151
|
Ianevski A, Yao R, Zusinaite E, Lello LS, Wang S, Jo E, Yang J, Ravlo E, Wang W, Lysvand H, Løseth K, Oksenych V, Tenson T, Windisch MP, Poranen MM, Nieminen AI, Nordbø SA, Fenstad MH, Grødeland G, Aukrust P, Trøseid M, Kantele A, Lastauskienė E, Vitkauskienė A, Legrand N, Merits A, Bjørås M, Kainov DE. Synergistic Interferon-Alpha-Based Combinations for Treatment of SARS-CoV-2 and Other Viral Infections. Viruses 2021; 13:2489. [PMID: 34960758 PMCID: PMC8705725 DOI: 10.3390/v13122489] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND There is an urgent need for new antivirals with powerful therapeutic potential and tolerable side effects. METHODS Here, we tested the antiviral properties of interferons (IFNs), alone and with other drugs in vitro. RESULTS While IFNs alone were insufficient to completely abolish replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), IFNα, in combination with remdesivir, EIDD-2801, camostat, cycloheximide, or convalescent serum, proved to be more effective. Transcriptome and metabolomic analyses revealed that the IFNα-remdesivir combination suppressed SARS-CoV-2-mediated changes in Calu-3 cells and lung organoids, although it altered the homeostasis of uninfected cells and organoids. We also demonstrated that IFNα combinations with sofosbuvir, telaprevir, NITD008, ribavirin, pimodivir, or lamivudine were effective against HCV, HEV, FLuAV, or HIV at lower concentrations, compared to monotherapies. CONCLUSIONS Altogether, our results indicated that IFNα can be combined with drugs that affect viral RNA transcription, protein synthesis, and processing to make synergistic combinations that can be attractive targets for further pre-clinical and clinical development against emerging and re-emerging viral infections.
Collapse
Affiliation(s)
- Aleksandr Ianevski
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; (A.I.); (R.Y.); (E.R.); (W.W.); (H.L.); (K.L.); (V.O.); (S.A.N.); (M.H.F.); (M.B.)
| | - Rouan Yao
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; (A.I.); (R.Y.); (E.R.); (W.W.); (H.L.); (K.L.); (V.O.); (S.A.N.); (M.H.F.); (M.B.)
| | - Eva Zusinaite
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia; (E.Z.); (L.S.L.); (S.W.); (T.T.); (A.M.)
| | - Laura Sandra Lello
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia; (E.Z.); (L.S.L.); (S.W.); (T.T.); (A.M.)
| | - Sainan Wang
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia; (E.Z.); (L.S.L.); (S.W.); (T.T.); (A.M.)
| | - Eunji Jo
- Applied Molecular Virology Laboratory, Institut Pasteur Korea, Seongnam-si 463-400, Gyeonggi-do, Korea; (E.J.); (J.Y.); (M.P.W.)
| | - Jaewon Yang
- Applied Molecular Virology Laboratory, Institut Pasteur Korea, Seongnam-si 463-400, Gyeonggi-do, Korea; (E.J.); (J.Y.); (M.P.W.)
| | - Erlend Ravlo
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; (A.I.); (R.Y.); (E.R.); (W.W.); (H.L.); (K.L.); (V.O.); (S.A.N.); (M.H.F.); (M.B.)
| | - Wei Wang
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; (A.I.); (R.Y.); (E.R.); (W.W.); (H.L.); (K.L.); (V.O.); (S.A.N.); (M.H.F.); (M.B.)
| | - Hilde Lysvand
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; (A.I.); (R.Y.); (E.R.); (W.W.); (H.L.); (K.L.); (V.O.); (S.A.N.); (M.H.F.); (M.B.)
| | - Kirsti Løseth
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; (A.I.); (R.Y.); (E.R.); (W.W.); (H.L.); (K.L.); (V.O.); (S.A.N.); (M.H.F.); (M.B.)
| | - Valentyn Oksenych
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; (A.I.); (R.Y.); (E.R.); (W.W.); (H.L.); (K.L.); (V.O.); (S.A.N.); (M.H.F.); (M.B.)
| | - Tanel Tenson
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia; (E.Z.); (L.S.L.); (S.W.); (T.T.); (A.M.)
| | - Marc P. Windisch
- Applied Molecular Virology Laboratory, Institut Pasteur Korea, Seongnam-si 463-400, Gyeonggi-do, Korea; (E.J.); (J.Y.); (M.P.W.)
| | - Minna M. Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland;
| | - Anni I. Nieminen
- Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland;
| | - Svein Arne Nordbø
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; (A.I.); (R.Y.); (E.R.); (W.W.); (H.L.); (K.L.); (V.O.); (S.A.N.); (M.H.F.); (M.B.)
- Department of Medical Microbiology, St. Olavs Hospital, 7006 Trondheim, Norway
| | - Mona Høysæter Fenstad
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; (A.I.); (R.Y.); (E.R.); (W.W.); (H.L.); (K.L.); (V.O.); (S.A.N.); (M.H.F.); (M.B.)
- Department of Immunology and Transfusion Medicine, St. Olavs Hospital, 7006 Trondheim, Norway
| | - Gunnveig Grødeland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; (G.G.); (P.A.); (M.T.)
- Institute of Clinical Medicine (KlinMed), University of Oslo, 0318 Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; (G.G.); (P.A.); (M.T.)
- Institute of Clinical Medicine (KlinMed), University of Oslo, 0318 Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
| | - Marius Trøseid
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; (G.G.); (P.A.); (M.T.)
- Institute of Clinical Medicine (KlinMed), University of Oslo, 0318 Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
| | - Anu Kantele
- Inflammation Center, Infectious Diseases, Helsinki University Hospital, 00029 Helsinki, Finland;
| | | | - Astra Vitkauskienė
- Department of Laboratory Medicine, Lithuanian University of Health Science, 44307 Kaunas, Lithuania;
| | - Nicolas Legrand
- Oncodesign, 25 Avenue du Québec, 91140 Villebon Sur Yvette, France;
| | - Andres Merits
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia; (E.Z.); (L.S.L.); (S.W.); (T.T.); (A.M.)
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; (A.I.); (R.Y.); (E.R.); (W.W.); (H.L.); (K.L.); (V.O.); (S.A.N.); (M.H.F.); (M.B.)
| | - Denis E. Kainov
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; (A.I.); (R.Y.); (E.R.); (W.W.); (H.L.); (K.L.); (V.O.); (S.A.N.); (M.H.F.); (M.B.)
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia; (E.Z.); (L.S.L.); (S.W.); (T.T.); (A.M.)
- Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
152
|
Guo K, Barrett BS, Mickens KL, Vladar EK, Morrison JH, Hasenkrug KJ, Poeschla EM, Santiago ML. Interferon Resistance of Emerging SARS-CoV-2 Variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.20.436257. [PMID: 33758840 PMCID: PMC7986999 DOI: 10.1101/2021.03.20.436257] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The emergence of SARS-CoV-2 variants with enhanced transmissibility, pathogenesis and resistance to vaccines presents urgent challenges for curbing the COVID-19 pandemic. While Spike mutations that enhance virus infectivity or neutralizing antibody evasion may drive the emergence of these novel variants, studies documenting a critical role for interferon responses in the early control of SARS-CoV-2 infection, combined with the presence of viral genes that limit these responses, suggest that interferons may also influence SARS-CoV-2 evolution. Here, we compared the potency of 17 different human interferons against multiple viral lineages sampled during the course of the global outbreak, including ancestral and four major variants of concern. Our data reveal increased interferon resistance in emerging SARS-CoV-2 variants, suggesting that evasion of innate immunity may be a significant, ongoing driving force for SARS-CoV-2 evolution. These findings have implications for the increased lethality of emerging variants and highlight the interferon subtypes that may be most successful in the treatment of early infections.
Collapse
Affiliation(s)
- Kejun Guo
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
| | - Bradley S. Barrett
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
| | - Kaylee L. Mickens
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
| | - Ezster K. Vladar
- Division of Pulmonary Sciences and Critical Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
| | - James H. Morrison
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
| | - Kim J. Hasenkrug
- Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Eric M. Poeschla
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
| | - Mario L. Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
| |
Collapse
|
153
|
Sex differences in innate anti-viral immune responses to respiratory viruses and in their clinical outcomes in a birth cohort study. Sci Rep 2021; 11:23741. [PMID: 34887467 PMCID: PMC8660814 DOI: 10.1038/s41598-021-03044-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/23/2021] [Indexed: 11/21/2022] Open
Abstract
The mechanisms explaining excess morbidity and mortality in respiratory infections among males are poorly understood. Innate immune responses are critical in protection against respiratory virus infections. We hypothesised that innate immune responses to respiratory viruses may be deficient in males. We stimulated peripheral blood mononuclear cells from 345 participants at age 16 years in a population-based birth cohort with three live respiratory viruses (rhinoviruses A16 and A1, and respiratory syncytial virus) and two viral mimics (R848 and CpG-A, to mimic responses to SARS-CoV-2) and investigated sex differences in interferon (IFN) responses. IFN-α responses to all viruses and stimuli were 1.34-2.06-fold lower in males than females (P = 0.018 - < 0.001). IFN-β, IFN-γ and IFN-induced chemokines were also deficient in males across all stimuli/viruses. Healthcare records revealed 12.1% of males and 6.6% of females were hospitalized with respiratory infections in infancy (P = 0.017). In conclusion, impaired innate anti-viral immunity in males likely results in high male morbidity and mortality from respiratory virus infections.
Collapse
|
154
|
Hatton CF, Botting RA, Dueñas ME, Haq IJ, Verdon B, Thompson BJ, Spegarova JS, Gothe F, Stephenson E, Gardner AI, Murphy S, Scott J, Garnett JP, Carrie S, Powell J, Khan CMA, Huang L, Hussain R, Coxhead J, Davey T, Simpson AJ, Haniffa M, Hambleton S, Brodlie M, Ward C, Trost M, Reynolds G, Duncan CJA. Delayed induction of type I and III interferons mediates nasal epithelial cell permissiveness to SARS-CoV-2. Nat Commun 2021; 12:7092. [PMID: 34876592 PMCID: PMC8651658 DOI: 10.1038/s41467-021-27318-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022] Open
Abstract
The nasal epithelium is a plausible entry point for SARS-CoV-2, a site of pathogenesis and transmission, and may initiate the host response to SARS-CoV-2. Antiviral interferon (IFN) responses are critical to outcome of SARS-CoV-2. Yet little is known about the interaction between SARS-CoV-2 and innate immunity in this tissue. Here we apply single-cell RNA sequencing and proteomics to a primary cell model of human nasal epithelium differentiated at air-liquid interface. SARS-CoV-2 demonstrates widespread tropism for nasal epithelial cell types. The host response is dominated by type I and III IFNs and interferon-stimulated gene products. This response is notably delayed in onset relative to viral gene expression and compared to other respiratory viruses. Nevertheless, once established, the paracrine IFN response begins to impact on SARS-CoV-2 replication. When provided prior to infection, recombinant IFNβ or IFNλ1 induces an efficient antiviral state that potently restricts SARS-CoV-2 viral replication, preserving epithelial barrier integrity. These data imply that the IFN-I/III response to SARS-CoV-2 initiates in the nasal airway and suggest nasal delivery of recombinant IFNs to be a potential chemoprophylactic strategy.
Collapse
Affiliation(s)
- Catherine F Hatton
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Rachel A Botting
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Iram J Haq
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Paediatric Respiratory Medicine, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Bernard Verdon
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Benjamin J Thompson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Jarmila Stremenova Spegarova
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Florian Gothe
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Emily Stephenson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Aaron I Gardner
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Sandra Murphy
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Jonathan Scott
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - James P Garnett
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Sean Carrie
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Jason Powell
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - C M Anjam Khan
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Lei Huang
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Rafiqul Hussain
- Genomics Core Facility, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Jonathan Coxhead
- Genomics Core Facility, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Tracey Davey
- Electron Microscopy Research Services, Newcastle University, Newcastle upon Tyne, UK
| | - A John Simpson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Muzlifah Haniffa
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Department of Dermatology, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Sophie Hambleton
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Malcolm Brodlie
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Paediatric Respiratory Medicine, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Chris Ward
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Matthias Trost
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Gary Reynolds
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Christopher J A Duncan
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
- Department of Infection and Tropical Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
155
|
Shaw ER, Rosen LB, Cheng A, Dobbs K, Delmonte OM, Ferré EMN, Schmitt MM, Imberti L, Quaresima V, Lionakis MS, Notarangelo LD, Holland SM, Su HC. Temporal Dynamics of Anti-Type 1 Interferon Autoantibodies in Patients With Coronavirus Disease 2019. Clin Infect Dis 2021; 75:e1192-e1194. [PMID: 34875033 PMCID: PMC8689695 DOI: 10.1093/cid/ciab1002] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Indexed: 01/19/2023] Open
Abstract
Binding levels and neutralization activity of anti-type 1 interferon autoantibodies peaked during acute coronavirus disease 2019 and markedly decreased thereafter. Most patients maintained some ability to neutralize type 1 interferon into convalescence despite lower levels of binding immunoglobulin G. Identifying these autoantibodies in healthy individuals before the development of critical viral disease may be challenging.
Collapse
Affiliation(s)
- Elana R Shaw
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Lindsey B Rosen
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Aristine Cheng
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA,Infectious Diseases Division, Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Elise M N Ferré
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Monica M Schmitt
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Luisa Imberti
- CREA Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Virginia Quaresima
- CREA Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Michail S Lionakis
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Helen C Su
- Correspondence: H. C. Su, Bldg 10CRC, Room 5-3940, 10CRC Center Dr, MSC 1456, Bethesda, MD 20892-1456 ()
| |
Collapse
|
156
|
Tripathi D, Sodani M, Gupta PK, Kulkarni S. Host directed therapies: COVID-19 and beyond. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100058. [PMID: 34870156 PMCID: PMC8464038 DOI: 10.1016/j.crphar.2021.100058] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/14/2021] [Accepted: 09/19/2021] [Indexed: 12/15/2022] Open
Abstract
The global spread of SARS-CoV-2 has necessitated the development of novel, safe and effective therapeutic agents against this virus to stop the pandemic, however the development of novel antivirals may take years, hence, the best alternative available, is to repurpose the existing antiviral drugs with known safety profile in humans. After more than one year into this pandemic, global efforts have yielded the fruits and with the launch of many vaccines in the market, the world is inching towards the end of this pandemic, nonetheless, future pandemics of this magnitude or even greater cannot be denied. The preparedness against viruses of unknown origin should be maintained and the broad-spectrum antivirals with activity against range of viruses should be developed to curb future viral pandemics. The majority of antivirals developed till date are pathogen specific agents, which target critical viral pathways and lack broad spectrum activity required to target wide range of viruses. The surge in drug resistance among pathogens has rendered a compelling need to shift our focus towards host directed factors in the treatment of infectious diseases. This gains special relevance in the case of viral infections, where the pathogen encodes a handful of genes and predominantly depends on host factors for their propagation and persistence. Therefore, future antiviral drug development should focus more on targeting molecules of host pathways that are often hijacked by many viruses. Such cellular proteins of host pathways offer attractive targets for the development of broad-spectrum anticipatory antivirals. In the present article, we have reviewed the host directed therapies (HDTs) effective against viral infections with a special focus on COVID-19. This article also discusses the strategies involved in identifying novel host targets and subsequent development of broad spectrum HDTs.
Collapse
Affiliation(s)
- Devavrat Tripathi
- Radiation Medicine Centre, Bhabha Atomic Research Centre, C/O Tata Memorial Hospital Annexe, Parel, Mumbai, 400012, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Megha Sodani
- Radiation Medicine Centre, Bhabha Atomic Research Centre, C/O Tata Memorial Hospital Annexe, Parel, Mumbai, 400012, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Pramod Kumar Gupta
- Radiation Medicine Centre, Bhabha Atomic Research Centre, C/O Tata Memorial Hospital Annexe, Parel, Mumbai, 400012, India
- Corresponding author.
| | - Savita Kulkarni
- Radiation Medicine Centre, Bhabha Atomic Research Centre, C/O Tata Memorial Hospital Annexe, Parel, Mumbai, 400012, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
- Corresponding author. Radiation Medicine Centre, Bhabha Atomic Research Centre, C/O Tata Memorial Hospital Annexe, Parel, Mumbai, 400012, India.
| |
Collapse
|
157
|
Tleyjeh IM, Saddik B, AlSwaidan N, AlAnazi A, Ramakrishnan RK, Alhazmi D, Aloufi A, AlSumait F, Berbari E, Halwani R. Prevalence and predictors of Post-Acute COVID-19 Syndrome (PACS) after hospital discharge: A cohort study with 4 months median follow-up. PLoS One 2021; 16:e0260568. [PMID: 34874962 PMCID: PMC8651136 DOI: 10.1371/journal.pone.0260568] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/12/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Post-acute COVID-19 syndrome (PACS) is an emerging healthcare burden. The risk factors associated with PACS remain largely unclear. The aim of this study was to evaluate the frequency of new or persistent symptoms in COVID-19 patients post hospital discharge and identify associated risk factors. METHODS Our prospective cohort comprised of PCR-confirmed COVID-19 patients admitted to King Fahad Medical City, Riyadh, Saudi Arabia between May and July 2020. The patients were interviewed through phone calls by trained physicians from 6 weeks up to 6 months post hospital discharge. Multivariate Cox proportional hazards and logistic regression models were used to examine for predictors associated with persistence of symptoms and non-return to baseline health. RESULTS 222 COVID-19 patients responded to follow-up phone interviews after a median of 122 days post discharge. The majority of patients were men (77%) with mean age of 52.47 (± 13.95) years. 56.3% of patients complained of persistent symptoms; 66 (29.7%) experiencing them for >21 days and 64 (28.8%) reporting not having returned to their baseline health. Furthermore, 39 patients (17.6%) reported visiting an emergency room post discharge for COVID-19-related symptoms while 16 (7.2%) had required re-hospitalization. Shortness of breath (40.1%), cough (27.5%) and fatigue (29.7%) were the most frequently reported symptoms at follow-up. After multivariable adjustments, female gender, pre-existing hypertension and length of hospital stay were associated with an increased risk of new or persistent symptoms. Age, pre-existing lung disease and emergency room visits increased the likelihood of not fully recovering from acute COVID-19. Patients who were treated with interferon β-1b based triple antiviral therapy during hospital stay were less likely to experience new or persistent symptoms and more likely to return to their baseline health. CONCLUSIONS COVID-19 survivors continued to suffer from dyspnea, cough and fatigue at 4 months post hospital discharge. Several risk factors could predict which patients are more likely to experience PACS and may benefit from individualized follow-up and rehabilitation programs.
Collapse
Affiliation(s)
- Imad M. Tleyjeh
- Infectious Diseases Section, Department of Medical Specialties, King Fahad Medical City, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Division of Infectious Diseases, Mayo Clinic College of Medicine and Science, Rochester, MN, United States of America
- Division of Epidemiology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States of America
| | - Basema Saddik
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Nourah AlSwaidan
- Department of Medical Specialties, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ahmed AlAnazi
- Department of Medical Specialties, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Rakhee K. Ramakrishnan
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Deema Alhazmi
- Department of Medical Specialties, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ahmad Aloufi
- Department of Medical Specialties, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Fahad AlSumait
- Department of Medical Specialties, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Elie Berbari
- Division of Infectious Diseases, Mayo Clinic College of Medicine and Science, Rochester, MN, United States of America
| | - Rabih Halwani
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pediatrics, Prince Abdullah Ben Khaled Celiac Disease Research Chair, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
158
|
Mittal N, Mittal R. Repurposing old molecules for new indications: Defining pillars of success from lessons in the past. Eur J Pharmacol 2021; 912:174569. [PMID: 34653378 DOI: 10.1016/j.ejphar.2021.174569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/30/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023]
Abstract
Drug repurposing or studying existing drugs for potential therapeutic utility in newer indications has been identified as an attractive option for treating a number of diseases. Various strategies of drug repurposing include serendipitous observation of drug's unexpected effects, directing the failed investigational drugs to new indications and currently adopted systematic approach to identify, screen and develop existing drug molecules for new off-label indications. Drug repurposing is able to constructively overcome the bottleneck restraints encountered during traditional de novo drug development process in grounds of timelines, cost and resources. However, success rates of drug repurposing programs are not very impressive. Through a meticulous examination of some failed repurposing attempts we aimed to identify key factors leading to high attrition rate in such studies. Based on the fundamental elements of knowledge and evaluation, we have defined four pillars toward improving success rate in drug repurposing programs viz. sound knowledge of the repurposed drug's pharmacological characteristics (pillar 1: drug pharmacology); drug formulation considerations in new indication (pillar 2: drug formulation); evaluation in representative biological assays with translational potential (pillar 3: evaluation in biological assays); and robust clinical trial methodologies including biomarker driven approach to provide conclusive evidence of repurposed drug's efficacy in new indication (pillar 4: clinical evaluation). In addition to the pharmacological challenges, certain regulatory concerns, including lack of clear guidelines for evaluation and market exclusivity pose hurdles in the application of drug repurposing, which may however be overcome to a great extent by adopting some strategies as discussed in this review.
Collapse
Affiliation(s)
- Niti Mittal
- Dept. of Pharmacology, Postgraduate Institute of Medical Sciences, Rohtak, 124001, India.
| | - Rakesh Mittal
- Dept. of Pharmacology, Postgraduate Institute of Medical Sciences, Rohtak, 124001, India
| |
Collapse
|
159
|
Smith PO, Jin P, Rahman KM. Strategies for drug repurposing against coronavirus targets. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 3:100072. [PMID: 34901833 PMCID: PMC8642829 DOI: 10.1016/j.crphar.2021.100072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023] Open
Abstract
Repurposing regulatory agency approved drugs and investigational compounds with known safety profiles can significantly fast track the drug development timeline over de novo drug discovery, with lower investment requirements and improved attrition rate. These advantages are vital in any epidemic or pandemic situation, where hospital beds are occupied by patients for whom there is no known treatment. Here we examine drug repurposing in the context of human coronaviruses, SARS-CoV, MERS-CoV, and, in particular, SARS-CoV-2, the virus currently causing a continued widespread pandemic with substantial impacts on public health and economy. The key druggable targets explored were those involved in viral entry, viral replication, and viral-induced ARDS, as well as viral proteases, with a focus on the strategy by which the drugs were repurposed.
Collapse
Affiliation(s)
- Poppy O. Smith
- School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Peiqin Jin
- School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Khondaker Miraz Rahman
- School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| |
Collapse
|
160
|
Cojocaru E, Cojocaru C, Antoniu SA, Stafie CS, Rajnoveanu A, Rajnoveanu RM. Inhaled interferons beta and SARS-COV2 infection: a preliminary therapeutic perspective. Expert Rev Respir Med 2021; 16:257-261. [PMID: 34793285 PMCID: PMC8726005 DOI: 10.1080/17476348.2022.2008910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Introduction SARS-COV2 infection represents a therapeutic challenge due to the limited number of effective therapies available and due to the fact that it is not clear which host response in terms of inflammation pattern is the most predictive for an optimal (and rapid) recovery. Interferon β pathway is impaired in SARS-COV2 infection and this is associated with a bigger disease burden. Exogenous inhaled interferon might be beneficial in this setting. Areas covered Nebulized interferon-β is currently investigated as a potential therapy for SARS-COV2 because the available data from a phase II study demonstrate that this medication is able to accelerate the recovery from disease. Expert opinion Further clinical studies are needed in order to better document the efficacy of this therapy especially in severe forms of COVID-19, the optimal duration of therapy and if such a medication is appropriate for domiciliary use. Also combined regimens with antivirals or with compounds which are able to enhance the endogenous production of interferon might be of promise.
Collapse
Affiliation(s)
- Elena Cojocaru
- Morpho-Functional Sciences II Department, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Cristian Cojocaru
- Medical III Department, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | | | - Celina Silvia Stafie
- Preventive Medicine and Interdisciplinarity Department, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Armand Rajnoveanu
- Occupational Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | |
Collapse
|
161
|
To KKW, Sridhar S, Chiu KHY, Hung DLL, Li X, Hung IFN, Tam AR, Chung TWH, Chan JFW, Zhang AJX, Cheng VCC, Yuen KY. Lessons learned 1 year after SARS-CoV-2 emergence leading to COVID-19 pandemic. Emerg Microbes Infect 2021; 10:507-535. [PMID: 33666147 PMCID: PMC8006950 DOI: 10.1080/22221751.2021.1898291] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 02/06/2023]
Abstract
Without modern medical management and vaccines, the severity of the Coronavirus Disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) might approach the magnitude of 1894-plague (12 million deaths) and 1918-A(H1N1) influenza (50 million deaths) pandemics. The COVID-19 pandemic was heralded by the 2003 SARS epidemic which led to the discovery of human and civet SARS-CoV-1, bat SARS-related-CoVs, Middle East respiratory syndrome (MERS)-related bat CoV HKU4 and HKU5, and other novel animal coronaviruses. The suspected animal-to-human jumping of 4 betacoronaviruses including the human coronaviruses OC43(1890), SARS-CoV-1(2003), MERS-CoV(2012), and SARS-CoV-2(2019) indicates their significant pandemic potential. The presence of a large reservoir of coronaviruses in bats and other wild mammals, culture of mixing and selling them in urban markets with suboptimal hygiene, habit of eating exotic mammals in highly populated areas, and the rapid and frequent air travels from these areas are perfect ingredients for brewing rapidly exploding epidemics. The possibility of emergence of a hypothetical SARS-CoV-3 or other novel viruses from animals or laboratories, and therefore needs for global preparedness should not be ignored. We reviewed representative publications on the epidemiology, virology, clinical manifestations, pathology, laboratory diagnostics, treatment, vaccination, and infection control of COVID-19 as of 20 January 2021, which is 1 year after person-to-person transmission of SARS-CoV-2 was announced. The difficulties of mass testing, labour-intensive contact tracing, importance of compliance to universal masking, low efficacy of antiviral treatment for severe disease, possibilities of vaccine or antiviral-resistant virus variants and SARS-CoV-2 becoming another common cold coronavirus are discussed.
Collapse
Affiliation(s)
- Kelvin Kai-Wang To
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Siddharth Sridhar
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Kelvin Hei-Yeung Chiu
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Derek Ling-Lung Hung
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Xin Li
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Ivan Fan-Ngai Hung
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Anthony Raymond Tam
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Tom Wai-Hin Chung
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Anna Jian-Xia Zhang
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Vincent Chi-Chung Cheng
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| |
Collapse
|
162
|
Kalil AC, Mehta AK, Patterson TF, Erdmann N, Gomez CA, Jain MK, Wolfe CR, Ruiz-Palacios GM, Kline S, Regalado Pineda J, Luetkemeyer AF, Harkins MS, Jackson PEH, Iovine NM, Tapson VF, Oh MD, Whitaker JA, Mularski RA, Paules CI, Ince D, Takasaki J, Sweeney DA, Sandkovsky U, Wyles DL, Hohmann E, Grimes KA, Grossberg R, Laguio-Vila M, Lambert AA, Lopez de Castilla D, Kim E, Larson L, Wan CR, Traenkner JJ, Ponce PO, Patterson JE, Goepfert PA, Sofarelli TA, Mocherla S, Ko ER, Ponce de Leon A, Doernberg SB, Atmar RL, Maves RC, Dangond F, Ferreira J, Green M, Makowski M, Bonnett T, Beresnev T, Ghazaryan V, Dempsey W, Nayak SU, Dodd L, Tomashek KM, Beigel JH. Efficacy of interferon beta-1a plus remdesivir compared with remdesivir alone in hospitalised adults with COVID-19: a double-bind, randomised, placebo-controlled, phase 3 trial. THE LANCET. RESPIRATORY MEDICINE 2021; 9:1365-1376. [PMID: 34672949 PMCID: PMC8523116 DOI: 10.1016/s2213-2600(21)00384-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Functional impairment of interferon, a natural antiviral component of the immune system, is associated with the pathogenesis and severity of COVID-19. We aimed to compare the efficacy of interferon beta-1a in combination with remdesivir compared with remdesivir alone in hospitalised patients with COVID-19. METHODS We did a double-blind, randomised, placebo-controlled trial at 63 hospitals across five countries (Japan, Mexico, Singapore, South Korea, and the USA). Eligible patients were hospitalised adults (aged ≥18 years) with SARS-CoV-2 infection, as confirmed by a positive RT-PCR test, and who met one of the following criteria suggestive of lower respiratory tract infection: the presence of radiographic infiltrates on imaging, a peripheral oxygen saturation on room air of 94% or less, or requiring supplemental oxygen. Patients were excluded if they had either an alanine aminotransferase or an aspartate aminotransferase concentration more than five times the upper limit of normal; had impaired renal function; were allergic to the study product; were pregnant or breast feeding; were already on mechanical ventilation; or were anticipating discharge from the hospital or transfer to another hospital within 72 h of enrolment. Patients were randomly assigned (1:1) to receive intravenous remdesivir as a 200 mg loading dose on day 1 followed by a 100 mg maintenance dose administered daily for up to 9 days and up to four doses of either 44 μg interferon beta-1a (interferon beta-1a group plus remdesivir group) or placebo (placebo plus remdesivir group) administered subcutaneously every other day. Randomisation was stratified by study site and disease severity at enrolment. Patients, investigators, and site staff were masked to interferon beta-1a and placebo treatment; remdesivir treatment was given to all patients without masking. The primary outcome was time to recovery, defined as the first day that a patient attained a category 1, 2, or 3 score on the eight-category ordinal scale within 28 days, assessed in the modified intention-to-treat population, defined as all randomised patients who were classified according to actual clinical severity. Safety was assessed in the as-treated population, defined as all patients who received at least one dose of the assigned treatment. This trial is registered with ClinicalTrials.gov, NCT04492475. FINDINGS Between Aug 5, 2020, and Nov 11, 2020, 969 patients were enrolled and randomly assigned to the interferon beta-1a plus remdesivir group (n=487) or to the placebo plus remdesivir group (n=482). The mean duration of symptoms before enrolment was 8·7 days (SD 4·4) in the interferon beta-1a plus remdesivir group and 8·5 days (SD 4·3) days in the placebo plus remdesivir group. Patients in both groups had a time to recovery of 5 days (95% CI not estimable) (rate ratio of interferon beta-1a plus remdesivir group vs placebo plus remdesivir 0·99 [95% CI 0·87-1·13]; p=0·88). The Kaplan-Meier estimate of mortality at 28 days was 5% (95% CI 3-7%) in the interferon beta-1a plus remdesivir group and 3% (2-6%) in the placebo plus remdesivir group (hazard ratio 1·33 [95% CI 0·69-2·55]; p=0·39). Patients who did not require high-flow oxygen at baseline were more likely to have at least one related adverse event in the interferon beta-1a plus remdesivir group (33 [7%] of 442 patients) than in the placebo plus remdesivir group (15 [3%] of 435). In patients who required high-flow oxygen at baseline, 24 (69%) of 35 had an adverse event and 21 (60%) had a serious adverse event in the interferon beta-1a plus remdesivir group compared with 13 (39%) of 33 who had an adverse event and eight (24%) who had a serious adverse event in the placebo plus remdesivir group. INTERPRETATION Interferon beta-1a plus remdesivir was not superior to remdesivir alone in hospitalised patients with COVID-19 pneumonia. Patients who required high-flow oxygen at baseline had worse outcomes after treatment with interferon beta-1a compared with those given placebo. FUNDING The National Institute of Allergy and Infectious Diseases (USA).
Collapse
Affiliation(s)
- Andre C Kalil
- University of Nebraska Medical Center, Omaha, NE, USA.
| | | | - Thomas F Patterson
- University of Texas Health San Antonio, University Health System, and the South Texas Veterans Health Care System, San Antonio, TX, USA
| | | | | | - Mamta K Jain
- University of Texas Southwestern Medical Center, Parkland Health & Hospital System, Dallas, TX, USA; UT Southwestern Medical Center, Parkland Health and Hospital System, Dallas, TX, USA
| | | | | | - Susan Kline
- University of Minnesota Medical School, Minneapolis, MN, USA
| | | | | | | | | | | | | | | | | | | | - Catharine I Paules
- Pennsylvania State Health Milton S Hershey Medical Center, Hershey, PA, USA
| | - Dilek Ince
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jin Takasaki
- National Center for Global Health and Medicine, Tokyo, Japan
| | | | | | - David L Wyles
- Denver Health and Hospital Authority, Denver, CO, USA
| | | | | | - Robert Grossberg
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | - EuSuk Kim
- Seoul National University Bundang Hospital, Seongnam, Korea
| | - LuAnn Larson
- University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | - Philip O Ponce
- University of Texas Health San Antonio, University Health System, and the South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Jan E Patterson
- University of Texas Health San Antonio, University Health System, and the South Texas Veterans Health Care System, San Antonio, TX, USA
| | | | | | - Satish Mocherla
- University of Texas Southwestern Medical Center, Parkland Health & Hospital System, Dallas, TX, USA; UT Southwestern Medical Center, Parkland Health and Hospital System, Dallas, TX, USA
| | | | - Alfredo Ponce de Leon
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | | | - Ryan C Maves
- Naval Medical Center, San Diego, CA, USA; Infectious Disease Clinical Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | | | | | | | - Tyler Bonnett
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Tatiana Beresnev
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Varduhi Ghazaryan
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Walla Dempsey
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Seema U Nayak
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Lori Dodd
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Kay M Tomashek
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - John H Beigel
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
163
|
Asili P, Mirahmad M, Tabatabaei-Malazy O, Manayi A, Haghighat E, Mahdavi M, Larijani B. Characteristics of published/registered clinical trials on COVID-19 treatment: A systematic review. Daru 2021; 29:449-467. [PMID: 34762250 PMCID: PMC8581284 DOI: 10.1007/s40199-021-00422-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/13/2021] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES Due to the rapid spread of COVID-19 worldwide, many countries have designed clinical trials to find efficient treatments. We aimed to critically report the characteristics of all the registered and published randomized clinical trials (RCTs) conducted on COVID-19, and summarize the evaluation of potential therapies developed in various regions. EVIDENCE ACQUISITION We comprehensively searched PubMed, Cochrane Library, Web of Science, Scopus, and Clinicaltrial.gov databases to retrieve all the relevant studies up to July 19, 2021, in conformity with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart. We included all English-language published/registered RCTs on COVID-19, and excluded non-RCT, in-vitro/in-vivo, editorials, and review studies. Two reviewers independently evaluated all the records, and then analyzed by using SPSS 17. RESULTS Within 3018 included studies, 2801 (92.8%) and 217 (7.2%) were registered or published RCTs consisting of about 600 synthetic drugs. Herbal medicines have been studied in 23 trials (10.6%) among the published RCTs and in 357 registered RCTs (12.7%). Hydroxychloroquine 23 (10.6%) and convalescent plasma 194 (6.9%) alone or in combination with other agents were the most frequently used interventions in published and registered RCTs, respectively. Most published RCTs have been conducted in Western Pacific Region (WPRO) (50 trials, 23.0%) including 45 trials from China. Also, a greater proportion of registered RCTs have been conducted in the Region of the Americas (PAHO) (885 trials, 31.6%) including 596 RCTs from the United States (U.S). Globally, 283 registered trials have been conducted to assess new developed vaccines for COVID or previously established for other disorders. CONCLUSION The present study highlighted the wide range of potential therapeutic agents in published and registered COVID-19 clinical trials across a wide range of regions. However, it is urgently required to global coordination in order to conduct more well-designed trials and progress in discovering safe and effective treatments.
Collapse
Affiliation(s)
- Pooria Asili
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mirahmad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ozra Tabatabaei-Malazy
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Manayi
- Medicinal Plants Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Haghighat
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
164
|
Drożdżal S, Rosik J, Lechowicz K, Machaj F, Szostak B, Przybyciński J, Lorzadeh S, Kotfis K, Ghavami S, Łos MJ. An update on drugs with therapeutic potential for SARS-CoV-2 (COVID-19) treatment. Drug Resist Updat 2021; 59:100794. [PMID: 34991982 PMCID: PMC8654464 DOI: 10.1016/j.drup.2021.100794] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 02/07/2023]
Abstract
The COVID-19 pandemic is one of the greatest threats to human health in the 21st century with more than 257 million cases and over 5.17 million deaths reported worldwide (as of November 23, 2021. Various agents were initially proclaimed to be effective against SARS-CoV-2, the etiological agent of COVID-19. Hydroxychloroquine, lopinavir/ritonavir, and ribavirin are all examples of therapeutic agents, whose efficacy against COVID-19 was later disproved. Meanwhile, concentrated efforts of researchers and clinicians worldwide have led to the identification of novel therapeutic options to control the disease including PAXLOVID™ (PF-07321332). Although COVID-19 cases are currently treated using a comprehensive approach of anticoagulants, oxygen, and antibiotics, the novel Pfizer agent PAXLOVID™ (PF-07321332), an investigational COVID-19 oral antiviral candidate, significantly reduced hospitalization time and death rates, based on an interim analysis of the phase 2/3 EPIC-HR (Evaluation of Protease Inhibition for COVID-19 in High-Risk Patients) randomized, double-blind study of non-hospitalized adult patients with COVID-19, who are at high risk of progressing to severe illness. The scheduled interim analysis demonstrated an 89 % reduction in risk of COVID-19-related hospitalization or death from any cause compared to placebo in patients treated within three days of symptom onset (primary endpoint). However, there still exists a great need for the development of additional treatments, as the recommended therapeutic options are insufficient in many cases. Thus far, mRNA and vector vaccines appear to be the most effective modalities to control the pandemic. In the current review, we provide an update on the progress that has been made since April 2020 in clinical trials concerning the effectiveness of therapies available to combat COVID-19. We focus on currently recommended therapeutic agents, including steroids, various monoclonal antibodies, remdesivir, baricitinib, anticoagulants and PAXLOVID™ summarizing the latest original studies and meta-analyses. Moreover, we aim to discuss other currently and previously studied agents targeting COVID-19 that either show no or only limited therapeutic activity. The results of recent studies report that hydroxychloroquine and convalescent plasma demonstrate no efficacy against SARS-CoV-2 infection. Lastly, we summarize the studies on various drugs with incoherent or insufficient data concerning their effectiveness, such as amantadine, ivermectin, or niclosamide.
Collapse
Affiliation(s)
- Sylwester Drożdżal
- Department of Nephrology, Transplantation and Internal Medicine, Pomeranian Medical University in Szczecin, Poland
| | - Jakub Rosik
- Department of Physiology, Pomeranian Medical University in Szczecin, Poland
| | - Kacper Lechowicz
- Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University in Szczecin, Poland
| | - Filip Machaj
- Department of Physiology, Pomeranian Medical University in Szczecin, Poland
| | - Bartosz Szostak
- Department of Physiology, Pomeranian Medical University in Szczecin, Poland
| | - Jarosław Przybyciński
- Department of Nephrology, Transplantation and Internal Medicine, Pomeranian Medical University in Szczecin, Poland
| | - Shahrokh Lorzadeh
- Department of Molecular Genetics, Science and Research Branch, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Katarzyna Kotfis
- Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University in Szczecin, Poland
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran; Faculty of Medicine, Katowice School of Technology, 40-555 Katowice, Poland
| | - Marek J Łos
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland.
| |
Collapse
|
165
|
Gallo CG, Fiorino S, Posabella G, Antonacci D, Tropeano A, Pausini E, Pausini C, Guarniero T, Hong W, Giampieri E, Corazza I, Federico L, de Biase D, Zippi M, Zancanaro M. COVID-19, what could sepsis, severe acute pancreatitis, gender differences, and aging teach us? Cytokine 2021; 148:155628. [PMID: 34411989 PMCID: PMC8343368 DOI: 10.1016/j.cyto.2021.155628] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/02/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a potentially life-threatening disease, defined as Coronavirus Disease 19 (COVID-19). The most common signs and symptoms of this pathological condition include cough, fever, shortness of breath, and sudden onset of anosmia, ageusia, or dysgeusia. The course of COVID-19 is mild or moderate in more than 80% of cases, but it is severe or critical in about 14% and 5% of infected subjects respectively, with a significant risk of mortality. SARS-CoV-2 related infection is characterized by some pathogenetic events, resembling those detectable in other pathological conditions, such as sepsis and severe acute pancreatitis. All these syndromes are characterized by some similar features, including the coexistence of an exuberant inflammatory- as well as an anti-inflammatory-response with immune depression. Based on current knowledge concerning the onset and the development of acute pancreatitis and sepsis, we have considered these syndromes as a very interesting paradigm for improving our understanding of pathogenetic events detectable in patients with COVID-19. The aim of our review is: 1)to examine the pathogenetic mechanisms acting during the emergence of inflammatory and anti-inflammatory processes in human pathology; 2)to examine inflammatory and anti-inflammatory events in sepsis, acute pancreatitis, and SARS-CoV-2 infection and clinical manifestations detectable in patients suffering from these syndromes also according to the age and gender of these individuals; as well as to analyze the possible common and different features among these pathological conditions; 3)to obtain insights into our knowledge concerning COVID-19 pathogenesis. This approach may improve the management of patients suffering from this disease and it may suggest more effective diagnostic approaches and schedules of therapy, depending on the different phases and/or on the severity of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Claudio G Gallo
- Emilian Physiolaser Therapy Center, Castel S. Pietro Terme, Bologna, Italy.
| | - Sirio Fiorino
- Internal Medicine Unit, Budrio Hospital Azienda USL, Bologna, Italy
| | | | - Donato Antonacci
- Medical Science Department, "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo (FG), Italy
| | | | | | | | | | - Wandong Hong
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang, The People's Republic of China
| | - Enrico Giampieri
- Experimental, Diagnostic and Specialty Medicine Department, University of Bologna, Bologna, Italy
| | - Ivan Corazza
- Experimental, Diagnostic and Specialty Medicine Department, University of Bologna, Bologna, Italy
| | - Lari Federico
- Internal Medicine Unit, Budrio Hospital Azienda USL, Bologna, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Maddalena Zippi
- Unit of Gastroenterology and Digestive Endoscopy, Sandro Pertini Hospital, Rome, Italy
| | | |
Collapse
|
166
|
Chi G, Memar Montazerin S, Lee JJ, Kazmi SHA, Shojaei F, Fitzgerald C, Gibson CM. Effect of azithromycin and hydroxychloroquine in patients hospitalized with COVID-19: Network meta-analysis of randomized controlled trials. J Med Virol 2021; 93:6737-6749. [PMID: 34370328 PMCID: PMC8427058 DOI: 10.1002/jmv.27259] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022]
Abstract
Chloroquine or its derivative hydroxychloroquine (HCQ) combined with or without azithromycin (AZ) have been widely investigated in observational studies as a treatment option for coronavirus 2019 (COVID-19) infection. The network meta-analysis aims to summarize evidence from randomized controlled trials (RCTs) to determine if AZ or HCQ is associated with improved clinical outcomes. PubMed and Embase were searched from inception to March 7, 2021. We included published RCTs that investigated the efficacy of AZ, HCQ, or its combination among hospitalized patients with COVID-19 infection. The outcomes of interest were all-cause mortality and the use of mechanical ventilation. The pooled odds ratio was calculated using a random-effect model. A total of 10 RCTs were analyzed. Participant's mean age ranged from 40.4 to 66.5 years. There was no significant effect on mortality associated with AZ plus HCQ (odds ratio [OR] = 0.562 [95% confidence interval {CI}: 0.168-1.887]), AZ alone (OR = 0.965 [95% CI: 0.865-1.077]), or HCQ alone (OR = 1.122 [95% CI: 0.995-1.266]; p = 0.06). Similarly, based on pooled effect sizes derived from direct and indirect evidence, none of the treatments had a significant benefit in decreasing the use of mechanical ventilation. No heterogeneity was identified (Cochran's Q = 1.68; p = 0.95; τ2 = 0; I2 = 0% [95% CI: 0%-0%]). Evidence from RCTs suggests that AZ with or without HCQ was not associated with a significant effect on the mortality or mechanical ventilation rates in hospitalized patients with COVID-19. More research is needed to explore therapeutics agents that can effectively reduce the mortality or severity of COVID-19.
Collapse
Affiliation(s)
- Gerald Chi
- Division of Cardiovascular, Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Sahar Memar Montazerin
- Division of Cardiovascular, Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Jane J. Lee
- Department of Trial Design and DevelopmentBaim Institute for Clinical ResearchBostonMassachusettsUSA
| | - Syed Hassan A. Kazmi
- Division of Cardiovascular, Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Fahimehalsadat Shojaei
- Division of Cardiovascular, Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Clara Fitzgerald
- Division of Cardiovascular, Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - C. Michael Gibson
- Division of Cardiovascular, Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
167
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France.,Howard Hughes Medical Institute, Rockefeller University, New York, NY, USA
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France
| |
Collapse
|
168
|
Soy M, Keser G, Atagündüz P. Pathogenesis and treatment of cytokine storm in COVID-19. Turk J Biol 2021; 45:372-389. [PMID: 34803441 PMCID: PMC8573840 DOI: 10.3906/biy-2105-37] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/05/2021] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is a viral infection caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that killed a large number of patients around the world. A hyperinflammatory state resulting in a cytokine storm and adult respiratory distress syndrome seems to be the major cause of the death. Many mechanisms have been suggested in the pathogenesis of COVID-19 associated cytokine storm (COVID-CS). Insufficient viral clearance and persistence of a strong cytokine response despite inadequate antiviral immunity seem to be the main mechanisms underlying the pathogenesis. The diagnosis of COVID-19 is based on relatively constant clinical symptoms, clinical findings, laboratory tests, and imaging techniques, while the diagnosis of COVID-CS is a rather dynamic process, based on evolving or newly emerging findings during the clinical course. Management of COVID-19 consists of using antiviral agents to inhibit SARS-CoV-2 replication and treating potential complications including the cytokine storm together with general supportive measures. COVID-CS may be treated using appropriate immunosuppressive and immunomodulatory drugs that reduce the level of inappropriate systemic inflammation, which has the potential to cause organ damage. Currently corticosteroids, IL-6 blockers, or IL-1 blockers are most widely used for treating COVID-CS.
Collapse
Affiliation(s)
- Mehmet Soy
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Altınbaş University, Bahçelievler Medical Park Hospital, İstanbul Turkey
| | - Gökhan Keser
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Ege University, İzmir Turkey
| | - Pamir Atagündüz
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Marmara University, İstanbul Turkey
| |
Collapse
|
169
|
Vanderwall ER, Barrow KA, Rich LM, Read DF, Trapnell C, Okoloko O, Ziegler SF, Hallstrand TS, White MP, Debley JS. Airway epithelial interferon response to SARS-CoV-2 is inferior to rhinovirus and heterologous rhinovirus infection suppresses SARS-CoV-2 replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34845445 DOI: 10.1101/2021.11.20.469409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Common alphacoronaviruses and human rhinoviruses (HRV) induce type I and III interferon (IFN) responses important to limiting viral replication in the airway epithelium. In contrast, highly pathogenic betacoronaviruses including SARS-CoV-2 may evade or antagonize RNA-induced IFN I/III responses. METHODS In airway epithelial cells (AECs) from children and older adults we compared IFN I/III responses to SARS-CoV-2 and HRV-16, and assessed whether pre-infection with HRV-16, or pretreatment with recombinant IFN-β or IFN-λ, modified SARS-CoV-2 replication. Bronchial AECs from children (ages 6-18 yrs.) and older adults (ages 60-75 yrs.) were differentiated ex vivo to generate organotypic cultures. In a biosafety level 3 (BSL-3) facility, cultures were infected with SARS-CoV-2 or HRV-16, and RNA and protein was harvested from cell lysates 96 hrs. following infection and supernatant was collected 48 and 96 hrs. following infection. In additional experiments cultures were pre-infected with HRV-16, or pre-treated with recombinant IFN-β1 or IFN-λ2 before SARS-CoV-2 infection. RESULTS Despite significant between-donor heterogeneity SARS-CoV-2 replicated 100 times more efficiently than HRV-16. IFNB1, INFL2, and CXCL10 gene expression and protein production following HRV-16 infection was significantly greater than following SARS-CoV-2. IFN gene expression and protein production were inversely correlated with SARS-CoV-2 replication. Treatment of cultures with recombinant IFNβ1 or IFNλ2, or pre-infection of cultures with HRV-16, markedly reduced SARS-CoV-2 replication. DISCUSSION In addition to marked between-donor heterogeneity in IFN responses and viral replication, SARS-CoV-2 elicits a less robust IFN response in primary AEC cultures than does rhinovirus, and heterologous rhinovirus infection, or treatment with recombinant IFN-β1 or IFN-λ2, markedly reduces SARS-CoV-2 replication.
Collapse
|
170
|
Mueller T, Kerr S, McTaggart S, Kurdi A, Vasileiou E, Docherty A, Fraser K, Shi T, Simpson CR, Bennie M, Sheikh A. Retrospective cohort study to evaluate medication use in patients hospitalised with COVID-19 in Scotland: protocol for a national observational study. BMJ Open 2021; 11:e054861. [PMID: 34799365 PMCID: PMC8609490 DOI: 10.1136/bmjopen-2021-054861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION COVID-19 has caused millions of hospitalisations and deaths globally. A range of vaccines have been developed and are being deployed at scale in the UK to prevent SARS-CoV-2 infection, which have reduced risk of infection and severe COVID-19 outcomes. Those with COVID-19 are now being treated with several repurposed drugs based on evidence emerging from recent clinical trials. However, there is currently limited real-world data available related to the use of these drugs in routine clinical practice. The purpose of this study is to address the prevailing knowledge gaps regarding the use of dexamethasone, remdesivir and tocilizumab by conducting an exploratory drug utilisation study, aimed at providing in-depth descriptions of patients receiving these drugs as well as the treatment patterns observed in Scotland. METHODS AND ANALYSIS Retrospective cohort study, comprising adult patients admitted to hospital with confirmed or suspected COVID-19 across five Scottish Health Boards using data from in-hospital ePrescribing linked to the Early Estimation of Vaccine and Anti-Viral Effectiveness (EAVE II) COVID-19 surveillance platform. The primary outcome will be exposure to the medicines of interest (dexamethasone, remdesivir, tocilizumab), either alone or in combination; exposure will be described in terms of drug(s) of choice; prescribed and administered dose; treatment duration; and any changes in treatment, for example, dose escalation and/or switching to an alternative drug. Analyses will primarily be descriptive in nature. ETHICS AND DISSEMINATION Ethical and information governance approvals have been obtained by the National Research Ethics Service Committee, South East Scotland 02 and the Public Benefit and Privacy Panel for Health and Social Care, respectively. Findings from this study will be presented at academic and clinical conferences, and to the funders and other interested parties as appropriate; study findings will also be published in peer-reviewed journals. Publications will be available on the EAVE II website (https://www.ed.ac.uk/usher/eave-ii/key-outputs/our-publications), alongside lay summaries and infographics aimed at the general public. Press releases will also be considered, if appropriate.
Collapse
Affiliation(s)
- Tanja Mueller
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
- Public Health Scotland Glasgow Office, Glasgow, UK
| | - Steven Kerr
- Usher Institute, The University of Edinburgh, Edinburgh, UK
| | | | - Amanj Kurdi
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
- Public Health Scotland Glasgow Office, Glasgow, UK
| | | | | | | | - Ting Shi
- Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Colin R Simpson
- Usher Institute, The University of Edinburgh, Edinburgh, UK
- School of Health, Wellington Faculty of Health, Victoria University of Wellington, Wellington, New Zealand
| | - Marion Bennie
- Public Health Scotland, Edinburgh, UK
- Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Aziz Sheikh
- Usher Institute, The University of Edinburgh, Edinburgh, UK
- BREATHE Hub, HDR UK, Edinburgh, UK
| |
Collapse
|
171
|
Chen WC, Hsu CK, Chen CY, Lai CC, Hung SH, Lin WT. Clinical efficacy and safety of interferon-β-containing regimens in the treatment of patients with COVID-19: a systematic review and meta-analysis of randomized controlled trials. Expert Rev Anti Infect Ther 2021; 20:741-747. [PMID: 34747295 PMCID: PMC8607540 DOI: 10.1080/14787210.2022.2004118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
Abstract
OBJECTIVE The aim of this systematic review and meta-analysis of randomized controlled trials(RCTs) was to investigate the efficacy of interferon (IFN)-β-containing regimens in treating patients with COVID-19. METHODS PubMed, Embase, Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov were searched from inception to 17 July 2021. RCTs comparing the clinical efficacy and safety of IFN-β-containing regimens (study group) to other antiviral treatment options or placebo (control group) in treating patients with COVID-19 were included. RESULTS Eight RCTs were included. No significant difference in the 28-day all-cause mortality rate was observed between the study and control groups (OR, 0.74; 95% CI, 0.44-1.24; I2 = 51%). The study groups had a lower rate of intensive care unit (ICU) admissions than the control groups (OR 0.58, 95% CI 0.36-0.95; I2 = 0%). Furthermore, INF-β was not associated with an increased risk of any adverse event (AE) or serious AE when compared with the control group. CONCLUSIONS IFN-β does not appear to provide an increased survival benefit in hospitalized patients with COVID-19 but may help reduce the risk of ICU admission. Moreover, IFN-β is a safe agent for use in the treatment of COVID-19.
Collapse
Affiliation(s)
- Wang-Chun Chen
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan.,Department of Pharmacy, E-Da Hospital, Kaohsiung, Taiwan
| | - Chi-Kuei Hsu
- Division of Chest Medicine, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan.,Department of Critical Care Medicine, E-Da Hospital, Kaohsiung, Taiwan
| | - Ching-Yi Chen
- Division of Chest Medicine, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Chih-Cheng Lai
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Tainan Branch, Tainan, Taiwan
| | - Shun-Hsing Hung
- Divisionof Urology, Department of Surgery, Chi-Mei Hospital, Chia Li, Tainan, Taiwan
| | - Wei-Ting Lin
- Department of Orthopedic, Chi Mei Medical Center, Tainan, Taiwan
| |
Collapse
|
172
|
Fleites YA, Aguiar J, Cinza Z, Bequet M, Marrero E, Vizcaíno M, Esquivel I, Diaz M, Sin-Mayor A, Garcia M, Martinez SM, Beato A, Galarraga AG, Mendoza-Mari Y, Valdés I, García G, Lemos G, González I, Canaán-Haden C, Figueroa N, Oquendo R, Akbar SM, Mahtab MA, Uddin MH, Guillén GE, Muzio VL, Pentón E, Aguilar JC. HeberNasvac, a Therapeutic Vaccine for Chronic Hepatitis B, Stimulates Local and Systemic Markers of Innate Immunity: Potential Use in SARS-CoV-2 Postexposure Prophylaxis. Euroasian J Hepatogastroenterol 2021; 11:59-70. [PMID: 34786358 PMCID: PMC8566153 DOI: 10.5005/jp-journals-10018-1344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction More than 180 million people have been infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and more than 4 million coronavirus disease-2019 (COVID-19) patients have died in 1.5 years of the pandemic. A novel therapeutic vaccine (NASVAC) has shown to be safe and to have immunomodulating and antiviral properties against chronic hepatitis B (CHB). Materials and methods A phase I/II, open-label controlled and randomized clinical trial of NASVAC as a postexposure prophylaxis treatment was designed with the primary aim of assessing the local and systemic immunomodulatory effect of NASVAC in a cohort of suspected and SARS-CoV-2 risk-contact patients. A total of 46 patients, of both sexes, 60 years or older, presenting with symptoms of COVID-19 were enrolled in the study. Patients received NASVAC (100 μg per Ag per dose) via intranasal at days 1, 7, and 14 and sublingual, daily for 14 days. Results and discussion The present study detected an increased expression of toll-like receptors (TLR)-related genes in nasopharyngeal tonsils, a relevant property considering these are surrogate markers of SARS protection in the mice model of lethal infection. The HLA-class II increased their expression in peripheral blood mononuclear cell's (PBMC's) monocytes and lymphocytes, which is an attractive property taking into account the functional impairment of innate immune cells from the periphery of COVID-19-infected subjects. NASVAC was safe and well tolerated by the patients with acute respiratory infections and evidenced a preliminary reduction in the number of days with symptoms that needs to be confirmed in larger studies. Conclusions Our data justify the use of NASVAC as preemptive therapy or pre-/postexposure prophylaxis of SARS-CoV-2 and acute respiratory infections in general. The use of NASVAC or their active principles has potential as immunomodulatory prophylactic therapies in other antiviral settings like dengue as well as in malignancies like hepatocellular carcinoma where these markers have shown relation to disease progression. How to cite this article Fleites YA, Aguiar J, Cinza Z, et al. HeberNasvac, a Therapeutic Vaccine for Chronic Hepatitis B, Stimulates Local and Systemic Markers of Innate Immunity: Potential Use in SARS-CoV-2 Postexposure Prophylaxis. Euroasian J Hepato-Gastroenterol 2021;11(2):59–70.
Collapse
Affiliation(s)
- Yoel A Fleites
- Department of Clinical Trials, Luis Diaz Soto Hospital, Havana, Cuba
| | - Jorge Aguiar
- Department of Vaccines, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Zurina Cinza
- Department of Vaccines, Clinical Trials Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Monica Bequet
- Department of Pharmaceuticals, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Elieser Marrero
- Department of Quality Control Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | | | - Idelsis Esquivel
- Department of Clinical Trials, Luis Diaz Soto Hospital, Havana, Cuba
| | - Marisol Diaz
- Department of Clinical Trials, Luis Diaz Soto Hospital, Havana, Cuba
| | - Adriana Sin-Mayor
- Department of Clinical Trials, Luis Diaz Soto Hospital, Havana, Cuba
| | - Maura Garcia
- Department of Clinical Trials, Luis Diaz Soto Hospital, Havana, Cuba
| | - Sara M Martinez
- Department of Clinical Trials, Luis Diaz Soto Hospital, Havana, Cuba
| | - Abrahan Beato
- Department of Clinical Trials, Luis Diaz Soto Hospital, Havana, Cuba
| | - Ana G Galarraga
- Department of Clinical Trials, Luis Diaz Soto Hospital, Havana, Cuba
| | - Yssel Mendoza-Mari
- Department of Pharmaceuticals, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Iris Valdés
- Department of Vaccines, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Gerardo García
- Department of Quality Control Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Gilda Lemos
- Department of Vaccines, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Isabel González
- Department of Pharmaceuticals, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Camila Canaán-Haden
- Department of Pharmaceuticals, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Nelvis Figueroa
- Department of Vaccines, Clinical Trials Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Rachel Oquendo
- Department of Vaccines, Clinical Trials Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Sheikh Mf Akbar
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Mamun A Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Mohammad H Uddin
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Gerardo E Guillén
- Department of Vaccines, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Verena L Muzio
- Department of Vaccines, Clinical Trials Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Eduardo Pentón
- Department of Vaccines, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Julio C Aguilar
- Department of Vaccines, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|
173
|
Garcia-Vidal C, Alonso R, Camon AM, Cardozo C, Albiach L, Agüero D, Marcos MA, Ambrosioni J, Bodro M, Chumbita M, de la Mora L, Garcia-Pouton N, Dueñas G, Hernandez-Meneses M, Inciarte A, Cuesta G, Meira F, Morata L, Puerta-Alcalde P, Herrera S, Tuset M, Castro P, Prieto-Gonzalez S, Almuedo-Riera A, Mensa J, Martínez JA, Sanjuan G, Nicolas JM, Del Rio A, Muñoz J, Vila J, Garcia F, Soriano A. Impact of remdesivir according to the pre-admission symptom duration in patients with COVID-19. J Antimicrob Chemother 2021; 76:3296-3302. [PMID: 34473275 PMCID: PMC8499897 DOI: 10.1093/jac/dkab321] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/08/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The use of remdesivir has demonstrated a significant reduction in the time to recovery in patients with COVID-19. However, the impact on mortality is still controversial. Therefore, it is necessary to evaluate whether there is a specific subgroup of patients in whom an active antiviral therapy also reduces the mortality. METHODS Patients admitted for >48 h in our hospital for a SARS-CoV-2 confirmed or suspected infection from February 2020 to February 2021 were retrospectively analysed. The primary outcome of the study was mortality at 30 days. Univariate and multivariate analyses were performed to identify predictors of mortality. RESULTS In total, 2607 patients (438 receiving remdesivir and 2169 not) were included with a median (IQR) age of 65 (54-77) years and 58% were male. Four hundred and seventy-six were admitted to the ICU (18.3%) and 264 required invasive mechanical ventilation (10.1%). The global 30 day mortality rate was 10.7%. Pre-admission symptom duration of 4-6 days and ≤3 days was associated with a 1.5- and 2.5-fold increase in the mortality rate, respectively, in comparison with >6 days and treatment with remdesivir was independently associated with a lower mortality rate (OR = 0.382, 95% CI = 0.218-0.671). The analysis showed that the major difference was among patients with shorter pre-admission symptom duration (<6 days). CONCLUSIONS Patients with ≤3 days and 4-6 days from symptom onset to admission are associated with a 2.5- and 1.5-fold higher risk of death, respectively. Remdesivir was associated with 62% reduced odds of death versus standard-of-care and its survival benefit increased with shorter duration of symptoms.
Collapse
Affiliation(s)
- Carolina Garcia-Vidal
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Rodrigo Alonso
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Ana M Camon
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Celia Cardozo
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Laia Albiach
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Daiana Agüero
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - M Angeles Marcos
- Department of Microbiology, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain.,Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Juan Ambrosioni
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Marta Bodro
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Mariana Chumbita
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Lorena de la Mora
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Nicole Garcia-Pouton
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Gerard Dueñas
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Marta Hernandez-Meneses
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Alexy Inciarte
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Genoveva Cuesta
- Department of Microbiology, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain.,Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Fernanda Meira
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Laura Morata
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Pedro Puerta-Alcalde
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Sabina Herrera
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Montse Tuset
- Department of Pharmacy, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Pedro Castro
- Medical Intensive Care Unit, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Sergio Prieto-Gonzalez
- Department of Internal Medicine, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Alex Almuedo-Riera
- Institute for Global Health (ISGlobal), Barcelona, Spain.,Department of International Health, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Josep Mensa
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - José Antonio Martínez
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Gemma Sanjuan
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain.,Computer System Unit, Hospital Clinic, Barcelona, Spain
| | - J M Nicolas
- Medical Intensive Care Unit, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - A Del Rio
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - José Muñoz
- Institute for Global Health (ISGlobal), Barcelona, Spain.,Department of International Health, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Jordi Vila
- Department of Microbiology, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain.,Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Felipe Garcia
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Alex Soriano
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain
| | | |
Collapse
|
174
|
Khanna K, Raymond W, Jin J, Charbit AR, Gitlin I, Tang M, Werts AD, Barrett EG, Cox JM, Birch SM, Martinelli R, Sperber HS, Franz S, Pillai S, Healy AM, Duff T, Oscarson S, Hoffmann M, Pöhlmann S, Simmons G, Fahy JV. Thiol drugs decrease SARS-CoV-2 lung injury in vivo and disrupt SARS-CoV-2 spike complex binding to ACE2 in vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33330868 PMCID: PMC7743076 DOI: 10.1101/2020.12.08.415505] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neutrophil-induced oxidative stress is a mechanism of lung injury in COVID-19, and drugs with a functional thiol group (“thiol drugs”), especially cysteamine, have anti-oxidant and anti-inflammatory properties that could limit this injury. Thiol drugs may also alter the redox status of the cysteine-rich SARS-CoV-2 spike glycoprotein (SARS-2-S) and thereby disrupt ACE2 binding. Using ACE2 binding assay, reporter virus pseudotyped with SARS-CoV-2 spikes (ancestral and variants) and authentic SARS-CoV-2 (Wuhan-1), we find that multiple thiol drugs inhibit SARS-2-S binding to ACE2 and virus entry into cells. Pseudoviruses carrying variant spikes were less efficiently inhibited as compared to pseudotypes bearing an ancestral spike, but the most potent drugs still inhibited the Delta variant in the low millimolar range. IC50 values followed the order of their cystine cleavage rates and lower thiol pKa values. In hamsters infected with SARS-CoV-2, intraperitoneal (IP) cysteamine decreased neutrophilic inflammation and alveolar hemorrhage in the lungs but did not decrease viral infection, most likely because IP delivery could not achieve millimolar concentrations in the airways. These data show that thiol drugs inhibit SARS-CoV-2 infection in vitro and reduce SARS-CoV-2-related lung injury in vivo and provide strong rationale for trials of systemically delivered thiol drugs as COVID-19 treatments. We propose that antiviral effects of thiol drugs in vivo will require delivery directly to the airways to ensure millimolar drug concentrations and that thiol drugs with lower thiol pKa values are most likely to be effective. The effect of cysteamine to decrease SARS-CoV-2 pneumonia in vivo and of multiple thiol drugs to inhibit SARS-CoV-2 infection in vitro provides rationale for clinical trials of thiol drugs in COVID-19.
Collapse
|
175
|
Abstract
SARS-CoV-2, the etiological agent of COVID-19, is characterized by a delay in type I interferon (IFN-I)-mediated antiviral defenses alongside robust cytokine production. Here, we investigate the underlying molecular basis for this imbalance and implicate virus-mediated activation of NF-κB in the absence of other canonical IFN-I-related transcription factors. Epigenetic and single-cell transcriptomic analyses show a selective NF-κB signature that was most prominent in infected cells. Disruption of NF-κB signaling through the silencing of the NF-κB transcription factor p65 or p50 resulted in loss of virus replication that was rescued upon reconstitution. These findings could be further corroborated with the use of NF-κB inhibitors, which reduced SARS-CoV-2 replication in vitro. These data suggest that the robust cytokine production in response to SARS-CoV-2, despite a diminished IFN-I response, is the product of a dependency on NF-κB for viral replication. IMPORTANCE The COVID-19 pandemic has caused significant mortality and morbidity around the world. Although effective vaccines have been developed, large parts of the world remain unvaccinated while new SARS-CoV-2 variants keep emerging. Furthermore, despite extensive efforts and large-scale drug screenings, no fully effective antiviral treatment options have been discovered yet. Therefore, it is of the utmost importance to gain a better understanding of essential factors driving SARS-CoV-2 replication to be able to develop novel approaches to target SARS-CoV-2 biology.
Collapse
|
176
|
Lévy R, Zhang P, Bastard P, Dorgham K, Melki I, Hadchouel A, Hartoularos GC, Neven B, Castelle M, Roy C, Toin T, Berteloot L, Bizien L, Abid H, Burgard M, Houhou-Fidouh N, Rozenberg F, Jouanguy E, Ye CJ, Gorochov G, Zhang Q, Casanova JL. Monoclonal antibody-mediated neutralization of SARS-CoV-2 in an IRF9-deficient child. Proc Natl Acad Sci U S A 2021; 118:e2114390118. [PMID: 34702736 PMCID: PMC8609338 DOI: 10.1073/pnas.2114390118] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2021] [Indexed: 01/22/2023] Open
Abstract
We describe an unvaccinated child at risk for life-threatening COVID-19 due to an inherited deficiency of IRF9, which governs ISGF-3-dependent responses to type I and III interferons (IFN). She was admitted, with a high nasal SARS-CoV-2 load on day 1 of upper respiratory tract infection. She was viremic on day 2 and received casirivimab and imdevimab. Her clinical manifestations and viremia disappeared on days 3 and 4, respectively. Circulating SARS-CoV-2 virus induced the expression of IFN-stimulated genes in leukocytes on day 1, whereas the secretion of blood type I IFNs, which peaked on day 4, did not. Antibody-mediated SARS-CoV-2 neutralization is, therefore, sufficient to overcome a deficiency of antiviral IFNs.
Collapse
Affiliation(s)
- Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children 75015 Paris, France
- Imagine Institute, University of Paris, Paris 75015, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children 75015 Paris, France
- Imagine Institute, University of Paris, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Karim Dorgham
- Sorbonne Université, INSERM, Centre for Immunology and Microbial Infections-Paris, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris 75013, France
| | - Isabelle Melki
- Imagine Institute, University of Paris, Paris 75015, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
- General Pediatrics, Infectious Disease and Internal Medicine Department, Robert Debré Hospital, Assistance Publique-Hôpitaux de Paris, Paris 75019, France
| | - Alice Hadchouel
- Pediatric Pulmonary Department, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
- Institut Necker-Enfants Malades, INSERM U1151, Paris 75015, France
| | | | - Bénédicte Neven
- Imagine Institute, University of Paris, Paris 75015, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Martin Castelle
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Charlotte Roy
- Pediatric Pulmonary Department, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Tom Toin
- Pediatric Pulmonary Department, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Laureline Berteloot
- Pediatric Radiology, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children 75015 Paris, France
- Imagine Institute, University of Paris, Paris 75015, France
| | - Hanène Abid
- Department of Virology, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Marianne Burgard
- Department of Virology, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Nadhira Houhou-Fidouh
- Department of Virology, INSERM, Infection, Antimicrobiens, Modélisation, Evolution, UMR 1137, Bichat-Claude Bernard Hospital, University of Paris, Assistance Publique-Hôpitaux de Paris, Paris F-75018, France
| | - Flore Rozenberg
- Department of Virology, Cochin Hospital, University of Paris, Assistance Publique-Hôpitaux de Paris, Paris 75014, France
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children 75015 Paris, France
- Imagine Institute, University of Paris, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Chun Jimmie Ye
- Institute for Human Genetics, University of California, San Francisco, CA 94143
- Institute for Human Genetics, University of California, San Francisco, CA 94143
- Departments of Epidemiology and Biostatistics and Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, CA 94143
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Guy Gorochov
- Sorbonne Université, INSERM, Centre for Immunology and Microbial Infections-Paris, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris 75013, France
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children 75015 Paris, France
- Imagine Institute, University of Paris, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children 75015 Paris, France;
- Imagine Institute, University of Paris, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- HHMI, The Rockefeller University, New York, NY 10065
| |
Collapse
|
177
|
Egilmezer E, Rawlinson WD. Review of studies of severe acute respiratory syndrome related coronavirus-2 pathogenesis in human organoid models. Rev Med Virol 2021; 31:e2227. [PMID: 33763936 PMCID: PMC8250302 DOI: 10.1002/rmv.2227] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome related coronavirus-2 (SARS-CoV-2) is the cause of Covid-19 which was classified as a global pandemic in March 2020. The increasing global health and economic burden of SARS-CoV-2 has necessitated urgent investigations into the pathogenesis of disease and development of therapeutic and vaccination regimens. Human trials of vaccine and antiviral candidates have been undertaken, but basic pathogenetic studies are still required to inform these trials. Gaps in understanding of cellular infection by, and immunity to, SARS-CoV-2 mean additional models are required to assist in improved design of these therapeutics. Human organoids are three-dimensional models that contain multiple cell types and mimic human organs in ex vivo culture conditions. The SARS-CoV-2 virus has been implicated in causing not only respiratory injury but also injury to other organs such as the brain, liver and kidneys. Consequently, a variety of different organoid models have been employed to investigate the pathogenic mechanisms of disease due to SARS-CoV-2. Data on these models have not been systematically assembled. In this review, we highlight key findings from studies that have utilised different human organoid types to investigate the expression of SARS-CoV-2 receptors, permissiveness, immune response, dysregulation of cellular functions, and potential antiviral therapeutics.
Collapse
Affiliation(s)
- Ece Egilmezer
- Serology and Virology DivisionNSW Health PathologyPrince of Wales HospitalSydneyAustralia
- School of Medical SciencesUniversity of New South WalesSydneyAustralia
| | - William D Rawlinson
- Serology and Virology DivisionNSW Health PathologyPrince of Wales HospitalSydneyAustralia
- School of Medical SciencesUniversity of New South WalesSydneyAustralia
- School of Women's and Children's HealthUniversity of New South WalesSydneyAustralia
- School of Biotechnology and Biomolecular SciencesUniversity of New South WalesSydneyAustralia
| |
Collapse
|
178
|
Brüssow H. Clinical trials with antiviral drugs against COVID-19: some progress and many shattered hopes. Environ Microbiol 2021; 23:6364-6376. [PMID: 34519154 PMCID: PMC8652531 DOI: 10.1111/1462-2920.15769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/27/2022]
Abstract
Vaccines and drugs are the cornerstones in the fight against the SARS-CoV-2 pandemic. While vaccines were a success story, the development of antiviral drugs against SARS-CoV-2 turned out to be difficult. For an accelerated use of antivirals in the clinic, most SARS-CoV-2 antivirals represented repurposed drugs. The present article summarizes the outcomes of clinical trials with antiviral drugs in COVID-19 patients. Many antiviral drugs failed to demonstrate beneficial effects or showed mixed results. One reason for the low success rate of clinical trials was shortcomings of antiviral tests in cell culture systems and another reason was the abundance of ill-coordinated and underpowered clinical trials. However, large pragmatic clinical trials particularly of the British RECOVERY trial series demonstrated that even under emergency situation drug trials can be conducted in a timely way such that the therapy of COVID-19 patients can be based on evidence basis instead on expert opinion or even worse on political pressure.
Collapse
Affiliation(s)
- Harald Brüssow
- Department of Biosystems, Laboratory of Gene TechnologyKU LeuvenLeuvenBelgium
| |
Collapse
|
179
|
Walker FC, Sridhar PR, Baldridge MT. Differential roles of interferons in innate responses to mucosal viral infections. Trends Immunol 2021; 42:1009-1023. [PMID: 34629295 PMCID: PMC8496891 DOI: 10.1016/j.it.2021.09.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 01/04/2023]
Abstract
Interferons (IFNs) are among the first vertebrate immune pathways activated upon viral infection and are crucial for control of viral replication and dissemination, especially at mucosal surfaces as key locations for host exposure to pathogens. Inhibition of viral establishment and spread at and from these mucosal sites is paramount for preventing severe disease, while concomitantly limiting putative detrimental effects of inflammation. Here, we compare the roles of type I, II, and III IFNs in regulating three archetypal viruses - norovirus, herpes simplex virus, and severe acute respiratory virus coronavirus 2 (SARS-CoV-2) - which infect distinct mammalian mucosal tissues. Emerging paradigms include highly specific roles for IFNs in limiting local versus systemic infection, synergistic activities, and a spectrum of protective versus detrimental effects of IFNs during the infection response.
Collapse
Affiliation(s)
- Forrest C Walker
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Pratyush R Sridhar
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan T Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
180
|
Cui X, Sun J, Minkove SJ, Li Y, Cooper D, Couse Z, Eichacker PQ, Torabi‐Parizi P. Effects of chloroquine or hydroxychloroquine treatment on non-SARS-CoV2 viral infections: A systematic review of clinical studies. Rev Med Virol 2021; 31:e2228. [PMID: 33694220 PMCID: PMC8209942 DOI: 10.1002/rmv.2228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/15/2022]
Abstract
Chloroquine (CQ) and hydroxychloroquine (HCQ) have been used as antiviral agents for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection. We performed a systematic review to examine whether prior clinical studies that compared the effects of CQ and HCQ to a control for the treatment of non-SARS-CoV2 infection supported the use of these agents in the present SARS-CoV2 outbreak. PubMed, EMBASE, Scopus and Web of Science (PROSPERO CRD42020183429) were searched from inception through 2 April 2020 without language restrictions. Of 1766 retrieved reports, 18 studies met our inclusion criteria, including 17 prospective controlled studies and one retrospective study. CQ or HCQ were compared to control for the treatment of infectious mononucleosis (EBV, n = 4), warts (human papillomavirus, n = 2), chronic HIV infection (n = 6), acute chikungunya infection (n = 1), acute dengue virus infection (n = 2), chronic HCV (n = 2), and as preventive measures for influenza infection (n = 1). Survival was not evaluated in any study. For HIV, the virus that was most investigated, while two early studies suggested HCQ reduced viral levels, four subsequent ones did not, and in two of these CQ or HCQ increased viral levels and reduced CD4 counts. Overall, three studies concluded CQ or HCQ were effective; four concluded further research was needed to assess the treatments' effectiveness; and 11 concluded that treatment was ineffective or potentially harmful. Prior controlled clinical trials with CQ and HCQ for non-SARS-CoV2 viral infections do not support these agents' use for the SARS-CoV2 outbreak.
Collapse
Affiliation(s)
- Xizhong Cui
- Critical Care Medicine DepartmentNational Institutes of HealthBethesdaMarylandUSA
| | - Junfeng Sun
- Critical Care Medicine DepartmentNational Institutes of HealthBethesdaMarylandUSA
| | - Samuel J. Minkove
- Critical Care Medicine DepartmentNational Institutes of HealthBethesdaMarylandUSA
| | - Yan Li
- Critical Care Medicine DepartmentNational Institutes of HealthBethesdaMarylandUSA
| | - Diane Cooper
- NIH LibraryClinical CenterNational Institutes of HealthBethesdaMarylandUSA
| | - Zoe Couse
- Critical Care Medicine DepartmentNational Institutes of HealthBethesdaMarylandUSA
| | - Peter Q. Eichacker
- Critical Care Medicine DepartmentNational Institutes of HealthBethesdaMarylandUSA
| | | |
Collapse
|
181
|
Rathore SS, Rojas GA, Sondhi M, Pothuru S, Pydi R, Kancherla N, Singh R, Ahmed NK, Shah J, Tousif S, Baloch UT, Wen Q. Myocarditis associated with Covid-19 disease: A systematic review of published case reports and case series. Int J Clin Pract 2021; 75:e14470. [PMID: 34235815 DOI: 10.1111/ijcp.14470] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/11/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Covid-19 is an extremely contagious illness caused by the severe acute respiratory syndrome (SARS-CoV-2) virus. The cardiac involvement in such a public health emergency disease has not been well studied and a conflicting evidence exists on this issue. OBJECTIVE This systematic review article aimed to compile and illustrate clinical characteristics, diagnostic findings, management, and outcomes manifesting in myocarditis linked with Covid-19. METHODS A literature search was accomplished for published eligible articles with MEDLINE/PubMed and Embase databases. All eligible case reports and case series were included from around the world without any language restrictions. For this review, inclusion criteria were laboratory-confirmed SARS-CoV-2 infection cases reporting a diagnosis of acute myocarditis. RESULTS Data from 41 studies describing myocarditis in 42 Covid-19 patients was obtained. The median age of these patients was 43.4 years, with 71.4% of them being men. Fever was the most prevalent presenting symptoms seen in 57% of patients. Hypertension was the most pervasive comorbidity accompanying these patients. Cardiac biomarkers troponin and brain natriuretic peptide (BNP) were raised in almost 90% and 87% of patients, respectively. Electrocardiogram findings were nonspecific and included ST-segment and T-wave changes. Echocardiogram commonly showed left ventricular systolic dysfunction with increased heart size. Cardiac magnetic resonance imaging (CMRI) exhibited myocardial edema and injury. The most prevalent histopathological feature appreciated was diffuse lymphocytic inflammatory infiltrates. Antivirals and corticosteroids were the most frequently used medications. About 38% of patients also needed vasopressor assistance. Out of 42 patients, 67% recovered, and eight died. CONCLUSION Because of the risk of a sudden worsening of patients conditions and myocarditis association with considerable mortality and morbidity, a knowledge of this cardiac complication of Covid-19 disease is crucial for healthcare professionals.
Collapse
Affiliation(s)
| | - Gianpier Alonzo Rojas
- Internal Medicine, School of Medicine, Universidad Peruana Cayetano Heredia, Lima, Peru
- Scientific society of medical students, Lima, Perú
| | - Manush Sondhi
- Internal Medicine, Kasturba Medical College, Manipal, India
| | | | - Reshma Pydi
- Internal Medicine, Andhra Medical College, Visakhapatnam, India
| | | | - Romil Singh
- Department of Critical Care, Mayo Clinic, Rochester, MN, USA
| | | | - Jill Shah
- Internal Medicine, Tambov State University named after G.R. Derzhavin, Tambov, Russia
| | - Sohaib Tousif
- Internal Medicine, Ziauddin Medical University, Karachi, Pakistan
| | | | - Qingqing Wen
- Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
182
|
Felsenstein S, Reiff AO. A hitchhiker's guide through the COVID-19 galaxy. Clin Immunol 2021; 232:108849. [PMID: 34563684 PMCID: PMC8461017 DOI: 10.1016/j.clim.2021.108849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/04/2021] [Indexed: 01/08/2023]
Abstract
Numerous reviews have summarized the epidemiology, pathophysiology and the various therapeutic aspects of Coronavirus disease 2019 (COVID-19), but a practical guide on "how to treat whom with what and when" based on an understanding of the immunological background of the disease stages remains missing. This review attempts to combine the current knowledge about the immunopathology of COVID-19 with published evidence of available and emerging treatment options. We recognize that the information about COVID-19 and its treatment is rapidly changing, but hope that this guide offers those on the frontline of this pandemic an understanding of the host response in COVID-19 patients and supports their ongoing efforts to select the best treatments tailored to their patient's clinical status.
Collapse
Affiliation(s)
- Susanna Felsenstein
- University of Liverpool, Faculty of Health and Life Sciences, Brownlow Hill, Liverpool, L69 3GB, United Kingdom.
| | - Andreas Otto Reiff
- Arthritis & Rheumatic Diseases, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, United States.
| |
Collapse
|
183
|
Minh LHN, Abozaid AA, Ha NX, Le Quang L, Gad AG, Tiwari R, Nhat‐Le T, Quyen DK, AL‐Manaseer B, Kien ND, Vuong NL, Zayan AH, Nhi LHH, Surya Dila KA, Varney J, Tien Huy N. Clinical and laboratory factors associated with coronavirus disease 2019 (Covid-19): A systematic review and meta-analysis. Rev Med Virol 2021; 31:e2288. [PMID: 34472152 PMCID: PMC8646520 DOI: 10.1002/rmv.2288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 01/08/2023]
Abstract
SARS Coronavirus-2 is one of the most widespread viruses globally during the 21st century, whose severity and ability to cause severe pneumonia and death vary. We performed a comprehensive systematic review of all studies that met our standardised criteria and then extracted data on the age, symptoms, and different treatments of Covid-19 patients and the prognosis of this disease during follow-up. Cases in this study were divided according to severity and death status and meta-analysed separately using raw mean and single proportion methods. We included 171 complete studies including 62,909 confirmed cases of Covid-19, of which 148 studies were meta-analysed. Symptoms clearly emerged in an escalating manner from mild-moderate symptoms, pneumonia, severe-critical to the group of non-survivors. Hypertension (Pooled proportion (PP): 0.48 [95% Confident interval (CI): 0.35-0.61]), diabetes (PP: 0.23 [95% CI: 0.16-0.33]) and smoking (PP: 0.12 [95% CI: 0.03-0.38]) were highest regarding pre-infection comorbidities in the non-survivor group. While acute respiratory distress syndrome (PP: 0.49 [95% CI: 0.29-0.78]), (PP: 0.63 [95% CI: 0.34-0.97]) remained one of the most common complications in the severe and death group respectively. Bilateral ground-glass opacification (PP: 0.68 [95% CI: 0.59-0.75]) was the most visible radiological image. The mortality rates estimated (PP: 0.11 [95% CI: 0.06-0.19]), (PP: 0.03 [95% CI: 0.01-0.05]), and (PP: 0.01 [95% CI: 0-0.3]) in severe-critical, pneumonia and mild-moderate groups respectively. This study can serve as a high evidence guideline for different clinical presentations of Covid-19, graded from mild to severe, and for special forms like pneumonia and death groups.
Collapse
Affiliation(s)
- Le Huu Nhat Minh
- Cardiovascular Research DepartmentMethodist HospitalMerrillvilleIndianaUSA
- Online Research ClubNagasakiJapan
| | | | - Nam Xuan Ha
- Online Research ClubNagasakiJapan
- Hue University of Medicine and Pharmacy, Hue UniversityHue CityVietnam
| | - Loc Le Quang
- Online Research ClubNagasakiJapan
- University of Medicine and Pharmacy at Ho Chi Minh CityHo Chi Minh CityVietnam
| | | | - Ranjit Tiwari
- Online Research ClubNagasakiJapan
- Department of Internal MedicineInstitute of MedicineTribhuvan UniversityKathmanduNepal
| | - Tran Nhat‐Le
- Online Research ClubNagasakiJapan
- Hue University of Medicine and Pharmacy, Hue UniversityHue CityVietnam
| | - Dinh Kim Quyen
- Online Research ClubNagasakiJapan
- University of Medicine and Pharmacy at Ho Chi Minh CityHo Chi Minh CityVietnam
| | - Balqees AL‐Manaseer
- Online Research ClubNagasakiJapan
- School of MedicineUniversity of JordanAmmanJordan
| | - Nguyen Dang Kien
- Online Research ClubNagasakiJapan
- Department of Obstetrics and GynaecologyThai Binh University of Medicine and PharmacyThai BinhVietnam
| | - Nguyen Lam Vuong
- University of Medicine and Pharmacy at Ho Chi Minh CityHo Chi Minh CityVietnam
| | - Ahmad Helmy Zayan
- Online Research ClubNagasakiJapan
- Department of OtolaryngologyMenoufia UniversityMenoufiaEgypt
| | - Le Huu Hanh Nhi
- Department of RadiologyVinmec Central Park International HospitalHo Chi Minh CityVietnam
| | - Kadek Agus Surya Dila
- Online Research ClubNagasakiJapan
- Department of Emergency MedicineGiri Emas HospitalSingaraja CityBuleleng, BaliIndonesia
| | - Joseph Varney
- Online Research ClubNagasakiJapan
- School of MedicineAmerican University of the CaribbeanSint MaartenNetherlands
| | - Nguyen Tien Huy
- Online Research ClubNagasakiJapan
- School of Tropical Medicine and Global HealthNagasaki UniversityNagasakiJapan
| |
Collapse
|
184
|
Li JY, Zhou ZJ, Wang Q, He QN, Zhao MY, Qiu Y, Ge XY. Innate Immunity Evasion Strategies of Highly Pathogenic Coronaviruses: SARS-CoV, MERS-CoV, and SARS-CoV-2. Front Microbiol 2021; 12:770656. [PMID: 34777324 PMCID: PMC8586461 DOI: 10.3389/fmicb.2021.770656] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 09/16/2021] [Indexed: 12/23/2022] Open
Abstract
In the past two decades, coronavirus (CoV) has emerged frequently in the population. Three CoVs (SARS-CoV, MERS-CoV, SARS-CoV-2) have been identified as highly pathogenic human coronaviruses (HP-hCoVs). Particularly, the ongoing COVID-19 pandemic caused by SARS-CoV-2 warns that HP-hCoVs present a high risk to human health. Like other viruses, HP-hCoVs interact with their host cells in sophisticated manners for infection and pathogenesis. Here, we reviewed the current knowledge about the interference of HP-hCoVs in multiple cellular processes and their impacts on viral infection. HP-hCoVs employed various strategies to suppress and evade from immune response, including shielding viral RNA from recognition by pattern recognition receptors (PRRs), impairing IFN-I production, blocking the downstream pathways of IFN-I, and other evasion strategies. This summary provides a comprehensive view of the interplay between HP-hCoVs and the host cells, which is helpful to understand the mechanism of viral pathogenesis and develop antiviral therapies.
Collapse
Affiliation(s)
- Jin-Yan Li
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, China
| | - Zhi-Jian Zhou
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, China
| | - Qiong Wang
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, China
| | - Qing-Nan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Yi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ye Qiu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, China
| | - Xing-Yi Ge
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, China
| |
Collapse
|
185
|
Wickenhagen A, Sugrue E, Lytras S, Kuchi S, Noerenberg M, Turnbull ML, Loney C, Herder V, Allan J, Jarmson I, Cameron-Ruiz N, Varjak M, Pinto RM, Lee JY, Iselin L, Palmalux N, Stewart DG, Swingler S, Greenwood EJD, Crozier TWM, Gu Q, Davies EL, Clohisey S, Wang B, Trindade Maranhão Costa F, Freire Santana M, de Lima Ferreira LC, Murphy L, Fawkes A, Meynert A, Grimes G, Da Silva Filho JL, Marti M, Hughes J, Stanton RJ, Wang ECY, Ho A, Davis I, Jarrett RF, Castello A, Robertson DL, Semple MG, Openshaw PJM, Palmarini M, Lehner PJ, Baillie JK, Rihn SJ, Wilson SJ. A prenylated dsRNA sensor protects against severe COVID-19. Science 2021; 374:eabj3624. [PMID: 34581622 PMCID: PMC7612834 DOI: 10.1126/science.abj3624] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
Inherited genetic factors can influence the severity of COVID-19, but the molecular explanation underpinning a genetic association is often unclear. Intracellular antiviral defenses can inhibit the replication of viruses and reduce disease severity. To better understand the antiviral defenses relevant to COVID-19, we used interferon-stimulated gene (ISG) expression screening to reveal that 2′-5′-oligoadenylate synthetase 1 (OAS1), through ribonuclease L, potently inhibits severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We show that a common splice-acceptor single-nucleotide polymorphism (Rs10774671) governs whether patients express prenylated OAS1 isoforms that are membrane-associated and sense-specific regions of SARS-CoV-2 RNAs or if they only express cytosolic, nonprenylated OAS1 that does not efficiently detect SARS-CoV-2. In hospitalized patients, expression of prenylated OAS1 was associated with protection from severe COVID-19, suggesting that this antiviral defense is a major component of a protective antiviral response.
Collapse
Affiliation(s)
- Arthur Wickenhagen
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Elena Sugrue
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Spyros Lytras
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Srikeerthana Kuchi
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Marko Noerenberg
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Matthew L. Turnbull
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Colin Loney
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Vanessa Herder
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Jay Allan
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Innes Jarmson
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Natalia Cameron-Ruiz
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Margus Varjak
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Rute M. Pinto
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Jeffrey Y. Lee
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Louisa Iselin
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Natasha Palmalux
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Douglas G. Stewart
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Simon Swingler
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Edward J. D. Greenwood
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
| | - Thomas W. M. Crozier
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
| | - Quan Gu
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Emma L. Davies
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Sara Clohisey
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Bo Wang
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Fabio Trindade Maranhão Costa
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Sao Paolo, Brazil
| | - Monique Freire Santana
- Department of Education and Research, Oncology Control Centre of Amazonas State (FCECON), Manaus, Amazonas, Brazil
| | - Luiz Carlos de Lima Ferreira
- Postgraduate Program in Tropical Medicine, Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Lee Murphy
- Edinburgh Clinical Research Facility, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Angie Fawkes
- Edinburgh Clinical Research Facility, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Alison Meynert
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Graeme Grimes
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - ISARIC4C Investigators
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
- Roslin Institute, University of Edinburgh, Edinburgh, UK
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Sao Paolo, Brazil
- Department of Education and Research, Oncology Control Centre of Amazonas State (FCECON), Manaus, Amazonas, Brazil
- Postgraduate Program in Tropical Medicine, Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Edinburgh Clinical Research Facility, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
- Division of Infection & Immunity, Cardiff University, Cardiff, UK
- NIHR Health Protection Research Unit for Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Respiratory Medicine, Alder Hey Children’s Hospital, Liverpool, UK
- National Heart and Lung Institute, Imperial College London, London, UK
- Imperial College Healthcare, National Health Service Trust London, London, UK
- Intensive Care Unit, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Joao Luiz Da Silva Filho
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Matthias Marti
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Joseph Hughes
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | | | - Eddie C. Y. Wang
- Division of Infection & Immunity, Cardiff University, Cardiff, UK
| | - Antonia Ho
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Ruth F. Jarrett
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Alfredo Castello
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - David L. Robertson
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Malcolm G. Semple
- NIHR Health Protection Research Unit for Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Respiratory Medicine, Alder Hey Children’s Hospital, Liverpool, UK
| | - Peter J. M. Openshaw
- National Heart and Lung Institute, Imperial College London, London, UK
- Imperial College Healthcare, National Health Service Trust London, London, UK
| | - Massimo Palmarini
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Paul J. Lehner
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
| | - J. Kenneth Baillie
- Roslin Institute, University of Edinburgh, Edinburgh, UK
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Intensive Care Unit, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Suzannah J. Rihn
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Sam J. Wilson
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| |
Collapse
|
186
|
Establishment of a Rapid Detection System for ISG20-Dependent SARS-CoV-2 Subreplicon RNA Degradation Induced by Interferon-α. Int J Mol Sci 2021; 22:ijms222111641. [PMID: 34769072 PMCID: PMC8583800 DOI: 10.3390/ijms222111641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
Inhaled nebulized interferon (IFN)-α and IFN-β have been shown to be effective in the management of coronavirus disease 2019 (COVID-19). We aimed to construct a virus-free rapid detection system for high-throughput screening of IFN-like compounds that induce viral RNA degradation and suppress the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We prepared a SARS-CoV-2 subreplicon RNA expression vector which contained the SARS-CoV-2 5′-UTR, the partial sequence of ORF1a, luciferase, nucleocapsid, ORF10, and 3′-UTR under the control of the cytomegalovirus promoter. The expression vector was transfected into Calu-3 cells and treated with IFN-α and the IFNAR2 agonist CDM-3008 (RO8191) for 3 days. SARS-CoV-2 subreplicon RNA degradation was subsequently evaluated based on luciferase levels. IFN-α and CDM-3008 suppressed SARS-CoV-2 subreplicon RNA in a dose-dependent manner, with IC50 values of 193 IU/mL and 2.54 μM, respectively. HeLa cells stably expressing SARS-CoV-2 subreplicon RNA were prepared and treated with the IFN-α and pan-JAK inhibitor Pyridone 6 or siRNA-targeting ISG20. IFN-α activity was canceled with Pyridone 6. The knockdown of ISG20 partially canceled IFN-α activity. Collectively, we constructed a virus-free rapid detection system to measure SARS-CoV-2 RNA suppression. Our data suggest that the SARS-CoV-2 subreplicon RNA was degraded by IFN-α-induced ISG20 exonuclease activity.
Collapse
|
187
|
Ackland J, Watson A, Wilkinson TMA, Staples KJ. Interrupting the Conversation: Implications for Crosstalk Between Viral and Bacterial Infections in the Asthmatic Airway. FRONTIERS IN ALLERGY 2021; 2:738987. [PMID: 35386999 PMCID: PMC8974750 DOI: 10.3389/falgy.2021.738987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022] Open
Abstract
Asthma is a heterogeneous, chronic respiratory disease affecting 300 million people and is thought to be driven by different inflammatory endotypes influenced by a myriad of genetic and environmental factors. The complexity of asthma has rendered it challenging to develop preventative and disease modifying therapies and it remains an unmet clinical need. Whilst many factors have been implicated in asthma pathogenesis and exacerbations, evidence indicates a prominent role for respiratory viruses. However, advances in culture-independent detection methods and extensive microbial profiling of the lung, have also demonstrated a role for respiratory bacteria in asthma. In particular, airway colonization by the Proteobacteria species Nontypeable Haemophilus influenzae (NTHi) and Moraxella catarrhalis (Mcat) is associated with increased risk of developing recurrent wheeze and asthma in early life, poor clinical outcomes in established adult asthma and the development of more severe inflammatory phenotypes. Furthermore, emerging evidence indicates that bacterial-viral interactions may influence exacerbation risk and disease severity, highlighting the need to consider the impact chronic airway colonization by respiratory bacteria has on influencing host responses to viral infection. In this review, we first outline the currently understood role of viral and bacterial infections in precipitating asthma exacerbations and discuss the underappreciated potential impact of bacteria-virus crosstalk in modulating host responses. We discuss the mechanisms by which early life infection may predispose to asthma development. Finally, we consider how infection and persistent airway colonization may drive different asthma phenotypes, with a view to identifying pathophysiological mechanisms that may prove tractable to new treatment modalities.
Collapse
Affiliation(s)
- Jodie Ackland
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Alastair Watson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Tom M. A. Wilkinson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Karl J. Staples
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
- *Correspondence: Karl J. Staples
| |
Collapse
|
188
|
Kumar S, Saurabh MK, Narasimha VL, Maharshi V. Efficacy of Interferon-β in Moderate-to-Severe Hospitalised Cases of COVID-19: A Systematic Review and Meta-analysis. Clin Drug Investig 2021; 41:1037-1046. [PMID: 34687413 PMCID: PMC8540871 DOI: 10.1007/s40261-021-01092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 11/30/2022]
Abstract
Background and Objective Interferon-β, as with several other anti-viral agents, has been investigated as a treatment option for COVID-19 as a repurposed drug. The present study is a systematic review and meta-analysis of interferon-β to determine its efficacy among moderate-to-severe COVID-19 patients. Methods A systematic literature search was done using relevant terms for ‘COVID-19’ and ‘interferon-β’. Randomised controlled trials (RCT) evaluating the efficacy of interferon-β in COVID-19 were included. Data were extracted for outcome measures, namely mortality, time to clinical improvement and length of hospital stay. Random effects meta-analysis was performed using RevMan V.5.4.1 to calculate overall effect estimate as odds ratio/hazard ratio for categorical variables and mean difference for continuous variable. Result Eight RCTs were eligible for qualitative synthesis and seven for meta-analysis. The overall effect estimate (odds ratio [OR] 0.59; 95 % CI 0.91, 1.12) and (mean difference [MD] − 1.41; 95 % CI − 2.84, 0.02) indicated no statistically significant difference between effect of IFN-β and that of control on mortality and length of hospital stay, respectively. However, the overall effect estimate (hazard ratio [HR] 1.95; 95 % CI 1.36, 2.79) denoted a favourable effect of INF-β on reducing the time to clinical improvement in moderate-to-severe COVID-19 patients. Conclusion Addition of interferon-β to standard of care resulted in significant reduction in time to clinical improvement but no significant benefit in terms of reduction in mortality and length of hospital stay in moderate-to-severe cases of COVID-19.
Collapse
Affiliation(s)
- Subodh Kumar
- All India Institute of Medical Sciences, Deoghar, India
| | | | | | - Vikas Maharshi
- All India Institute of Medical Sciences, Deoghar, India.
| |
Collapse
|
189
|
Zhou Y, Xu X, Wei H. Complex Pathophysiological Mechanisms and the Propose of the Three-Dimensional Schedule For Future COVID-19 Treatment. Front Immunol 2021; 12:716940. [PMID: 34745094 PMCID: PMC8564179 DOI: 10.3389/fimmu.2021.716940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
At present, the global COVID-19 epidemic is still in a state of anxiety, and increasing the cure rate of critically ill patients is an important means to defeat the virus. From an immune perspective, ARDS driven by an inflammatory storm is still the direct cause of death in severe COVID-19 patients. Although some experience has been gained in the treatment of COVID-19, and intensive COVID-19 vaccination has been carried out recently, it is still effective to save lives to develop more effective programs to alleviate the inflammatory storm and ARDS in patients with SARS-CoV-2 or emerging variants of SARS-CoV-2. In reorganizing the ARDS-related inflammatory storm formation program in COVID-19 patients, we highlighted the importance of the vicious circle of inflammatory cytokines and inflammatory cell death, which is aggravated by blood circulation to form multi-system inflammation. Summarizes the interlocking and crisscrossing of inflammatory response and inflammatory cell death mechanisms including NETs, pyrolysis, apoptosis and PANoptosis in severe COVID-19. More importantly, in response to the inflammatory storm formation program we described, and on the premise of following ethical and clinical experimental norms, we propose a three-dimensional integrated program for future research based on boosting antiviral immune response at the initial stage, inhibiting inflammatory cytokine signaling at the exacerbation stage and inhibiting cell death before it's worse to prevent and alleviate ARDS.
Collapse
Affiliation(s)
- Yonggang Zhou
- Institute of Gerontology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, The Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Xiuxiu Xu
- Hefei National Laboratory for Physical Sciences at Microscale, The Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- Institute of Gerontology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, The Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
190
|
Nakayama T, Lee IT, Jiang S, Matter MS, Yan CH, Overdevest JB, Wu CT, Goltsev Y, Shih LC, Liao CK, Zhu B, Bai Y, Lidsky P, Xiao Y, Zarabanda D, Yang A, Easwaran M, Schürch CM, Chu P, Chen H, Stalder AK, McIlwain DR, Borchard NA, Gall PA, Dholakia SS, Le W, Xu L, Tai CJ, Yeh TH, Erickson-Direnzo E, Duran JM, Mertz KD, Hwang PH, Haslbauer JD, Jackson PK, Menter T, Andino R, Canoll PD, DeConde AS, Patel ZM, Tzankov A, Nolan GP, Nayak JV. Determinants of SARS-CoV-2 entry and replication in airway mucosal tissue and susceptibility in smokers. Cell Rep Med 2021; 2:100421. [PMID: 34604819 PMCID: PMC8479532 DOI: 10.1016/j.xcrm.2021.100421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/21/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023]
Abstract
Understanding viral tropism is an essential step toward reducing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission, decreasing mortality from coronavirus disease 2019 (COVID-19) and limiting opportunities for mutant strains to arise. Currently, little is known about the extent to which distinct tissue sites in the human head and neck region and proximal respiratory tract selectively permit SARS-CoV-2 infection and replication. In this translational study, we discover key variabilities in expression of angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2), essential SARS-CoV-2 entry factors, among the mucosal tissues of the human proximal airways. We show that SARS-CoV-2 infection is present in all examined head and neck tissues, with a notable tropism for the nasal cavity and tracheal mucosa. Finally, we uncover an association between smoking and higher SARS-CoV-2 viral infection in the human proximal airway, which may explain the increased susceptibility of smokers to developing severe COVID-19. This is at least partially explained by differences in interferon (IFN)-β1 levels between smokers and non-smokers.
Collapse
Affiliation(s)
- Tsuguhisa Nakayama
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, 801 Welch Road, Stanford, CA, USA
- Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| | - Ivan T. Lee
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, 801 Welch Road, Stanford, CA, USA
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sizun Jiang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Matthias S. Matter
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Carol H. Yan
- Division of Otolaryngology – Head and Neck Surgery, Department of Surgery, University of California San Diego School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jonathan B. Overdevest
- Department of Otolaryngology–Head and Neck Surgery, Columbia University School of Medicine, New York, NY, USA
| | - Chien-Ting Wu
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yury Goltsev
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Liang-Chun Shih
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Terry Fox Cancer Research Laboratory, Translational Medicine Center, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Kang Liao
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Bokai Zhu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yunhao Bai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter Lidsky
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Yinghong Xiao
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - David Zarabanda
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, 801 Welch Road, Stanford, CA, USA
| | - Angela Yang
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, 801 Welch Road, Stanford, CA, USA
| | - Meena Easwaran
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, 801 Welch Road, Stanford, CA, USA
| | - Christian M. Schürch
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Pauline Chu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Han Chen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anna K. Stalder
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - David R. McIlwain
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicole A. Borchard
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, 801 Welch Road, Stanford, CA, USA
| | - Phillip A. Gall
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, 801 Welch Road, Stanford, CA, USA
| | - Sachi S. Dholakia
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, 801 Welch Road, Stanford, CA, USA
| | - Wei Le
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, 801 Welch Road, Stanford, CA, USA
| | - Le Xu
- Department of Pediatrics, University of California San Diego School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Chih-Jaan Tai
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Te-Huei Yeh
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Otolaryngology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Elizabeth Erickson-Direnzo
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, 801 Welch Road, Stanford, CA, USA
| | - Jason M. Duran
- Division of Cardiovascular Medicine, Department of Medicine, University of California San Diego School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kirsten D. Mertz
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Peter H. Hwang
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, 801 Welch Road, Stanford, CA, USA
| | - Jasmin D. Haslbauer
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Peter K. Jackson
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas Menter
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Peter D. Canoll
- Department of Pathology and Cell Biology, Columbia University Medical Center, Irving Cancer Research Center, New York, NY, USA
| | - Adam S. DeConde
- Division of Otolaryngology – Head and Neck Surgery, Department of Surgery, University of California San Diego School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Zara M. Patel
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, 801 Welch Road, Stanford, CA, USA
| | - Alexandar Tzankov
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Garry P. Nolan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jayakar V. Nayak
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, 801 Welch Road, Stanford, CA, USA
- Department of Otolaryngology – Head and Neck Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
191
|
Wilkinson T. Subcutaneous interferon beta-1a in COVID-19: raking the ashes of an intervention trial. THE LANCET RESPIRATORY MEDICINE 2021; 9:1344-1345. [PMID: 34672951 PMCID: PMC8523115 DOI: 10.1016/s2213-2600(21)00412-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 12/05/2022]
Affiliation(s)
- Tom Wilkinson
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
| |
Collapse
|
192
|
Zhang C, Jin H, Wen YF, Yin G. Efficacy of COVID-19 Treatments: A Bayesian Network Meta-Analysis of Randomized Controlled Trials. Front Public Health 2021; 9:729559. [PMID: 34650951 PMCID: PMC8506153 DOI: 10.3389/fpubh.2021.729559] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/01/2021] [Indexed: 01/09/2023] Open
Abstract
Background: We provided a comprehensive evaluation of efficacy of available treatments for coronavirus disease 2019 (COVID-19). Methods: We searched for candidate COVID-19 studies in WHO COVID-19 Global Research Database up to August 19, 2021. Randomized controlled trials for suspected or confirmed COVID-19 patients published on peer-reviewed journals were included, regardless of demographic characteristics. Outcome measures included mortality, mechanical ventilation, hospital discharge and viral clearance. Bayesian network meta-analysis with fixed effects was conducted to estimate the effect sizes using posterior means and 95% equal-tailed credible intervals (CrIs). Odds ratio (OR) was used as the summary measure for treatment effect. Bayesian hierarchical models were used to estimate effect sizes of treatments grouped by the treatment classifications. Results: We identified 222 eligible studies with a total of 102,950 patients. Compared with the standard of care, imatinib, intravenous immunoglobulin and tocilizumab led to lower risk of death; baricitinib plus remdesivir, colchicine, dexamethasone, recombinant human granulocyte colony stimulating factor and tocilizumab indicated lower occurrence of mechanical ventilation; tofacitinib, sarilumab, remdesivir, tocilizumab and baricitinib plus remdesivir increased the hospital discharge rate; convalescent plasma, ivermectin, ivermectin plus doxycycline, hydroxychloroquine, nitazoxanide and proxalutamide resulted in better viral clearance. From the treatment class level, we found that the use of antineoplastic agents was associated with fewer mortality cases, immunostimulants could reduce the risk of mechanical ventilation and immunosuppressants led to higher discharge rates. Conclusions: This network meta-analysis identified superiority of several COVID-19 treatments over the standard of care in terms of mortality, mechanical ventilation, hospital discharge and viral clearance. Tocilizumab showed its superiority compared with SOC on preventing severe outcomes such as death and mechanical ventilation as well as increasing the discharge rate, which might be an appropriate treatment for patients with severe or mild/moderate illness. We also found the clinical efficacy of antineoplastic agents, immunostimulants and immunosuppressants with respect to the endpoints of mortality, mechanical ventilation and discharge, which provides valuable information for the discovery of potential COVID-19 treatments.
Collapse
Affiliation(s)
- Chenyang Zhang
- Department of Statistics and Actuarial Science, University of Hong Kong, Hong Kong SAR, China
| | - Huaqing Jin
- Department of Statistics and Actuarial Science, University of Hong Kong, Hong Kong SAR, China
| | - Yi Feng Wen
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Guosheng Yin
- Department of Statistics and Actuarial Science, University of Hong Kong, Hong Kong SAR, China.,Department of Biostatistics, MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
193
|
Kumar S, Çalışkan DM, Janowski J, Faist A, Conrad BCG, Lange J, Ludwig S, Brunotte L. Beyond Vaccines: Clinical Status of Prospective COVID-19 Therapeutics. Front Immunol 2021; 12:752227. [PMID: 34659259 PMCID: PMC8519339 DOI: 10.3389/fimmu.2021.752227] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Since November 2019 the SARS-CoV-2 pandemic has caused nearly 200 million infection and more than 4 million deaths globally (Updated information from the World Health Organization, as on 2nd Aug 2021). Within only one year into the pandemic, several vaccines were designed and reached approval for the immunization of the world population. The remarkable protective effects of the manufactured vaccines are demonstrated in countries with high vaccination rates, such as Israel and UK. However, limited production capacities, poor distribution infrastructures and political hesitations still hamper the availability of vaccines in many countries. In addition, due to the emergency of SARS-CoV-2 variants with immune escape properties towards the vaccines the global numbers of new infections as well as patients developing severe COVID-19, remains high. New studies reported that about 8% of infected individuals develop long term symptoms with strong personal restrictions on private as well as professional level, which contributes to the long socioeconomic problems caused by this pandemic. Until today, emergency use-approved treatment options for COVID-19 are limited to the antiviral Remdesivir, a nucleoside analogue targeting the viral polymerase, the glucocorticosteroide Dexamethasone as well as neutralizing antibodies. The therapeutic benefits of these treatments are under ongoing debate and clinical studies assessing the efficiency of these treatments are still underway. To identify new therapeutic treatments for COVID-19, now and by the post-pandemic era, diverse experimental approaches are under scientific evaluation in companies and scientific research teams all over the world. To accelerate clinical translation of promising candidates, repurposing approaches of known approved drugs are specifically fostered but also novel technologies are being developed and are under investigation. This review summarizes the recent developments from the lab bench as well as the clinical status of emerging therapeutic candidates and discusses possible therapeutic entry points for the treatment strategies with regard to the biology of SARS-CoV-2 and the clinical course of COVID-19.
Collapse
Affiliation(s)
- Sriram Kumar
- Institute of Virology, University of Münster, Münster, Germany
- EvoPAD Research Training Group 2220, University of Münster, Münster, Germany
| | - Duygu Merve Çalışkan
- Institute of Virology, University of Münster, Münster, Germany
- EvoPAD Research Training Group 2220, University of Münster, Münster, Germany
| | - Josua Janowski
- Institute of Virology, University of Münster, Münster, Germany
- SP BioSciences Graduate Program, University of Münster, Münster, Germany
| | - Aileen Faist
- Institute of Virology, University of Münster, Münster, Germany
- CiM-IMPRS Graduate Program, University of Münster, Münster, Germany
| | | | - Julius Lange
- Institute of Virology, University of Münster, Münster, Germany
| | - Stephan Ludwig
- Institute of Virology, University of Münster, Münster, Germany
- EvoPAD Research Training Group 2220, University of Münster, Münster, Germany
- CiM-IMPRS Graduate Program, University of Münster, Münster, Germany
- Interdisciplinary Centre for Medical Research, University of Münster, Münster, Germany
| | - Linda Brunotte
- Institute of Virology, University of Münster, Münster, Germany
- Interdisciplinary Centre for Medical Research, University of Münster, Münster, Germany
| |
Collapse
|
194
|
Vinh DC, Abel L, Bastard P, Cheng MP, Condino-Neto A, Gregersen PK, Haerynck F, Cicalese MP, Hagin D, Soler-Palacín P, Planas AM, Pujol A, Notarangelo LD, Zhang Q, Su HC, Casanova JL, Meyts I. Harnessing Type I IFN Immunity Against SARS-CoV-2 with Early Administration of IFN-β. J Clin Immunol 2021; 41:1425-1442. [PMID: 34101091 PMCID: PMC8186356 DOI: 10.1007/s10875-021-01068-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/17/2021] [Indexed: 02/08/2023]
Affiliation(s)
| | - Laurent Abel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015, Paris, France
- University of Paris, Imagine Institute, 75015, Paris, France
| | - Paul Bastard
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015, Paris, France
- University of Paris, Imagine Institute, 75015, Paris, France
| | | | | | - Peter K Gregersen
- Feinstein Institute for Medical Research, Northwell Health USA, Manhasset, NY, USA
| | - Filomeen Haerynck
- Department of Paediatric Immunology and Pulmonology, Centre for Primary Immunodeficiency Ghent (CPIG), PID Research Lab, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Maria-Pia Cicalese
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - David Hagin
- Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Pere Soler-Palacín
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), Barcelona, Catalonia, Spain
| | | | - Aurora Pujol
- Neurometabolic Diseases Laboratory, IDIBELL-Hospital Duran I Reynals; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
- CIBERER U759, ISCiii, Madrid, Spain
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Health, Bethesda, MD, USA
| | - Qian Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, 10065, USA
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Health, Bethesda, MD, USA
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015, Paris, France
- University of Paris, Imagine Institute, 75015, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Isabelle Meyts
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium.
- Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium.
| |
Collapse
|
195
|
Mendes JJ, Paiva JA, Gonzalez F, Mergulhão P, Froes F, Roncon R, Gouveia J. Update of the recommendations of the Sociedade Portuguesa de Cuidados Intensivos and the Infection and Sepsis Group for the approach to COVID-19 in Intensive Care Medicine. Rev Bras Ter Intensiva 2021; 33:487-536. [PMID: 35081236 PMCID: PMC8889599 DOI: 10.5935/0103-507x.0103-507x-rbti-20210080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION The Sociedade Portuguesa de Cuidados Intensivos and the Infection and Sepsis Group have previously issued health service and management recommendations for critically ill patients with COVID-19. Due to the evolution of knowledge, the panel of experts was again convened to review the current evidence and issue updated recommendations. METHODS A national panel of experts who declared that they had no conflicts of interest regarding the development of the recommendations was assembled. Operational questions were developed based on the PICO methodology, and a rapid systematic review was conducted by consulting different bibliographic sources. The panel determined the direction and strength of the recommendations using two Delphi rounds, conducted in accordance with the principles of the GRADE system. A strong recommendation received the wording "is recommended", and a weak recommendation was written as "is suggested." RESULTS A total of 48 recommendations and 30 suggestions were issued, covering the following topics: diagnosis of SARS-CoV-2 infection, coinfection and superinfection; criteria for admission, cure and suspension of isolation; organization of services; personal protective equipment; and respiratory support and other specific therapies (antivirals, immunomodulators and anticoagulation). CONCLUSION These recommendations, specifically oriented to the Portuguese reality but that may also apply to Portuguese-speaking African countries and East Timor, aim to support health professionals in the management of critically ill patients with COVID-19. They will be continuously reviewed to reflect the progress of our understanding and the treatment of this pathology.
Collapse
Affiliation(s)
- João João Mendes
- Sociedade Portuguesa de Cuidados Intensivos - Lisboa,
Portugal
- Department of Intensive Care Medicine, Hospital Prof. Doutor
Fernando da Fonseca EPE - Lisboa, Portugal
| | - José Artur Paiva
- College of Specialties of Intensive Care Medicine, Ordem dos
Médicos- Lisboa, Portugal
- Infection and Sepsis Group - Lisboa, Portugal
- Department of Intensive Care Medicine, Centro Hospitalar
Universitário de São João EPE, Faculdade de Medicina da Universidade do Porto -
Porto, Portugal
| | - Filipe Gonzalez
- Sociedade Portuguesa de Cuidados Intensivos - Lisboa,
Portugal
- Department of Intensive Care Medicine, Hospital Garcia de Orta EPE -
Lisboa, Portugal
| | - Paulo Mergulhão
- Sociedade Portuguesa de Cuidados Intensivos - Lisboa,
Portugal
- Infection and Sepsis Group - Lisboa, Portugal
- Polyvalent Intensive Care Unit, Hospital Lusíadas Porto - Porto,
Portugal
| | - Filipe Froes
- Medical-Surgical Intensive Care Unit, Hospital de Pulido Valente,
Centro Hospitalar Universitário de Lisboa Norte EPE - Lisboa, Portugal
| | - Roberto Roncon
- Department of Intensive Care Medicine, Centro Hospitalar
Universitário de São João EPE, Faculdade de Medicina da Universidade do Porto -
Porto, Portugal
| | - João Gouveia
- Sociedade Portuguesa de Cuidados Intensivos - Lisboa,
Portugal
- Department of Intensive Care Medicine, Centro Hospitalar
Universitário de Lisboa Norte EPE - Lisboa, Portugal
| |
Collapse
|
196
|
Wittebole X, Montiel V, Mesland JB. Is there a role for immune-enhancing therapies for acutely ill patients with coronavirus disease 2019? Curr Opin Crit Care 2021; 27:480-486. [PMID: 34334626 PMCID: PMC8452248 DOI: 10.1097/mcc.0000000000000862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Although the so-called cytokine storm has been early described and related to a dramatic evolution in severe COVID-19 patients, it soon became clear that those patients display clinical and biological evidence of an immunosuppressive state characterized, among other, by a profound lymphopenia. The negative role of this immune suppression on the outcome raises the question on immune therapies that might improve patient's condition. RECENT FINDINGS Important positive effects of active immune therapies, such as IL-7 or thymosin-α are already described and warrant confirmation in larger prospective trials. For other therapies, such as interferons, firm conclusions for critically ill COVID-19 patients are lacking as those patients were often excluded from the published trials. Treatment with immunoglobulins or convalescent plasma is a passive strategy to provide specific immunity. Unfortunately, results from large RCTs do not support their use presently. SUMMARY In this article, we provide a review on active and passive immune boosting strategies that might help treating the most severe COVID-19 patients. We mainly focus on active strategies that include IL-7, thymosin-α, interferons, and vitamin D. Although some positive effects are described, they certainly warrant confirmation in large randomized controlled trials.
Collapse
Affiliation(s)
- Xavier Wittebole
- Critical Care Department, Cliniques universitaires St Luc, UCLouvain, Brussels, Belgium
| | | | | |
Collapse
|
197
|
Wang Z, Whittington J, Yuan HY, Miao H, Tian H, Stenseth NC. Evaluating the effectiveness of control measures in multiple regions during the early phase of the COVID-19 pandemic in 2020. BIOSAFETY AND HEALTH 2021; 3:264-275. [PMID: 34541485 PMCID: PMC8436421 DOI: 10.1016/j.bsheal.2021.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 01/03/2023] Open
Abstract
The number of COVID-19 confirmed cases rapidly grew since the SARS-CoV-2 virus was identified in late 2019. Due to the high transmissibility of this virus, more countries are experiencing the repeated waves of the COVID-19 pandemic. However, with limited manufacturing and distribution of vaccines, control measures might still be the most critical measures to contain outbreaks worldwide. Therefore, evaluating the effectiveness of various control measures is necessary to inform policymakers and improve future preparedness. In addition, there is an ongoing need to enhance our understanding of the epidemiological parameters and the transmission patterns for a better response to the COVID-19 pandemic. This review focuses on how various models were applied to guide the COVID-19 response by estimating key epidemiologic parameters and evaluating the effectiveness of control measures. We also discuss the insights obtained from the prediction of COVID-19 trajectories under different control measures scenarios.
Collapse
Affiliation(s)
- Zengmiao Wang
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100091, China,Corresponding authors: State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100091, China (Zengmiao Wang); Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo N-0315, Norway (Nils Chr. Stenseth)
| | - Jason Whittington
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo N-0315, Norway
| | - Hsiang-Yu Yuan
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong 999077, China
| | - Hui Miao
- Department of Statistics, College of Art and Science, Ohio State University, Columbus, OH 43210, USA
| | - Huaiyu Tian
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100091, China
| | - Nils Chr. Stenseth
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo N-0315, Norway,Corresponding authors: State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100091, China (Zengmiao Wang); Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo N-0315, Norway (Nils Chr. Stenseth)
| |
Collapse
|
198
|
Alcock J, Masters A. Cytokine storms, evolution and COVID-19. EVOLUTION MEDICINE AND PUBLIC HEALTH 2021; 9:83-92. [PMID: 34552755 PMCID: PMC7928963 DOI: 10.1093/emph/eoab005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/17/2021] [Indexed: 12/15/2022]
Abstract
Many treatments for COVID-19 are aimed at calming a cytokine storm, a dangerous
immune overreaction to the infection. Treating cytokine storms has been tried
for decades in sepsis and other viral illnesses, but these treatments most often
do not work. We explain why cytokine storms should be rare, and what special
evolutionary circumstances can cause them to occur. Since the identification of severe illness caused by the novel coronavirus
SARS-CoV-2, the role of the host immune system in causing disease has attracted
widespread attention, along with intense interest in medical interventions that
target the host immune response. A wide variety of agents have been proposed to
treat a cytokine storm in coronavirus disease 2019 (COVID-19), but so far, only
one class of medications, corticosteroids, has proved useful. In recent decades,
experimental therapies for cytokine storms have been tried and mostly failed to
help patients with severe sepsis and other infections. We summarize this history
in order to frame expectations for novel interventions in COVID-19 and to bring
an evolutionary medicine perspective to the concept of cytokine storms and their
treatment.
Collapse
Affiliation(s)
- Joe Alcock
- Department of Emergency Medicine, MSC11 6025 1, University of New Mexico, Albuquerque, NM 87131, USA
| | - Alix Masters
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
199
|
Coronavirus induces diabetic macrophage-mediated inflammation via SETDB2. Proc Natl Acad Sci U S A 2021; 118:2101071118. [PMID: 34479991 PMCID: PMC8463849 DOI: 10.1073/pnas.2101071118] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 07/29/2021] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic has disproportionately affected patients with comorbidities, namely, obesity and type 2 diabetes. Macrophages (Mφs) are a key innate immune cell primarily responsible for the harmful, hyperinflammatory “cytokine storm” in patients that develop severe COVID-19. We describe a mechanism for this Mφ-mediated cytokine storm in response to coronavirus. In response to coronavirus infection, expression of the chromatin-modifying enzyme, SETDB2, decreases in Mφs, leading to increased transcription of inflammatory cytokines. Further, we find SETDB2 is regulated by an interferon beta (IFNβ)/JaK/STAT3 mechanism, and that exogenous administration of IFNβ can reverse inflammation, particularly in diabetic Mφs via an increase in SETDB2. Together, these results suggest therapeutic targeting of the IFNβ/SETDB2 axis in diabetic patients with COVID-19 may decrease pathologic inflammation. COVID-19 induces a robust, extended inflammatory “cytokine storm” that contributes to an increased morbidity and mortality, particularly in patients with type 2 diabetes (T2D). Macrophages are a key innate immune cell population responsible for the cytokine storm that has been shown, in T2D, to promote excess inflammation in response to infection. Using peripheral monocytes and sera from human patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and a murine hepatitis coronavirus (MHV-A59) (an established murine model of SARS), we identified that coronavirus induces an increased Mφ-mediated inflammatory response due to a coronavirus-induced decrease in the histone methyltransferase, SETDB2. This decrease in SETDB2 upon coronavirus infection results in a decrease of the repressive trimethylation of histone 3 lysine 9 (H3K9me3) at NFkB binding sites on inflammatory gene promoters, effectively increasing inflammation. Mφs isolated from mice with a myeloid-specific deletion of SETDB2 displayed increased pathologic inflammation following coronavirus infection. Further, IFNβ directly regulates SETDB2 in Mφs via JaK1/STAT3 signaling, as blockade of this pathway altered SETDB2 and the inflammatory response to coronavirus infection. Importantly, we also found that loss of SETDB2 mediates an increased inflammatory response in diabetic Mϕs in response to coronavirus infection. Treatment of coronavirus-infected diabetic Mφs with IFNβ reversed the inflammatory cytokine production via up-regulation of SETDB2/H3K9me3 on inflammatory gene promoters. Together, these results describe a potential mechanism for the increased Mφ-mediated cytokine storm in patients with T2D in response to COVID-19 and suggest that therapeutic targeting of the IFNβ/SETDB2 axis in T2D patients may decrease pathologic inflammation associated with COVID-19.
Collapse
|
200
|
Christie MJ, Irving AT, Forster SC, Marsland BJ, Hansbro PM, Hertzog PJ, Nold-Petry CA, Nold MF. Of bats and men: Immunomodulatory treatment options for COVID-19 guided by the immunopathology of SARS-CoV-2 infection. Sci Immunol 2021; 6:eabd0205. [PMID: 34533977 DOI: 10.1126/sciimmunol.abd0205] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Michael J Christie
- Department of Paediatrics, Monash University, Melbourne, Victoria 3168, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria 3168, Australia
| | - Aaron T Irving
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Samuel C Forster
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Molecular and Translational Sciences, Monash University, Melbourne, Victoria, Australia
| | - Benjamin J Marsland
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia.,Centre for Inflammation, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Paul J Hertzog
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Molecular and Translational Sciences, Monash University, Melbourne, Victoria, Australia
| | - Claudia A Nold-Petry
- Department of Paediatrics, Monash University, Melbourne, Victoria 3168, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria 3168, Australia
| | - Marcel F Nold
- Department of Paediatrics, Monash University, Melbourne, Victoria 3168, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria 3168, Australia.,Monash Newborn, Monash Children's Hospital, Melbourne, Victoria, Australia
| |
Collapse
|