151
|
Han J, Lyutenko NV, Sorochinsky AE, Okawara A, Konno H, White S, Soloshonok VA. Tailor-Made Amino Acids in Pharmaceutical Industry: Synthetic Approaches to Aza-Tryptophan Derivatives. Chemistry 2021; 27:17510-17528. [PMID: 34913215 DOI: 10.1002/chem.202102485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/24/2021] [Indexed: 12/22/2022]
Abstract
Over the recent years there has been a noticeable upsurge of interest in aza-analogs of tryptophan which are isosteric to the latter and found numerous applications in medicinal, bioorganic chemistry, and peptide research. In the present review article, five aza-tryptophan derivatives are profiled, including aza-substitution in the positions 2, on the five-membered ring, as well as in positions 4, 5, 6, and 7 on the six-membered ring. A detailed and comprehensive literature overview of the synthetic methods for the preparation of these aza-tryptophans is presented and general facets of the biological properties and most promising applications are discussed.
Collapse
Affiliation(s)
- Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Nataliya V Lyutenko
- Department of Fine Organic Synthesis V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, The National Academy of Sciences of Ukraine, 1 Murmanska str., Kyiv, 02094, Ukraine
| | - Alexander E Sorochinsky
- Department of Fine Organic Synthesis V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, The National Academy of Sciences of Ukraine, 1 Murmanska str., Kyiv, 02094, Ukraine
| | - Ayaka Okawara
- Graduate School of Science and Engineering, Yamagata University, 4-3-16, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Hiroyuki Konno
- Graduate School of Science and Engineering, Yamagata University, 4-3-16, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Sarah White
- Oakwood Chemical, Inc., 730 Columbia Hwy. N, Estill, SC, 29918, USA
| | - Vadim A Soloshonok
- Department of Organic Chemistry I Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013, Bilbao, Spain
| |
Collapse
|
152
|
Mukherjee S, Pramanik A. Mild and Expeditious Synthesis of Sulfenyl Enaminones of l-α-Amino Esters and Aryl/Alkyl Amines through NCS-Mediated Sulfenylation. ACS OMEGA 2021; 6:33805-33821. [PMID: 34926928 PMCID: PMC8675011 DOI: 10.1021/acsomega.1c05058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
Sulfenylation or selenylation of enaminones of l-α-amino esters requires mild reaction conditions due to the presence of a racemization-prone chiral center and reactive side chains. An N-chlorosuccinimide (NCS)-mediated methodology has been developed for rapid sulfenylation of enaminones of l-α-amino esters and aryl/alkyl amines at room temperature in open air under metal-free conditions. Enaminones of l-α-amino esters bearing aliphatic, aromatic, and heterocyclic side chains react efficiently with diverse aryl/alkyl/heteroaryl thiols (R1SH) in the presence of NCS to afford a library of biologically important sulfenyl enaminones in good-to-excellent yields (71-90%). Under similar reaction conditions, the enaminones also react with benzeneselenol to produce selenyl enaminones in good yield (73-83%). The NCS-mediated pathway generates sulfenyl chloride (R1SCl) as an intermediate which leads to rapid sulfenylation of enaminones through cross-dehydrogenative coupling (CDC) under mild reaction conditions.
Collapse
Affiliation(s)
- Sayan Mukherjee
- Department of Chemistry, University
of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Animesh Pramanik
- Department of Chemistry, University
of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
153
|
Amine- and Amino Acid-Based Compounds as Carbonic Anhydrase Activators. Molecules 2021; 26:molecules26237331. [PMID: 34885917 PMCID: PMC8659172 DOI: 10.3390/molecules26237331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 02/01/2023] Open
Abstract
After being rather neglected as a research field in the past, carbonic anhydrase activators (CAAs) were undoubtedly demonstrated to be useful in diverse pharmaceutical and industrial applications. They also improved the knowledge of the requirements to selectively interact with a CA isoform over the others and confirmed the catalytic mechanism of this class of compounds. Amino acid and amine derivatives were the most explored in in vitro, in vivo and crystallographic studies as CAAs. Most of them were able to activate human or non-human CA isoforms in the nanomolar range, being proposed as therapeutic and industrial tools. Some isoforms are better activated by amino acids than amines derivatives and the stereochemistry may exert a role. Finally, non-human CAs have been very recently tested for activation studies, paving the way to innovative industrial and environmental applications.
Collapse
|
154
|
|
155
|
Adhikari A, Bhattarai BR, Aryal A, Thapa N, Kc P, Adhikari A, Maharjan S, Chanda PB, Regmi BP, Parajuli N. Reprogramming natural proteins using unnatural amino acids. RSC Adv 2021; 11:38126-38145. [PMID: 35498070 PMCID: PMC9044140 DOI: 10.1039/d1ra07028b] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022] Open
Abstract
Unnatural amino acids have gained significant attention in protein engineering and drug discovery as they allow the evolution of proteins with enhanced stability and activity. The incorporation of unnatural amino acids into proteins offers a rational approach to engineer enzymes for designing efficient biocatalysts that exhibit versatile physicochemical properties and biological functions. This review highlights the biological and synthetic routes of unnatural amino acids to yield a modified protein with altered functionality and their incorporation methods. Unnatural amino acids offer a wide array of applications such as antibody-drug conjugates, probes for change in protein conformation and structure-activity relationships, peptide-based imaging, antimicrobial activities, etc. Besides their emerging applications in fundamental and applied science, systemic research is necessary to explore unnatural amino acids with novel side chains that can address the limitations of natural amino acids.
Collapse
Affiliation(s)
- Anup Adhikari
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Bibek Raj Bhattarai
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Ashika Aryal
- Department of Chemistry, Birendra Multiple Campus, Tribhuvan University Bharatpur Chitwan Nepal
| | - Niru Thapa
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Puja Kc
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Ashma Adhikari
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Sushila Maharjan
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Prem B Chanda
- Department of Chemistry and Physics, Southeastern Louisiana University Hammond Louisiana 70402 USA
| | - Bishnu P Regmi
- Department of Chemistry, Florida Agricultural and Mechanical University Tallahassee Florida 32307 USA
| | - Niranjan Parajuli
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| |
Collapse
|
156
|
Kotha S, Kumar Gupta N, Sreevani G, Rao Panguluri N. Design, Synthesis and Late-Stage Modification of Indane-Based Peptides via [2+2+2] Cyclotrimerization. Chem Asian J 2021; 16:3649-3657. [PMID: 34510767 DOI: 10.1002/asia.202100825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/24/2021] [Indexed: 12/11/2022]
Abstract
Here, we prepared several dipeptides containing 2-aminoindane-2-carboxylic acid (Aic) and carried out further synthetic transformations. Synthesis and purification of modified peptides by using [2+2+2] cyclotrimerization is a challenging task. We are able to modify the unusual amino acids and peptide derivatives by late-stage incorporation of benzylhalo functionality. To incorporate benzylhalo moiety we used [2+2+2] cyclotrimerization in the presence of Mo(CO)6 . These halo derivatives are potential substrates for further modification by Sonogashira reaction, Suzuki-Miyaura cross-coupling, sultine formation, and the Diels-Alder reaction sequence.
Collapse
Affiliation(s)
- Sambasivarao Kotha
- Department of Chemistryme 5, Indian Institute of Technology, Bombay, Powai, 400 076, Mumbai, India
| | - Naveen Kumar Gupta
- Department of Chemistryme 5, Indian Institute of Technology, Bombay, Powai, 400 076, Mumbai, India
| | - Gaddamedi Sreevani
- Department of Chemistryme 5, Indian Institute of Technology, Bombay, Powai, 400 076, Mumbai, India
| | - Nageswara Rao Panguluri
- Department of Chemistryme 5, Indian Institute of Technology, Bombay, Powai, 400 076, Mumbai, India
| |
Collapse
|
157
|
Liu A, Han J, Nakano A, Konno H, Moriwaki H, Abe H, Izawa K, Soloshonok VA. New pharmaceuticals approved by FDA in 2020: Small-molecule drugs derived from amino acids and related compounds. Chirality 2021; 34:86-103. [PMID: 34713503 DOI: 10.1002/chir.23376] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/09/2021] [Accepted: 09/26/2021] [Indexed: 12/24/2022]
Abstract
Amino acids (AAs) play an important role in the modern health industry as key synthetic precursors for pharmaceuticals, biomaterials, biosensors, and drug delivery systems. Currently, over 30% of small-molecule drugs contain residues of tailor-made AAs or derived from them amino-alcohols and di-amines. In this review article, we profile 12 AA-derived new pharmaceuticals approved by the FDA in 2020. These newly introduced drugs include Tazverik (epithelioid sarcoma), Gemtesa (overactive bladder), Zeposia (multiple sclerosis), Byfavo (induction and maintenance of procedural sedation), Cu 64 dotatate, and Gallium 68 PSMA-11 (both PET imaging), Rimegepant (acute migraine), Zepzelca (lung cancer), Remdesivir (COVID-19), Amisulpride (nausea and vomiting), Setmelanotide (obesity), and Lonafarnib (progeria syndrome). For each compound, we describe the spectrum of biological activity, medicinal chemistry discovery, and synthetic preparation.
Collapse
Affiliation(s)
- Aiyao Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Arina Nakano
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan
| | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan
| | | | | | | | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
158
|
Suh JL, Bsteh D, Hart B, Si Y, Weaver TM, Pribitzer C, Lau R, Soni S, Ogana H, Rectenwald JM, Norris JL, Cholensky SH, Sagum C, Umana JD, Li D, Hardy B, Bedford MT, Mumenthaler SM, Lenz HJ, Kim YM, Wang GG, Pearce KH, James LI, Kireev DB, Musselman CA, Frye SV, Bell O. Reprogramming CBX8-PRC1 function with a positive allosteric modulator. Cell Chem Biol 2021; 29:555-571.e11. [PMID: 34715055 PMCID: PMC9035045 DOI: 10.1016/j.chembiol.2021.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/19/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022]
Abstract
Canonical targeting of Polycomb repressive complex 1 (PRC1) to repress developmental genes is mediated by cell-type-specific, paralogous chromobox (CBX) proteins (CBX2, 4, 6, 7, and 8). Based on their central role in silencing and their dysregulation associated with human disease including cancer, CBX proteins are attractive targets for small-molecule chemical probe development. Here, we have used a quantitative and target-specific cellular assay to discover a potent positive allosteric modulator (PAM) of CBX8. The PAM activity of UNC7040 antagonizes H3K27me3 binding by CBX8 while increasing interactions with nucleic acids. We show that treatment with UNC7040 leads to efficient and selective eviction of CBX8-containing PRC1 from chromatin, loss of silencing, and reduced proliferation across different cancer cell lines. Our discovery and characterization of UNC7040 not only reveals the most cellularly potent CBX8-specific chemical probe to date, but also corroborates a mechanism of Polycomb regulation by non-specific CBX nucleotide binding activity.
Collapse
Affiliation(s)
- Junghyun L Suh
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniel Bsteh
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Bryce Hart
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yibo Si
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Tyler M Weaver
- University of Iowa, Department of Biochemistry, Iowa City, IA 52242, USA
| | - Carina Pribitzer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Roy Lau
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Heather Ogana
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90027, USA
| | - Justin M Rectenwald
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jacqueline L Norris
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephanie H Cholensky
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Cari Sagum
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Jessica D Umana
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dongxu Li
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brian Hardy
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Shannon M Mumenthaler
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA 90033, USA; Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yong-Mi Kim
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90027, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ken H Pearce
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lindsey I James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dmitri B Kireev
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Catherine A Musselman
- University of Iowa, Department of Biochemistry, Iowa City, IA 52242, USA; University of Colorado Anschutz Medical Campus, Department of Biochemistry and Molecular Genetics, Aurora, CO 80045, USA
| | - Stephen V Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Oliver Bell
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
159
|
Xu Y, Liu D, Deng Y, Zhou Y, Zhang W. Rhodium-Catalyzed Asymmetric Hydrogenation of 3-Benzoylaminocoumarins for the Synthesis of Chiral 3-Amino Dihydrocoumarins. Angew Chem Int Ed Engl 2021; 60:23602-23607. [PMID: 34596267 DOI: 10.1002/anie.202110286] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/16/2021] [Indexed: 12/18/2022]
Abstract
An asymmetric hydrogenation of 3-benzoylaminocoumarins was achieved for the first time using our BridgePhos-Rh catalytic system, providing chiral 3-amino dihydrocoumarins in high yields (up to 98 %) and with excellent enantioselectivities (up to 99.7 % ee). The relationship between the enantioselectivities of the hydrogenations and the dihedral angles and the resulting π-π stacking effects of the BridgePhos-Rh complexes, which were determined by X-ray diffraction analysis, are discussed. The corresponding hydrogenated products allow for many transformations, providing several chiral skeletons with important physiological and pharmacological activities.
Collapse
Affiliation(s)
- Yunnan Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Delong Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yu Deng
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yi Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
160
|
Xu Y, Liu D, Deng Y, Zhou Y, Zhang W. Rhodium‐Catalyzed Asymmetric Hydrogenation of 3‐Benzoylaminocoumarins for the Synthesis of Chiral 3‐Amino Dihydrocoumarins. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yunnan Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Delong Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Yu Deng
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Yi Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
- Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
161
|
Guo D, Peng Q, Zhang B, Wang J. Atroposelective Dynamic Kinetic Resolution via In Situ Hemiaminals Catalyzed by N-Heterocyclic Carbene. Org Lett 2021; 23:7765-7770. [PMID: 34569804 DOI: 10.1021/acs.orglett.1c02780] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Axially chiral amino acids and its derivatives are vital building blocks of bioactive molecules, artificial peptides, and asymmetric catalysts. Herein, we report an unprecedented carbene-catalyzed atroposelective dynamic kinetic resolution to access axially chiral amino esters via in situ hemiaminals. This protocol features a broad substrate scope and good functional group tolerance and allows the rapid assembly of axially chiral amino esters in good to high yields with high enantioselectivities.
Collapse
Affiliation(s)
- Donghui Guo
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Qiupeng Peng
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Bei Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Jian Wang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
162
|
Whalley DM, Seayad J, Greaney MF. Truce–Smiles Rearrangements by Strain Release: Harnessing Primary Alkyl Radicals for Metal‐Free Arylation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David M. Whalley
- School of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
- Institute of Chemical and Engineering Sciences 8 Biomedical Grove Neuros, #07-01 138665 Singapore
| | - Jayasree Seayad
- Institute of Chemical and Engineering Sciences 8 Biomedical Grove Neuros, #07-01 138665 Singapore
| | - Michael F. Greaney
- School of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
163
|
Candish L, Collins KD, Cook GC, Douglas JJ, Gómez-Suárez A, Jolit A, Keess S. Photocatalysis in the Life Science Industry. Chem Rev 2021; 122:2907-2980. [PMID: 34558888 DOI: 10.1021/acs.chemrev.1c00416] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the pursuit of new pharmaceuticals and agrochemicals, chemists in the life science industry require access to mild and robust synthetic methodologies to systematically modify chemical structures, explore novel chemical space, and enable efficient synthesis. In this context, photocatalysis has emerged as a powerful technology for the synthesis of complex and often highly functionalized molecules. This Review aims to summarize the published contributions to the field from the life science industry, including research from industrial-academic partnerships. An overview of the synthetic methodologies developed and strategic applications in chemical synthesis, including peptide functionalization, isotope labeling, and both DNA-encoded and traditional library synthesis, is provided, along with a summary of the state-of-the-art in photoreactor technology and the effective upscaling of photocatalytic reactions.
Collapse
Affiliation(s)
- Lisa Candish
- Drug Discovery Sciences, Pharmaceuticals, Bayer AG, 42113 Wuppertal, Germany
| | - Karl D Collins
- Bayer Foundation, Public Affairs, Science and Sustainability, Bayer AG, 51368 Leverkusen, Germany
| | - Gemma C Cook
- Discovery High-Throughput Chemistry, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, U.K
| | - James J Douglas
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Adrián Gómez-Suárez
- Organic Chemistry, Bergische Universität Wuppertal, 42119 Wuppertal, Germany
| | - Anais Jolit
- Medicinal Chemistry Department, Neuroscience Discovery Research, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany
| | - Sebastian Keess
- Medicinal Chemistry Department, Neuroscience Discovery Research, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany
| |
Collapse
|
164
|
Oh BC, Yoon E, Gong J, Kim J, Driver RW, Kim Y, Kim WY, Lee HS. Morphology Transformation of Foldamer Assemblies Triggered by Single Oxygen Atom on Critical Residue Switch. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102525. [PMID: 34310034 DOI: 10.1002/smll.202102525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The synthesis of morphologically well-defined peptidic materials via self-assembly is challenging but demanding for biocompatible functional materials. Moreover, switching morphology from a given shape to other predictable forms by molecular modification of the identical building block is an even more complicated subject because the self-assembly of flexible peptides is prone to diverge upon subtle structural change. To accomplish controllable morphology transformation, systematic self-assembly studies are performed using congener short β-peptide foldamers to find a minimal structural change that alters the self-assembled morphology. Introduction of oxygen-containing β-amino acid (ATFC) for subtle electronic perturbation on hydrophobic foldamer induces a previously inaccessible solid-state conformational split to generate the most susceptible modification site for morphology transformation of the foldamer assemblies. The site-dependent morphological switching power of ATFC is further demonstrated by dual substitution experiments and proven by crystallographic analyses. Stepwise morphology transformation is shown by modifying an identical foldamer scaffold. This study will guide in designing peptidic molecules from scratch to create complex and biofunctional assemblies with nonspherical shapes.
Collapse
Affiliation(s)
- Byung-Chang Oh
- Center for Multiscale Chiral Architectures, Department of Chemistry, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, 34141, Korea
| | - Eunyoung Yoon
- Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, 34114, Korea
| | - Jintaek Gong
- Center for Multiscale Chiral Architectures, Department of Chemistry, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, 34141, Korea
| | - Jaewook Kim
- Center for Multiscale Chiral Architectures, Department of Chemistry, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, 34141, Korea
| | - Russell W Driver
- Department of Chemistry and Physics, Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, FL, 33314, USA
| | - Yongjun Kim
- Center for Multiscale Chiral Architectures, Department of Chemistry, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, 34141, Korea
| | - Woo Youn Kim
- Center for Multiscale Chiral Architectures, Department of Chemistry, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, 34141, Korea
| | - Hee-Seung Lee
- Center for Multiscale Chiral Architectures, Department of Chemistry, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, 34141, Korea
| |
Collapse
|
165
|
Fominova K, Diachuk T, Granat D, Savchuk T, Vilchynskyi V, Svitlychnyi O, Meliantsev V, Kovalchuk I, Litskan E, Levterov VV, Badlo VR, Vaskevych RI, Vaskevych AI, Bolbut AV, Semeno VV, Iminov R, Shvydenko K, Kuznetsova AS, Dmytriv YV, Vysochyn D, Ripenko V, Tolmachev AA, Pavlova O, Kuznietsova H, Pishel I, Borysko P, Mykhailiuk PK. Oxa-spirocycles: synthesis, properties and applications. Chem Sci 2021; 12:11294-11305. [PMID: 34667540 PMCID: PMC8447932 DOI: 10.1039/d1sc03615g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/20/2021] [Indexed: 12/27/2022] Open
Abstract
A general approach to a new generation of spirocyclic molecules – oxa-spirocycles – was developed. The key synthetic step was iodocyclization. More than 150 oxa-spirocyclic compounds were prepared. Incorporation of an oxygen atom into the spirocyclic unit dramatically improved water solubility (by up to 40 times) and lowered lipophilicity. More potent oxa-spirocyclic analogues of antihypertensive drug terazosin were synthesized and studied in vivo. A general practical approach to a new generation of spirocyclic molecules – oxa-spirocycles – is developed.![]()
Collapse
Affiliation(s)
- Kateryna Fominova
- Enamine Ltd Chervonotkatska 78 02094 Kyiv Ukraine http://www.enamine.net http://www.mykhailiukchem.org
| | - Taras Diachuk
- Enamine Ltd Chervonotkatska 78 02094 Kyiv Ukraine http://www.enamine.net http://www.mykhailiukchem.org
| | - Dmitry Granat
- Enamine Ltd Chervonotkatska 78 02094 Kyiv Ukraine http://www.enamine.net http://www.mykhailiukchem.org
| | - Taras Savchuk
- Enamine Ltd Chervonotkatska 78 02094 Kyiv Ukraine http://www.enamine.net http://www.mykhailiukchem.org
| | - Vladyslav Vilchynskyi
- Enamine Ltd Chervonotkatska 78 02094 Kyiv Ukraine http://www.enamine.net http://www.mykhailiukchem.org
| | - Oleksiy Svitlychnyi
- Enamine Ltd Chervonotkatska 78 02094 Kyiv Ukraine http://www.enamine.net http://www.mykhailiukchem.org
| | - Vladyslav Meliantsev
- Enamine Ltd Chervonotkatska 78 02094 Kyiv Ukraine http://www.enamine.net http://www.mykhailiukchem.org
| | - Igor Kovalchuk
- Enamine Ltd Chervonotkatska 78 02094 Kyiv Ukraine http://www.enamine.net http://www.mykhailiukchem.org
| | - Eduard Litskan
- Enamine Ltd Chervonotkatska 78 02094 Kyiv Ukraine http://www.enamine.net http://www.mykhailiukchem.org
| | - Vadym V Levterov
- Enamine Ltd Chervonotkatska 78 02094 Kyiv Ukraine http://www.enamine.net http://www.mykhailiukchem.org
| | - Valentyn R Badlo
- Enamine Ltd Chervonotkatska 78 02094 Kyiv Ukraine http://www.enamine.net http://www.mykhailiukchem.org
| | - Ruslan I Vaskevych
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine Murmanska St. 5 02094 Kyiv Ukraine
| | - Alla I Vaskevych
- National Technical University of Ukraine, Igor Sikorsky Kiev Polytechnic Institute Prosp. Peremohy 37 03056 Kyiv Ukraine
| | - Andrii V Bolbut
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine Murmanska St. 5 02094 Kyiv Ukraine
| | - Volodymyr V Semeno
- Enamine Ltd Chervonotkatska 78 02094 Kyiv Ukraine http://www.enamine.net http://www.mykhailiukchem.org
| | - Rustam Iminov
- Enamine Ltd Chervonotkatska 78 02094 Kyiv Ukraine http://www.enamine.net http://www.mykhailiukchem.org
| | - Kostiantyn Shvydenko
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine Murmanska St. 5 02094 Kyiv Ukraine
| | | | - Yurii V Dmytriv
- Enamine Ltd Chervonotkatska 78 02094 Kyiv Ukraine http://www.enamine.net http://www.mykhailiukchem.org.,National Technical University of Ukraine, Igor Sikorsky Kiev Polytechnic Institute Prosp. Peremohy 37 03056 Kyiv Ukraine
| | - Daniil Vysochyn
- Enamine Ltd Chervonotkatska 78 02094 Kyiv Ukraine http://www.enamine.net http://www.mykhailiukchem.org
| | - Vasyl Ripenko
- Enamine Ltd Chervonotkatska 78 02094 Kyiv Ukraine http://www.enamine.net http://www.mykhailiukchem.org
| | - Andrei A Tolmachev
- Enamine Ltd Chervonotkatska 78 02094 Kyiv Ukraine http://www.enamine.net http://www.mykhailiukchem.org
| | | | | | - Iryna Pishel
- Bienta Chervonotkatska 78 02094 Kyiv Ukraine http://www.bienta.net
| | - Petro Borysko
- Bienta Chervonotkatska 78 02094 Kyiv Ukraine http://www.bienta.net
| | - Pavel K Mykhailiuk
- Enamine Ltd Chervonotkatska 78 02094 Kyiv Ukraine http://www.enamine.net http://www.mykhailiukchem.org
| |
Collapse
|
166
|
Guo W, Wang M, Han Z, Huang H, Sun J. Organocatalytic asymmetric synthesis of α-amino esters from sulfoxonium ylides. Chem Sci 2021; 12:11191-11196. [PMID: 34522316 PMCID: PMC8386753 DOI: 10.1039/d1sc02439f] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
Described here is the first organocatalytic asymmetric N–H insertion reaction of α-carbonyl sulfoxonium ylides. Without a metal catalyst, this reaction represents an attractive complement to the well-established carbene insertion reactions. As a stable surrogate of diazocarbonyl compounds, sulfoxonium ylides reacted with a range of aryl amines to provide efficient access to α-aryl glycines with excellent enantiocontrol in the presence of a suitable chiral phosphoric acid catalyst. The high stability and weak basicity of sulfoxonium ylides not only enable this protocol to be user-friendly and practically useful, but also preclude catalyst decomposition, which is crucial to the excellent amenability to electron-poor amine nucleophiles. Detailed mechanistic studies indicated that the initial protonation is reversible and the C–N bond formation is rate-determining. An organocatalytic asymmetric N–H insertion reaction of α-carbonyl sulfoxonium ylides has been developed to provide efficient access to α-amino esters without involving a metal carbenoid intermediate.![]()
Collapse
Affiliation(s)
- Wengang Guo
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University Changzhou China
| | - Min Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University Changzhou China
| | - Zhengyu Han
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University Changzhou China
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University Changzhou China
| | - Jianwei Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University Changzhou China .,Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR China
| |
Collapse
|
167
|
Nagaoka K, Nakano A, Han J, Sakamoto T, Konno H, Moriwaki H, Abe H, Izawa K, Soloshonok VA. Comparative study of different chiral ligands for dynamic kinetic resolution of amino acids. Chirality 2021; 33:685-702. [PMID: 34402557 DOI: 10.1002/chir.23350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 11/05/2022]
Abstract
Dynamic kinetic resolution (DKR) of unprotected amino acids (AAs), via intermediate formation of Ni(II) complexes, is currently a leading methodology for preparation of natural and tailor-made AAs in enantiomerically pure form. In this work, we conduct a comparative case study of synthetic performance of four different ligands in DKR of six AAs representing aryl-, benzyl-, alkyl-, and long alkyl-type derivatives. The results of this study allow for rational selection of ligand/AA type to develop a practical procedure for preparation of target enantiomerically pure AAs.
Collapse
Affiliation(s)
- Keita Nagaoka
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, Japan
| | - Arina Nakano
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, Japan
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | | | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, Japan
| | | | | | | | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
168
|
Whalley DM, Seayad J, Greaney MF. Truce-Smiles Rearrangements by Strain Release: Harnessing Primary Alkyl Radicals for Metal-Free Arylation. Angew Chem Int Ed Engl 2021; 60:22219-22223. [PMID: 34370898 DOI: 10.1002/anie.202108240] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Indexed: 01/30/2023]
Abstract
The ring-opening of 3-aminocyclobutanone oximes enables easy generation of primary alkyl radicals, capable of undergoing an unprecedented strain-release, desulfonylative radical Truce-Smiles rearrangement, providing divergent access to valuable 1,3 diamines and unnatural β-amino acids. Characterized by mild conditions and wide scope of migrating species, this protocol allows the modular assembly of sp3 -aryls under transition metal-free, room-temperature conditions.
Collapse
Affiliation(s)
- David M Whalley
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,Institute of Chemical and Engineering Sciences, 8 Biomedical Grove, Neuros, #07-01, 138665, Singapore
| | - Jayasree Seayad
- Institute of Chemical and Engineering Sciences, 8 Biomedical Grove, Neuros, #07-01, 138665, Singapore
| | - Michael F Greaney
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
169
|
Qi R, Wang C, Huo Y, Chai H, Wang H, Ma Z, Liu L, Wang R, Xu Z. Visible Light Induced Cu-Catalyzed Asymmetric C(sp 3)-H Alkylation. J Am Chem Soc 2021; 143:12777-12783. [PMID: 34351761 DOI: 10.1021/jacs.1c05890] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The asymmetric functionalization of C-H is one of the most attractive strategies in asymmetric synthesis. In the past decades, catalytic enantioselective C(sp3)-H functionalization has been intensively studied and successfully applied in various asymmetric bond formations, whereas asymmetric C(sp3)-H alkylation was not well developed. Photoredox catalysis has recently emerged as an efficient way to synthesize organic compounds under mild conditions. Despite many photoinduced stereoselective reactions that have been achieved, the related enantioselective C(sp3)-C(sp3) coupling is challenging, especially of the photocatalytic asymmetric C(sp3)-H radical alkylation. Here, we report a visible light induced Cu catalyzed asymmetric sp3 C-H alkylation, which is effective for coupling with unbiased primary, secondary, and tertiary alkyl fragments in high enantioselectivities. This reaction would provide a new approach for the synthesis of important molecules such as unnatural α-amino acids and late-stage functionalization of bioactive compounds, and will be useful for modern peptide synthesis and drug discovery.
Collapse
Affiliation(s)
- Rupeng Qi
- School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chao Wang
- School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yumei Huo
- School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hongli Chai
- School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hongying Wang
- School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zijian Ma
- School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China
| | - Liangyu Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Rui Wang
- School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China.,Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, P. R. China
| | - Zhaoqing Xu
- School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China.,Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, P. R. China
| |
Collapse
|
170
|
Stangier M, Messinis AM, Oliveira JCA, Yu H, Ackermann L. Rhodaelectro-catalyzed access to chromones via formyl C-H activation towards peptide electro-labeling. Nat Commun 2021; 12:4736. [PMID: 34354056 PMCID: PMC8342597 DOI: 10.1038/s41467-021-25005-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/12/2021] [Indexed: 12/02/2022] Open
Abstract
Chromones represent a privileged scaffold in medicinal chemistry and are an omnipresent structural motif in natural products. Chemically encoded non-natural peptidomimetics feature improved stability towards enzymatic degradation, cell permeability and binding affinity, translating into a considerable impact on pharmaceutical industry. Herein, a strategy for the sustainable assembly of chromones via electro-formyl C–H activation is presented. The rational design of the rhodaelectro-catalysis is guided by detailed mechanistic insights and provides versatile access to tyrosine-based fluorogenic peptidomimetics. The chromone scaffold is present in drugs and bioactive natural products, but conventional approaches to access chromones require stoichiometric amounts of oxidants. Here, the authors report rhodaelectro-catalyzed assembly of chromones by electrochemical formyl C–H activations, providing the basis for late-stage peptide diversification.
Collapse
Affiliation(s)
- Maximilian Stangier
- Institute for Organic and Biomolecular Chemistry, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Antonis M Messinis
- Institute for Organic and Biomolecular Chemistry, Georg-August-Universität Göttingen, Göttingen, Germany
| | - João C A Oliveira
- Institute for Organic and Biomolecular Chemistry, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Hao Yu
- Institute for Organic and Biomolecular Chemistry, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Lutz Ackermann
- Institute for Organic and Biomolecular Chemistry, Georg-August-Universität Göttingen, Göttingen, Germany.
| |
Collapse
|
171
|
Qian HL, Liu F, Liu X, Yang C, Yan XP. Chiral covalent organic framework-monolith as stationary phase for high-performance liquid chromatographic enantioseparation of selected amino acids. Anal Bioanal Chem 2021; 414:5255-5262. [PMID: 34331090 DOI: 10.1007/s00216-021-03574-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/25/2021] [Accepted: 07/22/2021] [Indexed: 11/26/2022]
Abstract
The separation of amino acid (AA) enantiomers shows significance for chemistry, food, and biology, but remains challenging due to their similar properties. A promising nanoporous chiral covalent organic framework (COF) as a stationary phase for high-performance liquid chromatography (HPLC) suffers from the irregularity and widely distributed particle size of the chiral COF. Herein, we show the facile preparation of a chiral COF-monolith as a stationary phase for HPLC enantiomeric separation of AAs via orthogonal experiments. The CTzDa-monolith is prepared by the incorporation of the model chiral COF named CTzDa into the porous poly(ethylene dimethacrylate-co-methacrylate) monolith and reveals great permeability and mechanical stability. The corresponding CTzDa-monolithic column gives better chiral HPLC separation of AAs than the commercial Poroshell 120 chiral-T column. Thermal dynamic analysis and molecular docking calculations imply the involvement of stereoscopic hydrogen, π-π, and van der Waals interactions between the CTzDa and AAs during HPLC enantioseparation. The facile incorporation of the chiral COF into the porous monolith will promote the potential of a chiral COF as a stationary phase for HPLC.
Collapse
Affiliation(s)
- Hai-Long Qian
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Fang Liu
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Xue Liu
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Cheng Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Xiu-Ping Yan
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, 214122, Jiangsu, China
| |
Collapse
|
172
|
Immel JR, Chilamari M, Bloom S. Combining flavin photocatalysis with parallel synthesis: a general platform to optimize peptides with non-proteinogenic amino acids. Chem Sci 2021; 12:10083-10091. [PMID: 34377401 PMCID: PMC8317666 DOI: 10.1039/d1sc02562g] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Most peptide drugs contain non-proteinogenic amino acids (NPAAs), born out through extensive structure-activity relationship (SAR) studies using solid-phase peptide synthesis (SPPS). Synthetically laborious and expensive to manufacture, NPAAs also can have poor coupling efficiencies allowing only a small fraction to be sampled by conventional SPPS. To gain general access to NPAA-containing peptides, we developed a first-generation platform that merges contemporary flavin photocatalysis with parallel synthesis to simultaneously make, purify, quantify, and even test up to 96 single-NPAA peptide variants via the unique combination of boronic acids and a dehydroalanine residue in a peptide. We showcase the power of our newly minted platform to introduce NPAAs of diverse chemotypes-aliphatic, aromatic, heteroaromatic-directly into peptides, including 15 entirely new residues, and to evolve a simple proteinogenic peptide into an unnatural inhibitor of thrombin by non-classical peptide SAR.
Collapse
Affiliation(s)
- Jacob R Immel
- Department of Medicinal Chemistry, The University of Kansas Integrated Science Building Lawrence KS 66045 USA
| | - Maheshwerreddy Chilamari
- Department of Medicinal Chemistry, The University of Kansas Integrated Science Building Lawrence KS 66045 USA
| | - Steven Bloom
- Department of Medicinal Chemistry, The University of Kansas Integrated Science Building Lawrence KS 66045 USA
| |
Collapse
|
173
|
Abidin MZ, Saravanan T, Bothof L, Tepper PG, Thunnissen AMWH, Poelarends GJ. Biocatalytic enantioselective hydroaminations enabling synthesis of N-arylalkyl-substituted L-aspartic acids. Org Biomol Chem 2021; 19:6407-6411. [PMID: 34235532 PMCID: PMC8317194 DOI: 10.1039/d1ob00748c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/30/2021] [Indexed: 01/26/2023]
Abstract
N-Substituted l-aspartic acids are important chiral building blocks for pharmaceuticals and food additives. Here we report the asymmetric synthesis of various N-arylalkyl-substituted l-aspartic acids using ethylenediamine-N,N'-disuccinic acid lyase (EDDS lyase) as a biocatalyst. This C-N lyase shows a broad non-natural amine substrate scope and outstanding enantioselectivity, allowing the efficient addition of structurally diverse arylalkylamines to fumarate to afford the corresponding N-arylalkyl-substituted l-aspartic acids in good isolated yield (up to 79%) and with excellent enantiopurity (>99% ee). These results further demonstrate that C-N lyases working in reverse constitute an extremely powerful synthetic tool to prepare difficult noncanonical amino acids.
Collapse
Affiliation(s)
- Mohammad Z Abidin
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands. g.j.poelarends.rug.nl and Department of Animal Product Technology, Faculty of Animal Science, Gadjah Mada University, Bulaksumur, Yogyakarta, 55281, Indonesia
| | - Thangavelu Saravanan
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands. g.j.poelarends.rug.nl and School of Chemistry, University of Hyderabad, P.O. Central University, Hyderabad-500046, India.
| | - Laura Bothof
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands. g.j.poelarends.rug.nl
| | - Pieter G Tepper
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands. g.j.poelarends.rug.nl
| | - Andy-Mark W H Thunnissen
- Molecular Enzymology Group, Groningen Institute of Biomolecular Sciences and Biotechnology, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands. g.j.poelarends.rug.nl
| |
Collapse
|
174
|
Ichitsuka T, Komatsuzaki S, Masuda K, Koumura N, Sato K, Kobayashi S. Stereoretentive N-Arylation of Amino Acid Esters with Cyclohexanones Utilizing a Continuous-Flow System. Chemistry 2021; 27:10844-10848. [PMID: 33909295 DOI: 10.1002/chem.202101439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Indexed: 01/29/2023]
Abstract
The N-arylation of chiral amino acid esters with minimal racemization is a challenging transformation because of the sensitivity of the α-stereocenter. A versatile synthetic method was developed to prepare N-arylated amino acid esters using cyclohexanones as aryl sources under continuous-flow conditions. The designed flow system, which consists of a coil reactor and a packed-bed reactor containing a Pd(OH)2 /C catalyst, efficiently afforded the desired N-arylated amino acids without significant racemization, accompanied by only small amounts of easily removable co-products (i. e., H2 O and alkanes). The efficiency and robustness of this method allowed for the continuous synthesis of the desired product in very high yield and enantiopurity with high space-time yield (74.1 g L-1 h-1 ) and turnover frequency (5.9 h-1 ) for at least 3 days.
Collapse
Affiliation(s)
- Tomohiro Ichitsuka
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565, Japan.,Research Institute of Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), Nigatake 4-2-1, Sendai, Miyagi, 983-8551, Japan
| | - Shingo Komatsuzaki
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565, Japan
| | - Koichiro Masuda
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565, Japan
| | - Nagatoshi Koumura
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565, Japan
| | - Kazuhiko Sato
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565, Japan
| | - Shū Kobayashi
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565, Japan.,Department of Chemistry, School of Science, The University of Tokyo Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
175
|
Faraggi TM, Rouget-Virbel C, Rincón JA, Barberis M, Mateos C, García-Cerrada S, Agejas J, de Frutos O, MacMillan DWC. Synthesis of Enantiopure Unnatural Amino Acids by Metallaphotoredox Catalysis. Org Process Res Dev 2021; 25:1966-1973. [DOI: 10.1021/acs.oprd.1c00208] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tomer M. Faraggi
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Caroline Rouget-Virbel
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Juan A. Rincón
- Centro de Investigación Eli Lilly, S. A. Avda de la Industria 30, Alcobendas-Madrid 28108, Spain
| | - Mario Barberis
- Centro de Investigación Eli Lilly, S. A. Avda de la Industria 30, Alcobendas-Madrid 28108, Spain
| | - Carlos Mateos
- Centro de Investigación Eli Lilly, S. A. Avda de la Industria 30, Alcobendas-Madrid 28108, Spain
| | - Susana García-Cerrada
- Centro de Investigación Eli Lilly, S. A. Avda de la Industria 30, Alcobendas-Madrid 28108, Spain
| | - Javier Agejas
- Centro de Investigación Eli Lilly, S. A. Avda de la Industria 30, Alcobendas-Madrid 28108, Spain
| | - Oscar de Frutos
- Centro de Investigación Eli Lilly, S. A. Avda de la Industria 30, Alcobendas-Madrid 28108, Spain
| | - David W. C. MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
176
|
Gil J, Pastar I, Houghten RA, Padhee S, Higa A, Solis M, Valdez J, Head CR, Michaels H, Lenhart B, Simms C, Williams B, Cudic P, Davis SC. Novel Cyclic Lipopeptides Fusaricidin Analogs for Treating Wound Infections. Front Microbiol 2021; 12:708904. [PMID: 34367114 PMCID: PMC8343139 DOI: 10.3389/fmicb.2021.708904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/21/2021] [Indexed: 12/01/2022] Open
Abstract
Both acute and chronic cutaneous wounds are often difficult to treat due to the high-risk for bacterial contamination. Once hospitalized, open wounds are at a high-risk for developing hospital-associated infections caused by multi drug-resistant bacteria such as Staphylococcus aureus and Pseudomonas aeruginosa. Treating these infections is challenging, not only because of antibiotic resistance, but also due to the production of biofilms. New treatment strategies are needed that will help in both stimulating the wound healing process, as well as preventing and eliminating bacterial wound infections. Fusaricidins are naturally occurring cyclic lipopeptides with antimicrobial properties that have shown to be effective against a variety of fungi and Gram-positive bacteria, with low toxicity. Continuing with our efforts toward the identification of novel cyclic lipopeptides Fusaricidin analogs, herein we report the synthesis and evaluation of the antimicrobial activity for two novel cyclic lipopeptides (CLP), CLP 2605-4 and CLP 2612-8.1 against methicillin resistant S. aureus and P. aeruginosa, respectively, in in vivo porcine full thickness wound model. Both CLPs were able to reduce bacterial counts by approximately 3 log CFU/g by the last assessment day. Peptide 2612-8.1 slightly enhanced the wound healing, however, wounds treated with peptide 2605-4, have shown higher levels of inflammation and impaired wound healing process. This study highlights the importance of identifying new antimicrobials that can combat bacterial infection while not impeding tissue repair.
Collapse
Affiliation(s)
- Joel Gil
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Coral Gables, FL, United States
| | - Irena Pastar
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Coral Gables, FL, United States
| | | | - Shruti Padhee
- Torrey Pines Institute for Molecular Studies, San Diego, CA, United States
| | - Alexander Higa
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Coral Gables, FL, United States
| | - Michael Solis
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Coral Gables, FL, United States
| | - Jose Valdez
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Coral Gables, FL, United States
| | - Cheyanne R. Head
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Coral Gables, FL, United States
| | - Heather Michaels
- Torrey Pines Institute for Molecular Studies, San Diego, CA, United States
| | - Brian Lenhart
- Torrey Pines Institute for Molecular Studies, San Diego, CA, United States
| | - Colin Simms
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Coral Gables, FL, United States
| | - Brandon Williams
- Department of Chemistry and Biochemistry Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL, United States
| | - Predrag Cudic
- Department of Chemistry and Biochemistry Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL, United States
| | - Stephen C. Davis
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Coral Gables, FL, United States
| |
Collapse
|
177
|
Banga S, Kaur R, Babu SA. Construction of Racemic and Enantiopure Biaryl Unnatural Amino Acid Derivatives via Pd(II)‐Catalyzed Arylation of Unactivated Csp
3
−H Bonds. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Shefali Banga
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali Knowledge City Sector 81 SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| | - Ramandeep Kaur
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali Knowledge City Sector 81 SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali Knowledge City Sector 81 SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| |
Collapse
|
178
|
Chen R, Wang J, Han L, Gu Y, Xu Z, Cheng J, Shao X, Xu X, Li Z. Design, synthesis, and insecticidal activities of novel diamide derivatives with alpha‐amino acid subunits. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rui‐Jia Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy East China University of Science and Technology Shanghai China
| | - Jun‐Jie Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy East China University of Science and Technology Shanghai China
| | - Li Han
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy East China University of Science and Technology Shanghai China
| | - Yu‐Cheng Gu
- Syngenta Jealott's Hill International Research Centre Bracknell Berkshire UK
| | - Zhi‐Ping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy East China University of Science and Technology Shanghai China
| | - Jia‐Gao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy East China University of Science and Technology Shanghai China
| | - Xu‐Sheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy East China University of Science and Technology Shanghai China
| | - Xiao‐Yong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy East China University of Science and Technology Shanghai China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy East China University of Science and Technology Shanghai China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology East China University of Science and Technology Shanghai China
| |
Collapse
|
179
|
Matulevičiūtė G, Arbačiauskienė E, Kleizienė N, Kederienė V, Ragaitė G, Dagilienė M, Bieliauskas A, Milišiūnaitė V, Sløk FA, Šačkus A. Synthesis and Characterization of Novel Methyl (3)5-( N-Boc-piperidinyl)-1 H-pyrazole-4-carboxylates. Molecules 2021; 26:molecules26133808. [PMID: 34206593 PMCID: PMC8270337 DOI: 10.3390/molecules26133808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/13/2021] [Accepted: 06/19/2021] [Indexed: 11/16/2022] Open
Abstract
Series of methyl 3- and 5-(N-Boc-piperidinyl)-1H-pyrazole-4-carboxylates were developed and regioselectively synthesized as novel heterocyclic amino acids in their N-Boc protected ester form for achiral and chiral building blocks. In the first stage of the synthesis, piperidine-4-carboxylic and (R)- and (S)-piperidine-3-carboxylic acids were converted to the corresponding β-keto esters, which were then treated with N,N-dimethylformamide dimethyl acetal. The subsequent reaction of β-enamine diketones with various N-mono-substituted hydrazines afforded the target 5-(N-Boc-piperidinyl)-1H-pyrazole-4-carboxylates as major products, and tautomeric NH-pyrazoles prepared from hydrazine hydrate were further N-alkylated with alkyl halides to give 3-(N-Boc-piperidinyl)-1H-pyrazole-4-carboxylates. The structures of the novel heterocyclic compounds were confirmed by 1H-, 13C-, and 15N-NMR spectroscopy and HRMS investigation.
Collapse
Affiliation(s)
- Gita Matulevičiūtė
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania; (G.M.); (N.K.); (G.R.); (M.D.); (A.B.); (V.M.)
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania;
| | - Eglė Arbačiauskienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania;
- Correspondence: (E.A.); (A.Š.); Tel.: +370-37-451-401 (A.Š.)
| | - Neringa Kleizienė
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania; (G.M.); (N.K.); (G.R.); (M.D.); (A.B.); (V.M.)
| | - Vilija Kederienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania;
| | - Greta Ragaitė
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania; (G.M.); (N.K.); (G.R.); (M.D.); (A.B.); (V.M.)
| | - Miglė Dagilienė
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania; (G.M.); (N.K.); (G.R.); (M.D.); (A.B.); (V.M.)
| | - Aurimas Bieliauskas
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania; (G.M.); (N.K.); (G.R.); (M.D.); (A.B.); (V.M.)
| | - Vaida Milišiūnaitė
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania; (G.M.); (N.K.); (G.R.); (M.D.); (A.B.); (V.M.)
| | - Frank A. Sløk
- Vipergen ApS, Gammel Kongevej 23A, V DK-1610 Copenhagen, Denmark;
| | - Algirdas Šačkus
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania; (G.M.); (N.K.); (G.R.); (M.D.); (A.B.); (V.M.)
- Correspondence: (E.A.); (A.Š.); Tel.: +370-37-451-401 (A.Š.)
| |
Collapse
|
180
|
Delgado JAC, Correia JTM, Pissinati EF, Paixão MW. Biocompatible Photoinduced Alkylation of Dehydroalanine for the Synthesis of Unnatural α-Amino Acids. Org Lett 2021; 23:5251-5255. [PMID: 34152782 DOI: 10.1021/acs.orglett.1c01781] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A site-selective alkylation of dehydroalanine to access protected unnatural amino acids is described. The protocol is characterized by the wide nature of alkyl radicals employed, mild conditions, and functional group compatibility. This protocol is further extended to access peptides, late-stage functionalization of pharmaceuticals, and enantioenriched amino acids.
Collapse
Affiliation(s)
- José A C Delgado
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos-UFSCar, Rodovia Washington Luís, km 235-SP-310, São Paulo 13565-905, Brazil
| | - José T M Correia
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos-UFSCar, Rodovia Washington Luís, km 235-SP-310, São Paulo 13565-905, Brazil
| | - Emanuele F Pissinati
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos-UFSCar, Rodovia Washington Luís, km 235-SP-310, São Paulo 13565-905, Brazil
| | - Márcio W Paixão
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos-UFSCar, Rodovia Washington Luís, km 235-SP-310, São Paulo 13565-905, Brazil
| |
Collapse
|
181
|
Yazaki R. Development of Catalytic Reactions for Precise Control of Chemoselectivity. Chem Pharm Bull (Tokyo) 2021; 69:516-525. [PMID: 34078797 DOI: 10.1248/cpb.c21-00092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Catalytic chemoselective reactions of innately less reactive functionalities over more reactive functionalities are described. A cooperative catalyst comprising a soft Lewis acid/hard Brønsted base enabled chemoselective activation of a hydroxyl group over an amino group, allowing for nucleophilic addition to electron-deficient olefins. The reaction could be applicable for a variety of amino alcohols, including pharmaceuticals, without requiring a tedious protection-deprotection process. Chemoselective enolization and subsequent α-functionalization of carboxylic acid derivatives were also achieved by a redox active catalyst through the radical process, providing unnatural α-amino/hydroxy acid derivatives bearing a complex carbon framework and a diverse set of functionalities. The present chemoselective catalysis described herein offers new opportunities to expand the chemical space for innovative drug discovery research.
Collapse
Affiliation(s)
- Ryo Yazaki
- Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|
182
|
Tong Z, Garry OL, Smith PJ, Jiang Y, Mansfield SJ, Anderson EA. Au(I)-Catalyzed Oxidative Functionalization of Yndiamides. Org Lett 2021; 23:4888-4892. [DOI: 10.1021/acs.orglett.1c01625] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zixuan Tong
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, U.K
| | - Olivia L. Garry
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, U.K
| | - Philip J. Smith
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, U.K
| | - Yubo Jiang
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | | | | |
Collapse
|
183
|
Zou Y, Takeda R, Han J, Konno H, Moriwaki H, Abe H, Izawa K, Soloshonok VA. Asymmetric Synthesis of
N
‐Fmoc‐(
S
)‐7‐aza‐tryptophan via Alkylation of Chiral Nucleophilic Glycine Equivalent. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yupiao Zou
- Jiangsu Co – Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials College of Chemical Engineering Nanjing Forestry University 159 Longpan Road 210037 Nanjing China
| | - Ryosuke Takeda
- Hamari Chemicals Ltd. 1-4-29 Kunijima, Higashi-Yodogawa-ku 533-0024 Osaka Japan
| | - Jianlin Han
- Jiangsu Co – Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials College of Chemical Engineering Nanjing Forestry University 159 Longpan Road 210037 Nanjing China
| | - Hiroyuki Konno
- Department of Biological Engineering Graduate School of Science and Engineering Yamagata University Yonezawa 992-8510 Yamagata Japan
| | - Hiroki Moriwaki
- Hamari Chemicals Ltd. 1-4-29 Kunijima, Higashi-Yodogawa-ku 533-0024 Osaka Japan
| | - Hidenori Abe
- Hamari Chemicals Ltd. 1-4-29 Kunijima, Higashi-Yodogawa-ku 533-0024 Osaka Japan
| | - Kunisuke Izawa
- Hamari Chemicals Ltd. 1-4-29 Kunijima, Higashi-Yodogawa-ku 533-0024 Osaka Japan
| | - Vadim A. Soloshonok
- Department of Organic Chemistry I Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel Lardizábal 3 20018 San Sebastián Spain
- IKERBASQUE, Basque Foundation for Science Alameda Urquijo 36–5, Plaza Bizkaia 48011 Bilbao Spain
| |
Collapse
|
184
|
Gugkaeva ZT, Smol'yakov AF, Maleev VI, Larionov VA. A general asymmetric synthesis of artificial aliphatic and perfluoroalkylated α-amino acids by Luche's cross-electrophile coupling reaction. Org Biomol Chem 2021; 19:5327-5332. [PMID: 34042928 DOI: 10.1039/d1ob00805f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aliphatic artificial α-amino acids (α-AAs) have attracted great interest in biochemistry and pharmacy. In this context, we developed a promising practical protocol for the asymmetric synthesis of these α-AAs through the selective and efficient intermolecular cross-electrophile coupling of Belokon's chiral dehydroalanine Ni(ii) complex with different alkyl and perfluoroalkyl iodides mediated by a dual Zn/Cu system. The reaction afforded diastereomeric complexes with dr up to 21.3 : 1 in 24-95% yields (19 examples). Exemplarily, three enantiomerically pure aliphatic α-AAs were obtained through acidic decomposition of (S,S)-diastereomers of Ni(ii) complexes. Importantly, the chiral auxiliary ligand (S)-BPB ((S)-2-(N-benzylprolyl)aminobenzophenone) was easily recycled by simple filtration after acidic complex decomposition and reused for the synthesis of the initial dehydroalanine Ni(ii) complex.
Collapse
Affiliation(s)
- Zalina T Gugkaeva
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation.
| | - Alexander F Smol'yakov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation. and Plekhanov Russian University of Economics, Stremyanny per. 36, 117997 Moscow, Russian Federation
| | - Victor I Maleev
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation.
| | - Vladimir A Larionov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation. and Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russian Federation
| |
Collapse
|
185
|
Regiodivergent Biocatalytic Hydroxylation of L-Glutamine Facilitated by Characterization of Non-Heme Dioxygenases from Non-Ribosomal Peptide Biosyntheses. Tetrahedron 2021; 90. [PMID: 34366493 DOI: 10.1016/j.tet.2021.132190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We report the functional characterization of two iron- and α-ketoglutarate-dependent dioxygenases that are capable of hydroxylating free-standing glutamine at its C3 and C4 position respectively. In particular, the C4 hydroxylase, Q4Ox, catalyzes the reaction with approximately 4,300 total turnover numbers, facilitating synthesis of a solid-phase compatible building block and stereochemical elucidation at the C4 position of the hydroxylated product. This work will enable the development of novel synthetic strategies to prepare useful glutamine derivatives and stimulate further discoveries of new amino acid hydroxylases with distinct substrate specificities.
Collapse
|
186
|
Mkrtchyan AF, Paloyan AM, Hayriyan LA, Sargsyan AS, Tovmasyan AS, Karapetyan AJ, Hambardzumyan AA, Hovhannisyan NA, Panosyan HA, Khachatryan HN, Dadayan AS, Saghyan AS. Synthesis of enantiomerically enriched non-protein α-amino acids and their study as aldose reductase inhibitors. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1887258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Anna F. Mkrtchyan
- Institute of Pharmacy, Yerevan State University, Yerevan, Armenia
- Scientific and Production Center, Armbiotechnology” of NAS RA, Yerevan, Armenia
| | - Ani M. Paloyan
- Scientific and Production Center, Armbiotechnology” of NAS RA, Yerevan, Armenia
| | - Liana A. Hayriyan
- Scientific and Production Center, Armbiotechnology” of NAS RA, Yerevan, Armenia
| | - Armen S. Sargsyan
- Institute of Pharmacy, Yerevan State University, Yerevan, Armenia
- Scientific and Production Center, Armbiotechnology” of NAS RA, Yerevan, Armenia
| | - Anna S. Tovmasyan
- Institute of Pharmacy, Yerevan State University, Yerevan, Armenia
- Scientific and Production Center, Armbiotechnology” of NAS RA, Yerevan, Armenia
| | - Ani J. Karapetyan
- Institute of Pharmacy, Yerevan State University, Yerevan, Armenia
- Scientific and Production Center, Armbiotechnology” of NAS RA, Yerevan, Armenia
| | | | - Nelli A. Hovhannisyan
- Institute of Pharmacy, Yerevan State University, Yerevan, Armenia
- Scientific and Production Center, Armbiotechnology” of NAS RA, Yerevan, Armenia
| | - Henrik A. Panosyan
- Scientific and Technological Center of Organic and Pharmaceutical Chemistry of NAS RA, Yerevan, Armenia
| | | | - Ani S. Dadayan
- Institute of Pharmacy, Yerevan State University, Yerevan, Armenia
- Scientific and Production Center, Armbiotechnology” of NAS RA, Yerevan, Armenia
| | - Ashot S. Saghyan
- Institute of Pharmacy, Yerevan State University, Yerevan, Armenia
- Scientific and Production Center, Armbiotechnology” of NAS RA, Yerevan, Armenia
| |
Collapse
|
187
|
Bresciani G, Zacchini S, Famlonga L, Pampaloni G, Marchetti F. Trapping carbamates of α-Amino acids: One-Pot and catalyst-free synthesis of 5-Aryl-2-Oxazolidinonyl derivatives. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
188
|
Development of a versatile and efficient C–N lyase platform for asymmetric hydroamination via computational enzyme redesign. Nat Catal 2021. [DOI: 10.1038/s41929-021-00604-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
189
|
Furniel LG, Echemendía R, Burtoloso ACB. Cooperative copper-squaramide catalysis for the enantioselective N-H insertion reaction with sulfoxonium ylides. Chem Sci 2021; 12:7453-7459. [PMID: 34163835 PMCID: PMC8171336 DOI: 10.1039/d1sc00979f] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/24/2021] [Indexed: 12/14/2022] Open
Abstract
The first examples of a highly efficient and enantioselective carbene-mediated insertion reaction, from a sulfur ylide, are described. By way of a catalytic asymmetric insertion reaction into N-H bonds from carbonyl sulfoxonium ylides and anilines, using a copper-bifunctional squaramide cooperative catalysis approach, thirty-seven α-arylglycine esters were synthesized in enantiomeric ratios up to 92 : 8 (99 : 1 after a single recrystallization) and reaction yields ranging between 49-96%. Furthermore, the protocol benefits from quick reaction times and is conducted in a straightforward manner.
Collapse
Affiliation(s)
- Lucas G Furniel
- São Carlos Institute of Chemistry, University of São Paulo São Carlos SP CEP 13560-970 Brazil
| | - Radell Echemendía
- São Carlos Institute of Chemistry, University of São Paulo São Carlos SP CEP 13560-970 Brazil
| | - Antonio C B Burtoloso
- São Carlos Institute of Chemistry, University of São Paulo São Carlos SP CEP 13560-970 Brazil
| |
Collapse
|
190
|
Bazkiaei AR, Wiseman M, Findlater M. Iron-catalysed hydroboration of non-activated imines and nitriles: kinetic and mechanistic studies. RSC Adv 2021; 11:15284-15289. [PMID: 35424078 PMCID: PMC8698235 DOI: 10.1039/d1ra02001c] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Iron-catalysed hydroboration of imines and nitriles has been developed under low catalyst loading (1 mol%) in the presence of HBpin. A wide scope of substrate was found to smoothly undergo hydroboration, including electron releasing/withdrawing and halogen substitution patterns and cyclic substrates which all afforded the corresponding amines in good to excellent yields. Dihydroboration of nitriles was achieved conveniently under solvent free and additive free conditions. Promisingly, this catalytic system is also capable of the hydroboration of challenging ketimine substrates. Preliminary kinetic analysis of imine hydroboration reveals a first-order dependence on catalyst concentration. Both HBpin and 4-fluorophenyl-N-phenylmethanimine (1b) appear to exhibit saturation kinetics with first order dependence up to 0.5 mmol HBpin and 0.75 mmol imine, respectively. Temperature-dependent rate experiments for imine hydroboration have also been explored. Activation parameters for the hydroboration of FPhC[double bond, length as m-dash]NPh (1b) were determined from the Eyring and Arrhenius plots with ΔS ≠, ΔH ≠, and E a values of -28.69 (±0.3) e.u., 12.95 (±0.04) kcal mol-1, and 15.22 (±0.09) kcal mol-1, respectively.
Collapse
Affiliation(s)
| | - Michael Wiseman
- Department of Chemistry & Biochemistry, Texas Tech University Lubbock Texas 79409 USA
| | - Michael Findlater
- Department of Chemistry & Biochemistry, Texas Tech University Lubbock Texas 79409 USA
| |
Collapse
|
191
|
Han J, Konno H, Sato T, Soloshonok VA, Izawa K. Tailor-made amino acids in the design of small-molecule blockbuster drugs. Eur J Med Chem 2021; 220:113448. [PMID: 33906050 DOI: 10.1016/j.ejmech.2021.113448] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
The role of amino acids (AAs) in modern health industry is well-appreciated. Residues of individual AAs, or their chemical modifications, such as diamines and amino alcohols, are frequently found in the structures of modern pharmaceuticals. The goal of this review article, is to emphasize that, currently, tailor-made AAs serve as key structural features in many most successful pharmaceuticals, so-called blockbuster drugs. In the present article, we profile 14 small-molecule drugs, underscoring the breadth of structural variety of AAs applications in numerous therapeutic areas. For each compound, we provide spectrum of biological activity, medicinal chemistry discovery, and synthetic approaches.
Collapse
Affiliation(s)
- Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, 992-8510, Japan
| | - Tatsunori Sato
- Hamari Chemicals Ltd., 1-19-40, Nankokita, Suminoe-ku, Osaka, 559-0034, Japan
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013, Bilbao, Spain.
| | - Kunisuke Izawa
- Hamari Chemicals Ltd., 1-19-40, Nankokita, Suminoe-ku, Osaka, 559-0034, Japan.
| |
Collapse
|
192
|
Inokuma T. Synthesis of Non-canonical Amino Acids and Peptide Containing Them for Establishment of the Template for Drug Discovery. Chem Pharm Bull (Tokyo) 2021; 69:303-313. [PMID: 33790076 DOI: 10.1248/cpb.c21-00031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Non-canonical amino acid derivatives are an attractive scaffold for novel drug candidates. Among the methods used to prepare this motif, the asymmetric Mannich-type reaction of α-imino carboxylic acid derivatives is a preeminent strategy because a wide variety of non-canonical amino acids can be accessed by changing only the nucleophile. Preparing the common substrate is difficult, however, which makes this method problematic. We developed a convenient method for synthesizing common substrates using MnO2-mediated oxidation of stable precursors. Peptides bearing non-canonical amino acids are another attractive synthetic target. We propose a new approach for synthesizing non-canonical amino acid-containing peptides by directly applying various organic reactions to peptidic substrates. Using hydrophobic anchor-supported peptides, we directly applied ring-closing metathesis and asymmetric Friedel-Crafts reactions to peptidic substrates. We also developed a novel recyclable organocatalyst according to the nature of the hydrophobic anchor tagged compound.
Collapse
Affiliation(s)
- Tsubasa Inokuma
- Graduate School of Biomedical Sciences, Tokushima University
| |
Collapse
|
193
|
Jia YY, Xie YL, Yang LL, Shi HL, Lu YF, Zhang SP, Tang CD, Yao LG, Kan YC. Expression of Novel L-Leucine Dehydrogenase and High-Level Production of L-Tert-Leucine Catalyzed by Engineered Escherichia coli. Front Bioeng Biotechnol 2021; 9:655522. [PMID: 33859982 PMCID: PMC8042219 DOI: 10.3389/fbioe.2021.655522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/05/2021] [Indexed: 11/29/2022] Open
Abstract
Leucine dehydrogenase (LDH) is a NAD+-dependent oxidoreductase, which can selectively catalyze α-keto acids to obtain α-amino acids and their derivatives. It plays a key role in the biosynthesis of L-tert-leucine (L-Tle). As a non-naturally chiral amino acid, L-Tle can be used as an animal feed additive, nutrition fortifier, which is a perspective and important building block in the pharmaceutical, cosmetic, and food additive industry. In this study, four hypothetical leucine dehydrogenases were discovered by using genome mining technology, using the highly active leucine dehydrogenase LsLeuDH as a probe. These four leucine dehydrogenases were expressed in Escherichia coli BL21(DE3), respectively, and purified to homogeneity and characterized. Compared with the other enzymes, the specific activity of PfLeuDH also shows stronger advantage. In addition, the highly selective biosynthesis of L-Tle from trimethylpyruvic acid (TMP) was successfully carried out by whole-cell catalysis using engineered E. coli cells as biocatalyst, which can efficiently coexpress leucine dehydrogenase and formate dehydrogenase. One hundred-millimolar TMP was catalyzed for 25 h, and the yield and space-time yield of L-Tle reached 87.38% (e.e. >99.99%) and 10.90 g L–1 day–1. In short, this research has initially achieved the biosynthesis of L-Tle, laying a solid foundation for the realization of low-cost and large-scale biosynthesis of L-Tle.
Collapse
Affiliation(s)
- Yuan-Yuan Jia
- Henan Provincial Engineering Laboratory of Insect Bio-reactor, Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North, Nanyang Normal University, Nanyang, China.,School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Yu-Li Xie
- Henan Provincial Engineering Laboratory of Insect Bio-reactor, Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North, Nanyang Normal University, Nanyang, China.,School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Lu-Lu Yang
- Henan Provincial Engineering Laboratory of Insect Bio-reactor, Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North, Nanyang Normal University, Nanyang, China.,School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Hong-Ling Shi
- Henan Provincial Engineering Laboratory of Insect Bio-reactor, Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North, Nanyang Normal University, Nanyang, China.,School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Yun-Feng Lu
- Henan Provincial Engineering Laboratory of Insect Bio-reactor, Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North, Nanyang Normal University, Nanyang, China.,School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Si-Pu Zhang
- Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Cun-Duo Tang
- Henan Provincial Engineering Laboratory of Insect Bio-reactor, Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North, Nanyang Normal University, Nanyang, China.,School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Lun-Guang Yao
- Henan Provincial Engineering Laboratory of Insect Bio-reactor, Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North, Nanyang Normal University, Nanyang, China.,School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Yun-Chao Kan
- Henan Provincial Engineering Laboratory of Insect Bio-reactor, Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North, Nanyang Normal University, Nanyang, China
| |
Collapse
|
194
|
Saur JS, Wirtz SN, Schilling NA, Krismer B, Peschel A, Grond S. Distinct Lugdunins from a New Efficient Synthesis and Broad Exploitation of Its MRSA-Antimicrobial Structure. J Med Chem 2021; 64:4034-4058. [PMID: 33779184 DOI: 10.1021/acs.jmedchem.0c02170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A new solid-phase peptide synthesis and bioprofiling of the antimicrobial activity of lugdunin, a fibupeptide, enable a comprehensive structure-activity relationship (SAR) study (MRSA Staphylococcus aureus). Distinct lugdunin analogues with variation of the three important amino acids Val2, Trp3, and Leu4 are readily available based on the established high-output synthesis. This efficient synthesis concept takes advantage of the presynthesized thiazolidine building block. To gain further knowledge of SAR, d-Val2, and d-Leu4 were replaced with aliphatic amino acids. For l-Trp3 derivatization, a set of non-natural aromatic amino acids with manifold substitution and annulation patterns precisely shows structural imperatives, starting from the exchange of d-Val6 → d-Trp6 with a 2-fold improved biological activity. d-Trp6-lugdunin analogues with additional variation of d-Val2 and d-Leu4 residues were designed and synthesized followed by antimicrobial profiling. For the first time, these SAR studies deliver valuable information on the tolerance of other amino acids to d-Val2, l-Trp3, and d-Leu4 in the sequence of lugdunin.
Collapse
Affiliation(s)
- Julian S Saur
- Institute of Organic Chemistry, Eberhard Karls University Tuebingen, Auf der Morgenstelle 18, 72076 Tuebingen, Germany
| | - Sebastian N Wirtz
- Institute of Organic Chemistry, Eberhard Karls University Tuebingen, Auf der Morgenstelle 18, 72076 Tuebingen, Germany
| | - Nadine A Schilling
- Institute of Organic Chemistry, Eberhard Karls University Tuebingen, Auf der Morgenstelle 18, 72076 Tuebingen, Germany
| | - Bernhard Krismer
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Eberhard Karls University Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany.,Interfaculty Institute of Microbiology and Infection Medicine, German Center for Infection Research (DZIF), Eberhard Karls University Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany.,German Center for Infection Research (DZIF), Eberhard Karls University Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| | - Andreas Peschel
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Eberhard Karls University Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany.,Interfaculty Institute of Microbiology and Infection Medicine, German Center for Infection Research (DZIF), Eberhard Karls University Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany.,German Center for Infection Research (DZIF), Eberhard Karls University Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| | - Stephanie Grond
- Institute of Organic Chemistry, Eberhard Karls University Tuebingen, Auf der Morgenstelle 18, 72076 Tuebingen, Germany.,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Eberhard Karls University Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| |
Collapse
|
195
|
Wang X, Chen Y, Song H, Liu Y, Wang Q. Synthesis of Unnatural α-Amino Acids via Photoinduced Decatungstate-Catalyzed Giese Reactions of Aldehydes. Org Lett 2021; 23:2199-2204. [DOI: 10.1021/acs.orglett.1c00345] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xinmou Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Yuming Chen
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, People’s Republic of China
| |
Collapse
|
196
|
Shatskiy A, Axelsson A, Stepanova EV, Liu JQ, Temerdashev AZ, Kore BP, Blomkvist B, Gardner JM, Dinér P, Kärkäs MD. Stereoselective synthesis of unnatural α-amino acid derivatives through photoredox catalysis. Chem Sci 2021; 12:5430-5437. [PMID: 34168785 PMCID: PMC8179686 DOI: 10.1039/d1sc00658d] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
A protocol for stereoselective C-radical addition to a chiral glyoxylate-derived N-sulfinyl imine was developed through visible light-promoted photoredox catalysis, providing a convenient method for the synthesis of unnatural α-amino acids. The developed protocol allows the use of ubiquitous carboxylic acids as radical precursors without prior derivatization. The protocol utilizes near-stoichiometric amounts of the imine and the acid radical precursor in combination with a catalytic amount of an organic acridinium-based photocatalyst. Alternative mechanisms for the developed transformation are discussed and corroborated by experimental and computational studies.
Collapse
Affiliation(s)
- Andrey Shatskiy
- Division of Organic Chemistry, Department of Chemistry, KTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Anton Axelsson
- Division of Organic Chemistry, Department of Chemistry, KTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Elena V Stepanova
- Tomsk Polytechnic University Lenin Avenue 30 634050 Tomsk Russia
- Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences Leninsky Prospect 47 119991 Moscow Russia
| | - Jian-Quan Liu
- Division of Organic Chemistry, Department of Chemistry, KTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Azamat Z Temerdashev
- Department of Analytical Chemistry, Kuban State University Stavropolskaya St. 149 350040 Krasnodar Russia
| | - Bhushan P Kore
- Division of Applied Physical Chemistry, Department of Chemistry, KTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Björn Blomkvist
- Division of Organic Chemistry, Department of Chemistry, KTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - James M Gardner
- Division of Applied Physical Chemistry, Department of Chemistry, KTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Peter Dinér
- Division of Organic Chemistry, Department of Chemistry, KTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Markus D Kärkäs
- Division of Organic Chemistry, Department of Chemistry, KTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| |
Collapse
|
197
|
Szabo M, Kowalczyk W, Tarasova A, Andrade J, Be CL, Mulder R, White J, Meyer AG, Schwab KE, Cartledge K, Le TC, Arachchilage AW, Wang X, Hoffman R, Nilsson SK, Haylock DN, Winkler DA. Potent In Vitro Peptide Antagonists of the Thrombopoietin Receptor as Potential Myelofibrosis Drugs. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Monika Szabo
- CSIRO Manufacturing Research Way Clayton 3168 Australia
| | | | - Anna Tarasova
- CSIRO Manufacturing Research Way Clayton 3168 Australia
| | | | - Cheang Ly Be
- CSIRO Manufacturing Research Way Clayton 3168 Australia
| | - Roger Mulder
- CSIRO Manufacturing Research Way Clayton 3168 Australia
| | - Jacinta White
- CSIRO Manufacturing Research Way Clayton 3168 Australia
| | - Adam G. Meyer
- CSIRO Manufacturing Research Way Clayton 3168 Australia
| | | | | | - Tu C. Le
- School of Engineering RMIT University Melbourne 3000 Australia
| | | | - Xiaoli Wang
- Icahn School of Medicine Mt Sinai School of Medicine New York NY 10029 USA
| | - Ronald Hoffman
- Icahn School of Medicine Mt Sinai School of Medicine New York NY 10029 USA
| | - Susan K. Nilsson
- CSIRO Manufacturing Research Way Clayton 3168 Australia
- Australian Regenerative Medicine Institute Monash University Melbourne 3800 Australia
| | - David N. Haylock
- La Trobe Institute for Molecular Science La Trobe University Kingsbury Drive Bundoora 3086 Australia
| | - David A. Winkler
- CSIRO Manufacturing Research Way Clayton 3168 Australia
- La Trobe Institute for Molecular Science La Trobe University Kingsbury Drive Bundoora 3086 Australia
- Monash Institute of Pharmaceutical Sciences Monash University 392 Royal Parade Parkville 3052 Australia
- School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| |
Collapse
|
198
|
Davison RT, Parker PD, Hou X, Chung CP, Augustine SA, Dong VM. Enantioselective Addition of α-Nitroesters to Alkynes. Angew Chem Int Ed Engl 2021; 60:4599-4603. [PMID: 33411337 DOI: 10.1002/anie.202014015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/16/2020] [Indexed: 11/11/2022]
Abstract
By using Rh-H catalysis, we couple α-nitroesters and alkynes to prepare α-amino-acid precursors. This atom-economical strategy generates two contiguous stereocenters, with high enantio- and diastereocontrol. In this transformation, the alkyne undergoes isomerization to generate a RhIII -π-allyl electrophile, which is trapped by an α-nitroester nucleophile. A subsequent reduction with In powder transforms the allylic α-nitroesters to the corresponding α,α-disubstituted α-amino esters.
Collapse
Affiliation(s)
- Ryan T Davison
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Patrick D Parker
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Xintong Hou
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Crystal P Chung
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Sara A Augustine
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Vy M Dong
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
199
|
Torres MDT, Cao J, Franco OL, Lu TK, de la Fuente-Nunez C. Synthetic Biology and Computer-Based Frameworks for Antimicrobial Peptide Discovery. ACS NANO 2021; 15:2143-2164. [PMID: 33538585 PMCID: PMC8734659 DOI: 10.1021/acsnano.0c09509] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Antibiotic resistance is one of the greatest challenges of our time. This global health problem originated from a paucity of truly effective antibiotic classes and an increased incidence of multi-drug-resistant bacterial isolates in hospitals worldwide. Indeed, it has been recently estimated that 10 million people will die annually from drug-resistant infections by the year 2050. Therefore, the need to develop out-of-the-box strategies to combat antibiotic resistance is urgent. The biological world has provided natural templates, called antimicrobial peptides (AMPs), which exhibit multiple intrinsic medical properties including the targeting of bacteria. AMPs can be used as scaffolds and, via engineering, can be reconfigured for optimized potency and targetability toward drug-resistant pathogens. Here, we review the recent development of tools for the discovery, design, and production of AMPs and propose that the future of peptide drug discovery will involve the convergence of computational and synthetic biology principles.
Collapse
Affiliation(s)
- Marcelo D T Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jicong Cao
- Synthetic Biology Group, MIT Synthetic Biology Center, Department of Biological Engineering and Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Octavio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, DF 70790160, Brazil
- S-inova Biotech, Universidade Católica Dom Bosco, Campo Grande, MS 79117010, Brazil
| | - Timothy K Lu
- Synthetic Biology Group, MIT Synthetic Biology Center, Department of Biological Engineering and Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
200
|
Wątły J, Miller A, Kozłowski H, Rowińska-Żyrek M. Peptidomimetics - An infinite reservoir of metal binding motifs in metabolically stable and biologically active molecules. J Inorg Biochem 2021; 217:111386. [PMID: 33610030 DOI: 10.1016/j.jinorgbio.2021.111386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/14/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022]
Abstract
The involvement of metal ions in interactions with therapeutic peptides is inevitable. They are one of the factors able to fine-tune the biological properties of antimicrobial peptides, a promising group of drugs with one large drawback - a problematic metabolic stability. Appropriately chosen, proteolytically stable peptidomimetics seem to be a reasonable solution of the problem, and the use of D-, β-, γ-amino acids, unnatural amino acids, azapeptides, peptoids, cyclopeptides and dehydropeptides is an infinite reservoir of metal binding motifs in metabolically stable, well-designed, biologically active molecules. Below, their specific structural features, metal-chelating abilities and antimicrobial potential are discussed.
Collapse
Affiliation(s)
- Joanna Wątły
- Faculty of Chemistry, University of Wroclaw, Joliot - Curie 14, Wroclaw 50-383, Poland.
| | - Adriana Miller
- Faculty of Chemistry, University of Wroclaw, Joliot - Curie 14, Wroclaw 50-383, Poland
| | - Henryk Kozłowski
- Faculty of Chemistry, University of Wroclaw, Joliot - Curie 14, Wroclaw 50-383, Poland; Department of Health Sciences, University of Opole, Katowicka 68, Opole 45-060, Poland
| | | |
Collapse
|