151
|
Piper NBC, Whitfield EA, Stewart GD, Xu X, Furness SGB. Targeting appetite and satiety in diabetes and obesity, via G protein-coupled receptors. Biochem Pharmacol 2022; 202:115115. [PMID: 35671790 DOI: 10.1016/j.bcp.2022.115115] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
Type 2 diabetes and obesity have reached pandemic proportions throughout the world, so much so that the World Health Organisation coined the term "Globesity" to help encapsulate the magnitude of the problem. G protein-coupled receptors (GPCRs) are highly tractable drug targets due to their wide involvement in all aspects of physiology and pathophysiology, indeed, GPCRs are the targets of approximately 30% of the currently approved drugs. GPCRs are also broadly involved in key physiologies that underlie type 2 diabetes and obesity including feeding reward, appetite and satiety, regulation of blood glucose levels, energy homeostasis and adipose function. Despite this, only two GPCRs are the target of approved pharmaceuticals for treatment of type 2 diabetes and obesity. In this review we discuss the role of these, and select other candidate GPCRs, involved in various facets of type 2 diabetic or obese pathophysiology, how they might be targeted and the potential reasons why pharmaceuticals against these targets have not progressed to clinical use. Finally, we provide a perspective on the current development pipeline of anti-obesity drugs that target GPCRs.
Collapse
Affiliation(s)
- Noah B C Piper
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Emily A Whitfield
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Gregory D Stewart
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia
| | - Xiaomeng Xu
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia
| | - Sebastian G B Furness
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia; Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
152
|
Ferrulli A, Terruzzi I, Senesi P, Succi M, Cannavaro D, Luzi L. Turning the clock forward: New pharmacological and non pharmacological targets for the treatment of obesity. Nutr Metab Cardiovasc Dis 2022; 32:1320-1334. [PMID: 35354547 DOI: 10.1016/j.numecd.2022.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 11/26/2022]
Abstract
AIMS Obesity and its main metabolic complication, type 2 diabetes, have attained the status of a global pandemic; there is need for novel strategies aimed at treating obesity and preventing the development of diabetes. A healthy diet and exercise are basic for treatment of obesity but often not enough. Pharmacotherapy can be helpful in maintaining compliance, ameliorating obesity-related health risks, and improving quality of life. In the last two decades, the knowledge of central and peripheral mechanisms underlying homeostatic and hedonic aspects of food intake has significantly increased. Dysregulation of one or more of these components could lead to obesity. DATA SYNTHESIS In order to better understand how potential innovative treatment options can affect obesity, homeostatic and reward mechanisms that regulate energy balance has been firstly illustrated. Then, an overview of potential therapeutic targets for obesity, distinguished according to the level of regulation of feeding behavior, has been provided. Moreover, several non-drug therapies have been recently tested in obesity, such as non-invasive neurostimulation: Transcranial Magnetic Stimulation or Transcranial Direct Current Stimulation. All of them are promising for obesity treatment and are almost devoid of side effects, constituting a potential resource for the prevention of metabolic diseases. CONCLUSIONS The plethora of current anti-obesity therapies creates the unique challenge for physicians to customize the intervention, according to the specific obesity characteristics and the intervention side effect profiles; moreover, it allows multimodal approaches addressed to treat obesity and metabolic adaptation with complementary mechanisms.
Collapse
Affiliation(s)
- Anna Ferrulli
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Sesto San Giovanni, MI, Italy; Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Ileana Terruzzi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Sesto San Giovanni, MI, Italy; Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Pamela Senesi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Sesto San Giovanni, MI, Italy; Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Massimiliano Succi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Daniele Cannavaro
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Livio Luzi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Sesto San Giovanni, MI, Italy; Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.
| |
Collapse
|
153
|
Tao YX. Mutations in melanocortin-4 receptor: From fish to men. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:215-257. [PMID: 35595350 DOI: 10.1016/bs.pmbts.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Melanocortin-4 receptor (MC4R), expressed abundantly in the hypothalamus, is a critical regulator of energy homeostasis, including both food intake and energy expenditure. Shortly after the publication in 1997 of the Mc4r knockout phenotypes in mice, including increased food intake and severe obesity, the first mutations in MC4R were reported in humans in 1998. Studies in the subsequent two decades have established MC4R mutation as the most common monogenic form of obesity, especially in early-onset severe obesity. Studies in animals, from fish to mammals, have established the conserved physiological roles of MC4R in all vertebrates in regulating energy balance. Drug targeting MC4R has been recently approved for treating morbid genetic obesity. How the MC4R can be exploited for animal production is highly worthy of active investigation.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States.
| |
Collapse
|
154
|
Cacciottolo TM, Henning E, Keogh JM, Bel Lassen P, Lawler K, Bounds R, Ahmed R, Perdikari A, Mendes de Oliveira E, Smith M, Godfrey EM, Johnson E, Hodson L, Clément K, van der Klaauw AA, Farooqi IS. Obesity Due to Steroid Receptor Coactivator-1 Deficiency Is Associated With Endocrine and Metabolic Abnormalities. J Clin Endocrinol Metab 2022; 107:e2532-e2544. [PMID: 35137184 PMCID: PMC9113786 DOI: 10.1210/clinem/dgac067] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Genetic variants affecting the nuclear hormone receptor coactivator steroid receptor coactivator, SRC-1, have been identified in people with severe obesity and impair melanocortin signaling in cells and mice. As a result, obese patients with SRC-1 deficiency are being treated with a melanocortin 4 receptor agonist in clinical trials. OBJECTIVE Here, our aim was to comprehensively describe and characterize the clinical phenotype of SRC-1 variant carriers to facilitate diagnosis and clinical management. METHODS In genetic studies of 2462 people with severe obesity, we identified 23 rare heterozygous variants in SRC-1. We studied 29 adults and 18 children who were SRC-1 variant carriers and performed measurements of metabolic and endocrine function, liver imaging, and adipose tissue biopsies. Findings in adult SRC-1 variant carriers were compared to 30 age- and body mass index (BMI)-matched controls. RESULTS The clinical spectrum of SRC-1 variant carriers included increased food intake in children, normal basal metabolic rate, multiple fractures with minimal trauma (40%), persistent diarrhea, partial thyroid hormone resistance, and menorrhagia. Compared to age-, sex-, and BMI-matched controls, adult SRC-1 variant carriers had more severe adipose tissue fibrosis (46.2% vs 7.1% respectively, P = .03) and a suggestion of increased liver fibrosis (5/13 cases vs 2/13 in controls, odds ratio = 3.4), although this was not statistically significant. CONCLUSION SRC-1 variant carriers exhibit hyperphagia in childhood, severe obesity, and clinical features of partial hormone resistance. The presence of adipose tissue fibrosis and hepatic fibrosis in young patients suggests that close monitoring for the early development of obesity-associated metabolic complications is warranted.
Collapse
Affiliation(s)
- Tessa M Cacciottolo
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Box 289, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Elana Henning
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Box 289, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Julia M Keogh
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Box 289, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Pierre Bel Lassen
- Sorbonne Université, INSERM, Nutrition and Obesities: Systemic Approaches (NutriOmics) Research Group and Assistance Publique hôpitaux de Paris, Nutrition Department, Pitié-Salpêtrière Hospital, 75013 Paris, France
| | - Katherine Lawler
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Box 289, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Rebecca Bounds
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Box 289, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Rachel Ahmed
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Box 289, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Aliki Perdikari
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Box 289, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Edson Mendes de Oliveira
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Box 289, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Miriam Smith
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Box 289, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Edmund M Godfrey
- Department of Radiology, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Elspeth Johnson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital and National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals Foundation Trust, Headington, Oxford OX3 7LE, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital and National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals Foundation Trust, Headington, Oxford OX3 7LE, UK
| | - Karine Clément
- Sorbonne Université, INSERM, Nutrition and Obesities: Systemic Approaches (NutriOmics) Research Group and Assistance Publique hôpitaux de Paris, Nutrition Department, Pitié-Salpêtrière Hospital, 75013 Paris, France
| | - Agatha A van der Klaauw
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Box 289, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Box 289, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| |
Collapse
|
155
|
Farooqi IS. Monogenic Obesity Syndromes Provide Insights Into the Hypothalamic Regulation of Appetite and Associated Behaviors. Biol Psychiatry 2022; 91:856-859. [PMID: 35369984 DOI: 10.1016/j.biopsych.2022.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/11/2022] [Accepted: 01/30/2022] [Indexed: 11/17/2022]
Abstract
Neuronal circuits within the hypothalamus play a critical role in the homeostatic regulation of body weight. By disrupting the development or function of these circuits, human monogenic disorders cause hyperphagia (increased food intake), neuroendocrine abnormalities, impaired sympathetic nervous system activation, and obesity. Some genetic disorders also cause maladaptive behaviors such as anxiety, autism, emotional lability, and aggression, highlighting the role of the specific molecules expressed by these hypothalamic neurons in the regulation of innate behaviors that are essential to survival. These findings inform understanding of a wide range of clinical disorders and highlight the challenges associated with targeting these hypothalamic pathways for weight loss therapy.
Collapse
Affiliation(s)
- I Sadaf Farooqi
- Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom.
| |
Collapse
|
156
|
Copperi F, Kim JD, Diano S. Melanocortin Signaling Connecting Systemic Metabolism With Mood Disorders. Biol Psychiatry 2022; 91:879-887. [PMID: 34344535 PMCID: PMC8643363 DOI: 10.1016/j.biopsych.2021.05.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/11/2021] [Accepted: 05/29/2021] [Indexed: 11/02/2022]
Abstract
Obesity and mood disorders are often overlapping pathologies that are prevalent public health concerns. Many studies have indicated a positive correlation between depression and obesity, although weight loss and decreased appetite are also recognized as features of depression. Accordingly, DSM-5 defines two subtypes of depression associated with changes in feeding: melancholic depression, characterized by anhedonia and associated with decreased feeding and appetite; and atypical depression, characterized by fatigue, sleepiness, hyperphagia, and weight gain. The central nervous system plays a key role in the regulation of feeding and mood, thus suggesting that overlapping neuronal circuits may be involved in their modulation. However, these circuits have yet to be completely characterized. The central melanocortin system, a circuitry characterized by the expression of specific peptides (pro-opiomelanocortins, agouti-related protein, and neuropeptide Y) and their melanocortin receptors, has been shown to be a key player in the regulation of feeding. In addition, the melanocortin system has also been shown to affect anxiety and depressive-like behavior, thus suggesting a possible role of the melanocortin system as a biological substrate linking feeding and depression. However, more studies are needed to fully understand this complex system and its role in regulating metabolic and mood disorders. In this review, we will discuss the current literature on the role of the melanocortin system in human and animal models in feeding and mood regulation, providing evidence of the biological interplay between anxiety, major depressive disorders, appetite, and body weight regulation.
Collapse
Affiliation(s)
- Francesca Copperi
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, 10032
| | - Jung Dae Kim
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, 10032
| | - Sabrina Diano
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York; Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York; Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York.
| |
Collapse
|
157
|
Angelidi AM, Belanger MJ, Kokkinos A, Koliaki CC, Mantzoros CS. Novel Noninvasive Approaches to the Treatment of Obesity: From Pharmacotherapy to Gene Therapy. Endocr Rev 2022; 43:507-557. [PMID: 35552683 PMCID: PMC9113190 DOI: 10.1210/endrev/bnab034] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Indexed: 02/08/2023]
Abstract
Recent insights into the pathophysiologic underlying mechanisms of obesity have led to the discovery of several promising drug targets and novel therapeutic strategies to address the global obesity epidemic and its comorbidities. Current pharmacologic options for obesity management are largely limited in number and of modest efficacy/safety profile. Therefore, the need for safe and more efficacious new agents is urgent. Drugs that are currently under investigation modulate targets across a broad range of systems and tissues, including the central nervous system, gastrointestinal hormones, adipose tissue, kidney, liver, and skeletal muscle. Beyond pharmacotherapeutics, other potential antiobesity strategies are being explored, including novel drug delivery systems, vaccines, modulation of the gut microbiome, and gene therapy. The present review summarizes the pathophysiology of energy homeostasis and highlights pathways being explored in the effort to develop novel antiobesity medications and interventions but does not cover devices and bariatric methods. Emerging pharmacologic agents and alternative approaches targeting these pathways and relevant research in both animals and humans are presented in detail. Special emphasis is given to treatment options at the end of the development pipeline and closer to the clinic (ie, compounds that have a higher chance to be added to our therapeutic armamentarium in the near future). Ultimately, advancements in our understanding of the pathophysiology and interindividual variation of obesity may lead to multimodal and personalized approaches to obesity treatment that will result in safe, effective, and sustainable weight loss until the root causes of the problem are identified and addressed.
Collapse
Affiliation(s)
- Angeliki M Angelidi
- Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Matthew J Belanger
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alexander Kokkinos
- First Department of Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Chrysi C Koliaki
- First Department of Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Christos S Mantzoros
- Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
158
|
Jebeile H, Kelly AS, O'Malley G, Baur LA. Obesity in children and adolescents: epidemiology, causes, assessment, and management. Lancet Diabetes Endocrinol 2022; 10:351-365. [PMID: 35248172 PMCID: PMC9831747 DOI: 10.1016/s2213-8587(22)00047-x] [Citation(s) in RCA: 285] [Impact Index Per Article: 142.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 01/14/2023]
Abstract
This Review describes current knowledge on the epidemiology and causes of child and adolescent obesity, considerations for assessment, and current management approaches. Before the COVID-19 pandemic, obesity prevalence in children and adolescents had plateaued in many high-income countries despite levels of severe obesity having increased. However, in low-income and middle-income countries, obesity prevalence had risen. During the pandemic, weight gain among children and adolescents has increased in several jurisdictions. Obesity is associated with cardiometabolic and psychosocial comorbidity as well as premature adult mortality. The development and perpetuation of obesity is largely explained by a bio-socioecological framework, whereby biological predisposition, socioeconomic, and environmental factors interact together to promote deposition and proliferation of adipose tissue. First-line treatment approaches include family-based behavioural obesity interventions addressing diet, physical activity, sedentary behaviours, and sleep quality, underpinned by behaviour change strategies. Evidence for intensive dietary approaches, pharmacotherapy, and metabolic and bariatric surgery as supplemental therapies are emerging; however, access to these therapies is scarce in most jurisdictions. Research is still needed to inform the personalisation of treatment approaches of obesity in children and adolescents and their translation to clinical practice.
Collapse
Affiliation(s)
- Hiba Jebeile
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia; Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Aaron S Kelly
- Department of Pediatrics and Center for Pediatric Obesity Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Grace O'Malley
- School of Physiotherapy, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Child and Adolescent Obesity Service, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - Louise A Baur
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia; Weight Management Services, The Children's Hospital at Westmead, Westmead, NSW, Australia.
| |
Collapse
|
159
|
Turkkahraman D, Sirazi EC, Aykal G. Serum alpha-melanocyte-stimulating hormone (a-MSH), brain-derived neurotrophic factor (BDNF), and agouti-related protein (AGRP) levels in children with Prader-Willi or Bardet-Biedl syndromes. J Endocrinol Invest 2022; 45:1031-1037. [PMID: 35098494 DOI: 10.1007/s40618-021-01737-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/21/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Although leptin/melanocortin pathway pathologies in hypothalamus are thought to be the main cause of early-onset obesity and hyperphagia in PWS and BBS, the exact mechanism is still not known. OBJECTIVE To measure serum concentrations of a-MSH, BDNF and AGRP in a group of children with BBS or PWS. METHODS We recruited 12 subjects with PWS, 12 subjects with BBS, 28 obese controls (OC) and 26 lean controls (LC) matched for age, sex and puberty. Serum a-MSH, BDNF and AGRP levels were measured by the ELISA method. RESULTS The mean a-MSH level was lower in PWS than those of OC and LC (3729 ± 1319, 5211 ± 829 and 5681 ± 565 pg/ml, respectively, p < 0.001), and mean a-MSH was lower in OC than LC (p < 0.05). The mean BDNF level of PWS was higher than those of OC and LC (565 ± 122, 482 ± 102 and 391 ± 74 pg/ml, respectively, p < 0.001). On the other hand, mean a-MSH level of BBS was lower than those of OC and LC (4543 ± 658, 5211 ± 829 and 5681 ± 565 pg/ml, respectively, p < 0.001), and mean a-MSH was lower in OC than LC (p < 0.05). The mean BDNF level of BBS was higher than those of OC and LC (583 ± 115, 482 ± 102 and 391 ± 74 pg/ml, respectively, p < 0.001). Additionally, both in PWS and BBS, the mean BDNF level was higher in OC than LC (p < 0.01). Regarding AGRP level, there was no difference both in BBS and PWS compared to OC. CONCLUSION We found that the serum a-MSH levels of PWS and BBS groups are significantly lower compared to those of obese and lean controls. Therefore, we can speculate that the circulating a-MSH level does properly reflect its central production, and the serum a-MSH level might be a good biomarker to detect a-MSH deficiency in individuals suspected to have BBS or PWS, and also in those with POMC, PCSK1, and LEPR deficiency.
Collapse
Affiliation(s)
- D Turkkahraman
- Department of Pediatric Endocrinology, Antalya Training and Research Hospital, University of Health Sciences, Antalya, Turkey.
| | - E C Sirazi
- Department of Pediatrics, Antalya Training and Research Hospital, Antalya, Turkey
| | - G Aykal
- Department of Biochemistry, Antalya Training and Research Hospital, Antalya, Turkey
| |
Collapse
|
160
|
Gimenez LE, Noblin TA, Williams SY, Mullick Bagchi S, Ji RL, Tao YX, Jeppesen CB, Conde-Frieboes KW, Sawyer TK, Grieco P, Cone RD. Demonstration of a Common DPhe 7 to DNal(2') 7 Peptide Ligand Antagonist Switch for Melanocortin-3 and Melanocortin-4 Receptors Identifies the Systematic Mischaracterization of the Pharmacological Properties of Melanocortin Peptides. J Med Chem 2022; 65:5990-6000. [PMID: 35404053 PMCID: PMC9059122 DOI: 10.1021/acs.jmedchem.1c01295] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Melanocortin peptides containing a 3-(2-naphthyl)-d-alanine residue in position 7 (DNal(2')7), reported as melanocortin-3 receptor (MC3R) subtype-specific agonists in two separate publications, were found to lack significant MC3R agonist activity. The cell lines used at the University of Arizona for pharmacological characterization of these peptides, consisting of HEK293 cells stably transfected with human melanocortin receptor subtypes MC1R, MC3R, MC4R, or MC5R, were then obtained and characterized by quantitative polymerase chain reaction (PCR). While the MC1R cell line correctly expressed only hMCR1, the three other cell lines were mischaracterized with regard to receptor subtype expression. The demonstration that a 3-(2-naphthyl)-d-alanine residue in position 7, irrespective of the melanocortin peptide template, results primarily in the antagonism of MC3R and MC4R then allowed us to search the published literature for additional errors. The erroneously characterized DNal(2')7-containing peptides date back to 2003; thus, our analysis suggests that systematic mischaracterization of the pharmacological properties of melanocortin peptides occurred.
Collapse
Affiliation(s)
- Luis E. Gimenez
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States,
| | - Terry A. Noblin
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Savannah Y. Williams
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Ren-Lei Ji
- Department
of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama 36849, United States
| | - Ya-Xiong Tao
- Department
of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama 36849, United States
| | | | | | - Tomi K. Sawyer
- Courage
Therapeutics, 64 Homer
Street, Newton, Massachusetts 02459, United States
| | - Paolo Grieco
- #Department of Pharmacy and ∇CIRPEB, Centro Interuniversitario
di Ricerca sui
Peptidi Bioattivi, University of Naples,
Federico II, Naples 80131, Italy
| | - Roger D. Cone
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States,Department
of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States,
| |
Collapse
|
161
|
Chang YH, Hung HY. Recent advances in natural anti-obesity compounds and derivatives based on in vivo evidence: A mini-review. Eur J Med Chem 2022; 237:114405. [PMID: 35489224 DOI: 10.1016/j.ejmech.2022.114405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 12/25/2022]
Abstract
Obesity is not only viewed as a chronic aggressive disorder but is also associated with an increased risk for various diseases. Nonetheless, new anti-obesity drugs are an urgent need since few pharmacological choices are available on the market. Natural compounds have served as templates for drug discovery, whereas modified molecules from the leads identified based on in vitro models often reveal noncorresponding bioactivity between in vitro and in vivo studies. Therefore, to provide inspiration for the exploration of innovative anti-obesity agents, recent discoveries of natural anti-obesity compounds with in vivo evidence have been summarized according to their chemical structures, and the comparable efficacy of these compounds is categorized using animal models. In addition, several synthetic derivatives optimized from the phytochemicals are also provided to discuss medicinal chemistry achievements guided by natural sources.
Collapse
Affiliation(s)
- Yi-Han Chang
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Hsin-Yi Hung
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan, ROC.
| |
Collapse
|
162
|
Wabitsch M, Farooqi S, Flück CE, Bratina N, Mallya UG, Stewart M, Garrison J, van den Akker E, Kühnen P. Natural History of Obesity Due to POMC, PCSK1, and LEPR Deficiency and the Impact of Setmelanotide. J Endocr Soc 2022; 6:bvac057. [PMID: 35528826 PMCID: PMC9070354 DOI: 10.1210/jendso/bvac057] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 11/19/2022] Open
Abstract
Context Rare homozygous or biallelic variants in POMC, PCSK1, and LEPR can disrupt signaling through the melanocortin-4 receptor (MC4R) pathway, resulting in hyperphagia and severe early-onset obesity. In pivotal Phase 3 clinical trials, treatment with the MC4R agonist setmelanotide reduced hunger and weight in patients with obesity due to proopiomelanocortin (POMC), proprotein convertase subtilisin/kexin type 1 (PCSK1), or leptin receptor (LEPR) deficiency. Objective To characterize the historical weight trajectory in these patients. Methods This analysis included data from 2 pivotal single-arm, open-label, Phase 3 trials (NCT02896192, NCT03287960). These were multicenter trials. Patients had obesity due to POMC/PCSK1 or LEPR deficiency. During the trial, patients were treated with setmelanotide. Historical data on measured weight and height were obtained during screening. Results A total of 17 patients (POMC, n = 8; PCSK1, n = 1; LEPR, n = 8) with historical weight and height data were included in this analysis. Before setmelanotide treatment, patients with obesity due to POMC/PCSK1 or LEPR deficiency were above the 95th percentile for weight throughout childhood, demonstrated continuous weight gain, and did not show long-term weight loss upon interventions (eg, diet, surgery, exercise). Setmelanotide treatment attenuated weight and body mass index trajectories over the observation period of 1 year. Conclusion In patients with POMC, PCSK1, or LEPR deficiency, traditional interventions for weight loss had limited impact on the trajectory of severe early-onset obesity. However, setmelanotide treatment attenuated weight and body mass index trajectories and led to weight loss associated with health benefits in most individuals.
Collapse
Affiliation(s)
- Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Center for Rare Endocrine Diseases, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Sadaf Farooqi
- Wellcome-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Christa E Flück
- Paediatric Endocrinology, Diabetology and Metabolism, Department of Paediatrics and Department of BioMedical Research, Bern University Hospital Inselspital and University of Bern, Bern, Switzerland
| | - Natasa Bratina
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | | | | | | | - Erica van den Akker
- Division of Pediatric Endocrinology, Department of Pediatrics, Sophia Children’s Hospital and Obesity Center CGG, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Peter Kühnen
- Institute for Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
163
|
Mardones L, Parra-Valencia E, Petermann-Rocha F, Martínez-Sanguinetti MA, Leiva-Ordoñez AM, Lasserre-Laso N, Martorell M, Ulloa N, Sanhueza E, Pérez-Bravo F, Celis-Morales C, Villagrán M. The rs483145 polymorphism of MC4R gene is not associated with obesity in the Chilean population: Results of GENADIO study. ENDOCRINOL DIAB NUTR 2022; 69:254-261. [PMID: 35570141 DOI: 10.1016/j.endien.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 06/15/2023]
Abstract
INTRODUCTION The melanocortin receptor 4 (MC4R) participates in the control of appetite at the level of the central nervous system, through the leptin-melanocortin pathway. An association between different polymorphisms of the MC4R gene and obesity has been reported. However, there are few studies of the rs483145 single nucleotide polymorphism (SNP) of this gene. OBJECTIVE To investigate its prevalence and association with adiposity markers in Chilean adults. METHODS The prevalence of SNP rs483145, of the MC4R gene, was determined in 259 participants of the GENADIO study (genes, environment, diabetes and obesity) by means of real-time polymerase chain reaction (PCR). The association between the risk allele of MC4R (A) and adiposity markers (body weight, body mass index, fat mass percentage, hip circumference, waist circumference, waist-to-hip ratio) was performed by linear regression analysis and adjusted for confusion variables (socio-demographic and physic activity) using three statistical models. RESULTS It was determined that the prevalence of the risk allele (A) of the SNP rs483145 of the MC4R gene is 24.5% in the Chilean adult population included in this study, without finding an association with any of the adiposity markers studied, both in adjusted and unadjusted models. CONCLUSION The presence of the risk allele of SNP rs483145 of the MC4R gene is not associated with adiposity markers in the Chilean adult population studied. New studies with a bigger sample size will be necessary to confirm these results.
Collapse
Affiliation(s)
- Lorena Mardones
- Laboratorio de Investigación en Ciencias Biomédicas, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Esteban Parra-Valencia
- Departamento de Ciencias Clínicas y Pre-Clínicas, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Fanny Petermann-Rocha
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK; Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | | | - Ana María Leiva-Ordoñez
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Nicole Lasserre-Laso
- Escuela de Nutrición y Dietética, Facultad de Salud, Universidad Santo Tomas, Región Metropolitana, Chile
| | - Miquel Martorell
- Centro de Vida Saludable, Universidad de Concepción, Concepción, Chile; Departamento de Nutrición y Dietética, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Natalia Ulloa
- Centro de Vida Saludable, Universidad de Concepción, Concepción, Chile; Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Eduardo Sanhueza
- Laboratorio de Investigación en Ciencias Biomédicas, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Francisco Pérez-Bravo
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Carlos Celis-Morales
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK; Centro de Investigación en Fisiología del Ejercicio (CIFE), Universidad Mayor, Santiago, Chile; Laboratorio de Rendimiento Humano, Grupo de Estudio en Educación, Actividad Física y Salud (GEEAFyS), Universidad Católica del Maule, Talca, Chile
| | - Marcelo Villagrán
- Laboratorio de Investigación en Ciencias Biomédicas, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción, Chile.
| |
Collapse
|
164
|
Understanding the Patient Experience of Hunger and Improved Quality of Life with Setmelanotide Treatment in POMC and LEPR Deficiencies. Adv Ther 2022; 39:1772-1783. [PMID: 35192151 PMCID: PMC8862005 DOI: 10.1007/s12325-022-02059-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/26/2022] [Indexed: 01/09/2023]
Abstract
INTRODUCTION In patients with pro-opiomelanocortin (POMC) or leptin receptor (LEPR) deficiency, managing obesity and hyperphagia can be burdensome for patients and caretakers. The impacts on health-related quality of life are under-recognized and are not well characterized. METHODS We conducted in-depth qualitative interviews in patients with POMC (n = 3) and LEPR (n = 2) deficiencies participating in an ongoing open-label extension of phase 3 clinical trials with the melanocortin receptor 4 agonist setmelanotide to describe the patient experience of hyperphagia and characterize changes following treatment with setmelanotide. RESULTS Prior to setmelanotide treatment, all five patients described abnormal sensations of hunger with none indicating feeling satiated after meals and also reported that the burden of hyperphagia impacted their families, emotions, and work and/or school functioning. Following setmelanotide treatment, all five patients reported consistent reductions in hunger and weight, decreased eating, and feeling satiated after meals in addition to substantial improvements in each area of functioning they had previously reported. All five patients indicated they were very satisfied with the impact of setmelanotide on their quality of life and would be upset if treatment was discontinued. CONCLUSIONS In patients with POMC or LEPR deficiency, hyperphagia and the inability to feel satiety negatively impacted quality of life. By reducing hunger and improving satiety, setmelanotide facilitated important changes in the lives of these patients. This qualitative research study suggests that the impact of setmelanotide goes beyond favorable clinical changes (e.g., weight and hunger) to also include quality of life improvements that are highly meaningful to patients.
Collapse
|
165
|
Fatima MT, Ahmed I, Fakhro KA, Akil ASA. Melanocortin-4 receptor complexity in energy homeostasis,obesity and drug development strategies. Diabetes Obes Metab 2022; 24:583-598. [PMID: 34882941 PMCID: PMC9302617 DOI: 10.1111/dom.14618] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022]
Abstract
The melanocortin-4 receptor (MC4R) has been critically investigated for the past two decades, and novel findings regarding MC4R signalling and its potential exploitation in weight loss therapy have lately been emphasized. An association between MC4R and obesity is well established, with disease-causing mutations affecting 1% to 6% of obese patients. More than 200 MC4R variants have been reported, although conflicting results as to their effects have been found in different cohorts. Most notably, some MC4R gain-of-function variants seem to rescue obesity and related complications via specific pathways such as beta-arrestin (ß-arrestin) recruitment. Broadly speaking, however, dysfunctional MC4R dysregulates satiety and induces hyperphagia. The picture at the mechanistic level is complicated as, in addition to the canonical G stimulatory pathway, the ß-arrestin signalling pathway and ions (particularly calcium) seem to interact with MC4R signalling to contribute to or alleviate obesity pathogenesis. Thus, the overall complexity of the MC4R signalling spectra has broadened considerably, indicating there is great potential for the development of new drugs to manage obesity and its related complications. Alpha-melanocyte-stimulating hormone is the major endogenous MC4R agonist, but structure-based ligand discovery studies have identified possible superior and selective agonists that can improve MC4R function. However, some of these agonists characterized in vitro and in vivo confer adverse effects in patients, as demonstrated in clinical trials. In this review, we provide a comprehensive insight into the genetics, function and regulation of MC4R and its contribution to obesity. We also outline new approaches in drug development and emerging drug candidates to treat obesity.
Collapse
Affiliation(s)
- Munazza Tamkeen Fatima
- Department of Human Genetics, Translational Medicine DivisionResearch Branch, Sidra MedicineDohaQatar
| | - Ikhlak Ahmed
- Department of Human Genetics, Translational Medicine DivisionResearch Branch, Sidra MedicineDohaQatar
| | - Khalid Adnan Fakhro
- Department of Human Genetics, Translational Medicine DivisionResearch Branch, Sidra MedicineDohaQatar
- Department of Genetic MedicineWeill Cornell MedicineDohaQatar
- College of Health and Life SciencesHamad Bin Khalifa UniversityDohaQatar
| | | |
Collapse
|
166
|
Christoffersen BØ, Sanchez‐Delgado G, John LM, Ryan DH, Raun K, Ravussin E. Beyond appetite regulation: Targeting energy expenditure, fat oxidation, and lean mass preservation for sustainable weight loss. Obesity (Silver Spring) 2022; 30:841-857. [PMID: 35333444 PMCID: PMC9310705 DOI: 10.1002/oby.23374] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/09/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022]
Abstract
New appetite-regulating antiobesity treatments such as semaglutide and agents under investigation such as tirzepatide show promise in achieving weight loss of 15% or more. Energy expenditure, fat oxidation, and lean mass preservation are important determinants of weight loss and weight-loss maintenance beyond appetite regulation. This review discusses prior failures in clinical development of weight-loss drugs targeting energy expenditure and explores novel strategies for targeting energy expenditure: mitochondrial proton leak, uncoupling, dynamics, and biogenesis; futile calcium and substrate cycling; leptin for weight maintenance; increased sympathetic nervous system activity; and browning of white fat. Relevant targets for preserving lean mass are also reviewed: growth hormone, activin type II receptor inhibition, and urocortin 2 and 3. We endorse moderate modulation of energy expenditure and preservation of lean mass in combination with efficient appetite reduction as a means of obtaining a significant, safe, and long-lasting weight loss. Furthermore, we suggest that the regulatory guidelines should be revisited to focus more on the quality of weight loss and its maintenance rather than the absolute weight loss. Commitment to this research focus both from a scientific and from a regulatory point of view could signal the beginning of the next era in obesity therapies.
Collapse
Affiliation(s)
| | | | - Linu Mary John
- Global Obesity and Liver Disease ResearchGlobal Drug DiscoveryNovo Nordisk A/SMåløvDenmark
| | - Donna H. Ryan
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| | - Kirsten Raun
- Global Obesity and Liver Disease ResearchGlobal Drug DiscoveryNovo Nordisk A/SMåløvDenmark
| | - Eric Ravussin
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| |
Collapse
|
167
|
Saeed S, Janjua QM, Haseeb A, Khanam R, Durand E, Vaillant E, Ning L, Badreddine A, Berberian L, Boissel M, Amanzougarene S, Canouil M, Derhourhi M, Bonnefond A, Arslan M, Froguel P. Rare Variant Analysis of Obesity-Associated Genes in Young Adults With Severe Obesity From a Consanguineous Population of Pakistan. Diabetes 2022; 71:694-705. [PMID: 35061034 DOI: 10.2337/db21-0373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022]
Abstract
Recent advances in genetic analysis have significantly helped in progressively attenuating the heritability gap of obesity and have brought into focus monogenic variants that disrupt the melanocortin signaling. In a previous study, next-generation sequencing revealed a monogenic etiology in ∼50% of the children with severe obesity from a consanguineous population in Pakistan. Here we assess rare variants in obesity-causing genes in young adults with severe obesity from the same region. Genomic DNA from 126 randomly selected young adult obese subjects (BMI 37.2 ± 0.3 kg/m2; age 18.4 ± 0.3 years) was screened by conventional or augmented whole-exome analysis for point mutations and copy number variants (CNVs). Leptin, insulin, and cortisol levels were measured by ELISA. We identified 13 subjects carrying 13 different pathogenic or likely pathogenic variants in LEPR, PCSK1, MC4R, NTRK2, POMC, SH2B1, and SIM1. We also identified for the first time in the human, two homozygous stop-gain mutations in ASNSD1 and IFI16 genes. Inactivation of these genes in mouse models has been shown to result in obesity. Additionally, we describe nine homozygous mutations (seven missense, one stop-gain, and one stop-loss) and four copy-loss CNVs in genes or genomic regions previously linked to obesity-associated traits by genome-wide association studies. Unexpectedly, in contrast to obese children, pathogenic mutations in LEP and LEPR were either absent or rare in this cohort of young adults. High morbidity and mortality risks and social disadvantage of children with LEP or LEPR deficiency may in part explain this difference between the two cohorts.
Collapse
Affiliation(s)
- Sadia Saeed
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Qasim M Janjua
- Department of Physiology and Biophysics, National University of Science and Technology, Sohar, Oman
| | - Attiya Haseeb
- School of Life Sciences, Forman Christian College, Lahore, Pakistan
| | - Roohia Khanam
- School of Life Sciences, Forman Christian College, Lahore, Pakistan
| | - Emmanuelle Durand
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Emmanuel Vaillant
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Lijiao Ning
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Alaa Badreddine
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Lionel Berberian
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Mathilde Boissel
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Souhila Amanzougarene
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Mickaël Canouil
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Mehdi Derhourhi
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Amélie Bonnefond
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Muhammad Arslan
- School of Life Sciences, Forman Christian College, Lahore, Pakistan
| | - Philippe Froguel
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| |
Collapse
|
168
|
Goit RK, Taylor AW, Yin Lo AC. The central melanocortin system as a treatment target for obesity and diabetes: A brief overview. Eur J Pharmacol 2022; 924:174956. [DOI: 10.1016/j.ejphar.2022.174956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022]
|
169
|
Müller TD, Blüher M, Tschöp MH, DiMarchi RD. Anti-obesity drug discovery: advances and challenges. Nat Rev Drug Discov 2022; 21:201-223. [PMID: 34815532 PMCID: PMC8609996 DOI: 10.1038/s41573-021-00337-8] [Citation(s) in RCA: 404] [Impact Index Per Article: 202.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 12/27/2022]
Abstract
Enormous progress has been made in the last half-century in the management of diseases closely integrated with excess body weight, such as hypertension, adult-onset diabetes and elevated cholesterol. However, the treatment of obesity itself has proven largely resistant to therapy, with anti-obesity medications (AOMs) often delivering insufficient efficacy and dubious safety. Here, we provide an overview of the history of AOM development, focusing on lessons learned and ongoing obstacles. Recent advances, including increased understanding of the molecular gut-brain communication, are inspiring the pursuit of next-generation AOMs that appear capable of safely achieving sizeable and sustained body weight loss.
Collapse
Affiliation(s)
- Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Matthias H Tschöp
- Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, München, Germany
| | | |
Collapse
|
170
|
Apperley LJ, Blackburn J, Erlandson-Parry K, Gait L, Laing P, Senniappan S. Childhood obesity: A review of current and future management options. Clin Endocrinol (Oxf) 2022; 96:288-301. [PMID: 34750858 DOI: 10.1111/cen.14625] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 02/02/2023]
Abstract
Obesity is becoming increasingly prevalent in paediatric populations worldwide. In addition to increasing prevalence, the severity of obesity is also continuing to rise. Taken together, these findings demonstrate a worrying trend and highlight one of the most significant challenges to public health. Childhood obesity affects multiple organs in the body and is associated with both significant morbidity and ultimately premature mortality. The prevalence of complications associated with obesity, including dyslipidaemia, hypertension, fatty liver disease and psychosocial complications are becoming increasingly prevalent within the paediatric populations. Treatment guidelines currently focus on intervention with lifestyle and behavioural modifications, with pharmacotherapy and surgery reserved for patients who are refractory to such treatment. Research into adult obesity has established pharmacological novel therapies, which have been approved and established in clinical practice; however, the research and implementation of such therapies in paediatric populations have been lagging behind. Despite the relative lack of widespread research in comparison to the adult population, newer therapies are being trialled, which should allow a greater availability of treatment options for childhood obesity in the future. This review summarizes the current evidence for the management of obesity in terms of medical and surgical options. Both future therapeutic agents and those which cause weight loss but have an alternative indication are also included and discussed as part of the review. The review summarizes the most recent research for each intervention and demonstrates the potential efficacy and limitations of each treatment option.
Collapse
Affiliation(s)
- Louise J Apperley
- Department of Paediatric Endocrinology, Alder Hey Children's Hospital, Liverpool, UK
| | - James Blackburn
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | | | - Lucy Gait
- Department of Paediatric Clinical Psychology, Alder Hey Children's Hospital, Liverpool, UK
| | - Peter Laing
- Department of Paediatric Endocrinology, Alder Hey Children's Hospital, Liverpool, UK
| | - Senthil Senniappan
- Department of Paediatric Endocrinology, Alder Hey Children's Hospital, Liverpool, UK
| |
Collapse
|
171
|
Kühnen P, Wabitsch M, von Schnurbein J, Chirila C, Mallya UG, Callahan P, Gnanasakthy A, Poitou C, Krabusch PM, Stewart M, Clément K. Quality of life outcomes in two phase 3 trials of setmelanotide in patients with obesity due to LEPR or POMC deficiency. Orphanet J Rare Dis 2022; 17:38. [PMID: 35123544 PMCID: PMC8817523 DOI: 10.1186/s13023-022-02186-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/20/2022] [Indexed: 11/21/2022] Open
Abstract
Introduction Individuals with proopiomelanocortin (POMC) or leptin receptor (LEPR) deficiency are young and experience severe obesity, hyperphagia, and comorbidities, which can impair quality of life (QOL).
Methods Two pivotal Phase 3 trials explored the effect of setmelanotide on body weight and hunger in individuals with obesity due to POMC (NCT02896192) or LEPR (NCT03287960) deficiency. QOL and depression were investigated in parallel using the disease-specific, age-appropriate Impact of Weight on Quality of Life-Lite (IWQOL-Lite), Pediatric Quality of Life Inventory (PedsQL), and Patient Health Questionnaire-9 (PHQ-9). Results In total, the POMC and LEPR trials enrolled 21 patients. Adults (≥ 18 years old; n = 7) had moderate-to-severe impairment in QOL at baseline, with mean (standard deviation [SD]) IWQOL-Lite total score 60.3 (13.2; maximum IWQOL-Lite total score = 100). The effect of setmelanotide on IWQOL-Lite total score was observed as soon as Week 5. Among those with scores at Week 52, 5 of 6 adults experienced a clinically meaningful improvement, with mean (SD) total scores increased from baseline by 24.2 (12.1) points. Children (6–12 years old; n = 2) and adolescents (13–17 years old; n = 4) had impaired QOL at baseline, with mean (SD) self-reported PedsQL total scores 53.3 (6.2) and 63.3 (29.1), respectively (maximum PedsQL total score = 100). Three of 5 patients experienced clinically meaningful improvement in PedsQL, with 2 children whose PedsQL total score increased by 28.3 and 3.3 points and 3 adolescents whose mean (SD) total score increased from baseline by 5.8 (18.3) points. Baseline mean (SD) PHQ-9 score (in those ≥ 12 years old) was 5.3 (3.8) and was generally maintained through Week 52. Conclusions Patients with POMC or LEPR deficiency had impaired, and in some cases severely impaired, QOL before setmelanotide treatment. Setmelanotide improved QOL in patients as early as Week 5, with some patients no longer experiencing impaired QOL at Week 52. Improvements in QOL may be related to a reduction in hunger and body weight associated with setmelanotide. Because of the highly complex psychological consequences of rare genetic diseases of obesity, some patients may require a long period of treatment to improve QOL and benefit from interdisciplinary care.
Collapse
|
172
|
Topaloglu AK, Simsek E, Kocher MA, Mammadova J, Bober E, Kotan LD, Turan I, Celiloglu C, Gurbuz F, Yuksel B, Good DJ. Inactivating NHLH2 variants cause idiopathic hypogonadotropic hypogonadism and obesity in humans. Hum Genet 2022; 141:295-304. [PMID: 35066646 DOI: 10.1007/s00439-021-02422-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022]
Abstract
Metabolism has a role in determining the time of pubertal development and fertility. Nonetheless, molecular/cellular pathways linking metabolism/body weight to puberty/reproduction are unknown. The KNDy (Kisspeptin/Neurokinin B/Dynorphin) neurons in the arcuate nucleus of the hypothalamus constitute the GnRH (gonadotropin-releasing hormone) pulse generator. We previously created a mouse model with a whole-body targeted deletion of nescient helix-loop-helix 2 (Nhlh2; N2KO), a class II member of the basic helix-loop-helix family of transcription factors. As this mouse model features pubertal failure and late-onset obesity, we wanted to study whether NHLH2 represents a candidate molecule to link metabolism and puberty in the hypothalamus. Exome sequencing of a large Idiopathic Hypogonadotropic Hypogonadism cohort revealed obese patients with rare sequence variants in NHLH2, which were characterized by in-silico protein analysis, chromatin immunoprecipitation, and luciferase reporter assays. In vitro heterologous expression studies demonstrated that the variant p.R79C impairs Nhlh2 binding to the Mc4r promoter. Furthermore, p.R79C and other variants show impaired transactivation of the human KISS1 promoter. These are the first inactivating human variants that support NHLH2's critical role in human puberty and body weight control. Failure to carry out this function results in the absence of pubertal development and late-onset obesity in humans.
Collapse
Affiliation(s)
- A Kemal Topaloglu
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Mississippi Medical Center, Jackson, MS, USA.
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA.
| | - Enver Simsek
- Division of Pediatric Endocrinology, Faculty of Medicine, Eskisehir Osman Gazi University, Eskisehir, Turkey
| | - Matthew A Kocher
- Translational Biology, Medicine and Health Graduate Program, Virginia Tech, Roanoke, VA, USA
| | - Jamala Mammadova
- Division of Pediatric Endocrinology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Ece Bober
- Division of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Leman Damla Kotan
- Division of Pediatric Endocrinology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Ihsan Turan
- Division of Pediatric Endocrinology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Can Celiloglu
- Division of Pediatric Endocrinology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Fatih Gurbuz
- Division of Pediatric Endocrinology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Bilgin Yuksel
- Division of Pediatric Endocrinology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Deborah J Good
- Translational Biology, Medicine and Health Graduate Program, Virginia Tech, Roanoke, VA, USA
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
173
|
Parmar CD, Bosch K, Benhmida R, O'Connell N, Fong C, Batterham R. First Report of One Anastomosis Gastric Bypass Performed in Twins. Obes Surg 2022; 32:1757-1760. [PMID: 35064865 DOI: 10.1007/s11695-022-05906-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Chetan D Parmar
- Department of Surgery, Whittington Hospital, London, N19 5NF, UK.
| | | | | | | | | | - Rachel Batterham
- Bariatric Centre for Weight Management and Metabolic Surgery, University College London Hospitals NHS Trust, London, UK
| |
Collapse
|
174
|
Zhang Y, Higgins CB, Van Tine BA, Bomalaski JS, DeBosch BJ. Pegylated arginine deiminase drives arginine turnover and systemic autophagy to dictate energy metabolism. Cell Rep Med 2022; 3:100498. [PMID: 35106510 PMCID: PMC8784773 DOI: 10.1016/j.xcrm.2021.100498] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/16/2021] [Accepted: 12/16/2021] [Indexed: 12/30/2022]
Abstract
Obesity is a multi-systemic disorder of energy balance. Despite intense investigation, the determinants of energy homeostasis remain incompletely understood, and efficacious treatments against obesity and its complications are lacking. Here, we demonstrate that conferred arginine iminohydrolysis by the bacterial virulence factor and arginine deiminase, arcA, promotes mammalian energy expenditure and insulin sensitivity and reverses dyslipidemia, hepatic steatosis, and inflammation in obese mice. Extending this, pharmacological arginine catabolism via pegylated arginine deiminase (ADI-PEG 20) recapitulates these metabolic effects in dietary and genetically obese models. These effects require hepatic and whole-body expression of the autophagy complex protein BECN1 and hepatocyte-specific FGF21 secretion. Single-cell ATAC sequencing further reveals BECN1-dependent hepatocyte chromatin accessibility changes in response to ADI-PEG 20. The data thus reveal an unexpected therapeutic utility for arginine catabolism in modulating energy metabolism by activating systemic autophagy, which is now exploitable through readily available pharmacotherapy.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cassandra B. Higgins
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian A. Van Tine
- Division of Medical Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA
- Division of Pediatric Hematology/Oncology, St. Louis Children’s Hospital, St. Louis, MO 63108, USA
- Siteman Cancer Center, St. Louis, MO 63108, USA
| | | | - Brian J. DeBosch
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
175
|
Cooiman MI, Alsters SIM, Duquesnoy M, Hazebroek EJ, Meijers-Heijboer HJ, Chahal H, Le Beyec-Le Bihan J, Clément K, Soula H, Blakemore AI, Poitou C, van Haelst MM. Long-Term Weight Outcome After Bariatric Surgery in Patients with Melanocortin-4 Receptor Gene Variants: a Case-Control Study of 105 Patients. Obes Surg 2022; 32:837-844. [PMID: 34984630 DOI: 10.1007/s11695-021-05869-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Pathogenic heterozygous MC4R variants are associated with hyperphagia and variable degrees of obesity. Several research groups have reported short-term weight loss outcomes after bariatric surgery in a few patients with MC4R variants, but lack of longer-term data prevents evidence-based clinical decision-making. MATERIALS AND METHODS Bariatric surgery patients with heterozygous (likely) pathogenic MC4R variants, from three collaborating centers in the Netherlands, France, and the UK, were compared to matched controls (matched 2:1 for age, sex, preoperative BMI, surgical procedure, and diabetes mellitus, but without MC4R mutations). Weight loss and regain outcomes up to 6 years of follow-up were compared. RESULTS At 60 months of follow-up after RYGB, cases with MC4R variants showed weight regain with a mean of 12.8% (± 10.4 SD) total weight loss (TWL) from nadir, compared to 7.9% (± 10.5 SD) in the controls (p = 0.062). Among patients receiving SG, the cases with MC4R variants experienced inferior weight loss (22.6% TWL) during the first year of follow-up compared to the controls (29.9% TWL) (p = 0.010). CONCLUSIONS This multicenter study reveals inferior mid-term weight outcomes of cases with MC4R variants after SG, compared to RYGB. Since adequate weight loss outcomes were observed after RYGB, this procedure would appear to be an appropriate surgical approach for this group. However, the pattern of weight regain seen in cases with MC4R variants after both RYGB and SG highlights the need for pro-active lifelong management to prevent relapse, as well as careful expectation management.
Collapse
Affiliation(s)
- Mellody I Cooiman
- Department of Bariatric Surgery, Rijnstate Hospital/Vitalys Clinic, Wagnerlaan 55, Arnhem, the Netherlands. .,Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| | - Suzanne I M Alsters
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Maeva Duquesnoy
- Nutrition Department, Reference Center for Rare Diseases, Assistance Publique Hopitaux de Paris, Pitie-Salpetriere Hospital, Paris, France
| | - Eric J Hazebroek
- Department of Bariatric Surgery, Rijnstate Hospital/Vitalys Clinic, Wagnerlaan 55, Arnhem, the Netherlands
| | - Hanne J Meijers-Heijboer
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.,Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Harvinder Chahal
- Department of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Johanne Le Beyec-Le Bihan
- Department of Biochemistry for Endocrinology and Oncology, Obesity and Dyslipidemia Genetics Unit, Assistance Publique-Hospitaux de Paris, Sorbonne Université, Pitie-Salpetriere Hospital, Paris, France
| | - Karine Clément
- Nutrition Department, Reference Center for Rare Diseases, Assistance Publique Hopitaux de Paris, Pitie-Salpetriere Hospital, Paris, France.,INSERM, Nutrition and Obesities, Systemic Approaches (NutriOmics) Research Unit, Sorbonne Université, Paris, France
| | - Hedi Soula
- INSERM, Nutrition and Obesities, Systemic Approaches (NutriOmics) Research Unit, Sorbonne Université, Paris, France
| | - Alex I Blakemore
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.,Department of Life Sciences, Brunel University London, London, UK
| | - Christine Poitou
- Nutrition Department, Reference Center for Rare Diseases, Assistance Publique Hopitaux de Paris, Pitie-Salpetriere Hospital, Paris, France.,INSERM, Nutrition and Obesities, Systemic Approaches (NutriOmics) Research Unit, Sorbonne Université, Paris, France
| | - Mieke M van Haelst
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands. .,Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands.
| |
Collapse
|
176
|
Human loss-of-function variants in the serotonin 2C receptor associated with obesity and maladaptive behavior. Nat Med 2022; 28:2537-2546. [PMID: 36536256 PMCID: PMC9800280 DOI: 10.1038/s41591-022-02106-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 10/25/2022] [Indexed: 12/24/2022]
Abstract
Serotonin reuptake inhibitors and receptor agonists are used to treat obesity, anxiety and depression. Here we studied the role of the serotonin 2C receptor (5-HT2CR) in weight regulation and behavior. Using exome sequencing of 2,548 people with severe obesity and 1,117 control individuals without obesity, we identified 13 rare variants in the gene encoding 5-HT2CR (HTR2C) in 19 unrelated people (3 males and 16 females). Eleven variants caused a loss of function in HEK293 cells. All people who carried variants had hyperphagia and some degree of maladaptive behavior. Knock-in male mice harboring a human loss-of-function HTR2C variant developed obesity and reduced social exploratory behavior; female mice heterozygous for the same variant showed similar deficits with reduced severity. Using the 5-HT2CR agonist lorcaserin, we found that depolarization of appetite-suppressing proopiomelanocortin neurons was impaired in knock-in mice. In conclusion, we demonstrate that 5-HT2CR is involved in the regulation of human appetite, weight and behavior. Our findings suggest that melanocortin receptor agonists might be effective in treating severe obesity in individuals carrying HTR2C variants. We suggest that HTR2C should be included in diagnostic gene panels for severe childhood-onset obesity.
Collapse
|
177
|
Abstract
The prevalence of obesity has tripled over the past four decades, imposing an enormous burden on people's health. Polygenic (or common) obesity and rare, severe, early-onset monogenic obesity are often polarized as distinct diseases. However, gene discovery studies for both forms of obesity show that they have shared genetic and biological underpinnings, pointing to a key role for the brain in the control of body weight. Genome-wide association studies (GWAS) with increasing sample sizes and advances in sequencing technology are the main drivers behind a recent flurry of new discoveries. However, it is the post-GWAS, cross-disciplinary collaborations, which combine new omics technologies and analytical approaches, that have started to facilitate translation of genetic loci into meaningful biology and new avenues for treatment.
Collapse
Affiliation(s)
- Ruth J. F. Loos
- grid.5254.60000 0001 0674 042XNovo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark ,grid.59734.3c0000 0001 0670 2351Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Giles S. H. Yeo
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| |
Collapse
|
178
|
Farooq Z, Howell LA, McCormick PJ. Probing GPCR Dimerization Using Peptides. Front Endocrinol (Lausanne) 2022; 13:843770. [PMID: 35909575 PMCID: PMC9329873 DOI: 10.3389/fendo.2022.843770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest class of membrane proteins and the most common and extensively studied pharmacological target. Numerous studies over the last decade have confirmed that GPCRs do not only exist and function in their monomeric form but in fact, have the ability to form dimers or higher order oligomers with other GPCRs, as well as other classes of receptors. GPCR oligomers have become increasingly attractive to investigate as they have the ability to modulate the pharmacological responses of the receptors which in turn, could have important functional roles in diseases, such as cancer and several neurological & neuropsychiatric disorders. Despite the growing evidence in the field of GPCR oligomerisation, the lack of structural information, as well as targeting the 'undruggable' protein-protein interactions (PPIs) involved in these complexes, has presented difficulties. Outside the field of GPCRs, targeting PPIs has been widely studied, with a variety of techniques being investigated; from small-molecule inhibitors to disrupting peptides. In this review, we will demonstrate several physiologically relevant GPCR dimers and discuss an array of strategies and techniques that can be employed when targeting these complexes, as well as provide ideas for future development.
Collapse
Affiliation(s)
- Zara Farooq
- Centre for Endocrinology, William Harvey Research Institute, Bart’s and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London, United Kingdom
| | - Lesley A. Howell
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London, United Kingdom
| | - Peter J. McCormick
- Centre for Endocrinology, William Harvey Research Institute, Bart’s and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom
- *Correspondence: Peter J. McCormick,
| |
Collapse
|
179
|
Šket R, Kotnik P, Bizjan BJ, Kocen V, Mlinarič M, Tesovnik T, Debeljak M, Battelino T, Kovač J. Heterozygous Genetic Variants in Autosomal Recessive Genes of the Leptin-Melanocortin Signalling Pathway Are Associated With the Development of Childhood Obesity. Front Endocrinol (Lausanne) 2022; 13:832911. [PMID: 35574020 PMCID: PMC9105721 DOI: 10.3389/fendo.2022.832911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
Monogenic obesity is a severe, genetically determined disorder that affects up to 1/1000 newborns. Recent reports on potential new therapeutics and innovative clinical approaches have highlighted the need for early identification of individuals with rare genetic variants that can alter the functioning of the leptin-melanocortin signalling pathway, in order to speed up clinical intervention and reduce the risk of chronic complications. Therefore, next-generation DNA sequencing of central genes in the leptin-melanocortin pathway was performed in 1508 children and adolescents with and without obesity, aged 2-19 years. The recruited cohort comprised approximately 5% of the national paediatric population with obesity. The model-estimated effect size of rare variants in the leptin-melanocortin signalling pathway on longitudinal weight gain between carriers and non-carriers was derived. In total, 21 (1.4%) participants had known disease-causing heterozygous variants (DCVs) in the genes under investigation, and 62 (4.1%) participants were carriers of rare variants of unknown clinical significance (VUS). The estimated frequency of potential genetic variants associated with obesity (including rare VUS) ranged between 1/150 (VUS and DCV) and 1/850 (DCV) and differed significantly between participants with and without obesity. On average, the variants identified would result in approximately 7.6 kg (7.0-12.9 kg at the 95th percentile of body weight) (girls) and 8.4 kg (8.2-14.4 kg) (boys) of additional weight gain in carriers at age 18 years compared with subjects without obesity. In conclusion, children with a genetic predisposition to obesity can be promptly identified and may account for more than 6% of obesity cases. Early identification of genetic variants in the LEPR, PCSK1, POMC, MC3R and MC4R genes could reduce the societal burden and improve the clinical management of early severe childhood obesity and its implementation should be further investigated.
Collapse
Affiliation(s)
- Robert Šket
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, University Medical Center Ljubljana (UMC), Ljubljana, Slovenia
| | - Primož Kotnik
- Department of Pediatrics Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Center Ljubljana (UMC), Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Barbara Jenko Bizjan
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, University Medical Center Ljubljana (UMC), Ljubljana, Slovenia
| | - Valentina Kocen
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, University Medical Center Ljubljana (UMC), Ljubljana, Slovenia
| | - Matej Mlinarič
- Department of Pediatrics Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Center Ljubljana (UMC), Ljubljana, Slovenia
| | - Tine Tesovnik
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, University Medical Center Ljubljana (UMC), Ljubljana, Slovenia
| | - Maruša Debeljak
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, University Medical Center Ljubljana (UMC), Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tadej Battelino
- Department of Pediatrics Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Center Ljubljana (UMC), Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Kovač
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, University Medical Center Ljubljana (UMC), Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Jernej Kovač,
| |
Collapse
|
180
|
Translational advances of melanocortin drugs: Integrating biology, chemistry and genetics. Semin Immunol 2022; 59:101603. [PMID: 35341670 DOI: 10.1016/j.smim.2022.101603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 01/15/2023]
Abstract
Melanocortin receptors have emerged as important targets with a very unusual versatility, as their widespread distribution on multiple tissues (e.g. skin, adrenal glands, brain, immune cells, exocrine glands) together with the variety of physiological processes they control (pigmentation, cortisol release, satiety mechanism, inflammation, secretions), place this family of receptors as genuine therapeutic targets for many disorders. This review focuses in the journey of the development of melanocortin receptors as therapeutic targets from the discovery of their existence in the early 1990 s to the approval of the first few drugs of this class. Two major areas of development characterise the current state of melanocortin drug development: their role in obesity, recently culminated with the approval of setmelanotide, and their potential for the treatment of chronic inflammatory and autoimmune diseases like rheumatoid arthritis, multiple sclerosis or fibrosis. The pro-resolving nature of these drugs offers the advantage of acting by mimicking the way our body naturally resolves inflammation, expecting fewer side effects and a more balanced (i.e. non-immunosuppressive) response from them. Here we also review the approaches followed for the design and development of novel compounds, the importance of the GPCR nature of these receptors in the process of drug development, therapeutic value, current challenges and successes, and the potential for the implementation of precision medicine approaches through the incorporation of genetics advances.
Collapse
|
181
|
Abstract
Obesity is a chronic, relapsing, and multifactorial disease, with a rising prevalence and an associated high economic burden. Achieving successful and sustained weight loss outcomes with current interventions is challenging. This is due, at least in part, to the disease's heterogenous pathophysiology that is yet to be completely understood. Technological advances and greater capabilities for the extraction and storage of information have facilitated the application of precision medicine. Several precision medicine initiatives have been proposed to improve obesity outcomes. Most of these initiatives are based on -omics technologies. Although the data generated from these technologies have led to developing hypotheses that may explain the underpinnings of obesity, their applicability to the clinical practice is yet to be determined. There are other initiatives that have identified quantitative or qualitative physiologic traits that can be targeted and that could have a more immediate clinical impact. This review aims to provide a perspective of current initiatives for precision medicine for obesity.
Collapse
|
182
|
Dubern B, Mosbah H, Pigeyre M, Clément K, Poitou C. Rare genetic causes of obesity: diagnosis and management in clinical care. ANNALES D'ENDOCRINOLOGIE 2021; 83:63-72. [PMID: 34953778 DOI: 10.1016/j.ando.2021.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Rare genetic forms of obesity are linked to impaired energy balance (i.e., eating behaviour and energy expenditure) involving hypothalamic pathways. More than 60 genes coding for proteins located in the hypothalamic leptin/melanocortin pathway contribute to the development of these rare forms of obesity. The ambition of the French National Protocol for the Diagnosis and Care (PNDS) of Obesity of Rare Causes was to establish practical recommendations for assessment and management at all ages. This report is available on the website of the French Health Authority (HAS). In addition to severe obesity, patients often display obesity-related comorbidities and neuropsychological/psychiatric disorders. These complex conditions make clinical management particularly challenging. Early diagnosis is critical for the organization of coordinated specialized multidisciplinary care, with mandatory interaction between caregivers, social partners and families. Strategies to prevent aggravation of obesity consist in limiting access to food, establishing a reassuring daily eating environment, and the practice of sustained adapted supervised daily physical activity. The implementation of genetic diagnosis in clinical practice now enables a personalized medicine approach with access to new drug therapies, and improves the analysis of the risk/benefit ratio of bariatric surgery.
Collapse
Affiliation(s)
- Béatrice Dubern
- Paris Public Hospitals, PRADORT Competence Centre, Department of Paediatric Nutrition and Gastroenterology, CHU Trousseau, Paris, France; Sorbonne University/INSERM, Research Unit: Nutrition and Obesities; Systemic Approaches, NutriOmics, Paris, France
| | - Héléna Mosbah
- Paris Public Hospitals, Reference Centre for Rare Diseases PRADORT (PRADer-Willi Syndrome and other Rare Obesities with Eating Disorders), Nutrition Department, Pitié-Salpêtrière hospital, Paris, France
| | - Marie Pigeyre
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, ON, Canada; Department of Medicine, McMaster University, Michael G. DeGroote School of Medicine, Hamilton, ON, Canada
| | - Karine Clément
- Sorbonne University/INSERM, Research Unit: Nutrition and Obesities; Systemic Approaches, NutriOmics, Paris, France; Paris Public Hospitals, Reference Centre for Rare Diseases PRADORT (PRADer-Willi Syndrome and other Rare Obesities with Eating Disorders), Nutrition Department, Pitié-Salpêtrière hospital, Paris, France
| | - Christine Poitou
- Sorbonne University/INSERM, Research Unit: Nutrition and Obesities; Systemic Approaches, NutriOmics, Paris, France; Paris Public Hospitals, Reference Centre for Rare Diseases PRADORT (PRADer-Willi Syndrome and other Rare Obesities with Eating Disorders), Nutrition Department, Pitié-Salpêtrière hospital, Paris, France.
| |
Collapse
|
183
|
Engel H, Guischard F, Krause F, Nandy J, Kaas P, Höfflin N, Köhn M, Kilb N, Voigt K, Wolf S, Aslan T, Baezner F, Hahne S, Ruckes C, Weygant J, Zinina A, Akmeriç EB, Antwi EB, Dombrovskij D, Franke P, Lesch KL, Vesper N, Weis D, Gensch N, Di Ventura B, Öztürk MA. finDr: A web server for in silico D-peptide ligand identification. Synth Syst Biotechnol 2021; 6:402-413. [PMID: 34901479 PMCID: PMC8632724 DOI: 10.1016/j.synbio.2021.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/20/2021] [Accepted: 11/08/2021] [Indexed: 11/18/2022] Open
Abstract
In the rapidly expanding field of peptide therapeutics, the short in vivo half-life of peptides represents a considerable limitation for drug action. D-peptides, consisting entirely of the dextrorotatory enantiomers of naturally occurring levorotatory amino acids (AAs), do not suffer from these shortcomings as they are intrinsically resistant to proteolytic degradation, resulting in a favourable pharmacokinetic profile. To experimentally identify D-peptide binders to interesting therapeutic targets, so-called mirror-image phage display is typically performed, whereby the target is synthesized in D-form and L-peptide binders are screened as in conventional phage display. This technique is extremely powerful, but it requires the synthesis of the target in D-form, which is challenging for large proteins. Here we present finDr, a novel web server for the computational identification and optimization of D-peptide ligands to any protein structure (https://findr.biologie.uni-freiburg.de/). finDr performs molecular docking to virtually screen a library of helical 12-mer peptides extracted from the RCSB Protein Data Bank (PDB) for their ability to bind to the target. In a separate, heuristic approach to search the chemical space of 12-mer peptides, finDr executes a customizable evolutionary algorithm (EA) for the de novo identification or optimization of D-peptide ligands. As a proof of principle, we demonstrate the validity of our approach to predict optimal binders to the pharmacologically relevant target phenol soluble modulin alpha 3 (PSMα3), a toxin of methicillin-resistant Staphylococcus aureus (MRSA). We validate the predictions using in vitro binding assays, supporting the success of this approach. Compared to conventional methods, finDr provides a low cost and easy-to-use alternative for the identification of D-peptide ligands against protein targets of choice without size limitation. We believe finDr will facilitate D-peptide discovery with implications in biotechnology and biomedicine.
Collapse
Key Words
- D-AA, dextrorotatory amino acid
- D-peptide
- EA, evolutionary algorithm
- Evolutionary algorithm
- L-AA, levorotatory amino acid
- MD, molecular dynamics
- MIEA, mirror-image evolutionary algorithm
- MIPD, mirror-image phage display
- MIVS, mirror-image virtual screening
- MRSA, methicillin-resistant Staphylococcus aureus
- Mirror-image phage display
- Molecular docking
- NCL, native chemical ligation
- PD-1, receptor programmed death 1
- PPI, protein-protein interaction
- PSMα3, phenol soluble modulin alpha 3
- Peptide design
- SPPS, solid phase peptide synthesis
- Web server
Collapse
Affiliation(s)
- Helena Engel
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Felix Guischard
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Fabian Krause
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Janina Nandy
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Paulina Kaas
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Nico Höfflin
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
- Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
| | - Maja Köhn
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
- Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
| | - Normann Kilb
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
- AG Roth-Lab for MicroarrayCopying, ZBSA–Centre for Biological Systems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104, Freiburg, Germany
| | - Karsten Voigt
- Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
| | - Steffen Wolf
- Biomolecular Dynamics, Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3a, 79104, Freiburg, Germany
| | - Tahira Aslan
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Fabian Baezner
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Salomé Hahne
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Carolin Ruckes
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Joshua Weygant
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Alisa Zinina
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Emir Bora Akmeriç
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Enoch B. Antwi
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Dennis Dombrovskij
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Philipp Franke
- Institute for Biochemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Klara L. Lesch
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstraße 19A, 79104, Freiburg, Germany
- Internal Medicine IV, Department of Medicine, Medical Center, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Niklas Vesper
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Daniel Weis
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Nicole Gensch
- Core Facility Signalling Factory, Centre for Biological Signaling Studies (BIOSS), University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
- Corresponding author. Core Facility Signalling Factory, Centre for Biological Signaling Studies (BIOSS), University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany.
| | - Barbara Di Ventura
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
- Corresponding author. Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany.
| | - Mehmet Ali Öztürk
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
- Corresponding author. Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany.
| |
Collapse
|
184
|
Welling MS, de Groot CJ, Kleinendorst L, van der Voorn B, Burgerhart JS, van der Valk ES, van Haelst MM, van den Akker ELT, van Rossum EFC. Effects of glucagon-like peptide-1 analogue treatment in genetic obesity: A case series. Clin Obes 2021; 11:e12481. [PMID: 34291582 PMCID: PMC9286843 DOI: 10.1111/cob.12481] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/19/2022]
Abstract
Obesity is highly prevalent and comes with serious health burden. In a minority, a genetic cause is present which often results in therapy-resistant obesity. Liraglutide is a glucagon-like peptide-1 (GLP-1) analogue, which has beneficial effects on satiety and weight in common obesity. We present the effects of GLP-1 analogues in adults with a molecularly proven genetic cause of their overweight or obesity. All patients were treated with liraglutide 3.0 mg daily, in addition to intensive supportive lifestyle treatment. Anthropometrics, metabolic parameters, resting energy expenditure (REE), side effects, and subjectively reported satiety and quality of life were assessed. Two patients with 16p11.2 deletion syndrome and two patients with heterozygous pathogenic melanocortin-4 receptor variants were treated. At baseline, their age ranged between 21 and 32 years and body mass index (BMI) ranged between 28.1 and 55.7 kg/m2 . At follow-up (ranges 43 weeks-12 years), a mean change in BMI and waist circumference was observed of -5.7 ± 3.8 kg/m2 and -15.2 ± 21.1 cm, respectively. All patients achieved ≥5% weight loss, three of them lost ≥10% of their body weight. All patients reported improved quality of life and three of them reported ameliorated satiety. Moreover, improvement of glycaemic control and dyslipidaemia were seen. In two patients, REE before and during treatment was measured, which either increased (+26% of predicted REE) or decreased (-18% of predicted REE). Two patients experienced mild side effects for a brief period. In conclusion, our case series shows beneficial effects of GLP-1 analogues on weight, metabolic parameters and quality of life in all four patients with genetic obesity.
Collapse
Affiliation(s)
- Mila S. Welling
- Obesity Center CGG, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
- Department of Pediatrics, Division of EndocrinologyErasmus MC‐Sophia Children's Hospital, University Medical Center RotterdamRotterdamThe Netherlands
- Department of Internal Medicine, Division of EndocrinologyErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
| | - Cornelis J. de Groot
- Obesity Center CGG, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
- Department of Pediatrics, Division of EndocrinologyErasmus MC‐Sophia Children's Hospital, University Medical Center RotterdamRotterdamThe Netherlands
- Department of Pediatrics, Division of EndocrinologyWillem‐Alexander Children's Hospital, Leiden University Medical CenterLeidenThe Netherlands
| | - Lotte Kleinendorst
- Department of Clinical GeneticsAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Bibian van der Voorn
- Obesity Center CGG, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
- Department of Pediatrics, Division of EndocrinologyErasmus MC‐Sophia Children's Hospital, University Medical Center RotterdamRotterdamThe Netherlands
- Department of Internal Medicine, Division of EndocrinologyErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
| | | | - Eline S. van der Valk
- Obesity Center CGG, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
- Department of Internal Medicine, Division of EndocrinologyErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
| | - Mieke M. van Haelst
- Department of Clinical GeneticsAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Department of Clinical GeneticsAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Erica L. T. van den Akker
- Obesity Center CGG, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
- Department of Pediatrics, Division of EndocrinologyErasmus MC‐Sophia Children's Hospital, University Medical Center RotterdamRotterdamThe Netherlands
| | - Elisabeth F. C. van Rossum
- Obesity Center CGG, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
- Department of Internal Medicine, Division of EndocrinologyErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
| |
Collapse
|
185
|
Liu T, Ji RL, Tao YX. Naturally occurring mutations in G protein-coupled receptors associated with obesity and type 2 diabetes mellitus. Pharmacol Ther 2021; 234:108044. [PMID: 34822948 DOI: 10.1016/j.pharmthera.2021.108044] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of membrane receptors involved in the regulation of almost all known physiological processes. Dysfunctions of GPCR-mediated signaling have been shown to cause various diseases. The prevalence of obesity and type 2 diabetes mellitus (T2DM), two strongly associated disorders, is increasing worldwide, with tremendous economical and health burden. New safer and more efficacious drugs are required for successful weight reduction and T2DM treatment. Multiple GPCRs are involved in the regulation of energy and glucose homeostasis. Mutations in these GPCRs contribute to the development and progression of obesity and T2DM. Therefore, these receptors can be therapeutic targets for obesity and T2DM. Indeed some of these receptors, such as melanocortin-4 receptor and glucagon-like peptide 1 receptor, have provided important new drugs for treating obesity and T2DM. This review will focus on the naturally occurring mutations of several GPCRs associated with obesity and T2DM, especially incorporating recent large genomic data and insights from structure-function studies, providing leads for future investigations.
Collapse
Affiliation(s)
- Ting Liu
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States
| | - Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States.
| |
Collapse
|
186
|
Abstract
Older medications approved for chronic weight management (orlistat, naltrexone/bupropion, liraglutide 3 mg and, in the USA, phentermine/topiramate) have not been widely adopted by health care providers. Those medications produce only modest additional weight loss when used to augment lifestyle intervention. However, semaglutide 2.4 mg weekly has recently emerged and produces much more weight loss - on average 15% weight loss at 1 year. Semaglutide's enhanced efficacy and that its class (GLP-1 receptor analogs) is well-known may result in more clinicians adopting pharmacotherapy. Furthermore, the first dedicated cardiovascular outcome trial powered for superiority testing an anti-obesity medication (SELECT) is underway with semaglutide 2.4 mg. A positive outcome will further promote the concept that weight management should be a primary target for cardiometabolic disease control. In phase 3, tirzepatide and cagrilintide/semaglutide combination are showing promise for even greater weight loss efficacy. Another recently approved medication takes a personalized medicine approach; setmelanotide is approved as a therapy for those with some of the ultra-rare genetic diseases characterized by severe, early onset obesity. This chapter reviews the currently available and anticipated medications for chronic weight management as well as those approved for the genetic and syndromic obesities.
Collapse
Affiliation(s)
- Donna H Ryan
- Pennington Biomedical Research Center, Baton Rouge, LA, USA.
| |
Collapse
|
187
|
Dhurandhar NV, Petersen KS, Webster C. Key Causes and Contributors of Obesity: A Perspective. Nurs Clin North Am 2021; 56:449-464. [PMID: 34749887 DOI: 10.1016/j.cnur.2021.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Obesity is a disease with several potential causes and contributors. This article provides a focused overview of key known causes of obesity and factors that contribute to obesity. Obesity ultimately results from impaired energy storage mechanisms, such as dysregulation of hunger, satiety, digestion, fat storage, and metabolic rate. In addition, myriad contributors promote its expression, including dietary factors, sleep quality and duration, psychological health and well-being, and tobacco cessation, among others. This article concludes with a discussion of the clinical relevance of causes and contributors in obesity prevention and treatment, which is paramount to providing effective, individualized clinical management.
Collapse
Affiliation(s)
- Nikhil V Dhurandhar
- Department of Nutritional Sciences, Texas Tech University, 1301 Akron Avenue, P.O. Box 41270, Lubbock, TX 79409, USA.
| | - Kristina S Petersen
- Department of Nutritional Sciences, Texas Tech University, 1301 Akron Avenue, P.O. Box 41270, Lubbock, TX 79409, USA
| | - Chelsi Webster
- Department of Nutritional Sciences, Texas Tech University, 1301 Akron Avenue, P.O. Box 41270, Lubbock, TX 79409, USA
| |
Collapse
|
188
|
Abstract
Obesity is a treatable chronic disease. Primary care providers play an essential role in diagnosis, treatment, and comprehensive care of patients with obesity. In recent years, treatment approaches have rapidly evolved, increasing effective and safe therapies. In this review, we provide practical information on the care of patients with obesity with a focus on antiobesity pharmacotherapy within the context of currently available therapeutic modalities such as intensive lifestyle interventions and bariatric surgery.
Collapse
Affiliation(s)
- Mona Gossmann
- Department of Internal Medicine (Endocrinology & Metabolism), Yale University School of Medicine, New Haven, CT, USA
| | - W Scott Butsch
- Department of Surgery, Bariatric and Metabolic Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Internal Medicine and Geriatrics, Bariatric and Metabolic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ania M Jastreboff
- Department of Internal Medicine (Endocrinology & Metabolism), Yale University School of Medicine, New Haven, CT, USA; Department of Pediatrics (Pediatric Endocrinology), Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
189
|
Mendes de Oliveira E, Keogh JM, Talbot F, Henning E, Ahmed R, Perdikari A, Bounds R, Wasiluk N, Ayinampudi V, Barroso I, Mokrosiński J, Jyothish D, Lim S, Gupta S, Kershaw M, Matei C, Partha P, Randell T, McAulay A, Wilson LC, Cheetham T, Crowne EC, Clayton P, Farooqi IS. Obesity-Associated GNAS Mutations and the Melanocortin Pathway. N Engl J Med 2021; 385:1581-1592. [PMID: 34614324 DOI: 10.1056/nejmoa2103329] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND GNAS encodes the Gαs (stimulatory G-protein alpha subunit) protein, which mediates G protein-coupled receptor (GPCR) signaling. GNAS mutations cause developmental delay, short stature, and skeletal abnormalities in a syndrome called Albright's hereditary osteodystrophy. Because of imprinting, mutations on the maternal allele also cause obesity and hormone resistance (pseudohypoparathyroidism). METHODS We performed exome sequencing and targeted resequencing in 2548 children who presented with severe obesity, and we unexpectedly identified 22 GNAS mutation carriers. We investigated whether the effect of GNAS mutations on melanocortin 4 receptor (MC4R) signaling explains the obesity and whether the variable clinical spectrum in patients might be explained by the results of molecular assays. RESULTS Almost all GNAS mutations impaired MC4R signaling. A total of 6 of 11 patients who were 12 to 18 years of age had reduced growth. In these patients, mutations disrupted growth hormone-releasing hormone receptor signaling, but growth was unaffected in carriers of mutations that did not affect this signaling pathway (mean standard-deviation score for height, -0.90 vs. 0.75, respectively; P = 0.02). Only 1 of 10 patients who reached final height before or during the study had short stature. GNAS mutations that impaired thyrotropin receptor signaling were associated with developmental delay and with higher thyrotropin levels (mean [±SD], 8.4±4.7 mIU per liter) than those in 340 severely obese children who did not have GNAS mutations (3.9±2.6 mIU per liter; P = 0.004). CONCLUSIONS Because pathogenic mutations may manifest with obesity alone, screening of children with severe obesity for GNAS deficiency may allow early diagnosis, improving clinical outcomes, and melanocortin agonists may aid in weight loss. GNAS mutations that are identified by means of unbiased genetic testing differentially affect GPCR signaling pathways that contribute to clinical heterogeneity. Monogenic diseases are clinically more variable than their classic descriptions suggest. (Funded by Wellcome and others.).
Collapse
Affiliation(s)
- Edson Mendes de Oliveira
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Julia M Keogh
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Fleur Talbot
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Elana Henning
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Rachel Ahmed
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Aliki Perdikari
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Rebecca Bounds
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Natalia Wasiluk
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Vikram Ayinampudi
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Inês Barroso
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Jacek Mokrosiński
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Deepthi Jyothish
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Sharon Lim
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Sanjay Gupta
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Melanie Kershaw
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Cristina Matei
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Praveen Partha
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Tabitha Randell
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Antoinette McAulay
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Louise C Wilson
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Tim Cheetham
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Elizabeth C Crowne
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - Peter Clayton
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| | - I Sadaf Farooqi
- From the University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge (E.M.O., J.M.K., F.T., E.H., R.A., A.P., R.B., N.W., V.A., J.M., I.S.F.), the Exeter Centre of Excellence for Diabetes Research, University of Exeter Medical School, Exeter (I.B.), Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham (D.J., M.K.), Broomfield Hospital, Chelmsford (S.L.), Hull University Teaching Hospitals NHS Trust, Hull (S.G.), East and North Hertfordshire NHS Trust Lister Hospital, Stevenage (C.M.), County Durham and Darlington NHS Foundation Trust, Darlington (P.P.), Nottingham Children's Hospital, Nottingham (T.R.), University Hospitals Dorset NHS Foundation Trust, Poole (A.M.), Great Ormond Street Hospital for Children NHS Foundation Trust, London (L.C.W.), the Translational and Clinical Research Institute, Newcastle University, and Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne (T.C.), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol (E.C.C.), and the Division of Developmental Biology and Medicine, University of Manchester, Manchester (P.C.) - all in the United Kingdom
| |
Collapse
|
190
|
Ortuno MJ, Schneeberger M, Ilanges A, Marchildon F, Pellegrino K, Friedman JM, Ducy P. Melanocortin 4 receptor stimulation prevents anti-depressant-associated weight gain in mice caused by long-term fluoxetine exposure. J Clin Invest 2021; 131:151976. [PMID: 34673574 DOI: 10.1172/jci151976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Contrasting with the predicted anorexigenic effect of increasing brain serotonin signaling, long-term use of selective serotonin reuptake inhibitors (SSRIs) antidepressants correlates with body weight gain. This adverse outcome increases the risk of transitioning to obesity and interferes with treatment compliance. Here we show that orally administered fluoxetine (Flx), a widely prescribed SSRI, increased body weight by enhancing food intake in healthy mice at two different time points and through two distinct mechanisms. Within hours, Flx decreased the activity of a subset of brainstem serotonergic neurons by triggering autoinhibitory signaling through the Htr1a receptor. Upon longer treatment Flx blunted Htr2c expression/signaling, decreased the phosphorylation of Creb and Stat3 and dampened the production of POMC/α-MSH in hypothalamic neurons, thereby increasing food intake. Accordingly, exogenous stimulation of the melanocortin 4 receptor (MC4R) by co-treating mice with Flx and lipocalin-2, an anorexigenic hormone signaling through this receptor, normalized feeding and body weight. Flx and other SSRIs also inhibit CREB/STAT3 phosphorylation in a human neuronal cell line suggesting that these non-canonical effects could also occur in long-term users of SSRIs. By defining the molecular basis of the long-term SSRIs-associated weight gain this study proposes a therapeutic strategy to counter it.
Collapse
Affiliation(s)
- Maria Jose Ortuno
- Department of Genetics and Development, Columbia University, New York, United States of America
| | - Marc Schneeberger
- Laboratory of Molecular Genetics, The Rockefeller University, New York, United States of America
| | - Anoj Ilanges
- Laboratory of Molecular Genetics, The Rockefeller University, New York, United States of America
| | - François Marchildon
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, United States of America
| | - Kyle Pellegrino
- Laboratory of Molecular Genetics, The Rockefeller University, New York, United States of America
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, The Rockefeller University, New York, United States of America
| | - Patricia Ducy
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, United States of America
| |
Collapse
|
191
|
Ericson MD, Doering SR, Larson CM, Freeman KT, LaVoi TM, Donow HM, Santos RG, Cho RH, Koerperich ZM, Giulianotti MA, Pinilla C, Houghten RA, Haskell-Luevano C. Functional Mixture-Based Positional Scan Identifies a Library of Antagonist Tetrapeptide Sequences (LAtTeS) with Nanomolar Potency for the Melanocortin-4 Receptor and Equipotent with the Endogenous AGRP(86-132) Antagonist. J Med Chem 2021; 64:14860-14875. [PMID: 34592820 DOI: 10.1021/acs.jmedchem.1c01417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The melanocortin-4 receptor (MC4R) plays an important role in appetite. Agonist ligands that stimulate the MC4R decrease appetite, while antagonist compounds increase food consumption. Herein, a functional mixture-based positional scan identified novel MC4R antagonist sequences. Mixtures comprising a library of 12,960,000 tetrapeptides were screened in the presence and absence of the NDP-MSH agonist. These results led to the synthesis of 48 individual tetrapeptides, of which 40 were screened for functional activity at the melanocortin receptors. Thirteen compounds were found to possess nanomolar antagonist potency at the MC4R, with the general tetrapeptide sequence Ac-Aromatic-Basic-Aromatic-Basic-NH2. The most notable results include the identification of tetrapeptide 48 [COR1-25, Ac-DPhe(pI)-Arg-Nal(2')-Arg-NH2], an equipotent MC4R antagonist to agouti-related protein [AGRP(86-132)], more potent than miniAGRP(87-120), and possessing 15-fold selectivity for the MC4R versus the MC3R. These tetrapeptides may serve as leads for novel appetite-inducing therapies to treat states of negative energy balance, such as cachexia and anorexia.
Collapse
Affiliation(s)
- Mark D Ericson
- Department of Medicinal Chemistry and Institute for Translation Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Skye R Doering
- Department of Medicinal Chemistry and Institute for Translation Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Courtney M Larson
- Department of Medicinal Chemistry and Institute for Translation Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Katie T Freeman
- Department of Medicinal Chemistry and Institute for Translation Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Travis M LaVoi
- Florida International University, Port St. Lucie, Florida 34987, United States
| | - Haley M Donow
- Florida International University, Port St. Lucie, Florida 34987, United States
| | - Radleigh G Santos
- Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, Florida 33314, United States
| | - Rachel H Cho
- Department of Medicinal Chemistry and Institute for Translation Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zoe M Koerperich
- Department of Medicinal Chemistry and Institute for Translation Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marc A Giulianotti
- Florida International University, Port St. Lucie, Florida 34987, United States
| | - Clemencia Pinilla
- Florida International University, Port St. Lucie, Florida 34987, United States
| | - Richard A Houghten
- Florida International University, Port St. Lucie, Florida 34987, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry and Institute for Translation Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
192
|
Ryan DH. Next Generation Antiobesity Medications: Setmelanotide, Semaglutide, Tirzepatide and Bimagrumab: What do They Mean for Clinical Practice? J Obes Metab Syndr 2021; 30:196-208. [PMID: 34518444 PMCID: PMC8526285 DOI: 10.7570/jomes21033] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/19/2021] [Accepted: 08/07/2021] [Indexed: 12/27/2022] Open
Abstract
There is a new generation of antiobesity drugs in development or just arriving on the scene. First, setmelanotide has been approved for three of the ultrarare genetic conditions that cause obesity–pro-opiomelanocortin deficiency, proprotein convertase subtilisin and kexin type 1 (an important enzyme in the melanocortin pathway) and leptin receptor deficiency. Setmelanotide marks the first in a personalized medicine approach to obesity. Second, semaglutide 2.4 mg once weekly has been submitted to regulators in the United States and the European Union for approval for patients with obesity (body mass index [BMI] ≥30 kg/m2) or overweight (BMI ≥27 kg/m2) and at least one weight related comorbidity. This drug has been studied in five phase 3 clinical trials, four discussed herein: semaglutide produces roughly twice as much weight loss as we have seen in older antiobesity medications. Semaglutide is already in use for treatment of diabetes and, as a glucagon-like peptide 1 (GLP-1) receptor analog, is part of a class of drugs used widely in diabetes. Tirzepatide, a glucose-insulin peptide and GLP-1 dual agonist is in phase 3 study for obesity management, and bimagrumab is a new agent in phase 2 with a unique mechanism of action; they are generating much interest. The purpose of this narrative review is lay the groundwork for a discussion of the clinical impact of these new medications on the clinical practice of obesity. Further, these developments shall be used to launch a speculation of what is likely to be their impact on the future of obesity pharmacotherapy.
Collapse
Affiliation(s)
- Donna H Ryan
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| |
Collapse
|
193
|
Courbage S, Poitou C, Le Beyec-Le Bihan J, Karsenty A, Lemale J, Pelloux V, Lacorte JM, Carel JC, Lecomte N, Storey C, De Filippo G, Coupaye M, Oppert JM, Tounian P, Clément K, Dubern B. Implication of Heterozygous Variants in Genes of the Leptin-Melanocortin Pathway in Severe Obesity. J Clin Endocrinol Metab 2021; 106:2991-3006. [PMID: 34097736 DOI: 10.1210/clinem/dgab404] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Unlike homozygous variants, the implication of heterozygous variants on the leptin-melanocortin pathway in severe obesity has not been established. OBJECTIVE To describe the frequency, the phenotype, and the genotype-phenotype relationship for heterozygous variants in LEP, LEPR, POMC, and PCSK1 in severe obesity. METHODS In this retrospective study, genotyping was performed on at least 1 of the LEP, LEPR, POMC, and PCSK1 genes in 1486 probands with severe obesity (600 children, 886 adults). The phenotype was collected in 60 subjects with heterozygous variants and 16 with homozygous variants. We analyzed variant frequency, body mass index (BMI), age of obesity onset, food impulsivity, and endocrine abnormalities. RESULTS The frequency of subjects with homozygous variants was 1.7% (n = 26), and 6.7% (n = 100) with heterozygous variants. Adults with homozygous variants had a higher BMI (66 vs 53 kg/m2, P = .015), an earlier onset of obesity (0.4 vs 5.4 years, P < .001), more often food impulsivity (83% vs 42%, P = .04), and endocrine abnormalities (75% vs 26%, P < .01). The BMI was higher for subjects with high-impact heterozygous variants (61 vs 50 kg/m², P = .045) and those with a second heterozygous variant on the pathway (65 vs 49 kg/m², P < .01). In children, no significant differences were found for the age of obesity onset and BMI. CONCLUSION Heterozygous variants in LEP, LEPR, POMC, and PCSK1 are frequent in severe obesity and sometimes associated with a phenotype close to that of homozygotes. These data suggest a systematic search for variants in severe early-onset obesity, to discuss therapy that targets this key pathway.
Collapse
Affiliation(s)
- Sophie Courbage
- Assistance Publique-Hôpitaux de Paris (AP-HP), Reference Centre for Rare Diseases (PRADORT, Prader-Willi Syndrome and other Rare Forms of Obesity with Eating Behavior Disorders), Pediatric Nutrition and Gastroenterology Department, Armand-Trousseau Hospital, Sorbonne University, Paris, France
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics) Research Unit, Paris, France
| | - Christine Poitou
- Assistance Publique-Hôpitaux de Paris (AP-HP), Reference Centre for Rare Diseases (PRADORT, Prader-Willi Syndrome and other Rare Forms of Obesity with Eating Behavior Disorders), Nutrition Department, Pitié-Salpêtrière Hospital, Paris, France
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics) Research Unit, Paris, France
| | - Johanne Le Beyec-Le Bihan
- Assistance Publique-Hôpitaux de Paris (AP-HP), Endocrine and Oncological Biochemistry Department, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Alexandra Karsenty
- Assistance Publique-Hôpitaux de Paris (AP-HP), Reference Centre for Rare Diseases (PRADORT, Prader-Willi Syndrome and other Rare Forms of Obesity with Eating Behavior Disorders), Pediatric Nutrition and Gastroenterology Department, Armand-Trousseau Hospital, Sorbonne University, Paris, France
| | - Julie Lemale
- Assistance Publique-Hôpitaux de Paris (AP-HP), Reference Centre for Rare Diseases (PRADORT, Prader-Willi Syndrome and other Rare Forms of Obesity with Eating Behavior Disorders), Pediatric Nutrition and Gastroenterology Department, Armand-Trousseau Hospital, Sorbonne University, Paris, France
| | - Véronique Pelloux
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics) Research Unit, Paris, France
| | - Jean-Marc Lacorte
- Assistance Publique-Hôpitaux de Paris (AP-HP), Endocrine and Oncological Biochemistry Department, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Jean-Claude Carel
- Université de Paris, F-75019, Paris, France; AP-HP.Nord Université de Paris. Hôpital Universitaire Robert-Debré, Service d'Endocrinologie Diabétologie Pédiatrique F-75019, Paris, France
| | - Nathalie Lecomte
- Université de Paris, F-75019, Paris, France; AP-HP.Nord Université de Paris. Hôpital Universitaire Robert-Debré, Service d'Endocrinologie Diabétologie Pédiatrique F-75019, Paris, France
| | - Caroline Storey
- Université de Paris, F-75019, Paris, France; AP-HP.Nord Université de Paris. Hôpital Universitaire Robert-Debré, Service d'Endocrinologie Diabétologie Pédiatrique F-75019, Paris, France
| | - Gianpaolo De Filippo
- Université de Paris, F-75019, Paris, France; AP-HP.Nord Université de Paris. Hôpital Universitaire Robert-Debré, Service d'Endocrinologie Diabétologie Pédiatrique F-75019, Paris, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Bicêtre Hospital, Medicine for Adolescents Department, Le Kremlin-Bicêtre, France
| | - Muriel Coupaye
- Assistance Publique-Hôpitaux de Paris (AP-HP), Reference Centre for Rare Diseases (PRADORT, Prader-Willi Syndrome and other Rare Forms of Obesity with Eating Behavior Disorders), Nutrition Department, Pitié-Salpêtrière Hospital, Paris, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Explorations Fonctionnelles Department, Louis-Mourier Hospital, Centre Intégré Nord Francilien de l'Obésité (CINFO) and Université de Paris, Centre de Recherche sur l'Inflammation, Inserm UMRS 1149, Paris, France
| | - Jean-Michel Oppert
- Assistance Publique-Hôpitaux de Paris (AP-HP), Reference Centre for Rare Diseases (PRADORT, Prader-Willi Syndrome and other Rare Forms of Obesity with Eating Behavior Disorders), Nutrition Department, Pitié-Salpêtrière Hospital, Paris, France
| | - Patrick Tounian
- Assistance Publique-Hôpitaux de Paris (AP-HP), Reference Centre for Rare Diseases (PRADORT, Prader-Willi Syndrome and other Rare Forms of Obesity with Eating Behavior Disorders), Pediatric Nutrition and Gastroenterology Department, Armand-Trousseau Hospital, Sorbonne University, Paris, France
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics) Research Unit, Paris, France
| | - Karine Clément
- Assistance Publique-Hôpitaux de Paris (AP-HP), Reference Centre for Rare Diseases (PRADORT, Prader-Willi Syndrome and other Rare Forms of Obesity with Eating Behavior Disorders), Nutrition Department, Pitié-Salpêtrière Hospital, Paris, France
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics) Research Unit, Paris, France
| | - Béatrice Dubern
- Assistance Publique-Hôpitaux de Paris (AP-HP), Reference Centre for Rare Diseases (PRADORT, Prader-Willi Syndrome and other Rare Forms of Obesity with Eating Behavior Disorders), Pediatric Nutrition and Gastroenterology Department, Armand-Trousseau Hospital, Sorbonne University, Paris, France
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics) Research Unit, Paris, France
| |
Collapse
|
194
|
Structures of active melanocortin-4 receptor-Gs-protein complexes with NDP-α-MSH and setmelanotide. Cell Res 2021; 31:1176-1189. [PMID: 34561620 PMCID: PMC8563958 DOI: 10.1038/s41422-021-00569-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023] Open
Abstract
The melanocortin-4 receptor (MC4R), a hypothalamic master regulator of energy homeostasis and appetite, is a class A G-protein-coupled receptor and a prime target for the pharmacological treatment of obesity. Here, we present cryo-electron microscopy structures of MC4R–Gs-protein complexes with two drugs recently approved by the FDA, the peptide agonists NDP-α-MSH and setmelanotide, with 2.9 Å and 2.6 Å resolution. Together with signaling data from structure-derived MC4R mutants, the complex structures reveal the agonist-induced origin of transmembrane helix (TM) 6-regulated receptor activation. The ligand-binding modes of NDP-α-MSH, a high-affinity linear variant of the endogenous agonist α-MSH, and setmelanotide, a cyclic anti-obesity drug with biased signaling toward Gq/11, underline the key role of TM3 in ligand-specific interactions and of calcium ion as a ligand-adaptable cofactor. The agonist-specific TM3 interplay subsequently impacts receptor–Gs-protein interfaces at intracellular loop 2, which also regulates the G-protein coupling profile of this promiscuous receptor. Finally, our structures reveal mechanistic details of MC4R activation/inhibition, and provide important insights into the regulation of the receptor signaling profile which will facilitate the development of tailored anti-obesity drugs.
Collapse
|
195
|
Malhotra S, Sivasubramanian R, Srivastava G. Evaluation and Management of Early Onset Genetic Obesity in Childhood. J Pediatr Genet 2021; 10:194-204. [PMID: 34504723 DOI: 10.1055/s-0041-1731035] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/16/2021] [Indexed: 01/10/2023]
Abstract
One in five children and adolescents in the United States are diagnosed with obesity and nearly 6% of them are being classified under the severe obesity category. With over 7% of severe obesity being attributed to genetic disorders, in this review we aim to focus on monogenic and syndromic obesity: its etiology, wide spectrum of clinical presentation, criticalness of early identification, and limited management options. Advanced genetic testing methods including microarray and whole genome sequencing are imperative to identify the spectrum of mutations and develop targeted treatment strategies including personalized multidisciplinary care, use of investigational drugs, and explore surgical options in this unique subset of severe pediatric obesity.
Collapse
Affiliation(s)
- Sonali Malhotra
- Department of Pediatric Endocrinology, Massachusetts General Hospital for Children, Harvard Medical School, Boston, Massachusetts, United States
| | - Ramya Sivasubramanian
- Division of Pediatric Nephrology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Gitanjali Srivastava
- Department of Medicine; Department of Pediatrics; Department of Surgery; Division of Endocrinology, Diabetes & Metabolism, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| |
Collapse
|
196
|
Cacciottolo TM, Evans K. Research in brief: Effective pharmacotherapy for the management of obesity. Clin Med (Lond) 2021; 21:e517-e518. [PMID: 38594856 DOI: 10.7861/clinmed.2021-0253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Kate Evans
- University Hospitals Plymouth NHS Trust, Plymouth, UK
| |
Collapse
|
197
|
Cifuentes L, Hurtado A. MD, Eckel-Passow J, Acosta A. Precision Medicine for Obesity. DIGESTIVE DISEASE INTERVENTIONS 2021; 5:239-248. [PMID: 36203650 PMCID: PMC9534386 DOI: 10.1055/s-0041-1729945] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Obesity is a multifactorial disease with a variable and underwhelming weight loss response to current treatment approaches. Precision medicine proposes a new paradigm to improve disease classification based on the premise of human heterogeneity, with the ultimate goal of maximizing treatment effectiveness, tolerability, and safety. Recent advances in high-throughput biochemical assays have contributed to the partial characterization of obesity's pathophysiology, as well as to the understanding of the role that intrinsic and environmental factors, and their interaction, play in its development and progression. These data have led to the development of biological markers that either are being or will be incorporated into strategies to develop personalized lines of treatment for obesity. There are currently many ongoing initiatives aimed at this; however, much needs to be resolved before precision obesity medicine becomes common practice. This review aims to provide a perspective on the currently available data of high-throughput technologies to treat obesity.
Collapse
Affiliation(s)
- Lizeth Cifuentes
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Maria Daniela Hurtado A.
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Medicine, Mayo Clinic Health System La Crosse, Rochester, Minnesota
| | - Jeanette Eckel-Passow
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Andres Acosta
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
198
|
Anekwe CV, Knight MG, Seetharaman S, Dutton WP, Chhabria SM, Stanford FC. Pharmacotherapeutic options for weight regain after bariatric surgery. CURRENT TREATMENT OPTIONS IN GASTROENTEROLOGY 2021; 19:524-541. [PMID: 34511864 PMCID: PMC8425280 DOI: 10.1007/s11938-021-00358-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/23/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW We sought to critically evaluate the recent literature published over the past 3 years on the topic of weight regain after bariatric surgery in children, adolescents, and adults, with an emphasis on clinically- relevant information for pharmacologic treatment of weight regain after metabolic and bariatric surgery. FINDINGS There are multiple pharmacotherapeutic agents available to treat obesity in children, adolescents, and adults; these agents have varying efficacy and indications for use and have been studied in a variety of clinical and research scenarios. We present an overview of these findings. SUMMARY This review represents a comprehensive compilation of the recently published data on efficacy of anti-obesity pharmacotherapy in the treatment of weight regain after bariatric surgery for children, adolescents, and adults.
Collapse
Affiliation(s)
- Chika Vera Anekwe
- Massachusetts General Hospital, MGH Weight Center, Department of Medicine- Division of Endocrinology, Boston, MA
- Harvard Medical School, Boston, MA
| | - Michael G. Knight
- Division of General Internal Medicine, Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Sujatha Seetharaman
- Massachusetts General Hospital, MGH Weight Center, Department of Medicine- Division of Endocrinology, Boston, MA
| | - Wesley P. Dutton
- Massachusetts General Hospital, MGH Weight Center, Department of Medicine- Division of Endocrinology, Boston, MA
| | - Shradha M. Chhabria
- Geisinger Commonwealth School of Medicine, Scranton, PA; Harvard T.H. Chan School of Public Health, Boston, MA
| | - Fatima Cody Stanford
- Harvard Medical School, Boston, MA
- Massachusetts General Hospital, MGH Weight Center, Department of Medicine- Division of Endocrinology-Neuroendocrine Unit, Department of Pediatrics-Division of Endocrinology Boston, MA
| |
Collapse
|
199
|
Powell DR, Revelli JP, Doree DD, DaCosta CM, Desai U, Shadoan MK, Rodriguez L, Mullens M, Yang QM, Ding ZM, Kirkpatrick LL, Vogel P, Zambrowicz B, Sands AT, Platt KA, Hansen GM, Brommage R. High-Throughput Screening of Mouse Gene Knockouts Identifies Established and Novel High Body Fat Phenotypes. Diabetes Metab Syndr Obes 2021; 14:3753-3785. [PMID: 34483672 PMCID: PMC8409770 DOI: 10.2147/dmso.s322083] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/04/2021] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Obesity is a major public health problem. Understanding which genes contribute to obesity may better predict individual risk and allow development of new therapies. Because obesity of a mouse gene knockout (KO) line predicts an association of the orthologous human gene with obesity, we reviewed data from the Lexicon Genome5000TM high throughput phenotypic screen (HTS) of mouse gene KOs to identify KO lines with high body fat. MATERIALS AND METHODS KO lines were generated using homologous recombination or gene trapping technologies. HTS body composition analyses were performed on adult wild-type and homozygous KO littermate mice from 3758 druggable mouse genes having a human ortholog. Body composition was measured by either DXA or QMR on chow-fed cohorts from all 3758 KO lines and was measured by QMR on independent high fat diet-fed cohorts from 2488 of these KO lines. Where possible, comparisons were made to HTS data from the International Mouse Phenotyping Consortium (IMPC). RESULTS Body fat data are presented for 75 KO lines. Of 46 KO lines where independent external published and/or IMPC KO lines are reported as obese, 43 had increased body fat. For the remaining 29 novel high body fat KO lines, Ksr2 and G2e3 are supported by data from additional independent KO cohorts, 6 (Asnsd1, Srpk2, Dpp8, Cxxc4, Tenm3 and Kiss1) are supported by data from additional internal cohorts, and the remaining 21 including Tle4, Ak5, Ntm, Tusc3, Ankk1, Mfap3l, Prok2 and Prokr2 were studied with HTS cohorts only. CONCLUSION These data support the finding of high body fat in 43 independent external published and/or IMPC KO lines. A novel obese phenotype was identified in 29 additional KO lines, with 27 still lacking the external confirmation now provided for Ksr2 and G2e3 KO mice. Undoubtedly, many mammalian obesity genes remain to be identified and characterized.
Collapse
Affiliation(s)
- David R Powell
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Jean-Pierre Revelli
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Deon D Doree
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Christopher M DaCosta
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Urvi Desai
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Melanie K Shadoan
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Lawrence Rodriguez
- Department of Information Technology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Michael Mullens
- Department of Information Technology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Qi M Yang
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Zhi-Ming Ding
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Laura L Kirkpatrick
- Department of Molecular Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Peter Vogel
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Brian Zambrowicz
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
- Department of Information Technology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
- Department of Molecular Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Arthur T Sands
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
- Department of Information Technology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
- Department of Molecular Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Kenneth A Platt
- Department of Molecular Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Gwenn M Hansen
- Department of Molecular Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Robert Brommage
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| |
Collapse
|
200
|
Puder L, Roth S, Krabusch P, Wiegand S, Opitz R, Bald M, Flück C, Schulz E, Voss E, Markó L, Linz P, Berger F, Müller DN, Kuehne T, Litt MJ, Cone RD, Kühnen P, Kelm M. Cardiac Phenotype and Tissue Sodium Content in Adolescents With Defects in the Melanocortin System. J Clin Endocrinol Metab 2021; 106:2606-2616. [PMID: 34036349 PMCID: PMC8372645 DOI: 10.1210/clinem/dgab368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 12/16/2022]
Abstract
CONTEXT Pro-opiomelanocortin (POMC) and the melanocortin-4 receptor (MC4R) play a pivotal role in the leptin-melanocortin pathway. Mutations in these genes lead to monogenic types of obesity due to severe hyperphagia. In addition to dietary-induced obesity, a cardiac phenotype without hypertrophy has been identified in MC4R knockout mice. OBJECTIVE We aimed to characterize cardiac morphology and function as well as tissue Na+ content in humans with mutations in POMC and MC4R genes. METHODS A cohort of 42 patients (5 patients with bi-allelic POMC mutations, 6 heterozygous MC4R mutation carriers, 19 obese controls without known monogenic cause, and 12 normal weight controls) underwent cardiac magnetic resonance (CMR) imaging and 23Na-MRI. RESULTS Monogenic obese patients with POMC or MC4R mutation respectively had a significantly lower left ventricular mass/body surface area (BSA) than nonmonogenic obese patients. Left ventricular end-diastolic volume/BSA was significantly lower in POMC- and MC4R-deficient patients than in nonmonogenic obese patients. Subcutaneous fat and skin Na+ content was significantly higher in POMC- and MC4R-deficient patients than in nonmonogenic obese patients. In these compartments, the water content was significantly higher in patients with POMC and MC4R mutation than in control groups. CONCLUSION Patients with POMC or MC4R mutations carriers had a lack of transition to hypertrophy, significantly lower cardiac muscle mass/BSA, and stored more Na+ within the subcutaneous fat tissue than nonmonogenic obese patients. The results point towards the role of the melanocortin pathway for cardiac function and tissue Na+ storage and the importance of including cardiologic assessments into the diagnostic work-up of these patients.
Collapse
Affiliation(s)
- Lia Puder
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Institute for Experimental Pediatric Endocrinology, Berlin 13353, Germany
- Department for Pediatric Endocrinology and Diabetology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin 13353, Germany
| | - Sophie Roth
- Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 13353, Germany
| | - Philipp Krabusch
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Institute for Experimental Pediatric Endocrinology, Berlin 13353, Germany
- Department for Pediatric Endocrinology and Diabetology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin 13353, Germany
| | - Susanna Wiegand
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Center for Social-Pediatric Care/Pediatric Endocrinology and Diabetology, Berlin 13353, Germany
| | - Robert Opitz
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Institute for Experimental Pediatric Endocrinology, Berlin 13353, Germany
| | - Martin Bald
- Pediatric Endocrinology, Olgahospital, Klinikum Stuttgart, Stuttgart 70174, Germany
| | - Christa Flück
- Department of Paediatrics and Department of BioMedical Research, Pediatric Endocrinology, Diabetology and Metabolism, Bern University Hospital Inselspital and University of Bern, Bern 3010, Switzerland
| | - Esther Schulz
- Pediatric Endocrinology, AKK Altonaer Kinderkrankenhaus GmbH, Hamburg 22763, Germany
| | - Egbert Voss
- Cnopfsche Kinderklinik, Nürnberg 90419, Germany
| | - Lajos Markó
- DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin 13353, Germany
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Berlin 13125, Germany
- Max Delbruck Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
- Berlin Institute of Health (BIH), Berlin 10178, Germany
| | - Peter Linz
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Felix Berger
- Department of Congenital Heart Disease, Deutsches Herzzentrum Berlin, Berlin 13353, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin 13353, Germany
| | - Dominik N Müller
- DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin 13353, Germany
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Berlin 13125, Germany
- Max Delbruck Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
- Berlin Institute of Health (BIH), Berlin 10178, Germany
| | - Titus Kuehne
- Department of Congenital Heart Disease, Deutsches Herzzentrum Berlin, Berlin 13353, Germany
- Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 13353, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin 13353, Germany
| | - Michael J Litt
- Brigham and Women’s Hospital, Harvard University, Boston, MA 02115, USA
| | - Roger D Cone
- Life Sciences Institute, and Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, MI 48109-5624, USA
| | - Peter Kühnen
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Institute for Experimental Pediatric Endocrinology, Berlin 13353, Germany
- Correspondence: Peter Kühnen, MD, Institute for Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Marcus Kelm
- Department of Congenital Heart Disease, Deutsches Herzzentrum Berlin, Berlin 13353, Germany
- Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 13353, Germany
- Berlin Institute of Health (BIH), Berlin 10178, Germany
- Marcus Kelm, MD, Department of Congenital Heart Disease, German Heart Centre Berlin, Augustenburger Platz 1, 13353 Berlin, Germany,
| |
Collapse
|