have broad, systemic effects on host immunity and the development of chronic inflammatory or autoimmune disease. The underlying mechanisms and pathways the microbiota can utilize to regulate these diseases are just starting to emerge. Here, we discuss the recent evidence in this area describing the impact of microbiota-immune interactions during inflammation and autoimmunity, with a focus on barrier function and CD4+ T cell regulation.
Collapse
Affiliation(s)
- Eric M Brown
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA; , .,Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Douglas J Kenny
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA; , .,Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA; , .,Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Gastrointestinal Unit, Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA;
| |
Collapse
|
185
|
Abstract
Although, as the major organ of gas exchange, the lung is considered a nonlymphoid organ, an interconnected network of lung-resident innate cells, including epithelial cells, dendritic cells, macrophages, and natural killer cells is crucial for its protection. These cells provide defense against a daily assault by airborne bacteria, viruses, and fungi, as well as prevent the development of cancer, allergy, and the outgrowth of commensals. Our understanding of this innate immune environment has recently changed with the discovery of a family of innate lymphoid cells (ILCs): ILC1s, ILC2s, and ILC3s. All lack adaptive antigen receptors but can provide a substantial and rapid source of IFN-γ, IL-5 and IL-13, and IL-17A or IL-22, respectively. Their ability to afford immediate protection to the lung and to influence subsequent adaptive immune responses highlights the importance of understanding ILC-regulated immunity for the design of future therapeutic interventions.
Collapse
Affiliation(s)
- Jillian L Barlow
- Medical Research Council, Laboratory of Molecular Biology, Cambridge University, Cambridgeshire CB2 0QH, United Kingdom;
| | - Andrew N J McKenzie
- Medical Research Council, Laboratory of Molecular Biology, Cambridge University, Cambridgeshire CB2 0QH, United Kingdom;
| |
Collapse
|
186
|
Stratum corneum interleukin-25 expressions correlate with the degree of dry skin and acute lesions in atopic dermatitis. Allergol Int 2020; 69:462-464. [PMID: 32107108 DOI: 10.1016/j.alit.2020.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 01/11/2020] [Accepted: 01/29/2020] [Indexed: 11/20/2022] Open
|
187
|
The emerging roles of eosinophils in mucosal homeostasis. Mucosal Immunol 2020; 13:574-583. [PMID: 32157190 DOI: 10.1038/s41385-020-0281-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 02/04/2023]
Abstract
Eosinophils are granulocytes, typically implicated as end-stage effector cells in type-II immune responses. They are capable of producing a wide array of pre-formed molecules which render them with vast potential to influence a wide variety of processes. Nonetheless, eosinophil research has traditionally focused on their role in anti-helminthic responses and pathophysiological processes in type-II immune disorders, such as allergy and asthma, where eosinophilia is a hallmark phenotype. However, a number of key studies over the past decade have placed this restricted view of eosinophil function into question, presenting additional evidence for eosinophils as critical regulators of various homeostatic processes including immune maintenance, organ development, and tissue regeneration.
Collapse
|
188
|
Kumar V. Innate lymphoid cell and adaptive immune cell cross-talk: A talk meant not to forget. J Leukoc Biol 2020; 108:397-417. [PMID: 32557732 DOI: 10.1002/jlb.4mir0420-500rrr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 12/17/2022] Open
Abstract
Innate lymphoid cells (ILCs) are a relatively new class of innate immune cells with phenotypical characters of lymphocytes but genotypically or functionally behave as typical innate immune cells. They have been classically divided into 3 groups (group 1 ILCs or ILC1s, group 2 ILCs or ILC2s, and group 3 ILCs or ILC3s). They serve as the first line of defense against invading pathogens and allergens at mucosal surfaces. The adaptive immune response works effectively in association with innate immunity as innate immune cells serve as APCs to directly stimulate the adaptive immune cells (various sets of T and B cells). Additionally, innate immune cells also secrete various effector molecules, including cytokines or chemokines impacting the function, differentiation, proliferation, and reprogramming among adaptive immune cells to maintain immune homeostasis. Only superantigens do not require their processing by innate immune cells as they are recognized directly by T cells and B cells. Thus, a major emphasis of the current article is to describe the cross-talk between different ILCs and adaptive immune cells during different conditions varying from normal physiological situations to different infectious diseases to allergic asthma.
Collapse
Affiliation(s)
- V Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, Brisbane, Queensland, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
189
|
Early diagnosis of psoriatic arthritis among psoriasis patients: clinical experience sharing. Clin Rheumatol 2020; 39:3677-3684. [PMID: 32468320 PMCID: PMC7648743 DOI: 10.1007/s10067-020-05132-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/18/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022]
Abstract
Background The early detection of psoriatic arthritis (PSA) poses a challenge to rheumatologists, even when their diagnosis is aided by sonography. In order to facilitate early detection of PSA among patients with psoriasis (PSO), we retrospectively analyzed of the relationships between serological markers and comorbidities in 629 psoriatic patients, 102 of which had PSA, while the other 527 had PSO. Results Serological markers were found not to be useful in distinguishing between PSA and PSO (p > 0.05 for all comparisons). The prevalence rate of PSA among PSO patients was around 19.4%. Two components of metabolic syndrome—hyperlipidemia (2.94%) and gout (4.9%)—were significantly more prevalent in PSA patients than in PSO patients (p < 0.05). The odds ratio for PSA is 15.94 in patients with hyperlipidemia with a 95% confidence interval (CI) of 1.64–154.80; meanwhile, the odds ratio for PSA is 3.83 in patients with gout with a 95% CI of 1.19–12.31. Allergic rhinitis (5.88%) was more prevalent in PSA patients than in PSO patients (p < 0.01). The odds ratio was 8.17 in patients with allergic rhinitis with a 95% CI of 2.26–29.50. Plasma hs-miR-210-3p distinguishes PSA from PSO, and its levels can also be distinguished from PSA after treated with anti-TNFα biologics agents (both p < 0.05). Conclusions No clinical available serology markers, but hyperlipidemia, gout, axial spondylopathy (inflammatory back pain), or allergic rhinitis, could differentiate between psoriatic arthritis from psoriasis. Plasma hs-miR-210-3p and comorbidities may differentiate psoriatic arthritis from psoriasis.Key Points • Clinical manifestations and comorbidities are different between psoriatic arthritis and psoriasis only patients. • Traditional serology markers are similar between psoriatic arthritis and psoriasis-only patients. • Plasma hs-miR-210-3p distinguishes PSA from PSO, and its levels can also be distinguished from PSA after treated with anti-TNFα biologics agents in our study. |
Electronic supplementary material The online version of this article (10.1007/s10067-020-05132-1) contains supplementary material, which is available to authorized users.
Collapse
|
190
|
Ghosh N, Choudhury P, Kaushik SR, Arya R, Nanda R, Bhattacharyya P, Roychowdhury S, Banerjee R, Chaudhury K. Metabolomic fingerprinting and systemic inflammatory profiling of asthma COPD overlap (ACO). Respir Res 2020; 21:126. [PMID: 32448302 PMCID: PMC7245917 DOI: 10.1186/s12931-020-01390-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/10/2020] [Indexed: 12/13/2022] Open
Abstract
Background Asthma-COPD overlap (ACO) refers to a group of poorly studied and characterised patients reporting with disease presentations of both asthma and COPD, thereby making both diagnosis and treatment challenging for the clinicians. They exhibit a higher burden in terms of both mortality and morbidity in comparison to patients with only asthma or COPD. The pathophysiology of the disease and its existence as a unique disease entity remains unclear. The present study aims to determine whether ACO has a distinct metabolic and immunological mediator profile in comparison to asthma and COPD. Methods Global metabolomic profiling using two different groups of patients [discovery (D) and validation (V)] were conducted. Serum samples obtained from moderate and severe asthma [n = 34(D); n = 32(V)], moderate and severe COPD [n = 30(D); 32(V)], ACO patients [n = 35(D); 40(V)] and healthy controls [n = 33(D)] were characterized using gas chromatography mass spectrometry (GC-MS). Multiplexed analysis of 25 immunological markers (IFN-γ (interferon gamma), TNF-α (tumor necrosis factor alpha), IL-12p70 (interleukin 12p70), IL-2, IL-4, IL-5, IL-13, IL-10, IL-1α, IL-1β, TGF-β (transforming growth factor), IL-6, IL-17E, IL-21, IL-23, eotaxin, GM-CSF (granulocyte macrophage-colony stimulating factor), IFN-α (interferon alpha), IL-18, NGAL (neutrophil gelatinase-associated lipocalin), periostin, TSLP (thymic stromal lymphopoietin), MCP-1 (monocyte chemoattractant protein- 1), YKL-40 (chitinase 3 like 1) and IL-8) was also performed in the discovery cohort. Results Eleven metabolites [serine, threonine, ethanolamine, glucose, cholesterol, 2-palmitoylglycerol, stearic acid, lactic acid, linoleic acid, D-mannose and succinic acid] were found to be significantly altered in ACO as compared with asthma and COPD. The levels and expression trends were successfully validated in a fresh cohort of subjects. Thirteen immunological mediators including TNFα, IL-1β, IL-17E, GM-CSF, IL-18, NGAL, IL-5, IL-10, MCP-1, YKL-40, IFN-γ, IL-6 and TGF-β showed distinct expression patterns in ACO. These markers and metabolites exhibited significant correlation with each other and also with lung function parameters. Conclusions The energy metabolites, cholesterol and fatty acids correlated significantly with the immunological mediators, suggesting existence of a possible link between the inflammatory status of these patients and impaired metabolism. The present findings could be possibly extended to better define the ACO diagnostic criteria, management and tailoring therapies exclusively for the disease.
Collapse
Affiliation(s)
- Nilanjana Ghosh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Priyanka Choudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Sandeep Rai Kaushik
- Translational Health Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Rakesh Arya
- Translational Health Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ranjan Nanda
- Translational Health Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | | | - Rintu Banerjee
- Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
191
|
Abstract
Adipose tissue (AT) plays a central role in both metabolic health and pathophysiology. Its expansion in obesity results in increased mortality and morbidity, with contributions to cardiovascular disease, diabetes mellitus, fatty liver disease, and cancer. Obesity prevalence is at an all-time high and is projected to be 50% in the United States by 2030. AT is home to a large variety of immune cells, which are critical to maintain normal tissue functions. For example, γδ T cells are fundamental for AT innervation and thermogenesis, and macrophages are required for recycling of lipids released by adipocytes. The expansion of visceral white AT promotes dysregulation of its immune cell composition and likely promotes low-grade chronic inflammation, which has been proposed to be the underlying cause for the complications of obesity. Interestingly, weight loss after obesity alters the AT immune compartment, which may account for the decreased risk of developing these complications. Recent technological advancements that allow molecular investigation on a single-cell level have led to the discovery of previously unappreciated heterogeneity in many organs and tissues. In this review, we will explore the heterogeneity of immune cells within the visceral white AT and their contributions to homeostasis and pathology.
Collapse
Affiliation(s)
- Ada Weinstock
- Department of Medicine, Leon H. Charney Division of Cardiology, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Hernandez Moura Silva
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - Kathryn J. Moore
- Department of Medicine, Leon H. Charney Division of Cardiology, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Edward A. Fisher
- Department of Medicine, Leon H. Charney Division of Cardiology, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
192
|
Combination of Mycobacterium indicus pranii and Heat-Induced Promastigotes Cures Drug-Resistant Leishmania Infection: Critical Role of Interleukin-6-Producing Classical Dendritic Cells. Infect Immun 2020; 88:IAI.00222-19. [PMID: 32229617 DOI: 10.1128/iai.00222-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/24/2020] [Indexed: 12/18/2022] Open
Abstract
The major issues in available therapeutic modalities against leishmaniasis are cost, toxicity, and the emergence of drug resistance. The aim of this work was to develop a successful therapeutic adjuvant against drug-resistant Leishmania donovani infection by means of combining Mycobacterium indicus pranii with heat-induced promastigotes (HIP). One-month postinfected BALB/c mice were administered subcutaneously with M. indicus pranii (108 cells) and HIP (100 μg) for 5 days. Spleens were harvested for flow cytometric and reverse transcriptase PCR analysis. The antileishmanial effect of the combination strategy was associated with induction of a disease-resolving Th1 and Th17 response with simultaneous downregulation of CD4+ CD25+ Foxp3+ (nTreg) cells and CD4+ CD25- Foxp3- (Tr1) cells in the spleen. The significant expansion of CD4+ TCM (CD4+ CD44hi CD11ahi CD62Lhi) cells was a further interesting outcome of this therapeutic strategy in the context of long-term protection of hosts against secondary infection. Toll-like receptor 2 (TLR2) was also found instrumental in this antiparasitic therapy. Induced interleukin-6 (IL-6) production from expanded CD11c+ CD8α+ (cDC1) and CD11c+ CD11b+ (cDC2) dendritic cells (DCs) but not from the CD11b+ Ly6c+ inflammatory monocytes (iMOs), was found critical in the protective expansion of Th17 as evidenced by an in vivo IL-6 neutralization assay. It also promoted the hematopoietic conversion toward DC progenitors (pre-DCs) from common dendritic cell progenitors (CDPs), the immediate precursors, in bone marrow. This novel combinational strategy demonstrated that expansion of Th17 by IL-6 released from CD11c+ classical DCs is crucial, together with the conventional Th1 response, to control drug-resistant infection.
Collapse
|
193
|
Aigbologa J, Connolly M, Buckley JM, O'Malley D. Mucosal Tuft Cell Density Is Increased in Diarrhea-Predominant Irritable Bowel Syndrome Colonic Biopsies. Front Psychiatry 2020; 11:436. [PMID: 32477197 PMCID: PMC7242613 DOI: 10.3389/fpsyt.2020.00436] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Tuft cells are rare chemosensory sentinels found in the gut epithelium. When triggered by helminth infection, tuft cells secrete interleukin-25 (IL-25) basolaterally and subsequently evoke an immune response. Irritable bowel syndrome (IBS) is a common and heterogeneous disorder characterized by bowel dysfunction and visceral pain sensitivity. Dysfunctional gut-brain communication and immune activation contribute to the pathophysiology of this disorder. The study aims were to investigate changes in tuft cell density in non-post-infectious IBS patients. Immunofluorescent labeling of DCLK1-positive tuft cells was carried out in mucosal biopsies from the distal colons of diarrhea and constipation-predominant IBS patients and healthy controls. Tuft cell numbers were also assessed in animal models. Concentrations of interleukin-25 (IL-25) secreted from colonic biopsies and in plasma samples were analyzed using an immunoassay. The density of tuft cells was increased in diarrhea-but not constipation-predominant IBS patient colonic biopsies. Biopsy secretions and plasma concentrations of IL-25 were elevated in diarrhea-but not constipation-predominant IBS participants. Tuft cell hyperplasia was detected in a rat model of IBS but not in mice exposed to chronic stress. Tuft cell hyperplasia is an innate immune response to helminth exposure. However, the patients with diarrhea-predominant IBS have not reported any incidents of enteric infection. Moreover, rats exhibiting IBS-like symptoms displayed increased tuft cell density but were not exposed to helminths. Our findings suggest that factors other than helminth exposure or chronic stress lead to tuft cell hyperplasia in IBS colonic biopsies.
Collapse
Affiliation(s)
| | - Maeve Connolly
- Department of Physiology, University College Cork, Cork, Ireland
| | - Julliette M. Buckley
- Department of Surgery, University College Cork, Cork, Ireland
- Mater Private Hospital, Cork, Ireland
| | - Dervla O'Malley
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
194
|
Zheng R, Chen Y, Shi J, Wang K, Huang X, Sun Y, Yang Q. Combinatorial IL-17RB, ST2, and TSLPR Signaling in Dendritic Cells of Patients With Allergic Rhinitis. Front Cell Dev Biol 2020; 8:207. [PMID: 32309281 PMCID: PMC7145954 DOI: 10.3389/fcell.2020.00207] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
Objectives Myeloid dendritic cells (DCs) in patients with allergic rhinitis (AR) express higher levels of IL-17RB, ST2, and TSLPR. However, their functional roles in DCs are much less clear. This study aimed to determine the combined effects of these three receptor signals on the T cell-polarizing function of DCs in AR patients. Methods Monocyte-derived DCs (mo-DCs) were generated and stimulated with Toll-like receptor (TLR) 1-9 ligands. Der.p1-induced mo-DCs were stimulated with different combinations of IL-25, IL-33, and TSLP to determine phenotypic characteristics and then co-cultured with CD4+ T cells to assess Th2 cytokine production. Expression levels of IL-17RB, ST2, and TSLPR on myeloid DCs (mDCs) from peripheral blood of AR and healthy subjects were detected to confirm the association of these receptors with disease severity. Results TLR ligands induced AR-derived mo-DCs to increase IL-17RB, ST2, and TSLPR expression by varying degrees; among these, Der.p1 was the strongest inducer. Der.p1-induced mo-DCs from AR showed increased OX40L expression. IL-25, IL-33, and TSLP (alone or in double combination) significantly increased OX40L expression on Der.p1-induced mo-DCs from AR, thereby increasing the production of IL-4, IL-5, and IL-13 in co-cultured CD4+ T cells; triple combination further enhanced these effects. The percentage of IL-17RB+ST2+TSLPR+ mDCs was increased in AR, higher in moderate to severe phase than in mild phase, and positively correlated with the percentages of IL-4+, IL-5+, and IL-13+ T cells. Conclusion A combination of IL-17RB, ST2, and TSLPR signals amplified the Th2-polarizing function of DCs and was associated with disease severity in AR patients.
Collapse
Affiliation(s)
- Rui Zheng
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yang Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianbo Shi
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kai Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, First People's Hospital of Foshan, Foshan, China
| | - Xuekun Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yueqi Sun
- Department of Otolaryngology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Qintai Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
195
|
Zhou S, Li Q, Wu H, Lu Q. The pathogenic role of innate lymphoid cells in autoimmune-related and inflammatory skin diseases. Cell Mol Immunol 2020; 17:335-346. [PMID: 32203190 PMCID: PMC7109064 DOI: 10.1038/s41423-020-0399-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 02/27/2020] [Indexed: 12/31/2022] Open
Abstract
Innate lymphoid cells (ILCs), as an important component of the innate immune system, arise from a common lymphoid progenitor and are located in mucosal barriers and various tissues, including the intestine, skin, lung, and adipose tissue. ILCs are heterogeneous subsets of lymphocytes that have emerging roles in orchestrating immune response and contribute to maintain metabolic homeostasis and regulate tissue inflammation. Currently, more details about the pathways for the development and differentiation of ILCs have largely been elucidated, and cytokine secretion and downstream immune cell responses in disease pathogenesis have been reported. Recent research has identified that several distinct subsets of ILCs at skin barriers are involved in the complex regulatory network in local immunity, potentiating adaptive immunity and the inflammatory response. Of note, additional studies that assess the effects of ILCs are required to better define how ILCs regulate their development and functions and how they interact with other immune cells in autoimmune-related and inflammatory skin disorders. In this review, we will distill recent research progress in ILC biology, abnormal functions and potential pathogenic mechanisms in autoimmune-related skin diseases, including systemic lupus erythematosus (SLE), scleroderma and inflammatory diseases, as well as psoriasis and atopic dermatitis (AD), thereby giving a comprehensive review of the diversity and plasticity of ILCs and their unique functions in disease conditions with the aim to provide new insights into molecular diagnosis and suggest potential value in immunotherapy.
Collapse
Affiliation(s)
- Suqing Zhou
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Qianwen Li
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Haijing Wu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China.
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China.
| |
Collapse
|
196
|
The start of a new era of biologics for treating allergic diseases. Allergol Int 2020; 69:165-166. [PMID: 32241532 DOI: 10.1016/j.alit.2020.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Indexed: 11/21/2022] Open
|
197
|
ncRNAs in Type-2 Immunity. Noncoding RNA 2020; 6:ncrna6010010. [PMID: 32155783 PMCID: PMC7151598 DOI: 10.3390/ncrna6010010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Immunological diseases, including asthma, autoimmunity and immunodeficiencies, affect a growing percentage of the population with significant unmet medical needs. As we slowly untangle and better appreciate these complex genetic and environment-influenced diseases, new therapeutically targetable pathways are emerging. Non-coding RNA species, which regulate epigenetic, transcriptional and translational responses are critical regulators of immune cell development, differentiation and effector function, and may represent one such new class of therapeutic targets. In this review we focus on type-2 immune responses, orchestrated by TH2 cell-derived cytokines, IL-4, IL-5 and IL-13, which stimulate a variety of immune and tissue responses- commonly referred to as type-2 immunity. Evolved to protect us from parasitic helminths, type-2 immune responses are observed in individuals with allergic diseases, including Asthma, atopic dermatitis and food allergy. A growing number of studies have identified the involvement of various RNA species, including microRNAs (miRNA) and long non-coding (lncRNA), in type-2 immune responses and in both clinical and pre-clinical disease settings. We highlight these recent findings, identify gaps in our understanding and provide a perspective on how our current understanding can be harnessed for novel treat opportunities to treat type-2 immune-mediated diseases.
Collapse
|
198
|
Schneider C, O'Leary CE, Locksley RM. Regulation of immune responses by tuft cells. Nat Rev Immunol 2020; 19:584-593. [PMID: 31114038 DOI: 10.1038/s41577-019-0176-x] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Tuft cells are rare, secretory epithelial cells that generated scant immunological interest until contemporaneous reports in 2016 linked tuft cells with type 2 immunity in the small intestine. Tuft cells have the capacity to produce an unusual spectrum of biological effector molecules, including IL-25, eicosanoids implicated in allergy (such as cysteinyl leukotrienes and prostaglandin D2) and the neurotransmitter acetylcholine. In most cases, the extracellular signals controlling tuft cell effector function are unknown, but signal transduction is thought to proceed via canonical, G protein-coupled receptor-dependent pathways involving components of the signalling pathway used by type II taste bud cells to sense sweet, bitter and umami compounds. Tuft cells are ideally positioned as chemosensory sentinels that can detect and relay information from diverse luminal substances via what appear to be stereotyped outputs to initiate both positive and aversive responses through populations of immune and neuronal cells. Despite recent insights, numerous questions remain regarding tuft cell lineage, diversity and effector mechanisms and how tuft cells interface with the immunological niche in the tissues where they reside.
Collapse
Affiliation(s)
- Christoph Schneider
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Claire E O'Leary
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Richard M Locksley
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA. .,Department of Microbiology & Immunology, University of California-San Francisco, San Francisco, CA, USA. .,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
199
|
Franzese C. Brief Immunology Review for Targeted Biologic Therapies in Allergic Disease. CURRENT OTORHINOLARYNGOLOGY REPORTS 2020. [DOI: 10.1007/s40136-020-00263-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
200
|
Donlan A, Petri WA. The Inflammasome and Type-2 Immunity in Clostridium difficile Infection. Clin Colon Rectal Surg 2020; 33:67-72. [PMID: 32104158 DOI: 10.1055/s-0040-1701231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Clostridium difficile (reclassified as " Clostridioides ") is the leading cause of hospital-acquired infections in the United States, and is associated with high-patient mortality and high rates of recurrence. Inflammasome priming and activation by the bacterial toxins, TcdA , TcdB , and C. difficile transferase (CDT), initiates a potent immune response that is characterized by interleukin- (IL) 8, IL-1β, and neutrophil recruitment, and is required for pathogen killing. However, it is becoming clearer that a strong inflammatory response during C. difficile infection can result in host tissue damage, and is associated with worse patient outcome. Recent work has begun to show that a type-2 immune response, most often associated with helminth infections, allergy, and asthma, may be protective during C. difficile infection. While the mechanisms through how this response protect are still unclear, there is evidence that it is mediated through eosinophil activity. This chapter will review the immune response to C. difficile, how the inflammasome signaling during infection can deleterious to the host, as well as the current understanding of a protective type-2 immunity. Understanding the host immune response may help to provide insight into novel approaches to prognosis markers, as well as how treat patient C. difficile infection without, or in addition to, antibiotics.
Collapse
Affiliation(s)
- Alexandra Donlan
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia.,Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia.,Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - William A Petri
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia.,Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia.,Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|