151
|
Role of adult-born granule cells in the hippocampal functions: Focus on the GluN2B-containing NMDA receptors. Eur Neuropsychopharmacol 2019; 29:1065-1082. [PMID: 31371103 DOI: 10.1016/j.euroneuro.2019.07.135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/19/2019] [Accepted: 07/15/2019] [Indexed: 02/06/2023]
Abstract
Adult-born granule cells constitute a small subpopulation of the dentate gyrus (DG) in the hippocampus. However, they greatly influence several hippocampus-dependent behaviors, suggesting that adult-born granule cells have specific roles that influence behavior. In order to understand how exactly these adult-born granule cells contribute to behavior, it is critical to understand the underlying electrophysiology and neurochemistry of these cells. Here, this review simultaneously focuses on the specific electrophysiological properties of adult-born granule cells, relying on the GluN2B subunit of NMDA glutamate receptors, and how it influences neurochemistry throughout the brain. Especially in a critical age from 4 to 6 weeks post-division during which they modulate hippocampal functions, adult-born granule cells exhibit a higher intrinsic excitability and an enhanced long-term potentiation. Their stimulation decreases the overall excitation/inhibition balance of the DG via recruitment of local interneurons, and in the CA3 region of the hippocampus. However, the link between neurochemical effects of adult-born granule cells and behavior remain to be further examined.
Collapse
|
152
|
Adkins JM, Lynch JF, Hagerdorn P, Esterhuizen M, Jasnow AM. Anterior cingulate cortex and dorsal hippocampal glutamate receptors mediate generalized fear in female rats. Psychoneuroendocrinology 2019; 107:109-118. [PMID: 31125757 PMCID: PMC7779207 DOI: 10.1016/j.psyneuen.2019.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/01/2019] [Accepted: 05/09/2019] [Indexed: 11/19/2022]
Abstract
Exhibiting fear to non-threatening cues or contexts-generalized fear-is a shared characteristic of several anxiety disorders, which afflict women more than men. Female rats generalize contextual fear at a faster rate than males and this is due, in part, to actions of estradiol in the dorsal CA1 hippocampus (dCA1). To understand the mechanisms underlying estradiol's effects on generalization, we infused estradiol into the anterior cingulate cortex (ACC) or ventral CA1 hippocampus (vCA1) of ovariectomized (OVX) female rats. Estradiol acts within the ACC, but not the vCA1, to promote generalized fear. We next examined if AMPA or NMDA receptor antagonists (NBQX, APV) infused into the dCA1 or the ACC of female rats could block generalized fear induced by systemic injections of estradiol. Immediate pre-testing infusions of NBQX or APV into either region eliminated estradiol-induced generalization. Specific blockade of GluN2B receptors with infusions of Ro 25-6981 into the dCA1 or ACC also eliminated generalized fear. Our results suggest that in addition to the dCA1, the ACC is an important locus for the effects of estradiol on fear generalization. Moreover, within these regions, AMPA and NMDA-GluN2B receptors are necessary for estradiol-induced generalization of fear responses, suggesting a critical involvement of glutamatergic transmission. Furthermore, we identified a novel role for GluN2B in mediating the effects of estradiol on generalized fear in female rats. These data potentially implicate GluN2B receptors in more general forms of memory retrieval inaccuracies, and form the foundation for exploration of glutamate receptor pharmacology for treatments of anxiety disorders involving generalization.
Collapse
Affiliation(s)
- Jordan M Adkins
- Department of Psychological Sciences and Brain Health Research Institute, Kent State University, Kent, OH, 44242, United States
| | - Joseph F Lynch
- Department of Psychology, Franklin and Marshall College, Lancaster, PA, 17604, United States
| | - Payton Hagerdorn
- Department of Psychological Sciences and Brain Health Research Institute, Kent State University, Kent, OH, 44242, United States
| | - Monique Esterhuizen
- Department of Psychological Sciences and Brain Health Research Institute, Kent State University, Kent, OH, 44242, United States
| | - Aaron M Jasnow
- Department of Psychological Sciences and Brain Health Research Institute, Kent State University, Kent, OH, 44242, United States.
| |
Collapse
|
153
|
Williams-Simon PA, Posey C, Mitchell S, Ng'oma E, Mrkvicka JA, Zars T, King EG. Multiple genetic loci affect place learning and memory performance in Drosophila melanogaster. GENES, BRAIN, AND BEHAVIOR 2019; 18:e12581. [PMID: 31095869 PMCID: PMC6718298 DOI: 10.1111/gbb.12581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 12/25/2022]
Abstract
Learning and memory are critical functions for all animals, giving individuals the ability to respond to changes in their environment. Within populations, individuals vary, however the mechanisms underlying this variation in performance are largely unknown. Thus, it remains to be determined what genetic factors cause an individual to have high learning ability and what factors determine how well an individual will remember what they have learned. To genetically dissect learning and memory performance, we used the Drosophila synthetic population resource (DSPR), a multiparent mapping resource in the model system Drosophila melanogaster, consisting of a large set of recombinant inbred lines (RILs) that naturally vary in these and other traits. Fruit flies can be trained in a "heat box" to learn to remain on one side of a chamber (place learning) and can remember this (place memory) over short timescales. Using this paradigm, we measured place learning and memory for ~49 000 individual flies from over 700 DSPR RILs. We identified 16 different loci across the genome that significantly affect place learning and/or memory performance, with 5 of these loci affecting both traits. To identify transcriptomic differences associated with performance, we performed RNA-Seq on pooled samples of seven high performing and seven low performing RILs for both learning and memory and identified hundreds of genes with differences in expression in the two sets. Integrating our transcriptomic results with the mapping results allowed us to identify nine promising candidate genes, advancing our understanding of the genetic basis underlying natural variation in learning and memory performance.
Collapse
Affiliation(s)
| | - Christopher Posey
- Division of Biological Sciences, University of Missouri, Columbia, Missouri
| | - Samuel Mitchell
- Division of Biological Sciences, University of Missouri, Columbia, Missouri
| | - Enoch Ng'oma
- Division of Biological Sciences, University of Missouri, Columbia, Missouri
| | - James A Mrkvicka
- Division of Biological Sciences, University of Missouri, Columbia, Missouri
| | - Troy Zars
- Division of Biological Sciences, University of Missouri, Columbia, Missouri
| | - Elizabeth G King
- Division of Biological Sciences, University of Missouri, Columbia, Missouri
| |
Collapse
|
154
|
Balczon R, Pittet JF, Wagener BM, Moser SA, Voth S, Vorhees CV, Williams MT, Bridges JP, Alvarez DF, Koloteva A, Xu Y, Zha XM, Audia JP, Stevens T, Lin MT. Infection-induced endothelial amyloids impair memory. FASEB J 2019; 33:10300-10314. [PMID: 31211919 PMCID: PMC6704457 DOI: 10.1096/fj.201900322r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/21/2019] [Indexed: 01/14/2023]
Abstract
Patients with nosocomial pneumonia exhibit elevated levels of neurotoxic amyloid and tau proteins in the cerebrospinal fluid (CSF). In vitro studies indicate that pulmonary endothelium infected with clinical isolates of either Pseudomonas aeruginosa, Klebsiella pneumoniae, or Staphylococcus aureus produces and releases cytotoxic amyloid and tau proteins. However, the effects of the pulmonary endothelium-derived amyloid and tau proteins on brain function have not been elucidated. Here, we show that P. aeruginosa infection elicits accumulation of detergent insoluble tau protein in the mouse brain and inhibits synaptic plasticity. Mice receiving endothelium-derived amyloid and tau proteins via intracerebroventricular injection exhibit a learning and memory deficit in object recognition, fear conditioning, and Morris water maze studies. We compared endothelial supernatants obtained after the endothelia were infected with P. aeruginosa possessing an intact [P. aeruginosa isolated from patient 103 (PA103) supernatant] or defective [mutant strain of P. aeruginosa lacking a functional type 3 secretion system needle tip complex (ΔPcrV) supernatant] type 3 secretion system. Whereas the PA103 supernatant impaired working memory, the ΔPcrV supernatant had no effect. Immunodepleting amyloid or tau proteins from the PA103 supernatant with the A11 or T22 antibodies, respectively, overtly rescued working memory. Recordings from hippocampal slices treated with endothelial supernatants or CSF from patients with or without nosocomial pneumonia indicated that endothelium-derived neurotoxins disrupted the postsynaptic synaptic response. Taken together, these results establish a plausible mechanism for the neurologic sequelae consequent to nosocomial bacterial pneumonia.-Balczon, R., Pittet, J.-F., Wagener, B. M., Moser, S. A., Voth, S., Vorhees, C. V., Williams, M. T., Bridges, J. P., Alvarez, D. F., Koloteva, A., Xu, Y., Zha, X.-M., Audia, J. P., Stevens, T., Lin, M. T. Infection-induced endothelial amyloids impair memory.
Collapse
Affiliation(s)
- Ron Balczon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Brant M. Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Stephen A. Moser
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Sarah Voth
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, USA
| | - Charles V. Vorhees
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, USA
| | | | - James P. Bridges
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Diego F. Alvarez
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, USA
| | - Anna Koloteva
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, USA
| | - Yuanyuan Xu
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, USA
| | - Xiang-Ming Zha
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, USA
| | - Jonathon P. Audia
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama, USA
| | - Troy Stevens
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, USA
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Mike T. Lin
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
155
|
Amidfar M, Woelfer M, Réus GZ, Quevedo J, Walter M, Kim YK. The role of NMDA receptor in neurobiology and treatment of major depressive disorder: Evidence from translational research. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94:109668. [PMID: 31207274 DOI: 10.1016/j.pnpbp.2019.109668] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/24/2019] [Accepted: 06/11/2019] [Indexed: 12/16/2022]
Abstract
There is accumulating evidence demonstrating that dysfunction of glutamatergic neurotransmission, particularly via N-methyl-d-aspartate (NMDA) receptors, is involved in the pathophysiology of major depressive disorder (MDD). Several studies have revealed an altered expression of NMDA receptor subtypes and impaired NMDA receptor-mediated intracellular signaling pathways in brain circuits of patients with MDD. Clinical studies have demonstrated that NMDA receptor antagonists, particularly ketamine, have rapid antidepressant effects in treatment-resistant depression, however, neurobiological mechanisms are not completely understood. Growing body of evidence suggest that signal transduction pathways involved in synaptic plasticity play critical role in molecular mechanisms underlying rapidly acting antidepressant properties of ketamine and other NMDAR antagonists in MDD. Discovering the molecular mechanisms underlying the unique antidepressant actions of ketamine will facilitate the development of novel fast acting antidepressants which lack undesirable effects of ketamine. This review provides a critical examination of the NMDA receptor involvement in the neurobiology of MDD including analyses of alterations in NMDA receptor subtypes and their interactive signaling cascades revealed by postmortem studies. Furthermore, to elucidate mechanisms underlying rapid-acting antidepressant properties of NMDA receptor antagonists we discussed their effects on the neuroplasticity, mostly based on signaling systems involved in synaptic plasticity of mood-related neurocircuitries.
Collapse
Affiliation(s)
| | - Marie Woelfer
- Clinical Affective Neuroimaging Laboratory, University Magdeburg, Germany; New Jersey Institute of Technology, Newark, NJ, USA
| | - Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Martin Walter
- Clinical Affective Neuroimaging Laboratory, University Magdeburg, Germany; Department of Psychiatry, University Tuebingen, Germany
| | - Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University, Seoul, South Korea
| |
Collapse
|
156
|
Bijoch L, Borczyk M, Czajkowski R. Bases of Jerzy Konorski's theory of synaptic plasticity. Eur J Neurosci 2019; 51:1857-1866. [PMID: 31368131 DOI: 10.1111/ejn.14532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/25/2019] [Accepted: 07/22/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Lukasz Bijoch
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Borczyk
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Rafał Czajkowski
- Laboratory of Spatial Memory, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
157
|
Lee G, Zhou Y. NMDAR Hypofunction Animal Models of Schizophrenia. Front Mol Neurosci 2019; 12:185. [PMID: 31417356 PMCID: PMC6685005 DOI: 10.3389/fnmol.2019.00185] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
The N-methyl-d-aspartate receptor (NMDAR) hypofunction hypothesis has been proposed to help understand the etiology and pathophysiology of schizophrenia. This hypothesis was based on early observations that NMDAR antagonists could induce a full range of symptoms of schizophrenia in normal human subjects. Accumulating evidence in humans and animal studies points to NMDAR hypofunctionality as a convergence point for various symptoms of schizophrenia. Here we review animal models of NMDAR hypofunction generated by pharmacological and genetic approaches, and how they relate to the pathophysiology of schizophrenia. In addition, we discuss the limitations of animal models of NMDAR hypofunction and their potential utility for therapeutic applications.
Collapse
Affiliation(s)
| | - Yi Zhou
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| |
Collapse
|
158
|
Potential Benefits of Nobiletin, A Citrus Flavonoid, against Alzheimer's Disease and Parkinson's Disease. Int J Mol Sci 2019; 20:ijms20143380. [PMID: 31295812 PMCID: PMC6678479 DOI: 10.3390/ijms20143380] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 12/17/2022] Open
Abstract
Alzheimer’s disease (AD), which is characterized by the presence of amyloid-β (Aβ) plaques and neurofibrillary tangles, accompanied by neurodegeneration, is the most common form of age-related neurodegenerative disease. Parkinson’s disease (PD) is the second most common neurodegenerative disease after AD, and is characterized by early prominent loss of dopaminergic neurons in the substantia nigra pars compacta. As currently available treatments are not able to significantly alter the progression of these diseases, successful therapeutic and preventive interventions are strongly needed. In the course of our survey of substances from natural resources having anti-dementia and neuroprotective activity, we found nobiletin, a polymethoxylated flavone from the peel of Citrus depressa. Nobiletin improved cognitive deficits and the pathological features of AD, such as Aβ pathology, hyperphosphorylation of tau, and oxidative stress, in animal models of AD. In addition, nobiletin improved motor and cognitive deficits in PD animal models. These observations suggest that nobiletin has the potential to become a novel drug for the treatment and prevention of neurodegenerative diseases such as AD and PD.
Collapse
|
159
|
McGivney BA, Hernandez B, Katz LM, MacHugh DE, McGovern SP, Parnell AC, Wiencko HL, Hill EW. A genomic prediction model for racecourse starts in the Thoroughbred horse. Anim Genet 2019; 50:347-357. [PMID: 31257665 DOI: 10.1111/age.12798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2019] [Indexed: 12/26/2022]
Abstract
Durability traits in Thoroughbred horses are heritable, economically valuable and may affect horse welfare. The aims of this study were to test the hypotheses that (i) durability traits are heritable and (ii) genetic data may be used to predict a horse's potential to have a racecourse start. Heritability for the phenotype 'number of 2- and 3-year-old starts' was estimated to be h m 2 = 0.11 ± 0.02 (n = 4499). A genome-wide association study identified SNP contributions to the trait. The neurotrimin (NTM), opioid-binding protein/cell adhesion molecule like (OPCML) and prolylcarboxypeptidase (PRCP) genes were identified as candidate genes associated with the trait. NTM functions in brain development and has been shown to have been selected during the domestication of the horse. PRCP is an established expression quantitative trait locus involved in the interaction between voluntary exercise and body composition in mice. We hypothesise that variation at these loci contributes to the motivation of the horse to exercise, which may influence its response to the demands of the training and racing environment. A random forest with mixed effects (RFME) model identified a set of SNPs that contributed to 24.7% of the heritable variation in the trait. In an independent validation set (n = 528 horses), the cohort with high genetic potential for a racecourse start had significantly fewer unraced horses (16% unraced) than did low (27% unraced) potential horses and had more favourable race outcomes among those that raced. Therefore, the information from SNPs included in the model may be used to predict horses with a greater chance of a racecourse start.
Collapse
Affiliation(s)
- B A McGivney
- Plusvital Ltd, The Highline, Dun Laoghaire Industrial Estate, Dun Laoghaire, Dublin, Ireland
| | - B Hernandez
- Prolego Scientific, Nova UCD, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland.,The Irish Longitudinal Study on Aging (TILDA), Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - L M Katz
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - D E MacHugh
- UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland.,UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - S P McGovern
- Plusvital Ltd, The Highline, Dun Laoghaire Industrial Estate, Dun Laoghaire, Dublin, Ireland
| | - A C Parnell
- Prolego Scientific, Nova UCD, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland.,School of Mathematics and Statistics, Insight Centre for Data Analytics, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - H L Wiencko
- Plusvital Ltd, The Highline, Dun Laoghaire Industrial Estate, Dun Laoghaire, Dublin, Ireland
| | - E W Hill
- Plusvital Ltd, The Highline, Dun Laoghaire Industrial Estate, Dun Laoghaire, Dublin, Ireland.,UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| |
Collapse
|
160
|
Grilz-Seger G, Neuditschko M, Ricard A, Velie B, Lindgren G, Mesarič M, Cotman M, Horna M, Dobretsberger M, Brem G, Druml T. Genome-Wide Homozygosity Patterns and Evidence for Selection in a Set of European and Near Eastern Horse Breeds. Genes (Basel) 2019; 10:genes10070491. [PMID: 31261764 PMCID: PMC6679042 DOI: 10.3390/genes10070491] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 01/10/2023] Open
Abstract
Intensive artificial and natural selection have shaped substantial variation among European horse breeds. Whereas most equine selection signature studies employ divergent genetic population structures in order to derive specific inter-breed targets of selection, we screened a total of 1476 horses originating from 12 breeds for the loss of genetic diversity by runs of homozygosity (ROH) utilizing a 670,000 single nucleotide polymorphism (SNP) genotyping array. Overlapping homozygous regions (ROH islands) indicating signatures of selection were identified by breed and similarities/dissimilarities between populations were evaluated. In the entire dataset, 180 ROH islands were identified, whilst 100 islands were breed specific, all other overlapped in 36 genomic regions with at least one ROH island of another breed. Furthermore, two ROH hot spots were determined at horse chromosome 3 (ECA3) and ECA11. Besides the confirmation of previously documented target genes involved in selection for coat color (MC1R, STX17, ASIP), body size (LCORL/NCAPG, ZFAT, LASP1, HMGA2), racing ability (PPARGC1A), behavioral traits (GRIN2B, NTM/OPCML) and gait patterns (DMRT3), several putative target genes related to embryonic morphogenesis (HOXB), energy metabolism (IGFBP-1, IGFBP-3), hair follicle morphogenesis (KRT25, KRT27, INTU) and autophagy (RALB) were highlighted. Furthermore, genes were pinpointed which might be involved in environmental adaptation of specific habitats (UVSSA, STXBP4, COX11, HLF, MMD).
Collapse
Affiliation(s)
- Gertrud Grilz-Seger
- Institute of Animal Breeding and Genetics, University of Veterinary Sciences Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Markus Neuditschko
- Agroscope, Swiss National Stud Farm, Les Longs Prés, CH-1580 Avenches, Switzerland.
| | - Anne Ricard
- UMR 1313 Génétique Animale et Biologie Intégrative, Institut National de la Recherche Agronomique, Domaine de Vilvert, Bat 211, 78352 Jouy-en-Josas, France.
| | - Brandon Velie
- Department of Animal Breeding & Genetics, Swedish University of Agricultural Sciences, Ulls väg 26, 750 07 Uppsala, Sweden.
- School of Life and Environmental Sciences, University of Sydney, Eastern Ave, 2006 NSW Sydney, Australia.
| | - Gabriella Lindgren
- Department of Animal Breeding & Genetics, Swedish University of Agricultural Sciences, Ulls väg 26, 750 07 Uppsala, Sweden.
- Livestock Genetics, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium.
| | - Matjaz Mesarič
- Clinic for Reproduction and Large Animals, University of Ljubljana, Veterinary, Faculty, Cesta v Mestni log 47, 1000 Ljubljana, Slovenia.
| | - Marko Cotman
- Institute for Preclinical Sciences, University of Ljubljana, Veterinary Faculty, Gerbičeva 60, 1000 Ljubljana, Slovenia.
| | - Michaela Horna
- Department of Animal Husbandry, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia.
| | - Max Dobretsberger
- Institute of Animal Breeding and Genetics, University of Veterinary Sciences Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Gottfried Brem
- Institute of Animal Breeding and Genetics, University of Veterinary Sciences Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Thomas Druml
- Institute of Animal Breeding and Genetics, University of Veterinary Sciences Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
161
|
Afonso P, De Luca P, Carvalho RS, Cortes L, Pinheiro P, Oliveiros B, Almeida RD, Mele M, Duarte CB. BDNF increases synaptic NMDA receptor abundance by enhancing the local translation of Pyk2 in cultured hippocampal neurons. Sci Signal 2019; 12:12/586/eaav3577. [PMID: 31213568 DOI: 10.1126/scisignal.aav3577] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The effects of brain-derived neurotrophic factor (BDNF) in long-term synaptic potentiation (LTP) are thought to underlie learning and memory formation and are partly mediated by local protein synthesis. Here, we investigated the mechanisms that mediate BDNF-induced alterations in the synaptic proteome that are coupled to synaptic strengthening. BDNF induced the synaptic accumulation of GluN2B-containing NMDA receptors (NMDARs) and increased the amplitude of NMDAR-mediated miniature excitatory postsynaptic currents (mEPSCs) in cultured rat hippocampal neurons by a mechanism requiring activation of the protein tyrosine kinase Pyk2 and dependent on cellular protein synthesis. Single-particle tracking using quantum dot imaging revealed that the increase in the abundance of synaptic NMDAR currents correlated with their enhanced stability in the synaptic compartment. Furthermore, BDNF increased the local synthesis of Pyk2 at the synapse, and the observed increase in Pyk2 protein abundance along dendrites of cultured hippocampal neurons was mediated by a mechanism dependent on the ribonucleoprotein hnRNP K, which bound to Pyk2 mRNA and dissociated from it upon BDNF application. Knocking down hnRNP K reduced the BDNF-induced synaptic synthesis of Pyk2 protein, whereas its overexpression enhanced it. Together, these findings indicate that hnRNP K mediates the synaptic distribution of Pyk2 synthesis, and hence the synaptic incorporation of GluN2B-containing NMDARs, induced by BDNF, which may affect LTP and synaptic plasticity.
Collapse
Affiliation(s)
- Pedro Afonso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Pasqualino De Luca
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-790 Coimbra, Portugal
| | - Rafael S Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Luísa Cortes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-790 Coimbra, Portugal
| | - Paulo Pinheiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-790 Coimbra, Portugal
| | - Barbara Oliveiros
- Laboratory of Biostatistics and Medical Informatics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ramiro D Almeida
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,Health Sciences Program, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Miranda Mele
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-790 Coimbra, Portugal
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal. .,Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| |
Collapse
|
162
|
Xiang Z, Lv X, Maksymetz J, Stansley BJ, Ghoshal A, Gogliotti RG, Niswender CM, Lindsley CW, Conn PJ. mGlu 5 Positive Allosteric Modulators Facilitate Long-Term Potentiation via Disinhibition Mediated by mGlu 5-Endocannabinoid Signaling. ACS Pharmacol Transl Sci 2019; 2:198-209. [PMID: 31259318 PMCID: PMC6591772 DOI: 10.1021/acsptsci.9b00017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Indexed: 11/29/2022]
Abstract
Metabotropic glutamate (mGlu) receptor type 5 (mGlu5) positive allosteric modulators (PAMs) enhance hippocampal long-term potentiation (LTP) and have cognition-enhancing effects in animal models. These effects were initially thought to be mediated by potentiation of mGlu5 modulation of N-methyl-d-aspartate receptor (NMDAR) currents. However, a biased mGlu5 PAM that potentiates Gαq-dependent mGlu5 signaling, but not mGlu5 modulation of NMDAR currents, retains cognition-enhancing effects in animal models, suggesting that potentiation of NMDAR currents is not required for these in vivo effects of mGlu5 PAMs. However, it is not clear whether the potentiation of NMDAR currents is critical for the ability of mGlu5 PAMs to enhance hippocampal LTP. We now report the characterization of effects of two structurally distinct mGlu5 PAMs, VU-29 and VU0092273, on NMDAR currents and hippocampal LTP. As with other mGlu5 PAMs that do not display observable bias for potentiation of NMDAR currents, VU0092273 enhanced both mGlu5 modulation of NMDAR currents and induction of LTP at the hippocampal Schaffer collateral (SC)-CA1 synapse. In contrast, VU-29 did not potentiate mGlu5 modulation of NMDAR currents but induced robust potentiation of hippocampal LTP. Interestingly, both VU-29 and VU0092273 suppressed evoked inhibitory postsynaptic currents (eIPSCs) in CA1 pyramidal cells, and this effect was blocked by the cannabinoid receptor type 1 (CB1) antagonist AM251. Furthermore, AM251 blocked the ability of both mGlu5 PAMs to enhance LTP. Finally, both PAMs failed to enhance LTP in mice with the restricted genetic deletion of mGlu5 in CA1 pyramidal cells. Taken together with previous findings, these results suggest that enhancement of LTP by mGlu5 PAMs does not depend on mGlu5 modulation of NMDAR currents but is mediated by a previously established mechanism in which mGlu5 in CA1 pyramidal cells induces endocannabinoid release and CB1-dependent disinhibition.
Collapse
Affiliation(s)
- Zixiu Xiang
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery,Department of Chemistry, Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Xiaohui Lv
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery,Department of Chemistry, Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - James Maksymetz
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery,Department of Chemistry, Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Branden J Stansley
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery,Department of Chemistry, Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Ayan Ghoshal
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery,Department of Chemistry, Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Rocco G Gogliotti
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery,Department of Chemistry, Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery,Department of Chemistry, Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery,Department of Chemistry, Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery,Department of Chemistry, Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
163
|
Khanegheini A, Meftahi GH, Zarrindast MR, Afarinesh MR, Sahraei H, Jahromi GP, Shahyad S. Involvement of CA1 GABAA Receptors in Ketamine-Induced Impairment of Spatial and Non-Spatial Novelty Detection in Mice. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419010094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
164
|
Marquardt K, Josey M, Kenton JA, Cavanagh JF, Holmes A, Brigman JL. Impaired cognitive flexibility following NMDAR-GluN2B deletion is associated with altered orbitofrontal-striatal function. Neuroscience 2019; 404:338-352. [PMID: 30742964 PMCID: PMC6455963 DOI: 10.1016/j.neuroscience.2019.01.066] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/18/2019] [Accepted: 01/31/2019] [Indexed: 02/02/2023]
Abstract
A common feature across neuropsychiatric disorders is inability to discontinue an action or thought once it has become detrimental. Reversal learning, a hallmark of executive control, requires plasticity within cortical, striatal and limbic circuits and is highly sensitive to disruption of N-methyl-D-aspartate receptor (NMDAR) function. In particular, selective deletion or antagonism of GluN2B containing NMDARs in cortical regions including the orbitofrontal cortex (OFC), promotes maladaptive perseveration. It remains unknown whether GluN2B functions to maintain local cortical activity necessary for reversal learning, or if it exerts a broader influence on the integration of neural activity across cortical and subcortical systems. To address this question, we utilized in vivo electrophysiology to record neuronal activity and local field potentials (LFP) in the orbitofrontal cortex and dorsal striatum (dS) of mice with deletion of GluN2B in neocortical and hippocampal principal cells while they performed touchscreen reversal learning. Reversal impairment produced by corticohippocampal GluN2B deletion was paralleled by an aberrant increase in functional connectivity between the OFC and dS. These alterations in coordination were associated with alterations in local OFC and dS firing activity. These data demonstrate highly dynamic patterns of cortical and striatal activity concomitant with reversal learning, and reveal GluN2B as a molecular mechanism underpinning the timing of these processes.
Collapse
Affiliation(s)
- Kristin Marquardt
- Department of Neurosciences, University of New, Mexico, School of Medicine, Albuquerque, NM
| | - Megan Josey
- Department of Neurosciences, University of New, Mexico, School of Medicine, Albuquerque, NM
| | - Johnny A Kenton
- Department of Neurosciences, University of New, Mexico, School of Medicine, Albuquerque, NM
| | | | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Jonathan L Brigman
- Department of Neurosciences, University of New, Mexico, School of Medicine, Albuquerque, NM; New, Mexico, Alcohol Research Center, UNM Health Sciences Center, Albuquerque, NM.
| |
Collapse
|
165
|
Matsuno M, Horiuchi J, Ofusa K, Masuda T, Saitoe M. Inhibiting Glutamate Activity during Consolidation Suppresses Age-Related Long-Term Memory Impairment in Drosophila. iScience 2019; 15:55-65. [PMID: 31030182 PMCID: PMC6487374 DOI: 10.1016/j.isci.2019.04.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/24/2018] [Accepted: 04/08/2019] [Indexed: 01/17/2023] Open
Abstract
In Drosophila, long-term memory (LTM) formation requires increases in glial gene expression. Klingon (Klg), a cell adhesion molecule expressed in both neurons and glia, induces expression of the glial transcription factor, Repo. However, glial signaling downstream of Repo has been unclear. Here we demonstrate that Repo increases expression of the glutamate transporter, EAAT1, and EAAT1 is required during consolidation of LTM. The expressions of Klg, Repo, and EAAT1 decrease upon aging, suggesting that age-related impairments in LTM are caused by dysfunction of the Klg-Repo-EAAT1 pathway. Supporting this idea, overexpression of Repo or EAAT1 rescues age-associated impairments in LTM. Pharmacological inhibition of glutamate activity during consolidation improves LTM in klg mutants and aged flies. Altogether, our results indicate that LTM formation requires glial-dependent inhibition of glutamate signaling during memory consolidation, and aging disrupts this process by inhibiting the Klg-Repo-EAAT1 pathway.
Collapse
Affiliation(s)
- Motomi Matsuno
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8502, Japan
| | - Junjiro Horiuchi
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8502, Japan
| | - Kyoko Ofusa
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8502, Japan
| | - Tomoko Masuda
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8502, Japan
| | - Minoru Saitoe
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8502, Japan.
| |
Collapse
|
166
|
Aparisi Rey A, Karaulanov E, Sharopov S, Arab K, Schäfer A, Gierl M, Guggenhuber S, Brandes C, Pennella L, Gruhn WH, Jelinek R, Maul C, Conrad A, Kilb W, Luhmann HJ, Niehrs C, Lutz B. Gadd45α modulates aversive learning through post-transcriptional regulation of memory-related mRNAs. EMBO Rep 2019; 20:embr.201846022. [PMID: 30948457 PMCID: PMC6549022 DOI: 10.15252/embr.201846022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 02/22/2019] [Accepted: 03/07/2019] [Indexed: 01/25/2023] Open
Abstract
Learning is essential for survival and is controlled by complex molecular mechanisms including regulation of newly synthesized mRNAs that are required to modify synaptic functions. Despite the well‐known role of RNA‐binding proteins (RBPs) in mRNA functionality, their detailed regulation during memory consolidation is poorly understood. This study focuses on the brain function of the RBP Gadd45α (growth arrest and DNA damage‐inducible protein 45 alpha, encoded by the Gadd45a gene). Here, we find that hippocampal memory and long‐term potentiation are strongly impaired in Gadd45a‐deficient mice, a phenotype accompanied by reduced levels of memory‐related mRNAs. The majority of the Gadd45α‐regulated transcripts show unusually long 3′ untranslated regions (3′UTRs) that are destabilized in Gadd45a‐deficient mice via a transcription‐independent mechanism, leading to reduced levels of the corresponding proteins in synaptosomes. Moreover, Gadd45α can bind specifically to these memory‐related mRNAs. Our study reveals a new function for extended 3′UTRs in memory consolidation and identifies Gadd45α as a novel regulator of mRNA stability.
Collapse
Affiliation(s)
- Alejandro Aparisi Rey
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Salim Sharopov
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | | - Stephan Guggenhuber
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Caroline Brandes
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Luigi Pennella
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Ruth Jelinek
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christina Maul
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andrea Conrad
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christof Niehrs
- Institute of Molecular Biology, Mainz, Germany .,Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
167
|
Dresler M, Sandberg A, Bublitz C, Ohla K, Trenado C, Mroczko-Wąsowicz A, Kühn S, Repantis D. Hacking the Brain: Dimensions of Cognitive Enhancement. ACS Chem Neurosci 2019; 10:1137-1148. [PMID: 30550256 PMCID: PMC6429408 DOI: 10.1021/acschemneuro.8b00571] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022] Open
Abstract
In an increasingly complex information society, demands for cognitive functioning are growing steadily. In recent years, numerous strategies to augment brain function have been proposed. Evidence for their efficacy (or lack thereof) and side effects has prompted discussions about ethical, societal, and medical implications. In the public debate, cognitive enhancement is often seen as a monolithic phenomenon. On a closer look, however, cognitive enhancement turns out to be a multifaceted concept: There is not one cognitive enhancer that augments brain function per se, but a great variety of interventions that can be clustered into biochemical, physical, and behavioral enhancement strategies. These cognitive enhancers differ in their mode of action, the cognitive domain they target, the time scale they work on, their availability and side effects, and how they differentially affect different groups of subjects. Here we disentangle the dimensions of cognitive enhancement, review prominent examples of cognitive enhancers that differ across these dimensions, and thereby provide a framework for both theoretical discussions and empirical research.
Collapse
Affiliation(s)
- Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour , Radboud University Medical Centre , Nijmegen 6525 EN , The Netherlands
| | - Anders Sandberg
- Future of Humanity Institute , Oxford University , Oxford OX1 1PT , United Kingdom
| | | | - Kathrin Ohla
- Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM3) , Forschungszentrum Jülich , Jülich 52428 , Germany
| | - Carlos Trenado
- Institute of Clinical Neuroscience and Medical Psychology , Heinrich Heine University Düsseldorf , Düsseldorf 40225 , Germany
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors , TU Dortmund , Dortmund 44139 , Germany
| | | | - Simone Kühn
- Max Planck Institute for Human Development , Berlin 14195 , Germany
- Department of Psychiatry and Psychotherapy , University Clinic Hamburg Eppendorf , Hamburg 20246 , Germany
| | - Dimitris Repantis
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin 12203 , Germany
| |
Collapse
|
168
|
Li MX, Qiao H, Zhang M, Ma XM. Role of Cdk5 in Kalirin7-Mediated Formation of Dendritic Spines. Neurochem Res 2019; 44:1243-1251. [PMID: 30875016 DOI: 10.1007/s11064-019-02771-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 02/06/2023]
Abstract
A majority of excitatory synapses in the brain are localized on the dendritic spines. Alterations of spine density and morphology are associated with many neurological diseases. Understanding the molecular mechanisms underlying spine formation is important for understanding these diseases. Kalirin7 (Kal-7) is localized to the postsynaptic side of excitatory synapses in the neurons. Overexpression of Kal-7 causes an increase in spine density whereas knockdown expression of endogenous Kal-7 results in a decrease in spine density in primary cultured cortical neurons. However, the mechanisms underlying Kal-7-mediated spine formation are not entirely clear. Cyclin-dependent kinase 5 (Cdk5) plays a vital role in the formation of spines and synaptic plasticity. Kal-7 is phosphorylated by CDK5 at Thr1590, the unique Cdk5 phosphorylation site in the Kal-7 protein. This study was to explore the role of CDK5-mediated phosphorylation of Kal-7 in spine formation and the underlying mechanisms. Our results showed expression of Kal-7T/D (mimicked phosphorylation), Kal-7T/A mutants (blocked phosphorylation) or wild-type (Wt) Kal-7 caused in a similar increase in spine density, while spine size of Wt Kal-7-expressing cortical neurons was bigger than that in Kal-7 T\A-expressing neurons, but smaller than that in Kal-7T/D-expressing neurons. The fluorescence intensity of NMDA receptor subunit NR2B (GluN2B) staining was stronger along the MAP2 positive dendrites of Kal-7T/D-expressing neurons than that in Kal-7T/A- or Wt Kal-7-expressing neurons. The fluorescence intensity of AMPA receptor subunit GluR1 (GluA1) staining showed the same trend as GluN2B staining. These findings suggest that Cdk5 affects the function of Kal-7 on spine morphology and function via GluN2B and GluA1 receptors during dendritic spine formation.
Collapse
Affiliation(s)
- Ming-Xing Li
- State Key Laboratory of Subtropical Agro-Bioresource Conservation and Utilization, Guangxi University, Nanning, 530004, Guangxi, China
- College of Life Science, Shaanxi Normal University, Xi'an, 710062, Shaanxi, China
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Hui Qiao
- College of Life Science, Shaanxi Normal University, Xi'an, 710062, Shaanxi, China
| | - Ming Zhang
- State Key Laboratory of Subtropical Agro-Bioresource Conservation and Utilization, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xin-Ming Ma
- College of Life Science, Shaanxi Normal University, Xi'an, 710062, Shaanxi, China.
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| |
Collapse
|
169
|
Qiu B, Xu Y, Wang J, Liu M, Dou L, Deng R, Wang C, Williams KE, Stewart RB, Xie Z, Ren W, Zhao Z, Shou W, Liang T, Yong W. Loss of FKBP5 Affects Neuron Synaptic Plasticity: An Electrophysiology Insight. Neuroscience 2019; 402:23-36. [DOI: 10.1016/j.neuroscience.2019.01.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 11/26/2022]
|
170
|
Neuner SM, Ding S, Kaczorowski CC. Knockdown of heterochromatin protein 1 binding protein 3 recapitulates phenotypic, cellular, and molecular features of aging. Aging Cell 2019; 18:e12886. [PMID: 30549219 PMCID: PMC6351847 DOI: 10.1111/acel.12886] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/25/2018] [Accepted: 11/10/2018] [Indexed: 12/12/2022] Open
Abstract
Identifying genetic factors that modify an individual's susceptibility to cognitive decline in aging is critical to understanding biological processes involved and mitigating risk associated with a number of age‐related disorders. Recently, heterochromatin protein 1 binding protein 3 (Hp1bp3) was identified as a mediator of cognitive aging. Here, we provide a mechanistic explanation for these findings and show that targeted knockdown of Hp1bp3 in the hippocampus by 50%–75% is sufficient to induce cognitive deficits and transcriptional changes reminiscent of those observed in aging and Alzheimer's disease brains. Specifically, neuroinflammatory‐related pathways become activated following Hp1bp3 knockdown in combination with a robust decrease in genes involved in synaptic activity and neuronal function. To test the hypothesis that Hp1bp3 mediates susceptibility to cognitive deficits via a role in neuronal excitability, we performed slice electrophysiology demonstrate transcriptional changes after Hp1bp3 knockdown manifest functionally as a reduction in hippocampal neuronal intrinsic excitability and synaptic plasticity. In addition, as Hp1bp3 is a known mediator of miRNA biogenesis, here we profile the miRNA transcriptome and identify mir‐223 as a putative regulator of a portion of observed mRNA changes, particularly those that are inflammatory‐related. In summary, work here identifies Hp1bp3 as a critical mediator of aging‐related changes at the phenotypic, cellular, and molecular level and will help inform the development of therapeutics designed to target either Hp1bp3 or its downstream effectors in order to promote cognitive longevity.
Collapse
Affiliation(s)
- Sarah M. Neuner
- The Jackson Laboratory Bar Harbor Maine
- Neuroscience Institute University of Tennessee Health Science Center Memphis Tennessee
| | | | | |
Collapse
|
171
|
Yoshikawa Y, Ago T, Kuroda J, Wakisaka Y, Tachibana M, Komori M, Shibahara T, Nakashima H, Nakashima K, Kitazono T. Nox4 Promotes Neural Stem/Precursor Cell Proliferation and Neurogenesis in the Hippocampus and Restores Memory Function Following Trimethyltin-Induced Injury. Neuroscience 2019; 398:193-205. [DOI: 10.1016/j.neuroscience.2018.11.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 12/21/2022]
|
172
|
Baumeister S, Schepmann D, Wünsch B. Synthesis and receptor binding of thiophene bioisosteres of potent GluN2B ligands with a benzo[7]annulene-scaffold. MEDCHEMCOMM 2019; 10:315-325. [PMID: 30881618 DOI: 10.1039/c8md00545a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/04/2019] [Indexed: 11/21/2022]
Abstract
The involvement of NMDA receptors containing the GluN2B subunit in neurodegenerative disorders including Alzheimer's and Parkinson's disease renders this NMDA receptor subtype an interesting pharmacological target. The aim of this study was the bioisosteric replacement of benzene, methoxybenzene and aniline moieties of known potent GluN2B selective NMDA receptor antagonists by a thiophene ring. In a nine-step synthesis starting from commercially available propionic acid 9 the thiophene derivative 7a was obtained as a bioisostere of the potent GluN2B ligands cis-3 and trans-3. [7]Annuleno[b]thiophene 8a without a benzylic OH moiety was prepared in a six-step synthesis starting from carboxylic acid 18. 8a represents a bioisostere of potent GluN2B ligands 4 and 5. [7]Annulenothiophene 8a without a benzylic OH moiety reveals approx. 8-fold higher GluN2B affinity (K i = 26 nM) than the analogous thiophene derivative 7a with a benzylic OH moiety (K i = 204 nM). Both thiophene bioisosteres show a slight preference for GluN2B receptors over both σ receptors. The data indicate that the bioisosteric replacement of benzene or substituted benzene rings by a thiophene ring is well tolerated by the NMDA receptor. Furthermore, the benzylic OH moiety seems not to be essential for high GluN2B affinity.
Collapse
Affiliation(s)
- Sören Baumeister
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster , Corrensstraße 48 , D-48149 Münster , Germany . ; ; Tel: +49 251 83 33311
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster , Corrensstraße 48 , D-48149 Münster , Germany . ; ; Tel: +49 251 83 33311
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster , Corrensstraße 48 , D-48149 Münster , Germany . ; ; Tel: +49 251 83 33311.,Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM) , Westfälische Wilhelms-Universität Münster , Germany
| |
Collapse
|
173
|
A new role of anterograde motor Kif5b in facilitating large clathrin-coated vesicle mediated endocytosis via regulating clathrin uncoating. Cell Discov 2019; 4:65. [PMID: 30603101 PMCID: PMC6305376 DOI: 10.1038/s41421-018-0067-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 11/30/2022] Open
Abstract
Kif5b-driven anterograde transport and clathrin-mediated endocytosis (CME) are responsible for opposite intracellular trafficking, contributing to plasma membrane homeostasis. However, whether and how the two trafficking processes coordinate remain unclear. Here, we show that Kif5b directly interacts with clathrin heavy chain (CHC) at a region close to that for uncoating catalyst (Hsc70) and preferentially localizes on relatively large clathrin-coated vesicles (CCVs). Uncoating in vitro is decreased for CCVs from the cortex of kif5b conditional knockout (mutant) mouse and facilitated by adding Kif5b fragments containing CHC-binding site, while cell peripheral distribution of CHC or Hsc70 keeps unaffected by Kif5b depletion. Furthermore, cellular entry of vesicular stomatitis virus that internalizes into large CCV is inhibited by Kif5b depletion or introducing a dominant-negative Kif5b fragment. These findings showed a new role of Kif5b in regulating large CCV-mediated CME via affecting CCV uncoating, indicating Kif5b as a molecular knot connecting anterograde transport to CME.
Collapse
|
174
|
Bryzgalov DV, Kuznetsova IL, Rogaev EI. Enhancement of Declarative Memory: From Genetic Regulation to Non-invasive Stimulation. BIOCHEMISTRY (MOSCOW) 2018; 83:1124-1138. [PMID: 30472951 DOI: 10.1134/s0006297918090146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The problem of memory enhancement is extremely important in intellectual activity areas and therapy of different types of dementia, including Alzheimer's disease (AD). The attempts to solve this problem have come from different research fields. In the first part of our review, we describe the results of targeting certain genes involved in memory-associated molecular pathways. The second part of the review is focused on the deep stimulation of brain structures that can slow down memory loss in AD. The third part describes the results of the use of non-invasive brain stimulation techniques for memory modulation, consolidation, and retrieval in healthy people and animal models. Integration of data from different research fields is essential for the development of efficient strategies for memory enhancement.
Collapse
Affiliation(s)
- D V Bryzgalov
- Memory, Oscillations, Brain States (MOBS) Team, Brain Plasticity Unit, CNRS UMR 8249, ESPCI Paris, Paris, France.
| | - I L Kuznetsova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - E I Rogaev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia. .,Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia.,Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119234, Russia
| |
Collapse
|
175
|
Mekli K, Stevens A, Marshall AD, Arpawong TE, Phillips DF, Tampubolon G, Lee J, Prescott CA, Nazroo JY, Pendleton N. Frailty Index associates with GRIN2B in two representative samples from the United States and the United Kingdom. PLoS One 2018; 13:e0207824. [PMID: 30475886 PMCID: PMC6258126 DOI: 10.1371/journal.pone.0207824] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023] Open
Abstract
The concept of frailty has been used in the clinical and research field for more than two decades. It is usually described as a clinical state of heightened vulnerability to poor resolution of homeostasis after a stressor event, which thereby increases the risk of adverse outcomes, including falls, delirium, disability and mortality. Here we report the results of the first genome-wide association scan and comparative gene ontology analyses where we aimed to identify genes and pathways associated with the deficit model of frailty. We used a discovery-replication design with two independent, nationally representative samples of older adults. The square-root transformed Frailty Index (FI) was the outcome variable, and age and sex were included as covariates. We report one hit exceeding genome-wide significance: the rs6765037 A allele was significantly associated with a decrease in the square-root transformed FI score in the Discovery sample (beta = -0.01958, p = 2.14E-08), without confirmation in the Replication sample. We also report a nominal replication: the rs7134291 A allele was significantly associated with a decrease in the square-root transformed FI score (Discovery sample: beta = -0.01021, p = 1.85E-06, Replication sample: beta = -0.005013, p = 0.03433). These hits represent the KBTBD12 and the GRIN2B genes, respectively. Comparative gene ontology analysis identified the pathways ‘Neuropathic pain signalling in dorsal horn neurons’ and the ‘GPCR-Mediated Nutrient Sensing in Enteroendocrine Cells’, exceeding the p = 0.01 significance in both samples, although this result does not survive correction for multiple testing. Considering the crucial role of GRIN2B in brain development, synaptic plasticity and cognition, this gene appears to be a potential candidate to play a role in frailty. In conclusion, we conducted genome-wide association scan and pathway analyses and have identified genes and pathways with potential roles in frailty. However, frailty is a complex condition. Therefore, further research is required to confirm our results and more thoroughly identify relevant biological mechanisms.
Collapse
Affiliation(s)
- Krisztina Mekli
- Cathie Marsh Institute for Social Research, The University of Manchester, Manchester, United Kingdom
- * E-mail:
| | - Adam Stevens
- Division of Developmental Biology and Medicine, The University of Manchester, Manchester, United Kingdom
| | - Alan D. Marshall
- School of Social and Political Science, The University of Edinburgh, Edinburgh, United Kingdom
| | - Thalida E. Arpawong
- Department of Psychology, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, United States of America
| | - Drystan F. Phillips
- Dornsife Center for Economic and Social Research, University of Southern California, Los Angeles, CA, United States of America
- RAND Corporation, Santa Monica, CA, United States of America
| | - Gindo Tampubolon
- Institute for Social Change, The University of Manchester, Manchester, United Kingdom
| | - Jinkook Lee
- Dornsife Center for Economic and Social Research, University of Southern California, Los Angeles, CA, United States of America
- RAND Corporation, Santa Monica, CA, United States of America
| | - Carol A. Prescott
- Department of Psychology, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, United States of America
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - James Y. Nazroo
- Cathie Marsh Institute for Social Research, The University of Manchester, Manchester, United Kingdom
| | - Neil Pendleton
- Division of Neuroscience and Experimental Psychology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
176
|
Schmid S, Rammes G, Blobner M, Kellermann K, Bratke S, Fendl D, Kaichuan Z, Schneider G, Jungwirth B. Cognitive decline in Tg2576 mice shows sex-specific differences and correlates with cerebral amyloid-beta. Behav Brain Res 2018; 359:408-417. [PMID: 30458163 DOI: 10.1016/j.bbr.2018.11.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/19/2022]
Abstract
Patients suffering from Alzheimer's disease show a sex-dependent decline of cognitive function. The aim of this investigation was to show these differences in an animal model for Alzheimer's disease and to determine whether this effect is correlated to amyloid-beta-induced pathophysiological changes. Therefore, we assessed cognitive performance with the modified hole-board test in female and male Tg2576 and wild type mice at the age of 6, 8, 10, 12, 14, and 16 months and correlated these findings to the total amount of soluble amyloid-beta and insoluble amyloid deposits in the brain. Tg2576 mice perform worse than wild types. Female Tg2576 mice develop an accentuated cognitive impairment (wrong choice total) beginning at the age of 12 months compared to their male littermates. Alterations in the mice's behaviour do not show interference with these deficits. Cognitive impairment is correlated to the amount of soluble amyloid-beta and insoluble amyloid deposits in the brain in a sex-dependent manner.
Collapse
Affiliation(s)
- Sebastian Schmid
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Gerhard Rammes
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Manfred Blobner
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Kristine Kellermann
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Sebastian Bratke
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Diana Fendl
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Zhu Kaichuan
- German Center for Neurodegenerative Diseases, Ludwig-Maximilians-University of Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Gerhard Schneider
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Bettina Jungwirth
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| |
Collapse
|
177
|
Effects of 5-Aza on p-Y1472 NR2B related to learning and memory in the mouse hippocampus. Biomed Pharmacother 2018; 109:701-707. [PMID: 30551522 DOI: 10.1016/j.biopha.2018.10.090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND We have previously reported that 5-Aza-2-deoxycytidine (5-Aza-cdR) can repress protein serine/threonine phosphatase-1γ (PP1γ) expression and activity in the mouse hippocampus and affect the behaviour of mice in a water maze. It is well known that the phosphorylation of N-methyl-d-aspartate receptor 2B subunit (NR2B) plays a role in behaviour. In this study, we examined whether 5-Aza-cdR affects NR2B phosphorylation at tyrosine 1472 (p-Y1472 NR2B) and whether it affected the responses of the mice in a passive avoidance test. METHODS 5-Aza-cdR (10 μM) was administered to mice via intracerebroventricular injection (i.c.v). The learning and memory behaviour of the mice were evaluated by measuring their response in a step-down type passive avoidance test 24 h after the injection. The mRNA level of NR2B was measured by real-time PCR. NR2B and p-Y1472 NR2B protein expression in the mouse hippocampus was detected by western blot and immunofluorescence. CDK5 activity was detected by the ADP-Glo™ + CDK5/p35 Kinase Enzyme System. To further clarify whether the 5-Aza-cdR effects on behaviour were dependent on cellular proliferation or not, the effect of 5-Aza-cdR on the expression level of NR2B, the phosphorylation level of p-Y1472 NR2B, cell viability and the cell cycle were analysed using the immortalized mouse hippocampal neuronal cells neural cell line HT22 treated with 10 μM 5-Aza-cdR compared with an untreated control group. RESULTS After injection with 5-Aza-cdR, the behaviour of the mice in the step-down test was improved, while their phosphorylation level of p-Y1472 NR2B was increased and their CDK5 activity was decreased in the hippocampus. In vitro experiments showed 10 μM 5-Aza-cdR increased the p-Y1472 NR2B phosphorylation level with inhibition of cell viability and cell cycle arrest. CONCLUSIONS Our results suggested that the effect of 5-Aza-cdR on behaviour may be related to the increase in phosphorylation of p-Y1472 NR2B in the hippocampus.
Collapse
|
178
|
Ni M, Zhang J, Huang L, Liu G, Li Q. A Rho-kinase inhibitor reverses learning and memory deficits in a Rat model of chronic cerebral ischemia by altering Bcl-2/Bax-NMDAR signaling in the cerebral cortex. J Pharmacol Sci 2018; 138:107-115. [PMID: 30366873 DOI: 10.1016/j.jphs.2018.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/07/2018] [Accepted: 08/21/2018] [Indexed: 11/16/2022] Open
Abstract
The current study investigated whether a Rho-kinase inhibitor alleviated impairments in a rat model of chronic cerebral ischemia and examined the specific pathological mechanisms by which Rho-kinase impacts neuronal damage and cognitive dysfunction. Adult Sprague-Dawley rats underwent permanent bilateral carotid artery occlusion (BCAO) to establish our chronic cerebral ischemia model. Chronic Y27632 administration reversed the abnormal behaviors of BCAO-treated rats in the Morris water maze. We performed Western blot analyses of the apoptosis-related proteins Bcl-2 and Bax to examine the potential mechanism underlying the beneficial effects of Y27632 on cerebral ischemia and showed for the first time that Y27632 reversed the decrease in the Bcl-2/Bax ratio in BCAO model rats. Y27632 restored the depression of NR2A- and NR2B-containing N-methyl-d-aspartate receptors (NMDARs) in the cerebral cortex of BCAO model rats. We also investigated these effects on middle cerebral artery occlusion (MCAO) model rats and observed some differences between the two models. In summary, our data provide evidence supporting the hypothesis that Rho-kinase inhibitors exert neuroprotective effects on cerebral ischemia. The Bcl-2/Bax-NMDAR signaling pathway in the cerebral cortex may be responsible for the protective effects of the Rho-kinase inhibitor, and this pathway may represent a pharmacological target for curative clinical strategies.
Collapse
Affiliation(s)
- Ming Ni
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai, 200080, PR China; Department of Clinical Pharmacy, Henan Provincial People's Hospital, Zhengzhou 450000, PR China; Department of Clinical Pharmacy, Fuwai Central China Cardiovascular Hospital, Zhengzhou 450000, PR China
| | - Jigang Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai, 200080, PR China
| | - Lin Huang
- Department of Pharmacy, Peking University People's Hospital, Beijing 100044, PR China
| | - Gaolin Liu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai, 200080, PR China
| | - Qin Li
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai, 200080, PR China.
| |
Collapse
|
179
|
Kenton JA, Castillo R, Holmes A, Brigman JL. Cortico-hippocampal GluN2B is essential for efficient visual-spatial discrimination learning in a touchscreen paradigm. Neurobiol Learn Mem 2018; 156:60-67. [PMID: 30394331 DOI: 10.1016/j.nlm.2018.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/13/2018] [Accepted: 10/26/2018] [Indexed: 12/24/2022]
Abstract
Discrimination of similar spatial locations, an important feature of episodic memory, has traditionally been measured via delayed nonmatching-to-location tasks. Recently, we and others have demonstrated that touchscreen-based Trial Unique Nonmatching-to-Location (TUNL) tasks are sensitive to lesions of the dorsal hippocampus in the mouse. Previously we have shown that loss of the GluN2B subunit of the N-methyl-D-aspartate (NMDA) receptor in the dorsal CA1 and throughout the cortex impairs hippocampal-dependent water maze and fear conditioning paradigms. We investigated whether loss of GluN2B would alter performance of visual-spatial discrimination learning in a delay- or separation-dependent manner. GluN2B null mutants displayed initial impairments in accuracy on the easiest training variant of TUNL that were overcome with training. Loss of GluN2B also impaired performance on a problem series where delay and separation were systematically varied. We also observed a training-dependent effect on performance. Mutant mice that received extensive training performed similar to control mice when challenged on a variable delay and variable separation problem, while those that received minimal training were impaired across all delays and separations. Together, these data demonstrate that GluN2B in the dorsal CA1 and cortex are essential for efficient visual-spatial discrimination learning on the TUNL task. Further, training effects on performance in mutant mice suggest that alterations in synaptic plasticity after GluN2B loss may underlie intra- versus inter-session learning.
Collapse
Affiliation(s)
- Johnny A Kenton
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Rebecca Castillo
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| |
Collapse
|
180
|
Yu L, Duan Y, Zhao Z, He W, Xia M, Zhang Q, Cao X. Hydroxysafflor Yellow A (HSYA) Improves Learning and Memory in Cerebral Ischemia Reperfusion-Injured Rats via Recovering Synaptic Plasticity in the Hippocampus. Front Cell Neurosci 2018; 12:371. [PMID: 30405354 PMCID: PMC6200869 DOI: 10.3389/fncel.2018.00371] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/28/2018] [Indexed: 12/31/2022] Open
Abstract
Hydroxysafflor yellow A (HSYA) is the major active chemical component of the safflower plant flower, which is widely used in Chinese medicine for cerebrovascular and cardiovascular disease treatment. Recent studies have demonstrated that HSYA exerts neuroprotective effect on cerebral ischemia, such as neuronal anti-apoptosis, antioxidant activity and oxygen free radical-scavenging. However, whether and how HSYA has a protective effect on cognitive impairment induced by cerebral ischemia reperfusion remains elusive. In the present study, by using the middle cerebral artery occlusion (MCAO) model, we found that 8 mg/kg and 16 mg/kg HSYA administration by common carotid artery (CCA) injection improved impaired cognitive function in Morris water maze (MWM) and passive avoidance tasks, but not 4 mg/kg HSYA treatment, suggesting that HSYA treatment in a certain concentration can improve cognitive impairment in MCAO rats. Furthermore, we found that 8 mg/kg HSYA treatment rescued the impaired long-term potentiation (LTP) in hippocampus of MCAO rats. Taken together, these results for the first time demonstrate that HSYA has the capacity to protect cognitive function and synaptic plasticity against cerebral ischemia-reperfusion injury, and provide a new insight that HSYA may be a promising alternative for recovery of cognitive dysfunction after brain ischemic injury.
Collapse
Affiliation(s)
- Lu Yu
- Comprehensive Department of Traditional Chinese Medicine, Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanhong Duan
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zheng Zhao
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, China
| | - Wendi He
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, China
| | - Ming Xia
- Comprehensive Department of Traditional Chinese Medicine, Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiujuan Zhang
- Department of Neurology, Yueyang Hospital of Integrated Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaohua Cao
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
181
|
McGregor G, Harvey J. Regulation of Hippocampal Synaptic Function by the Metabolic Hormone, Leptin: Implications for Health and Neurodegenerative Disease. Front Cell Neurosci 2018; 12:340. [PMID: 30386207 PMCID: PMC6198461 DOI: 10.3389/fncel.2018.00340] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/13/2018] [Indexed: 11/13/2022] Open
Abstract
The role of the endocrine hormone leptin in controlling energy homeostasis in the hypothalamus are well documented. However the CNS targets for leptin are not restricted to the hypothalamus as a high density of leptin receptors are also expressed in several parts of the brain involved in higher cognitive functions including the hippocampus. Numerous studies have identified that in the hippocampus, leptin has cognitive enhancing actions as exogenous application of this hormone facilitates hippocampal-dependent learning and memory, whereas lack or insensitivity to leptin results in significant memory deficits. Leptin also markedly influences some of the main cellular changes that are involved in learning and memory including NMDA-receptor dependent synaptic plasticity and glutamate receptor trafficking. Like other metabolic hormones, there is a significant decline in neuronal sensitivity to leptin during the ageing process. Indeed, the capacity of leptin to modulate the functioning of hippocampal synapses is substantially reduced in aged compared to adult tissue. Clinical studies have also identified an association between circulating leptin levels and the risk of certain neurodegenerative disorders such as Alzheimer’s disease (AD). In view of this, targeting leptin and/or its receptor/signaling mechanisms may be an innovative approach for developing therapies to treat AD. In support of this, accumulating evidence indicates that leptin has cognitive enhancing and neuroprotective actions in various models of AD. Here we assess recent evidence that supports an important regulatory role for leptin at hippocampal CA1 synapses, and we discuss how age-related alterations in this hormonal system influences neurodegenerative disease.
Collapse
Affiliation(s)
- Gemma McGregor
- Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Jenni Harvey
- Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
182
|
Caldwell KK, Solomon ER, Smoake JJW, Djatche de Kamgaing CD, Allan AM. Sex-specific deficits in biochemical but not behavioral responses to delay fear conditioning in prenatal alcohol exposure mice. Neurobiol Learn Mem 2018; 156:1-16. [PMID: 30316893 DOI: 10.1016/j.nlm.2018.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/17/2018] [Accepted: 10/11/2018] [Indexed: 01/29/2023]
Abstract
BACKGROUND Studies in clinical populations and preclinical models have shown that prenatal alcohol exposure (PAE) is associated with impairments in the acquisition, consolidation and recall of information, with deficits in hippocampal formation-dependent learning and memory being a common finding. The glucocorticoid receptor (GR), mineralocorticoid receptor (MR), and extracellular signal-regulated kinase 2 (ERK2) are key regulators of hippocampal formation development, structure and functioning and, thus, are potential mediators of PAE's effects on this brain region. In the present studies, we employed a well-characterized mouse model of PAE to identify biochemical mechanisms that may underlie activity-dependent learning and memory deficits associated with PAE. METHODS Mouse dams consumed either 10% (w/v) ethanol in 0.066% (w/v) saccharin (SAC) or 0.066% (w/v) SAC alone using a limited (4-h) access, drinking-in-the-dark paradigm. Male and female offspring (∼180-days of age) were trained using a delay conditioning procedure and contextual fear responses (freezing behavior) were measured 24 h later. Hippocampal formation tissue and blood were collected from three behavioral groups of animals: 20 min following conditioning (conditioning only group), 20 min following the re-exposure to the context (conditioning plus re-exposure group), and behaviorally naïve (naïve group) mice. Plasma corticosterone levels were measured by enzyme immunoassay. Immunoblotting techniques were used to measure protein levels of the GR, MR, ERK1 and ERK2 in nuclear and membrane fractions prepared from the hippocampal formation. RESULTS Adult SAC control male and female mice displayed similar levels of contextual fear. However, significant sex differences were observed in freezing exhibited during the conditioning session. Compared to same-sex SAC controls, male and female PAE mice demonstrated context fear deficits While plasma corticosterone concentrations were elevated in PAE males and females relative to their respective SAC naïve controls, plasma corticosterone concentrations in the conditioning only and conditioning plus re-exposure groups were similar in SAC and PAE animals. Relative to the respective naïve group, nuclear GR protein levels were increased in SAC, but not PAE, male hippocampal formation in the conditioning only group. In contrast, no difference was observed between nuclear GR levels in the naïve and conditioning plus re-exposure groups. In females, nuclear GR levels were significantly reduced by PAE but there was no effect of behavioral group or interaction between prenatal treatment and behavioral group. In males, nuclear MR levels were significantly elevated in the SAC conditioning plus re-exposure group compared to SAC naïve mice. In PAE females, nuclear MR levels were elevated in both the conditioning only and conditioning plus re-exposure groups relative to the naïve group. Levels of activated ERK2 (phospho-ERK2 expressed relative to total ERK2) protein were elevated in SAC, but not PAE, males following context re-exposure, and a significant interaction between prenatal exposure group and behavioral group was found. No main effects or interactions of behavioral group and prenatal treatment on nuclear ERK2 were found in female mice. These findings suggest a sex difference in which molecular pathways are activated during fear conditioning in mice. CONCLUSIONS In PAE males, the deficits in contextual fear were associated with the loss of responsiveness of hippocampal formation nuclear GR, MR and ERK2 to signals generated by fear conditioning and context re-exposure. In contrast, the contextual fear deficit in PAE female mice does not appear to be associated with activity-dependent changes in GR and MR levels or ERK2 activation during training or memory recall, although an overall reduction in nuclear GR levels may play a role. These studies add to a growing body of literature demonstrating that, at least partially, different mechanisms underlie learning, memory formation and memory recall in males and females and that these pathways are differentially affected by PAE.
Collapse
Affiliation(s)
- Kevin K Caldwell
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Elizabeth R Solomon
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Jane J W Smoake
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Chrys D Djatche de Kamgaing
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Andrea M Allan
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
183
|
Abstract
Substance P (SP) is a highly conserved member of the tachykinin peptide family that is widely expressed throughout the animal kingdom. The numerous members of the tachykinin peptide family are involved in a multitude of neuronal signaling pathways, mediating sensations and emotional responses (Steinhoff et al. in Physiol Rev 94:265–301, 2014). In contrast to receptors for classical transmitters, such as glutamate (Parsons et al. in Handb Exp Pharmacol 249–303, 2005), only a minority of neurons in certain brain areas express neurokinin receptors (NKRs) (Mantyh in J Clin Psychiatry 63:6–10, 2002). SP is also expressed by a variety of non-neuronal cell types such as microglia, as well as immune cells (Mashaghi et al. in Cell Mol Life Sci 73:4249–4264, 2016). SP is an 11-amino acid neuropeptide that preferentially activates the neurokinin-1 receptor (NK1R). It transmits nociceptive signals via primary afferent fibers to spinal and brainstem second-order neurons (Cao et al. in Nature 392:390–394, 1998). Compounds that inhibit SP’s action are being investigated as potential drugs to relieve pain. More recently, SP and NKR have gained attention for their role in complex psychiatric processes. It is a key goal in the field of pain research to understand mechanisms involved in the transition between acute pain and chronic pain. The influence of emotional and cognitive inputs and feedbacks from different brain areas makes pain not only a perception but an experience (Zieglgänsberger et al. in CNS Spectr 10:298–308, 2005; Trenkwaldner et al. Sleep Med 31:78–85, 2017). This review focuses on functional neuronal plasticity in spinal dorsal horn neurons as a major relay for nociceptive information.
Collapse
|
184
|
Wang X, Shen C, Chen X, Wang J, Cui X, Wang Y, Zhang H, Tang L, Lu S, Fei J, Wang Z. Tafa-2 plays an essential role in neuronal survival and neurobiological function in mice. Acta Biochim Biophys Sin (Shanghai) 2018; 50:984-995. [PMID: 30137205 PMCID: PMC6185136 DOI: 10.1093/abbs/gmy097] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/25/2018] [Indexed: 12/26/2022] Open
Abstract
Tafa is a family of small secreted proteins with conserved cysteine residues and restricted expression in the brain. It is composed of five highly homologous genes referred to as Tafa-1 to -5. Among them, Tafa-2 is identified as one of the potential genes responsible for intellectual deficiency in a patient with mild mental retardation. To investigate the biological function of Tafa-2 in vivo, Tafa-2 knockout mice were generated. The mutant mice grew and developed normally but exhibited impairments in spatial learning and memory in Morris water maze test and impairments in short- and long-term memory in novel object recognition test, accompanied with increased level of anxiety-like behaviors in open-field test and elevated plus maze test, and decreased level of depression-like behaviors in forced-swim test and tail-suspension test. Further examinations revealed that Tafa-2 deficiency causes severe neuronal reduction and increased apoptosis in the brain of Tafa-2-/- mice via downregulation of PI3K/Akt and MAPK/Erk pathways. Conformably, the expression levels of CREB target genes including BDNF, c-fos and NF1, and CBP were found to be reduced in the brain of Tafa-2-/- mice. Taken together, our data indicate that Tafa-2 may function as a neurotrophic factor essential for neuronal survival and neurobiological functions.
Collapse
Affiliation(s)
- Xiyi Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- Shanghai Research Center for Model Organisms, Shanghai, China
| | - Chunling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Xuejiao Chen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Jinjin Wang
- Shanghai Research Center for Model Organisms, Shanghai, China
| | - Xiaofang Cui
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Yicheng Wang
- Shanghai Research Center for Model Organisms, Shanghai, China
| | - Hongxin Zhang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Lingyun Tang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Shunyuan Lu
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Jian Fei
- Shanghai Research Center for Model Organisms, Shanghai, China
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- Shanghai Research Center for Model Organisms, Shanghai, China
| |
Collapse
|
185
|
Morini R, Ferrara S, Perrucci F, Zambetti S, Pelucchi S, Marcello E, Gardoni F, Antonucci F, Matteoli M, Menna E. Lack of the Actin Capping Protein, Eps8, Affects NMDA-Type Glutamate Receptor Function and Composition. Front Mol Neurosci 2018; 11:313. [PMID: 30233314 PMCID: PMC6133960 DOI: 10.3389/fnmol.2018.00313] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/15/2018] [Indexed: 11/26/2022] Open
Abstract
Actin-based remodeling underlines spine morphogenesis and plasticity and is crucially involved in the processes that constantly reshape the circuitry of the adult brain in response to external stimuli, leading to learning and memory formation and supporting cognitive functions. Hence spine morphology and synaptic strength are tightly linked and indeed abnormalities in spine number and morphology have been described in a number of neurological disorders such as autism spectrum disorders (ASDs), schizophrenia and intellectual disabilities. We have recently demonstrated that the actin regulating protein, Epidermal growth factor receptor pathway substrate 8 (Eps8), is essential for spine growth and long term potentiation. Indeed, mice lacking Eps8 display immature filopodia-like spines, which are unable to undergo potentiation, and are impaired in cognitive functions. Furthermore, reduced levels of Eps8 have been found in the brain of a cohort of patients affected by ASD compared to controls. Here we investigated whether the lack of Eps8, which is also part of the N-methyl-d-aspartate (NMDA) receptor complex, affects the functional maturation of the postsynaptic compartment. Our results demonstrate that Eps8 knock out mice (Eps8 KO) neurons display altered synaptic expression and subunit composition of NMDA receptors (i.e., increased GluN2B-, decreased GluN2A-containing receptors) and impaired GluN2B to GluN2A subunit shift. Indeed Eps8 KO neurons display increased content of GluN2B containing NMDA receptors both at the synaptic and extrasynaptic level. Furthermore, Eps8 KO neurons display an increased content of extra-synaptic GluN2B-containing receptors, suggesting that also the synaptic targeting of NMDA receptors is affected by the lack of Eps8. These data demonstrate that, besides regulation of spine morphogenesis, Eps8 also regulates the synaptic balance of NMDA receptors subunits GluN2A and GluN2B.
Collapse
Affiliation(s)
- Raffaella Morini
- Laboratory of Pharmacology and Brain Pathology, Neurocenter IRCCS Humanitas, Milan, Italy
| | - Silvia Ferrara
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, Milan, Italy
| | - Fabio Perrucci
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Stefania Zambetti
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, Milan, Italy
| | - Silvia Pelucchi
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università di Milano, Milan, Italy.,NEUROFARBA, Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Università degli Studi di Firenze, Florence, Italy
| | - Elena Marcello
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università di Milano, Milan, Italy
| | - Fabrizio Gardoni
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università di Milano, Milan, Italy
| | - Flavia Antonucci
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, Milan, Italy
| | - Michela Matteoli
- Laboratory of Pharmacology and Brain Pathology, Neurocenter IRCCS Humanitas, Milan, Italy.,CNR-Istituto di Neuroscienze (IN), Milan, Italy
| | - Elisabetta Menna
- Laboratory of Pharmacology and Brain Pathology, Neurocenter IRCCS Humanitas, Milan, Italy.,CNR-Istituto di Neuroscienze (IN), Milan, Italy
| |
Collapse
|
186
|
Kumar A, Foster TC. Alteration in NMDA Receptor Mediated Glutamatergic Neurotransmission in the Hippocampus During Senescence. Neurochem Res 2018; 44:38-48. [PMID: 30209673 DOI: 10.1007/s11064-018-2634-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 12/17/2022]
Abstract
Glutamate is the primary excitatory neurotransmitter in neurons and glia. N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and kainate receptors are major ionotropic glutamate receptors. Glutamatergic neurotransmission is strongly linked with Ca2+ homeostasis. Research has provided ample evidence that brain aging is associated with altered glutamatergic neurotransmission and Ca2+ dysregulation. Much of the work has focused on the hippocampus, a brain region critically involved in learning and memory, which is particularly susceptible to dysfunction during senescence. The current review examines Ca2+ regulation with a focus on the NMDA receptors in the hippocampus. Integrating the knowledge of the complexity of age-related alterations in Ca2+ homeostasis and NMDA receptor-mediated glutamatergic neurotransmission will positively shape the development of highly effective therapeutics to treat brain disorders including cognitive impairment.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, PO Box 100244, Gainesville, FL, 32610-0244, USA.
| | - Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, PO Box 100244, Gainesville, FL, 32610-0244, USA.
- Genetics and Genomics Program, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
187
|
Sachana M, Rolaki A, Bal-Price A. Development of the Adverse Outcome Pathway (AOP): Chronic binding of antagonist to N-methyl-d-aspartate receptors (NMDARs) during brain development induces impairment of learning and memory abilities of children. Toxicol Appl Pharmacol 2018; 354:153-175. [PMID: 29524501 PMCID: PMC6095943 DOI: 10.1016/j.taap.2018.02.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 01/06/2023]
Abstract
The Adverse Outcome Pathways (AOPs) are designed to provide mechanistic understanding of complex biological systems and pathways of toxicity that result in adverse outcomes (AOs) relevant to regulatory endpoints. AOP concept captures in a structured way the causal relationships resulting from initial chemical interaction with biological target(s) (molecular initiating event) to an AO manifested in individual organisms and/or populations through a sequential series of key events (KEs), which are cellular, anatomical and/or functional changes in biological processes. An AOP provides the mechanistic detail required to support chemical safety assessment, the development of alternative methods and the implementation of an integrated testing strategy. An example of the AOP relevant to developmental neurotoxicity (DNT) is described here following the requirements of information defined by the OECD Users' Handbook Supplement to the Guidance Document for developing and assessing AOPs. In this AOP, the binding of an antagonist to glutamate receptor N-methyl-d-aspartate (NMDAR) receptor is defined as MIE. This MIE triggers a cascade of cellular KEs including reduction of intracellular calcium levels, reduction of brain derived neurotrophic factor release, neuronal cell death, decreased glutamate presynaptic release and aberrant dendritic morphology. At organ level, the above mentioned KEs lead to decreased synaptogenesis and decreased neuronal network formation and function causing learning and memory deficit at organism level, which is defined as the AO. There are in vitro, in vivo and epidemiological data that support the described KEs and their causative relationships rendering this AOP relevant to DNT evaluation in the context of regulatory purposes.
Collapse
Affiliation(s)
| | | | - Anna Bal-Price
- European Commission, Joint Research Centre, Ispra, Italy.
| |
Collapse
|
188
|
Velie BD, Fegraeus KJ, Solé M, Rosengren MK, Røed KH, Ihler CF, Strand E, Lindgren G. A genome-wide association study for harness racing success in the Norwegian-Swedish coldblooded trotter reveals genes for learning and energy metabolism. BMC Genet 2018; 19:80. [PMID: 30157760 PMCID: PMC6114527 DOI: 10.1186/s12863-018-0670-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022] Open
Abstract
Background Although harness racing is of high economic importance to the global equine industry, significant genomic resources have yet to be applied to mapping harness racing success. To identify genomic regions associated with harness racing success, the current study performs genome-wide association analyses with three racing performance traits in the Norwegian-Swedish Coldblooded Trotter using the 670 K Axiom Equine Genotyping Array. Results Following quality control, 613 horses and 359,635 SNPs were retained for further analysis. After strict Bonferroni correction, nine genome-wide significant SNPs were identified for career earnings. No genome-wide significant SNPs were identified for number of gallops or best km time. However, four suggestive genome-wide significant SNPs were identified for number of gallops, while 19 were identified for best km time. Multiple genes related to intelligence, energy metabolism, and immune function were identified as potential candidate genes for harness racing success. Conclusions Apart from the physiological requirements needed for a harness racing horse to be successful, the results of the current study also advocate learning ability and memory as important elements for harness racing success. Further exploration into the mental capacity required for a horse to achieve racing success is likely warranted. Electronic supplementary material The online version of this article (10.1186/s12863-018-0670-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Brandon D Velie
- Department of Animal Breeding & Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Kim Jäderkvist Fegraeus
- Department of Animal Breeding & Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Marina Solé
- Department of Animal Breeding & Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Maria K Rosengren
- Department of Animal Breeding & Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Knut H Røed
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Carl-Fredrik Ihler
- Department of Companion Animal Clinical Sciences, Norwegian School of Veterinary Science, Oslo, Norway
| | - Eric Strand
- Department of Companion Animal Clinical Sciences, Norwegian School of Veterinary Science, Oslo, Norway
| | - Gabriella Lindgren
- Department of Animal Breeding & Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Biosystems, KU Leuven, 3001, Leuven, Belgium
| |
Collapse
|
189
|
NMDA Receptor Dependent Long-term Potentiation in Chronic Pain. Neurochem Res 2018; 44:531-538. [PMID: 30109556 PMCID: PMC6420414 DOI: 10.1007/s11064-018-2614-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/08/2018] [Accepted: 08/11/2018] [Indexed: 02/06/2023]
Abstract
Since the discovery of NMDA receptor (NMDAR) dependent long-term potentiation (LTP) in the hippocampus, many studies have demonstrated that NMDAR dependent LTP exists throughout central synapses, including those involved in sensory transmission and perception. NMDAR LTP has been reported in spinal cord dorsal horn synapses, anterior cingulate cortex and insular cortex. Behavioral, genetic and pharmacological studies show that inhibiting or reducing NMDAR LTP produced analgesic effects in animal models of chronic pain. Investigation of signalling mechanisms for NMDAR LTP may provide novel targets for future treatment of chronic pain.
Collapse
|
190
|
Rammes G, Seeser F, Mattusch K, Zhu K, Haas L, Kummer M, Heneka M, Herms J, Parsons CG. The NMDA receptor antagonist Radiprodil reverses the synaptotoxic effects of different amyloid-beta (Aβ) species on long-term potentiation (LTP). Neuropharmacology 2018; 140:184-192. [PMID: 30016667 DOI: 10.1016/j.neuropharm.2018.07.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/22/2018] [Accepted: 07/14/2018] [Indexed: 12/29/2022]
Abstract
Aβ1-42 is well accepted to be a primary early pathogenic agent in Alzheimer's disease (AD). However, other amyloid peptides are now gaining considerable attention as potential key participants in AD due to their proposed higher neuronal toxicity. Impairment of the glutamatergic system is also widely accepted to be associated with pathomechanisms underlying AD. There is ample evidence that Aβ1-42 affects GLUN2B subunit containing N-methyl-D-aspartate receptor function and abolishes the induction of long term potentiation (LTP). In this study we show that different β-amyloid species, 1-42 Aβ1-42 and 1-40 (Aβ1-40) as well as post-translationally modified forms such as pyroglutamate-modified amyloid-(AβpE3) and nitrated Aβ (3NTyr10-Aβ), when applied for 90 min to murine hippocampal slices, concentration-dependently prevented the development of CA1-LTP after tetanic stimulation of the Schaffer collaterals with IC50s of 2, 9, 2 and 35 nM, respectively whilst having no effect on baseline AMPA receptor mediated fEPSPs. Aβ1-43 had no effect. Interestingly, the combination of all Aβ species did not result in any synergistic or additive inhibitory effect on LTP - the calculated pooled Aβ species IC50 was 20 nM. A low concentration (10 nM) of the GLUN2B receptor antagonist Radiprodil restored LTP in the presence of Aβ1-42, 3NTyr10-Aβ, Aβ1-40, but not AβpE3. In contrast to AMPA receptor mediated fEPSPs, all different β-amyloid species tested at 50 nM supressed baseline NMDA-EPSC amplitudes. Similarly, all different Aβ species tested decreased spine density. As with LTP, Radiprodil (10 nM) reversed the synaptic toxicity of Aβ species but not that of AβpE3. These data do not support the enhanced toxic actions reported for some Aβ species such as AβpE3, nor synergistic toxicity of the combination of different Aβ species. However, whilst in our hands AβpE3-42 was actually less toxic than Aβ1-42, its effects were not reversed by Radiprodil indicating that the target receptors/subunits mediating such synaptotoxicity may differ between the different Aβ species tested.
Collapse
Affiliation(s)
- Gerhard Rammes
- Department of Anaesthesiology, Technische Universität München, Munich, Germany.
| | - Franziska Seeser
- Department of Anaesthesiology, Technische Universität München, Munich, Germany
| | - Korinna Mattusch
- Department of Anaesthesiology, Technische Universität München, Munich, Germany
| | - Kaichuan Zhu
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Laura Haas
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Markus Kummer
- Clinical Neuroscience Unit, Dept. of Neurology, University of Bonn, Germany
| | - Michael Heneka
- Clinical Neuroscience Unit, Dept. of Neurology, University of Bonn, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Chris G Parsons
- Non-Clinical Science, Merz Pharmaceuticals GmbH, Frankfurt am Main, Germany
| |
Collapse
|
191
|
Abstract
Brain expression of klotho was first described with the initial discovery of the klotho gene. The prominent age-regulating effects of klotho are attributed to regulation of ion homeostasis through klotho function in the kidney. However, recent advances identified brain functions and cell populations, including adult hippocampal neural progenitors, which require klotho. As well, both human correlational studies and mouse models of disease show that klotho is protective against multiple neurological and psychological disorders. This review focuses on current knowledge as to how the klotho protein effects the brain.
Collapse
Affiliation(s)
- Hai T Vo
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ann M Laszczyk
- Department of Cell and Developmental Biology, University of Michigan, Zina Pitcher Pl, Ann Arbor, MI, USA
| | - Gwendalyn D King
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
192
|
Multi-level genomic analyses suggest new genetic variants involved in human memory. Eur J Hum Genet 2018; 26:1668-1678. [PMID: 29970928 DOI: 10.1038/s41431-018-0201-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 05/05/2018] [Accepted: 05/22/2018] [Indexed: 12/29/2022] Open
Abstract
Development of high-throughput genotyping platforms provides an opportunity to identify new genetic elements related to complex cognitive functions. Taking advantage of multi-level genomic analysis, here we studied the genetic basis of human short-term (STM, n = 1623) and long-term (LTM, n = 1522) memory functions. Heritability estimation based on single nucleotide polymorphism showed moderate (61%, standard error 35%) heritability of short-term memory but almost zero heritability of long-term memory. We further performed a two-step genome-wide association study, but failed to find any SNPs that could pass genome-wide significance and survive replication at the same time. However, suggestive significance for rs7011450 was found in the shared component of the two STM tasks. Further inspections on its nearby gene zinc finger and at-hook domain containing and SNPs around this gene showed suggestive association with STM. In LTM, a polymorphism within branched chain amino acid transaminase 2 showed suggestive significance in the discovery cohort and has been replicated in another independent population of 1862. Furthermore, we performed a pathway analysis based on the current genomic data and found pathways including mTOR signaling and axon guidance significantly associated with STM capacity. These findings warrant further replication in other larger populations.
Collapse
|
193
|
Santora VJ, Almos TA, Barido R, Basinger J, Bellows CL, Bookser BC, Breitenbucher JG, Broadbent NJ, Cabebe C, Chai CK, Chen M, Chow S, Chung DM, Crickard L, Danks AM, Freestone GC, Gitnick D, Gupta V, Hoffmaster C, Hudson AR, Kaplan AP, Kennedy MR, Lee D, Limberis J, Ly K, Mak CC, Masatsugu B, Morse AC, Na J, Neul D, Nikpur J, Peters M, Petroski RE, Renick J, Sebring K, Sevidal S, Tabatabaei A, Wen J, Yan Y, Yoder ZW, Zook D. Design and Synthesis of Novel and Selective Glycine Transporter-1 (GlyT1) Inhibitors with Memory Enhancing Properties. J Med Chem 2018; 61:6018-6033. [DOI: 10.1021/acs.jmedchem.8b00372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Vincent J. Santora
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Theresa A. Almos
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Richard Barido
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Jillian Basinger
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Chris L. Bellows
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Brett C. Bookser
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - J. Guy Breitenbucher
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Nicola J. Broadbent
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Clifford Cabebe
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Chih-Kun Chai
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Mi Chen
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Stephine Chow
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - De Michael Chung
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Lindsay Crickard
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Anne M. Danks
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Graeme C. Freestone
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Dany Gitnick
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Varsha Gupta
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Christine Hoffmaster
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Andrew R. Hudson
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Alan P. Kaplan
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Michael R. Kennedy
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Dong Lee
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - James Limberis
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Kiev Ly
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Chi Ching Mak
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Brittany Masatsugu
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Andrew C. Morse
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Jim Na
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - David Neul
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - John Nikpur
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Marco Peters
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Robert E. Petroski
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Joel Renick
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Kristen Sebring
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Samantha Sevidal
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Ali Tabatabaei
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Jenny Wen
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Yingzhuo Yan
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Zachary W. Yoder
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| | - Douglas Zook
- Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, California 92121, United States
| |
Collapse
|
194
|
Bardsley EN, Davis H, Ajijola OA, Buckler KJ, Ardell JL, Shivkumar K, Paterson DJ. RNA Sequencing Reveals Novel Transcripts from Sympathetic Stellate Ganglia During Cardiac Sympathetic Hyperactivity. Sci Rep 2018; 8:8633. [PMID: 29872217 PMCID: PMC5988725 DOI: 10.1038/s41598-018-26651-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/15/2018] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular disease is the most prevalent age-related illness worldwide, causing approximately 15 million deaths every year. Hypertension is central in determining cardiovascular risk and is a strong predictive indicator of morbidity and mortality; however, there remains an unmet clinical need for disease-modifying and prophylactic interventions. Enhanced sympathetic activity is a well-established contributor to the pathophysiology of hypertension, however the cellular and molecular changes that increase sympathetic neurotransmission are not known. The aim of this study was to identify key changes in the transcriptome in normotensive and spontaneously hypertensive rats. We validated 15 of our top-scoring genes using qRT-PCR, and network and enrichment analyses suggest that glutamatergic signalling plays a key role in modulating Ca2+ balance within these ganglia. Additionally, phosphodiesterase activity was found to be altered in stellates obtained from the hypertensive rat, suggesting that impaired cyclic nucleotide signalling may contribute to disturbed Ca2+ homeostasis and sympathetic hyperactivity in hypertension. We have also confirmed the presence of these transcripts in human donor stellate samples, suggesting that key genes coupled to neurotransmission are conserved. The data described here may provide novel targets for future interventions aimed at treating sympathetic hyperactivity associated with cardiovascular disease and other dysautonomias.
Collapse
Affiliation(s)
- Emma N Bardsley
- Wellcome Trust OXION Initiative in Ion Channels and Disease, Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, OX1 3PT, UK.
| | - Harvey Davis
- Wellcome Trust OXION Initiative in Ion Channels and Disease, Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, OX1 3PT, UK
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center, 100 Medical Plaza, Suite 660, Los Angeles, CA, 90095, USA
| | - Keith J Buckler
- Wellcome Trust OXION Initiative in Ion Channels and Disease, Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, OX1 3PT, UK
| | - Jeffrey L Ardell
- UCLA Cardiac Arrhythmia Center, 100 Medical Plaza, Suite 660, Los Angeles, CA, 90095, USA
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center, 100 Medical Plaza, Suite 660, Los Angeles, CA, 90095, USA
| | - David J Paterson
- Wellcome Trust OXION Initiative in Ion Channels and Disease, Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, OX1 3PT, UK.
| |
Collapse
|
195
|
Duan Y, Wang Q, Zeng Q, Wang J, Chen Z, Xu M, Duan Y, Zhao Z, Xue Q, Cao X. Striatal GluN2B involved in motor skill learning and stimulus-response learning. Neuropharmacology 2018; 135:73-85. [DOI: 10.1016/j.neuropharm.2018.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 12/12/2022]
|
196
|
Munsie M, Gyngell C. Ethical issues in genetic modification and why application matters. Curr Opin Genet Dev 2018; 52:7-12. [PMID: 29800628 DOI: 10.1016/j.gde.2018.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/01/2018] [Accepted: 05/06/2018] [Indexed: 12/20/2022]
Abstract
Advances in genome editing techniques have generated renewed interest in the ethical implications of genetic modification. In this article, we review the recent literature and discuss in detail ethical issues pertaining to the application of this technology to five areas; human embryo research, organoid research, the prospect of genetically modified babies, mitochondrial replacement therapy and the creation of chimeric organisms. We point to a central issue which cuts through these different areas: the need to clearly frame how using the technology provides benefit that cannot be met by other means. Failure to provide reasonable justification, and address how risks-if any-will be mitigated, is likely to erode public trust and undermine progress in medical research and its clinical translation.
Collapse
Affiliation(s)
- Megan Munsie
- Centre for Stem Cell Systems, School of Biomedical Sciences, University of Melbourne, Parkville, Australia.
| | - Christopher Gyngell
- Murdoch Children's Research Institute and University of Melbourne, Parkville, Australia
| |
Collapse
|
197
|
Sanders EM, Nyarko-Odoom AO, Zhao K, Nguyen M, Liao HH, Keith M, Pyon J, Kozma A, Sanyal M, McHail DG, Dumas TC. Separate functional properties of NMDARs regulate distinct aspects of spatial cognition. ACTA ACUST UNITED AC 2018; 25:264-272. [PMID: 29764972 PMCID: PMC5959228 DOI: 10.1101/lm.047290.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/12/2018] [Indexed: 11/25/2022]
Abstract
N-methyl-d-aspartate receptors (NMDARs) at excitatory synapses are central to activity-dependent synaptic plasticity and learning and memory. NMDARs act as ionotropic and metabotropic receptors by elevating postsynaptic calcium concentrations and by direct intracellular protein signaling. In the forebrain, these properties are controlled largely by the auxiliary GluN2 subunits, GluN2A and GluN2B. While calcium conductance through NMDAR channels and intracellular protein signaling make separate contributions to synaptic plasticity, it is not known if these properties individually influence learning and memory. To address this issue, we created chimeric GluN2 subunits containing the amino-terminal domain and transmembrane domains from GluN2A or GluN2B fused to the carboxy-terminal domain of GluN2B (termed ABc) or GluN2A ATD (termed BAc), respectively, and expressed these mutated GluN2 subunits in transgenic mice. Expression was confirmed at the mRNA level and protein subunit translation and translocation into dendrites were observed in forebrain neurons. In the spatial version of the Morris water maze, BAc mice displayed signs of a learning deficit. In contrast, ABc animals performed similarly to wild-types during training, but showed a more direct approach to the goal location during a long-term memory test. There was no effect of ABc or BAc expression in a nonspatial water escape task. Since background expression is predominantly GluN2A in mature animals, the results suggest that spatial learning is more sensitive to manipulations of the amino-terminal domain and transmembrane domains (calcium conductance) and long-term memory is regulated more by the carboxy-terminal domain (intracellular protein signaling).
Collapse
Affiliation(s)
- Erin M Sanders
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Akua O Nyarko-Odoom
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Kevin Zhao
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Michael Nguyen
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Hong Hong Liao
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Matthew Keith
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Jane Pyon
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Alyssa Kozma
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Mohima Sanyal
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Daniel G McHail
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - Theodore C Dumas
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA.,Psychology Department, George Mason University, Fairfax, Virginia 22030, USA
| |
Collapse
|
198
|
Okuda K, Takao K, Watanabe A, Miyakawa T, Mizuguchi M, Tanaka T. Comprehensive behavioral analysis of the Cdkl5 knockout mice revealed significant enhancement in anxiety- and fear-related behaviors and impairment in both acquisition and long-term retention of spatial reference memory. PLoS One 2018; 13:e0196587. [PMID: 29702698 PMCID: PMC5922552 DOI: 10.1371/journal.pone.0196587] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/16/2018] [Indexed: 12/27/2022] Open
Abstract
Mutations in the Cyclin-dependent kinase-like 5 (CDKL5) gene cause severe neurodevelopmental disorders. Recently we have generated Cdkl5 KO mice by targeting exon 2 on the C57BL/6N background, and demonstrated postsynaptic overaccumulation of GluN2B-containing N-methyl-D-aspartate (NMDA) receptors in the hippocampus. In the current study, we subjected the Cdkl5 KO mice to a battery of comprehensive behavioral tests, aiming to reveal the effects of loss of CDKL5 in a whole perspective of motor, emotional, social, and cognition/memory functions, and to identify its undetermined roles. The neurological screen, rotarod, hot plate, prepulse inhibition, light/dark transition, open field, elevated plus maze, Porsolt forced swim, tail suspension, one-chamber and three-chamber social interaction, 24-h home cage monitoring, contextual and cued fear conditioning, Barnes maze, and T-maze tests were applied on adult Cdkl5 -/Y and +/Y mice. Cdkl5 -/Y mice showed a mild alteration in the gait. Analyses of emotional behaviors revealed significantly enhanced anxiety-like behaviors of Cdkl5 -/Y mice. Depressive-like behaviors and social interaction of Cdkl5 -/Y mice were uniquely altered. The contextual and cued fear conditioning of Cdkl5 -/Y mice were comparable to control mice; however, Cdkl5 -/Y mice showed a significantly increased freezing time and a significantly decreased distance traveled during the pretone period in the altered context. Both acquisition and long-term retention of spatial reference memory were significantly impaired. The morphometric analysis of hippocampal CA1 pyramidal neurons revealed impaired dendritic arborization and immature spine development in Cdkl5 -/Y mice. These results indicate that CDKL5 plays significant roles in regulating emotional behaviors especially on anxiety- and fear-related responses, and in both acquisition and long-term retention of spatial reference memory, which suggests that focus and special attention should be paid to the specific mechanisms of these deficits in the CDKL5 deficiency disorder.
Collapse
Affiliation(s)
- Kosuke Okuda
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Keizo Takao
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Aya Watanabe
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tsuyoshi Miyakawa
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Masashi Mizuguchi
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Teruyuki Tanaka
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
199
|
Gajardo I, Salazar CS, Lopez-Espíndola D, Estay C, Flores-Muñoz C, Elgueta C, Gonzalez-Jamett AM, Martínez AD, Muñoz P, Ardiles ÁO. Lack of Pannexin 1 Alters Synaptic GluN2 Subunit Composition and Spatial Reversal Learning in Mice. Front Mol Neurosci 2018; 11:114. [PMID: 29692709 PMCID: PMC5902501 DOI: 10.3389/fnmol.2018.00114] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/22/2018] [Indexed: 01/24/2023] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are two forms of synaptic plasticity that have been considered as the cellular substrate of memory formation. Although LTP has received considerable more attention, recent evidences indicate that LTD plays also important roles in the acquisition and storage of novel information in the brain. Pannexin 1 (Panx1) is a membrane protein that forms non-selective channels which have been shown to modulate the induction of hippocampal synaptic plasticity. Animals lacking Panx1 or blockade of Pannexin 1 channels precludes the induction of LTD and facilitates LTP. To evaluate if the absence of Panx1 also affects the acquisition of rapidly changing information we trained Panx1 knockout (KO) mice and wild type (WT) littermates in a visual and hidden version of the Morris water maze (MWM). We found that KO mice find the hidden platform similarly although slightly quicker than WT animals, nonetheless, when the hidden platform was located in the opposite quadrant (OQ) to the previous learned location, KO mice spent significantly more time in the previous quadrant than in the new location indicating that the absence of Panx1 affects the reversion of a previously acquired spatial memory. Consistently, we observed changes in the content of synaptic proteins critical to LTD, such as GluN2 subunits of N-methyl-D-aspartate receptors (NMDARs), which changed their contribution to synaptic plasticity in conditions of Panx1 ablation. Our findings give further support to the role of Panx1 channels on the modulation of synaptic plasticity induction, learning and memory processes.
Collapse
Affiliation(s)
- Ivana Gajardo
- Departamento de Patología y Fisiología, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Claudia S Salazar
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Daniela Lopez-Espíndola
- Escuela de Tecnología Médica, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.,Centro de Investigaciones Biomédicas, Escuela de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Carolina Estay
- Departamento de Patología y Fisiología, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.,Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Carolina Flores-Muñoz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Claudio Elgueta
- Institute for Physiology I, University of Freiburg, Freiburg, Germany
| | - Arlek M Gonzalez-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.,Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Agustín D Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Pablo Muñoz
- Departamento de Patología y Fisiología, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.,Centro de Investigaciones Biomédicas, Escuela de Medicina, Universidad de Valparaíso, Valparaíso, Chile.,Center for Applied Neurological Sciences, Faculty of Medicine, Universidad de Valparaíso, Valparaíso, Chile
| | - Álvaro O Ardiles
- Departamento de Patología y Fisiología, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.,Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.,Centro Interdisciplinario de Estudios en Salud, Facultad de Medicina, Universidad de Valparaíso, Viña del Mar, Chile
| |
Collapse
|
200
|
Cascades of Homeostatic Dysregulation Promote Incubation of Cocaine Craving. J Neurosci 2018; 38:4316-4328. [PMID: 29626166 DOI: 10.1523/jneurosci.3291-17.2018] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 01/11/2023] Open
Abstract
In human drug users, cue-induced drug craving progressively intensifies after drug abstinence, promoting drug relapse. This time-dependent progression of drug craving is recapitulated in rodent models, in which rats exhibit progressive intensification of cue-induced drug seeking after withdrawal from drug self-administration, a phenomenon termed incubation of drug craving. Although recent results suggest that functional alterations of the nucleus accumbens (NAc) contribute to incubation of drug craving, it remains poorly understood how NAc function evolves after drug withdrawal to progressively intensify drug seeking. The functional output of NAc relies on how the membrane excitability of its principal medium spiny neurons (MSNs) translates excitatory synaptic inputs into action potential firing. Here, we report a synapse-membrane homeostatic crosstalk (SMHC) in male rats, through which an increase or decrease in the excitatory synaptic strength induces a homeostatic decrease or increase in the intrinsic membrane excitability of NAc MSNs, and vice versa. After short-term withdrawal from cocaine self-administration, despite no actual change in the AMPA receptor-mediated excitatory synaptic strength, GluN2B NMDA receptors, the SMHC sensors of synaptic strength, are upregulated. This may create false SMHC signals, leading to a decrease in the membrane excitability of NAc MSNs. The decreased membrane excitability subsequently induces another round of SMHC, leading to synaptic accumulation of calcium-permeable AMPA receptors and upregulation of excitatory synaptic strength after long-term withdrawal from cocaine. Disrupting SMHC-based dysregulation cascades after cocaine exposure prevents incubation of cocaine craving. Thus, cocaine triggers cascades of SMHC-based dysregulation in NAc MSNs, promoting incubated cocaine seeking after drug withdrawal.SIGNIFICANCE STATEMENT Here, we report a bidirectional homeostatic plasticity between the excitatory synaptic input and membrane excitability of nucleus accumbens (NAc) medium spiny neurons (MSNs), through which an increase or decrease in the excitatory synaptic strength induces a homeostatic decrease or increase in the membrane excitability, and vice versa. Cocaine self-administration creates a false homeostatic signal that engages this synapse-membrane homeostatic crosstalk mechanism, and produces cascades of alterations in excitatory synapses and membrane properties of NAc MSNs after withdrawal from cocaine. Experimentally preventing this homeostatic dysregulation cascade prevents the progressive intensification of cocaine seeking after drug withdrawal. These results provide a novel mechanism through which drug-induced homeostatic dysregulation cascades progressively alter the functional output of NAc MSNs and promote drug relapse.
Collapse
|