151
|
Durda P, Raffield LM, Lange EM, Olson NC, Jenny NS, Cushman M, Deichgraeber P, Grarup N, Jonsson A, Hansen T, Mychaleckyj JC, Psaty BM, Reiner AP, Tracy RP, Lange LA. Circulating Soluble CD163, Associations With Cardiovascular Outcomes and Mortality, and Identification of Genetic Variants in Older Individuals: The Cardiovascular Health Study. J Am Heart Assoc 2022; 11:e024374. [PMID: 36314488 PMCID: PMC9673628 DOI: 10.1161/jaha.121.024374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 08/04/2022] [Indexed: 01/11/2023]
Abstract
Background Monocytes/macrophages participate in cardiovascular disease. CD163 (cluster of differentiation 163) is a monocyte/macrophage receptor, and the shed sCD163 (soluble CD163) reflects monocyte/macrophage activation. We examined the association of sCD163 with incident cardiovascular disease events and performed a genome-wide association study to identify sCD163-associated variants. Methods and Results We measured plasma sCD163 in 5214 adults (aged ≥65 years, 58.7% women, 16.2% Black) of the CHS (Cardiovascular Health Study). We used Cox regression models (associations of sCD163 with incident events and mortality); median follow-up was 26 years. Genome-wide association study analyses were stratified on race. Adjusted for age, sex, and race and ethnicity, sCD163 levels were associated with all-cause mortality (hazard ratio [HR], 1.08 [95% CI, 1.04-1.12] per SD increase), cardiovascular disease mortality (HR, 1.15 [95% CI, 1.09-1.21]), incident coronary heart disease (HR, 1.10 [95% CI, 1.04-1.16]), and incident heart failure (HR, 1.18 [95% CI, 1.12-1.25]). When further adjusted (eg, cardiovascular disease risk factors), only incident coronary heart disease lost significance. In European American individuals, genome-wide association studies identified 38 variants on chromosome 2 near MGAT5 (top result rs62165726, P=3.3×10-18),19 variants near chromosome 17 gene ASGR1 (rs55714927, P=1.5×10-14), and 18 variants near chromosome 11 gene ST3GAL4. These regions replicated in the European ancestry ADDITION-PRO cohort, a longitudinal cohort study nested in the Danish arm of the Anglo-Danish-Dutch study of Intensive Treatment Intensive Treatment In peOple with screeNdetcted Diabetes in Primary Care. In Black individuals, we identified 9 variants on chromosome 6 (rs3129781 P=7.1×10-9) in the HLA region, and 3 variants (rs115391969 P=4.3×10-8) near the chromosome 16 gene MYLK3. Conclusions Monocyte function, as measured by sCD163, may be predictive of overall and cardiovascular-specific mortality and incident heart failure.
Collapse
Affiliation(s)
- Peter Durda
- Department of Pathology and Laboratory MedicineLarner College of Medicine, University of VermontBurlingtonVT
| | | | - Ethan M. Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraCO
| | - Nels C. Olson
- Department of Pathology and Laboratory MedicineLarner College of Medicine, University of VermontBurlingtonVT
| | - Nancy Swords Jenny
- Department of Pathology and Laboratory MedicineLarner College of Medicine, University of VermontBurlingtonVT
| | - Mary Cushman
- Department of Pathology and Laboratory MedicineLarner College of Medicine, University of VermontBurlingtonVT
- Department of MedicineLarner College of Medicine, University of VermontBurlingtonVT
| | - Pia Deichgraeber
- Steno Diabetes CenterAarhus University HospitalAarhusDenmark
- Department of Endocrinology and Internal MedicineAarhus University HospitalAarhusDenmark
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic ResearchCopenhagenDenmark
| | - Anna Jonsson
- Novo Nordisk Foundation Center for Basic Metabolic ResearchCopenhagenDenmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic ResearchCopenhagenDenmark
| | | | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health ServicesUniversity of WashingtonSeattleWA
| | - Alex P. Reiner
- Department of EpidemiologyUniversity of WashingtonSeattleWA
| | - Russell P. Tracy
- Department of Pathology and Laboratory MedicineLarner College of Medicine, University of VermontBurlingtonVT
- Department of BiochemistryLarner College of Medicine, University of VermontBurlingtonVT
| | - Leslie A. Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraCO
| |
Collapse
|
152
|
Vallelian F, Buehler PW, Schaer DJ. Hemolysis, free hemoglobin toxicity, and scavenger protein therapeutics. Blood 2022; 140:1837-1844. [PMID: 35660854 PMCID: PMC10653008 DOI: 10.1182/blood.2022015596] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/27/2022] [Indexed: 11/20/2022] Open
Abstract
During hemolysis, erythrophagocytes dispose damaged red blood cells. This prevents the extracellular release of hemoglobin, detoxifies heme, and recycles iron in a linked metabolic pathway. Complementary to this process, haptoglobin and hemopexin scavenge and shuttle the red blood cell toxins hemoglobin and heme to cellular clearance. Pathological hemolysis outpaces macrophage capacity and scavenger synthesis across a diversity of diseases. This imbalance leads to hemoglobin-driven disease progression. To meet a void in treatment options, scavenger protein-based therapeutics are in clinical development.
Collapse
Affiliation(s)
- Florence Vallelian
- Division of Internal Medicine, University Hospital, University of Zurich, Zurich, Switzerland
| | - Paul W. Buehler
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD
- Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD
| | - Dominik J. Schaer
- Division of Internal Medicine, University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
153
|
Kimm MA, Kästle S, Stechele MMR, Öcal E, Richter L, Ümütlü MR, Schinner R, Öcal O, Salvermoser L, Alunni-Fabbroni M, Seidensticker M, Goldberg SN, Ricke J, Wildgruber M. Early monocyte response following local ablation in hepatocellular carcinoma. Front Oncol 2022; 12:959987. [PMID: 36353535 PMCID: PMC9638411 DOI: 10.3389/fonc.2022.959987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2023] Open
Abstract
Local ablative therapies are established treatment modalities in the treatment of early- and intermediate-stage hepatocellular carcinoma (HCC). Systemic effects of local ablation on circulating immune cells may contribute to patients' response. Depending on their activation, myeloid cells are able to trigger HCC progression as well as to support anti-tumor immunity. Certain priming of monocytes may already occur while still in the circulation. By using flow cytometry, we analyzed peripheral blood monocyte cell populations from a prospective clinical trial cohort of 21 HCC patients following interstitial brachytherapy (IBT) or radiofrequency ablation (RFA) and investigated alterations in the composition of monocyte subpopulations and monocytic myeloid-derived suppressor cells (mMDSCs) as well as receptors involved in orchestrating monocyte function. We discovered that mMDSC levels increased following both IBT and RFA in virtually all patients. Furthermore, we identified varying alterations in the level of monocyte subpopulations following radiation compared to RFA. (A) Liquid biopsy liquid biopsy of circulating monocytes in the future may provide information on the inflammatory response towards local ablation as part of an orchestrated immune response.
Collapse
Affiliation(s)
- Melanie A. Kimm
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sophia Kästle
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Matthias M. R. Stechele
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Elif Öcal
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lisa Richter
- Core Facility Flow Cytometry, Biomedical Center Munich, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Muzaffer R. Ümütlü
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Regina Schinner
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Osman Öcal
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lukas Salvermoser
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marianna Alunni-Fabbroni
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Max Seidensticker
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - S. Nahum Goldberg
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
- Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Division of Image-guided Therapy and Interventional Oncology, Department of Radiology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Jens Ricke
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
154
|
Warren CJ, Yu S, Peters DK, Barbachano-Guerrero A, Yang Q, Burris BL, Worwa G, Huang IC, Wilkerson GK, Goldberg TL, Kuhn JH, Sawyer SL. Primate hemorrhagic fever-causing arteriviruses are poised for spillover to humans. Cell 2022; 185:3980-3991.e18. [PMID: 36182704 PMCID: PMC9588614 DOI: 10.1016/j.cell.2022.09.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/22/2022] [Accepted: 09/12/2022] [Indexed: 01/26/2023]
Abstract
Simian arteriviruses are endemic in some African primates and can cause fatal hemorrhagic fevers when they cross into primate hosts of new species. We find that CD163 acts as an intracellular receptor for simian hemorrhagic fever virus (SHFV; a simian arterivirus), a rare mode of virus entry that is shared with other hemorrhagic fever-causing viruses (e.g., Ebola and Lassa viruses). Further, SHFV enters and replicates in human monocytes, indicating full functionality of all of the human cellular proteins required for viral replication. Thus, simian arteriviruses in nature may not require major adaptations to the human host. Given that at least three distinct simian arteriviruses have caused fatal infections in captive macaques after host-switching, and that humans are immunologically naive to this family of viruses, development of serology tests for human surveillance should be a priority.
Collapse
Affiliation(s)
- Cody J Warren
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80303, USA
| | - Shuiqing Yu
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Douglas K Peters
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80303, USA
| | - Arturo Barbachano-Guerrero
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80303, USA
| | - Qing Yang
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80303, USA
| | - Bridget L Burris
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Gabriella Worwa
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - I-Chueh Huang
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Gregory K Wilkerson
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Tony L Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA.
| | - Sara L Sawyer
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80303, USA.
| |
Collapse
|
155
|
Novakova Z, Milosevic M, Kutil Z, Ondrakova M, Havlinova B, Kasparek P, Sandoval-Acuña C, Korandova Z, Truksa J, Vrbacky M, Rohlena J, Barinka C. Generation and characterization of human U-2 OS cell lines with the CRISPR/Cas9-edited protoporphyrinogen oxidase IX gene. Sci Rep 2022; 12:17081. [PMID: 36224252 PMCID: PMC9556554 DOI: 10.1038/s41598-022-21147-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/23/2022] [Indexed: 02/05/2023] Open
Abstract
In humans, disruptions in the heme biosynthetic pathway are associated with various types of porphyrias, including variegate porphyria that results from the decreased activity of protoporphyrinogen oxidase IX (PPO; E.C.1.3.3.4), the enzyme catalyzing the penultimate step of the heme biosynthesis. Here we report the generation and characterization of human cell lines, in which PPO was inactivated using the CRISPR/Cas9 system. The PPO knock-out (PPO-KO) cell lines are viable with the normal proliferation rate and show massive accumulation of protoporphyrinogen IX, the PPO substrate. Observed low heme levels trigger a decrease in the amount of functional heme containing respiratory complexes III and IV and overall reduced oxygen consumption rates. Untargeted proteomics further revealed dysregulation of 22 cellular proteins, including strong upregulation of 5-aminolevulinic acid synthase, the major regulatory protein of the heme biosynthesis, as well as additional ten targets with unknown association to heme metabolism. Importantly, knock-in of PPO into PPO-KO cells rescued their wild-type phenotype, confirming the specificity of our model. Overall, our model system exploiting a non-erythroid human U-2 OS cell line reveals physiological consequences of the PPO ablation at the cellular level and can serve as a tool to study various aspects of dysregulated heme metabolism associated with variegate porphyria.
Collapse
Affiliation(s)
- Zora Novakova
- grid.448014.dLaboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| | - Mirko Milosevic
- grid.448014.dLaboratory of Cellular Metabolism, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic ,grid.4491.80000 0004 1937 116XFaculty of Science, Charles University, Vinicna 5, Prague, 12108 Czech Republic
| | - Zsofia Kutil
- grid.448014.dLaboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| | - Marketa Ondrakova
- grid.448014.dLaboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| | - Barbora Havlinova
- grid.448014.dLaboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| | - Petr Kasparek
- grid.418827.00000 0004 0620 870XCzech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| | - Cristian Sandoval-Acuña
- grid.448014.dLaboratory of Tumour Resistance, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| | - Zuzana Korandova
- grid.418925.30000 0004 0633 9419Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220 Czech Republic ,grid.4491.80000 0004 1937 116XFirst Faculty of Medicine, Charles University, Katerinska 32, Prague, 12108 Czech Republic
| | - Jaroslav Truksa
- grid.448014.dLaboratory of Tumour Resistance, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| | - Marek Vrbacky
- grid.418925.30000 0004 0633 9419Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220 Czech Republic
| | - Jakub Rohlena
- grid.448014.dLaboratory of Cellular Metabolism, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| | - Cyril Barinka
- grid.448014.dLaboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 25250 Czech Republic
| |
Collapse
|
156
|
Tissue Levels of CD80, CD163 and CD206 and Their Ratios in Periodontal and Peri-Implant Health and Disease. Curr Issues Mol Biol 2022; 44:4704-4713. [PMID: 36286036 PMCID: PMC9600944 DOI: 10.3390/cimb44100321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/01/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to compare tissue levels of CD80 (pro-inflammatory macrophage-related surface marker), CD163, and CD206 (anti-inflammatory macrophage-related surface markers), and their ratios in periodontal and peri-implant health and disease. Altogether, 36 tissue samples were obtained from 36 participants with clinically healthy gingiva (n = 10), healthy peri-implant mucosa (n = 8), periodontitis lesions (n = 9), and peri-implantitis lesions (n = 9). CD80, CD163, and CD206 levels were assessed with immunoblotting. CD163 levels were found to be decreased (p = 0.004), and the CD80/CD163 ratio was found to be elevated (p = 0.002) in periodontitis lesions compared to healthy gingiva. Peri-implantitis lesions showed a tendency towards a higher CD80/CD163 ratio than in healthy peri-implant mucosa with a borderline difference (p = 0.054). No statistically significant difference was detected in CD80, CD163, and CD206 levels of periodontitis lesions when compared to peri-implantitis, and in healthy gingiva when compared to healthy peri-implant mucosa. A disruption in CD80/CD163 balance seems to be related to the pathogenesis of periodontitis and peri-implantitis, being less prominent in the latter. The reason behind this phenomenon may be either suppressed CD163 expression or reduced CD163+ anti-inflammatory macrophage abundance.
Collapse
|
157
|
Skytthe MK, Sørensen AL, Hennig D, Sandberg MB, Rasmussen LM, Møller HJ, Skjødt K, Graversen JH, Moestrup SK. Re-evalution of the measurement of haptoglobin in human plasma samples. Scandinavian Journal of Clinical and Laboratory Investigation 2022; 82:467-473. [PMID: 36129425 DOI: 10.1080/00365513.2022.2122077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Haptoglobin (Hp) is an abundant plasma protein scavenging hemoglobin (Hb) via CD163 on macrophages. This process consumes Hp, which therefore negatively correlates to hemolysis. However, exact measurements of Hp plasma levels are complicated by different phenotypes (Hp1-1, Hp2-1, and Hp2-2) forming different oligomeric states with differences in immunoreactivity. In addition, humans have an immune-cross-reactive Hp-related protein. In the present study, we developed Hp-specific monoclonal antibodies for an accurate Hp analysis of the different Hp phenotypes in a panel of 112 anonymous samples from hospitalized individuals subjected to routine Hp immunoturbidimetric measurements. The data revealed immunoturbidimetry as a reliable method in most cases but also that the use of non-phenotype-specific calibrators leads to substantial bias in the measurement of the Hp-concentration, non at least in Hp1-1 individuals. Furthermore, analysis of the Hb-dependence of the CD163 interaction with Hp1-1 and Hp2-2 showed that a higher 'cost-effectiveness' in the consumption of dimeric Hp1-1 versus multimeric Hp phenotypes is a likely contribution to the observed differences in the plasma levels of the Hp phenotypes. In conclusion, the determination of Hp phenotype and the use of phenotype-specific calibrators are essential to obtain a precise estimate of the Hp level in healthy and diseased individuals.
Collapse
Affiliation(s)
- Maria Kløjgaard Skytthe
- Department of Molecular Medicine-Cancer and Inflammation Research, University of Southern Denmark, Odense C, Denmark
| | - Anna Lahn Sørensen
- Department of Molecular Medicine-Cancer and Inflammation Research, University of Southern Denmark, Odense C, Denmark
| | - Dorle Hennig
- Department of Molecular Medicine-Cancer and Inflammation Research, University of Southern Denmark, Odense C, Denmark
| | - Maria Boysen Sandberg
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark
| | - Lars Melholt Rasmussen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark
| | - Holger J Møller
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.,Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus N, Denmark
| | - Karsten Skjødt
- Department of Molecular Medicine-Cancer and Inflammation Research, University of Southern Denmark, Odense C, Denmark
| | - Jonas Heilskov Graversen
- Department of Molecular Medicine-Cancer and Inflammation Research, University of Southern Denmark, Odense C, Denmark
| | - Søren Kragh Moestrup
- Department of Molecular Medicine-Cancer and Inflammation Research, University of Southern Denmark, Odense C, Denmark.,Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus N, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
158
|
Stoudenmire JL, Greenawalt AN, Cornelissen CN. Stealthy microbes: How Neisseria gonorrhoeae hijacks bulwarked iron during infection. Front Cell Infect Microbiol 2022; 12:1017348. [PMID: 36189345 PMCID: PMC9519893 DOI: 10.3389/fcimb.2022.1017348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Transition metals are essential for metalloprotein function among all domains of life. Humans utilize nutritional immunity to limit bacterial infections, employing metalloproteins such as hemoglobin, transferrin, and lactoferrin across a variety of physiological niches to sequester iron from invading bacteria. Consequently, some bacteria have evolved mechanisms to pirate the sequestered metals and thrive in these metal-restricted environments. Neisseria gonorrhoeae, the causative agent of the sexually transmitted infection gonorrhea, causes devastating disease worldwide and is an example of a bacterium capable of circumventing human nutritional immunity. Via production of specific outer-membrane metallotransporters, N. gonorrhoeae is capable of extracting iron directly from human innate immunity metalloproteins. This review focuses on the function and expression of each metalloprotein at gonococcal infection sites, as well as what is known about how the gonococcus accesses bound iron.
Collapse
Affiliation(s)
| | | | - Cynthia Nau Cornelissen
- Center for Translational Immunology, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
159
|
Humar R, Schaer DJ, Vallelian F. Erythrophagocytes in hemolytic anemia, wound healing, and cancer. Trends Mol Med 2022; 28:906-915. [PMID: 36096988 DOI: 10.1016/j.molmed.2022.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022]
Abstract
Hemolysis is a ubiquitous pathology defined as premature red blood cell destruction within the circulation or local tissues. One of the most archetypal functions of macrophages is phagocytosis of damaged or extravasated red blood cells, preventing the extracellular release of toxic hemoglobin and heme. Upon erythrophagocytosis, spiking intracellular heme concentrations drive macrophage transformation into erythrophagocytes, leveraging antioxidative and iron recycling capacities to defend against hemolytic stress. This unique phenotype transformation is coordinated by a regulatory network comprising the transcription factors BACH1, SPI-C, NRF2, and ATF1. Erythrophagocytes negatively regulate inflammation and immunity and may modulate disease-specific outcomes in hemolytic anemia, wound healing, atherosclerosis, and cancer. In this opinion article, we outline the known and presumed functions of erythrophagocytes and their implications for therapeutic innovation and research.
Collapse
Affiliation(s)
- Rok Humar
- Department of Internal Medicine, University Hospital and University of Zurich, Zurich, Switzerland
| | - Dominik J Schaer
- Department of Internal Medicine, University Hospital and University of Zurich, Zurich, Switzerland
| | - Florence Vallelian
- Department of Internal Medicine, University Hospital and University of Zurich, Zurich, Switzerland.
| |
Collapse
|
160
|
Hara Y, Tsukiji J, Yabe A, Onishi Y, Hirose H, Yamamoto M, Kudo M, Kaneko T, Ebina T. Heme oxygenase-1 as an important predictor of the severity of COVID-19. PLoS One 2022; 17:e0273500. [PMID: 36001619 PMCID: PMC9401165 DOI: 10.1371/journal.pone.0273500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 08/09/2022] [Indexed: 01/08/2023] Open
Abstract
Background and objective
A cytokine storm is caused by inflammatory cells, including pro-inflammatory macrophage phenotype (M1), and play a critical role in the pathogenesis of COVID-19, in which diffuse alveolar damage occurs in the lungs due to oxidative stress exposure. Heme oxygenase (HO)-1 is a stress-induced protein produced by the anti-inflammatory / anti-oxidative macrophage phenotype (M2), which also produces soluble CD163 (sCD163). In our study, we investigated and determined that serum HO-1 can be a predictive biomarker for assessing both the severity and the outcome of COVID-19 patients.
Method
The serum concentrations of HO-1 and sCD163 of COVID-19 patients were measured on admission. The relationship between these biomarkers and other clinical parameters and outcomes were evaluated.
Results
Sixty-four COVID-19 patients (11 mild, 38 moderate, and 15 severe cases) were assessed. The serum HO-1 tended to increase (11.0 ng/mL vs. 24.3 ng/mL vs. 59.6 ng/mL with severity). Serum HO-1 correlated with serum lactate dehydrogenase (R = 0.422), C-reactive protein (R = 0.463), and the ground glass opacity (GGO) and consolidation score (R = 0.625) of chest computed tomography. The serum HO-1 showed a better area under the curve (AUC) for predicting ICU admission than the serum sCD163 (HO-1; 0.816 and sCD163; 0.743). In addition, composite parameters including serum HO-1 and the GGO and consolidation score showed a higher AUC for predicting ICU admission than the AUC of a single parameter.
Conclusion
Clinically, serum HO-1, reflecting the activation of M2, could be a very useful marker for evaluating disease severity and predicting prognoses for COVID-19 patients. In addition, controlling activated M2 might be a preventative COVID-19 therapeutic target.
Collapse
Affiliation(s)
- Yu Hara
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Jun Tsukiji
- Department of Prevention and Infection Control, Kanagawa Cancer Center, Yokohama, Japan
- * E-mail:
| | - Aya Yabe
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yoshika Onishi
- Department of Laboratory Medicine and Clinical Investigation, Yokohama City University Medical Center, Yokohama, Japan
| | - Haruka Hirose
- Department of Laboratory Medicine and Clinical Investigation, Yokohama City University Medical Center, Yokohama, Japan
| | - Masaki Yamamoto
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Makoto Kudo
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Takeshi Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Toshiaki Ebina
- Department of Laboratory Medicine and Clinical Investigation, Yokohama City University Medical Center, Yokohama, Japan
| |
Collapse
|
161
|
Ousaka D, Nishibori M. Is hemolysis a novel therapeutic target in COVID-19? Front Immunol 2022; 13:956671. [PMID: 36059481 PMCID: PMC9438449 DOI: 10.3389/fimmu.2022.956671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/26/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
- Daiki Ousaka
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Masahiro Nishibori
- Translational Research and Drug Development, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- *Correspondence: Masahiro Nishibori,
| |
Collapse
|
162
|
Alves AF, Pereira RDA, Rodrigues MA, Campos LS, do Carmo DD, de Abreu Teles PP, Andrade HM, de Araújo SA, Gomes DA, Tafuri WL. Leishmania (L.) infantum BH401 strain induces classic renal lesions in dogs: Histological and confocal microscopy study. Exp Parasitol 2022; 242:108342. [PMID: 35987406 DOI: 10.1016/j.exppara.2022.108342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 02/22/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022]
Abstract
Extracellular matrix (ECM) alterations in visceral leishmaniasis are related mainly to collagen deposition (fibropoiesis). In canine visceral leishmaniasis (CVL), an intense fibrosis associated to chronic inflammation in organs such as kidneys is described. However, renal fibropoiesis has not been described in natural or experimental infections with L. (L.) infantum. We aimed to characterize renal nephropathies by histology and confocal microscopy comparing renal lesions in dogs naturally and experimentally infected with L. (L.) infantum. Sixty-two mixed-breed symptomatic dogs naturally infected with L. (L.) infantum, sixteen beagles experimentally infected with two strains of L. infantum (eleven dogs with the BH400 strain and five dogs with the BH401 strain), and four uninfected beagles (controls) were used. Samples were stained with hematoxylin & eosin for routine histology. Congo red was used to visualize amyloid protein deposits, periodic acid-Schiff to identify glomerular basal membrane anomalies, Masson's trichrome for collagen deposits, and Jones' methenamine silver to reveal membranous glomerulonephropathy. Immunohistochemistry was used to identify Leishmania amastigotes, and confocal microscopy was used for macrophage characterization (L1/calprotectin and CD163 antigen receptors). The most common lesions were chronic glomerular and interstitial nephritis, which was found in all naturally infected dogs and dogs experimentally infected with L. infantum strain BH401 but not with the BH400 strain. Glomeruloesclerosis was the main lesion presented in all BH401 group. Morphometric analysis revealed positive correlation of renal glomeruli tufts with cellular expression of L1/calprotectin and CD163 antigens. Leishmania infantum strain BH401 shows pathogenicity that may be sufficient to induce classic chronic visceral renal leishmaniasis.
Collapse
Affiliation(s)
- Adriano Francisco Alves
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil; Departamento de Fisiologia e Patologia, Centro de Ciências da Saúde, Universidade Federal da Paraiba, João Pessoa, PB, CEP 58050-585, Brazil
| | - Ramon de Alencar Pereira
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Michele A Rodrigues
- Departamento de Imunologia e Bioquímica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Leandro Soares Campos
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Dias do Carmo
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro Paulo de Abreu Teles
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Helida Monteiro Andrade
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Stanley Almeida de Araújo
- Departamento de Anatomia Patológica, Departamento de Ciências Biológicas (DCBI), Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Dawidson Assis Gomes
- Departamento de Imunologia e Bioquímica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Wagner Luiz Tafuri
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
163
|
Li R, Qiao S, Zhang G. Reappraising host cellular factors involved in attachment and entry to develop antiviral strategies against porcine reproductive and respiratory syndrome virus. Front Microbiol 2022; 13:975610. [PMID: 35958155 PMCID: PMC9360752 DOI: 10.3389/fmicb.2022.975610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS), caused by PRRS virus (PRRSV), is a highly contagious disease that brings tremendous economic losses to the global swine industry. As an intracellular obligate pathogen, PRRSV infects specific host cells to complete its replication cycle. PRRSV attachment to and entry into host cells are the first steps to initiate the replication cycle and involve multiple host cellular factors. In this review, we recapitulated recent advances on host cellular factors involved in PRRSV attachment and entry, and reappraised their functions in these two stages, which will deepen the understanding of PRRSV infection and provide insights to develop promising antiviral strategies against the virus.
Collapse
Affiliation(s)
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
164
|
Machuka EM, Juma J, Muigai AWT, Amimo JO, Pelle R, Abworo EO. Transcriptome profile of spleen tissues from locally-adapted Kenyan pigs (Sus scrofa) experimentally infected with three varying doses of a highly virulent African swine fever virus genotype IX isolate: Ken12/busia.1 (ken-1033). BMC Genomics 2022; 23:522. [PMID: 35854219 PMCID: PMC9294756 DOI: 10.1186/s12864-022-08754-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background African swine fever (ASF) is a lethal hemorrhagic disease affecting domestic pigs resulting in up to 100% mortality rates caused by the ASF virus (ASFV). The locally-adapted pigs in South-western Kenya have been reported to be resilient to disease and harsh climatic conditions and tolerate ASF; however, the mechanisms by which this tolerance is sustained remain largely unknown. We evaluated the gene expression patterns in spleen tissues of these locally-adapted pigs in response to varying infective doses of ASFV to elucidate the virus-host interaction dynamics. Methods Locally adapted pigs (n = 14) were experimentally infected with a high dose (1x106HAD50), medium dose (1x104HAD50), and low dose (1x102HAD50) of the highly virulent genotype IX ASFV Ken12/busia.1 (Ken-1033) isolate diluted in PBS and followed through the course of infection for 29 days. The in vivo pig host and ASFV pathogen gene expression in spleen tissues from 10 pigs (including three from each infective group and one uninfected control) were analyzed in a dual-RNASeq fashion. We compared gene expression between three varying doses in the host and pathogen by contrasting experiment groups against the naïve control. Results A total of 4954 differentially expressed genes (DEGs) were detected after ASFV Ken12/1 infection, including 3055, 1771, and 128 DEGs in the high, medium, and low doses, respectively. Gene ontology and KEGG pathway analysis showed that the DEGs were enriched for genes involved in the innate immune response, inflammatory response, autophagy, and apoptosis in lethal dose groups. The surviving low dose group suppressed genes in pathways of physiopathological importance. We found a strong association between severe ASF pathogenesis in the high and medium dose groups with upregulation of proinflammatory cytokines and immunomodulation of cytokine expression possibly induced by overproduction of prostaglandin E synthase (4-fold; p < 0.05) or through downregulation of expression of M1-activating receptors, signal transductors, and transcription factors. The host-pathogen interaction resulted in induction of expression of immune-suppressive cytokines (IL-27), inactivation of autophagy and apoptosis through up-regulation of NUPR1 [5.7-fold (high dose) and 5.1-fold (medium dose) [p < 0.05] and IL7R expression. We detected repression of genes involved in MHC class II antigen processing and presentation, such as cathepsins, SLA-DQB1, SLA-DOB, SLA-DMB, SLA-DRA, and SLA-DQA in the medium and high dose groups. Additionally, the host-pathogen interaction activated the CD8+ cytotoxicity and neutrophil machinery by increasing the expression of neutrophils/CD8+ T effector cell-recruiting chemokines (CCL2, CXCL2, CXCL10, CCL23, CCL4, CXCL8, and CXCL13) in the lethal high and medium dose groups. The recovered pigs infected with ASFV at a low dose significantly repressed the expression of CXCL10, averting induction of T lymphocyte apoptosis and FUNDC1 that suppressed neutrophilia. Conclusions We provide the first in vivo gene expression profile data from locally-adapted pigs from south-western Kenya following experimental infection with a highly virulent ASFV genotype IX isolate at varying doses that mimic acute and mild disease. Our study showed that the locally-adapted pigs induced the expression of genes associated with tolerance to infection and repression of genes involved in inflammation at varying levels depending upon the ASFV dose administered. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08754-8.
Collapse
Affiliation(s)
- Eunice Magoma Machuka
- Animal and Human Health Program, International Livestock Research Institute (ILRI), P.O. Box 30709-00100, Nairobi, Kenya. .,Pan African University Institute for Basic Sciences Technology and Innovation (PAUSTI), P.O Box 62000-00200, Nairobi, Kenya.
| | - John Juma
- Animal and Human Health Program, International Livestock Research Institute (ILRI), P.O. Box 30709-00100, Nairobi, Kenya
| | | | - Joshua Oluoch Amimo
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Roger Pelle
- Biosciences eastern and central Africa, International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709-00100, Nairobi, Kenya.
| | - Edward Okoth Abworo
- Animal and Human Health Program, International Livestock Research Institute (ILRI), P.O. Box 30709-00100, Nairobi, Kenya
| |
Collapse
|
165
|
Nascimento MT, Cordeiro RSO, Abreu C, Santos CP, Peixoto F, Duarte GA, Cardoso T, de Oliveira CI, Carvalho E, Carvalho LP. Pioglitazone, a Peroxisome Proliferator-Activated Receptor-γ Agonist, Downregulates the Inflammatory Response in Cutaneous Leishmaniasis Patients Without Interfering in Leishmania braziliensis Killing by Monocytes. Front Cell Infect Microbiol 2022; 12:884237. [PMID: 35909958 PMCID: PMC9329526 DOI: 10.3389/fcimb.2022.884237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Patients with cutaneous leishmaniasis (CL) due to Leishmania braziliensis infection have an exacerbated inflammatory response associated with tissue damage and ulcer development. An increase in the rate of patients who fail therapy with pentavalent antimony has been documented. An adjuvant therapy with an anti-inflammatory drug with the potential of Leishmania killing would benefit CL patients. The aim of the present study was to investigate the contribution of peroxisome proliferator-activated receptor-γ (PPAR-γ) activation by pioglitazone in the regulation of the inflammatory response and L. braziliensis killing by monocytes. Pioglitazone is an oral drug used in the treatment of diabetes, and its main mechanism of action is through the activation of PPAR-γ, which is expressed in many cell types of the immune response. We found that activation of PPAR-γ by pioglitazone decreases the inflammatory response in CL patients without affecting L. braziliensis killing by monocytes. Our data suggest that pioglitazone may serve as an adjunctive treatment for CL caused by L. braziliensis.
Collapse
Affiliation(s)
- Maurício T. Nascimento
- Laboratório de Pesquisas Clínicas, Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
- Serviço de Imunologia, Complexo Hospitalar Prof. Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Ravena S. O. Cordeiro
- Laboratório de Pesquisas Clínicas, Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
| | - Cayo Abreu
- Laboratório de Pesquisas Clínicas, Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
| | - Camila P. Santos
- Laboratório de Pesquisas Clínicas, Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Fábio Peixoto
- Laboratório de Pesquisas Clínicas, Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Gabriela A. Duarte
- Laboratório de Enfermidades Infecciosas Transmitidas por Vetores, Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
| | - Thiago Cardoso
- Laboratório de Pesquisas Clínicas, Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
- Serviço de Imunologia, Complexo Hospitalar Prof. Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Camila I. de Oliveira
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
- Laboratório de Enfermidades Infecciosas Transmitidas por Vetores, Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
- Ministério de Ciências e Tecnologia, Instituto Nacional de Ciências e Tecnologia-Doenças Tropicais, Salvador, Brazil
| | - Edgar M. Carvalho
- Laboratório de Pesquisas Clínicas, Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
- Serviço de Imunologia, Complexo Hospitalar Prof. Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
- Ministério de Ciências e Tecnologia, Instituto Nacional de Ciências e Tecnologia-Doenças Tropicais, Salvador, Brazil
| | - Lucas P. Carvalho
- Laboratório de Pesquisas Clínicas, Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
- Serviço de Imunologia, Complexo Hospitalar Prof. Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
- Ministério de Ciências e Tecnologia, Instituto Nacional de Ciências e Tecnologia-Doenças Tropicais, Salvador, Brazil
| |
Collapse
|
166
|
Meloni A, Barbuto L, Pistoia L, Positano V, Renne S, Peritore G, Fina P, Spasiano A, Allò M, Messina G, Casini T, Massa A, Romano L, Pepe A, Cademartiri F. Frequency, pattern, and associations of renal iron accumulation in sickle/β-thalassemia patients. Ann Hematol 2022; 101:1941-1950. [PMID: 35821343 DOI: 10.1007/s00277-022-04915-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022]
Abstract
We evaluated frequency, pattern, and associations of renal iron accumulation in sickle/β-thalassemia. Thirty-three sickle/β-thalassemia patients (36.5 ± 14.7 years; 13 females), 14 homozygous sickle cell disease (SCD) patients, and 71 thalassemia major (TM) patients, enrolled in the E-MIOT Network, underwent magnetic resonance imaging. Iron overload (IO) was quantified by the T2* technique. Sickle/β-thalassemia patients had a significantly lower frequency of renal IO (T2* < 31 ms) than homozygous SCD patients (9.1% vs. 57.1%; P = 0.001), besides having similar hepatic, cardiac and pancreatic IO. Kidney T2* values were comparable between regularly transfused sickle/β-thalassemia and TM patients but were significantly lower in regularly transfused homozygous SCD patients than in the other two groups. In sickle/β-thalassemia patients, global renal T2* values were not associated with age, gender, splenectomy, and presence of regular transfusions or chelation. No correlation was detected between renal T2* values and serum ferritin levels or iron load in the other organs. Global renal T2* values were not associated with serum creatinine levels but showed a significant inverse correlation with serum lactate dehydrogenase (R = - 0.709; P < 0.0001) and indirect bilirubin (R = - 0.462; P = 0.012). Renal IO is not common in sickle/β-thalassemia patients, with a prevalence significantly lower compared to that of homozygous SCD patients, but with a similar underlying mechanism due to the chronic hemolysis.
Collapse
Affiliation(s)
- Antonella Meloni
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Via Moruzzi, 1 - 56124, Pisa, Italy.,U.O.C. Bioingegneria, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Luigi Barbuto
- U.O.C. Radiologia Generale E Di Pronto Soccorso, Azienda Ospedaliera Di Rilievo Nazionale "A. Cardarelli", Naples, Italy
| | - Laura Pistoia
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Via Moruzzi, 1 - 56124, Pisa, Italy
| | - Vincenzo Positano
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Via Moruzzi, 1 - 56124, Pisa, Italy.,U.O.C. Bioingegneria, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Stefania Renne
- Struttura Complessa Di Cardioradiologia-UTIC, Presidio Ospedaliero "Giovanni Paolo II", Lamezia Terme, Italy
| | - Giuseppe Peritore
- Unità Operativa Complessa Di Radiologia, "ARNAS" Civico, Di Cristina Benfratelli, Palermo, Italy
| | - Priscilla Fina
- Unità Operativa Complessa Diagnostica Per Immagini, Ospedale "Sandro Pertini", Rome, Italy
| | - Anna Spasiano
- U.O.S.D. Malattie Rare del Globulo Rosso, Azienda Ospedaliera Di Rilievo Nazionale "A. Cardarelli", Naples, Italy
| | - Massimo Allò
- Ematologia Microcitemia, Ospedale San Giovanni di Dio - ASP Crotone, Crotone, Italy
| | - Giuseppe Messina
- Centro Microcitemie, Grande Ospedale Metropolitano "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| | - Tommaso Casini
- Centro Talassemie Ed Emoglobinopatie, Ospedale "Meyer", Florence, Italy
| | - Antonella Massa
- Servizio Trasfusionale, Ospedale "Giovanni Paolo II", Olbia, Italy
| | - Luigia Romano
- U.O.C. Radiologia Generale E Di Pronto Soccorso, Azienda Ospedaliera Di Rilievo Nazionale "A. Cardarelli", Naples, Italy
| | - Alessia Pepe
- Institute of Radiology, Department of Medicine, University of Padua, Padua, Italy
| | - Filippo Cademartiri
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Via Moruzzi, 1 - 56124, Pisa, Italy.
| |
Collapse
|
167
|
Guslund NC, Krabberød AK, Nørstebø SF, Solbakken MH, Jakobsen KS, Johansen FE, Qiao SW. Lymphocyte subsets in Atlantic cod (Gadus morhua) interrogated by single-cell sequencing. Commun Biol 2022; 5:689. [PMID: 35821077 PMCID: PMC9276791 DOI: 10.1038/s42003-022-03645-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
Atlantic Cod (Gadus morhua) has lost the major histocompatibility complex class II presentation pathway. We recently identified CD8-positive T cells, B cells, and plasma cells in cod, but further characterisation of lymphocyte subsets is needed to elucidate immune adaptations triggered by the absence of CD4-positive T lymphocytes. Here, we use single-cell RNA sequencing to examine the lymphocyte heterogeneity in Atlantic cod spleen. We describe five T cell subsets and eight B cell subsets and propose a B cell trajectory of differentiation. Notably, we identify a subpopulation of T cells that are CD8-negative. Most of the CD8-negative T lymphocytes highly express the homologue of monocyte chemotactic protein 1b, and another subset of CD8-negative T lymphocytes express the homologue of the scavenger receptor m130. Uncovering the multiple lymphocyte cell sub-clusters reveals the different immune states present within the B and T cell populations, building a foundation for further work. Single-cell sequencing of naïve and vaccinated Atlantic Cod uncovers multiple B and T lymphocyte subsets including a subset of T lymphocytes expressing neither CD4 or CD8 and reveals different immune states present within B and T cell populations.
Collapse
Affiliation(s)
- Naomi Croft Guslund
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences and the Department of Immunology, University of Oslo, Oslo, Norway.
| | - Anders K Krabberød
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences and the Department of Immunology, University of Oslo, Oslo, Norway.,Section for Genetics and Evolutionary Biology, Department of Biosciences and the Department of Immunology, University of Oslo, Oslo, Norway
| | - Simen F Nørstebø
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Monica Hongrø Solbakken
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences and the Department of Immunology, University of Oslo, Oslo, Norway
| | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences and the Department of Immunology, University of Oslo, Oslo, Norway
| | - Finn-Eirik Johansen
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Shuo-Wang Qiao
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
168
|
Suzuki Y, Taguchi K, Okamoto W, Enoki Y, Komatsu T, Matsumoto K. Methemoglobin-albumin clusters for the treatment of hydrogen sulfide intoxication. J Control Release 2022; 349:304-314. [PMID: 35809661 DOI: 10.1016/j.jconrel.2022.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 11/28/2022]
Abstract
Hydrogen sulfide (H2S) has attracted significant attention as a seed in drug development. However, H2S is toxic and induces lethal acute intoxication. Here, we developed methemoglobin (metHb)-albumin clusters as detoxifying agents for H2S intoxication, which were designed based on the inherent binding property of metHb with H2S. The metHb-albumin clusters comprising an autoxidized ferric Hb center wrapped covalently with an average of three human serum albumins showed a similar H2S binding affinity to that of naked metHb. Owing to the H2S binding capability, metHb-albumin clusters suppressed cell death induced by H2S exposure while maintaining mitochondrial function in H9c2 cells. In addition, lethal H2S intoxication model mice were rescued by a single administration of metHb-albumin clusters, resulting from the recovery of cytochrome c oxidase activity. Furthermore, the metHb-albumin clusters possessed essential characteristics, such as adequate pharmacokinetic properties and biocompatibility, for their use as detoxifying agents against H2S intoxication. In conclusion, the results obtained in this study suggest that metHb-albumin clusters are promising detoxifying agents for H2S intoxication and that harnessing the inherent H2S binding properties of metHb is an innovative approach to develop detoxifying agents for H2S intoxication.
Collapse
Affiliation(s)
- Yuto Suzuki
- Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Kazuaki Taguchi
- Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan.
| | - Wataru Okamoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan
| | - Yuki Enoki
- Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Teruyuki Komatsu
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan
| | | |
Collapse
|
169
|
Scalable production and complete biophysical characterization of poly(ethylene glycol) surface conjugated liposome encapsulated hemoglobin (PEG-LEH). PLoS One 2022; 17:e0269939. [PMID: 35802716 PMCID: PMC9269976 DOI: 10.1371/journal.pone.0269939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/31/2022] [Indexed: 11/19/2022] Open
Abstract
Particle encapsulated hemoglobin (Hb)-based oxygen (O2) carriers (HBOCs) have clear advantages over their acellular counterparts because of their larger molecular diameter and lack of vasoactivity upon transfusion. Poly(ethylene glycol) surface conjugated liposome encapsulated Hb (PEG-LEH) nanoparticles are considered a promising class of HBOC for use as a red blood cell (RBC) substitute. However, their widespread usage is limited by manufacturing processes which prevent material scale up. In this study, PEG-LEH nanoparticles were produced via a scalable and robust process using a high-pressure cell disruptor, and their biophysical properties were thoroughly characterized. Hb encapsulation, methemoglobin (metHb) level, O2-PEG-LEH equilibria, PEG-LEH gaseous (oxygen, carbon monoxide, nitric oxide) ligand binding/release kinetics, lipocrit, and long-term storage stability allowed us to examine their potential suitability and efficacy as an RBC replacement. Our results demonstrate that PEG-LEH nanoparticle suspensions manufactured via a high-pressure cell disruptor have Hb concentrations comparable to whole blood (~12 g/dL) and possess other desirable characteristics, which may permit their use as potential lifesaving O2 therapeutics.
Collapse
|
170
|
Stoian AM, Rowland RR, Brandariz-Nuñez A. Identification of CD163 regions that are required for porcine reproductive and respiratory syndrome virus (PRRSV) infection but not for binding to viral envelope glycoproteins. Virology 2022; 574:71-83. [DOI: 10.1016/j.virol.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022]
|
171
|
Zhu Y, Webster MJ, Murphy CE, Middleton FA, Massa PT, Liu C, Dai R, Weickert CS. Distinct Phenotypes of Inflammation Associated Macrophages and Microglia in the Prefrontal Cortex Schizophrenia Compared to Controls. Front Neurosci 2022; 16:858989. [PMID: 35844224 PMCID: PMC9279891 DOI: 10.3389/fnins.2022.858989] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/01/2022] [Indexed: 12/23/2022] Open
Abstract
Approximately 40% of people with schizophrenia are classified as having "high inflammation." This subgroup has worse neuropathology than patients with "low inflammation." Thus, one would expect the resident microglia and possibly monocyte-derived macrophages infiltrating from the periphery to be "activated" in those with schizophrenia with elevated neuroinflammation. To test whether microglia and/or macrophages are associated with increased inflammatory signaling in schizophrenia, we measured microglia- and macrophage-associated transcripts in the postmortem dorsolateral prefrontal cortex of 69 controls and 72 people with schizophrenia. Both groups were stratified by neuroinflammatory status based on cortical mRNA levels of cytokines and SERPINA3. We found microglial mRNAs levels were either unchanged (IBA1 and Hexb, p > 0.20) or decreased (CD11c, <62% p < 0.001) in high inflammation schizophrenia compared to controls. Conversely, macrophage CD163 mRNA levels were increased in patients, substantially so in the high inflammation schizophrenia subgroup compared to low inflammation subgroup (>250%, p < 0.0001). In contrast, high inflammation controls did not have elevated CD163 mRNA compared to low inflammation controls (p > 0.05). The pro-inflammatory macrophage marker (CD64 mRNA) was elevated (>160%, all p < 0.05) and more related to CD163 mRNA in the high inflammation schizophrenia subgroup compared to high inflammation controls, while anti-inflammatory macrophage and cytokine markers (CD206 and IL-10 mRNAs) were either unchanged or decreased in schizophrenia. Finally, macrophage recruitment chemokine CCL2 mRNA was increased in schizophrenia (>200%, p < 0.0001) and CCL2 mRNA levels positively correlated with CD163 mRNA (r = 0.46, p < 0.0001). Collectively, our findings support the co-existence of quiescent microglia and increased pro-inflammatory macrophages in the cortex of people with schizophrenia.
Collapse
Affiliation(s)
- Yunting Zhu
- Department of Neuroscience, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Maree J. Webster
- Stanley Medical Research Institute, Rockville, MD, United States
| | - Caitlin E. Murphy
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia
| | - Frank A. Middleton
- Department of Neuroscience, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Paul T. Massa
- Department of Neurology and Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Chunyu Liu
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Rujia Dai
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Cyndi Shannon Weickert
- Department of Neuroscience, SUNY Upstate Medical University, Syracuse, NY, United States
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
172
|
Kalló G, Kumar A, Tőzsér J, Csősz É. Chemical Barrier Proteins in Human Body Fluids. Biomedicines 2022; 10:biomedicines10071472. [PMID: 35884778 PMCID: PMC9312486 DOI: 10.3390/biomedicines10071472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Chemical barriers are composed of those sites of the human body where potential pathogens can contact the host cells. A chemical barrier is made up by different proteins that are part of the antimicrobial and immunomodulatory protein/peptide (AMP) family. Proteins of the AMP family exert antibacterial, antiviral, and/or antifungal activity and can modulate the immune system. Besides these proteins, a wide range of proteases and protease inhibitors can also be found in the chemical barriers maintaining a proteolytic balance in the host and/or the pathogens. In this review, we aimed to identify the chemical barrier components in nine human body fluids. The interaction networks of the chemical barrier proteins in each examined body fluid were generated as well.
Collapse
Affiliation(s)
- Gergő Kalló
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (A.K.); (J.T.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Correspondence: ; Tel.: +36-52-416432
| | - Ajneesh Kumar
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (A.K.); (J.T.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - József Tőzsér
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (A.K.); (J.T.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (A.K.); (J.T.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| |
Collapse
|
173
|
Cutolo M, Campitiello R, Gotelli E, Soldano S. The Role of M1/M2 Macrophage Polarization in Rheumatoid Arthritis Synovitis. Front Immunol 2022; 13:867260. [PMID: 35663975 PMCID: PMC9161083 DOI: 10.3389/fimmu.2022.867260] [Citation(s) in RCA: 269] [Impact Index Per Article: 89.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/24/2022] [Indexed: 12/27/2022] Open
Abstract
Innate and adaptive immunity represent a harmonic counterbalanced system involved in the induction, progression, and possibly resolution of the inflammatory reaction that characterize autoimmune rheumatic diseases (ARDs), including rheumatoid arthritis (RA). Although the immunopathophysiological mechanisms of the ARDs are not fully clarified, they are often associated with an inappropriate macrophage/T-cell interaction, where classical (M1) or alternative (M2) macrophage activation may influence the occurrence of T-helper (Th)1 or Th2 responses. In RA patients, M1/Th1 activation occurs in an inflammatory environment dominated by Toll-like receptor (TLR) and interferon (IFN) signaling, and it promotes a massive production of pro-inflammatory cytokines [i.e., tumor necrosis factor-α (TNFα), interleukin (IL)-1, IL-12, IL-18, and IFNγ], chemotactic factors, and matrix metalloproteinases resulting in osteoclastogenesis, erosion, and progressive joint destruction. On the other hand, the activation of M2/Th2 response determines the release of growth factors and cytokines [i.e., IL-4, IL-10, IL-13, and transforming growth factor (TGF)-β] involved in the anti-inflammatory process leading to the clinical remission of RA. Several subtypes of macrophages have been described. Five polarization states from M1 to M2 have been confirmed in in vitro studies analyzing morphological characteristics, gene expression of phenotype markers (CD80, CD86, TLR2, TLR4, or CD206, CD204, CD163, MerTK), and functional aspect, including the production of reactive oxygen species (ROS). An M1 and M2 macrophage imbalance may induce pathological consequences and contribute to several diseases, such as asthma or osteoclastogenesis in RA patients. In addition, the macrophage dynamic polarization from M1 to M2 includes the presence of intermediate polarity stages distinguished by the expression of specific surface markers and the production/release of distinct molecules (i.e., nitric oxide, cytokines), which characterize their morphological and functional state. This suggests a “continuum” of macrophage activation states playing an important role during inflammation and its resolution. This review discusses the importance of the delicate M1/M2 imbalance in the different phases of the inflammatory process together with the identification of specific pathways, cytokines, and chemokines involved, and its clinical outcomes in RA. The analysis of these aspects could shed a light on the abnormal inflammatory activation, leading to novel therapeutical approaches which may contribute to restore the M1/M2 balance.
Collapse
Affiliation(s)
- Maurizio Cutolo
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Specialties (DIMI), University of Genova, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Martino Polyclinic Hospital, Genoa, Italy
| | - Rosanna Campitiello
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Specialties (DIMI), University of Genova, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Martino Polyclinic Hospital, Genoa, Italy
| | - Emanuele Gotelli
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Specialties (DIMI), University of Genova, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Martino Polyclinic Hospital, Genoa, Italy
| | - Stefano Soldano
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Specialties (DIMI), University of Genova, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Martino Polyclinic Hospital, Genoa, Italy
| |
Collapse
|
174
|
Zhang T, Shen HH, Qin XY, Li MQ. The metabolic characteristic of decidual immune cells and their unique properties in pregnancy loss. Immunol Rev 2022; 308:168-186. [PMID: 35582842 DOI: 10.1111/imr.13085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022]
Abstract
Maternal tolerance to semi- or fully allograft conceptus is a prerequisite for the maintenance of pregnancy. Once this homeostasis is disrupted, it may result in pregnancy loss. As a potential approach to prevent pregnancy loss, targeting decidual immune cells (DICs) at the maternal-fetal interface has been suggested. Although the phenotypic features and functions of DIC have been extensively profiled, the regulatory pathways for this unique immunological adaption have yet to be elucidated. In recent years, a pivotal mechanism has been highlighted in the area of immunometabolism, by which the changes in intracellular metabolic pathways in DIC and interaction with the adjacent metabolites in the microenvironment can alter their phenotypes and function. More inspiringly, the manipulation of metabolic profiling in DIC provides a novel avenue for the prevention and treatment of pregnancy loss. Herein, this review highlights the major metabolic programs (specifically, glycolysis, ATP-adenosine metabolism, lysophosphatidic acid metabolism, and amino acid metabolism) in multiple immune cells (including decidual NK cells, macrophages, and T cells) and their integrations with the metabolic microenvironment in normal pregnancy. Importantly, this perspective may help to provide a potential therapeutic strategy for reducing pregnancy loss via targeting this interplay.
Collapse
Affiliation(s)
- Tao Zhang
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Hui-Hui Shen
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Xue-Yun Qin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China.,NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China.,Shanghai Medical School, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| |
Collapse
|
175
|
Ansari I, Basak R, Mukhopadhyay A. Hemoglobin Endocytosis and Intracellular Trafficking: A Novel Way of Heme Acquisition by Leishmania. Pathogens 2022; 11:585. [PMID: 35631106 PMCID: PMC9143042 DOI: 10.3390/pathogens11050585] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Leishmania species are causative agents of human leishmaniasis, affecting 12 million people annually. Drugs available for leishmaniasis are toxic, and no vaccine is available. Thus, the major thrust is to identify new therapeutic targets. Leishmania is an auxotroph for heme and must acquire heme from the host for its survival. Thus, the major focus has been to understand the heme acquisition process by the parasites in the last few decades. It is conceivable that the parasite is possibly obtaining heme from host hemoprotein, as free heme is not available in the host. Current understanding indicates that Leishmania internalizes hemoglobin (Hb) through a specific receptor by a clathrin-mediated endocytic process and targets it to the parasite lysosomes via the Rab5 and Rab7 regulated endocytic pathway, where it is degraded to generate intracellular heme that is used by the parasite. Subsequently, intra-lysosomal heme is initially transported to the cytosol and is finally delivered to the mitochondria via different heme transporters. Studies using different null mutant parasites showed that these receptors and transporters are essential for the survival of the parasite. Thus, the heme acquisition process in Leishmania may be exploited for the development of novel therapeutics.
Collapse
Affiliation(s)
| | | | - Amitabha Mukhopadhyay
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India; (I.A.); (R.B.)
| |
Collapse
|
176
|
Evaluation of serum haptoglobin levels and Hp1-Hp2 polymorphism in the haptoglobin gene in patients with atrial fibrillation. Mol Biol Rep 2022; 49:7359-7365. [DOI: 10.1007/s11033-022-07528-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022]
|
177
|
Quantitative proteomic analysis of cerebrospinal fluid reveals CD163, A2M and full-length APP as potential diagnostic biomarkers of paediatric bacterial meningitis. Proteome Sci 2022; 20:8. [PMID: 35524265 PMCID: PMC9074227 DOI: 10.1186/s12953-022-00191-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
Background Bacterial meningitis (BM) is a life-threatening infectious disease of the central nervous system in infants and children. To date, no diagnostic methods for the early and precise diagnosis of paediatric BM have been developed. Methods A label-free cerebrospinal fluid (CSF) quantitative proteomic analysis of 8 patients with confirmed or suspected BM, 9 patients with confirmed or suspected viral meningitis (VM) and 6 non-CNS-infected hospital patients was performed via high-resolution LC–MS/MS. Results Our CSF proteomic analysis allowed the identification of critical differences between the BM and non-BM groups. Compared to the proteomes of the non-BM groups, the proteome of the paediatric BM group was characterized by upregulation of complement and coagulation cascades, regulation of IGF transport, uptake by IGF-binding proteins and acute inflammatory response, downregulation of developmental growth, and metabolism of carbohydrates. Moreover, the levels of CD163, A2M and full-length APP in CSF showed excellent diagnostic performance for paediatric BM, with AUC values of 0.911 (95% CI: 0.839–0.984), 0.908 (95% CI: 0.816–1.000) and 0.944 (95% CI: 0.86, 1.000), respectively. Among them, A2M and full-length APP are reported here for the first time as potential diagnostic biomarkers of BM. The findings imply that peptidase regulator activity plays an important role in BM and provide potential novel targets for precision medicine in paediatric BM. Conclusions CD163, A2M and full-length APP are validated as potential diagnostic biomarkers of paediatric BM. Supplementary Information The online version contains supplementary material available at 10.1186/s12953-022-00191-5.
Collapse
|
178
|
Stoian AMM, Rowland RRR, Brandariz-Nuñez A. Mutations within scavenger receptor cysteine-rich (SRCR) protein domain 5 of porcine CD163 involved in infection with porcine reproductive and respiratory syndrome virus (PRRS). J Gen Virol 2022; 103. [PMID: 35506985 DOI: 10.1099/jgv.0.001740] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CD163, a macrophage-specific membrane scavenger receptor, serves as a cellular entry receptor for porcine reproductive and respiratory syndrome virus (PRRSV). The removal of scavenger receptor cysteine-rich (SRCR) domain 5 (SRCR5) of CD163 is sufficient to make transfected cells or genetically modified pigs resistant to PRRSV-1 and PRRSV-2 genotypes, and substitution of SRCR5 with SRCR8 from human CD163-like protein (hCD163L1) confers resistance to PRRSV-1 but not PRRSV-2 isolates. However, the specific regions within the SRCR5 polypeptide involved in PRRSV infection remain largely unknown. In this report, we performed mutational studies in order to identify which regions or amino acid sequences in the SRCR5 domain are critical for PRRSV infection. The approach used in this study was to make proline-arginine (PR) insertions along the SRCR5 polypeptide. Constructs were transfected into HEK293T cells, and then evaluated for infection with PRRSV-2 or PRRSV-1. For PRRSV-2, four PR insertions located after amino acids 8 (PR-9), 47 (PR-48), 54 (PR-55), and 99 (PR-100) had the greatest impact on infection. For PRRSV-1, insertions after amino acids 57 (PR-58) and 99 (PR-100) were critical. Computer simulations based on the crystal structure of SRCR5 showed that the mutations that affected infection localized to a similar region on the surface of the 3-D structure. Specifically, we found two surface patches that are essential for PRRSV infection. PR-58 and PR-55, which were separated by only three amino acids, had reciprocal effects on PRRSV-1 and PRRSV-2. Substitution of Glu-58 with Lys-58 reduced PRRSV-1 infection without affecting PRRSV-2, which partially explains the resistance to PRRSV-1 caused by the SRCR5 replacement with the homolog human SRCR8 previously observed. Finally, resistance to infection was observed following the disruption of any of the four conserved disulfide bonds within SRCR5. In summary, the results confirm that there are distinct differences between PRRSV-1 and PRRSV-2 on recognition of CD163; however, all mutations that affect infection locate on a similar region on the same face of SRCR5.
Collapse
Affiliation(s)
- Ana M M Stoian
- School of Medicine, Department of Medial Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Raymond R R Rowland
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Alberto Brandariz-Nuñez
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
179
|
The proteome signature of cord blood plasma with high hematopoietic stem and progenitor cell count. Stem Cell Res 2022; 61:102752. [DOI: 10.1016/j.scr.2022.102752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/23/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022] Open
|
180
|
de Oliveira J, Denadai MB, Costa DL. Crosstalk between Heme Oxygenase-1 and Iron Metabolism in Macrophages: Implications for the Modulation of Inflammation and Immunity. Antioxidants (Basel) 2022; 11:861. [PMID: 35624725 PMCID: PMC9137896 DOI: 10.3390/antiox11050861] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/16/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is an enzyme that catalyzes the degradation of heme, releasing equimolar amounts of carbon monoxide (CO), biliverdin (BV), and iron. The anti-inflammatory and antioxidant properties of HO-1 activity are conferred in part by the release of CO and BV and are extensively characterized. However, iron constitutes an important product of HO-1 activity involved in the regulation of several cellular biological processes. The macrophage-mediated recycling of heme molecules, in particular those contained in hemoglobin, constitutes the major mechanism through which living organisms acquire iron. This process is finely regulated by the activities of HO-1 and of the iron exporter protein ferroportin. The expression of both proteins can be induced or suppressed in response to pro- and anti-inflammatory stimuli in macrophages from different tissues, which alters the intracellular iron concentrations of these cells. As we discuss in this review article, changes in intracellular iron levels play important roles in the regulation of cellular oxidation reactions as well as in the transcriptional and translational regulation of the expression of proteins related to inflammation and immune responses, and therefore, iron metabolism represents a potential target for the development of novel therapeutic strategies focused on the modulation of immunity and inflammation.
Collapse
Affiliation(s)
- Joseana de Oliveira
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto 14049-900, Brazil; (J.d.O.); (M.B.D.)
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto 14049-900, Brazil
| | - Marina B. Denadai
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto 14049-900, Brazil; (J.d.O.); (M.B.D.)
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto 14049-900, Brazil
| | - Diego L. Costa
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto 14049-900, Brazil; (J.d.O.); (M.B.D.)
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto 14049-900, Brazil
| |
Collapse
|
181
|
Puy L, Perbet R, Figeac M, Duchêne B, Deramecourt V, Cordonnier C, Bérézowski V. Brain Peri-Hematomal Area, a Strategic Interface for Blood Clearance: A Human Neuropathological and Transcriptomic Study. Stroke 2022; 53:2026-2035. [DOI: 10.1161/strokeaha.121.037751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background:
Enhancing the blood clearance process is a promising therapeutic strategy for intracerebral hemorrhage (ICH). We aimed to investigate the kinetic of this process after ICH in human brain tissue through the monocyte-macrophage scavenger receptor (CD163)/HO-1 (hemoxygenase-1) pathway.
Methods:
We led a cross-sectional post-mortem study including 22 consecutive ICH cases (2005–2019) from the Lille Neurobank. Cases were grouped according to the time of death: ≤72 hours, 4 to 7 days, 8 to 15 days, 16 to 90 days, and >90 days after ICH onset. Paraffin-embedded tissue was extracted from 4 strategic areas, including hematoma core and peri-hematomal area to perform histological investigations. Additionally, we extracted RNA from the peri-hematomal area of 6 cases to perform transcriptomic analysis.
Results:
We included 19 ICH cases (median age: 79 [71–89] years; median delay ICH-death: 13 [5–41] days). The peri-hematomal area concentrated most of reactive microglia, CD163/HO-1 and iron deposits as compared with other brain areas. We found a surge in the blood clearance process from day 8 to day 15 after ICH onset. Transcriptomic analysis showed that HO-1 was the most upregulated gene (2.81±0.39, adjusted
P
=1.11×10
–10
) and CD163 the sixth (1.49±0.29, adjusted
P
=1.68×10
–
5
). We also identified several upregulated genes that exert a beneficial role in terminating inflammation and enhancing tissue repair.
Conclusions:
We provide histological and transcriptomic-based evidence in humans for the key role of peri-hematomal area in endogenous blood clearance process through the CD163/HO-1 pathway, especially from day 8 after ICH and favored by an anti-inflammatory environment. Our findings contribute to identify innovative therapeutic strategies for ICH.
Collapse
Affiliation(s)
- Laurent Puy
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition research Center UMR-S1172, Degenerative and Vascular Cognitive Disorders, France (L.P., R.P., V.D., C.C., V.B.)
| | - Romain Perbet
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition research Center UMR-S1172, Degenerative and Vascular Cognitive Disorders, France (L.P., R.P., V.D., C.C., V.B.)
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital, Charlestown (R.P.)
- Harvard Medical School, Boston, MA (R.P.)
| | - Martin Figeac
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, France (M.F.)
| | - Bélinda Duchêne
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France (B.D.)
| | - Vincent Deramecourt
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition research Center UMR-S1172, Degenerative and Vascular Cognitive Disorders, France (L.P., R.P., V.D., C.C., V.B.)
- Université d’Artois, Lens, France (V.B.)
| | - Charlotte Cordonnier
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition research Center UMR-S1172, Degenerative and Vascular Cognitive Disorders, France (L.P., R.P., V.D., C.C., V.B.)
| | - Vincent Bérézowski
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition research Center UMR-S1172, Degenerative and Vascular Cognitive Disorders, France (L.P., R.P., V.D., C.C., V.B.)
| |
Collapse
|
182
|
Marocco R, Carraro A, Zingaropoli MA, Nijhawan P, Tortellini E, Guardiani M, Mengoni F, Zuccalà P, Belvisi V, Kertusha B, Parente A, Del Borgo C, Vullo V, Ciardi M, Mastroianni CM, Lichtner M. Role of Tocilizumab in Down Regulating sCD163 Plasmatic Levels in a Cohort of COVID-19 Patients. Front Immunol 2022; 13:871592. [PMID: 35444637 PMCID: PMC9013773 DOI: 10.3389/fimmu.2022.871592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/09/2022] [Indexed: 11/18/2022] Open
Abstract
Background CD163, a haptoglobin-hemoglobin scavenger receptor mostly expressed by monocytes and macrophages, is involved in the regulation of inflammatory processes. Following proteolytic cleavage after pro-inflammatory stimulation, CD163 is shed from the cell surface and its soluble form in plasma, sCD163, is a biomarker of monocyte/macrophage lineage activation. The assessment of sCD163 plasmatic levels in an early stage of the disease could have clinical utility in predicting the severity of COVID-19 pneumonia. The use of tocilizumab (monoclonal antibody anti-IL-6 receptor) in COVID-19 patients reduces lethality rate at 30 days. The aim of the study was to investigate the effect of tocilizumab on sCD163 plasmatic levels in a cohort of COVID-19 patients. Methods In COVID-19 patients, on hospital admission (T0), after 7 days from hospitalization (T7) and after 45 days from discharge (T45) sCD163 plasmatic levels were evaluated, along with other laboratory parameters. COVID-19 patients were stratified into tocilizumab (TCZ) and non-tocilizumab (non-TCZ) groups. TCZ group was further divided into responder (R) and non-responder (NR) groups. Patients who died or required mechanical ventilation were defined as NR. As control group, healthy donors (HD) were enrolled. Results Seventy COVID-19 patients and 47 HD were enrolled. At T0, sCD163 plasmatic levels were higher in COVID-19 patients compared to HD (p<0.0001) and the longitudinal evaluation showed a reduction in sCD163 plasmatic levels at T7 compared to T0 (p=0.0211). At T0, both TCZ and non-TCZ groups showed higher sCD163 plasmatic levels compared to HD (p<0.0001 and p=0.0147, respectively). At T7, the longitudinal evaluation showed a significant reduction in sCD163 plasmatic levels (p=0.0030) only in the TCZ group, reaching levels comparable to those of HD. Conversely, not statistically significance in non-TCZ group was observed and, at T7, a statistically significance was found comparing non-TCZ group to HD (p=0.0019). At T0, R and NR groups showed not statistically significance in sCD163 plasmatic levels and both groups showed higher levels compared to HD (p=0.0001 and p=0.0340, respectively). The longitudinal evaluation showed significant reductions in both groups (R: p=0.0356; NR: p=0.0273) independently of the outcome. After 45 days of follow-up sCD163 plasmatic levels remain stable. Conclusion sCD163 plasmatic levels are increased in COVID-19 pneumonia and is efficiently down-regulated by tocilizumab treatment regardless of the clinical outcome.
Collapse
Affiliation(s)
- Raffaella Marocco
- Infectious Diseases Unit, Santa Maria (SM) Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Anna Carraro
- Infectious Diseases Unit, Santa Maria (SM) Goretti Hospital, Sapienza University of Rome, Latina, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Maria Antonella Zingaropoli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- *Correspondence: Maria Antonella Zingaropoli,
| | - Parni Nijhawan
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Eeva Tortellini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Mariasilvia Guardiani
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Fabio Mengoni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Paola Zuccalà
- Infectious Diseases Unit, Santa Maria (SM) Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Valeria Belvisi
- Infectious Diseases Unit, Santa Maria (SM) Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Blerta Kertusha
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Alberico Parente
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Cosmo Del Borgo
- Infectious Diseases Unit, Santa Maria (SM) Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Vincenzo Vullo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Maria Rosa Ciardi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | | | - Miriam Lichtner
- Infectious Diseases Unit, Santa Maria (SM) Goretti Hospital, Sapienza University of Rome, Latina, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
183
|
Cytokine Profile and Anti-Inflammatory Activity of a Standardized Conditioned Medium Obtained by Coculture of Monocytes and Mesenchymal Stromal Cells (PRS CK STORM). Biomolecules 2022; 12:biom12040534. [PMID: 35454123 PMCID: PMC9029939 DOI: 10.3390/biom12040534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
Intercellular communication between monocytes/macrophages and cells involved in tissue regeneration, such as mesenchymal stromal cells (MSCs) and primary tissue cells, is essential for tissue regeneration and recovery of homeostasis. Typically, in the final phase of the inflammation-resolving process, this intercellular communication drives an anti-inflammatory immunomodulatory response. To obtain a safe and effective treatment to counteract the cytokine storm associated with a disproportionate immune response to severe infections, including that associated with COVID-19, by means of naturally balanced immunomodulation, our group has standardized the production under GMP-like conditions of a secretome by coculture of macrophages and MSCs. To characterize this proteome, we determined the expression of molecules related to cellular immune response and tissue regeneration, as well as its possible toxicity and anti-inflammatory potency. The results show a specific molecular pattern of interaction between the two cell types studied, with an anti-inflammatory and regenerative profile. In addition, the secretome is not toxic by itself on human PBMC or on THP-1 monocytes and prevents lipopolysaccharide (LPS)-induced growth effects on those cell types. Finally, PRS CK STORM prevents LPS-induced TNF-A and IL-1Β secretion from PBMC and from THP-1 cells at the same level as hydrocortisone, demonstrating its anti-inflammatory potency.
Collapse
|
184
|
Rajkhowa S, Pathak U, Patgiri H. Elucidating the Interaction and Stability of Withanone and Withaferin‐A with Human Serum Albumin, Lysozyme and Hemoglobin Using Computational Biophysical Modeling. ChemistrySelect 2022. [DOI: 10.1002/slct.202103938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sanchaita Rajkhowa
- Centre for Biotechnology and Bioinformatics Dibrugarh University Dibrugarh 786004 Assam India
| | - Upasana Pathak
- Centre for Biotechnology and Bioinformatics Dibrugarh University Dibrugarh 786004 Assam India
| | - Himangshu Patgiri
- Centre for Biotechnology and Bioinformatics Dibrugarh University Dibrugarh 786004 Assam India
| |
Collapse
|
185
|
Munro DAD, Movahedi K, Priller J. Macrophage compartmentalization in the brain and cerebrospinal fluid system. Sci Immunol 2022; 7:eabk0391. [PMID: 35245085 DOI: 10.1126/sciimmunol.abk0391] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Macrophages reside within the diverse anatomical compartments of the central nervous system (CNS). Within each compartment, these phagocytes are exposed to unique combinations of niche signals and mechanical stimuli that instruct their tissue-specific identities. Whereas most CNS macrophages are tissue-embedded, the macrophages of the cerebrospinal fluid (CSF) system are bathed in an oscillating liquid. Studies using multiomics technologies have recently uncovered the transcriptomic and proteomic profiles of CSF macrophages, enhancing our understanding of their cellular characteristics in both rodents and humans. Here, we review the relationships between CNS macrophage populations, with a focus on the origins, phenotypes, and functions of CSF macrophages in health and disease.
Collapse
Affiliation(s)
- David A D Munro
- UK Dementia Research Institute at University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Kiavash Movahedi
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Josef Priller
- UK Dementia Research Institute at University of Edinburgh, Edinburgh EH16 4TJ, UK.,Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité-Universitätsmedizin Berlin and DZNE, 10117 Berlin, Germany.,Technical University of Munich, School of Medicine, Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, 81675 Munich, Germany.,Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK
| |
Collapse
|
186
|
Kendre A, Zade B, Chandra P. Histiocytic Sarcoma of Tibia: A Rare Case Report and Review of Literature. South Asian J Cancer 2022; 11:172-174. [DOI: 10.1055/s-0041-1739180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Histiocytic sarcoma is a rare disorder and there has been a lot of confusion and debate regarding its diagnosis and treatment. The World Health Organization (WHO) in 2008 aided in the standardization of diagnosis of histiocytic sarcoma; however, the treatment protocols are still not clear and the treatment is on the line of other hematological malignancies.This study intends to report a rare case of histiocytic sarcoma and the treatment protocol used and analysis of available literature. The usual sites of histiocytic sarcoma are the lymphoreticular system, skin, and gastrointestinal tract, but solitary bone involvement is rare.This disease being a localized one was treated locally with surgical curettage followed by radical radiation therapy. Systemic therapy was not offered to this patient and has been reserved in case a patient gets a systemic recurrence as done in most cases of B cell lymphoma.Based on follow-up until now, the patient is disease-free and doing well. Thus, this treatment protocol appears apt for this concerned patient; however, there is a need for a large-scale analysis of various reported cases to establish a standardized treatment protocol for this rare and aggressive disease.
Collapse
Affiliation(s)
- Ajita Kendre
- Indrayani Hospital & Cancer Institute, Alandi Devachi, Pune, Maharashtra, India
| | - Bhooshan Zade
- Indrayani Hospital & Cancer Institute, Alandi Devachi, Pune, Maharashtra, India
| | | |
Collapse
|
187
|
Galea I, Durnford A, Glazier J, Mitchell S, Kohli S, Foulkes L, Norman J, Darekar A, Love S, Bulters DO, Nicoll JAR, Boche D. Iron Deposition in the Brain After Aneurysmal Subarachnoid Hemorrhage. Stroke 2022; 53:1633-1642. [PMID: 35196874 DOI: 10.1161/strokeaha.121.036645] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND After aneurysmal subarachnoid hemorrhage (SAH), thrombus forms over the cerebral cortex and releases hemoglobin. When extracellular, hemoglobin is toxic to neurones. High local hemoglobin concentration overwhelms the clearance capacity of macrophages expressing the hemoglobin-haptoglobin scavenger receptor CD163. We hypothesized that iron is deposited in the cortex after SAH and would associate with outcome. METHODS Two complementary cross-sectional studies were conducted. Postmortem brain tissue from 39 SAH (mean postictal interval of 9 days) and 22 control cases was studied with Perls' staining for iron and immunolabeling for CD163, ADAM17 (a disintegrin and metallopeptidase domain 17), CD68, and Iba1 (ionized calcium binding adaptor molecule 1). In parallel, to study the persistence of cortical iron and its relationship to clinical outcome, we conducted a susceptibility-weighted imaging study of 21 SAH patients 6 months postictus and 10 control individuals. RESULTS In brain tissue from patients dying soon after SAH, the distribution of iron deposition followed a gradient that diminished with distance from the brain surface. Iron was located intracellularly (mainly in macrophages, and occasionally in microglia, neurones, and glial cells) and extracellularly. Microglial activation and motility markers were increased after SAH, with a similar inward diminishing gradient. In controls, there was a positive correlation between CD163 and iron, which was lost after SAH. In SAH survivors, iron-sensitive imaging 6 months post-SAH confirmed persistence of cortical iron, related to the size and location of the blood clot immediately after SAH, and associated with cognitive outcome. CONCLUSIONS After SAH, iron deposits in the cortical gray matter in a pattern that reflects proximity to the brain surface and thrombus and is related to cognitive outcome. These observations support therapeutic manoeuvres which prevent the permeation of hemoglobin into the cortex after SAH.
Collapse
Affiliation(s)
- Ian Galea
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom (I.G., A. Durnford, J.G., S.M., S.K., J.N., J.A.R.N., D.B.)
| | - Andrew Durnford
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom (I.G., A. Durnford, J.G., S.M., S.K., J.N., J.A.R.N., D.B.).,Wessex Neurological Centre (A. Durnford, D.O.B.), University Hospital Southampton NHS Foundation Trust, United Kingdom
| | - James Glazier
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom (I.G., A. Durnford, J.G., S.M., S.K., J.N., J.A.R.N., D.B.)
| | - Sophie Mitchell
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom (I.G., A. Durnford, J.G., S.M., S.K., J.N., J.A.R.N., D.B.)
| | - Suraj Kohli
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom (I.G., A. Durnford, J.G., S.M., S.K., J.N., J.A.R.N., D.B.)
| | | | - Jeanette Norman
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom (I.G., A. Durnford, J.G., S.M., S.K., J.N., J.A.R.N., D.B.)
| | - Angela Darekar
- Medical Physics (A. Darekar), University Hospital Southampton NHS Foundation Trust, United Kingdom
| | - Seth Love
- Dementia Research Group, Bristol Medical School, University of Bristol, United Kingdom (S.L.)
| | - Diederik O Bulters
- Wessex Neurological Centre (A. Durnford, D.O.B.), University Hospital Southampton NHS Foundation Trust, United Kingdom
| | - James A R Nicoll
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom (I.G., A. Durnford, J.G., S.M., S.K., J.N., J.A.R.N., D.B.).,Department of Cellular Pathology (J.A.R.N.), University Hospital Southampton NHS Foundation Trust, United Kingdom
| | - Delphine Boche
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom (I.G., A. Durnford, J.G., S.M., S.K., J.N., J.A.R.N., D.B.)
| |
Collapse
|
188
|
Graw JA, Hildebrandt P, Krannich A, Balzer F, Spies C, Francis RC, Kuebler WM, Weber-Carstens S, Menk M, Hunsicker O. The role of cell-free hemoglobin and haptoglobin in acute kidney injury in critically ill adults with ARDS and therapy with VV ECMO. Crit Care 2022; 26:50. [PMID: 35193645 PMCID: PMC8864920 DOI: 10.1186/s13054-022-03894-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/11/2022] [Indexed: 12/02/2022] Open
Abstract
Background Increased plasma concentrations of circulating cell-free hemoglobin (CFH) are supposed to contribute to the multifactorial etiology of acute kidney injury (AKI) in critically ill patients while the CFH-scavenger haptoglobin might play a protective role. We evaluated the association of CFH and haptoglobin with AKI in patients with an acute respiratory distress syndrome (ARDS) requiring therapy with VV ECMO. Methods Patients with CFH and haptoglobin measurements before initiation of ECMO therapy were identified from a cohort of 1044 ARDS patients and grouped into three CFH concentration groups using a risk stratification. The primary objective was to assess the association of CFH and haptoglobin with KDIGO stage 3 AKI. Further objectives included the identification of a target haptoglobin concentration to protect from CFH-associated AKI. Measurements and main results Two hundred seventy-three patients fulfilled the inclusion criteria. Of those, 154 patients (56.4%) had AKI at ECMO initiation. The incidence of AKI increased stepwise with increasing concentrations of CFH reaching a plateau at 15 mg/dl. Compared to patients with low [< 5 mg/dl] CFH concentrations, patients with moderate [5–14 mg/dl] and high [≥ 15 mg/dl] CFH concentrations had a three- and five-fold increased risk for AKI (adjusted odds ratio [OR] moderate vs. low, 2.69 [95% CI, 1.25–5.95], P = 0.012; and OR high vs. low, 5.47 [2.00–15.9], P = 0.001). Among patients with increased CFH concentrations, haptoglobin plasma levels were lower in patients with AKI compared to patients without AKI. A haptoglobin concentration greater than 2.7 g/l in the moderate and 2.4 g/l in the high CFH group was identified as clinical cutoff value to protect from CFH-associated AKI (sensitivity 89.5% [95% CI, 83–96] and 90.2% [80–97], respectively). Conclusions In critically ill patients with ARDS requiring therapy with VV ECMO, an increased plasma concentration of CFH was identified as independent risk factor for AKI. Among patients with increased CFH concentrations, higher plasma haptoglobin concentrations might protect from CFH-associated AKI and should be subject of future research. Supplementary Information The online version contains supplementary material available at 10.1186/s13054-022-03894-5.
Collapse
|
189
|
The Unitary Micro-Immunotherapy Medicine Interferon-γ (4 CH) Displays Similar Immunostimulatory and Immunomodulatory Effects than Those of Biologically Active Human Interferon-γ on Various Cell Types. Int J Mol Sci 2022; 23:ijms23042314. [PMID: 35216428 PMCID: PMC8879050 DOI: 10.3390/ijms23042314] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/21/2022] Open
Abstract
As a cytokine, gamma-interferon (IFN-γ) is considered a key player in the fine-tuned orchestration of immune responses. The extreme cellular sensitivity to cytokines is attested by the fact that very few of these bioactive molecules per cell are enough to trigger cellular functions. These findings can, at least partially, explain how/why homeopathically-prepared cytokines, and especially micro-immunotherapy (MI) medicines, are able to drive cellular responses. We focused our fundamental research on a unitary MI preparation of IFN-γ, specifically employed at 4 CH, manufactured and impregnated onto sucrose-lactose pillules as all other MI medicines. We assessed the IFN-γ concentration in the medium after dilution of the IFN-γ (4 CH)-bearing pillules and we evaluated in vitro drug responses in a wide range of immune cells, and in endothelial cells. Our results showed that IFN-γ (4 CH) stimulated the proliferation, the activation and the phagocytic capabilities of primary immune cells, as well as modulated their cytokine-secretion and immunity-related markers’ expression in a trend that is quite comparable with the well-recognized biological effects induced by IFN-γ. Altogether, these data provide novel and additional evidences on MI medicines, and specifically when active substances are prepared at 4 CH, thus suggesting the need for more investigations.
Collapse
|
190
|
Fan X, Zhang X, Liu LC, Kim AY, Curley SP, Chen X, Dworkin LD, Cooper CJ, Gupta R. Interleukin-10 attenuates renal injury after myocardial infarction in diabetes. J Investig Med 2022; 70:1233-1242. [PMID: 35140126 DOI: 10.1136/jim-2021-002008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 01/06/2023]
Abstract
Acute kidney injury (AKI) is a common complication after myocardial infarction (MI) and associated with significant morbidity and mortality. AKI after MI occurs more frequently in patients with diabetes, however, the underlying mechanisms are poorly understood, and specific treatments are lacking. Using the murine MI model, we show that diabetic mice had higher expression of the kidney injury marker, neutrophil gelatinase-associated lipocalin (NGAL), 3 days after MI compared with control mice. This higher expression of NGAL was still significant after controlling for differences in myocardial infarct size between diabetic and control mice. Prior data demonstrate increased cell-free hemoglobin after MI in diabetic mice. Therefore, we investigated heme clearance components, including heme oxygenase 1 (HO-1) and CD163, in the kidneys and found that both HO-1 and CD163 were dysregulated in diabetic mice pre-MI and post-MI. Significantly higher levels of urine iron were also observed in diabetic mice compared with control mice after MI. Next, the renal protective effect of interleukin 10 (IL-10) after MI was tested in diabetic MI. IL-10 treatment demonstrated multiple protective effects after diabetic MI including reduction in acute renal inflammation, upregulation of renal heme clearance pathways, attenuation of chronic renal fibrosis, and reduction in albuminuria after diabetic MI. In vitro, IL-10 potentiated hemoglobin-induced HO-1 expression in mouse bone marrow-derived macrophages and renal proximal tubule (HK-2) cells. Furthermore, IL-10 reduced hemoglobin-induced reactive oxygen species in HK-2 cells and collagen synthesis in mouse embryonic fibroblast cells. We conclude that impaired renal heme clearance pathways in diabetes contribute to AKI after MI, and IL-10 attenuates renal injury after diabetic MI.
Collapse
Affiliation(s)
- Xiaoming Fan
- Department of Medicine, University of Toledo - Health Science Campus, Toledo, Ohio, USA
| | - Xiaolu Zhang
- Department of Medicine, University of Toledo - Health Science Campus, Toledo, Ohio, USA
| | - Lijun C Liu
- Department of Medicine, University of Toledo - Health Science Campus, Toledo, Ohio, USA
| | - Annes Y Kim
- Department of Medicine, University of Toledo - Health Science Campus, Toledo, Ohio, USA
| | - Sean P Curley
- Department of Medicine, University of Toledo - Health Science Campus, Toledo, Ohio, USA
| | - Xiaohuan Chen
- Department of Medicine, University of Toledo - Health Science Campus, Toledo, Ohio, USA
| | - Lance D Dworkin
- Department of Medicine, University of Toledo - Health Science Campus, Toledo, Ohio, USA
| | - Christopher J Cooper
- Department of Medicine, University of Toledo - Health Science Campus, Toledo, Ohio, USA
| | - Rajesh Gupta
- Department of Medicine, University of Toledo - Health Science Campus, Toledo, Ohio, USA
| |
Collapse
|
191
|
Li L, Gao A, Chen J, Lei Y, Wu L, Ye J. Identification and characterization of CD5 in Nile tilapia (Oreochromis niloticus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104301. [PMID: 34688690 DOI: 10.1016/j.dci.2021.104301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
CD5 is a type I transmembrane glycoprotein acting as a pleiotropic functional receptor in the mammalian immune response system, mainly presents on the surface of cells associated with the immune system, and is essential for the classification of B cells. In this study, we identify a CD5 homologue in Nile tilapia (Oreochromis niloticus). The open reading frame of OnCD5 is 507 bp, encoding 168 amino acids. The deduced amino acid sequence contains a signal peptide region, a transmembrane region and a conserved portion of the cytoplasmic region. Expression analysis indicates that the OnCD5 exhibits constitutive expression in the tested tissues, with the highest expression in thymus. Analysis of the OnCD5 transcription in the classified IgM+ and IgM- lymphocytes from anterior kidney, spleen and peripheral blood, and IgMlo and IgMhi lymphocytes from peripheral blood, indicates that the OnCD5 is highly expressed in the IgM + lymphocytes, especially in the IgMhi B lymphocytes. Furthermore, the OnCD5 expression is up-regulated significantly in anterior kidney and spleen following challenges of Aeromonas hydrophila and Streptococcus agalactiae in vivo and in vitro, likewise in IgM+ B lymphocytes sorted from peripheral blood upon stimulation with LPS. Further, the recombinant OnCD5 protein has the bacteria-binding activity. Taken together, these results reveal that OnCD5 participates in host's defense during pathogen infection, and may play an important role in tilapia B cells.
Collapse
Affiliation(s)
- Lan Li
- Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Along Gao
- Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jianlin Chen
- Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yang Lei
- Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Liting Wu
- Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| | - Jianmin Ye
- Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
192
|
Patten DA, Wilkinson AL, O'Keeffe A, Shetty S. Scavenger Receptors: Novel Roles in the Pathogenesis of Liver Inflammation and Cancer. Semin Liver Dis 2022; 42:61-76. [PMID: 34553345 PMCID: PMC8893982 DOI: 10.1055/s-0041-1733876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The scavenger receptor superfamily represents a highly diverse collection of evolutionarily-conserved receptors which are known to play key roles in host homeostasis, the most prominent of which is the clearance of unwanted endogenous macromolecules, such as oxidized low-density lipoproteins, from the systemic circulation. Members of this family have also been well characterized in their binding and internalization of a vast range of exogenous antigens and, consequently, are generally considered to be pattern recognition receptors, thus contributing to innate immunity. Several studies have implicated scavenger receptors in the pathophysiology of several inflammatory diseases, such as Alzheimer's and atherosclerosis. Hepatic resident cellular populations express a diverse complement of scavenger receptors in keeping with the liver's homeostatic functions, but there is gathering interest in the contribution of these receptors to hepatic inflammation and its complications. Here, we review the expression of scavenger receptors in the liver, their functionality in liver homeostasis, and their role in inflammatory liver disease and cancer.
Collapse
Affiliation(s)
- Daniel A. Patten
- National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Alex L. Wilkinson
- National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ayla O'Keeffe
- National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Shishir Shetty
- National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
193
|
Loginov DS, Fiala J, Brechlin P, Kruppa G, Novak P. Hydroxyl radical footprinting analysis of a human haptoglobin-hemoglobin complex. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140735. [PMID: 34742912 DOI: 10.1016/j.bbapap.2021.140735] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 09/22/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022]
Abstract
Methods of structural mass spectrometry have become more popular to study protein structure and dynamics. Among them, fast photochemical oxidation of proteins (FPOP) has several advantages such as irreversibility of modifications and more facile determination of the site of modification with single residue resolution. In the present study, FPOP analysis was applied to study the hemoglobin (Hb) - haptoglobin (Hp) complex allowing identification of respective regions altered upon the complex formation. FPOP footprinting using a timsTOF Pro mass spectrometer revealed structural information for 84 and 76 residues in Hp and Hb, respectively, including statistically significant differences in the modification extent below 0.3%. The most affected residues upon complex formation were Met76 and Tyr140 in Hbα, and Tyr280 and Trp284 in Hpβ. The data allowed determination of amino acids directly involved in Hb - Hp interactions and those located outside of the interaction interface yet affected by the complex formation. Also, previously modeled interaction between Hb βTrp37 and Hp βPhe292 was not confirmed by our data. Data are available via ProteomeXchange with identifier PXD021621.
Collapse
Affiliation(s)
- Dmitry S Loginov
- BioCeV - Institute of Microbiology of the CAS, Prumyslova 595, CZ-252 50 Vestec, Czech Republic; Orekhovich Institute of Biomedical Chemistry, Pogodinskaja str. 10, 119191 Moscow, Russia.
| | - Jan Fiala
- BioCeV - Institute of Microbiology of the CAS, Prumyslova 595, CZ-252 50 Vestec, Czech Republic; Faculty of Science, Charles University, Hlavova 8, CZ-128 20 Prague, Czech Republic
| | - Peter Brechlin
- Bruker Daltonik GmbH, Fahrenheitstraße 4, 28359 Bremen, Germany
| | - Gary Kruppa
- Bruker s.r.o., Prazakova 60, 619 00, Brno, Czech Republic
| | - Petr Novak
- BioCeV - Institute of Microbiology of the CAS, Prumyslova 595, CZ-252 50 Vestec, Czech Republic.
| |
Collapse
|
194
|
Vlasschaert C, Moran SM, Rauh MJ. The Myeloid-Kidney Interface in Health and Disease. Clin J Am Soc Nephrol 2022; 17:323-331. [PMID: 34507968 PMCID: PMC8823925 DOI: 10.2215/cjn.04120321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Kidney homeostasis is highly dependent upon the correct functioning of myeloid cells. These cells form a distributed surveillance network throughout the kidney, where they play an integral role in the response to organ threat. Dysregulation of resident proinflammatory and profibrotic macrophages leads to kidney structural damage and scarring after kidney injury. Fibrosis throughout the kidney parenchyma contributes to the progressive functional decline observed in CKD, independent of the etiology. Circulating myeloid cells bearing intrinsic defects also affect the kidney substructures, such as neutrophils activated by autoantibodies that cause GN in ANCA-associated vasculitis. The kidney can also be affected by disorders of myelopoiesis, including myeloid leukemias (acute and chronic myeloid leukemias) and myelodysplastic syndromes. Clonal hematopoiesis of indeterminate potential is a common, newly recognized premalignant clinical entity characterized by clonal expansion of hyperinflammatory myeloid lineage cells that may have significant kidney sequelae. A number of existing therapies in CKD target myeloid cells and inflammation, including glucocorticoid receptor agonists and mineralocorticoid receptor antagonists. The therapeutic indications for these and other myeloid cell-targeted treatments is poised to expand as our understanding of the myeloid-kidney interface evolves.
Collapse
Affiliation(s)
| | - Sarah M. Moran
- Department of Medicine, Queen’s University, Kingston, Ontario, Canada
| | - Michael J. Rauh
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
195
|
Mégier C, Peoc’h K, Puy V, Cordier AG. Iron Metabolism in Normal and Pathological Pregnancies and Fetal Consequences. Metabolites 2022; 12:metabo12020129. [PMID: 35208204 PMCID: PMC8876952 DOI: 10.3390/metabo12020129] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Iron is required for energy production, DNA synthesis, and cell proliferation, mainly as a component of the prosthetic group in hemoproteins and as part of iron-sulfur clusters. Iron is also a critical component of hemoglobin and plays an important role in oxygen delivery. Imbalances in iron metabolism negatively affect these vital functions. As the crucial barrier between the fetus and the mother, the placenta plays a pivotal role in iron metabolism during pregnancy. Iron deficiency affects 1.2 billion individuals worldwide. Pregnant women are at high risk of developing or worsening iron deficiency. On the contrary, in frequent hemoglobin diseases, such as sickle-cell disease and thalassemia, iron overload is observed. Both iron deficiency and iron overload can affect neonatal development. This review aims to provide an update on our current knowledge on iron and heme metabolism in normal and pathological pregnancies. The main molecular actors in human placental iron metabolism are described, focusing on the impact of iron deficiency and hemoglobin diseases on the placenta, together with normal metabolism. Then, we discuss data concerning iron metabolism in frequent pathological pregnancies to complete the picture, focusing on the most frequent diseases.
Collapse
Affiliation(s)
- Charles Mégier
- Assistance Publique-Hôpitaux de Paris, Service de Gynécologie-Obstétrique, Hôpital Bicêtre, Université Paris Saclay, 94270 Le Kremlin-Bicetre, France;
| | - Katell Peoc’h
- Assistance Publique-Hôpitaux de Paris, Laboratoire de Biochimie Clinique, HUPNVS, Hôpital Beaujon, Clichy and Université de Paris, UFR de Médecine Xavier Bichat, INSERM U1149, F-75018 Paris, France;
| | - Vincent Puy
- Unité de biologie de la Reproduction CECOS, Hôpital Antoine Béclère, Université Paris Saclay, 92140 Clamart, France;
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université de Paris, Université Paris-Saclay, CEA, F-92265 Fontenay-aux-Roses, France
| | - Anne-Gaël Cordier
- INSERM, 3PHM, UMR-S1139, F-75006 Paris, France
- PremUp Foundation, F-75014 Paris, France
- Assistance Publique-Hôpitaux de Paris, Service de Gynécologie Obstétrique, Hôpital Antoine Béclère, Université Paris-Saclay, 92140 Clamart, France
- Correspondence: ; Tel.: +33-145374441; Fax: +33-45374366
| |
Collapse
|
196
|
Sakamoto A, Cornelissen A, Sato Y, Mori M, Kawakami R, Kawai K, Ghosh SKB, Xu W, Abebe BG, Dikongue A, Kolodgie FD, Virmani R, Finn AV. Vulnerable Plaque in Patients with Acute Coronary Syndrome: Identification, Importance, and Management. US CARDIOLOGY REVIEW 2022; 16:e01. [PMID: 39600843 PMCID: PMC11588187 DOI: 10.15420/usc.2021.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/07/2021] [Indexed: 11/04/2022] Open
Abstract
MI is a leading cause of morbidity and mortality worldwide. Coronary artery thrombosis is the final pathologic feature of the most cases of acute MI primarily caused by atherosclerotic coronary artery disease. The concept of vulnerable plaque has evolved over the years but originated from early pioneering work unveiling the crucial role of plaque rupture and subsequent coronary thrombosis as the dominant cause of MI. Along with systemic cardiovascular risk factors, developments of intravascular and non-invasive imaging modalities have allowed us to identify coronary plaques thought to be at high risk for rupture. However, morphological features alone may only be one of many factors which promote plaque progression. The current vulnerable-plaque-oriented approaches to accomplish personalized risk assessment and treatment have significant room for improvement. In this review, the authors discuss recent advances in the understanding of vulnerable plaque and its management strategy from pathology and clinical perspectives.
Collapse
Affiliation(s)
| | | | - Yu Sato
- CVPath InstituteGaithersburg, MD
| | | | | | | | | | - Weili Xu
- CVPath InstituteGaithersburg, MD
| | | | | | | | | | - Aloke V Finn
- CVPath InstituteGaithersburg, MD
- University of Maryland, School of MedicineBaltimore, MD
| |
Collapse
|
197
|
Hyperglycemia Induces Inflammatory Response of Human Macrophages to CD163-Mediated Scavenging of Hemoglobin-Haptoglobin Complexes. Int J Mol Sci 2022; 23:ijms23031385. [PMID: 35163309 PMCID: PMC8836198 DOI: 10.3390/ijms23031385] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 01/27/2023] Open
Abstract
Hyperglycemia, a hallmark of diabetes, can induce inflammatory programming of macrophages. The macrophage scavenger receptor CD163 internalizes and degrades hemoglobin-haptoglobin (Hb-Hp) complexes built due to intravascular hemolysis. Clinical studies have demonstrated a correlation between impaired scavenging of Hb-Hp complexes via CD163 and diabetic vascular complications. Our aim was to identify whether hyperglycemia is able to amplify inflammation via Hb-Hp complex interactions with the immune system. M(IFNγ), M(IL-4), and control M0 macrophages were differentiated out of primary human monocytes in normo- (5 mM) and hyperglycemic (25 mM) conditions. CD163 gene expression was decreased 5.53 times in M(IFNγ) with a further decrease of 1.99 times in hyperglycemia. Hyperglycemia suppressed CD163 surface expression in M(IFNγ) (1.43 times). Flow cytometry demonstrated no impairment of Hb-Hp uptake in hyperglycemia. However, hyperglycemia induced an inflammatory response of M(IFNγ) to Hb-Hp1-1 and Hb-Hp2-2 uptake with different dynamics. Hb-Hp1-1 uptake stimulated IL-6 release (3.03 times) after 6 h but suppressed secretion (5.78 times) after 24 h. Contrarily, Hb-Hp2-2 uptake did not affect IL-6 release after 6h but increased secretion after 24 h (3.06 times). Our data show that hyperglycemia induces an inflammatory response of innate immune cells to Hb-Hp1-1 and Hb-Hp2-2 uptake, converting the silent Hb-Hp complex clearance that prevents vascular damage into an inflammatory process, hereby increasing the susceptibility of diabetic patients to vascular complications.
Collapse
|
198
|
Zupanič N, Počič J, Leonardi A, Šribar J, Kordiš D, Križaj I. Serine pseudoproteases in physiology and disease. FEBS J 2022; 290:2263-2278. [PMID: 35032346 DOI: 10.1111/febs.16355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/20/2021] [Accepted: 01/12/2022] [Indexed: 01/01/2023]
Abstract
Serine proteases (SPs) constitute a very important family of enzymes, both physiologically and pathologically. The effects produced by these proteins have been explained by their proteolytic activity. However, the discovery of pharmacologically active SP molecules that show no enzymatic activity, as the so-called pseudo SPs or SP homologs (SPHs), has exposed a profoundly neglected possibility of nonenzymatic functions of these SP molecules. In this review, the most thoroughly described SPHs are presented. The main physiological domains in which SPHs operate appear to be in reproduction, embryonic development, immune response, host defense, and hemostasis. Hitherto unexplained actions of SPs should therefore be considered also as the result of the ligand-like attributes of SPs. The gain of a novel function by an SPH is a consequence of specific amino acid replacements that have resulted in a novel interaction interface or a 'catalytic trap'. Unraveling the SP/SPH interactome will provide a description of previously unknown physiological functions of SPs/SPHs, aiding the creation of innovative medical approaches.
Collapse
Affiliation(s)
- Nina Zupanič
- Department of Molecular and Biomedical Sciences Jožef Stefan Institute Ljubljana Slovenia
| | - Jernej Počič
- Department of Molecular and Biomedical Sciences Jožef Stefan Institute Ljubljana Slovenia
- Biotechnical Faculty University of Ljubljana Slovenia
| | - Adrijana Leonardi
- Department of Molecular and Biomedical Sciences Jožef Stefan Institute Ljubljana Slovenia
| | - Jernej Šribar
- Department of Molecular and Biomedical Sciences Jožef Stefan Institute Ljubljana Slovenia
| | - Dušan Kordiš
- Department of Molecular and Biomedical Sciences Jožef Stefan Institute Ljubljana Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences Jožef Stefan Institute Ljubljana Slovenia
| |
Collapse
|
199
|
Bai X, Plastow GS. Breeding for disease resilience: opportunities to manage polymicrobial challenge and improve commercial performance in the pig industry. CABI AGRICULTURE AND BIOSCIENCE 2022; 3:6. [PMID: 35072100 PMCID: PMC8761052 DOI: 10.1186/s43170-022-00073-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/06/2022] [Indexed: 05/31/2023]
Abstract
Disease resilience, defined as an animal's ability to maintain productive performance in the face of infection, provides opportunities to manage the polymicrobial challenge common in pig production. Disease resilience can deliver a number of benefits, including more sustainable production as well as improved animal health and the potential for reduced antimicrobial use. However, little progress has been made to date in the application of disease resilience in breeding programs due to a number of factors, including (1) confusion around definitions of disease resilience and its component traits disease resistance and tolerance, and (2) the difficulty in characterizing such a complex trait consisting of multiple biological functions and dynamic elements of rates of response and recovery from infection. Accordingly, this review refines the definitions of disease resistance, tolerance, and resilience based on previous studies to help improve the understanding and application of these breeding goals and traits under different scenarios. We also describe and summarize results from a "natural disease challenge model" designed to provide inputs for selection of disease resilience. The next steps for managing polymicrobial challenges faced by the pig industry will include the development of large-scale multi-omics data, new phenotyping technologies, and mathematical and statistical methods adapted to these data. Genome editing to produce pigs resistant to major diseases may complement selection for disease resilience along with continued efforts in the more traditional areas of biosecurity, vaccination and treatment. Altogether genomic approaches provide exciting opportunities for the pig industry to overcome the challenges provided by hard-to-manage diseases as well as new environmental challenges associated with climate change.
Collapse
Affiliation(s)
- Xuechun Bai
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB Canada
| | - Graham S. Plastow
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
200
|
Trudel G, Shahin N, Ramsay T, Laneuville O, Louati H. Hemolysis contributes to anemia during long-duration space flight. Nat Med 2022; 28:59-62. [PMID: 35031790 PMCID: PMC8799460 DOI: 10.1038/s41591-021-01637-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022]
Abstract
Anemia in astronauts has been noted since the first space missions, but the mechanisms contributing to anemia in space flight have remained unclear. Here, we show that space flight is associated with persistently increased levels of products of hemoglobin degradation, carbon monoxide in alveolar air and iron in serum, in 14 astronauts throughout their 6-month missions onboard the International Space Station. One year after landing, erythrocytic effects persisted, including increased levels of hemolysis, reticulocytosis and hemoglobin. These findings suggest that the destruction of red blood cells, termed hemolysis, is a primary effect of microgravity in space flight and support the hypothesis that the anemia associated with space flight is a hemolytic condition that should be considered in the screening and monitoring of both astronauts and space tourists.
Collapse
Affiliation(s)
- Guy Trudel
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada. .,Division of Physical Medicine and Rehabilitation, Department of Medicine and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | - Nibras Shahin
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Timothy Ramsay
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Odette Laneuville
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Onatrio, Canada
| | - Hakim Louati
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|