151
|
Puts CF, Holthuis JCM. Mechanism and significance of P4 ATPase-catalyzed lipid transport: lessons from a Na+/K+-pump. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:603-11. [PMID: 19233312 DOI: 10.1016/j.bbalip.2009.02.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 02/07/2009] [Accepted: 02/10/2009] [Indexed: 11/19/2022]
Abstract
Members of the P(4) subfamily of P-type ATPases are believed to catalyze phospholipid transport across membrane bilayers, a process influencing a host of cellular functions. Atomic structures and functional analysis of P-type ATPases that pump small cations and metal ions revealed a transport mechanism that appears to be conserved throughout the family. A challenging problem is to understand how this mechanism is adapted in P(4) ATPases to flip phospholipids. P(4) ATPases form oligomeric complexes with members of the CDC50 protein family. While formation of these complexes is required for P(4) ATPase export from the endoplasmic reticulum, little is known about the functional role of the CDC50 subunits. The Na(+)/K(+)-ATPase and closely-related H(+)/K(+)-ATPase are the only other P-type pumps that are oligomeric, comprising mandatory beta-subunits that are strikingly reminiscent of CDC50 proteins. Besides serving a role in the functional maturation of the catalytic alpha-subunit, the beta-subunit also contributes specifically to intrinsic transport properties of the Na(+)/K(+) pump. As beta-subunits and CDC50 proteins likely adopted similar structures to accomplish analogous tasks, current knowledge of the Na(+)/K(+)-ATPase provides a useful guide for understanding the inner workings of the P(4) ATPase class of lipid pumps.
Collapse
Affiliation(s)
- Catheleyne F Puts
- Membrane Enzymology, Bijvoet Center and Institute of Biomembranes, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | |
Collapse
|
152
|
Grycova L, Sklenovsky P, Lansky Z, Janovska M, Otyepka M, Amler E, Teisinger J, Kubala M. ATP and magnesium drive conformational changes of the Na+/K+-ATPase cytoplasmic headpiece. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1081-91. [PMID: 19232513 DOI: 10.1016/j.bbamem.2009.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 01/16/2009] [Accepted: 02/03/2009] [Indexed: 10/21/2022]
Abstract
Conformational changes of the Na(+)/K(+)-ATPase isolated large cytoplasmic segment connecting transmembrane helices M4 and M5 (C45) induced by the interaction with enzyme ligands (i.e. Mg(2+) and/or ATP) were investigated by means of the intrinsic tryptophan fluorescence measurement and molecular dynamic simulations. Our data revealed that this model system consisting of only two domains retained the ability to adopt open or closed conformation, i.e. behavior, which is expected from the crystal structures of relative Ca(2+)-ATPase from sarco(endo)plasmic reticulum for the corresponding part of the entire enzyme. Our data revealed that the C45 is found in the closed conformation in the absence of any ligand, in the presence of Mg(2+) only, or in the simultaneous presence of Mg(2+) and ATP. Binding of the ATP alone (i.e. in the absence of Mg(2+)) induced open conformation of the C45. The fact that the transmembrane part of the enzyme was absent in our experiments suggested that the observed conformational changes are consequences only of the interaction with ATP or Mg(2+) and may not be related to the transported cations binding/release, as generally believed. Our data are consistent with the model, where ATP binding to the low-affinity site induces conformational change of the cytoplasmic part of the enzyme, traditionally attributed to E2-->E1 transition, and subsequent Mg(2+) binding to the enzyme-ATP complex induces in turn conformational change traditionally attributed to E1-->E2 transition.
Collapse
Affiliation(s)
- Lenka Grycova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Vídenská 1083, 14220 Prague 4, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
153
|
Abstract
PURPOSE OF REVIEW Na,K-ATPase is an oligomeric protein composed of alpha subunits, beta subunits and FXYD proteins. The catalytic alpha subunit hydrolyzes ATP and transports the cations. Increasing experimental evidence suggest that beta subunits and FXYD proteins essentially contribute to the variable physiological needs of Na,K-ATPase function in different tissues. RECENT FINDINGS Beta subunits have a crucial role in the structural and functional maturation of Na,K-ATPase and modulate its transport properties. The chaperone function of the beta subunit is essential, for example, in the formation of tight junctions and cell polarity. Recent studies suggest that beta subunits also have inherent functions, which are independent of Na,K-ATPase activity and which may be involved in cell-cell adhesiveness and in suppression of cell motility. As for FXYD proteins, they modulate Na,K-ATPase activity in a tissue-specific way, in some cases in close cooperation with posttranslational modifications such as phosphorylation. SUMMARY A better understanding of the multiple functional roles of the accessory subunits of Na,K-ATPase is crucial to appraise their influence on physiological processes and their implication in pathophysiological states.
Collapse
|
154
|
Bibert S, Aebischer D, Desgranges F, Roy S, Schaer D, Kharoubi-Hess S, Horisberger JD, Geering K. A link between FXYD3 (Mat-8)-mediated Na,K-ATPase regulation and differentiation of Caco-2 intestinal epithelial cells. Mol Biol Cell 2008; 20:1132-40. [PMID: 19109419 DOI: 10.1091/mbc.e08-10-0999] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
FXYD3 (Mat-8) proteins are regulators of Na,K-ATPase. In normal tissue, FXYD3 is mainly expressed in stomach and colon, but it is also overexpressed in cancer cells, suggesting a role in tumorogenesis. We show that FXYD3 silencing has no effect on cell proliferation but promotes cell apoptosis and prevents cell differentiation of human colon adenocarcinoma cells (Caco-2), which is reflected by a reduction in alkaline phosphatase and villin expression, a change in several other differentiation markers, and a decrease in transepithelial resistance. Inhibition of cell differentiation in FXYD3-deficient cells is accompanied by an increase in the apparent Na+ and K+ affinities of Na,K-ATPase, reflecting the absence of Na,K-pump regulation by FXYD3. In addition, we observe a decrease in the maximal Na,K-ATPase activity due to a decrease in its turnover number, which correlates with a change in Na,K-ATPase isozyme expression that is characteristic of cancer cells. Overall, our results suggest an important role of FXYD3 in cell differentiation of Caco-2 cells. One possibility is that FXYD3 silencing prevents proper regulation of Na,K-ATPase, which leads to perturbation of cellular Na+ and K+ homeostasis and changes in the expression of Na,K-ATPase isozymes, whose functional properties are incompatible with Caco-2 cell differentiation.
Collapse
Affiliation(s)
- Stéphanie Bibert
- Department of Pharmacology, University of Lausanne, 1005 Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
155
|
Helguera G, Eghbali M, Sforza D, Minosyan TY, Toro L, Stefani E. Changes in global gene expression in rat myometrium in transition from late pregnancy to parturition. Physiol Genomics 2008; 36:89-97. [PMID: 19001510 DOI: 10.1152/physiolgenomics.00290.2007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The process of parturition involves the complex interplay of factors that change the excitability and contractile activity of the uterus. We have compared the relative gene expression profile of myometrium from rats before parturition (21 days pregnant) and during delivery, using high-density DNA microarray. Of 8,740 sequences available in the array, a total of 3,782 were detected as present. From the sequences that were significantly altered, 59 genes were upregulated and 82 genes were downregulated. We were able to detect changes in genes described to have altered expression level at term, including connexin 43 and 26, cyclooxygenase 2, and oxytocin receptor, as well as novel genes that have been not previously associated with parturition. Quantitative real-time PCR on selected genes further confirmed the microarray data. Here we report for the first time that aquaporin5 (AQP5), a member of the aquaporin water channel family, was dramatically downregulated during parturition (approximately 100-fold by microarray and approximately 50-fold by real-time PCR). The emerging profile highlights biochemical cascades occurring in a period of approximately 36 h that trigger parturition and the initiation of myometrium reverse remodeling postpartum. The microarray analysis uncovered genes that were previously suspected to play a role in parturition. This regulation involves genes from immune/inflammatory response, steroid/lipid metabolism, calcium homeostasis, cell volume regulation, cell signaling, cell division, and tissue remodeling, suggesting the presence of multiple and redundant mechanisms altered in the process of birth.
Collapse
Affiliation(s)
- Gustavo Helguera
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA 90095-7115, USA
| | | | | | | | | | | |
Collapse
|
156
|
Vagin O, Kraut JA, Sachs G. Role of N-glycosylation in trafficking of apical membrane proteins in epithelia. Am J Physiol Renal Physiol 2008; 296:F459-69. [PMID: 18971212 DOI: 10.1152/ajprenal.90340.2008] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Polarized distribution of plasma membrane transporters and receptors in epithelia is essential for vectorial functions of epithelia. This polarity is maintained by sorting of membrane proteins into apical or basolateral transport containers in the trans-Golgi network and/or endosomes followed by their delivery to the appropriate plasma membrane domains. Sorting depends on the recognition of sorting signals in proteins by specific sorting machinery. In the present review, we summarize experimental evidence for and against the hypothesis that N-glycans attached to the membrane proteins can act as apical sorting signals. Furthermore, we discuss the roles of N-glycans in the apical sorting event per se and their contribution to folding and quality control of glycoproteins in the endoplasmic reticulum or retention of glycoproteins in the plasma membrane. Finally, we review existing hypotheses on the mechanism of apical sorting and discuss the potential roles of the lectins, VIP36 and galectin-3, as putative apical sorting receptors.
Collapse
Affiliation(s)
- Olga Vagin
- Department of Physiology, David Geffen School of Medicine at University of California, Bldg. 113, Rm. 324, 11301 Wilshire Blvd., Los Angeles, California 90073, USA.
| | | | | |
Collapse
|
157
|
Capendeguy O, Iwaszkiewicz J, Michielin O, Horisberger JD. The Fourth Extracellular Loop of the α Subunit of Na,K-ATPase. J Biol Chem 2008; 283:27850-27858. [DOI: 10.1074/jbc.m802194200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
158
|
Faller LD. Mechanistic studies of sodium pump. Arch Biochem Biophys 2008; 476:12-21. [PMID: 18558080 DOI: 10.1016/j.abb.2008.05.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 05/22/2008] [Accepted: 05/23/2008] [Indexed: 11/27/2022]
Abstract
Sodium pump was the first ion pump discovered. A member of the family of active transporters that catalyze adenosine 5'-triphosphate hydrolysis by forming a phosphorylated enzyme intermediate, sodium pump couples the energy released to unequal countertransport of sodium and potassium ions. The ion gradient generated by the pump is important for a variety of secondary physiological processes ranging from metabolite transport to electrical excitation of nerve and muscle. Selected experiments relating structure to function are reviewed.
Collapse
Affiliation(s)
- Larry D Faller
- University of California at Los Angeles and Veterans Administration Greater Los Angeles Health Care System, Los Angeles, CA 90073, USA.
| |
Collapse
|
159
|
Kurihara K, Nakanishi N, Amano O, Tonosaki K. Expression of Na(+)/K(+)-ATPase alpha subunit isoforms in rat salivary glands: occurrence of sense and antisense RNAs of the alpha3 isoform in the sublingual gland. Arch Oral Biol 2008; 53:593-604. [PMID: 18304517 DOI: 10.1016/j.archoralbio.2008.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 12/22/2007] [Accepted: 01/14/2008] [Indexed: 11/18/2022]
Abstract
We examined the expression of Na(+)/K(+)-ATPase alpha-subunit isoforms in rat salivary glands by RT-PCR. Isoform alpha1 was expressed strongly in all three major salivary glands. The alpha2 isoform was expressed in both submandibular gland (SMG) and sublingual gland (SLG) but faintly in the parotid gland (PG). The alpha3 was detected only in the SLG, and the alpha3 mRNA in the SLG was 1/8 of its level in the brain. Na(+)/K(+)-ATPase alpha3 isoform in the SLG, was localized predominantly on the basolateral plasma membranes in serous cells by immunohistochemical method. We also found the presence of natural antisense RNA of the alpha3 isoform in rat SLG: the 1st-strand cDNA prepared with gene-specific forward primers targeted to the CDS region and to the promoter region of the alpha3 gene in place of oligo(dT) or gene-specific reverse primers produced reasonable PCR products corresponding to the alpha3 cDNA sequence by the subsequent PCR reaction. Synthesis of the 1st-strand cDNA with the gene-specific forward primers was prevented by RNase digestion of the total RNA preparation, indicating that the PCR products in the RT-PCR system were not due to the contaminated genomic DNA, if any. The alpha3 protein level in rat SLG increased with aging, and levels of both alpha3 mRNA (sense RNA) and alpha3 antisense RNA were higher in SLGs of aged rats than in those of young rats, respectively.
Collapse
Affiliation(s)
- Kinji Kurihara
- Division of Physiology, Meikai University, School of Dentistry, Sakado, Saitama, Japan.
| | | | | | | |
Collapse
|
160
|
Poulsen LR, López-Marqués RL, McDowell SC, Okkeri J, Licht D, Schulz A, Pomorski T, Harper JF, Palmgren MG. The Arabidopsis P4-ATPase ALA3 localizes to the golgi and requires a beta-subunit to function in lipid translocation and secretory vesicle formation. THE PLANT CELL 2008; 20:658-76. [PMID: 18344284 PMCID: PMC2329932 DOI: 10.1105/tpc.107.054767] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 01/21/2008] [Accepted: 02/25/2008] [Indexed: 05/22/2023]
Abstract
Vesicle budding in eukaryotes depends on the activity of lipid translocases (P(4)-ATPases) that have been implicated in generating lipid asymmetry between the two leaflets of the membrane and in inducing membrane curvature. We show that Aminophospholipid ATPase3 (ALA3), a member of the P(4)-ATPase subfamily in Arabidopsis thaliana, localizes to the Golgi apparatus and that mutations of ALA3 result in impaired growth of roots and shoots. The growth defect is accompanied by failure of the root cap to release border cells involved in the secretion of molecules required for efficient root interaction with the environment, and ala3 mutants are devoid of the characteristic trans-Golgi proliferation of slime vesicles containing polysaccharides and enzymes for secretion. In yeast complementation experiments, ALA3 function requires interaction with members of a novel family of plant membrane-bound proteins, ALIS1 to ALIS5 (for ALA-Interacting Subunit), and in this host ALA3 and ALIS1 show strong affinity for each other. In planta, ALIS1, like ALA3, localizes to Golgi-like structures and is expressed in root peripheral columella cells. We propose that the ALIS1 protein is a beta-subunit of ALA3 and that this protein complex forms an important part of the Golgi machinery required for secretory processes during plant development.
Collapse
Affiliation(s)
- Lisbeth Rosager Poulsen
- Danish National Research Foundation, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Crystal structure of the sodium-potassium pump. Nature 2008; 450:1043-9. [PMID: 18075585 DOI: 10.1038/nature06419] [Citation(s) in RCA: 655] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2007] [Accepted: 10/26/2007] [Indexed: 12/14/2022]
Abstract
The Na+,K+-ATPase generates electrochemical gradients for sodium and potassium that are vital to animal cells, exchanging three sodium ions for two potassium ions across the plasma membrane during each cycle of ATP hydrolysis. Here we present the X-ray crystal structure at 3.5 A resolution of the pig renal Na+,K+-ATPase with two rubidium ions bound (as potassium congeners) in an occluded state in the transmembrane part of the alpha-subunit. Several of the residues forming the cavity for rubidium/potassium occlusion in the Na+,K+-ATPase are homologous to those binding calcium in the Ca2+-ATPase of sarco(endo)plasmic reticulum. The beta- and gamma-subunits specific to the Na+,K+-ATPase are associated with transmembrane helices alphaM7/alphaM10 and alphaM9, respectively. The gamma-subunit corresponds to a fragment of the V-type ATPase c subunit. The carboxy terminus of the alpha-subunit is contained within a pocket between transmembrane helices and seems to be a novel regulatory element controlling sodium affinity, possibly influenced by the membrane potential.
Collapse
|
162
|
Paulusma CC, Folmer DE, Ho-Mok KS, de Waart DR, Hilarius PM, Verhoeven AJ, Oude Elferink RPJ. ATP8B1 requires an accessory protein for endoplasmic reticulum exit and plasma membrane lipid flippase activity. Hepatology 2008; 47:268-78. [PMID: 17948906 DOI: 10.1002/hep.21950] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
UNLABELLED Mutations in ATP8B1 cause progressive familial intrahepatic cholestasis type 1 and benign recurrent intrahepatic cholestasis type 1. Previously, we have shown in mice that Atp8b1 deficiency leads to enhanced biliary excretion of phosphatidylserine, and we hypothesized that ATP8B1 is a flippase for phosphatidylserine. However, direct evidence for this function is still lacking. In Saccharomyces cerevisiae, members of the Cdc50p/Lem3p family are essential for proper function of the ATP8B1 homologs. We have studied the role of two human members of this family, CDC50A and CDC50B, in the routing and activity of ATP8B1. When only ATP8B1 was expressed in Chinese hamster ovary cells, the protein localized to the endoplasmic reticulum. Coexpression with CDC50 proteins resulted in relocalization of ATP8B1 from the endoplasmic reticulum to the plasma membrane. Only when ATP8B1 was coexpressed with CDC50 proteins was a 250%-500% increase in the translocation of fluorescently labeled phosphatidylserine observed. Importantly, natural phosphatidylserine exposure in the outer leaflet of the plasma membrane was reduced by 17%-25% in cells coexpressing ATP8B1 and CDC50 proteins in comparison with cells expressing ATP8B1 alone. The coexpression of ATP8B1 and CDC50A in WIF-B9 cells resulted in colocalization of both proteins in the canalicular membrane. CONCLUSION Our data indicate that CDC50 proteins are pivotal factors in the trafficking of ATP8B1 to the plasma membrane and thus may be essential determinants of ATP8B1-related disease. In the plasma membrane, ATP8B1 functions as a flippase for phosphatidylserine. Finally, CDC50A may be the potential beta-subunit or chaperone for ATP8B1 in hepatocytes.
Collapse
Affiliation(s)
- Coen C Paulusma
- AMC Liver Center, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
163
|
Ishii K, Nakamura K, Kawaguchi S, Li R, Hirai S, Sakuragi N, Wada T, Kato K, Yamashita T, Hamada H. Selective gene transfer into neurons via Na,K-ATPase β1. Targeting gene transfer with monoclonal antibody and adenovirus vector. J Gene Med 2008; 10:597-609. [DOI: 10.1002/jgm.1164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
164
|
Vagin O, Turdikulova S, Tokhtaeva E. Polarized membrane distribution of potassium-dependent ion pumps in epithelial cells: different roles of the N-glycans of their beta subunits. Cell Biochem Biophys 2007; 47:376-91. [PMID: 17652782 DOI: 10.1007/s12013-007-0033-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 10/23/2022]
Abstract
The Na,K-ATPases and the H,K-ATPases are two potassium-dependent homologous heterodimeric P2-type pumps that catalyze active transport of Na+ in exchange for K+ (Na,K-ATPase) or H+ in exchange for K+ (H,K-ATPase). The ubiquitous Na,K-ATPase maintains intracellular ion balance and membrane potential. The gastric H,K-ATPase is responsible for acid secretion by the parietal cell of the stomach. Both pumps consist of a catalytic alpha-subunit and a glycosylated beta-subunit that is obligatory for normal pump maturation and trafficking. Individual N-glycans linked to the beta-subunits of the Na,K-ATPase and H,K-ATPase are important for stable membrane integration of their respective alpha subunits, folding, stability, subunit assembly, and enzymatic activity of the pumps. They are also essential for the quality control of unassembled beta-subunits that results in either the exit of the subunits from the ER or their ER retention and subsequent degradation. Overall, the importance of N-glycans for the maturation and quality control of the H,K-ATPase is greater than that of the Na,K-ATPase. The roles of individual N-glycans of the beta-subunits in the post-ER trafficking, membrane targeting and plasma membrane retention of the Na,K-ATPase and H,K-ATPase are different. The Na,K-ATPase beta1-subunit is the major beta-subunit isoform in cells with lateral location of the pump. All three N-glycans of the Na,K-ATPase beta1-subunit are important for the lateral membrane retention of the pump due to glycan-mediated interaction between the beta1-subunits of the two neighboring cells in the cell monolayer and cytosolic linkage of the alpha-subunit to the cytoskeleton. This intercellular beta1-beta1 interaction is also important for formation of cell-cell contacts. In contrast, the N-glycans unique to the Na,K-ATPase beta2-subunit,which has up to eight N-glycosylation sites, contain apical sorting information. This is consistent with the apical location of the Na,K-ATPase in normal and malignant epithelial cells with high abundance of the beta2-subunit. Similarly, all seven N-glycans of the gastric H,K-ATPase beta-subunit determine apical sorting of this subunit.
Collapse
Affiliation(s)
- Olga Vagin
- Department of Physiology, School of Medicine, UCLA and Veterans Administration Greater Los Angeles Health Care System, VAGLAHS/West LA, Building 113, Room 324, 11301 Wilshire Blvd, Los Angeles, CA 90073, USA.
| | | | | |
Collapse
|
165
|
Lifshitz Y, Petrovich E, Haviv H, Goldshleger R, Tal DM, Garty H, Karlish SJD. Purification of the human alpha2 Isoform of Na,K-ATPase expressed in Pichia pastoris. Stabilization by lipids and FXYD1. Biochemistry 2007; 46:14937-50. [PMID: 18052210 DOI: 10.1021/bi701812c] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human alpha1 and alpha2 isoforms of Na,K-ATPase have been expressed with porcine 10*Histidine-tagged beta1 subunit in Pichia pastoris. Methanol-induced expression of alpha2 is optimal at 20 degrees C, whereas at 25 degrees C, which is optimal for expression of alpha1, alpha2 is not expressed. Detergent-soluble alpha2beta1 and alpha1beta1 complexes have been purified in a stable and functional state. alpha2beta1 shows a somewhat lower Na,K-ATPase activity and higher K0.5K compared to alpha1beta1, while values of K0.5Na and KmATP are similar. Ouabain inhibits both alpha1beta1 (K0.5 24.6 +/- 6 nM) and alpha2beta1 (K0.5 102 +/- 14 nM) with high affinity. A striking difference between the isoforms is that alpha2beta1 is unstable. Both alpha1beta1 and alpha2beta1 complexes, prepared in C12E8 with an added phosphatidyl serine, are active, but alpha2beta1 is rapidly inactivated at 0 degrees C. Addition of low concentrations of cholesterol with 1-stearoyl-2-oleoyl-sn-glycero-3-[phospho-l-serine] (SOPS) stabilizes strongly, maintaining alpha2beta1 active up to two weeks at 0 degrees C. By contrast, alpha1beta1 is stable at 0 degrees C without added cholesterol. Both alpha1beta1 and alpha2beta1 complexes are stabilized by cholesterol at 37 degrees C. Human FXYD1 spontaneously associates in vitro with either alpha1beta1 or alpha2beta1, to form alpha1beta1/FXYD1 and alpha2beta1/FXYD1 complexes. The reconstituted FXYD1 protects both alpha1beta1 and alpha2beta1 very strongly against thermal inactivation. Instability of alpha2 is attributable to suboptimal phophatidylserine-protein interactions. Residues within TM8, TM9 and TM10, near the alphabeta subunit interface, may play an important role in differential interactions of lipid with alpha1 and alpha2, and affect isoform stability. Possible physiological implications of isoform interactions with phospholipids and FXYD1 are discussed.
Collapse
Affiliation(s)
- Yael Lifshitz
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
166
|
Herrmann M, Selige J, Raffael S, Sachs G, Brambilla A, Klein T. Systematic expression profiling of the gastric H+/K+ ATPase in human tissue. Scand J Gastroenterol 2007; 42:1275-88. [PMID: 17852870 DOI: 10.1080/00365520701405579] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE The potassium-competitive acid blockers (P-CABs), comprise a new, innovative group of competitive and reversible inhibitors of the gastric H+/K+ ATPase. Our aim was to identify sites of expression of the H+/K+ ATPase that are potential targets of these compounds by examining the expression profile of the gastric H+/K+ ATPase in the human body from a broad range of tissues. MATERIAL AND METHODS Expression profiling was done by quantitative mRNA analysis (TaqMan PCR). Tissues that were mRNA-positive for the alpha subunit were investigated further by Western blot and immunohistochemistry (IHC) for the presence of gastric H+/K+ ATPase protein. RESULTS In addition to the very high expression levels in the stomach, the adrenal gland, cerebellum and pancreas gave unexpectedly positive mRNA signals for the alpha subunit of gastric H +/K+ ATPase. However, they were negative for mRNA of the beta subunit, and Western blot and IHC were negative for alpha and beta subunit protein. Another group of tissues with low alpha subunit mRNA expression including the frontal cortex, cortex grey matter, testis, thymus and larynx submucosa were also found negative for both alpha and beta subunit protein. In contrast to mouse kidney, no gastric H+/K+ ATPase could be detected in human kidney. CONCLUSIONS We therefore conclude that the only organ in humans expressing significant levels of the P-CAB target gastric H+/K+ ATPase is the stomach.
Collapse
Affiliation(s)
- Michael Herrmann
- Department of Biochemistry Gastroenterology, ALTANA Pharma AG, Konstanz, Germany
| | | | | | | | | | | |
Collapse
|
167
|
Beevers AJ, Kukol A. Phospholemman Transmembrane Structure Reveals Potential Interactions with Na+/K+-ATPase. J Biol Chem 2007; 282:32742-8. [PMID: 17698851 DOI: 10.1074/jbc.m703676200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholemman (PLM) is a 72-residue bitopic cardiac transmembrane protein, which acts as a modulator of the Na(+)/K(+)-ATPase and the Na(+)/Ca(2+) exchanger and possibly forms taurine channels in nonheart tissue. This work presents a high resolution structural model obtained from a combination of site-specific infrared spectroscopy and experimentally constrained high throughput molecular dynamics (MD) simulations. Altogether, 37 experimental constraints, including nine long range orientational constraints, have been used during MD simulations in an explicit lipid bilayer/water system. The resulting tetrameric alpha-helical bundle has an average helix tilt of 7.3 degrees and a crossing angle close to 0 degrees . It does not reveal a hydrophilic pore, but instead strong interactions between various residues occlude any pore. The helix-helix packing is unusual, with Gly(19) and Gly(20) pointing to the outside of the helical bundle, facilitating potential interaction with other transmembrane proteins, thus providing a structural basis for the modulatory effect of PLM on the Na(+)/K(+)-ATPase. A two-stage model of interaction between PLM and the Na(+)/K(+)-ATPase is discussed involving PLM-ATPase interaction and subsequent formation of an unstable PLM trimer, which readily interacts with surrounding ATPase molecules. Further unconstrained MD simulations identified other packing models of PLM, one of which could potentially undergo a conformational transition to an open pore.
Collapse
Affiliation(s)
- Andrew J Beevers
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | | |
Collapse
|
168
|
Zatyka M, Ricketts C, da Silva Xavier G, Minton J, Fenton S, Hofmann-Thiel S, Rutter GA, Barrett TG. Sodium-potassium ATPase 1 subunit is a molecular partner of Wolframin, an endoplasmic reticulum protein involved in ER stress. Hum Mol Genet 2007; 17:190-200. [PMID: 17947299 DOI: 10.1093/hmg/ddm296] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Wolfram syndrome, an autosomal recessive disorder characterized by diabetes mellitus and optic atrophy, is caused by mutations in the WFS1 gene encoding an endoplasmic reticulum (ER) membrane protein, Wolframin. Although its precise functions are unknown, Wolframin deficiency increases ER stress, impairs cell cycle progression and affects calcium homeostasis. To gain further insight into its function and identify molecular partners, we used the WFS1-C-terminal domain as bait in a yeast two-hybrid screen with a human brain cDNA library. Na+/K+ ATPase beta1 subunit was identified as an interacting clone. We mapped the interaction to the WFS1 C-terminal and transmembrane domains, but not the N-terminal domain. Our mapping data suggest that the interaction most likely occurs in the ER. We confirmed the interaction by co-immunoprecipitation in mammalian cells and with endogenous proteins in JEG3 placental cells, neuroblastoma SKNAS and pancreatic MIN6 beta cells. Na+/K+ ATPase beta1 subunit expression was reduced in plasma membrane fractions of human WFS1 mutant fibroblasts and WFS1 knockdown MIN6 pancreatic beta-cells compared with wild-type cells; Na+/K+ ATPase alpha1 subunit expression was also reduced in WFS-depleted MIN6 beta cells. Induction of ER stress in wild-type cells only partly accounted for the reduced Na+/K+ ATPase beta1 subunit expression observed. We conclude that the interaction may be important for Na+/K+ ATPase beta1 subunit maturation; loss of this interaction may contribute to the pathology seen in Wolfram syndrome via reductions in sodium pump alpha1 and beta1 subunit expression in pancreatic beta-cells.
Collapse
Affiliation(s)
- Malgorzata Zatyka
- Section of Medical and Molecular Genetics, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Haviv H, Cohen E, Lifshitz Y, Tal DM, Goldshleger R, Karlish SJD. Stabilization of Na+,K+-ATPase Purified from Pichia pastoris Membranes by Specific Interactions with Lipids. Biochemistry 2007; 46:12855-67. [DOI: 10.1021/bi701248y] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Haim Haviv
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eytan Cohen
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yael Lifshitz
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Daniel M. Tal
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rivka Goldshleger
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Steven J. D. Karlish
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
170
|
Liu CG, Xu KQ, Xu X, Huang JJ, Xiao JC, Zhang JP, Song HP. 17Beta-oestradiol regulates the expression of Na+/K+-ATPase beta1-subunit, sarcoplasmic reticulum Ca2+-ATPase and carbonic anhydrase iv in H9C2 cells. Clin Exp Pharmacol Physiol 2007; 34:998-1004. [PMID: 17714085 DOI: 10.1111/j.1440-1681.2007.04675.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. It is necessary to improve our understanding of the effect of 17beta-oestradiol (E2) on the heart at a molecular and cellular level. In the present study, the effects of E2 on Na(+)/K(+)-ATPase, sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA) and carbonic anhydrase IV (CAIV) in H9C2 cells were investigated. To identify the mechanism of action of E2 on these proteins, the oestrogen receptor (ER) antagonist tamoxifen was used. 2. The results indicated that 1 and 100 nmol/L E2 can enhance the activity of Na(+)/K(+)-ATPase and SERCA and upregulate the expression of the Na(+)/K(+)-ATPase beta1-subunit, SERCA2a and CAIV at both the mRNA and protein level compared with 0 and 0.01 nmol/L E2. 17beta-Oestradiol had the greatest effect at 100 nmol/L; 1 micromol/L E2 did not further protein expression compared with 100 nmol/L E2. 3. Tamoxifen (10 nmol/L) significantly decreased the activity of SERCA, as well as the expression of the Na(+)/K(+)-ATPase beta1-subunit and SERCA at the mRNA and protein level, in H9C2 cells cultured with 1 nmol/L E2. Tamoxifen alone had no significant effect on these proteins in H9C2 cells. 4. It may be hypothesized that a suitable E2 concentration has a protective effect on the heart and that the actual dose of E2 used in hormone-replacement therapy is important in menopausal women.
Collapse
Affiliation(s)
- Chen-Geng Liu
- Department of Biochemistry, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | |
Collapse
|
171
|
Treschow A, Unger C, Aints A, Felldin U, Aschan J, Dilber MS. OuaSelect, a novel ouabain-resistant human marker gene that allows efficient cell selection within 48 h. Gene Ther 2007; 14:1564-72. [PMID: 17898799 DOI: 10.1038/sj.gt.3303015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Efficient selection of gene-modified cells is required for a number of potential gene therapy applications, as well as molecular biology studies. Ideally, a clinical selection regimen would combine high selection speed, efficiency and efficacy, in addition to clinical grade selection techniques and low immunogenicity. To our knowledge, a selection marker satisfying all these features is so far not available. Ouabain is a clinically used cardiac glycoside and selective Na(+)/K(+)-ATPase inhibitor. On the basis of the high sensitivity of human Na(+)/K(+)-ATPase proteins to ouabain, and rapid killing of cells upon exposure, we have screened the ubiquitously expressed Na(+)/K(+)-ATPase alpha1 subunit for mutations that could greatly increase its resistance to ouabain. Two amino-acid substitutions, Q118R and N129D were sufficient to confer a two log greater resistance to ouabain in HeLa, Jurkat, U2OS cells and in primary cells. Furthermore, following transduction of primary lymphocytes with the alpha1(Q118R/N129D) gene, >99% pure populations of gene-modified cells were achieved with a recovery rate of >80% after 48 h of exposure to ouabain. These results identify the human alpha1(Q118R/N129D) (OuaSelect) as a promising selection marker gene for safe, rapid and cost-effective selection in clinical gene therapy and molecular biology research.
Collapse
Affiliation(s)
- A Treschow
- Department of Medicine, Division of Hematology, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
172
|
Sachs G, Shin JM, Vagin O, Lambrecht N, Yakubov I, Munson K. The gastric H,K ATPase as a drug target: past, present, and future. J Clin Gastroenterol 2007; 41 Suppl 2:S226-42. [PMID: 17575528 PMCID: PMC2860960 DOI: 10.1097/mcg.0b013e31803233b7] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The recent progress in therapy if acid disease has relied heavily on the performance of drugs targeted against the H,K ATPase of the stomach and the H2 receptor antagonists. It has become apparent in the last decade that the proton pump is the target that has the likelihood of being the most sustainable area of therapeutic application in the regulation of acid suppression. The process of activation of acid secretion requires a change in location of the ATPase from cytoplasmic tubules into the microvilli of the secretory canaliculus of the parietal cell. Stimulation of the resting parietal cell, with involvement of F-actin and ezrin does not use significant numbers of SNARE proteins, because their message is depleted in the pure parietal cell transcriptome. The cell morphology and gene expression suggest a tubule fusion-eversion event. As the active H,K ATPase requires efflux of KCl for activity we have, using the transcriptome derived from 99% pure parietal cells and immunocytochemistry, provided evidence that the KCl pathway is mediated by a KCQ1/KCNE2 complex for supplying K and CLIC6 for supplying the accompanying Cl. The pump has been modeled on the basis of the structures of different conformations of the sr Ca ATPase related to the catalytic cycle. These models use the effects of site directed mutations and identification of the binding domain of the K competitive acid pump antagonists or the defined site of binding for the covalent class of proton pump inhibitors. The pump undergoes conformational changes associated with phosphorylation to allow the ion binding site to change exposure from cytoplasmic to luminal exposure. We have been able to postulate that the very low gastric pH is achieved by lysine 791 motion extruding the hydronium ion bound to carboxylates in the middle of the membrane domain. These models also allow description of the K entry to form the K liganded form of the enzyme and the reformation of the ion site inward conformation thus relating the catalytic cycle of the pump to conformational models. The mechanism of action of the proton pump inhibitor class of drug is discussed along with the cysteines covalently bound with these inhibitors. The review concludes with a discussion of the mechanism of action and binding regions of a possible new class of drug for acid control, the K competitive acid pump antagonists.
Collapse
Affiliation(s)
- George Sachs
- Department of Physiology, David Geffen School of Medicine, University of California at Los Angeles, CA, USA.
| | | | | | | | | | | |
Collapse
|
173
|
Pestov NB, Ahmad N, Korneenko TV, Zhao H, Radkov R, Schaer D, Roy S, Bibert S, Geering K, Modyanov NN. Evolution of Na,K-ATPase beta m-subunit into a coregulator of transcription in placental mammals. Proc Natl Acad Sci U S A 2007; 104:11215-20. [PMID: 17592128 PMCID: PMC2040879 DOI: 10.1073/pnas.0704809104] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Change in gene functions (gene cooption) is one of the key mechanisms of molecular evolution. Genes can acquire new functions via alteration in properties of encoded proteins and/or via changes in temporal or spatial regulation of expression. Here we demonstrate radical changes in the functions of orthologous ATP1B4 genes during evolution of vertebrates. Expression of ATP1B4 genes is brain-specific in teleost fishes, whereas it is predominantly muscle-specific in tetrapods. The encoded beta m-proteins in fish, amphibian, and avian species are beta-subunits of Na,K-ATPase located in the plasma membrane. In placental mammals beta m-proteins lost their ancestral functions, accumulate in nuclear membrane of perinatal myocytes, and associate with transcriptional coregulator Ski-interacting protein (SKIP). Through interaction with SKIP, eutherian beta m acquired new functions as exemplified by regulation of TGF-beta-responsive reporters and by augmentation of mRNA levels of Smad7, an inhibitor of TGF-beta signaling. Thus, orthologous vertebrate ATP1B4 genes represent an instance of gene cooption that created fundamental changes in the functional properties of the encoded proteins.
Collapse
Affiliation(s)
- Nikolay B. Pestov
- *Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH 43614
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya, Moscow 117997, Russia; and
| | - Nisar Ahmad
- *Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH 43614
| | - Tatiana V. Korneenko
- *Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH 43614
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya, Moscow 117997, Russia; and
| | - Hao Zhao
- *Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH 43614
| | - Rossen Radkov
- *Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH 43614
| | - Danièle Schaer
- Department of Pharmacology and Toxicology, University of Lausanne, Rue du Bugnon 27, CH-1005 Lausanne, Switzerland
| | - Sophie Roy
- Department of Pharmacology and Toxicology, University of Lausanne, Rue du Bugnon 27, CH-1005 Lausanne, Switzerland
| | - Stéphanie Bibert
- Department of Pharmacology and Toxicology, University of Lausanne, Rue du Bugnon 27, CH-1005 Lausanne, Switzerland
| | - Käthi Geering
- Department of Pharmacology and Toxicology, University of Lausanne, Rue du Bugnon 27, CH-1005 Lausanne, Switzerland
| | - Nikolai N. Modyanov
- *Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH 43614
- To whom correspondence should be addressed at:
Department of Physiology and Pharmacology, University of Toledo College of Medicine, Health Science Campus, 3000 Arlington Avenue, Mail Stop 1008, Toledo, OH 43614-2598. E-mail:
| |
Collapse
|
174
|
Purhonen P, Thomsen K, Maunsbach AB, Hebert H. Association of renal Na,K-ATPase alpha-subunit with the beta- and gamma-subunits based on cryoelectron microscopy. J Membr Biol 2007; 214:139-46. [PMID: 17557166 DOI: 10.1007/s00232-006-0056-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 11/29/2006] [Indexed: 11/28/2022]
Abstract
Na,K-ATPase transports Na(+) and K(+) across cell membranes and consists of alpha- and beta-subunits. Na,K-ATPase also associates with small FXYD proteins that regulate the activity of the pump. We have used cryoelectron microscopy of two-dimensional crystals including data to 8 A resolution to determine the three-dimensional (3-D) structure of renal Na,K-ATPase containing FXYD2, the gamma-subunit. A homology model for the alpha-subunit was calculated from a Ca(2+)-ATPase structure and used to locate the additional beta- and gamma-subunits present in the 3-D map of Na,K-ATPase. Based on the 3-D map, the beta-subunit is located close to transmembrane helices M8 and M10 and the gamma-subunit is adjacent to helices M2 and M9 of the alpha-subunit.
Collapse
Affiliation(s)
- P Purhonen
- Department of Biosciences and Nutrition and School of Technology and Health, Karolinska Institutet, Royal Institute of Technology, S-141 57, Huddinge, Sweden
| | | | | | | |
Collapse
|
175
|
Laughery MD, Clifford RJ, Chi Y, Kaplan JH. Selective basolateral localization of overexpressed Na-K-ATPase β1- and β2- subunits is disrupted by butryate treatment of MDCK cells. Am J Physiol Renal Physiol 2007; 292:F1718-25. [PMID: 17344187 DOI: 10.1152/ajprenal.00360.2006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The exclusive basolateral localization of the Na-K-ATPase in kidney epithelium is a critical aspect of nephron function. It has been suggested that mislocalized delivery of the Na-K-ATPase to the apical surface in autosomal dominant polycystic kidney disease (ADPKD) is due to the inappropriate expression of an alternative isoform of the β-subunit, the β2-isoform. It has been reported that heterologous expression of this β2-isoform in Madin-Darby canine kidney (MDCK) cells results in apical delivery of the Na-K-ATPase. We created a MDCK cell line containing a tetracycline-inducible promoter and expressed either myc-tagged β2- or flag-tagged β1-subunits to study the surface localization of these β-subunit isoforms in polarized monolayers. We find that the β2-isoform is targeted to the basolateral surface of the plasma membrane in a polarization pattern indistinguishable from the β1-isoform. However, inclusion of butyrate in the growth medium leads to upregulation of overexpressed β1- or β2-subunits and to their appearance at the apical surface. The β2-isoform expressed in MDCK cells does not assemble into α1β2heterodimers with the endogenous α1. Our findings demonstrate that expression of the β2-isoform does not lead to apical localization of the Na-K-ATPase in MDCK cells and provides evidence for an unexpected effect of butyrate on the trafficking of Na pump subunits.
Collapse
Affiliation(s)
- Melissa D Laughery
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago 60607-7170, USA
| | | | | | | |
Collapse
|
176
|
Noguchi S, Komiya T, Eguchi H, Shirahata A, Nikawa JI, Kawamura M. Methionine Aminopeptidase II: A Molecular Chaperone for Sarcoplasmic Reticulum Calcium ATPase. J Membr Biol 2007; 215:105-10. [PMID: 17415608 DOI: 10.1007/s00232-007-9010-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 01/06/2007] [Indexed: 10/23/2022]
Abstract
The monoclonal antibody to the beta-subunit of H(+)/K(+)-ATPase (mAbHKbeta) cross-reacts with a protein that acts as a molecular chaperone for the structural maturation of sarcoplasmic reticulum (SR) Ca(2+)-ATPase. We partially purified a mAbHKbeta-reactive 65-kDa protein from Xenopus ovary. After in-gel digestion and peptide sequencing, the 65-kDa protein was identified as methionine aminopeptidase II (MetAP2). The effects of MetAP2 on SR Ca(2+)-ATPase expression were examined by injecting the cRNA for MetAP2 into Xenopus oocytes. Immunoprecipitation and pulse-chase experiments showed that MetAP2 was transiently associated with the nascent SR Ca(2+)-ATPase. Synthesis of functional SR Ca(2+)-ATPase was facilitated by MetAP2 and prevented by injecting an antibody specific for MetAP2. These results suggest that MetAP2 acts as a molecular chaperone for SR Ca(2+)-ATPase synthesis.
Collapse
Affiliation(s)
- Shunsuke Noguchi
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka 820-8502, Japan
| | | | | | | | | | | |
Collapse
|
177
|
Paul SM, Palladino MJ, Beitel GJ. A pump-independent function of the Na,K-ATPase is required for epithelial junction function and tracheal tube-size control. Development 2007; 134:147-55. [PMID: 17164420 PMCID: PMC1955469 DOI: 10.1242/dev.02710] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The heterodimeric Na,K-ATPase has been implicated in vertebrate and invertebrate epithelial cell junctions, morphogenesis and oncogenesis, but the mechanisms involved are unclear. We previously showed that the Drosophila Na,K-ATPase is required for septate junction (SJ) formation and that of the three beta-subunit loci, only Nrv2 isoforms support epithelial SJ barrier function and tracheal tube-size control. Here we show that Nrv1 is endogenously co-expressed with Nrv2 in the epidermis and tracheal system, but Nrv1 has a basolateral localization and appears to be excluded from the Nrv2-containing SJs. When the normally neuronal Nrv3 is expressed in epithelial cells, it does not associate with SJs. Thus, the beta-subunit is a key determinant of Na,K-ATPase subcellular localization as well as function. However, localization of the Na,K-ATPase to SJs is not sufficient for junctional activity because although several Nrv2/Nrv3 chimeric beta-subunits localize to SJs, only those containing the extracellular domain of Nrv2 have junctional activity. Junctional activity is also specific to different alpha-subunit isoforms, with only some isoforms from the major alpha-subunit locus being able to provide full barrier function and produce normal tracheal tubes. Importantly, mutations predicted to inactivate ATPalpha catalytic function do not compromise junctional activity, demonstrating that the Drosophila Na,K-ATPase has an ion-pump-independent role in junction formation and tracheal morphogenesis. These results define new functions for the intensively studied Na,K-ATPase. Strikingly, the rat alpha1 isoform has full junctional activity and can rescue Atpalpha-null mutants to viability, suggesting that the Na,K-ATPase has an evolutionarily conserved role in junction formation and function.
Collapse
Affiliation(s)
- Sarah M. Paul
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208, USA
| | - Michael J. Palladino
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
- Department of Pharmacology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Greg J. Beitel
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208, USA
- *Author for correspondence (e-mail: )
| |
Collapse
|
178
|
Simon WA, Herrmann M, Klein T, Shin JM, Huber R, Senn-Bilfinger J, Postius S. Soraprazan: setting new standards in inhibition of gastric acid secretion. J Pharmacol Exp Ther 2007; 321:866-74. [PMID: 17369284 DOI: 10.1124/jpet.107.120428] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
After treatment of millions of patients suffering from gastroesophageal reflux disease (GERD) and other acid-related ailments with proton pump inhibitors, there are still unmet medical needs such as rapid and reliable pain relief, especially for nocturnal acid breakthrough. In this work, we introduce and characterize the biochemistry and pharmacology of the potassium-competitive acid blocker (P-CAB) soraprazan, a novel, reversible, and fast-acting inhibitor of gastric H,K-ATPase. Inhibitory and binding properties of soraprazan were analyzed together with its mode of action, its selectivity, and its in vivo potency. This P-CAB has an IC(50) of 0.1 microM if measured with ion leaky vesicles and of 0.19 microM in isolated gastric glands. With a K(i) of 6.4 nM, a K(d) of 26.4 nM, and a B(max) of 2.89 nmol/mg, this compound is a highly potent and reversible inhibitor of the H,K-ATPase. Soraprazan shows immediate inhibition of acid secretion in various in vitro models and in vivo and was found to be more than 2000-fold selective for H,K-ATPase over Na,K- and Ca-ATPases. Soraprazan is superior to esomeprazole in terms of onset of action and the extent and duration of pH elevation in vivo in the dog. Rapid and consistent inhibition of acid secretion by soraprazan renders the P-CABs a promising group of compounds for therapy of GERD.
Collapse
Affiliation(s)
- W A Simon
- Department of Biochemistry Gastroenterology, ALTANA Pharma AG, Byk-Gulden Strasse 2, 78467 Konstanz, Germany
| | | | | | | | | | | | | |
Collapse
|
179
|
Li C, Geering K, Horisberger JD. The third sodium binding site of Na,K-ATPase is functionally linked to acidic pH-activated inward current. J Membr Biol 2007; 213:1-9. [PMID: 17347782 DOI: 10.1007/s00232-006-0035-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Accepted: 10/03/2006] [Indexed: 11/30/2022]
Abstract
Sodium- and potassium-activated adenosine triphosphatases (Na,K-ATPase) is the ubiquitous active transport system that maintains the Na(+) and K(+) gradients across the plasma membrane by exchanging three intracellular Na(+) ions against two extracellular K(+) ions. In addition to the two cation binding sites homologous to the calcium site of sarcoplasmic and endoplasmic reticulum calcium ATPase and which are alternatively occupied by Na(+) and K(+) ions, a third Na(+)-specific site is located close to transmembrane domains 5, 6 and 9, and mutations close to this site induce marked alterations of the voltage-dependent release of Na(+) to the extracellular side. In the absence of extracellular Na(+) and K(+), Na,K-ATPase carries an acidic pH-activated, ouabain-sensitive "leak" current. We investigated the relationship between the third Na(+) binding site and the pH-activated current. The decrease (in E961A, T814A and Y778F mutants) or the increase (in G813A mutant) of the voltage-dependent extracellular Na(+) affinity was paralleled by a decrease or an increase in the pH-activated current, respectively. Moreover, replacing E961 with oxygen-containing side chain residues such as glutamine or aspartate had little effect on the voltage-dependent affinity for extracellular Na(+) and produced only small effects on the pH-activated current. Our results suggest that extracellular protons and Na(+) ions share a high field access channel between the extracellular solution and the third Na(+) binding site.
Collapse
Affiliation(s)
- Ciming Li
- Department of Pharmacology and Toxicology, University of Lausanne, CH-1005 Lausanne, Switzerland
| | | | | |
Collapse
|
180
|
Madan P, Rose K, Watson AJ. Na/K-ATPase beta1 subunit expression is required for blastocyst formation and normal assembly of trophectoderm tight junction-associated proteins. J Biol Chem 2007; 282:12127-34. [PMID: 17317668 DOI: 10.1074/jbc.m700696200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Na/K-ATPase plays an important role in mediating blastocyst formation. Despite the expression of multiple Na/K-ATPase alpha and beta isoforms during mouse preimplantation development, only the alpha1 and beta1 isoforms have been localized to the basolateral membrane regions of the trophectoderm. The aim of the present study was to selectively down-regulate the Na/K-ATPase beta1 subunit employing microinjection of mouse 1 cell zygotes with small interfering RNA (siRNA) oligos. Experiments comprised of non-injected controls and two groups microinjected with either Stealthtrade mark Na/K-ATPase beta1 subunit oligos or nonspecific Stealthtrade mark siRNA as control. Development to the 2-, 4-, 8-, and 16-cell and morula stages did not vary between the three groups. However, only 2.3% of the embryos microinjected with Na/K-ATPase beta1 subunit siRNA oligos developed to the blastocyst stage as compared with 73% for control-injected and 91% for non-injected controls. Na/K-ATPase beta1 subunit down-regulation was validated by employing reverse transcription-PCR and whole-mount immunofluorescence methods to demonstrate that Na/K-ATPase beta1 subunit mRNAs and protein were not detectable in beta1 subunit siRNA-microinjected embryos. Aggregation chimera experiments between beta1 subunit siRNA-microinjected embryos and controls demonstrated that blockade of blastocyst formation was reversible. The distribution of Na/K-ATPase alpha1 and tight junction-associated proteins occludin and ZO-1 were compared among the three treatment groups. No differences in protein distribution were observed between control groups; however, all three polypeptides displayed an aberrant distribution in Na/K-ATPase beta1 subunit siRNA-microinjected embryos. Our results demonstrate that the beta1 subunit of the Na/K-ATPase is required for blastocyst formation and that this subunit is also required to maintain a normal Na/K-ATPase distribution and localization of tight junction-associated polypeptides during preimplantation development.
Collapse
Affiliation(s)
- Pavneesh Madan
- Department of Obstetrics and Gynaecology, University of Western Ontario, Children's Health Research Institute-Victoria Research Laboratories, London, Ontario N6A 4G5, Canada
| | | | | |
Collapse
|
181
|
Rodova M, Nguyen AN, Blanco G. The transcription factor CREMtau and cAMP regulate promoter activity of the Na,K-ATPase alpha4 isoform. Mol Reprod Dev 2006; 73:1435-47. [PMID: 16894555 DOI: 10.1002/mrd.20518] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Na,K-ATPase is an essential enzyme of the plasma membrane that plays a key role in numerous cell processes that depend on the transcellular gradients of Na(+) and K(+). Among the various isoforms of the catalytic subunit of the Na,K-ATPase, alpha4 exhibits the most limited pattern of expression, being restricted to male germ cells. Activity of alpha4 is essential for sperm function, and alpha4 is upregulated during spermatogenesis. The present study addressed the transcriptional control of the human Na,K-ATPase alpha4 gene, ATP1A4. We describe that a 5' untranslated region of the ATP1A4 gene (designated -339/+480 based on the ATP1A4 transcription initiation site) has promoter activity in luciferase reporter assays. Computer analysis of this promoter region revealed consensus sites (CRE) for the cyclic AMP (cAMP) response element modulator (CREM). Accordingly, dibutyryl cAMP (db-cAMP) and ectopic expression of CREMtau, a testis specific splice variant of CREM were able to activate the ATP1A4 promoter driven expression of luciferase in HEK 293 T, JEG-3 and GC-1 cells. Further characterization of the effect of db-cAMP and CREMtau on deleted constructs of the ATP1A4 promoter (-339/+80, and +25/+480), and on the -339/+480 region carrying mutations in the CRE sites showed that db-cAMP and CREMtau effect required the CRE motif located 263 bp upstream the transcription initiation site. EMSA experiments confirmed the CRE sequence as a bonafide CREMtau binding site. These results constitute the first demonstration of the transcriptional control of ATP1A4 gene expression by cAMP and by CREMtau, a transcription factor essential for male germ cell gene expression.
Collapse
Affiliation(s)
- Marianna Rodova
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | |
Collapse
|
182
|
Barwe SP, Kim S, Rajasekaran SA, Bowie JU, Rajasekaran AK. Janus model of the Na,K-ATPase beta-subunit transmembrane domain: distinct faces mediate alpha/beta assembly and beta-beta homo-oligomerization. J Mol Biol 2006; 365:706-14. [PMID: 17078968 PMCID: PMC2459552 DOI: 10.1016/j.jmb.2006.10.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2006] [Revised: 10/05/2006] [Accepted: 10/08/2006] [Indexed: 01/31/2023]
Abstract
Na,K-ATPase is a hetero-oligomer of alpha and beta-subunits. The Na,K-ATPase beta-subunit (Na,K-beta) is involved in both the regulation of ion transport activity, and in cell-cell adhesion. By structure prediction and evolutionary analysis, we identified two distinct faces on the Na,K-beta transmembrane domain (TMD) that could mediate protein-protein interactions: a glycine zipper motif and a conserved heptad repeat. Here, we show that the heptad repeat face is involved in the hetero-oligomeric interaction of Na,K-beta with Na,K-alpha, and the glycine zipper face is involved in the homo-oligomerization of Na,K-beta. Point mutations in the heptad repeat motif reduced Na,K-beta binding to Na,K-alpha, and Na,K-ATPase activity. Na,K-beta TMD homo-oligomerized in biological membranes, and mutation of the glycine zipper motif affected oligomerization and cell-cell adhesion. These results provide a structural basis for understanding how Na,K-beta links ion transport and cell-cell adhesion.
Collapse
Affiliation(s)
- Sonali P. Barwe
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Sanguk Kim
- Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Sigrid A. Rajasekaran
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - James U. Bowie
- Department of Chemistry and Biochemistry and UCLA-DOE center for genomics and proteomics, University of California, Los Angeles, CA 90095
| | - Ayyappan K. Rajasekaran
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- To whom correspondence should be addressed: Ayyappan K. Rajasekaran Department of Pathology and Laboratory Medicine Room 13-344 CHS University of California, Los Angeles Los Angeles, California 90095 Phone (310) 825-1199 Fax (310) 267-2410
| |
Collapse
|
183
|
Bibert S, Roy S, Schaer D, Felley-Bosco E, Geering K. Structural and functional properties of two human FXYD3 (Mat-8) isoforms. J Biol Chem 2006; 281:39142-51. [PMID: 17077088 DOI: 10.1074/jbc.m605221200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Six of 7 FXYD proteins have been shown to be tissue-specific modulators of Na,K-ATPase. In this study, we have identified two splice variants of human FXYD3, or Mat-8, in CaCo-2 cells. Short human FXYD3 has 72% sequence identity with mouse FXYD3, whereas long human FXYD3 is identical to short human FXYD3 but has a 26-amino acid insertion after the transmembrane domain. Short and long human FXYD3 RNAs and proteins are differentially expressed during differentiation of CaCo-2 cells. Long human FXYD3 is mainly expressed in nondifferentiated cells and short human FXYD3 in differentiated cells and both FXYD3 variants can be co-immunoprecipitated with a Na,K-ATPase antibody. In contrast to mouse FXYD3, which has two transmembrane domains for lack of cleavage of the signal peptide, human FXYD3 has a cleavable signal peptide and adopts a type I topology. After co-expression in Xenopus oocytes, both human FXYD3 variants associate stably only with Na,K-ATPase isozymes but not with H,K-ATPase or Ca-ATPase. Similar to mouse FXYD3, short human FXYD3 decreases the apparent K(+) and Na(+) affinity of Na,K-ATPase over a large range of membrane potentials. On the other hand, long human FXYD3 decreases the apparent K(+) affinity only at slightly negative and positive membrane potentials and increases the apparent Na(+) affinity of Na,K-ATPase. Finally, both short and long human FXYD3 induce a hyperpolarization activated current, similar to that induced by mouse FXYD3. Thus, we have characterized two human FXYD3 isoforms that are differentially expressed in differentiated and non-differentiated cells and show different functional properties.
Collapse
Affiliation(s)
- Stéphanie Bibert
- Department of Pharmacology and Toxicology, University of Lausanne, rue du Bugnon 27, 1005 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
184
|
Vagin O, Tokhtaeva E, Sachs G. The role of the beta1 subunit of the Na,K-ATPase and its glycosylation in cell-cell adhesion. J Biol Chem 2006; 281:39573-87. [PMID: 17052981 DOI: 10.1074/jbc.m606507200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Based on recent data showing that overexpression of the Na,K-ATPase beta(1) subunit increased cell-cell adhesion of nonpolarized cells, we hypothesized that the beta(1) subunit can also be involved in the formation of cell-cell contacts in highly polarized epithelial cells. In support of this hypothesis, in Madin-Darby canine kidney (MDCK) cells, the Na,K-ATPase alpha(1) and beta(1) subunits were detected as precisely co-localized with adherens junctions in all stages of the monolayer formation starting from the initiation of cell-cell contact. The Na,K-ATPase and adherens junction protein, beta-catenin, stayed partially co-localized even after their internalization upon disruption of intercellular contacts by Ca(2+) depletion of the medium. The Na,K-ATPase subunits remained co-localized with the adherens junctions after detergent treatment of the cells. In contrast, the heterodimer formed by expressed unglycosylated Na,K-ATPase beta(1) subunit and the endogenous alpha(1) subunit was easily dissociated from the adherens junctions and cytoskeleton by the detergent extraction. The MDCK cell line in which half of the endogenous beta(1) subunits in the lateral membrane were substituted by unglycosylated beta(1) subunits displayed a decreased ability to form cell-to-cell contacts. Incubation of surface-attached MDCK cells with an antibody against the extracellular domain of the Na,K-ATPase beta(1) subunit specifically inhibited cell-cell contact formation. We conclude that the Na,K-ATPase beta(1) subunit is involved in the process of intercellular adhesion and is necessary for association of the heterodimeric Na,K-ATPase with the adherens junctions. Further, normal glycosylation of the Na,K-ATPase beta(1) subunit is essential for the stable association of the pump with the adherens junctions and plays an important role in cell-cell contact formation.
Collapse
Affiliation(s)
- Olga Vagin
- Department of Physiology, School of Medicine, UCLA and Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, California 90073, USA
| | | | | |
Collapse
|
185
|
Delprat B, Bibert S, Geering K. [FXYD proteins: novel regulators of Na,K-ATPase]. Med Sci (Paris) 2006; 22:633-8. [PMID: 16828040 DOI: 10.1051/medsci/20062267633] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Members of the FXYD protein family are small membrane proteins which are characterized by an FXYD motif, two conserved glycines and a serine residue. FXYD proteins show a tissue-specific distribution. Recent evidence suggests that 6 out of 7 FXYD proteins, FXYD1 (phospholemman), FXYD2 (gamma subunit of Na,K-ATPase), FXYD3 (Mat-8), FXYD4 (CHIF), FXYD5 (Ric) and FXYD7 associate with Na,K-ATPase and modulate its transport properties e.g. its Na+ and/or its K+ affinity in a distinct way. These results highlight the complex regulation of Na+ and K+ transport which is necessary to ensure proper tissue functions such as renal Na+-reabsorption, muscle contractility and neuronal excitability. Moreover, mutation of a conserved glycine residue into an arginine residue in FXYD2 has been linked to cases of human hypomagnesemia indicating that dysregulation of Na,K-ATPase by FXYD proteins may be implicated in pathophysiological states. A better characterization of this novel regulatory mechanism of Na,K-ATPase may help to better understand its role in physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Benjamin Delprat
- Département de Pharmacologie et Toxicologie, Université de Lausanne, rue du Bugnon 27, 1005 Lausanne, Suisse
| | | | | |
Collapse
|
186
|
Lerner M, Lemke D, Bertram H, Schillers H, Oberleithner H, Caplan MJ, Reinhardt J. An extracellular loop of the human non-gastric H,K-ATPase alpha-subunit is involved in apical plasma membrane polarization. Cell Physiol Biochem 2006; 18:75-84. [PMID: 16914892 DOI: 10.1159/000095169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The human non-gastric H,K-ATPase, ATP1AL1, belongs to the gene family of P-type ATPases. Consistent with their physiological roles in ion transport, members of this group, including the Na,KATPase and the gastric and non-gastric H,K-ATPases, are differentially polarized to either the basolateral or apical plasma membrane in epithelial cells. However, their polarized distribution is highly complex and depends on specific sorting signals or motifs which are recognized by the subcellular targeting machinery. For the gastric H,K-ATPase it has been suggested that the 4(th) transmembrane spanning domain (TM4) and its flanking regions induce conformational sorting motifs which direct the ion pump exclusively to the epithelial apical membrane. Here, we show in transfected Madin-Darby canine kidney (MDCK) cells that the related non-gastric H,KATPase, ATP1AL1, does contain similar sorting motifs in close proximity to TM4. A short extracellular loop between TM3 and TM4 is critical for this pump's apical delivery. A single point mutation in the corresponding region redirects ATP1AL1 to the basolateral membrane. In conclusion, our work provides further evidence that the cellular distribution of P-type ATPases is determined by conformational sorting motifs.
Collapse
|
187
|
Abstract
In this short review, we summarize our work on the role of members of the FXYD protein family as tissue-specific modulators of Na, K-ATPase. FXYD1 or phospholemman, mainly expressed in heart and skeletal muscle increases the apparent affinity for intracellular Na(+) of Na, K-ATPase and may thus be important for appropriate muscle contractility. FXYD2 or gamma subunit and FXYD4 or CHIF modulate the apparent affinity for Na(+) of Na, K-ATPase in an opposite way, adapted to the physiological needs of Na(+) reabsorption in different segments of the renal tubule. FXYD3 expressed in stomach, colon, and numerous tumors also modulates the transport properties of Na, K-ATPase but it has a lower specificity of association than other FXYD proteins and an unusual membrane topology. Finally, FXYD7 is exclusively expressed in the brain and decreases the apparent affinity for extracellular K(+), which may be essential for proper neuronal excitability.
Collapse
Affiliation(s)
- Käthi Geering
- Department of Pharmacology and Toxicology, University of Lausanne, Rue du Bugnon 27, CH-1005, Lausanne, Switzerland.
| |
Collapse
|
188
|
Pérez-Victoria FJ, Sánchez-Cañete MP, Castanys S, Gamarro F. Phospholipid Translocation and Miltefosine Potency Require Both L. donovani Miltefosine Transporter and the New Protein LdRos3 in Leishmania Parasites. J Biol Chem 2006; 281:23766-75. [PMID: 16785229 DOI: 10.1074/jbc.m605214200] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The antitumor drug miltefosine has been recently approved as the first oral drug active against visceral leishmaniasis. We have previously identified the L. donovani miltefosine transporter (LdMT) as a P-type ATPase involved in phospholipid translocation at the plasma membrane of Leishmania parasites. Here we show that this protein is essential but not sufficient for the phospholipid translocation activity and, thus, for the potency of the drug. Based on recent findings in yeast, we have identified the putative beta subunit of LdMT, named LdRos3, as another protein factor required for the translocation activity. LdRos3 belongs to the CDC50/Lem3 family, proposed as likely beta subunits for P4-ATPases. The phenotype of LdRos3-defective parasites was identical to that of the LdMT-/-, including a defect in the uptake of 7-nitrobenz-2-oxa-1,3-diazol-4-yl-amino)-phosphatidylserine, generally considered as not affected in Lem3p-deficient yeast. Both LdMT and LdRos3 normally localized to the plasma membrane but were retained inside the endoplasmic reticulum in the absence of the other protein or when inactivating point mutations were introduced in LdMT. Modulating the expression levels of either protein independently, we show that any one of them could behave as the protein limiting the level of flippase activity. Thus, LdMT and LdRos3 seem to form part of the same translocation machinery that determines flippase activity and miltefosine sensitivity in Leishmania, further supporting the consideration of CDC50/Lem3 proteins as beta subunits required for the normal functioning of P4-ATPases.
Collapse
Affiliation(s)
- F Javier Pérez-Victoria
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Avda. del Conocimiento s/n 18100 Armilla, Granada, Spain
| | | | | | | |
Collapse
|
189
|
Sanchez G, Nguyen ANT, Timmerberg B, Tash JS, Blanco G. The Na,K-ATPase alpha4 isoform from humans has distinct enzymatic properties and is important for sperm motility. Mol Hum Reprod 2006; 12:565-76. [PMID: 16861705 DOI: 10.1093/molehr/gal062] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the rat, the Na,K-ATPase alpha4 isoform exhibits unique enzymatic characteristics and is important for sperm motility. In this work, we studied expression, localization and function of alpha4 in human spermatozoa. We show two catalytically active Na,K-ATPase alpha polypeptides with different ouabain affinity and identified expression of alpha1, alpha4, beta1 and beta3 isoforms in the gametes. In addition, human sperm presented two Na,K-ATPases composed of alpha4, alpha4beta1 and alpha4beta3. Kinetic analysis of these isozymes produced in insect cells showed that, compared with human alpha1beta1, alpha4beta1 and alpha4beta3 exhibit higher Na(+) and lower K(+) affinity and higher sensitivity to ouabain. These particular enzymatic properties suggested a role for alpha4 in sperm function. Using computer-assisted sperm analysis (CASA), we found that ouabain inhibition of alpha4 significantly decreased percentage sperm motility. In contrast, ouabain did not affect linearity of forward progression, amplitude of lateral head displacement, beat cross frequency and sperm straight-line, curvilinear or average path velocities. This suggests a primary role of alpha4 in flagellar motility. Accordingly, we found alpha4 in the sperm tail, predominating in the mid-piece of the flagellum. Therefore, similar to the rat ortholog, human Na,K-ATPase alpha4 isoform has a distinct activity that is essential for sperm function.
Collapse
Affiliation(s)
- Gladis Sanchez
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | | | | |
Collapse
|
190
|
Matthews DB, Bhave SV, Belknap JK, Brittingham C, Chesler EJ, Hitzemann RJ, Hoffmann PL, Lu L, McWeeney S, Miles MF, Tabakoff B, Williams RW. Complex Genetics of Interactions of Alcohol and CNS Function and Behavior. Alcohol Clin Exp Res 2006; 29:1706-19. [PMID: 16205371 DOI: 10.1097/01.alc.0000179209.44407.df] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This work summarizes the proceedings of a symposium at the 2004 RSA Meeting in Vancouver, Canada. The organizers were R. W. Williams and D. B. Matthews; the Chair was M. F. Miles. The presentations were (1) WebQTL: A resource for analysis of gene expression variation and the genetic dissection of alcohol related phenotypes, by E. J. Chesler, (2) The marriage of microarray and qtl analyses: what's to gain, by J. K. Belknap, (3) Use of WebQTL to identify QTLs associated with footshock stress and ethanol related behaviors, by D. B. Matthews, (4) A high throughput strategy for the detection of quantitative trait genes, by R. J. Hitzemann, and (5) The use of gene arrays in conjunction with transgenic and selected animals to understand anxiety in alcoholism, by. B. Tabakoff.
Collapse
Affiliation(s)
- Douglas B Matthews
- Department of Psychology, University of Memphis, Memphis, Tennessee 38152, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Ramnanan CJ, Storey KB. Suppression of Na+/K+-ATPase activity during estivation in the land snail Otala lactea. ACTA ACUST UNITED AC 2006; 209:677-88. [PMID: 16449562 DOI: 10.1242/jeb.02052] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Entry into the hypometabolic state of estivation requires a coordinated suppression of the rate of cellular ATP turnover, including both ATP-generating and ATP-consuming reactions. As one of the largest consumers of cellular ATP, the plasma membrane Na+/K+-ATPase is a potentially key target for regulation during estivation. Na+/K+-ATPase was investigated in foot muscle and hepatopancreas of the land snail Otala lactea, comparing active and estivating states. In both tissues enzyme properties changed significantly during estivation: maximal activity was reduced by about one-third, affinity for Mg.ATP was reduced (Km was 40% higher), and activation energy (derived from Arrhenius plots) was increased by approximately 45%. Foot muscle Na+/K+-ATPase from estivated snails also showed an 80% increase in Km Na+ and a 60% increase in Ka Mg2+ as compared with active snails, whereas hepatopancreas Na+/K+-ATPase showed a 70% increase in I50 K+ during estivation. Western blotting with antibodies recognizing the alpha subunit of Na+/K+-ATPase showed no change in the amount of enzyme protein during estivation. Instead, the estivation-responsive change in Na+/K+-ATPase activity was linked to posttranslational modification. In vitro incubations manipulating endogenous kinase and phosphatase activities indicated that Na+/K+-ATPase from estivating snails was a high phosphate, low activity form, whereas dephosphorylation returned the enzyme to a high activity state characteristic of active snails. Treatment with protein kinases A, C or G could all mediate changes in enzyme properties in vitro that mimicked the effect of estivation, whereas treatments with protein phosphatase 1 or 2A had the opposite effect. Reversible phosphorylation control of Na+/K+-ATPase can provide the means of coordinating ATP use by this ion pump with the rates of ATP generation by catabolic pathways in estivating snails.
Collapse
Affiliation(s)
- Christopher J Ramnanan
- Institute of Biochemistry, College of Natural Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | | |
Collapse
|
192
|
Liu L, Askari A. Beta-subunit of cardiac Na+-K+-ATPase dictates the concentration of the functional enzyme in caveolae. Am J Physiol Cell Physiol 2006; 291:C569-78. [PMID: 16624992 DOI: 10.1152/ajpcell.00002.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Previous studies showed the presence of a significant fraction of Na(+)-K(+)-ATPase alpha-subunits in cardiac myocyte caveolae, suggesting the caveolar interactions of Na(+)-K(+)-ATPase with its signaling partners. Because both alpha- and beta-subunits are required for ATPase activity, to clarify the status of the pumping function of caveolar Na(+)-K(+)-ATPase, we have examined the relative distribution of two major subunit isoforms (alpha(1) and beta(1)) in caveolar and noncaveolar membranes of adult rat cardiac myocytes. When cell lysates treated with high salt (Na(2)CO(3) or KCl) concentrations were fractionated by a standard density gradient procedure, the resulting light caveolar membranes contained 30-40% of alpha(1)-subunits and 80-90% of beta(1)-subunits. Use of Na(2)CO(3) was shown to inactivate Na(+)-K(+)-ATPase; however, caveolar membranes obtained by the KCl procedure were not denatured and contained approximately 75% of total myocyte Na(+)-K(+)-ATPase activity. Sealed isolated caveolae exhibited active Na(+) transport. Confocal microscopy supported the presence of alpha,beta-subunits in caveolae, and immunoprecipitation showed the association of the subunits with caveolin oligomers. The findings indicate that cardiac caveolar inpocketings are the primary portals for active Na(+)-K(+) fluxes, and the sites where the pumping and signaling functions of Na(+)-K(+)-ATPase are integrated. Preferential concentration of beta(1)-subunit in caveolae was cell specific; it was also noted in neonatal cardiac myocytes but not in fibroblasts and A7r5 cells. Uneven distributions of alpha(1) and beta(1) in early and late endosomes of myocytes suggested different internalization routes of two subunits as a source of selective localization of active Na(+)-K(+)-ATPase in cardiac caveolae.
Collapse
Affiliation(s)
- Lijun Liu
- Department of Physiology, Pharmacology, Metabolism, and Cardiovascular Sciences, Medical Univ. of Ohio, 3035 Arlington Ave., Toledo, OH 43614-5804, USA
| | | |
Collapse
|
193
|
Pestov NB, Korneenko TV, Shakhparonov MI, Shull GE, Modyanov NN. Loss of acidification of anterior prostate fluids in Atp12a-null mutant mice indicates that nongastric H-K-ATPase functions as proton pump in vivo. Am J Physiol Cell Physiol 2006; 291:C366-74. [PMID: 16525125 DOI: 10.1152/ajpcell.00042.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The physiological functions of nongastric (colonic) H-K-ATPase (gene symbol Atp12a), unlike those of Na-K-ATPase and gastric H-K-ATPase, are poorly understood. It has been suggested that it pumps Na+ more efficiently than H+; however, so far, there is no direct evidence that it pumps H+ in vivo. Previously, we found that the nongastric H-K-ATPase alpha-subunit is expressed in apical membranes of rodent anterior prostate epithelium, in a complex with the Na-K-ATPase beta1-subunit. Here we report the effects of Atp12a gene ablation on polarization of the beta1-subunit and secretory function of the anterior prostate. In nongastric H-K-ATPase-deficient prostate, the Na-K-ATPase alpha-subunit resided exclusively in basolateral membranes; however, the beta1-subunit disappeared from apical membranes, demonstrating that beta1 is an authentic subunit of nongastric H-K-ATPase in vivo and that apical localization of beta1 in the prostate is completely dependent on its association with the nongastric H-K-ATPase alpha-subunit. A remarkable reduction in acidification of anterior prostate fluids was observed: pH 6.38 +/- 0.14 for wild-type mice and 6.96 +/- 0.10 for homozygous mutants. These results show that nongastric H-K-ATPase is required for acidification of luminal prostate fluids, thereby providing a strong in vivo correlate of previous functional expression studies demonstrating that it operates as a proton pump.
Collapse
Affiliation(s)
- Nikolay B Pestov
- Dept. of Physiology, Pharmacology, Metabolism, and Cardiovascular Sciences, Med. Univ. of Ohio, 3035 Arlington Ave., Toledo, OH 43614, USA
| | | | | | | | | |
Collapse
|
194
|
Abstract
FXYD proteins belong to a family of small-membrane proteins. Recent experimental evidence suggests that at least five of the seven members of this family, FXYD1 (phospholemman), FXYD2 (gamma-subunit of Na-K-ATPase), FXYD3 (Mat-8), FXYD4 (CHIF), and FXYD7, are auxiliary subunits of Na-K-ATPase and regulate Na-K-ATPase activity in a tissue- and isoform-specific way. These results highlight the complexity of the regulation of Na+ and K+ handling by Na-K-ATPase, which is necessary to ensure appropriate tissue functions such as renal Na+ reabsorption, muscle contractility, and neuronal excitability. Moreover, a mutation in FXYD2 has been linked to cases of human hypomagnesemia, indicating that perturbations in the regulation of Na-K-ATPase by FXYD proteins may be critically involved in pathophysiological states. A better understanding of this novel regulatory mechanism of Na-K-ATPase should help in learning more about its role in pathophysiological states. This review summarizes the present knowledge of the role of FXYD proteins in the modulation of Na-K-ATPase as well as of other proteins, their regulation, and their structure-function relationship.
Collapse
Affiliation(s)
- Käthi Geering
- Dept. of Pharmacology and Toxicology, Univ. of Lausanne, Rue du Bugnon 27, 1005 Lausanne, Switzerland.
| |
Collapse
|
195
|
Strugatsky D, Gottschalk KE, Goldshleger R, Karlish SJD. D443 of the N domain of Na+,K+-ATPase interacts with the ATP-Mg2+ complex, possibly via a second Mg2+ ion. Biochemistry 2006; 44:15961-9. [PMID: 16331955 DOI: 10.1021/bi051921v] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This paper provides evidence for an interaction of D443 in the N domain of Na(+),K(+)-ATPase with a Mg(2+) ion. Wild-type, D443N/A/C and S445A mutants of porcine Na(+),K(+)-ATPase (alpha1beta1) have been expressed in Pichia pastoris. By comparison with wild-type, D443N reduces the turn-over rate by about 40%. Binding affinity of ATP, measured directly, was not affected by D443N, D443A, or D443C mutations. AMP-PNP-Fe(2+)-catalyzed oxidative cleavage of Na(+),K(+)-ATPase produces two characteristic fragments, at (708)VNDS (P domain) and near (440)VAGDA (N domain), respectively. In the D443N and D443A mutants, both cleavages are suppressed, indicating an interaction between the residues with AMP-PNP-Fe(2+) bound. Previous work suggested that with ATP-Fe(2+) bound the N and P domains come into proximity, both D710 and D443 making contact with a single Fe(2+) (or Mg(2+)) ion. However, the crystal structure of Ca(2+)-ATPase with bound AMP-PCP and Mg(2+) confirm the involvement of D703 (D710) but show that E439 (D443) is too far to make contact with the Mg(2+). By contrast, in the crystal structure with bound ADP, AlF(4), and Mg(2+), representing the E(1)-P conformation, two Mg(2+) ions were observed. Significantly, ADP-Fe(2+)-mediated oxidative cleavage of renal Na,K-ATPase produces the fragment near (440)VAGDA (N domain), while the cleavage at (708)VNDS (P domain) is almost completely absent. The results are explained economically by the hypothesis that ATP is bound with two Mg(2+) (Fe(2+)) ions, a "catalytic" Mg(2+) interacting with D710 via the gamma phosphate and a "structural" Mg(2+) interacting with D443 via the alpha and beta phosphates and a water molecule, respectively.
Collapse
Affiliation(s)
- David Strugatsky
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovoth 76100, Israel
| | | | | | | |
Collapse
|
196
|
Abstract
The Na,K-adenosine triphosphatase (ATPase), or sodium pump, has been well studied for its role in the regulation of ion homeostasis in mammalian cells. Recent studies suggest that Na,K-ATPase might have multiple functions such as a role in the regulation of tight junction structure and function, induction of polarity, regulation of actin dynamics, control of cell movement, and cell signaling. These functions appear to be modulated by Na,K-ATPase enzyme activity as well as protein-protein interactions of the alpha and beta subunits. In this review we attempt to differentiate functions associated with enzyme activity and subunit interactions. In addition, the consequence of impaired Na,K-ATPase function or reduced subunit expression levels in kidney diseases such as cancer, tubulointerstitial fibrosis, and ischemic nephropathy are discussed.
Collapse
Affiliation(s)
- Sigrid A Rajasekaran
- Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
197
|
Abstract
The Na,K-pump was discovered about 50 years ago. Since then there has been a methodic investigation of its structure and functional characteristics. The development of the Albers-Post model for the transport cycle was a milestone that provided the framework for detailed understanding of the transport process. The pump is composed of 2 subunits that exist in the membrane as an alphabeta heterodimer. All known enzymatic functions of the pump occur through the alpha subunit. Although necessary for activity, the complete role of the beta subunit is not understood fully. Numerous studies have established that the alphabeta protomer is the minimal functional unit needed to perform the Albers-Post reaction cycle. However, higher orders of aggregation [(alphabeta)n] are commonly detected. There is little evidence that oligomerization has functional consequence for ion transport. The Na+,K+-adenosine triphosphatase (ATPase) is a member of the P-type ATPase family of transporters. Proteins within this family have common amino acid sequence motifs that share functional characteristics and structure. Low-resolution 3-dimensional reconstruction of 2-dimensional crystal diffractions provide evidence for the similarity in tertiary structure of the alpha subunit and the Ca2+ATPase (a closely related P-type ATPase). The spatial location of the beta subunit also is obvious in these reconstructions. Recent high-resolution reconstructions from 3-dimensional crystals of the Ca2+ATPase provide structural details at the atomic level. It now is possible to interpret structurally some of the key steps in the Albers-Post reaction. Some of these high-resolution interpretations are translatable to the Na+,K+-ATPase, but a high-resolution structure of the Na,K-pump is needed for the necessary details of those aspects that are unique to this transporter.
Collapse
Affiliation(s)
- Dwight W Martin
- Division of Hematology, Stony Brook University, Stony Brook, NY 11794-8151, USA.
| |
Collapse
|
198
|
Lian WN, Wu TW, Dao RL, Chen YJ, Lin CH. Deglycosylation of Na+/K+-ATPase causes the basolateral protein to undergo apical targeting in polarized hepatic cells. J Cell Sci 2005; 119:11-22. [PMID: 16339171 DOI: 10.1242/jcs.02706] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Polarized epithelia, such as hepatocytes, target their integral membrane proteins to specific apical or basolateral membrane domains during or after biogenesis. The roles played by protein glycosylation in this sorting process remain controversial. We report here that deglycosylation treatments in well-polarized hepatic cells by deglycosylation drugs, or by site-directed mutagenesis of the N-linked-glycosylation residues, all cause the Na+/K+-ATPase beta-subunit to traffic from the native basolateral to the apical/canalicular domain. Deglycosylated beta-subunits are still able to bind and therefore transport the catalytic alpha-subunits to the aberrant apical location. Such apical targeting is mediated via the indirect transcytosis pathway. Cells containing apical Na+/K+-ATPase appear to be defective in maintaining the ionic gradient across the plasma membrane and in executing hepatic activities that are dependent upon the ionic homeostasis such as canalicular excretion.
Collapse
Affiliation(s)
- Wei-Nan Lian
- Institute of Microbiology and Immunology, National Yang-Ming University, 155 Sec. 2 Linong Street, Taipei 112, Taiwan
| | | | | | | | | |
Collapse
|
199
|
Vagin O, Turdikulova S, Sachs G. Recombinant addition of N-glycosylation sites to the basolateral Na,K-ATPase beta1 subunit results in its clustering in caveolae and apical sorting in HGT-1 cells. J Biol Chem 2005; 280:43159-67. [PMID: 16230337 DOI: 10.1074/jbc.m508262200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In most polarized cells, the Na,K-ATPase is localized on the basolateral plasma membrane. However, an unusual location of the Na,K-ATPase was detected in polarized HGT-1 cells (a human gastric adenocarcinoma cell line). The Na,K-ATPase alpha1 subunit was detected along with the beta2 subunit predominantly on the apical membrane, whereas the Na,K-ATPase beta1 subunit was not found in HGT-1 cells. However, when expressed in the same cell line, a yellow fluorescent protein-linked Na,K-ATPase beta1 subunit was localized exclusively to the basolateral surface and resulted in partial redistribution of the endogenous alpha1 subunit to the basolateral membrane. The human beta2 subunit has eight N-glycosylation sites, whereas the beta1 isoform has only three. Accordingly, up to five additional N-glycosylation sites homologous to the ones present in the beta2 subunit were successively introduced in the beta1 subunit by site-directed mutagenesis. The mutated beta1 subunits were detected on both apical and basolateral membranes. The fraction of a mutant beta1 subunit present on the apical membrane increased in proportion to the number of glycosylation sites inserted and reached 80% of the total surface amount for the beta1 mutant with five additional sites. Clustered distribution and co-localization with caveolin-1 was detected by confocal microscopy for the endogenous beta2 subunit and the beta1 mutant with additional glycosylation sites but not for the wild type beta1 subunit. Hence, the N-glycans linked to the beta2 subunit of the Na,K-ATPase contain apical sorting information, and the high abundance of the beta2 subunit isoform, which is rich in N-glycans, along with the absence of the beta1 subunit, is responsible for the unusual apical location of the Na,K-ATPase in HGT-1 cells.
Collapse
Affiliation(s)
- Olga Vagin
- Department of Physiology, School of Medicine at UCLA, Los Angeles, California 90073, USA.
| | | | | |
Collapse
|
200
|
Capendeguy O, Horisberger JD. Functional effects of Na+,K+-ATPase gene mutations linked to familial hemiplegic migraine. Neuromolecular Med 2005; 6:105-16. [PMID: 15970628 DOI: 10.1385/nmm:6:2-3:105] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 09/17/2004] [Accepted: 09/20/2004] [Indexed: 11/11/2022]
Abstract
Familial hemiplegic migraine type 2, an autosomal dominant form of migraine with aura, has been associated with four distinct mutations in the alpha2-subunit of the Na+,K+-ATPase. We have introduced these mutations in the alpha2-subunit of the human Na+,K+-ATPase and the corresponding mutations in the Bufo marinus alpha1-subunit and studied these mutants by expression in Xenopus oocyte. Metabolic labeling studies showed that the mutants were synthesized and associated with the beta-subunit, except for the alpha2HW887R mutant, which was poorly synthesized, and the alpha1BW890R, which was partially retained in the endoplasmic reticulum. [3H]ouabain binding showed the presence of the alpha2HR689Q and alpha2HM731T at the membrane, whereas the alpha2HL764P and alpha2HW887R could not be detected. Functional studies with the mutants of the B. marinus Na+,K+-ATPase showed a reduced or abolished electrogenic activity and a low K+ affinity for the alpha1BW890R mutant. Through different mechanisms, all these mutations result in a strong decrease of the functional expression of the Na+,K+-pump. The decreased activity in alpha2 isoform of the Na+,K+-pump expressed in astrocytes seems an essential component of hemiplegic migraine pathogenesis and may be responsible for the cortical spreading depression, which is one of the first events in migraine attacks.
Collapse
Affiliation(s)
- Oihana Capendeguy
- Department of Pharmacology and Toxicology, Université de Lausanne, Rue du Bugnon 27, CH-1005 Lausanne, Switzerland
| | | |
Collapse
|