151
|
Basar R, Daher M, Rezvani K. Next-generation cell therapies: the emerging role of CAR-NK cells. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2020; 2020:570-578. [PMID: 33275752 PMCID: PMC7727537 DOI: 10.1182/hematology.2020002547] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
T cells engineered with chimeric antigen receptors (CARs) have revolutionized the field of cell therapy and changed the paradigm of treatment for many patients with relapsed or refractory B-cell malignancies. Despite this progress, there are limitations to CAR-T cell therapy in both the autologous and allogeneic settings, including practical, logistical, and toxicity issues. Given these concerns, there is a rapidly growing interest in natural killer cells as alternative vehicles for CAR engineering, given their unique biological features and their established safety profile in the allogeneic setting. Other immune effector cells, such as invariant natural killer T cells, γδ T cells, and macrophages, are attracting interest as well and eventually may be added to the repertoire of engineered cell therapies against cancer. The pace of these developments will undoubtedly benefit from multiple innovative technologies, such as the CRISPR-Cas gene editing system, which offers great potential to enhance the natural ability of immune effector cells to eliminate refractory cancers.
Collapse
Affiliation(s)
- Rafet Basar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
152
|
Aksoy YA, Yang B, Chen W, Hung T, Kuchel RP, Zammit NW, Grey ST, Goldys EM, Deng W. Spatial and Temporal Control of CRISPR-Cas9-Mediated Gene Editing Delivered via a Light-Triggered Liposome System. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52433-52444. [PMID: 33174413 DOI: 10.1021/acsami.0c16380] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The CRISPR-Cas9 and related systems offer a unique genome-editing tool allowing facile and efficient introduction of heritable and locus-specific sequence modifications in the genome. Despite its molecular precision, temporal and spatial control of gene editing with the CRISPR-Cas9 system is very limited. We developed a light-sensitive liposome delivery system that offers a high degree of spatial and temporal control of gene editing with the CRISPR-Cas9 system. We demonstrated its efficient protein release by respectively assessing the targeted knockout of the eGFP gene in human HEK293/GFP cells and the TNFAIP3 gene in TNFα-induced HEK293 cells. We further validated our results at a single-cell resolution using an in vivo eGFP reporter system in zebrafish (77% knockout). These findings indicate that light-triggered liposomes may have new options for precise control of CRISPR-Cas9 release and editing.
Collapse
Affiliation(s)
- Yagiz Alp Aksoy
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, NSW 2109, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Biyao Yang
- ARC Centre of Excellence for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Wenjie Chen
- Center for Pharmaceutical Engineering and Sciences, Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Tzongtyng Hung
- The Biological Resource Imaging Laboratory, University of New South Wales, Sydney, NSW 2052, Australia
| | - Rhiannon P Kuchel
- Electron Microscope Unit, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nathan W Zammit
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Shane T Grey
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ewa M Goldys
- ARC Centre of Excellence for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Wei Deng
- ARC Centre of Excellence for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
153
|
Hur J, Park I, Lim KM, Doh J, Cho SG, Chung AJ. Microfluidic Cell Stretching for Highly Effective Gene Delivery into Hard-to-Transfect Primary Cells. ACS NANO 2020; 14:15094-15106. [PMID: 33034446 DOI: 10.1021/acsnano.0c05169] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cell therapy and cellular engineering begin with internalizing synthetic biomolecules and functional nanomaterials into primary cells. Conventionally, electroporation, lipofection, or viral transduction has been used; however, these are limited by their cytotoxicity, low scalability, cost, and/or preparation complexity, especially in primary cells. Thus, a universal intracellular delivery method that outperforms the existing methods must be established. Here, we present a versatile intracellular delivery platform that leverages intrinsic inertial flow developed in a T-junction microchannel with a cavity. The elongational recirculating flows exerted in the channel substantially stretch the cells, creating discontinuities on cell membranes, thereby enabling highly effective internalization of nanomaterials, such as plasmid DNA (7.9 kbp), mRNA, siRNA, quantum dots, and large nanoparticles (300 nm), into different cell types, including hard-to-transfect primary stem and immune cells. We identified that the internalization mechanism of external cargos during the cell elongation-restoration process is achieved by both passive diffusion and convection-based rapid solution exchange across the cell membrane. Using fluidic cell mechanoporation, we demonstrated a transfection yield superior to that of other state-of-the-art microfluidic platforms as well as current benchtop techniques, including lipofectamine and electroporation. In summary, the intracellular delivery platform developed in the present study enables a high delivery efficiency (up to 98%), easy operation (single-step), low material cost (<$1), high scalability (1 × 106 cells/min), minimal cell perturbation (up to 90%), and cell type/cargo insensitive delivery, providing a practical and robust approach anticipated to critically impact cell-based research.
Collapse
Affiliation(s)
- Jeongsoo Hur
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Inae Park
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Kyung Min Lim
- Department of Stem Cell and Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Republic of Korea
| | - Junsang Doh
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Republic of Korea
| | - Aram J Chung
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
154
|
Ausländer S, Ausländer D, Lang PF, Kemi M, Fussenegger M. Design of Multipartite Transcription Factors for Multiplexed Logic Genome Integration Control in Mammalian Cells. ACS Synth Biol 2020; 9:2964-2970. [PMID: 33213155 PMCID: PMC7684658 DOI: 10.1021/acssynbio.0c00413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Synthetic
biology relies on rapid and efficient methods to stably
integrate DNA payloads encoding for synthetic biological systems into
the genome of living cells. The size of designed biological systems
increases with their complexity, and novel methods are needed that
enable efficient and simultaneous integration of multiple payloads
into single cells. By assembling natural and synthetic protein–protein
dimerization domains, we have engineered a set of multipartite transcription
factors for driving heterologous target gene expression. With the
distribution of single parts of multipartite transcription factors
on piggyback transposon-based donor plasmids, we have created a logic
genome integration control (LOGIC) system that allows for efficient
one-step selection of stable mammalian cell lines with up to three
plasmids. LOGIC significantly enhances the efficiency of multiplexed
payload integration in mammalian cells compared to traditional cotransfection
and may advance cell line engineering in synthetic biology and biotechnology.
Collapse
Affiliation(s)
- Simon Ausländer
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - David Ausländer
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Paul F. Lang
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Maarit Kemi
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
- Faculty of Science, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| |
Collapse
|
155
|
Gnügge R, Symington LS. Efficient DNA double-strand break formation at single or multiple defined sites in the Saccharomyces cerevisiae genome. Nucleic Acids Res 2020; 48:e115. [PMID: 33053188 PMCID: PMC7672422 DOI: 10.1093/nar/gkaa833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/18/2020] [Accepted: 09/28/2020] [Indexed: 01/08/2023] Open
Abstract
DNA double-strand breaks (DSBs) are common genome lesions that threaten genome stability and cell survival. Cells use sophisticated repair machineries to detect and heal DSBs. To study DSB repair pathways and associated factors, inducible site-specific endonucleases have proven to be fundamental tools. In Saccharomyces cerevisiae, galactose-inducible rare-cutting endonucleases are commonly used to create a single DSB at a unique cleavage site. Galactose induction requires cell cultivation in suboptimal growth media, which is tedious especially when working with slow growing DSB repair mutants. Moreover, endonucleases that simultaneously create DSBs in multiple defined and unique loci of the yeast genome are not available, hindering studies of DSB repair in different genomic regions and chromatin contexts. Here, we present new tools to overcome these limitations. We employ a heterologous media-independent induction system to express the yeast HO endonuclease or bacterial restriction enzymes for single or multiple DSB formation, respectively. The systems facilitate tightly controlled and efficient DSB formation at defined genomic sites and will be valuable tools to study DSB repair at a local and genome-wide scale.
Collapse
Affiliation(s)
- Robert Gnügge
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA.,Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
156
|
Smirnikhina SA, Kondrateva EV, Adilgereeva EP, Anuchina AA, Zaynitdinova MI, Slesarenko YS, Ershova AS, Ustinov KD, Yasinovsky MI, Amelina EL, Voronina ES, Yakushina VD, Tabakov VY, Lavrov AV. P.F508del editing in cells from cystic fibrosis patients. PLoS One 2020; 15:e0242094. [PMID: 33175893 PMCID: PMC7657551 DOI: 10.1371/journal.pone.0242094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022] Open
Abstract
Development of genome editing methods created new opportunities for the development of etiology-based therapies of hereditary diseases. Here, we demonstrate that CRISPR/Cas9 can correct p.F508del mutation in the CFTR gene in the CFTE29o- cells and induced pluripotent stem cells (iPSCs) derived from patients with cystic fibrosis (CF). We used several combinations of Cas9, sgRNA and ssODN and measured editing efficiency in the endogenous CFTR gene and in the co-transfected plasmid containing the CFTR locus with the p.F508del mutation. The non-homologous end joining (NHEJ) frequency in the CFTR gene in the CFTE29o- cells varied from 1.25% to 2.54% of alleles. The best homology-directed repair (HDR) frequency in the endogenous CFTR locus was 1.42% of alleles. In iPSCs, the NHEJ frequency in the CFTR gene varied from 5.5% to 12.13% of alleles. The best HDR efficacy was 2.38% of alleles. Our results show that p.F508del mutation editing using CRISPR/Cas9 in CF patient-derived iPSCs is a relatively rare event and subsequent cell selection and cultivation should be carried out.
Collapse
Affiliation(s)
- Svetlana A. Smirnikhina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
- * E-mail:
| | - Ekaterina V. Kondrateva
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Elmira P. Adilgereeva
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Arina A. Anuchina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| | | | - Yana S. Slesarenko
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Angelina S. Ershova
- Nazarbayev University, School of Science and Technology, Nur-Sultan, Republic of Kazakhstan
| | - Kirill D. Ustinov
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Matvei I. Yasinovsky
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Elena L. Amelina
- Laboratory of Cystic Fibrosis, Research Institute of Pulmonology, Moscow, Russian Federation
| | - Ekaterina S. Voronina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Valentina D. Yakushina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Vyacheslav Yu. Tabakov
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Alexander V. Lavrov
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| |
Collapse
|
157
|
Qi T, Wu F, Xie Y, Gao S, Li M, Pu J, Li D, Lan F, Wang Y. Base Editing Mediated Generation of Point Mutations Into Human Pluripotent Stem Cells for Modeling Disease. Front Cell Dev Biol 2020. [PMID: 33102492 DOI: 10.3389/fcell.2020.590581.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are a powerful platform for disease modeling and drug discovery. However, the introduction of known pathogenic mutations into hPSCs is a time-consuming and labor-intensive process. Base editing is a newly developed technology that enables facile introduction of point mutations into specific loci within the genome of living cells. Here, we design an all-in-one episomal vector that expresses a single guide RNA (sgRNA) with an adenine base editor (ABE) or a cytosine base editor (CBE). Both ABE and CBE can efficiently introduce mutations into cells, A-to-G and C-to-T, respectively. We introduce disease-specific mutations of long QT syndrome into hPSCs to model LQT1, LQT2, and LQT3. Electrophysiological analysis of hPSC-derived cardiomyocytes (hPSC-CMs) using multi-electrode arrays (MEAs) reveals that edited hPSC-CMs display significant increases in duration of the action potential. Finally, we introduce the novel Brugada syndrome-associated mutation into hPSCs, demonstrating that this mutation can cause abnormal electrophysiology. Our study demonstrates that episomal encoded base editors (epi-BEs) can efficiently generate mutation-specific disease hPSC models.
Collapse
Affiliation(s)
- Tao Qi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fujian Wu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuquan Xie
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Siqi Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Miaomiao Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Feng Lan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongming Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China
| |
Collapse
|
158
|
Alnasser SM. Review on mechanistic strategy of gene therapy in the treatment of disease. Gene 2020; 769:145246. [PMID: 33098937 DOI: 10.1016/j.gene.2020.145246] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/08/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022]
Abstract
Gene therapy has become a revolution and its breakthrough is a corner stone in modern science. This treatment has rising advantages with limited negative aspects. Gene therapy is a therapeutic method in which, transfer of DNA to an individual to manipulate a defective gene is performed and to mitigate a disease which is not responding to pharmacological therapy. The gene therapy strategies are divided into two main categories such as direct in-vivo gene delivery of manipulated viral vector vehicle into the host and ex-vivo genetically engineered stem cells. In this review, we tried to cover all aspects of gene therapy studies; starting with the concept of gene, its treatment, gene delivery system and types, clinical trial either by vitro or In-Vivo -Clinical Trials and Clinical Intoxication of Gene Therapy. Therefore, the promise of successful treatment with gene therapy could positively affect millions of lives. The main aim of this review is to address the principles of gene therapy, various methods involved in the gene therapy, clinical applications and its merits and demerits.
Collapse
Affiliation(s)
- Sulaiman M Alnasser
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| |
Collapse
|
159
|
Abstract
The discovery of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) system has revolutionized gene editing research. Through the repurposing of programmable RNA-guided CRISPR-associated (Cas) nucleases, CRISPR-based genome editing systems allow for the precise modification of specific sites in the human genome and inspire novel approaches for the study and treatment of inherited and acquired human diseases. Here, we review how CRISPR technologies have stimulated key advances in dermatologic research. We discuss the role of CRISPR in genome editing for cutaneous disease and highlight studies on the use of CRISPR-Cas technologies for genodermatoses, cutaneous viruses and bacteria, and melanoma. Additionally, we examine key limitations of current CRISPR technologies, including the challenges these limitations pose for the widespread therapeutic application of CRISPR-based therapeutics.
Collapse
Affiliation(s)
- Catherine Baker
- Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Matthew S Hayden
- Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA.,Section of Dermatology, Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, 03766, USA
| |
Collapse
|
160
|
Kerry RG, Das G, Golla U, Del Pilar Rodriguez-Torres M, Shin H, Patra JK. Engineered probiotic and prebiotic nutraceutical supplementations in combating non-communicable disorders: A review. Curr Pharm Biotechnol 2020; 23:72-97. [PMID: 33050862 DOI: 10.2174/1389201021666201013153142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 11/22/2022]
Abstract
Nutritional supplementations are a form of nutrition sources that may help in improving health complexities throughout the life span of a person. Under the umbrella of food supplementations, nutraceuticals are products extracted from edible sources that provide medical benefits along with primary nutritional value, these can be considered as functional foods. These nutraceutical supplementations are also evidenced in altering the commensal gut microbiota and help to prevent or fight against chronic non-communicable degenerative diseases in adults including neurological disorders (Autism Spectrum Disorder [ASD], Parkinson's disease [PD] and Multiple sclerosis [MS]) and metabolic disorder (Type-II Diabetes, Obesity and non-alcoholic fatty liver disease). Even the complexities of preterm babies like extra-uterine growth restriction, necrotizing enterocolitis, infant eczema and allergy (during pregnancy) and bronchopulmonary dysplasia, etc. could also be lessened up by providing proper nutrition. Molecular perceptive of inflammatory and apoptotic modulators regulating the pathogenesis of these health risks, their control and management by probiotics and prebiotics could further emphasize the scientific overview of their utility. The pivotal role of nutraceutical supplementations in regulating or modulating molecular pathways coupled with the above mentioned non-communicable diseases are briefly described. Lastly, an overall introduction to the sophisticated genome-editing techniques and advanced delivery systems in therapeutic activities applicable under these health risks are also emphasized in this paper.
Collapse
Affiliation(s)
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi 10326. Korea
| | - Upendarrao Golla
- Division of Hematology and Oncology, Penn State College of Medicine, Hershey, PA 17033. United States
| | - Maria Del Pilar Rodriguez-Torres
- Laboratorio de Ondas de Choque (LOCH), Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México, Campus UNAM Juriquilla Boulevard Juriquilla no. 3001, Santiago de Querétaro, Qro., C.P. 76230. Mexico
| | - HanSeung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyangsi 10326. Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi 10326. Korea
| |
Collapse
|
161
|
Mehravar M, Roshandel E, Salimi M, Chegeni R, Gholizadeh M, Mohammadi MH, Hajifathali A. Utilization of CRISPR/Cas9 gene editing in cellular therapies for lymphoid malignancies. Immunol Lett 2020; 226:71-82. [DOI: 10.1016/j.imlet.2020.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
|
162
|
Azangou-Khyavy M, Ghasemi M, Khanali J, Boroomand-Saboor M, Jamalkhah M, Soleimani M, Kiani J. CRISPR/Cas: From Tumor Gene Editing to T Cell-Based Immunotherapy of Cancer. Front Immunol 2020; 11:2062. [PMID: 33117331 PMCID: PMC7553049 DOI: 10.3389/fimmu.2020.02062] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/29/2020] [Indexed: 12/26/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats system has demonstrated considerable advantages over other nuclease-based genome editing tools due to its high accuracy, efficiency, and strong specificity. Given that cancer is caused by an excessive accumulation of mutations that lead to the activation of oncogenes and inactivation of tumor suppressor genes, the CRISPR/Cas9 system is a therapy of choice for tumor genome editing and treatment. In defining its superior use, we have reviewed the novel applications of the CRISPR genome editing tool in discovering, sorting, and prioritizing targets for subsequent interventions, and passing different hurdles of cancer treatment such as epigenetic alterations and drug resistance. Moreover, we have reviewed the breakthroughs precipitated by the CRISPR system in the field of cancer immunotherapy, such as identification of immune system-tumor interplay, production of universal Chimeric Antigen Receptor T cells, inhibition of immune checkpoint inhibitors, and Oncolytic Virotherapy. The existing challenges and limitations, as well as the prospects of CRISPR based systems, are also discussed.
Collapse
Affiliation(s)
| | - Mobina Ghasemi
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Khanali
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Monire Jamalkhah
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Masoud Soleimani
- Hematology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Jafar Kiani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
163
|
Qi T, Wu F, Xie Y, Gao S, Li M, Pu J, Li D, Lan F, Wang Y. Base Editing Mediated Generation of Point Mutations Into Human Pluripotent Stem Cells for Modeling Disease. Front Cell Dev Biol 2020; 8:590581. [PMID: 33102492 PMCID: PMC7546412 DOI: 10.3389/fcell.2020.590581] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are a powerful platform for disease modeling and drug discovery. However, the introduction of known pathogenic mutations into hPSCs is a time-consuming and labor-intensive process. Base editing is a newly developed technology that enables facile introduction of point mutations into specific loci within the genome of living cells. Here, we design an all-in-one episomal vector that expresses a single guide RNA (sgRNA) with an adenine base editor (ABE) or a cytosine base editor (CBE). Both ABE and CBE can efficiently introduce mutations into cells, A-to-G and C-to-T, respectively. We introduce disease-specific mutations of long QT syndrome into hPSCs to model LQT1, LQT2, and LQT3. Electrophysiological analysis of hPSC-derived cardiomyocytes (hPSC-CMs) using multi-electrode arrays (MEAs) reveals that edited hPSC-CMs display significant increases in duration of the action potential. Finally, we introduce the novel Brugada syndrome-associated mutation into hPSCs, demonstrating that this mutation can cause abnormal electrophysiology. Our study demonstrates that episomal encoded base editors (epi-BEs) can efficiently generate mutation-specific disease hPSC models.
Collapse
Affiliation(s)
- Tao Qi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fujian Wu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuquan Xie
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Siqi Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Miaomiao Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Feng Lan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongming Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China
| |
Collapse
|
164
|
Naing C, Leong CO, Aung HH, Mai CW, Chan EWL, Kew ST. Gene therapy for people with hepatocellular carcinoma. Hippokratia 2020. [DOI: 10.1002/14651858.cd013731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Cho Naing
- International Medical University; Kuala Lumpur Malaysia
- Division of Tropical Health and Medicine; James Cook University; Townsville Australia
| | | | | | - Chun-Wai Mai
- International Medical University; Kuala Lumpur Malaysia
| | | | | |
Collapse
|
165
|
Abstract
β-thalassemia is caused by mutations in the β-globin gene which diminishes or abolishes β-globin chain production. This reduction causes an imbalance of the α/β-globin chain ratio and contributes to the pathogenesis of the disease. Several approaches to reduce the imbalance of the α/β ratio using several nucleic acid-based technologies such as RNAi, lentiviral mediated gene therapy, splice switching oligonucleotides (SSOs) and gene editing technology have been investigated extensively. These approaches aim to reduce excess free α-globin, either by reducing the α-globin chain, restoring β-globin expression and reactivating γ-globin expression, leading a reduced disease severity, treatment necessity, treatment interval, and disease complications, thus, increasing the life quality of the patients and alleviating economic burden. Therefore, nucleic acid-based therapy might become a potential targeted therapy for β-thalassemia.
Collapse
Affiliation(s)
- Annette d'Arqom
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Pharmacology and Therapy, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
166
|
Yim YY, Teague CD, Nestler EJ. In vivo locus-specific editing of the neuroepigenome. Nat Rev Neurosci 2020; 21:471-484. [PMID: 32704051 PMCID: PMC7439525 DOI: 10.1038/s41583-020-0334-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2020] [Indexed: 02/08/2023]
Abstract
Studies over the past several decades have identified numerous epigenetic mechanisms associated with pathological states in psychiatric and neurological disease. Until recently, studies investigating chromatin-regulatory proteins, using overexpression or knockdown approaches, did not establish causal roles for epigenetic modifications at specific genes because these techniques typically affect hundreds or thousands of genomic loci. In this Review, we describe recent efforts in using locus-specific neuroepigenome editing in vivo to, for the first time, define causal relationships between a single chromatin modification at a specific gene in a defined cell population and downstream measures at the molecular, cellular, circuit and behavioural levels. We briefly introduce three epigenome-editing platforms: zinc-finger proteins, transcriptional activator-like effectors and clustered regularly interspaced short palindromic repeats (CRISPR). We then explore the development of in vivo neuroepigenome-editing tools and their applications to resolve epigenetic contributions to the pathophysiology of brain diseases. We also discuss technical considerations for in vivo neuroepigenome-editing experiments and ongoing innovations in the field, including new tools to investigate chromatin marks, manipulate chromatin topology and induce epigenetic modifications at multiple genes in the same cell. Lastly, we explore the potential clinical applications of in vivo neuroepigenome editing for treating brain pathology.
Collapse
Affiliation(s)
- Yun Young Yim
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Collin D Teague
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
167
|
Precise and error-prone CRISPR-directed gene editing activity in human CD34+ cells varies widely among patient samples. Gene Ther 2020; 28:105-113. [PMID: 32873924 PMCID: PMC7902267 DOI: 10.1038/s41434-020-00192-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 08/05/2020] [Accepted: 08/19/2020] [Indexed: 12/29/2022]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and their associated CRISPR-associated nucleases (Cas) are among the most promising technologies for the treatment of hemoglobinopathies including Sickle Cell Disease (SCD). We are only beginning to identify the molecular variables that influence the specificity and the efficiency of CRISPR- directed gene editing, including the position of the cleavage site and the inherent variability among patient samples selected for CRISPR-directed gene editing. Here, we target the beta globin gene in human CD34+ cells to assess the impact of these two variables and find that both contribute to the global diversity of genetic outcomes. Our study demonstrates a unique genetic profile of indels that is generated based on where along the beta globin gene attempts are made to correct the SCD single base mutation. Interestingly, even within the same patient sample, the location of where along the beta globin gene the DNA is cut, HDR activity varies widely. Our data establish a framework upon which realistic protocols inform strategies for gene editing for SCD overcoming the practical hurdles that often impede clinical success.
Collapse
|
168
|
Khalaf K, Janowicz K, Dyszkiewicz-Konwińska M, Hutchings G, Dompe C, Moncrieff L, Jankowski M, Machnik M, Oleksiewicz U, Kocherova I, Petitte J, Mozdziak P, Shibli JA, Iżycki D, Józkowiak M, Piotrowska-Kempisty H, Skowroński MT, Antosik P, Kempisty B. CRISPR/Cas9 in Cancer Immunotherapy: Animal Models and Human Clinical Trials. Genes (Basel) 2020; 11:E921. [PMID: 32796761 PMCID: PMC7463827 DOI: 10.3390/genes11080921] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/29/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Even though chemotherapy and immunotherapy emerged to limit continual and unregulated proliferation of cancer cells, currently available therapeutic agents are associated with high toxicity levels and low success rates. Additionally, ongoing multi-targeted therapies are limited only for few carcinogenesis pathways, due to continually emerging and evolving mutations of proto-oncogenes and tumor-suppressive genes. CRISPR/Cas9, as a specific gene-editing tool, is used to correct causative mutations with minimal toxicity, but is also employed as an adjuvant to immunotherapy to achieve a more robust immunological response. Some of the most critical limitations of the CRISPR/Cas9 technology include off-target mutations, resulting in nonspecific restrictions of DNA upstream of the Protospacer Adjacent Motifs (PAM), ethical agreements, and the lack of a scientific consensus aiming at risk evaluation. Currently, CRISPR/Cas9 is tested on animal models to enhance genome editing specificity and induce a stronger anti-tumor response. Moreover, ongoing clinical trials use the CRISPR/Cas9 system in immune cells to modify genomes in a target-specific manner. Recently, error-free in vitro systems have been engineered to overcome limitations of this gene-editing system. The aim of the article is to present the knowledge concerning the use of CRISPR Cas9 technique in targeting treatment-resistant cancers. Additionally, the use of CRISPR/Cas9 is aided as an emerging supplementation of immunotherapy, currently used in experimental oncology. Demonstrating further, applications and advances of the CRISPR/Cas9 technique are presented in animal models and human clinical trials. Concluding, an overview of the limitations of the gene-editing tool is proffered.
Collapse
Affiliation(s)
- Khalil Khalaf
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (K.K.); (K.J.); (M.D.-K.); (G.H.); (M.J.); (I.K.)
| | - Krzysztof Janowicz
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (K.K.); (K.J.); (M.D.-K.); (G.H.); (M.J.); (I.K.)
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.D.); (L.M.)
| | - Marta Dyszkiewicz-Konwińska
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (K.K.); (K.J.); (M.D.-K.); (G.H.); (M.J.); (I.K.)
- Department of Biomaterials and Experimental Dentistry, Poznan University of Medical Sciences, 60-812 Poznań, Poland
| | - Greg Hutchings
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (K.K.); (K.J.); (M.D.-K.); (G.H.); (M.J.); (I.K.)
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.D.); (L.M.)
| | - Claudia Dompe
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.D.); (L.M.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland
| | - Lisa Moncrieff
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.D.); (L.M.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland
| | - Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (K.K.); (K.J.); (M.D.-K.); (G.H.); (M.J.); (I.K.)
| | - Marta Machnik
- Department of Cancer Immunology, Poznan University of Medical Sciences, 60-408 Poznan, Poland; (M.M.); (U.O.); (D.I.)
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Urszula Oleksiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, 60-408 Poznan, Poland; (M.M.); (U.O.); (D.I.)
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Ievgeniia Kocherova
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (K.K.); (K.J.); (M.D.-K.); (G.H.); (M.J.); (I.K.)
| | - Jim Petitte
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA;
| | - Jamil A. Shibli
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, Guarulhos 07023-070, Brazil;
| | - Dariusz Iżycki
- Department of Cancer Immunology, Poznan University of Medical Sciences, 60-408 Poznan, Poland; (M.M.); (U.O.); (D.I.)
| | - Małgorzata Józkowiak
- Department of Toxicology, Poznan University of Medical Sciences, 61-631 Poznań, Poland; (M.J.); (H.P.-K.)
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 61-631 Poznań, Poland; (M.J.); (H.P.-K.)
| | - Mariusz T. Skowroński
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
| | - Paweł Antosik
- Department of Veterinary Surgery, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (K.K.); (K.J.); (M.D.-K.); (G.H.); (M.J.); (I.K.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland
- Department of Veterinary Surgery, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 601 77 Brno, Czech Republic
| |
Collapse
|
169
|
Filho DM, de Carvalho Ribeiro P, Oliveira LF, Dos Santos ALRT, Parreira RC, Pinto MCX, Resende RR. Enhancing the Therapeutic Potential of Mesenchymal Stem Cells with the CRISPR-Cas System. Stem Cell Rev Rep 2020; 15:463-473. [PMID: 31147819 DOI: 10.1007/s12015-019-09897-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mesenchymal stem cells (MSCs), also known as multipotent mesenchymal stromal stem cells, are found in the perivascular space of several tissues. These cells have been subject of intense research in the last decade due to their low teratogenicity, as well as their ability to differentiate into mature cells and to secrete immunomodulatory and trophic factors. However, they usually promote only a modest benefit when transplanted in experimental disease models, one of the limitations for their clinical application. The CRISPR-Cas system, in turn, is highlighted as a simple and effective tool for genetic engineering. This system was tested in clinical trials over a relatively short period of time after establishing its applicability to the edition of the mammalian cell genome. Similar to the research evolution in MSCs, the CRISPR-Cas system demonstrated inconsistencies that limited its clinical application. In this review, we outline the evolution of MSC research and its applicability, and the progress of the CRISPR-Cas system from its discovery to the most recent clinical trials. We also propose perspectives on how the CRISPR-Cas system may improve the therapeutic potential of MSCs, making it more beneficial and long lasting.
Collapse
Affiliation(s)
- Daniel Mendes Filho
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Patrícia de Carvalho Ribeiro
- Laboratory of Immunology and Experimental Transplantation, São José do Rio Preto Medical School, São José do Rio Preto, São Paulo, Brazil.,Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Lucas Felipe Oliveira
- Department of Physiology, Biological and Natural Sciences Institute, Triangulo Mineiro Federal University, Uberaba, Minas Gerais, Brazil.,National Institute of Science and Technology for Regenerative Medicine (INCT-REGENERA-CNPq), Rio de Janeiro, RJ, Brazil.,Minas Gerais Network for Tissue Engineering and Cell Therapy (REMETTECFAPEMIG), Belo Horizonte, MG, Brazil
| | | | - Ricardo Cambraia Parreira
- Department of Pharmacology, Biological Sciences Institute, Goias Federal University, Goiania, Goias, Brazil.
| | - Mauro Cunha Xavier Pinto
- Department of Pharmacology, Biological Sciences Institute, Goias Federal University, Goiania, Goias, Brazil
| | - Rodrigo Ribeiro Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
170
|
Tohama T, Sakari M, Tsukahara T. Development of a Single Construct System for Site-Directed RNA Editing Using MS2-ADAR. Int J Mol Sci 2020; 21:E4943. [PMID: 32668759 PMCID: PMC7404196 DOI: 10.3390/ijms21144943] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 12/26/2022] Open
Abstract
Site-directed RNA editing (SDRE) technologies have great potential for treating genetic diseases caused by point mutations. Our group and other researchers have developed SDRE methods utilizing adenosine deaminases acting on RNA (ADARs) and guide RNAs recruiting ADARs to target RNAs bearing point mutations. In general, efficient SDRE relies on introducing numerous guide RNAs relative to target genes. However, achieving a large ratio is not possible for gene therapy applications. In order to achieve a realistic ratio, we herein developed a system that can introduce an equal number of genes and guide RNAs into cultured cells using a fusion protein comprising an ADAR fragment and a plasmid vector containing one copy of each gene on a single construct. We transfected the single construct into HEK293T cells and achieved relatively high efficiency (up to 42%). The results demonstrate that efficient SDRE is possible when the copy number is similar for all three factors (target gene, guide RNA, and ADAR enzyme). This method is expected to be capable of highly efficient gene repair in vivo, making it applicable for gene therapy.
Collapse
Affiliation(s)
| | | | - Toshifumi Tsukahara
- Area of Bioscience and Biotechnology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan; (T.T.); (M.S.)
| |
Collapse
|
171
|
Abstract
The pace of advances in the world of science have created new opportunities and insights that give us new and more understanding of our nature and environment. Among the different fields of science, new medical sciences have drawn a great deal of attention among medical science researchers and the society. The hope for finding treatments for incurable diseases and further improvement of man's health is growing thanks to new medical technologies. Among the novel medical fields that have been extensively covered by medical and academic societies are cell therapy and gene therapy that are categorized under regenerative medicine. The present paper is an attempt to introduce the prospect of a curative cell-based therapy and new cellular and gene therapy drugs that have been recently approved by FDA (food and drug administration). Cellular and gene therapy are two very close fields of regenerative medicine and sciences which their targets and applications can be discussed together. What adds to the importance of this new field of science is the possibility to translate the hope for treatment of incurable diseases into actual treatments. What follows delves deeper into this new field of science and the drugs.
Collapse
Affiliation(s)
- Ali Golchin
- Student Research Committee, Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Tahereh Zarnoosheh Farahany
- Department of Biology, School of Advanced Technologies in Medicine, Islamic Azad University Medical Branch of Tehran, Tehran, Iran
| |
Collapse
|
172
|
Zhang W, Chen Y, Yang J, Zhang J, Yu J, Wang M, Zhao X, Wei K, Wan X, Xu X, Jiang Y, Chen J, Gao S, Mao Z. A high-throughput small molecule screen identifies farrerol as a potentiator of CRISPR/Cas9-mediated genome editing. eLife 2020; 9:56008. [PMID: 32644042 PMCID: PMC7380943 DOI: 10.7554/elife.56008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
Directly modulating the choice between homologous recombination (HR) and non-homologous end joining (NHEJ) - two independent pathways for repairing DNA double-strand breaks (DSBs) - has the potential to improve the efficiency of gene targeting by CRISPR/Cas9. Here, we have developed a rapid and easy-to-score screening approach for identifying small molecules that affect the choice between the two DSB repair pathways. Using this tool, we identified a small molecule, farrerol, that promotes HR but does not affect NHEJ. Further mechanistic studies indicate that farrerol functions through stimulating the recruitment of RAD51 to DSB sites. Importantly, we demonstrated that farrerol effectively promotes precise targeted integration in human cells, mouse cells and mouse embryos at multiple genomic loci. In addition, treating cells with farrerol did not have any obvious negative effect on genomic stability. Moreover, farrerol significantly improved the knock-in efficiency in blastocysts, and the subsequently generated knock-in mice retained the capacity for germline transmission.
Collapse
Affiliation(s)
- Weina Zhang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yu Chen
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiaqing Yang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jing Zhang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiayu Yu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Mengting Wang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaodong Zhao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ke Wei
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaoping Wan
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ying Jiang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiayu Chen
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhiyong Mao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Tsingtao Advanced Research Institute, Tongji University, Qingdao, China
| |
Collapse
|
173
|
A new approach to identifying hypertension-associated genes in the mesenteric artery of spontaneously hypertensive rats and stroke-prone spontaneously hypertensive rats. J Hypertens 2020; 37:1644-1656. [PMID: 30882592 PMCID: PMC6615961 DOI: 10.1097/hjh.0000000000002083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Supplemental Digital Content is available in the text Objective: Hypertension is one of the most prevalent diseases in humans who live a modern lifestyle. Alongside more effective care, clarification of the genetic background of hypertension is urgently required. Gene expression in mesenteric resistance arteries of spontaneously hypertensive rats (SHR), stroke-prone SHR (SHRSP) and two types of renal hypertensive Wistar Kyoto rats (WKY), two kidneys and one clip renal hypertensive rat (2K1C) and one kidney and one clip renal hypertensive rat (1K1C), was compared using DNA microarrays. Methods: We used a simultaneous equation and comparative selection method to identify genes associated with hypertension using the Reactome analysis tool and GenBank database. Results: The expression of 298 genes was altered between SHR and WKY (44 upregulated and 254 downregulated), while the expression of 290 genes was altered between SHRSP and WKY (83 upregulated and 207 downregulated). For SHRSP versus SHR, the expression of 60 genes was altered (36 upregulated and 24 downregulated). Several genes expressed in SHR and SHRSP were also expressed in the renovascular hypertensive 2K1C and 1K1C rats, indicative of the existence of hyper-renin and/or hypervolemic pathophysiological changes in SHR and SHRSP. Conclusion: The overexpression of Kcnq1, Crlf1, Alb and Xirp1 and the inhibition of Galr2, Kcnh1, Ache, Chrm2 and Slc5a7 expression may indicate that a relationship exists between these genes and the cause and/or worsening of hypertension in SHR and SHRSP.
Collapse
|
174
|
Araldi RP, Khalil C, Grignet PH, Teixeira MR, de Melo TC, Módolo DG, Fernandes LGV, Ruiz J, de Souza EB. Medical applications of clustered regularly interspaced short palindromic repeats (CRISPR/Cas) tool: A comprehensive overview. Gene 2020; 745:144636. [PMID: 32244056 DOI: 10.1016/j.gene.2020.144636] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/01/2020] [Accepted: 03/30/2020] [Indexed: 12/22/2022]
Abstract
Since the discovery of the double helix and the introduction of genetic engineering, the possibility to develop new strategies to manipulate the genome has fascinated scientists around the world. Currently scientists have the knowledge andabilitytoedit the genomes. Several methodologies of gene editing have been established, all of them working like "scissor", creating double strand breaks at specific spots. The introduction of a new technology, which was adapted from the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas bacterial immune system, has revolutionized the genetic therapy field, as it allows a much more precise editing of gene than the previously described tools and, therefore, to prevent and treat disease in humans. This review aims to revisit the genome editing history that led to the rediscovery of the CRISPR/Cas technology and to explore the technical aspects, applications and perspectives of this fascinating, powerful, precise, simpler and cheaper technology in different fields.
Collapse
Affiliation(s)
- Rodrigo Pinheiro Araldi
- Genetic Bases of Thyroid Tumors Laboratory, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil; Programa de Pós-graduação em Biociências, Universidade Federal da Integração Latino-Americana (UNILA), Foz do Iguaçu, PR, Brazil.
| | - Charbel Khalil
- Reviva Research and Application Center- Lebanese University, Middle East Institute of Health University Hospital, Beirut, Lebanon
| | - Pedro Henrique Grignet
- Instituto Latino-Americano de Ciências da Vida e da Natureza (ILACVN), Universidade Federal da Integração Latino-Americana (UNILA), Foz do Iguaçu, PR, Brazil
| | - Michelli Ramires Teixeira
- Instituto Latino-Americano de Ciências da Vida e da Natureza (ILACVN), Universidade Federal da Integração Latino-Americana (UNILA), Foz do Iguaçu, PR, Brazil
| | - Thatiana Correa de Melo
- Instituto Latino-Americano de Ciências da Vida e da Natureza (ILACVN), Universidade Federal da Integração Latino-Americana (UNILA), Foz do Iguaçu, PR, Brazil
| | | | | | - Jorge Ruiz
- Programa de Pós-graduação em Biociências, Universidade Federal da Integração Latino-Americana (UNILA), Foz do Iguaçu, PR, Brazil; Instituto Latino-Americano de Ciências da Vida e da Natureza (ILACVN), Universidade Federal da Integração Latino-Americana (UNILA), Foz do Iguaçu, PR, Brazil
| | - Edislane Barreiros de Souza
- Laboratory of Genetics, Molecular Biology and Mutagenesis, Faculdade de Ciências e Letras de Assis, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Assis, SP, Brazil
| |
Collapse
|
175
|
|
176
|
Yun Y, Ha Y. CRISPR/Cas9-Mediated Gene Correction to Understand ALS. Int J Mol Sci 2020; 21:E3801. [PMID: 32471232 PMCID: PMC7312396 DOI: 10.3390/ijms21113801] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 12/24/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease caused by the death of motor neurons in the spinal cord and brainstem. ALS has a diverse genetic origin; at least 20 genes have been shown to be related to ALS. Most familial and sporadic cases of ALS are caused by variants of the SOD1, C9orf72, FUS, and TARDBP genes. Genome editing using clustered regularly interspaced short palindromic repeats/CRISPR-associated system 9 (CRISPR/Cas9) can provide insights into the underlying genetics and pathophysiology of ALS. By correcting common mutations associated with ALS in animal models and patient-derived induced pluripotent stem cells (iPSCs), CRISPR/Cas9 has been used to verify the effects of ALS-associated mutations and observe phenotype differences between patient-derived and gene-corrected iPSCs. This technology has also been used to create mutations to investigate the pathophysiology of ALS. Here, we review recent studies that have used CRISPR/Cas9 to understand the genetic underpinnings of ALS.
Collapse
Affiliation(s)
- Yeomin Yun
- Department of Neurosurgery, Spine and Spinal Cord Institute, College of Medicine, Yonsei University, Seoul 03722, Korea;
- Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul 03722, Korea
| | - Yoon Ha
- Department of Neurosurgery, Spine and Spinal Cord Institute, College of Medicine, Yonsei University, Seoul 03722, Korea;
- Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
177
|
Dheer P, Rautela I, Sharma V, Dhiman M, Sharma A, Sharma N, Sharma MD. Evolution in crop improvement approaches and future prospects of molecular markers to CRISPR/Cas9 system. Gene 2020; 753:144795. [PMID: 32450202 DOI: 10.1016/j.gene.2020.144795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/07/2020] [Accepted: 05/19/2020] [Indexed: 01/03/2023]
Abstract
The advent of genetic selection and genome modification method assure about a real novel reformation in biotechnology and genetic engineering. With the extensive capabilities of molecular markers of them being stable, cost-effective and easy to use, they ultimately become a potent tool for variety of applications such a gene targeting, selection, editing, functional genomics; mainly for the improvisation of commercially important crops. Three main benefits of molecular marker in the field of agriculture and crop improvement programmes first, reduction of the duration of breeding programmes, second, they allow creation of new genetic variation and genetic diversity of plants and third most promising benefit is help in production of engineered plant for disease resistance, or resistance from pathogen and herbicides. This review is anticipated to present an outline how the techniques have been evolved from the simple conventional applications of DNA based molecular markers to highly throughput CRISPR technology and geared the crop yield. Techniques like using Zinc Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9) systems have revolutionised in the field of genome editing. These have been promptly accepted in both the research and commercial industry. On the whole, the widespread use of molecular markers with their types, their appliance in plant breeding along with the advances in genetic selection and genome editing together being a novel strategy to boost crop yield has been reviewed.
Collapse
Affiliation(s)
- Pallavi Dheer
- Department of Life Sciences, Shri Guru Ram Rai Institute of Technology & Science, Patel Nagar, Dehradun, Uttarakhand, India
| | - Indra Rautela
- Department of Biotechnology, SALS, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Vandana Sharma
- Department of Botany, K.L.DAV (PG) College, Roorkee,Uttarakhand, India
| | - Manjul Dhiman
- Department of Botany, K.L.DAV (PG) College, Roorkee,Uttarakhand, India
| | - Aditi Sharma
- Department of Biotechnology, Graphic Era University, Dehradun, Uttarakhand, India
| | - Nishesh Sharma
- Department of Biotechnology, SALS, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Manish Dev Sharma
- Department of Biotechnology, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand, India.
| |
Collapse
|
178
|
Erdogan M, Fabritius A, Basquin J, Griesbeck O. Targeted In Situ Protein Diversification and Intra-organelle Validation in Mammalian Cells. Cell Chem Biol 2020; 27:610-621.e5. [PMID: 32142629 DOI: 10.1016/j.chembiol.2020.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/22/2019] [Accepted: 02/14/2020] [Indexed: 02/08/2023]
Abstract
Engineered proteins must be phenotypically selected for function in the appropriate physiological context. Here, we present a versatile approach that allows generating panels of mammalian cells that express diversified heterologous protein libraries in the cytosol or subcellular compartments under stable conditions and in a single-variant-per-cell manner. To this end we adapt CRISPR/Cas9 editing technology to diversify targeted stretches of a protein of interest in situ. We demonstrate the utility of the approach by in situ engineering and intra-lysosome specific selection of an extremely pH-resistant long Stokes shift red fluorescent protein variant. Tailoring properties to specific conditions of cellular sub-compartments or organelles of mammalian cells can be an important asset to optimize various proteins, protein-based tools, and biosensors for distinct functions.
Collapse
Affiliation(s)
- Mutlu Erdogan
- Tools for Bio-Imaging, Max-Planck-Institut für Neurobiologie, Am Klopferspitz 18, Martinsried 82152, Germany
| | - Arne Fabritius
- Tools for Bio-Imaging, Max-Planck-Institut für Neurobiologie, Am Klopferspitz 18, Martinsried 82152, Germany
| | - Jérome Basquin
- Structural Cell Biology, Max-Planck-Institut für Biochemie, Am Klopferspitz 18, Martinsried 82152, Germany
| | - Oliver Griesbeck
- Tools for Bio-Imaging, Max-Planck-Institut für Neurobiologie, Am Klopferspitz 18, Martinsried 82152, Germany.
| |
Collapse
|
179
|
Zhou Q, Zhang Y, Zou Y, Yin T, Yang J. Human embryo gene editing: God's scalpel or Pandora's box? Brief Funct Genomics 2020; 19:154-163. [PMID: 32101273 DOI: 10.1093/bfgp/elz025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/27/2019] [Accepted: 09/04/2019] [Indexed: 12/26/2022] Open
Abstract
Gene editing refers to the site-specific modification of the genome, which mainly focuses on basic research, model organism construction and treatment and prevention of disease. Since the first application of CRISPR/Cas9 on the human embryo genome in 2015, the controversy over embryo gene editing (abbreviated as EGE in the following text) has never stopped. At present, the main contradictions focus on (1) ideal application prospects and immature technologies; (2) scientific progress and ethical supervision; and (3) definition of reasonable application scope. In fact, whether the EGE is 'God's scalpel' or 'Pandora's box' depends on the maturity of the technology and ethical supervision. This non-systematic review included English articles in NCBI, technical documents from the Human Fertilization and Embryology Authority as well as reports in the media, which performed from 1980 to 2018 with the following search terms: 'gene editing, human embryo, sequence-specific nuclease (SSN) (CRISPR/Cas, TALENT, ZFN), ethical consideration, gene therapy.' Based on the research status of EGE, this paper summarizes the technical defects and ethical controversies, enumerates the optimization measures and looks forward to the application prospect, aimed at providing some suggestions for the development trend. We should regard the research and development of EGE optimistically, improve and innovate the technology boldly and apply its clinical practice carefully.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Reproductive Center, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuchang, Wuhan, Hubei 430060, P.R. China
| | - Yan Zhang
- Department of Reproductive Center, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuchang, Wuhan, Hubei 430060, P.R. China
| | - Yujie Zou
- Department of Reproductive Center, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuchang, Wuhan, Hubei 430060, P.R. China
| | - Tailang Yin
- Department of Reproductive Center, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuchang, Wuhan, Hubei 430060, P.R. China
| | - Jing Yang
- Department of Reproductive Center, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuchang, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
180
|
Moorthy BT, Kumar A, Lotenfoe LX, Zhang F. Evaluation of the Efficiency of Genome Editing Tools by a Frameshift Fluorescence Protein Reporter. Bio Protoc 2020; 10:e3622. [PMID: 33659295 PMCID: PMC7842298 DOI: 10.21769/bioprotoc.3622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/19/2020] [Accepted: 03/15/2020] [Indexed: 11/02/2022] Open
Abstract
In the last decade, genome editing has been the center of attention as a novel tool for mechanistic investigations and for potential clinical applications. Various genome editing tools like meganucleases, zinc finger nucleases (ZFNs), transcription activator-like effector-based nucleases (TALEN), and the clustered regularly interspaced short palindromic repeats (CRISPR)-associated genes (Cas), have been developed in recent years. For the optimal use as well as continued developments of these genome editing tools, the evaluation of their efficiencies and accuracies is vital. Here, we present a protocol for a reporter based on frameshift fluorescence protein which we recently developed to evaluate the efficiency and accuracy of genome editing tools. In this method, a ~20 bp target sequence containing frame-shifting is inserted after the start codon of a cerulean fluorescence protein (CFP) to inactivate its fluorescence, and only a new insertion/deletion event in the target sequence will reactivate the CFP fluorescence. To increase the traceability, an internal ribosome entry site and a red fluorescence protein, mCherryFP, are placed downstream of the reporter. The percentage of CFP-positive cells resulted from in/del mediated fluorescence restoration can be quantified by fluorescence measuring devices as the readout for genome editing frequency. As a demonstration, we present the usage for CRISPR-Cas9 technique here with flow cytometer as the readout for fluorescence changes.
Collapse
Affiliation(s)
- Balaji T. Moorthy
- Dept. of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, FL 33136, USA
| | - Akhilesh Kumar
- Dept. of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, FL 33136, USA
,Dept. of Botany, Banaras Hindu University, Varanasi, India
| | - Lauren X. Lotenfoe
- Dept. of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, FL 33136, USA
| | - Fangliang Zhang
- Dept. of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, FL 33136, USA
,Sylvester comprehensive cancer center, University of Miami, FL 33136, USA
,*
Corresponding author:
| |
Collapse
|
181
|
Ali G, Tariq MA, Shahid K, Ahmad FJ, Akram J. Advances in genome editing: the technology of choice for precise and efficient β-thalassemia treatment. Gene Ther 2020; 28:6-15. [PMID: 32355226 DOI: 10.1038/s41434-020-0153-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/03/2020] [Accepted: 04/16/2020] [Indexed: 11/09/2022]
Abstract
Beta (β)-thalassemia is one of the most significant hemoglobinopathy worldwide. The high prevalence of the β-thalassemia carriers aggravates the disease burden for patients and national economies in the developing world. The survival of β-thalassemia patients solely relies on repeated transfusions, which eventually results into multi-organ damage. The fetal γ-globin genes are ordinarily silenced at birth and replaced by the adult β-globin genes. However, mutations that cause lifelong persistence of fetal γ-globin, ameliorate the debilitating effects of β-globin mutations. Therefore, therapeutically reactivating the fetal γ-globin gene is a prime focus of researchers. CRISPR/Cas9 is the most common approach to correct disease causative mutations or to enhance or disrupt the expression of proteins to mitigate the effects of the disease. CRISPR/cas9 and prime gene editing to correct mutations in hematopoietic stem cells of β-thalassemia patients has been considered a novel therapeutic approach for effective hemoglobin production. However, genome-editing technologies, along with all advantages, have shown some disadvantages due to either random insertions or deletions at the target site of edition or non-specific targeting in genome. Therefore, the focus of this review is to compare pros and cons of these editing technologies and to elaborate the retrospective scope of gene therapy for β-thalassemia patients.
Collapse
Affiliation(s)
- Gibran Ali
- Institute of Regenerative Medicine, Physiology and Cell Biology Department, University of Health Sciences Lahore, Khyaban-e-Jamia Punjab, Lahore, 54600, Pakistan.
| | - Muhammad Akram Tariq
- Institute of Regenerative Medicine, Physiology and Cell Biology Department, University of Health Sciences Lahore, Khyaban-e-Jamia Punjab, Lahore, 54600, Pakistan
| | - Kamran Shahid
- Department of Oncology Medicine, University of Texas Health Science Center at Tyler, 11937 US HWY 271, Tyler, 75708, TX, USA
| | - Fridoon Jawad Ahmad
- Institute of Regenerative Medicine, Physiology and Cell Biology Department, University of Health Sciences Lahore, Khyaban-e-Jamia Punjab, Lahore, 54600, Pakistan.
| | - Javed Akram
- University of Health Sciences Lahore, Khyaban-e-Jamia Punjab, Lahore, 54600, Pakistan
| |
Collapse
|
182
|
Baker C, Hayden MS. Gene editing in dermatology: Harnessing CRISPR for the treatment of cutaneous disease. F1000Res 2020; 9:281. [PMID: 32528662 DOI: 10.12688/f1000research.23185.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/16/2020] [Indexed: 12/26/2022] Open
Abstract
The discovery of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) system has revolutionized gene editing research. Through the repurposing of programmable RNA-guided CRISPR-associated (Cas) nucleases, CRISPR-based genome editing systems allow for the precise modification of specific sites in the human genome and inspire novel approaches for the study and treatment of inherited and acquired human diseases. Here, we review how CRISPR technologies have stimulated key advances in dermatologic research. We discuss the role of CRISPR in genome editing for cutaneous disease and highlight studies on the use of CRISPR-Cas technologies for genodermatoses, cutaneous viruses and bacteria, and melanoma. Additionally, we examine key limitations of current CRISPR technologies, including the challenges these limitations pose for the widespread therapeutic application of CRISPR-based therapeutics.
Collapse
Affiliation(s)
- Catherine Baker
- Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Matthew S Hayden
- Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA.,Section of Dermatology, Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, 03766, USA
| |
Collapse
|
183
|
Ding Y, Fei Y, Lu B. Emerging New Concepts of Degrader Technologies. Trends Pharmacol Sci 2020; 41:464-474. [PMID: 32416934 PMCID: PMC7177145 DOI: 10.1016/j.tips.2020.04.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022]
Abstract
Traditional drug discovery focuses on identifying direct inhibitors of target proteins. This typically relies on a measurable biochemical readout and accessible binding sites whose occupancy influences the function of the target protein. These requirements preclude many disease-causing proteins from being 'druggable' targets, and these proteins are categorized as 'undruggable'. The proteolysis-targeting chimera (PROTAC) technology provides powerful tools to degrade these undruggable targets and has become a promising approach for drug discovery. However, the PROTAC technology has some limitations, and emerging new degrader technologies may greatly broaden the spectrum of targets that could be selectively degraded by harnessing a second major degradation pathway in cells. We review key emerging technologies that exploit the lysosomal degradation pathway and discuss their potential applications and limitations.
Collapse
Affiliation(s)
- Yu Ding
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology, and Ministry of Education Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China.
| | - Yiyan Fei
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures, Ministry of Education, Fudan University, Shanghai, China.
| | - Boxun Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology, and Ministry of Education Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
184
|
Affiliation(s)
- Antonino Tuttolomondo
- U.O.C.di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza "G.D'Alessandro" (PROMISE), Piazza delle Cliniche n.2, 90127, Palermo, Italy
| | - Irene Simonetta
- U.O.C.di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza "G.D'Alessandro" (PROMISE), Piazza delle Cliniche n.2, 90127, Palermo, Italy
| | - Antonio Pinto
- U.O.C.di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza "G.D'Alessandro" (PROMISE), Piazza delle Cliniche n.2, 90127, Palermo, Italy
| |
Collapse
|
185
|
Next-generation stem cells - ushering in a new era of cell-based therapies. Nat Rev Drug Discov 2020; 19:463-479. [PMID: 32612263 DOI: 10.1038/s41573-020-0064-x] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2020] [Indexed: 02/06/2023]
Abstract
Naturally occurring stem cells isolated from humans have been used therapeutically for decades. This has primarily involved the transplantation of primary cells such as haematopoietic and mesenchymal stem cells and, more recently, derivatives of pluripotent stem cells. However, the advent of cell-engineering approaches is ushering in a new generation of stem cell-based therapies, greatly expanding their therapeutic utility. These next-generation stem cells are being used as 'Trojan horses' to improve the delivery of drugs and oncolytic viruses to intractable tumours and are also being engineered with angiogenic, neurotrophic and anti-inflammatory molecules to accelerate the repair of injured or diseased tissues. Moreover, gene therapy and gene editing technologies are being used to create stem cell derivatives with improved functionality, specificity and responsiveness compared with their natural counterparts. Here, we review these engineering approaches and areas in which they will help broaden the utility and clinical applicability of stem cells.
Collapse
|
186
|
Salmaninejad A, Jafari Abarghan Y, Bozorg Qomi S, Bayat H, Yousefi M, Azhdari S, Talebi S, Mojarrad M. Common therapeutic advances for Duchenne muscular dystrophy (DMD). Int J Neurosci 2020; 131:370-389. [DOI: 10.1080/00207454.2020.1740218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Arash Salmaninejad
- Halal Research Center of IRI, FDA, Tehran, Iran
- Medical Genetics Research Center, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yousef Jafari Abarghan
- Medical Genetics Research Center, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Bozorg Qomi
- Medical Genetics Research Center, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Bayat
- Medical Nano-Technology & Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Meysam Yousefi
- Department of Medical Genetics Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Azhdari
- Department of Anatomy and Embryology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Samaneh Talebi
- Medical Genetics Research Center, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Medical Genetics Research Center, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
187
|
Abstract
Cancer immunotherapy has shown great potential as witnessed by an increasing number of immuno-oncology drug approvals in the past few years. Meanwhile, the field of nucleic acid therapeutics has made significant advancement. Nucleic acid therapeutics, such as plasmids, antisense oligonucleotides (ASO), small interfering RNA (siRNA) and microRNA, messenger RNA (mRNA), immunomodulatory DNA/RNA, and gene-editing guide RNA (gRNA) are attractive due to their versatile abilities to alter the expression of target endogenous genes or even synthetic genes, and modulate the immune responses. These abilities can play vital roles in the development of novel immunotherapy strategies. However, limited by the intrinsic physicochemical properties such as negative charges, hydrophilicity, as well as susceptibility to enzymatic degradation, the delivery of nucleic acid therapeutics faces multiple challenges. It is therefore pivotal to develop drug delivery systems that can carry, protect, and specifically deliver and release nucleic acid therapeutics to target tissues and cells. In this review, we attempted to summarize recent advances in nucleic acid therapeutics and the delivery systems for these therapeutics in cancer immunotherapy.
Collapse
Affiliation(s)
- Shurong Zhou
- Department of Pharmaceutics, Center for Pharmaceutical Engineering and Sciences, Institute for Structural Biology, Drug Discovery and Development (ISB3D), School of Pharmacy, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - Wenjie Chen
- Department of Pharmaceutics, Center for Pharmaceutical Engineering and Sciences, Institute for Structural Biology, Drug Discovery and Development (ISB3D), School of Pharmacy, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - Janet Cole
- Department of Pharmaceutics, Center for Pharmaceutical Engineering and Sciences, Institute for Structural Biology, Drug Discovery and Development (ISB3D), School of Pharmacy, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - Guizhi Zhu
- Department of Pharmaceutics, Center for Pharmaceutical Engineering and Sciences, Institute for Structural Biology, Drug Discovery and Development (ISB3D), School of Pharmacy, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23219, USA
| |
Collapse
|
188
|
Cell-modified bioprinted microspheres for vascular regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110896. [PMID: 32409053 DOI: 10.1016/j.msec.2020.110896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 03/21/2020] [Accepted: 03/21/2020] [Indexed: 01/28/2023]
Abstract
Cell therapy is a promising strategy in which living cells or cellular materials are delivered to treat a variety of diseases. Here, we developed an electrospray bioprinting method to rapidly generate cell-laden hydrogel microspheres, which limit the migration of the captured cells and provide an immunologically privileged microenvironment for cell survival in vivo. Currently, therapeutic angiogenesis aims to induce collateral vessel formation after limb ischemia. However, the clinical application of gene and cell therapy has been impeded by concerns regarding its inefficacy, as well as the associated risk of immunogenicity and oncogenicity. In this study, hydrogel microspheres encapsulating VEGF-overexpressing HEK293T cells showed good safety via subcutaneously injecting into male C57BL/6 mice. In addition, these cell-modified microspheres effectively promoted angiogenesis in a mouse hind-limb ischemia model. Therefore, we demonstrated the great therapeutic potential of this approach to induce angiogenesis in limb ischemia, indicating that bioprinting has a bright future in cell therapy.
Collapse
|
189
|
Niemiec E, Howard HC. Ethical issues related to research on genome editing in human embryos. Comput Struct Biotechnol J 2020; 18:887-896. [PMID: 32322370 PMCID: PMC7163211 DOI: 10.1016/j.csbj.2020.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 12/15/2022] Open
Abstract
Although the potential advantages of clinical germline genome editing (GGE) over currently available methods are limited, the implementation of GGE in the clinic has been proposed and discussed. Ethical issues related to such an application have been extensively debated, meanwhile, seemingly less attention has been paid to ethical implications of studies which would have to be conducted in order to evaluate potential clinical uses of GGE. In this article, we first provide an overview of the debate on potential clinical uses of GGE. Then, we discuss questions and ethical issues related to the studies relevant to evaluation of potential clinical uses of GGE. In particular, we describe the problems related to the acceptable safety threshold, current technical hurdles in human GGE, the destruction of human embryos used in the experiments, involvement of egg donors, and genomic sequencing performed on the samples of the research participants. The technical and ethical problems related to studies on GGE should be acknowledged and carefully considered in the process of deciding to apply technology in such a way that will provide benefits and minimize harms.
Collapse
Affiliation(s)
- Emilia Niemiec
- Centre for Research Ethics and Bioethics, Uppsala University, Box 564, 751 22 Uppsala, Sweden
| | | |
Collapse
|
190
|
Roma-Rodrigues C, Rivas-García L, Baptista PV, Fernandes AR. Gene Therapy in Cancer Treatment: Why Go Nano? Pharmaceutics 2020; 12:E233. [PMID: 32151052 PMCID: PMC7150812 DOI: 10.3390/pharmaceutics12030233] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 02/08/2023] Open
Abstract
The proposal of gene therapy to tackle cancer development has been instrumental for the development of novel approaches and strategies to fight this disease, but the efficacy of the proposed strategies has still fallen short of delivering the full potential of gene therapy in the clinic. Despite the plethora of gene modulation approaches, e.g., gene silencing, antisense therapy, RNA interference, gene and genome editing, finding a way to efficiently deliver these effectors to the desired cell and tissue has been a challenge. Nanomedicine has put forward several innovative platforms to overcome this obstacle. Most of these platforms rely on the application of nanoscale structures, with particular focus on nanoparticles. Herein, we review the current trends on the use of nanoparticles designed for cancer gene therapy, including inorganic, organic, or biological (e.g., exosomes) variants, in clinical development and their progress towards clinical applications.
Collapse
Affiliation(s)
- Catarina Roma-Rodrigues
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Campus de Caparica, 2829-516 Caparica, Portugal; (C.R.-R.); (L.R.-G.)
| | - Lorenzo Rivas-García
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Campus de Caparica, 2829-516 Caparica, Portugal; (C.R.-R.); (L.R.-G.)
- Biomedical Research Centre, Institute of Nutrition and Food Technology, Department of Physiology, Faculty of Pharmacy, University of Granada, Avda. del Conocimiento s/n. 18071 Armilla, Granada, Spain
| | - Pedro V. Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Campus de Caparica, 2829-516 Caparica, Portugal; (C.R.-R.); (L.R.-G.)
| | - Alexandra R. Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Campus de Caparica, 2829-516 Caparica, Portugal; (C.R.-R.); (L.R.-G.)
| |
Collapse
|
191
|
Husteden C, Doberenz F, Goergen N, Pinnapireddy SR, Janich C, Langner A, Syrowatka F, Repanas A, Erdmann F, Jedelská J, Bakowsky U, Groth T, Wölk C. Contact-Triggered Lipofection from Multilayer Films Designed as Surfaces for in Situ Transfection Strategies in Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8963-8977. [PMID: 32003972 DOI: 10.1021/acsami.9b18968] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biomaterials, which release active compounds after implantation, are an essential tool for targeted regenerative medicine. In this study, thin multilayer films loaded with lipid/DNA complexes (lipoplexes) were designed as surface coatings for in situ transfection applicable in tissue engineering and regenerative medicine. The film production and embedding of lipoplexes were based on the layer-by-layer (LbL) deposition technique. Hyaluronic acid (HA) and chitosan (CHI) were used as the polyelectrolyte components. The embedded plasmid DNA was complexed using a new designed cationic lipid formulation, namely, OH4/DOPE 1/1, the advantageous characteristics of which have been proven already. Three different methods were tested regarding its efficiency of lipid and DNA deposition. Therefore, several surface specific analytics were used to characterize the LbL formation, the lipid DNA embedding, and the surface characteristics of the multilayer films, such as fluorescence microscopy, surface plasmon resonance spectroscopy, ellipsometry, zeta potential measurements, atomic force microscopy, and scanning electron microscopy. Interaction studies were conducted for optimized lipoplex-loaded polyelectrolyte multilayers (PEMs) that showed an efficient attachment of C2C12 cells on the surface. Furthermore, no acute toxic effects were found in cell culture studies, demonstrating biocompatibility. Cell culture experiments with C2C12 cells, a cell line which is hard to transfect, demonstrated efficient transfection of the reporter gene encoding for green fluorescent protein. In vivo experiments using the chicken embryo chorion allantois membrane animal replacement model showed efficient gene-transferring rates in living complex tissues, although the DNA-loaded films were stored over 6 days under wet and dried conditions. Based on these findings, it can be concluded that OH4/DOPE 1/1 lipoplex-loaded PEMs composed of HA and CHI can be an efficient tool for in situ transfection in regenerative medicine.
Collapse
Affiliation(s)
- Catharina Husteden
- Institute of Pharmacy, Department of Medicinal Chemistry , Martin Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Str. 4 , 06120 Halle (Saale) , Germany
| | - Falko Doberenz
- Institute of Pharmacy, Department Biomedical Materials , Martin Luther University Halle-Wittenberg , Heinrich-Damerow-Str. 4 , 06120 Halle (Saale) , Germany
| | - Nathalie Goergen
- Department of Pharmaceutics and Biopharmaceutics , University of Marburg , Robert-Koch-Str. 4 , 35037 Marburg , Germany
| | - Shashank Reddy Pinnapireddy
- Department of Pharmaceutics and Biopharmaceutics , University of Marburg , Robert-Koch-Str. 4 , 35037 Marburg , Germany
| | - Christopher Janich
- Institute of Pharmacy, Department of Medicinal Chemistry , Martin Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Str. 4 , 06120 Halle (Saale) , Germany
| | - Andreas Langner
- Institute of Pharmacy, Department of Medicinal Chemistry , Martin Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Str. 4 , 06120 Halle (Saale) , Germany
| | - Frank Syrowatka
- Interdisciplinary Center of Materials Science , Martin-Luther-University Halle-Wittenberg , Heinrich-Damerow-Str. 4 , 06120 Halle (Saale) , Germany
| | - Alexandros Repanas
- Institute of Pharmacy, Department Biomedical Materials , Martin Luther University Halle-Wittenberg , Heinrich-Damerow-Str. 4 , 06120 Halle (Saale) , Germany
| | - Frank Erdmann
- Institute of Pharmacy, Department of Pharmacology , Martin Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Str. 4 , 06120 Halle (Saale) , Germany
| | - Jarmila Jedelská
- Department of Pharmaceutics and Biopharmaceutics , University of Marburg , Robert-Koch-Str. 4 , 35037 Marburg , Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics , University of Marburg , Robert-Koch-Str. 4 , 35037 Marburg , Germany
| | - Thomas Groth
- Institute of Pharmacy, Department Biomedical Materials , Martin Luther University Halle-Wittenberg , Heinrich-Damerow-Str. 4 , 06120 Halle (Saale) , Germany
- Interdisciplinary Center of Materials Science , Martin-Luther-University Halle-Wittenberg , Heinrich-Damerow-Str. 4 , 06120 Halle (Saale) , Germany
- Laboratory of Biomedical Nanotechnologies, Institute of Bionic Technologies and Engineering , I.M. Sechenov First Moscow State University , Trubetskaya Street 8 , 119991 Moscow , Russian Federation
| | - Christian Wölk
- Institute of Pharmacy, Department of Medicinal Chemistry , Martin Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Str. 4 , 06120 Halle (Saale) , Germany
- Institute of Pharmacy, Pharmaceutical Technology, Faculty of Medicine , Leipzig University , 04317 Leipzig , Germany
| |
Collapse
|
192
|
Chen W, Ding R, Tang J, Li H, Chen C, Zhang Y, Zhang Q, Zhu X. Knocking Out SST Gene of BGC823 Gastric Cancer Cell by CRISPR/Cas9 Enhances Migration, Invasion and Expression of SEMA5A and KLF2. Cancer Manag Res 2020; 12:1313-1321. [PMID: 32110105 PMCID: PMC7040191 DOI: 10.2147/cmar.s236374] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
Background The impact and potential molecular mechanisms of SST in the occurrence and development of GC have not been determined. Materials and Methods Two pairs of sgRNA and reporter were designed according to targeting sequence of SST gene for double-nicking. Plasmids were transfected into 293T for selecting sgRNA with higher cutting efficiency. The subline which has knocked-out SST gene were selected by FACS and verified by sequencing and expression level. Moreover, the migration and invasion ability was evaluated by wound healing and transwell after knocking out SST. Besides, the protein expression of SEMA5A and KLF2 were observed by Western blotting and LSCM. Last, we detected the expression levels of SST, SEMA5A, and KLF2 in GC tissues by Western blotting. Results The results revealed that the new subline 1E9, which had knocked out SST gene, was established by CRISPR/Cas9. In addition, the knockout of SST in GC cells markedly increased migration and invasion ability. The results also demonstrated that the knockout of SST increased the expression of SEMA5A and KLF2. The expression level of SST was decreased in GC tissues, and its decrease was associated with overexpression of SEMA5A and KLF2. Conclusion SST plays an inhibitory role in the migration and invasion of GC cell BGC823. The protein expression levels of SEMA5A and KLF2 were enhanced in GC cells and tissues lacking SST expression.
Collapse
Affiliation(s)
- Wei Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Henan, People's Republic of China
| | - Ruixian Ding
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Henan, People's Republic of China
| | - Jinlu Tang
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Henan, People's Republic of China
| | - Haodong Li
- Department of Clinical Medicine, School of Basic Medical Sciences, Zhengzhou University, Henan, People's Republic of China
| | - Chonghua Chen
- Department of Clinical Medicine, School of Basic Medical Sciences, Zhengzhou University, Henan, People's Republic of China
| | - Yaru Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Henan, People's Republic of China
| | - Qinxian Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Henan, People's Republic of China
| | - Xiaoyan Zhu
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Henan, People's Republic of China
| |
Collapse
|
193
|
Pasquini G, Cora V, Swiersy A, Achberger K, Antkowiak L, Müller B, Wimmer T, Fraschka SAK, Casadei N, Ueffing M, Liebau S, Stieger K, Busskamp V. Using Transcriptomic Analysis to Assess Double-Strand Break Repair Activity: Towards Precise in vivo Genome Editing. Int J Mol Sci 2020; 21:E1380. [PMID: 32085662 PMCID: PMC7073035 DOI: 10.3390/ijms21041380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 12/17/2022] Open
Abstract
Mutations in more than 200 retina-specific genes have been associated with inherited retinal diseases. Genome editing represents a promising emerging field in the treatment of monogenic disorders, as it aims to correct disease-causing mutations within the genome. Genome editing relies on highly specific endonucleases and the capacity of the cells to repair double-strand breaks (DSBs). As DSB pathways are cell-cycle dependent, their activity in postmitotic retinal neurons, with a focus on photoreceptors, needs to be assessed in order to develop therapeutic in vivo genome editing. Three DSB-repair pathways are found in mammalian cells: Non-homologous end joining (NHEJ); microhomology-mediated end joining (MMEJ); and homology-directed repair (HDR). While NHEJ can be used to knock out mutant alleles in dominant disorders, HDR and MMEJ are better suited for precise genome editing, or for replacing entire mutation hotspots in genomic regions. Here, we analyzed transcriptomic in vivo and in vitro data and revealed that HDR is indeed downregulated in postmitotic neurons, whereas MMEJ and NHEJ are active. Using single-cell RNA sequencing analysis, we characterized the dynamics of DSB repair pathways in the transition from dividing cells to postmitotic retinal cells. Time-course bulk RNA-seq data confirmed DSB repair gene expression in both in vivo and in vitro samples. Transcriptomic DSB repair pathway profiles are very similar in adult human, macaque, and mouse retinas, but not in ground squirrel retinas. Moreover, human-induced pluripotent stem-cell-derived neurons and retinal organoids can serve as well suited in vitro testbeds for developing genomic engineering approaches in photoreceptors. Our study provides additional support for designing precise in vivo genome-editing approaches via MMEJ, which is active in mature photoreceptors.
Collapse
Affiliation(s)
- Giovanni Pasquini
- Center for Regenerative Therapies (CRTD), Technical University Dresden, 01307 Dresden, Germany
| | - Virginia Cora
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Anka Swiersy
- Center for Regenerative Therapies (CRTD), Technical University Dresden, 01307 Dresden, Germany
| | - Kevin Achberger
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Lena Antkowiak
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Brigitte Müller
- Department of Ophthalmology, Justus-Liebig-University, 35392 Giessen, Germany
| | - Tobias Wimmer
- Department of Ophthalmology, Justus-Liebig-University, 35392 Giessen, Germany
| | - Sabine Anne-Kristin Fraschka
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
- DFG NGS Competence Center Tübingen, 72076 Tübingen, Germany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
- DFG NGS Competence Center Tübingen, 72076 Tübingen, Germany
| | - Marius Ueffing
- Department of Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany
| | - Stefan Liebau
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Knut Stieger
- Department of Ophthalmology, Justus-Liebig-University, 35392 Giessen, Germany
| | - Volker Busskamp
- Center for Regenerative Therapies (CRTD), Technical University Dresden, 01307 Dresden, Germany
- Universitäts-Augenklinik Bonn, University of Bonn, Dept. of Ophthalmology, 53127 Bonn, Germany
| |
Collapse
|
194
|
Schwarzer R, Gramatica A, Greene WC. Reduce and Control: A Combinatorial Strategy for Achieving Sustained HIV Remissions in the Absence of Antiretroviral Therapy. Viruses 2020; 12:v12020188. [PMID: 32046251 PMCID: PMC7077203 DOI: 10.3390/v12020188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/23/2022] Open
Abstract
Human immunodeficiency virus (HIV-1) indefinitely persists, despite effective antiretroviral therapy (ART), within a small pool of latently infected cells. These cells often display markers of immunologic memory and harbor both replication-competent and -incompetent proviruses at approximately a 1:100 ratio. Although complete HIV eradication is a highly desirable goal, this likely represents a bridge too far for our current and foreseeable technologies. A more tractable goal involves engineering a sustained viral remission in the absence of ART––a “functional cure.” In this setting, HIV remains detectable during remission, but the size of the reservoir is small and the residual virus is effectively controlled by an engineered immune response or other intervention. Biological precedence for such an approach is found in the post-treatment controllers (PTCs), a rare group of HIV-infected individuals who, following ART withdrawal, do not experience viral rebound. PTCs are characterized by a small reservoir, greatly reduced inflammation, and the presence of a poorly understood immune response that limits viral rebound. Our goal is to devise a safe and effective means for replicating durable post-treatment control on a global scale. This requires devising methods to reduce the size of the reservoir and to control replication of this residual virus. In the following sections, we will review many of the approaches and tools that likely will be important for implementing such a “reduce and control” strategy and for achieving a PTC-like sustained HIV remission in the absence of ART.
Collapse
|
195
|
Kabadi A, McDonnell E, Frank CL, Drowley L. Applications of Functional Genomics for Drug Discovery. SLAS DISCOVERY 2020; 25:823-842. [PMID: 32026742 DOI: 10.1177/2472555220902092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many diseases, such as diabetes, autoimmune diseases, cancer, and neurological disorders, are caused by a dysregulation of a complex interplay of genes. Genome-wide association studies have identified thousands of disease-linked polymorphisms in the human population. However, detailing the causative gene expression or functional changes underlying those associations has been elusive in many cases. Functional genomics is an emerging field of research that aims to deconvolute the link between genotype and phenotype by making use of large -omic data sets and next-generation gene and epigenome editing tools to perturb genes of interest. Here we review how functional genomic tools can be used to better understand the biological interplay between genes, improve disease modeling, and identify novel drug targets. Incorporation of functional genomic capabilities into conventional drug development pipelines is predicted to expedite the development of first-in-class therapeutics.
Collapse
Affiliation(s)
- Ami Kabadi
- Element Genomics, a UCB company, Durham, NC, USA
| | | | | | | |
Collapse
|
196
|
Niemiec E, Howard HC. Germline Genome Editing Research: What Are Gamete Donors (Not) Informed About in Consent Forms? CRISPR J 2020; 3:52-63. [PMID: 32091253 PMCID: PMC7047087 DOI: 10.1089/crispr.2019.0043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The potential for using germline genome editing (GGE) in humans has garnered a lot of attention, both for its scientific possibilities as well as for the ethical, legal, and social challenges it ignites. The ethical debate has focused primarily on the suggestions of using GGE to establish a pregnancy (i.e., to offer it in a clinical setting), which is, to date, illegal in many jurisdictions. The use of GGE in research (where a pregnancy would not be established) has received much less attention, despite the fact that it raises serious ethical and social issues as well. Herein, we report on the analysis of informed consent forms for egg and sperm donation used in a widely publicized study where genome editing was used to correct a disease-causing genetic mutation in human embryos. Importantly, embryos were created using eggs and sperm obtained specifically for these experiments. The analysis indicates deficiencies in how the forms addressed various issues, including limited and potentially misleading information about the sensitive nature of the study, the lack of an explicit mention of genomic sequencing, as well as the poor readability of the forms. Furthermore, the arguably high compensation of U.S.$5,000 for egg donors raises questions about undue inducement to participate in research. Moreover, since the procurement of eggs involves serious health risks, it may be questioned whether research requiring such a procedure should be pursued. If such experiments are continued, donors should be informed about all relevant aspects in order to make informed decisions about participating.
Collapse
Affiliation(s)
- Emilia Niemiec
- Centre for Research Ethics and Bioethics, Uppsala University, Uppsala, Sweden
| | - Heidi Carmen Howard
- Centre for Research Ethics and Bioethics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
197
|
Isa NM, Zulkifli NA, Man S. Islamic Perspectives on CRISPR/Cas9-Mediated Human Germline Gene Editing: A Preliminary Discussion. SCIENCE AND ENGINEERING ETHICS 2020; 26:309-323. [PMID: 30830592 DOI: 10.1007/s11948-019-00098-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
The recent development of CRISPR/Cas9 technology has rekindled the ethical debate concerning human germline modification that has begun decades ago. This inexpensive technology shows tremendous promise in disease prevention strategies, while raising complex ethical concerns about safety and efficacy of the technology, human dignity, tampering with God's creation, and human genetic enhancement. Germline gene editing may result in heritable changes in the human genome, therefore the question of whether it should be allowed requires deep and careful discussion from various perspectives. This paper explores Islamic perspectives on the concerns raised and highlights the ethical principles in Islam that should be taken into consideration when assessing the permissibility of CRISPR/ Cas9-mediated human germline gene editing. As argued in this paper, human germline gene editing would be considered lawful for medical purpose under certain conditions. It should not be applied on humans until the safety and efficacy issues are resolved. Robust ethical guidelines and strict regulations are necessary to preserve human dignity and to prevent premature and misuse of the technology. Maqasid al-shariah's principles of preservation of human life, lineage, and dignity and 'preventing harm takes precedence over securing benefit' are among the guiding principles in assessing the permissibility of CRISPR/Cas9-mediated human germline editing from an Islamic perspective. Further discussions are important to address the controversies as well as to explore the related ethical principles.
Collapse
Affiliation(s)
- Noor Munirah Isa
- Department of Science and Technology Studies, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Nurul Atiqah Zulkifli
- Department of Science and Technology Studies, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Saadan Man
- Department of Fiqh and Usul, Academy of Islamic Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
198
|
Pathologic properties of SOD3 variant R213G in the cardiovascular system through the altered neutrophils function. PLoS One 2020; 15:e0227449. [PMID: 32004354 PMCID: PMC6994104 DOI: 10.1371/journal.pone.0227449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 12/18/2019] [Indexed: 01/04/2023] Open
Abstract
The SOD3 variant, SOD3R213G, results from substitution of arginine to glycine at amino acid 213 (R213G) in its heparin binding domain (HBD) and is a common genetic variant, reported to be associated with ischemic heart disease. However, little is understood about the role of SOD3R213G in innate immune function, and how it leads to dysfunction of the cardiovascular system. We observed pathologic changes in SOD3R213G transgenic (Tg) mice, including cystic medial degeneration of the aorta, heart inflammation, and increased circulating and organ infiltrating neutrophils. Interestingly, SOD3R213G altered the profile of SOD3 interacting proteins in neutrophils in response to G-CSF. Unexpectedly, we found that G-CSF mediated tyrosine phosphatase, SH-PTP1 was down-regulated in the neutrophils of SOD3R213G overexpressing mice. These effects were recovered by reconstitution with Wt SOD3 expressing bone marrow cells. Overall, our study reveals that SOD3R213G plays a crucial role in the function of the cardiovascular system by controlling innate immune response and signaling. These results suggest that reconstitution with SOD3 expressing bone marrow cells may be a therapeutic strategy to treat SOD3R213G mediated diseases.
Collapse
|
199
|
Broeders M, Herrero-Hernandez P, Ernst MPT, van der Ploeg AT, Pijnappel WWMP. Sharpening the Molecular Scissors: Advances in Gene-Editing Technology. iScience 2020; 23:100789. [PMID: 31901636 PMCID: PMC6941877 DOI: 10.1016/j.isci.2019.100789] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/26/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022] Open
Abstract
The ability to precisely modify human genes has been made possible by the development of tools such as meganucleases, zinc finger nucleases, TALENs, and CRISPR/Cas. These now make it possible to generate targeted deletions, insertions, gene knock outs, and point variants; to modulate gene expression by targeting transcription factors or epigenetic machineries to DNA; or to target and modify RNA. Endogenous repair mechanisms are used to make the modifications required in DNA; they include non-homologous end joining, homology-directed repair, homology-independent targeted integration, microhomology-mediated end joining, base-excision repair, and mismatch repair. Off-target effects can be monitored using in silico prediction and sequencing and minimized using Cas proteins with higher accuracy, such as high-fidelity Cas9, enhanced-specificity Cas9, and hyperaccurate Cas9. Alternatives to Cas9 have been identified, including Cpf1, Cas12a, Cas12b, and smaller Cas9 orthologs such as CjCas9. Delivery of gene-editing components is performed ex vivo using standard techniques or in vivo using AAV, lipid nanoparticles, or cell-penetrating peptides. Clinical development of gene-editing technology is progressing in several fields, including immunotherapy in cancer treatment, antiviral therapy for HIV infection, and treatment of genetic disorders such as β-thalassemia, sickle cell disease, lysosomal storage disorders, and retinal dystrophy. Here we review these technological advances and the challenges to their clinical implementation.
Collapse
Affiliation(s)
- Mike Broeders
- Department of Pediatrics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - Pablo Herrero-Hernandez
- Department of Pediatrics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - Martijn P T Ernst
- Department of Pediatrics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - Ans T van der Ploeg
- Department of Pediatrics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - W W M Pim Pijnappel
- Department of Pediatrics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands.
| |
Collapse
|
200
|
Segal DJ. Grand Challenges in Gene and Epigenetic Editing for Neurologic Disease. Front Genome Ed 2020; 1:1. [PMID: 34713209 PMCID: PMC8525068 DOI: 10.3389/fgeed.2019.00001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/23/2019] [Indexed: 12/26/2022] Open
Affiliation(s)
- David J Segal
- Department of Biochemistry and Molecular Medicine, Genome Center, University of California, Davis, Davis, CA, United States
| |
Collapse
|