151
|
Coenen VA, Honey CR, Hurwitz T, Rahman AA, McMaster J, Bürgel U, Mädler B. Medial forebrain bundle stimulation as a pathophysiological mechanism for hypomania in subthalamic nucleus deep brain stimulation for Parkinson's disease. Neurosurgery 2009; 64:1106-14; discussion 1114-5. [PMID: 19487890 DOI: 10.1227/01.neu.0000345631.54446.06] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE Hypomania accounts for approximately 4% to 13% of psychotropic adverse events during subthalamic nucleus (STN) deep brain stimulation (DBS) for Parkinson's disease. Diffusion of current into the inferior and medial "limbic" STN is often reported to be the cause. We suggest a different explanation, in which the coactivation of the medial forebrain bundle (MFB), outside the STN, leads to hypomania during STN DBS. METHODS Six patients with advanced Parkinson's disease (age, 54 +/- 11 years) underwent bilateral STN DBS surgery. Preoperative diffusion tensor imaging scans for fiber tracking of the MFB were conducted on a 3T magnetic resonance imaging scanner. After implantation, the electrode positions were determined with computed tomography and integrated in a diffusion tensor imaging software environment. RESULTS The medial STN was shown to send tributaries to the MFB using it as a pathway to connect to the reward circuitry. One patient, who had a transient, stimulation-induced acute hypomanic episode, showed a direct contact between 1 active electrode contact and these putative limbic STN tributaries to the MFB unilaterally on the left. In 5 asymptomatic patients, the active contacts were between 2.9 and 7.5 mm distant from the MFB or its limbic STN tributaries. CONCLUSION We hypothesize that STN DBS-induced reversible acute hypomania might be elicited by inadvertent and unilateral coactivation of putative limbic STN tributaries to the MFB. These findings may provide insight into the neural pathways of hypomania and may facilitate future investigations of the pathophysiology of mood disorders.
Collapse
Affiliation(s)
- Volker A Coenen
- Surgical Center for Movement Disorders, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | | | | | | | |
Collapse
|
152
|
Yaeli S, Binyamin E, Shoham S. Form-function relations in cone-tipped stimulating microelectrodes. FRONTIERS IN NEUROENGINEERING 2009; 2:13. [PMID: 19680467 PMCID: PMC2726034 DOI: 10.3389/neuro.16.013.2009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Accepted: 07/20/2009] [Indexed: 11/30/2022]
Abstract
Metal microelectrodes are widely used in neuroscience research, and could potentially replace macroelectrodes in various neuro-stimulation applications where their small size, specificity, and their ability to also measure unit activity are desirable. The design of stimulating microelectrodes for specific applications requires knowledge on how tip geometry affects function, but several fundamental aspects of this relationship are not yet well understood. This study uses a combined experimental and physical finite elements simulation approach to formulate three new relationships between the geometrical and electrical properties of stimulating cone-tipped tungsten microelectrodes: (1) The empirical relationship between microelectrode 1-kHz impedance and the exposed tip surface area is best approximated by an inverse square-root function (as expected for a cone-tipped resistive interface). (2) Tip angle plays a major role in determining current distribution along the tip, and as a consequence crucially affects the charge injection capacity of a microelectrode. (3) The critical current for the onset of corrosion is independent of tip surface area in sharp microelectrodes.
Collapse
Affiliation(s)
- Steve Yaeli
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology Israel
| | | | | |
Collapse
|
153
|
Yousif N, Liu X. Investigating the depth electrode-brain interface in deep brain stimulation using finite element models with graded complexity in structure and solution. J Neurosci Methods 2009; 184:142-51. [PMID: 19596028 DOI: 10.1016/j.jneumeth.2009.07.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 07/03/2009] [Accepted: 07/06/2009] [Indexed: 11/19/2022]
Abstract
Deep brain stimulation (DBS) is an increasingly used surgical therapy for a range of neurological disorders involving the long-term electrical stimulation of various regions of the human brain in a disorder specific manner. Despite being used for the last 20 years, the underlying mechanisms are still not known, and disputed. In particular, when the electrodes are implanted into the human brain, an interface is created with changing biophysical properties which may impact on stimulation. We previously defined the electrode-brain interface (EBI) as consisting of three structural elements: the quadripolar DBS electrode, the peri-electrode space and the surrounding brain tissue. In order to understand more about the nature of this EBI, we used structural computational models of this interface, and estimated the effects of stimulation using coupled axon models. These finite element models differ in complexity, each highlighting a different feature of the EBI's effect on the DBS-induced electric field. We show that the quasi-static models are sufficient to demonstrate the difference between the acute and chronic clinical stages post-implantation. However, the frequency-dependent models are necessary as the waveform shaping has a major influence on the activation of neuronal fibres. We also investigate anatomical effects on the electric field, by taking specific account of the ventricular system in the human brain. Taken together, these models allow us to visualise the static, dynamic and target specific properties of the DBS-induced field in the surrounding brain regions.
Collapse
Affiliation(s)
- Nada Yousif
- The Department of Clinical Neuroscience, Division of Neuroscience and Mental Health, Faculty of Medicine, Imperial College London, UK
| | | |
Collapse
|
154
|
Modolo J, Beuter A. Linking brain dynamics, neural mechanisms, and deep brain stimulation in Parkinson's disease: An integrated perspective. Med Eng Phys 2009; 31:615-23. [DOI: 10.1016/j.medengphy.2009.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 12/01/2008] [Accepted: 01/25/2009] [Indexed: 10/21/2022]
|
155
|
Behrend CE, Cassim SM, Pallone MJ, Daubenspeck JA, Hartov A, Roberts DW, Leiter JC. Toward feedback controlled deep brain stimulation: dynamics of glutamate release in the subthalamic nucleus in rats. J Neurosci Methods 2009; 180:278-89. [PMID: 19464518 DOI: 10.1016/j.jneumeth.2009.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 03/30/2009] [Accepted: 04/05/2009] [Indexed: 11/26/2022]
Abstract
Deep brain stimulation (DBS) is an effective symptomatic treatment in Parkinson's disease. High frequency stimulation (HFS) of the subthalamic nucleus elicits neurotransmitter release in multiple nuclei. Therefore, we tested the hypothesis that neurotransmitter release during HFS may be used to provide feedback control of the intensity and pattern of HFS. We studied the dynamic relationship between extracellular glutamate levels and HFS in and around the STN in anesthetized rats. We used a pseudorandom binary sequence (PRBS) of stimulation in the STN, the independent forcing function, while measuring extracellular glutamate in the same nucleus, the dependent variable. The PRBS consisted of 90 s periods during which stimulation (100 microA, 150Hz, 10% duty cycle) was either off or on. The stimulation and extracellular glutamate levels were fitted using an autoregressive exogenous model (ARX) to determine the transfer function between HFS and the extracellular glutamate concentration in the STN. The ARX model fit the dynamics of extracellular glutamate levels well (correlation coefficients ranged from 0.74 to 0.99; n=11). The transfer function accurately predicted extracellular glutamate levels in the STN even when the pattern of HFS was modified. We used the transfer function to develop a feedback controlled stimulation algorithm. Feedback controlled HFS maintained extracellular glutamate concentrations at any predefined level, but only intermittent HFS was required. We conclude that the transfer function between HFS and neurotransmitter levels in the brain can be used to design DBS protocols that generate specific temporal patterns of glutamate release in the STN.
Collapse
Affiliation(s)
- Christina E Behrend
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States.
| | | | | | | | | | | | | |
Collapse
|
156
|
Salih F, Sharott A, Khatami R, Trottenberg T, Schneider G, Kupsch A, Brown P, Grosse P. Functional connectivity between motor cortex and globus pallidus in human non-REM sleep. J Physiol 2009; 587:1071-86. [PMID: 19139047 PMCID: PMC2673776 DOI: 10.1113/jphysiol.2008.164327] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 12/30/2008] [Indexed: 11/08/2022] Open
Abstract
Recent evidence suggests that the motor system undergoes very specific modulation in its functional state during the different sleep stages. Here we test the hypothesis that changes in the functional organization of the motor system involve both cortical and subcortical levels and that these distributed changes are interrelated in defined frequency bands. To this end we evaluated functional connectivity between motor and non-motor cortical sites (fronto-central, parieto-occipital) and the globus pallidus (GP) in human non-REM sleep in seven patients undergoing deep brain stimulation (DBS) for dystonia using a variety of spectral measures (power, coherence, partial coherence and directed transfer function (DTF)). We found significant coherence between GP and fronto-central cortex as well as between GP and parieto-occipital cortex in circumscribed frequency bands that correlated with sleep specific oscillations in 'light sleep' (N2) and 'slow-wave sleep' (N3). These sleep specific oscillations were also reflected in significant coherence between the two cortical sites corroborating previous studies. Importantly, we found two different physiological activities represented within the broad band of significant coherence between 9.5 and 17 Hz. One component occurred in the frequency range of sleep spindles (12.5-17 Hz) and was maximal in the coherence between fronto-central and parieto-occipital cortex as well as between GP and both cortical sites during N2. This component was still present between fronto-central and parieto-occipital cortex in N3. Functional connectivity in this frequency band may be due to a common input to both GP and cortex. The second component consisted of a spectral peak over 9.5-12.5 Hz. Coherence was elevated in this band for all topographical constellations in both N2 and N3, but especially between GP and fronto-central cortex. The DTF suggested that the 9.5-12.5 Hz activity consisted of a preferential drive from GP to the fronto-central cortex in N2, whereas in N3 the DTF between GP and fronto-central cortex was symmetrical. Partial coherence supported distinctive patterns for the 9.5-12.5 and 12.5 and 17 Hz component, so that only coherence in the 9.5-12.5 Hz band was reduced when the effects of GP were removed from the coherence between the two cortical sites. The data suggest that activities in the GP and fronto-central cortex are functionally connected over 9.5-12.5 Hz, possibly as a specific signature of the motor system in human non-REM sleep. This finding is pertinent to the longstanding debate about the nature of alpha-delta sleep as a physiological or pathological feature of non-REM sleep.
Collapse
Affiliation(s)
- F Salih
- Department of Neurology, Charité-Universitätsmedizin Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Abstract
Modern brain technology is a highly dynamic and innovative field of research with great potential for medical applications. Recent advances in recording neural signals from the brain by brain-machine interfacing presage new therapeutic options for paralyzed people by means of neural motor prostheses. This paper examines foreseeable ethical questions related to the research on brainmachine interfaces and their possible future applications. It identifies four major topics that need to be considered: first, the questions of personality and its possible alterations; second, responsibility and its possible constraints; third, therapeutic applications and their possible exceedance; and fourth, questions of research ethics that arise when progressing from animal experimentation to application to human subjects. This paper, in identifying and addressing the ethical questions raised by brain-machine interfaces, presents concerns that need to be considered if possible prosthetics based on modern brain technology are to be used cautiously and responsibly.
Collapse
Affiliation(s)
- Jens Clausen
- Department of Medical Ethics, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
158
|
Nambu A. Seven problems on the basal ganglia. Curr Opin Neurobiol 2008; 18:595-604. [PMID: 19081243 DOI: 10.1016/j.conb.2008.11.001] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 10/27/2008] [Accepted: 11/09/2008] [Indexed: 10/21/2022]
Abstract
Our knowledge on the functions of the basal ganglia has increased enormously during the last two decades. However, we still do not completely understand the primary function of the basal ganglia. In this article, I review fundamental problems on the basal ganglia that have emerged from recent findings, and propose their solutions in the following seven topics: first, organization of the cortico-basal ganglia loop, second, limitations of the 'direct and indirect pathways model', third, feedforward inhibition in the striatum, fourth, contribution of the basal ganglia to cortical activity through the thalamus, fifth, focused selection of movements and learning, sixth, firing rate model versus firing pattern model for the pathophysiology of movement disorders, and lastly mechanisms of stereotaxic surgery.
Collapse
Affiliation(s)
- Atsushi Nambu
- Division of System Neurophysiology, National Institute for Physiological Sciences, Myodaiji, Okazaki, Japan.
| |
Collapse
|
159
|
Lozano AM, Mayberg HS, Giacobbe P, Hamani C, Craddock RC, Kennedy SH. Subcallosal cingulate gyrus deep brain stimulation for treatment-resistant depression. Biol Psychiatry 2008; 64:461-7. [PMID: 18639234 DOI: 10.1016/j.biopsych.2008.05.034] [Citation(s) in RCA: 627] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 05/26/2008] [Accepted: 05/31/2008] [Indexed: 12/12/2022]
Abstract
BACKGROUND A preliminary report in six patients suggested that deep brain stimulation (DBS) of the subcallosal cingulate gyrus (SCG) may provide benefit in treatment-resistant depression (TRD). We now report the results of these and an additional 14 patients with extended follow-up. METHODS Twenty patients with TRD underwent serial assessments before and after SCG DBS. We determined the percentage of patients who achieved a response (50% or greater reduction in the 17-item Hamilton Rating Scale for Depression [HRSD-17]) or remission (scores of 7 or less) after surgery. We also examined changes in brain metabolism associated with DBS, using positron emission tomography. RESULTS There were both early and progressive benefits to DBS. One month after surgery, 35% of patients met criteria for response with 10% of patients in remission. Six months after surgery, 60% of patients were responders and 35% met criteria for remission, benefits that were largely maintained at 12 months. Deep brain stimulation therapy was associated with specific changes in the metabolic activity localized to cortical and limbic circuits implicated in the pathogenesis of depression. The number of serious adverse effects was small with no patient experiencing permanent deficits. CONCLUSIONS This study suggests that DBS is relatively safe and provides significant improvement in patients with TRD. Subcallosal cingulate gyrus DBS likely acts by modulating brain networks whose dysfunction leads to depression. The procedure is well tolerated and benefits are sustained for at least 1 year. A careful double-blind appraisal is required before the procedure can be recommended for use on a wider scale.
Collapse
Affiliation(s)
- Andres M Lozano
- Division of Neurosurgery, University of Toronto, Toronto, Canada.
| | | | | | | | | | | |
Collapse
|
160
|
The influence of subthalamic nucleus lesions on sign-tracking to stimuli paired with food and drug rewards: facilitation of incentive salience attribution? Neuropsychopharmacology 2008; 33:2352-61. [PMID: 18059435 DOI: 10.1038/sj.npp.1301653] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is well known that the subthalamic nucleus (STN) plays an important role in regulating motor function, but recent studies suggest the STN is also involved in regulating motivated behavior. For example, bilateral lesions of the STN increase motivation for both food and cocaine as assessed by 'breakpoint' on a progressive ratio schedule. However, the psychological mechanism(s) by which STN lesions increase motivation for rewards is unknown. We hypothesized that STN lesions might influence one specific component of motivation, the attribution of incentive value (incentive salience) to reward-related cues. We tested this hypothesis by quantifying the ability of a discrete cue that had been paired with the non-contingent delivery of either food or cocaine to elicit approach towards it (ie, to produce a 'sign-tracking' conditioned response, CR). STN lesions made prior to training increased asymptotic levels of sign-tracking behavior directed towards a cue paired with either food or cocaine. In addition, when STN lesions were made after animals had already undergone Pavlovian training, and animals were tested under extinction conditions, the STN lesion still facilitated a sign-tracking CR. Finally, reintroduction of the US (food) following extinction immediately restored robust sign-tracking behavior in animals with STN lesions. We speculate, therefore, that the STN is part of a neural system that moderates the amount of incentive salience attributed to reward-related stimuli. Activity in this neural system may help mitigate the development of compulsive behavioral disorders, such as addiction, which are characterized by pathological control over behavior by reward-associated cues.
Collapse
|
161
|
The influence of reactivity of the electrode-brain interface on the crossing electric current in therapeutic deep brain stimulation. Neuroscience 2008; 156:597-606. [PMID: 18761058 DOI: 10.1016/j.neuroscience.2008.07.051] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 07/23/2008] [Accepted: 07/23/2008] [Indexed: 11/21/2022]
Abstract
The use of deep brain stimulation (DBS) as an effective clinical therapy for a number of neurological disorders has been greatly hindered by the lack of understanding of the mechanisms which underlie the observed clinical improvement in patients. This problem is confounded by the difficulty of investigating the neuronal effects of DBS in situ, and the impossibility of measuring the induced current in vivo. In our recent computational work using a quasi-static finite element (FEM) model we have quantitatively shown that the properties of the depth electrode-brain interface (EBI) have a significant effect on the electric field induced in the brain volume surrounding the DBS electrode. In the present work, we explore the influence of the reactivity of the EBI on the crossing electric current using the Fourier-FEM approach to allow the investigation of waveform attenuation in the time domain. Results showed that the EBI affected the waveform shaping differently at different post-implantation stages, and that this in turn had implications on induced current distribution across the EBI. Furthermore, we investigated whether hypothetical waveforms, which were shown to have potential usefulness for neural stimulation but are not yet applied clinically, would have any advantage over the currently used square pulse. In conclusion, the influence of reactivity of the EBI on the crossing stimulation current in therapeutic DBS is significant, and affects the predictive estimation of current distribution around the implanted DBS electrode in the human brain.
Collapse
|
162
|
Noradrenergic modulation of subthalamic nucleus activity in human: metoprolol reduces spiking activity in microelectrode recordings during deep brain stimulation surgery for Parkinson's disease. Acta Neurochir (Wien) 2008; 150:757-62; discussion 762. [PMID: 18574545 DOI: 10.1007/s00701-008-1619-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 05/27/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Reversible changes in subthalamic nucleus (STN) activity, detected by microelectrode recording (MER), are reported in three patients who received an intravenous betablocker, metoprolol, during deep brain stimulation (DBS) for Parkinson's disease (PD). METHODS Metoprolol (MP) was given intravenously to reduce blood pressure during surgery. Systolic blood pressure dropped by 4, 11 and 17%, indicating a systemic beta - adrenoceptor blocking effect. FINDINGS In all patients, the bursting spiking activity of the STN was temporarily suppressed, after the application of MP. Unexpectedly, a transient reduction in Parkinson symptoms (rigidity) was recorded during suppression of STN spiking activity in patient 2. CONCLUSION The reversible suppression of STN activity and Parkinson symptoms with the beta1-selective adrenoceptor antagonist MP has not been reported. It supports the theory, that--as recently reported in the rat--the human STN is influenced by adrenergic inputs. This report supports the possible application of adrenergic antagonist drugs for the use in Parkinson's disease and advocates additional neurophysiological and pharmacological research in this field.
Collapse
|
163
|
Sesia T, Temel Y, Lim LW, Blokland A, Steinbusch HWM, Visser-Vandewalle V. Deep brain stimulation of the nucleus accumbens core and shell: opposite effects on impulsive action. Exp Neurol 2008; 214:135-9. [PMID: 18762185 DOI: 10.1016/j.expneurol.2008.07.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 07/20/2008] [Accepted: 07/22/2008] [Indexed: 10/21/2022]
Abstract
The nucleus accumbens is gaining interest as a target for deep brain stimulation in refractory neuropsychiatric disorders with impulsivity as core symptom. The nucleus accumbens is composed of two subterritories, core and shell, which have different anatomical connections. Here, we tested the hypothesis that stimulation of the nucleus accumbens core and shell would have different effects on impulsivity. Rats received bilateral stimulation at the level of the nucleus accumbens core or shell during a reaction time task. Stimulation of the nucleus accumbens core significantly decreased impulsivity, while stimulation of the shell increased it. Our results support the hypothesis that the nucleus accumbens is a potential target to treat neuropsychiatric disorders related to impulsivity by deep brain stimulation. However, different behavioral effects resulting from stimulation of the subterritories should be taken into account.
Collapse
Affiliation(s)
- Thibaut Sesia
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
164
|
Subthalamic local field potential oscillations during ongoing deep brain stimulation in Parkinson's disease. Brain Res Bull 2008; 76:512-21. [DOI: 10.1016/j.brainresbull.2008.01.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 01/18/2008] [Accepted: 01/19/2008] [Indexed: 11/17/2022]
|
165
|
A computational modelling approach to investigate different targets in deep brain stimulation for Parkinson’s disease. J Comput Neurosci 2008; 26:91-107. [DOI: 10.1007/s10827-008-0100-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 03/18/2008] [Accepted: 05/13/2008] [Indexed: 10/22/2022]
|
166
|
Berlin HA, Hamilton H, Hollander E. Experimental therapeutics for refractory obsessive-compulsive disorder: translational approaches and new somatic developments. ACTA ACUST UNITED AC 2008; 75:174-203. [DOI: 10.1002/msj.20045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
167
|
Johnson MD, Miocinovic S, McIntyre CC, Vitek JL. Mechanisms and targets of deep brain stimulation in movement disorders. Neurotherapeutics 2008; 5:294-308. [PMID: 18394571 PMCID: PMC2517242 DOI: 10.1016/j.nurt.2008.01.010] [Citation(s) in RCA: 217] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Chronic electrical stimulation of the brain, known as deep brain stimulation (DBS), has become a preferred surgical treatment for medication-refractory movement disorders. Despite its remarkable clinical success, the therapeutic mechanisms of DBS are still not completely understood, limiting opportunities to improve treatment efficacy and simplify selection of stimulation parameters. This review addresses three questions essential to understanding the mechanisms of DBS. 1) How does DBS affect neuronal tissue in the vicinity of the active electrode or electrodes? 2) How do these changes translate into therapeutic benefit on motor symptoms? 3) How do these effects depend on the particular site of stimulation? Early hypotheses proposed that stimulation inhibited neuronal activity at the site of stimulation, mimicking the outcome of ablative surgeries. Recent studies have challenged that view, suggesting that although somatic activity near the DBS electrode may exhibit substantial inhibition or complex modulation patterns, the output from the stimulated nucleus follows the DBS pulse train by direct axonal excitation. The intrinsic activity is thus replaced by high-frequency activity that is time-locked to the stimulus and more regular in pattern. These changes in firing pattern are thought to prevent transmission of pathologic bursting and oscillatory activity, resulting in the reduction of disease symptoms through compensatory processing of sensorimotor information. Although promising, this theory does not entirely explain why DBS improves motor symptoms at different latencies. Understanding these processes on a physiological level will be critically important if we are to reach the full potential of this powerful tool.
Collapse
Affiliation(s)
- Matthew D. Johnson
- grid.239578.20000000106754725Department of Biomedical Engineering, Cleveland Clinic Foundation, 44195 Cleveland, Ohio
| | - Svjetlana Miocinovic
- grid.67105.350000000121643847School of Medicine, Case Western Reserve University, 44106 Cleveland, Ohio
| | - Cameron C. McIntyre
- grid.239578.20000000106754725Department of Biomedical Engineering, Cleveland Clinic Foundation, 44195 Cleveland, Ohio
| | - Jerrold L. Vitek
- grid.239578.20000000106754725Department of Neurosciences, Cleveland Clinic Foundation, 9500 Euclid Ave, NC30, 44195 Cleveland, OH
| |
Collapse
|
168
|
Toda H, Hamani C, Fawcett AP, Hutchison WD, Lozano AM. The regulation of adult rodent hippocampal neurogenesis by deep brain stimulation. J Neurosurg 2008; 108:132-8. [PMID: 18173322 DOI: 10.3171/jns/2008/108/01/0132] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES To examine the influence of deep brain stimulation on hippocampal neurogenesis in an adult rodent model. METHODS Rats were anesthetized and treated for 1 hour with electrical stimulation of the anterior nucleus of the thalamus (AN) or sham surgery. The animals were injected with 5'-bromo-2'-deoxyuridine (BrdU) 1-7 days after surgery and killed 24 hours or 28 days later. The authors counted the BrdU-positive cells in the dentate gyrus (DG) of the hippocampus. To investigate the fate of these cells, they also stained sections for doublecortin, NeuN, and GFAP and analyzed the results with confocal microscopy. In a second set of experiments they assessed the number of DG BrdU-positive cells in animals treated with corticosterone (a known suppressor of hippocampal neurogenesis) and sham surgery, corticosterone and AN stimulation, or vehicle and sham surgery. RESULTS Animals receiving AN high-frequency stimulation (2.5 V, 90 musec, 130 Hz) had a 2- to 3-fold increase in the number of DG BrdU-positive cells compared with nonstimulated controls. This increase was not seen with stimulation at 10 Hz. Most BrdU-positive cells assumed a neuronal cell fate. As expected, treatment with corticosterone significantly reduced the number of DG BrdU-positive cells. This steroid-induced reduction of neurogenesis was reversed by AN stimulation. CONCLUSIONS High-frequency stimulation of the AN increases the hippocampal neurogenesis and restores experimentally suppressed neurogenesis. Interventions that increase hippocampal neurogenesis have been associated with enhanced behavioral performance. In this context, it may be possible to use electrical stimulation to treat conditions associated with impairment of hippocampal function.
Collapse
Affiliation(s)
- Hiroki Toda
- Division of Neurosurgery, Toronto Western Hospital, Ontario, Canada
| | | | | | | | | |
Collapse
|
169
|
Ressler KJ, Mayberg HS. Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nat Neurosci 2008; 10:1116-24. [PMID: 17726478 PMCID: PMC2444035 DOI: 10.1038/nn1944] [Citation(s) in RCA: 692] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent decades have witnessed tremendous advances in the neuroscience of emotion, learning and memory, and in animal models for understanding depression and anxiety. This review focuses on new rationally designed psychiatric treatments derived from preclinical human and animal studies. Nonpharmacological treatments that affect disrupted emotion circuits include vagal nerve stimulation, rapid transcranial magnetic stimulation and deep brain stimulation, all borrowed from neurological interventions that attempt to target known pathological foci. Other approaches include drugs that are given in relation to specific learning events to enhance or disrupt endogenous emotional learning processes. Imaging data suggest that common regions of brain activation are targeted with pharmacological and somatic treatments as well as with the emotional learning in psychotherapy. Although many of these approaches are experimental, the rapidly developing understanding of emotional circuit regulation is likely to provide exciting and powerful future treatments for debilitating mood and anxiety disorders.
Collapse
Affiliation(s)
- Kerry J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 954 Gatewood Drive, Atlanta, Georgia 30329, USA.
| | | |
Collapse
|
170
|
Porras G, Bezard E. Preclinical development of gene therapy for Parkinson's disease. Exp Neurol 2008; 209:72-81. [PMID: 17904121 DOI: 10.1016/j.expneurol.2007.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 07/12/2007] [Accepted: 08/07/2007] [Indexed: 12/22/2022]
Abstract
Multiple targets and pathways may be amenable to the development of gene therapy approaches for Parkinson's disease. This article discusses some of the cellular and brain circuit pathways relevant to Parkinson's disease that would be clinically amenable to gene therapy. Approaches could be classified according to two main categories, i.e. symptomatic vs. neuroprotective/neurorestorative strategies. Examples of the different possibilities currently in development are given and feature both dopaminergic and non-dopaminergic symptomatic treatments of parkinsonian symptoms and/or L-DOPA-induced side effects, anti-apoptotic neuroprotective strategies and growth-factor delivery for neuroprotection/neurorestoration. While gene therapy has been mostly used so far for enhancing the expression of the target gene, the use of dominant negative or siRNA opens new possibilities. This, combined with the key feature of gene delivery that offers access to intracellular signalling pathways, is likely to further expand the number of proposed targets to be studied.
Collapse
Affiliation(s)
- Grégory Porras
- CNRS UMR 5227, Universite Victor Segalen-Bordeaux 2, 33076, Bordeaux, France
| | | |
Collapse
|
171
|
Nav1.6 sodium channels are critical to pacemaking and fast spiking in globus pallidus neurons. J Neurosci 2007; 27:13552-66. [PMID: 18057213 DOI: 10.1523/jneurosci.3430-07.2007] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Neurons in the external segment of the globus pallidus (GPe) are autonomous pacemakers that are capable of sustained fast spiking. The cellular and molecular determinants of pacemaking and fast spiking in GPe neurons are not fully understood, but voltage-dependent Na+ channels must play an important role. Electrophysiological studies of these neurons revealed that macroscopic activation and inactivation kinetics of their Na+ channels were similar to those found in neurons lacking either autonomous activity or the capacity for fast spiking. What was distinctive about GPe Na+ channels was a prominent resurgent gating mode. This mode was significantly reduced in GPe neurons lacking functional Nav1.6 channels. In these Nav1.6 null neurons, pacemaking and the capacity for fast spiking were impaired, as was the ability to follow stimulation frequencies used to treat Parkinson's disease (PD). Simulations incorporating Na+ channel models with and without prominent resurgent gating suggested that resurgence was critical to fast spiking but not to pacemaking, which appeared to be dependent on the positioning of Na+ channels in spike-initiating regions of the cell. These studies not only shed new light on the mechanisms underlying spiking in GPe neurons but also suggest that electrical stimulation therapies in PD are unlikely to functionally inactivate neurons possessing Nav1.6 Na+ channels with prominent resurgent gating.
Collapse
|
172
|
Temel Y, Prinsenberg T, Visser-Vandewalle V. Imaging of the Subthalamic Nucleus for Deep Brain Stimulation: A Systematic Review. Neuromodulation 2007; 11:8-12. [DOI: 10.1111/j.1525-1403.2007.00137.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
173
|
Yousif N, Liu X. Modeling the current distribution across the depth electrode-brain interface in deep brain stimulation. Expert Rev Med Devices 2007; 4:623-31. [PMID: 17850197 PMCID: PMC2268755 DOI: 10.1586/17434440.4.5.623] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mismatch between the extensive clinical use of deep brain stimulation (DBS), which is being used to treat an increasing number of neurological disorders, and the lack of understanding of the underlying mechanisms is confounded by the difficulty of measuring the spread of electric current in the brain in vivo. In this article we present a brief review of the recent computational models that simulate the electric current and field distribution in 3D space and, consequently, make estimations of the brain volume being modulated by therapeutic DBS. Such structural modeling work can be categorized into three main approaches: target-specific modeling, models of instrumentation and modeling the electrode-brain interface. Comments are made for each of these approaches with emphasis on our electrode-brain interface modeling, since the stimulating current must travel across the electrode-brain interface in order to reach the surrounding brain tissue and modulate the pathological neural activity. For future modeling work, a combined approach needs to be taken to reveal the underlying mechanisms, and both structural and dynamic models need to be clinically validated to make reliable predictions about the therapeutic effect of DBS in order to assist clinical practice.
Collapse
Affiliation(s)
- Nada Yousif
- The Movement Disorders & Neurostimulation Unit, Department of Clinical Neuroscience, Division of Neuroscience and Mental Health, Faculty of Medicine, Imperial College London, UK.
| | | |
Collapse
|
174
|
Inhibition of 5-HT neuron activity and induction of depressive-like behavior by high-frequency stimulation of the subthalamic nucleus. Proc Natl Acad Sci U S A 2007; 104:17087-92. [PMID: 17942692 DOI: 10.1073/pnas.0704144104] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Bilateral, high-frequency stimulation (HFS) of the subthalamic nucleus (STN) is the surgical therapy of choice for movement disability in advanced Parkinson's disease (PD), but this procedure evokes debilitating psychiatric effects, including depressed mood, of unknown neural origin. Here, we report the unexpected finding that HFS of the STN inhibits midbrain 5-hydroxytryptamine (5-HT) neurons to evoke depression-related behavioral changes. We found that bilateral HFS of the STN consistently inhibited (40-50%) the firing rate of 5-HT neurons in the dorsal raphe nucleus of the rat, but not neighboring non-5-HT neurons. This effect was apparent at clinically relevant stimulation parameters (> or =100 Hz, > or =30 microA), was not elicited by HFS of either neighboring or remote structures to the STN, and was still present in rat models of PD. We also found that bilateral HFS of the STN evoked clear-cut, depressive-like behavior in a widely used experimental paradigm of depression (forced swim test), and this effect was also observed in a PD model. Importantly, the depressive-like behavior elicited by HFS of the STN was reversed by a selective 5-HT-enhancing antidepressant, thereby linking the behavioral change to decreased 5-HT neuronal activity. Overall, these findings link reduced 5-HT function to the psychiatric effects of HFS of the STN observed in PD patients and provide a rational basis for their clinical management. More generally, the powerful interaction between the STN and 5-HT system uncovered here offers insights into the high level of comorbidity of basal ganglia disease and mood disorder.
Collapse
|
175
|
Chang JY, Shi LH, Luo F, Zhang WM, Woodward DJ. Studies of the neural mechanisms of deep brain stimulation in rodent models of Parkinson's disease. Neurosci Biobehav Rev 2007; 32:352-66. [PMID: 18035416 DOI: 10.1016/j.neubiorev.2007.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several rodent models of deep brain stimulation (DBS) have been developed in recent years. Electrophysiological and neurochemical studies have been performed to examine the mechanisms underlying the effects of DBS. In vitro studies have provided deep insights into the role of ion channels in response to brain stimulation. In vivo studies reveal neural responses in the context of intact neural circuits. Most importantly, recording of neural responses to behaviorally effective DBS in freely moving animals provides a direct means for examining how DBS modulates the basal ganglia thalamocortical circuits and thereby improves motor function. DBS can modulate firing rate, normalize irregular burst firing patterns and reduce low frequency oscillations associated with the Parkinsonian state. Our current efforts are focused on elucidating the mechanisms by which DBS effects on neural circuitry improve motor performance. New behavioral models and improved recording techniques will aide researchers conducting future DBS studies in a variety of behavioral modalities and enable new treatment strategies to be explored, such as closed-loop stimulations based on real time computation of ensemble neural activity.
Collapse
Affiliation(s)
- Jing-Yu Chang
- Neuroscience Research Institute of North Carolina, Winston-Salem, NC 27101, USA.
| | | | | | | | | |
Collapse
|
176
|
Vlamings R, Visser-Vandewalle V, Koopmans G, Joosten EAJ, Kozan R, Kaplan S, Steinbusch HWM, Temel Y. High frequency stimulation of the subthalamic nucleus improves speed of locomotion but impairs forelimb movement in Parkinsonian rats. Neuroscience 2007; 148:815-23. [PMID: 17706885 DOI: 10.1016/j.neuroscience.2007.06.043] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 06/04/2007] [Accepted: 07/12/2007] [Indexed: 11/22/2022]
Abstract
The subthalamic nucleus (STN) plays an important role in motor and non-motor behavior in Parkinson's disease, but its involvement in gait functions is largely unknown. In this study, we investigated the role of the STN on gait in a rat model of PD using the CatWalk method. Parkinsonian rats received bilateral high frequency stimulation (HFS) with different stimulation amplitudes of the STN. Rats were rendered parkinsonian by bilateral injections of 6-hydroxydopamine (6-OHDA) into the striatum. One group of 6-OHDA animals was implanted bilaterally with stimulation electrodes at the level of the STN. Stimulations were performed at 130 Hz (frequency), 60 micros (pulse width) and varying amplitudes of 0, 3, 30 and 150 microA. Rats were evaluated in an automated quantitative gait analysis method (CatWalk method). After behavioral evaluations, rats were killed and the brains processed for histological stainings to determine the impact of the dopaminergic lesion (tyrosine hydroxylase immunohistochemistry) and the localization of the electrode tip (hematoxylin-eosin histochemistry). Results show that bilateral 6-OHDA infusion significantly decreased (70%) the number of dopaminergic cells in the substantia nigra pars compacta (SNc). Due to 6-OHDA treatment, the gait parameters changed considerably. There was a general slowness. The most pronounced effects were seen at the level of the hind paws. Due to implantation of STN electrodes the step pattern changed. STN electrical stimulation improved the general slowness but induced slowing of the forelimb movement. Furthermore, we found that HFS with a medium amplitude significantly changed speed, the so-called dynamic aspect of gait. The static features of gait were only significantly influenced with low amplitude. Remarkably, STN stimulation affected predominantly the forepaws/limbs.
Collapse
Affiliation(s)
- R Vlamings
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
177
|
Danish SF, Moyer JT, Finkel LH, Baltuch GH, Jaggi JL, Priori A, Foffani G. High-frequency oscillations (>200Hz) in the human non-parkinsonian subthalamic nucleus. Brain Res Bull 2007; 74:84-90. [PMID: 17683793 DOI: 10.1016/j.brainresbull.2007.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 04/22/2007] [Accepted: 05/11/2007] [Indexed: 10/23/2022]
Abstract
The human basal ganglia, and in particular the subthalamic nucleus (STN), can oscillate at surprisingly high frequencies, around 300 Hz [G. Foffani, A. Priori, M. Egidi, P. Rampini, F. Tamma, E. Caputo, K.A. Moxon, S. Cerutti, S. Barbieri, 300-Hz subthalamic oscillations in Parkinson's disease, Brain 126 (2003) 2153-2163]. It has been proposed that these oscillations could contribute to the mechanisms of action of deep brain stimulation (DBS) [G. Foffani, A. Priori, Deep brain stimulation in Parkinson's disease can mimic the 300 Hz subthalamic rhythm, Brain 129 (2006) E59]. However, the physiological role of high-frequency STN oscillations is questionable, because they have been observed only in patients with advanced Parkinson's disease and could therefore be secondary to the dopamine-depleted parkinsonian state. Here, we report high-frequency STN oscillations in the range of the 300-Hz rhythm during intraoperative microrecordings for DBS in an awake patient with focal dystonia as well as in a patient with essential tremor (ET). High-frequency STN oscillations are therefore not exclusively related to parkinsonian pathophysiology, but may represent a broader feature of human STN function.
Collapse
Affiliation(s)
- S F Danish
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
178
|
Abstract
Electrical microstimulation is used widely in experimental neurophysiology to examine causal links between specific brain areas and their behavioral functions and is used clinically to treat neurological and psychiatric disorders in patients. Typically, microstimulation is applied to local brain regions as a train of equally spaced current pulses. We were interested in the sensitivity of a neural circuit to a train of variably spaced pulses, as is observed in physiological spike trains. We compared the effect of fixed, decelerating, accelerating, and randomly varying microstimulation patterns on the likelihood and metrics of eye movements evoked from the frontal eye field of monkeys, while holding the mean interpulse interval constant. Our results demonstrate that the pattern of microstimulation pulses strongly influences the probability of evoking a saccade, as well as the metrics of the saccades themselves. Specifically, the pattern most closely resembling physiological spike trains (accelerating pattern) was most effective at evoking a saccade, three times more so than the least effective decelerating pattern. A saccade-triggered average of effective random trains confirmed the positive relationship between accelerating rate and efficacy. These results have important implications for the use of electrical microstimulation in both experimental and clinical settings and suggest a means to study the role of temporal pattern in the encoding of behavioral and cognitive functions.
Collapse
Affiliation(s)
- Daniel L Kimmel
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | |
Collapse
|
179
|
Lipsman N, Neimat JS, Lozano AM. Deep brain stimulation for treatment-refractory obsessive-compulsive disorder: the search for a valid target. Neurosurgery 2007; 61:1-11; discussion 11-3. [PMID: 17621014 DOI: 10.1227/01.neu.0000279719.75403.f7] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) is a common psychiatric disease that is marked by recurring, anxiety-provoking thoughts (obsessions) accompanied by repetitive and time-consuming behaviors (compulsions). Among the controversies in the OCD literature is the issue of the origin of the disease and whether brain changes observed with modern imaging techniques are the causes or results of OCD behaviors and thoughts. These issues remain unresolved; however, significant strides have been made in understanding the illness from both phenomenological and pathophysiological perspectives. The current staple of OCD management remains pharmacological in nature and often occurs in conjunction with cognitive behavioral therapy. Refractory cases, however, are occasionally referred for neurosurgical consultation, and several procedures have been examined. Success in the treatment of Parkinson's disease, the reversibility of the therapy, and a relatively safe side-effect profile have allowed deep brain stimulation (DBS) to be examined as an alternative treatment for some psychiatric conditions. Here we assess the possibility of applying DBS to the treatment of OCD. Morphological, functional metabolic, and volumetric data point to several brain regions that are important to the etiology and maintenance of OCD. Converging evidence from the genetics and neurocircuitry literature suggests that several subcortical structures play prominent roles in the disease. The functional modification of these structures could potentially provide symptom relief. Here, we review the ablative and DBS procedures for refractory OCD, and provide a research-driven hypothesis that highlights the ventromedial head of the caudate nucleus, and structures up- and downstream from it, as potential DBS targets for treatment-resistant disease. We hope that a research-driven approach, premised on converging evidence and previous experience, will lead to a safe and effective DBS procedure that will benefit patients who remain disabled despite presently available therapies.
Collapse
Affiliation(s)
- Nir Lipsman
- Division of Neurosurgery, Toronto Western Hospital, University Health Network and University of Toronto, Toronto, Canada
| | | | | |
Collapse
|
180
|
Lee KH, Kristic K, van Hoff R, Hitti FL, Blaha C, Harris B, Roberts DW, Leiter JC. High-frequency stimulation of the subthalamic nucleus increases glutamate in the subthalamic nucleus of rats as demonstrated by in vivo enzyme-linked glutamate sensor. Brain Res 2007; 1162:121-9. [PMID: 17618941 DOI: 10.1016/j.brainres.2007.06.021] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 06/06/2007] [Accepted: 06/07/2007] [Indexed: 11/30/2022]
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective therapy for Parkinson's disease; however, the mechanism whereby DBS ameliorates the symptoms of Parkinson's disease remains an area of intense research. In the present study, we investigated the hypothesis that the neurotransmitter glutamate is released within the STN during high-frequency stimulation (HFS) of the STN. Direct measurements of extracellular glutamate concentration in the STN were made using a dual enzyme-based electrochemical sensor. The studies were carried out in ketamine/xylazine anesthetized rats placed in a Kopf stereotaxic head frame. Various electrical stimulations (100-micros cathodic pulses; 100-3000 microA; 10- to 1000-Hz frequency; 5-s to 60-min stimulus durations) using bipolar stimulating electrodes were delivered to the STN. Stimulation of the STN elevated the concentration of glutamate in the STN. The concentration of glutamate rose quickly during HFS, remained elevated for the duration of stimulation, and descended slowly towards baseline upon cessation of stimulation. Elevation of the extracellular concentration of glutamate in the STN may be an important mechanism whereby DBS in the STN improves the symptoms of Parkinson's disease. Furthermore, our data argue against the hypothesis that DBS works primarily by electrotonic inhibition of the stimulated structure.
Collapse
Affiliation(s)
- Kendall H Lee
- Department of Neurosurgery, Mayo Clinic, 200 First Street, S.W., Rochester, MN 55902, USA
| | | | | | | | | | | | | | | |
Collapse
|
181
|
Anderson L, Caldwell MA. Human neural progenitor cell transplants into the subthalamic nucleus lead to functional recovery in a rat model of Parkinson’s disease. Neurobiol Dis 2007; 27:133-40. [PMID: 17587588 DOI: 10.1016/j.nbd.2007.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 03/21/2007] [Accepted: 03/27/2007] [Indexed: 01/03/2023] Open
Abstract
Despite the success of foetal nigral transplantation for the treatment of Parkinson's disease, supply limitations of tissue means that alternative sources must be found. Transplantation of human neural progenitor cells (HNPCs) may offer a solution, however few studies have shown functional recovery in animal models of PD without cell modification. Here we show that unmodified HNPC grafted into the subthalamic nucleus (STN) show excellent survival of up to 5 months and induce significant functional recovery following amphetamine-induced rotations within 4 weeks. For the first time we also show that HNPCs, which remain in an immature nestin-positive state, produce VEGF in vivo allowing further modification of the host brain. This suggests that even in the absence of cell replacement strategies utilising immature progenitor cells could be of real therapeutic value.
Collapse
Affiliation(s)
- Lucy Anderson
- Centre for Brain Repair and Department of Clinical Neurosciences, University Forvie Site, Robinson Way, Cambridge, CB2 2PY, UK
| | | |
Collapse
|
182
|
Shin DS, Samoilova M, Cotic M, Zhang L, Brotchie JM, Carlen PL. High frequency stimulation or elevated K+ depresses neuronal activity in the rat entopeduncular nucleus. Neuroscience 2007; 149:68-86. [PMID: 17826920 DOI: 10.1016/j.neuroscience.2007.06.055] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 06/24/2007] [Accepted: 07/05/2007] [Indexed: 11/18/2022]
Abstract
High frequency stimulation (HFS) is applied to many brain regions to treat a variety of neurological disorders/diseases, yet the mechanism(s) underlying its effects remains unclear. While some studies showed that HFS inhibits the stimulated nucleus, others report excitation. In this in vitro study, we stimulated the rat globus pallidus interna (entopeduncular nucleus, EP), a commonly stimulated area for Parkinson's disease, to investigate the effect of HFS-induced elevation of extracellular potassium (K(+)(e)) on rat EP neuronal activity. Whole-cell patch-clamp recordings and [K(+)](e) measurements were obtained in rat EP brain slices before, during and after HFS. After HFS (150 Hz, 10 s), [K(+)](e) increased from 2.5-9.6+/-1.4 mM, the resting membrane potential of EP neurons depolarized by 11.1+/-2.5 mV, spiking activity was significantly depressed, and input resistance decreased by 25+/-6%. The GABA(A) receptor blocker, gabazine, did not prevent these effects. The bath perfusion of 6 or 10 mM K(+), with or without synaptic blockers, mimicked the HFS-mediated effects: inhibition of spike activity, a 20+/-9% decrease in input resistance and a 17.4+/-3.0 mV depolarization. This depolarization exceeded predicted values of elevated [K(+)](e) on the resting membrane potential. A depolarization block did not fully account for the K(+)-induced inhibition of EP neuronal activity. Taken together, our results show that HFS-induced elevation of [K(+)](e) decreased EP neuronal activity by the activation of an ion conductance resulting in membrane depolarization, independent of synaptic involvement. These findings could explain the inhibitory effects of HFS on neurons of the stimulated nucleus.
Collapse
Affiliation(s)
- D S Shin
- Toronto Western Research Institute, Toronto Western Hospital, University Health Network, Division of Fundamental Neurobiology, 399 Bathurst Street, MCL 12-413, Toronto, ON, Canada M5T 2S8.
| | | | | | | | | | | |
Collapse
|
183
|
Okun MS, Rodriguez RL, Mikos A, Miller K, Kellison I, Kirsch-Darrow L, Wint DP, Springer U, Fernandez HH, Foote KD, Crucian G, Bowers D. Deep brain stimulation and the role of the neuropsychologist. Clin Neuropsychol 2007; 21:162-89. [PMID: 17366283 DOI: 10.1080/13825580601025940] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Deep brain stimulation (DBS) now plays an important role in the treatment of Parkinson's disease, tremor, and dystonia. DBS may also have a role in the treatment of other disorders such as obsessive-compulsive disorder, Tourette's syndrome, and depression. The neuropsychologist plays a crucial role in patient selection, follow-up, and management of intra-operative and post-operative effects (Pillon, 2002; Saint-Cyr & Trepanier, 2000). There is now emerging evidence that DBS can induce mood, cognitive, and behavioral changes. These changes can have dramatic effects on patient outcome. There have been methodological problems with many of the studies of DBS on mood, cognition, and behavior. The neuropsychologist needs to be aware of these issues when following up patients, and constructing future studies. Additionally, this article will review all aspects of the DBS procedure that can result in mood, cognitive, and behavioral effects and what role(s) the neuropsychologist should play in screening and follow-up.
Collapse
Affiliation(s)
- Michael S Okun
- Department of Neurology, Movement Disorders Center, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Meissner W, Guigoni C, Cirilli L, Garret M, Bioulac BH, Gross CE, Bezard E, Benazzouz A. Impact of chronic subthalamic high-frequency stimulation on metabolic basal ganglia activity: a 2-deoxyglucose uptake and cytochrome oxidase mRNA study in a macaque model of Parkinson's disease. Eur J Neurosci 2007; 25:1492-500. [PMID: 17425575 DOI: 10.1111/j.1460-9568.2007.05406.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The mechanisms of action of high-frequency stimulation (HFS) of the subthalamic nucleus (STN) remain only partially understood. Hitherto, experimental studies have suggested that STN-HFS reduces the activity of STN neurons. However, some recent reports have challenged this view, showing that STN-HFS might also increase the activity of globus pallidus internalis (GPi) neurons that are under strong excitatory drive of the STN. In addition, most results emanate from studies applying acute STN-HFS, while parkinsonian patients receive chronic stimulation. Thus, the present study was designed to assess the effect of chronic (10 days) STN-HFS in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated nonhuman primate. For this purpose, 2-deoxyglucose (2-DG) uptake, a measure of global synaptic activity, was assessed in the basal ganglia and the motor thalamus after chronic unilateral STN-HFS. Cytochrome oxidase subunit 1 (COI) mRNA expression, a marker of efferent metabolic activity, was additionally assessed in the globus pallidus. Chronic STN-HFS (i) reversed abnormally decreased 2-DG uptake in the STN of parkinsonian nonhuman primates, (ii) reversed abnormally increased 2-DG accumulation in the GPi while COI mRNA expression was increased, suggesting global activation of GPi neurons, and (iii) reversed abnormally increased 2-DG uptake in the ventrolateral motor thalamus nucleus. The simultaneous decrease in 2-DG uptake and increase in COI mRNA expression are difficult to reconcile with the current model of basal ganglia function and suggest that the mechanisms by which STN-HFS exerts its clinical benefits are more complex than a simple reversal of abnormal activity in the STN and its targets.
Collapse
Affiliation(s)
- Wassilios Meissner
- CNRS UMR 5227, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
185
|
Rossi L, Foffani G, Marceglia S, Bracchi F, Barbieri S, Priori A. An electronic device for artefact suppression in human local field potential recordings during deep brain stimulation. J Neural Eng 2007; 4:96-106. [PMID: 17409484 DOI: 10.1088/1741-2560/4/2/010] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The clinical efficacy of high-frequency deep brain stimulation (DBS) for Parkinson's disease and other neuropsychiatric disorders likely depends on the modulation of neuronal rhythms in the target nuclei. This modulation could be effectively measured with local field potential (LFP) recordings during DBS. However, a technical drawback that prevents LFPs from being recorded from the DBS target nuclei during stimulation is the stimulus artefact. To solve this problem, we designed and developed 'FilterDBS', an electronic amplification system for artefact-free LFP recordings (in the frequency range 2-40 Hz) during DBS. After defining the estimated system requirements for LFP amplification and DBS artefact suppression, we tested the FilterDBS system by conducting experiments in vitro and in vivo in patients with advanced Parkinson's disease undergoing DBS of the subthalamic nucleus (STN). Under both experimental conditions, in vitro and in vivo, the FilterDBS system completely suppressed the DBS artefact without inducing significant spectral distortion. The FilterDBS device pioneers the development of an adaptive DBS system retroacted by LFPs and can be used in novel closed-loop brain-machine interface applications in patients with neurological disorders.
Collapse
Affiliation(s)
- L Rossi
- Dipartimento di Scienze Neurologiche, Università degli Studi di Milano, Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Milano, Italy
| | | | | | | | | | | |
Collapse
|
186
|
Siddiqui MS, Okun MS. DEEP BRAIN STIMULATION IN PARKINSON'S DISEASE. Continuum (Minneap Minn) 2007. [DOI: 10.1212/01.con.0000284568.89013.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
187
|
Chang JY, Shi LH, Luo F, Zhang WM, Woodward DJ. Studies of the neural mechanisms of deep brain stimulation in rodent models of Parkinson's disease. Neurosci Biobehav Rev 2007; 31:643-57. [PMID: 17442393 DOI: 10.1016/j.neubiorev.2007.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 12/28/2006] [Accepted: 01/19/2007] [Indexed: 11/17/2022]
Abstract
Several rodent models of deep brain stimulation (DBS) have been developed in recent years. Electrophysiological and neurochemical studies have been performed to examine the mechanisms underlying the effects of DBS. In vitro studies have provided deep insights into the role of ion channels in response to brain stimulation. In vivo studies reveal neural responses in the context of intact neural circuits. Most importantly, recording of neural responses to behaviorally effective DBS in freely moving animals provides a direct means for examining how DBS modulates the basal ganglia thalamocortical circuits and thereby improves motor function. DBS can modulate firing rate, normalize irregular burst firing patterns and reduce low-frequency oscillations associated with the Parkinsonian state. Our current efforts are focused on elucidating the mechanisms by which DBS effects on neural circuitry improve motor performance. New behavioral models and improved recording techniques will aide researchers conducting future DBS studies in a variety of behavioral modalities and enable new treatment strategies to be explored, such as closed-loop stimulations based on real-time computation of ensemble neural activity.
Collapse
Affiliation(s)
- Jing-Yu Chang
- Neuroscience Research Institute of North Carolina, Winston-Salem, NC 27101, USA.
| | | | | | | | | |
Collapse
|
188
|
Kaas JH. Introduction: The Use of Animal Research in Developing Treatments for Human Motor Disorders: Brain-Computer Interfaces and the Regeneration of Damaged Brain Circuits. ILAR J 2007; 48:313-6. [PMID: 17712218 DOI: 10.1093/ilar.48.4.313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jon H Kaas
- Department of Psychology, 301 Wilson Hall, Vanderbilt University, Nashville, TN 37203, USA.
| |
Collapse
|
189
|
Uslaner JM, Robinson TE. Subthalamic nucleus lesions increase impulsive action and decrease impulsive choice - mediation by enhanced incentive motivation? Eur J Neurosci 2006; 24:2345-54. [PMID: 17074055 DOI: 10.1111/j.1460-9568.2006.05117.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The subthalamic nucleus (STN) is traditionally thought of as part of a system involved in motor control but recent evidence suggests that it may also play a role in other psychological processes. Here we examined the effects of STN lesions on two measures of impulsivity and found that STN lesions increased 'impulsive action' (produced behavioral disinhibition), as measured by performance on a differential reinforcement of low rates of responding task, but decreased 'impulsive choice' (impulsive decision making), as measured by a delay discounting task. In addition, amphetamine and food restriction increased 'impulsive action' and decreased 'impulsive choice' to a greater extent in STN-lesioned animals than in sham controls. We speculate that these apparently discrepant effects may be because STN lesions enhance the incentive salience assigned to rewards. These findings suggest that the STN may serve as a novel target for the treatment of psychological disorders characterized by deficits in behavioral control, such as drug addiction and attention deficit hyperactivity disorder.
Collapse
Affiliation(s)
- Jason M Uslaner
- Biopsychology and Neuroscience Programs, Department of Psychology, University of Michigan, East Hall, 525 E. University Street, Ann Arbor, MI 48019-1109, USA.
| | | |
Collapse
|
190
|
Chomiak T, Hu B. Axonal and somatic filtering of antidromically evoked cortical excitation by simulated deep brain stimulation in rat brain. J Physiol 2006; 579:403-12. [PMID: 17170044 PMCID: PMC2075404 DOI: 10.1113/jphysiol.2006.124057] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Antidromic cortical excitation has been implicated as a contributing mechanism for high-frequency deep brain stimulation (DBS). Here, we examined the reliability of antidromic responses of type 2 corticofugal fibres in rat over a stimulation frequency range compatible to the DBS used in humans. We activated antidromically individual layer V neurones by stimulating their two subcortical axonal branches. We found that antidromic cortical excitation is not as reliable as generally assumed. Whereas the fast conducting branches of a type 2 axon in the highly myelinated brainstem region follow high-frequency stimulation, the slower conducting fibres in the poorly myelinated thalamic region function as low-pass filters. These fibres fail to transmit consecutive antidromic spikes at the beginning of high-frequency stimulation, but are able to maintain a steady low-frequency (6-12 Hz) spike output during the stimulation. In addition, antidromic responses evoked from both branches are rarely present in cortical neurones with a more hyperpolarized membrane potential. Our data indicate that axon-mediated antidromic excitation in the cortex is strongly influenced by the myelo-architecture of the stimulation site and the excitability of individual cortical neurones.
Collapse
Affiliation(s)
- T Chomiak
- Division of Experimental Neurosciences, Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
191
|
Pascual A, Modolo J, Beuter A. IS A COMPUTATIONAL MODEL USEFUL TO UNDERSTAND THE EFFECT OF DEEP BRAIN STIMULATION IN PARKINSON'S DISEASE? J Integr Neurosci 2006; 5:541-59. [PMID: 17245822 DOI: 10.1142/s021963520600132x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 11/17/2006] [Indexed: 11/18/2022] Open
Abstract
A growing number of computational models have been proposed over the last few years to help explain the therapeutic effect of deep brain stimulation (DBS) on motor disorders in Parkinson's disease (PD). However, none of these has been able to explain in a convincing manner the physiological mechanisms underlying DBS. Can these models really contribute to improving our understanding? The model by Rubin and Terman [31] represents one of the most comprehensive and biologically plausible models of DBS published recently. We examined the validity of the model, replicated its simulations and tested its robustness. While our simulations partially reproduced the results presented by Rubin and Terman [31], several issues were raised including the high complexity of the model in its non simplified form, the lack of robustness of the model with respect to small perturbations, the nonrealistic representation of the thalamus and the absence of time delays. Computational models are indeed necessary, but they may not be sufficient in their current forms to explain the effect of chronic electrical stimulation on the activity of the basal ganglia (BG) network in PD.
Collapse
Affiliation(s)
- Alejandro Pascual
- Institute of Mathematics, Universities Bordeaux 1 and Bordeaux 2, 146 Rue Léo Saignat, 33076 Bordeaux, France.
| | | | | |
Collapse
|
192
|
Priori A, Ardolino G, Marceglia S, Mrakic-Sposta S, Locatelli M, Tamma F, Rossi L, Foffani G. Low-frequency subthalamic oscillations increase after deep brain stimulation in Parkinson's disease. Brain Res Bull 2006; 71:149-54. [PMID: 17113940 DOI: 10.1016/j.brainresbull.2006.08.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2006] [Revised: 08/09/2006] [Accepted: 08/18/2006] [Indexed: 11/27/2022]
Abstract
This work is the second of a series of papers in which we investigated the neurophysiological basis of deep brain stimulation (DBS) clinical efficacy using post-operative local field potential (LFP) recordings from DBS electrodes implanted in the subthalamic nucleus (STN) in patients with Parkinson's disease. We found that low-frequency (1-1.5Hz) oscillations in LFP recordings from the STN of patients with Parkinson's disease dramatically increase after DBS of the STN itself (log power change=0.93+/-0.62; Wilcoxon: p=0.0002, n=13), slowly decaying to baseline levels after turning DBS off. The DBS-induced increase of low-frequency LFP oscillations is highly reproducible and appears only after the delivery of DBS for a time long enough to induce clinical improvement. This increase of low-frequency LFP oscillations could reflect stimulation-induced modulation of network activity or could represent changes of the electrochemical properties at the brain-electrode interface.
Collapse
Affiliation(s)
- A Priori
- Dipartimento di Scienze Neurologiche, Università di Milano, Fondazione IRCCS Ospedale Policlinico, Milano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
193
|
He W, McConnell GC, Bellamkonda RV. Nanoscale laminin coating modulates cortical scarring response around implanted silicon microelectrode arrays. J Neural Eng 2006; 3:316-26. [PMID: 17124336 DOI: 10.1088/1741-2560/3/4/009] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neural electrodes could significantly enhance the quality of life for patients with sensory and/or motor deficits as well as improve our understanding of brain functions. However, long-term electrical connectivity between neural tissue and recording sites is compromised by the development of astroglial scar around the recording probes. In this study we investigate the effect of a nanoscale laminin (LN) coating on Si-based neural probes on chronic cortical tissue reaction in a rat model. Tissue reaction was evaluated after 1 day, 1 week, and 4 weeks post-implant for coated and uncoated probes using immunohistochemical techniques to evaluate activated microglia/macrophages (ED-1), astrocytes (GFAP) and neurons (NeuN). The coating did not have an observable effect on neuronal density or proximity to the electrode surface. However, the response of microglia/macrophages and astrocytes was altered by the coating. One day post-implant, we observed an approximately 60% increase in ED-1 expression near LN-coated probe sites compared with control uncoated probe sites. Four weeks post-implant, we observed an approximately 20% reduction in ED-1 expression along with an approximately 50% reduction in GFAP expression at coated relative to uncoated probe sites. These results suggest that LN has a stimulatory effect on early microglia activation, accelerating the phagocytic function of these cells. This hypothesis is further supported by the increased mRNA expression of several pro-inflammatory cytokines (TNF-alpha, IL-1 and IL-6) in cultured microglia on LN-bound Si substrates. LN immunostaining of coated probes immediately after insertion and retrieval demonstrates that the coating integrity is not compromised by the shear force during insertion. We speculate, based on these encouraging results, that LN coating of Si neural probes could potentially improve chronic neural recordings through dispersion of the astroglial scar.
Collapse
Affiliation(s)
- Wei He
- Neurological Biomaterials and Therapeutics, Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | | | | |
Collapse
|
194
|
Temel Y, Visser-Vandewalle V, Kaplan S, Kozan R, Daemen MARC, Blokland A, Schmitz C, Steinbusch HWM. Protection of nigral cell death by bilateral subthalamic nucleus stimulation. Brain Res 2006; 1120:100-5. [PMID: 16999940 DOI: 10.1016/j.brainres.2006.08.082] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2006] [Revised: 08/08/2006] [Accepted: 08/22/2006] [Indexed: 11/26/2022]
Abstract
In Parkinson disease (PD), the subthalamic nucleus (STN) becomes hyperactive (disinhibited), which is reported to cause excitotoxic damage to midbrain dopaminergic neurons. Here, we examined whether silencing of the hyperactive STN by chronic bilateral deep brain stimulation (DBS) increased the survival of midbrain dopaminergic neurons in a rat model of PD. High-precision design-based stereologic examination of the total number of neurons and tyrosine tydroxylase (TH) immunoreactive neurons in the substantia nigra pars compacta revealed that STN DBS resulted in a significant survival of these neurons. These data provide the first evidence in vivo that bilateral STN DBS is useful for protecting midbrain dopaminergic neurons from cell death in PD.
Collapse
Affiliation(s)
- Yasin Temel
- Department of Psychiatry and Neuropsychology, Division of Cellular Neurosciences, Maastricht University, and Department of Neurosurgery, University Hospital Maastricht, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
195
|
Duffau H. Brain plasticity: From pathophysiological mechanisms to therapeutic applications. J Clin Neurosci 2006; 13:885-97. [PMID: 17049865 DOI: 10.1016/j.jocn.2005.11.045] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 11/10/2005] [Indexed: 11/30/2022]
Abstract
Cerebral plasticity, which is the dynamic potential of the brain to reorganize itself during ontogeny, learning, or following damage, has been widely studied in the last decade, in vitro, in animals, and also in humans since the development of functional neuroimaging. In the first part of this review, the main hypotheses about the pathophysiological mechanisms underlying plasticity are presented. At a microscopic level, modulations of synaptic efficacy, unmasking of latent connections, phenotypic modifications and neurogenesis have been identified. At a macroscopic level, diaschisis, functional redundancies, sensory substitution and morphological changes have been described. In the second part, the behavioral consequences of such cerebral phenomena in physiology, namely the "natural" plasticity, are analyzed in humans. The review concludes on the therapeutic implications provided by a better understanding of these mechanisms of brain reshaping. Indeed, this plastic potential might be 'guided' in neurological diseases, using rehabilitation, pharmacological drugs, transcranial magnetic stimulation, neurosurgical methods, and even new techniques of brain-computer interface - in order to improve the quality of life of patients with damaged nervous systems.
Collapse
Affiliation(s)
- Hugues Duffau
- Department of Neurosurgery, Inserm U678, Hôpital Gui de Chaulic, CHU de Montpellier, 80 avenue Augustin Fliche, 34295 Montpellier, Cedex 5, France.
| |
Collapse
|
196
|
Colloca L, Benedetti F, Bergamasco B, Vighetti S, Zibetti M, Ducati A, Lanotte M, Lopiano L. Electroencephalographic responses to intraoperative subthalamic stimulation. Neuroreport 2006; 17:1465-8. [PMID: 16957589 DOI: 10.1097/01.wnr.0000234751.65689.91] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study reports the effects of intraoperative stimulation of the subthalamic nucleus on brain electrical activity in advanced Parkinson's patients. To our knowledge, this is the first study about electroencephalographic responses in the very early phase of deep brain stimulation, during the implantation of the electrodes. We found an increase of gamma band bilaterally over the sensorimotor cortex in the range 45-55 Hz, which was associated with clinical improvement as assessed by means of muscle rigidity decrease. These results indicate that the electroencephalographic gamma responses to deep brain stimulation are present at the very beginning of the treatment process, and may help better understand the short and long-tem effects of deep brain stimulation.
Collapse
Affiliation(s)
- Luana Colloca
- Department of Neuroscience, University of Turin Medical School, Turin bS. Maugeri Foundation, Pavia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
197
|
Temel Y, Cao C, Vlamings R, Blokland A, Ozen H, Steinbusch HWM, Michelsen KA, von Hörsten S, Schmitz C, Visser-Vandewalle V. Motor and cognitive improvement by deep brain stimulation in a transgenic rat model of Huntington's disease. Neurosci Lett 2006; 406:138-41. [PMID: 16905252 DOI: 10.1016/j.neulet.2006.07.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 07/08/2006] [Accepted: 07/17/2006] [Indexed: 11/19/2022]
Abstract
Altered activity of the globus pallidus externus (GPe) is responsible for at least part of the cognitive and motor symptoms of Huntington's disease (HD). In this study, we tested the hypothesis that bilateral globus pallidus (GP; equivalent of GPe in primates) deep brain stimulation (DBS) improves cognitive and motor symptoms in the first transgenic rat model of HD (tgHD rats). GP DBS with clinically relevant stimulation parameters resulted in a significant improvement of cognitive dysfunction and reduced the number of choreiform movements. This data indicate that GPe DBS can be used to treat cognitive and motor dysfunction in HD.
Collapse
Affiliation(s)
- Yasin Temel
- Department of Psychiatry and Neuropsychology, Division of Cellular Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Weinberger M, Mahant N, Hutchison WD, Lozano AM, Moro E, Hodaie M, Lang AE, Dostrovsky JO. Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson's disease. J Neurophysiol 2006; 96:3248-56. [PMID: 17005611 DOI: 10.1152/jn.00697.2006] [Citation(s) in RCA: 410] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies suggest that beta (15-30 Hz) oscillatory activity in the subthalamic nucleus (STN) is dramatically increased in Parkinson's disease (PD) and may interfere with movement execution. Dopaminergic medications decrease beta activity and deep brain stimulation (DBS) in the STN may alleviate PD symptoms by disrupting this oscillatory activity. Depth recordings from PD patients have demonstrated beta oscillatory neuronal and local field potential (LFP) activity in STN, although its prevalence and relationship to neuronal activity are unclear. In this study, we recorded both LFP and neuronal spike activity from the STN in 14 PD patients during functional neurosurgery. Of 200 single- and multiunit recordings 56 showed significant oscillatory activity at about 26 Hz and 89% of these were coherent with the simultaneously recorded LFP. The incidence of neuronal beta oscillatory activity was significantly higher in the dorsal STN (P = 0.01) and corresponds to the significantly increased LFP beta power recorded in the same region. Of particular interest was a significant positive correlation between the incidence of oscillatory neurons and the patient's benefit from dopaminergic medications, but not with baseline motor deficits off medication. These findings suggest that the degree of neuronal beta oscillatory activity is related to the magnitude of the response of the basal ganglia to dopaminergic agents rather than directly to the motor symptoms of PD. The study also suggests that LFP beta oscillatory activity is generated largely within the dorsal portion of the STN and can produce synchronous oscillatory activity of the local neuronal population.
Collapse
Affiliation(s)
- Moran Weinberger
- Department of Physiology, Med Sci Building 3302, 1 King's College Circle, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
199
|
Krauss JK, Weigel R, Blahak C, Bäzner H, Capelle HH, Grips E, Rittmann M, Wöhrle JC. Chronic spinal cord stimulation in medically intractable orthostatic tremor. J Neurol Neurosurg Psychiatry 2006; 77:1013-6. [PMID: 16735398 PMCID: PMC2077764 DOI: 10.1136/jnnp.2005.086132] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Orthostatic tremor with its sense of unsteadiness when standing may have a devastating effect on affected persons. Currently, there are no other treatment options in those who do not respond or who do not tolerate medical treatment. OBJECTIVES To report on a pilot study on spinal cord stimulation in medically intractable orthostatic tremor. METHODS Chronic spinal cord stimulation (SCS) was performed in two patients with medically-intractable orthostatic tremor via quadripolar plate electrodes implanted at the lower thoracic spine. The electrodes were connected to implantable pulse generators. RESULTS Subjective and objective improvement of unsteadiness was achieved within a frequency range of 50 to 150 Hz, and occurred in the presence of stimulation-induced paraesthesia. With optimized stimulation settings polygraphic electromyelogram (EMG) recordings continued to show the typical 14-16 Hz EMG activity. The beneficial effect of SCS was maintained at long-term follow-up. CONCLUSIONS The results of this pilot study indicate that SCS may be an option in patients with otherwise intractable orthostatic tremor.
Collapse
Affiliation(s)
- J K Krauss
- Department of Neurosurgery, Medical University, MHH, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
200
|
Temel Y, Visser-Vandewalle V. Targets for deep brain stimulation in Parkinson's disease. Expert Opin Ther Targets 2006; 10:355-62. [PMID: 16706676 DOI: 10.1517/14728222.10.3.355] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The use of stimulation electrodes implanted in the brain to control severely disabling neurological and psychiatric conditions is an exciting and fast emerging area of neuroscience. An excellent example is Parkinson's disease (PD), in which tens of thousands of patients have now been implanted with stimulation electrodes. Patients with PD underwent deep brain stimulation (DBS) at the level of the thalamus, globus pallidus internus, subthalamic nucleus, pedunculopontine nucleus and prelemniscal radiation. The results of these interventions revealed that each target has its own specific stimulation-related positive and negative effects. Clinicians can choose their DBS target based on the situation of their individual PD patients. In the authors' opinion, patient-specific targeting should be preferred over disease-specific targeting. In this review, the authors give an overview of the targets that have been used for DBS in PD and discuss patient-specific targeting.
Collapse
Affiliation(s)
- Yasin Temel
- Department of Neurosurgery, University Hospital Maastricht, P. Debyelaan 25, 6202 AZ, Maastricht, The Netherlands.
| | | |
Collapse
|