151
|
Azarkar S, Abedi M, Lavasani ASO, Ammameh AH, Goharipanah F, Baloochi K, Bakhshi H, Jafari A. Curcumin as a natural potential drug candidate against important zoonotic viruses and prions: A narrative review. Phytother Res 2024; 38:3080-3121. [PMID: 38613154 DOI: 10.1002/ptr.8119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 12/09/2023] [Accepted: 12/17/2023] [Indexed: 04/14/2024]
Abstract
Zoonotic diseases are major public health concerns and undeniable threats to human health. Among Zoonotic diseases, zoonotic viruses and prions are much more difficult to eradicate, as they result in higher infections and mortality rates. Several investigations have shown curcumin, the active ingredient of turmeric, to have wide spectrum properties such as anti-microbial, anti-vascular, anti-inflammatory, anti-tumor, anti-neoplastic, anti-oxidant, and immune system modulator properties. In the present study, we performed a comprehensive review of existing in silico, in vitro, and in vivo evidence on the antiviral (54 important zoonotic viruses) and anti-prion properties of curcumin and curcuminoids in PubMed, Google Scholar, Science Direct, Scopus, and Web of Science databases. Database searches yielded 13,380 results, out of which 216 studies were eligible according to inclusion criteria. Of 216 studies, 135 (62.5%), 24 (11.1%), and 19 (8.8%) were conducted on the effect of curcumin and curcuminoids against SARS-CoV-2, Influenza A virus, and dengue virus, respectively. This review suggests curcumin and curcuminoids as promising therapeutic agents against a wide range of viral zoonoses by targeting different proteins and signaling pathways.
Collapse
Affiliation(s)
- Setareh Azarkar
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Masoud Abedi
- Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | | | - Fatemeh Goharipanah
- Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Kimiya Baloochi
- Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hasan Bakhshi
- Vector-Borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirsajad Jafari
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
152
|
Miyani B, Li Y, Guzman HP, Briceno RK, Vieyra S, Hinojosa R, Xagoraraki I. Bioinformatics-based screening tool identifies a wide variety of human and zoonotic viruses in Trujillo-Peru wastewater. One Health 2024; 18:100756. [PMID: 38798735 PMCID: PMC11127556 DOI: 10.1016/j.onehlt.2024.100756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Peru was one of the most affected countries during the COVID-19 pandemic. Moreover, multiple other viral diseases (enteric, respiratory, bloodborne, and vector-borne) are endemic and rising. According to Peru's Ministry of Health, various health facilities in the country were reallocated for the COVID-19 pandemic, thereby leading to reduced action to curb other diseases. Many viral diseases in the area are under-reported and not recognized. The One Health approach, in addition to clinical testing, incorporates environmental surveillance for detection of infectious disease outbreaks. The purpose of this work is to use a screening tool that is based on molecular methods, high throughput sequencing and bioinformatics analysis of wastewater samples to identify virus-related diseases circulating in Trujillo-Peru. To demonstrate the effectiveness of the tool, we collected nine untreated wastewater samples from the Covicorti wastewater utility in Trujillo-Peru on October 22, 2022. High throughput metagenomic sequencing followed by bioinformatic analysis was used to assess the viral diversity of the samples. Our results revealed the presence of sequences associated with multiple human and zoonotic viruses including Orthopoxvirus, Hepatovirus, Rhadinovirus, Parechovirus, Mamastrovirus, Enterovirus, Varicellovirus, Norovirus, Kobuvirus, Bocaparvovirus, Simplexvirus, Spumavirus, Orthohepevirus, Cardiovirus, Molliscipoxvirus, Salivirus, Parapoxvirus, Gammaretrovirus, Alphavirus, Lymphocryptovirus, Erythroparvovirus, Sapovirus, Cosavirus, Deltaretrovirus, Roseolovirus, Flavivirus, Betacoronavirus, Rubivirus, Lentivirus, Betapolyomavirus, Rotavirus, Hepacivirus, Alphacoronavirus, Mastadenovirus, Cytomegalovirus and Alphapapillomavirus. For confirmation purposes, we tested the samples for the presence of selective viruses belonging to the genera detected above. PCR based molecular methods confirmed the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), monkeypox virus (MPXV), noroviruses GI and GII (NoVGI and NoVGII), and rotavirus A (RoA) in our samples. Furthermore, publicly available clinical data for selected viruses confirm our findings. Wastewater or other environmental media surveillance, combined with bioinformatics methods, has the potential to serve as a systematic screening tool for the identification of human or zoonotic viruses that may cause disease. The results of this method can guide further clinical surveillance efforts and allocation of resources. Incorporation of this bioinformatic-based screening tool by public health officials in Peru and other Latin American countries will help manage endemic and emerging diseases that could save human lives and resources.
Collapse
Affiliation(s)
- Brijen Miyani
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States of America
| | - Yabing Li
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States of America
| | - Heidy Peidro Guzman
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States of America
| | - Ruben Kenny Briceno
- Institute for Global Health, Michigan State University, East Lansing, MI, United States of America
| | - Sabrina Vieyra
- Institute for Global Health, Michigan State University, East Lansing, MI, United States of America
| | - Rene Hinojosa
- Institute for Global Health, Michigan State University, East Lansing, MI, United States of America
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States of America
| |
Collapse
|
153
|
Buettcher M, Egli A, Albini S, Altpeter E, Labutin A, Guidi V, Tonolla M, Lienhard R, Opota O, Schmid P, Wuethrich T, Schmidt KM. Tularemia on the rise in Switzerland? A one health approach is needed! Infection 2024; 52:1165-1169. [PMID: 38480644 PMCID: PMC11142933 DOI: 10.1007/s15010-024-02218-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/14/2024] [Indexed: 06/02/2024]
Abstract
In the last 10 years, an increase in tularemia cases has been observed in both humans and animals in Switzerland. In these, infection with Francisella tularensis, the causative agent of the zoonotic disease tularemia, can occur through arthropod vectors or contact to infected animals or exposure to contaminated environmental sources. Currently, we are only able to postulate potential aetiologies: (i) behavioral changes of humans with more exposure to endemic habitats of infected arthropod vectors; (ii) an increased rate of tularemia infected ticks; (iii) increasing number and geographical regions of tick biotopes; (iv) increasing and/or more diverse reservoir populations; (v) increasing presence of bacteria in the environment; (vi) raised awareness and increased testing among physicians; (vii) improved laboratory techniques including molecular testing. To approach these questions, a one-health strategy is necessary. A functioning collaboration between public health, human medicine, and diagnostic and veterinary units for the control of tularemia must be established. Furthermore, the public should be included within citizen-supported-science-projects.
Collapse
Affiliation(s)
- Michael Buettcher
- Paediatric Infectious Diseases, Department of Paediatrics, Children's Hospital of Central Switzerland (KidZ), Lucerne Cantonal Hospital, Spitalstrasse, 6000, Lucerne, Switzerland.
- Faculty of Health Science and Medicine, University Lucerne, Lucerne, Switzerland.
- Paediatric Pharmacology and Pharmacometrics Research Center, University Children's Hospital Basel (UKBB), University Basel, Basel, Switzerland.
| | - Adrian Egli
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
- Coordination Commission of Clinical Microbiology, Swiss Society of Microbiology, Cheseaux-sur-Lausanne, Switzerland
| | - Sarah Albini
- Section for Poultry and Rabbit Diseases, Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | | | - Valeria Guidi
- Institute of Microbiology, University of Applied Sciences of Southern Switzerland-SUPSI, Mendrisio, Switzerland
| | - Mauro Tonolla
- Institute of Microbiology, University of Applied Sciences of Southern Switzerland-SUPSI, Mendrisio, Switzerland
- Department of Plant Biology, Microbiology Unit, University of Geneva, Geneva, Switzerland
| | - Reto Lienhard
- ADMED Microbiologie, La Chaux-de-Fonds, Switzerland
- Swiss National Reference Center for Tick-Borne Pathogen, CNRT, La Chaux-de-Fonds, Switzerland
| | - Onya Opota
- Institute of Microbiology, Lausanne University and Lausanne University Hospital, Lausanne, Switzerland
| | - Patrizia Schmid
- Faculty of Health Science and Medicine, University Lucerne, Lucerne, Switzerland
| | - Tsering Wuethrich
- Spiez Laboratory, Federal Office for Civil Protection (FOCP), Spiez, Switzerland
- Swiss National Reference Center for Highly Pathogenic Bacteria (NABA), Spiez, Switzerland
| | - Kristina M Schmidt
- Spiez Laboratory, Federal Office for Civil Protection (FOCP), Spiez, Switzerland
- Swiss National Reference Center for Highly Pathogenic Bacteria (NABA), Spiez, Switzerland
| |
Collapse
|
154
|
Wang Z, Pei S, Cui H, Zhang J, Jia Z. Zoonotic spillover and extreme weather events drive the global outbreaks of airborne viral emerging infectious diseases. J Med Virol 2024; 96:e29737. [PMID: 38874191 DOI: 10.1002/jmv.29737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/28/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
Outbreaks of airborne viral emerging infectious diseases (EIDs) cause an increasing burden on global public health, particularly with a backdrop of intensified climate change. However, infection sources and drivers for outbreaks of airborne viral EIDs remain unknown. Here, we aim to explore the driving mechanisms of outbreaks based on the one health perspective. Outbreak information for 20 types of airborne viral EIDs was collected from the Global Infectious Disease and Epidemiology Network database and a systematic literature review. Four statistically significant and high-risk spatiotemporal clusters for airborne viral EID outbreaks were identified globally using multivariate scan statistic tests. There were 112 outbreaks with clear infection sources, and zoonotic spillover was the most common source (95.54%, 107/112). Since 1970, the majority of outbreaks occurred in healthcare facilities (24.82%), followed by schools (17.93%) and animal-related settings (15.93%). Significant associations were detected between the number of earthquakes, storms, duration of floods, and airborne viral EIDs' outbreaks using a case-crossover study design and multivariable conditional logistic regression. These findings implied that zoonotic spillover and extreme weather events are driving global outbreaks of airborne viral EIDs, and targeted prevention and control measures should be made to reduce the airborne viral EIDs burden.
Collapse
Affiliation(s)
- Zekun Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Shaojun Pei
- Department of Global Health, School of Public Health, Peking University, Beijing, China
| | - Haoliang Cui
- Department of Global Health, School of Public Health, Peking University, Beijing, China
| | - Jianyi Zhang
- Department of Global Health, School of Public Health, Peking University, Beijing, China
| | - Zhongwei Jia
- Department of Global Health, School of Public Health, Peking University, Beijing, China
- Center for Intelligent Public Health, Institute for Artificial Intelligence, Peking University, Beijing, China
- Center for Drug Abuse Control and Prevention, National Institute of Health Data Science, Peking University, Beijing, China
- Peking University Clinical Research Institute, Beijing, China
| |
Collapse
|
155
|
Islam MM, Farag E, Hassan MM, Enan KA, Mohammadi A, Aldiqs AK, Alhussain H, Al Musalmani E, Al-Zeyara AA, Al-Romaihi H, Yassine HM, Sultan AA, Bansal D, Mkhize-Kwitshana Z. Rodent-borne parasites in Qatar: A possible risk at the human-animal-ecosystem interface. One Health 2024; 18:100708. [PMID: 38496338 PMCID: PMC10944255 DOI: 10.1016/j.onehlt.2024.100708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/16/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024] Open
Abstract
Rodents are known reservoirs for a diverse group of zoonotic pathogens that can pose a threat to human health. Therefore, it is crucial to investigate these pathogens to institute prevention and control measures. To achieve this, the current study was conducted to investigate the frequency of different parasites in commensal rodents in Qatar. A total of 148 rodents, including Rattus norvegicus, Rattus rattus, and Mus musculus were captured using traps placed in different habitats such as agricultural and livestock farms, residential areas, and other localities. Blood, feces, ectoparasite, and visceral organs were collected for gross, microscopic, immunological, and molecular analysis. The study identified 10 different parasites, including Capillaria annulosa, Eimeria spp., Giardia spp., Hymenolepis diminuta, Mastophorus muris, Ornithonyssus bacoti, Taenia taeniaeformis, Toxoplasma gondii, Trypanosoma lewisi, and Xenopsylla astia. Overall, 62.2% of the rodents tested positive for at least one parasite species. Helminths were found to be the most prevalent parasites (46.0%), followed by ectoparasites (31.8%), and protozoa (10.1%). However, individually, X. astia was the most prevalent (31.8%), whereas C. annulosa was the least common (0.7%). The prevalence of X. astia and H. diminuta significantly differed between habitats (p < 0.05). The sequence analysis of Hymenolepis spp. was closely related to the previously reported H. diminuta in Iran, China, and Mexico. In conclusion, the study identified a diverse range of rodent-borne parasites that are important to public health, with most of them being recorded for the first time among commensal rodents in Qatar.
Collapse
Affiliation(s)
- Md Mazharul Islam
- Department of Animal Resources, Ministry of Municipality, Doha, Qatar
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu Natal, Durban 4000, South Africa
| | - Elmoubashar Farag
- Department of Health Protection & Communicable Diseases Control, Ministry of Public Health, Doha, Qatar
| | - Mohammad Mahmudul Hassan
- Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
- Faculty of Veterinary Medicine, Chottogram Veterinary and Animal Sciences University, Khulshi, Chattogram 4225, Bangladesh
| | - Khalid A. Enan
- Preventive Reference Laboratory, Department of Health Protection & Communicable Diseases Control, Ministry of Public Health, Doha, Qatar
| | - Ali Mohammadi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran 1417613151, Iran
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infection Diseases, Pasteur Institute of Iran, Akanlu, Kabudar Ahang, Hamadan 6556153145, Iran
| | | | | | | | | | - Hamad Al-Romaihi
- Department of Health Protection & Communicable Diseases Control, Ministry of Public Health, Doha, Qatar
| | | | - Ali A. Sultan
- Department of Microbiology and Imunology, Weill Cornell Medicine, Cornell University, Doha, Qatar
| | - Devendra Bansal
- Department of Health Protection & Communicable Diseases Control, Ministry of Public Health, Doha, Qatar
| | - Zilungile Mkhize-Kwitshana
- School of Life Sciences, College of Agriculture, Engineering & Science, University of KwaZulu Natal, Durban 4000, South Africa
- South African Medical Research Council, Cape Town 7505, South Africa
| |
Collapse
|
156
|
Douglas KO, Punu G, Van Vliet N. Prioritization of zoonoses of wildlife origin for multisectoral one health collaboration in Guyana, 2022. One Health 2024; 18:100730. [PMID: 38644970 PMCID: PMC11031778 DOI: 10.1016/j.onehlt.2024.100730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/10/2024] [Indexed: 04/23/2024] Open
Abstract
Background The human population in Guyana, located on the South American continent, is vulnerable to zoonotic diseases due to an appreciable reliance on Neotropical wildlife as a food source and for trade. An existing suboptimal health surveillance system may affect the effective monitoring of important zoonotic diseases. To effectively address this deficit, a One Health zoonotic disease prioritization workshop was conducted to identify nationally significant zoonoses. Methods Prioritization of zoonotic diseases was conducted for the first time in Guyana & Caribbean region using literature review, prioritization criteria and a risk prioritization tool in combination with a consultative One Health workshop. This involved multisectoral experts from varied disciplines of social, human, animal, and environmental health to prioritize zoonotic diseases using a modified semi-quantitative One Health Zoonotic Disease Prioritization (OHZDP) tool. The inclusion and exclusion criteria were applied to pathogen hazards in existence among wildlife in Guyana during the hazard identification phase. Results In total, fifty zoonoses were chosen for prioritization. Based on their weighted score, prioritized diseases were ranked in order of relative importance using a one-to-five selection scale. In Guyana, this zoonotic disease prioritization method is the first significant step toward bringing together specialists from the fields of human, animal, and environmental health. Following discussion of the OHZDP Tool output among disease experts, a final zoonotic disease list, including tuberculosis, leptospirosis, gastroenteritis, rabies, coronavirus, orthopoxvirus, viral hemorrhagic fevers, and hepatitis were identified as the top eight priority zoonoses in Guyana. Conclusions This represents the first prioritization of nationally significant zoonotic diseases in Guyana and the English-speaking Caribbean. This One Health strategy to prioritize these eight zoonoses of wildlife origin is a step that will support future tracking and monitoring for disease prevalence among humans and wildlife and can be used as a decision-making guide for policymakers and stakeholders in Guyana.
Collapse
Affiliation(s)
- Kirk O. Douglas
- Centre for Biosecurity Studies, The University of the West Indies, Cave Hill Campus, Cave Hill BB11000, Barbados
| | - Govindra Punu
- Center for International Forestry Research (CIFOR), Jalan CIFOR Situ Gede, Bogor Barat, Bogor 16115, Jawa Barat, Indonesia
| | - Nathalie Van Vliet
- Center for International Forestry Research (CIFOR), Jalan CIFOR Situ Gede, Bogor Barat, Bogor 16115, Jawa Barat, Indonesia
| |
Collapse
|
157
|
de Cock MP, Baede VO, Wijburg SR, Burt SA, van Tiel RF, Wiskerke KK, van der Post JR, van der Poel WH, Sprong H, Maas M. WILDbase: towards a common database to improve wildlife disease surveillance in Europe. Euro Surveill 2024; 29:2300617. [PMID: 38904114 PMCID: PMC11191416 DOI: 10.2807/1560-7917.es.2024.29.25.2300617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/11/2024] [Indexed: 06/22/2024] Open
Abstract
BackgroundTo be better prepared for emerging wildlife-borne zoonoses, we need to strengthen wildlife disease surveillance.AimThe aim of this study was to create a topical overview of zoonotic pathogens in wildlife species to identify knowledge gaps and opportunities for improvement of wildlife disease surveillance.MethodsWe created a database, which is based on a systematic literature review in Embase focused on zoonotic pathogens in 10 common urban wildlife mammals in Europe, namely brown rats, house mice, wood mice, common voles, red squirrels, European rabbits, European hedgehogs, European moles, stone martens and red foxes. In total, we retrieved 6,305 unique articles of which 882 were included.ResultsIn total, 186 zoonotic pathogen species were described, including 90 bacteria, 42 helminths, 19 protozoa, 22 viruses and 15 fungi. Most of these pathogens were only studied in one single animal species. Even considering that some pathogens are relatively species-specific, many European countries have no (accessible) data on zoonotic pathogens in these relevant animal species. We used the Netherlands as an example to show how this database can be used by other countries to identify wildlife disease surveillance gaps on a national level. Only 4% of all potential host-pathogen combinations have been studied in the Netherlands.ConclusionsThis database comprises a comprehensive overview that can guide future research on wildlife-borne zoonotic diseases both on a European and national scale. Sharing and expanding this database provides a solid starting point for future European-wide collaborations to improve wildlife disease surveillance.
Collapse
Affiliation(s)
- Marieke P de Cock
- Wageningen University and Research, Quantitative Veterinary Epidemiology, Wageningen, The Netherlands
- National Institute for Public Health and the Environment, Centre for Infectious Disease Control, Bilthoven, The Netherlands
| | - Valérie O Baede
- National Institute for Public Health and the Environment, Centre for Infectious Disease Control, Bilthoven, The Netherlands
| | - Sara R Wijburg
- National Institute for Public Health and the Environment, Centre for Infectious Disease Control, Bilthoven, The Netherlands
| | - Sara A Burt
- Utrecht University, Institute for Risk Assessment Science (IRAS), Utrecht, The Netherlands
| | - Robert Fna van Tiel
- Utrecht University, Institute for Risk Assessment Science (IRAS), Utrecht, The Netherlands
| | - Kim K Wiskerke
- Utrecht University, Institute for Risk Assessment Science (IRAS), Utrecht, The Netherlands
| | - Jens Rj van der Post
- Utrecht University, Institute for Risk Assessment Science (IRAS), Utrecht, The Netherlands
| | - Wim Hm van der Poel
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Wageningen University and Research, Quantitative Veterinary Epidemiology, Wageningen, The Netherlands
| | - Hein Sprong
- National Institute for Public Health and the Environment, Centre for Infectious Disease Control, Bilthoven, The Netherlands
| | - Miriam Maas
- National Institute for Public Health and the Environment, Centre for Infectious Disease Control, Bilthoven, The Netherlands
| |
Collapse
|
158
|
Sereme Y, Zarza SM, Medkour H, Mezouar S, Dotras L, Barciela A, Hernandez-Aguilar RA, Vitte J, Šmajs D, Louni M, Mulot B, Leclerc A, Guéry JP, Orain N, Diatta G, Sokhna C, Raoult D, Davoust B, Fenollar F, Mediannikov O. Treponematosis in critically endangered Western chimpanzees ( Pan troglodytes verus) in Senegal. One Health 2024; 18:100694. [PMID: 39010964 PMCID: PMC11247300 DOI: 10.1016/j.onehlt.2024.100694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/10/2024] [Indexed: 07/17/2024] Open
Abstract
Treponematoses encompass a group of chronic and debilitating bacterial diseases transmitted sexually or by direct contact and attributed to Treponema pallidum. Despite being documented since as far back as 1963, the epidemiology of treponematoses in wild primates has remained an uninvestigated territory due to the inherent challenges associated with conducting examinations and obtaining invasive biological samples from wild animals. The primary aim of this study was to investigate the presence of treponemal infections in the critically endangered Western chimpanzees in Senegal, utilizing an innovative non-invasive stool serology method. We provide compelling evidence of the existence of anti-Treponema-specific antibodies in 13 out of 29 individual chimpanzees. Our study also underscores the significant potential of stool serology as a valuable non-invasive tool for monitoring and surveilling crucial emerging diseases in wild animals. We recognize two major implications: (1) the imperative need to assess the risks of treponematosis in Western chimpanzee populations and (2) the necessity to monitor and manage this disease following a holistic One Health approach.
Collapse
Affiliation(s)
- Youssouf Sereme
- IHU-Méditerranée Infection, Marseille, France
- Aix-Marseille Univ., IRD, AP-HM, MEPHI, Marseille, France
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades, Paris, France
| | - Sandra Madariaga Zarza
- IHU-Méditerranée Infection, Marseille, France
- Aix-Marseille Univ., IRD, AP-HM, MEPHI, Marseille, France
| | - Hacène Medkour
- IHU-Méditerranée Infection, Marseille, France
- Aix-Marseille Univ., IRD, AP-HM, MEPHI, Marseille, France
| | - Soraya Mezouar
- IHU-Méditerranée Infection, Marseille, France
- Aix-Marseille Univ., IRD, AP-HM, MEPHI, Marseille, France
| | - Laia Dotras
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
- Department of Social Psychology and Quantitative Psychology, University of Barcelona, Barcelona, Spain
| | - Amanda Barciela
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
| | - R. Adriana Hernandez-Aguilar
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
- Department of Social Psychology and Quantitative Psychology, University of Barcelona, Barcelona, Spain
- Serra Hunter Programme, Generalitat de Catalunya, Spain
| | - Joana Vitte
- IHU-Méditerranée Infection, Marseille, France
- Aix-Marseille Univ., IRD, AP-HM, MEPHI, Marseille, France
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice, Czech Republic
| | - Meriem Louni
- IHU-Méditerranée Infection, Marseille, France
- Aix-Marseille Univ., IRD, AP-HM, MEPHI, Marseille, France
| | | | | | | | - Nicolas Orain
- IHU-Méditerranée Infection, Marseille, France
- Aix-Marseille Univ., IRD, AP-HM, MEPHI, Marseille, France
| | - Georges Diatta
- Aix-Marseille Univ., IRD, AP-HM, SSA, VITROME, Marseille, France
- VITROME, Campus International UCAD-IRD, Dakar, Senegal
| | - Cheikh Sokhna
- IHU-Méditerranée Infection, Marseille, France
- Aix-Marseille Univ., IRD, AP-HM, SSA, VITROME, Marseille, France
- VITROME, Campus International UCAD-IRD, Dakar, Senegal
| | - Didier Raoult
- IHU-Méditerranée Infection, Marseille, France
- Aix-Marseille Univ., IRD, AP-HM, MEPHI, Marseille, France
| | - Bernard Davoust
- IHU-Méditerranée Infection, Marseille, France
- Aix-Marseille Univ., IRD, AP-HM, MEPHI, Marseille, France
| | - Florence Fenollar
- IHU-Méditerranée Infection, Marseille, France
- Aix-Marseille Univ., IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Oleg Mediannikov
- IHU-Méditerranée Infection, Marseille, France
- Aix-Marseille Univ., IRD, AP-HM, MEPHI, Marseille, France
| |
Collapse
|
159
|
Luu OTK, Khuong LQ, Tran TTP, Nguyen TD, Nguyen HM, Van Hoang M. Self-reported Communicable Diseases and Associated Socio-demographic Status Among Ethnic Minority Populations in Vietnam. J Racial Ethn Health Disparities 2024; 11:1238-1245. [PMID: 37099240 PMCID: PMC10132417 DOI: 10.1007/s40615-023-01602-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/21/2023] [Accepted: 04/11/2023] [Indexed: 04/27/2023]
Abstract
INTRODUCTION This study was conducted to identify the self-reported communicable diseases (CDs) rate and associated factors among ethnic minority populations in Vietnam. METHODS We conducted a cross-sectional study of 6912 ethnic minority participants from 12 provinces located in four socioeconomic regions in Vietnam. A total of 4985 participants were included in the final analysis. We used a structured questionnaire to collect information on self-reported CDs and socio-demographic information. RESULTS The results showed that the prevalence of self-reported CDs was 5.7% (95% CI: 5.0-6.4%). Ethnicity was shown to have an independently significant correlation to self-reported CDs. The Cham Ninh Thuan, Tay, Dao and Gie Trieng ethnic populations had significantly higher odds of self-reported CDs than those of La Hu ethnicity (OR = 47.1, 6.3, 5.6, and 6.5, respectively). Older people and males had significantly higher odds of having CDs than younger and females. CONCLUSION Our findings recommend conducting ethnic-specific interventions to diminish the incidence of CDs.
Collapse
Affiliation(s)
- Oanh Thi Kim Luu
- Hanoi University of Public Health, 1A Duc Thang Road, Duc Thang District, Hanoi, 100000, North Tu Liem, Vietnam.
| | - Long Quynh Khuong
- Hanoi University of Public Health, 1A Duc Thang Road, Duc Thang District, Hanoi, 100000, North Tu Liem, Vietnam
| | - Thao Thi Phuong Tran
- Hanoi University of Public Health, 1A Duc Thang Road, Duc Thang District, Hanoi, 100000, North Tu Liem, Vietnam
| | - Thanh Duc Nguyen
- Hanoi University of Public Health, 1A Duc Thang Road, Duc Thang District, Hanoi, 100000, North Tu Liem, Vietnam
| | - Huong Mai Nguyen
- General Office for Population and Family Planning, Vietnam Ministry of Health, Hanoi, Vietnam
| | - Minh Van Hoang
- Hanoi University of Public Health, 1A Duc Thang Road, Duc Thang District, Hanoi, 100000, North Tu Liem, Vietnam
| |
Collapse
|
160
|
Abebe S, Melaku H, Kidanu AG, Tschopp R. Pastoralism and Resulting Challenges for National Parks in Afar, Ethiopia. ECOHEALTH 2024:10.1007/s10393-024-01687-6. [PMID: 38819755 DOI: 10.1007/s10393-024-01687-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
Pastoralists and national parks are key stakeholders in the management and conservation of natural and protected habitats. In Ethiopia, Afar pastoralists migrate seasonally with their livestock in search for grazing and water areas. Livestock are also a source of infectious diseases that can spread into wildlife populations when pastoralists encroach into unfenced national parks. The interactions between pastoralists and national parks, as well as the subsequent impacts, remain insufficiently understood in Afar. Two structured questionnaire surveys were conducted in 2021, including 300 pastoralist households in seven woredas of Afar, and 58 staff from three national parks (Awash, Alidegi and Yangudi Rassa). They captured pastoralist movements and livestock diseases as well as the perception of national park staff regarding challenges resulting from pastoral encroachment into parks. Among the pastoralists, 74.7% migrated with their livestock for a mean 3.5 months per year, during which time, 90% of respondents reported contact with other livestock herds, and over 80% with wildlife. A third (34.2%) reported disease outbreaks in their village prior to migration. Pastoralists traveled long distances, crossing woreda, regional or national boundaries. All 58-park respondents reported pastoralists with livestock inside their park and their close contact with wildlife. Additionally, 69% reported the presence of domestic dogs. Wildlife displacement, habitat loss and dog attacks on wildlife were perceived as the main threat caused by the presence of pastoralists, whereas diseases were only mentioned by 15.5%. Overall, park staff showed poor disease knowledge. They reported poor disease surveillance and no disease response. Within pastoral contexts, improved collaboration between wildlife and livestock authorities regarding land use, disease awareness and surveillance is needed to balance the needs of both wildlife and pastoralist's livestock development and mitigate threats to wildlife habitats.
Collapse
Affiliation(s)
- Samson Abebe
- Armauer Hansen Research Institute, Jimma Road, PO Box 1005, Addis Ababa, Ethiopia
| | - Hamere Melaku
- Ethiopian Wildlife Conservation Authority, Ras Abebe Aregay Street, PO Box 386, Addis Ababa, Ethiopia
| | | | - Rea Tschopp
- Armauer Hansen Research Institute, Jimma Road, PO Box 1005, Addis Ababa, Ethiopia.
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
161
|
Nguyen KT, Rima XY, Nguyen LTH, Wang X, Kwak KJ, Yoon MJ, Li H, Chiang CL, Doon-Ralls J, Scherler K, Fallen S, Godfrey SL, Wallick JA, Magaña SM, Palmer AF, Lee I, Nunn CC, Reeves KM, Kaplan HG, Goldman JD, Heath JR, Wang K, Pancholi P, Lee LJ, Reátegui E. Integrated Antigenic and Nucleic Acid Detection in Single Virions and Extracellular Vesicles with Viral Content. Adv Healthc Mater 2024:e2400622. [PMID: 38820600 DOI: 10.1002/adhm.202400622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/06/2024] [Indexed: 06/02/2024]
Abstract
Virion-mediated outbreaks are imminent and despite rapid responses, continue to cause adverse symptoms and death. Therefore, tunable, sensitive, high-throughput assays are needed to help diagnose future virion-mediated outbreaks. Herein, it is developed a tunable in situ assay to selectively enrich virions and extracellular vesicles (EVs) and simultaneously detect antigens and nucleic acids at a single-particle resolution. The Biochip Antigen and RNA Assay (BARA) enhanced sensitivities compared to quantitative reverse-transcription polymerase chain reaction (qRT-PCR), enabling the detection of virions in asymptomatic patients, genetic mutations in single virions, and enabling the continued long-term expression of viral RNA in the EV-enriched subpopulation in the plasma of patients with post-acute sequelae of the coronavirus disease of 2019 (COVID-19). BARA revealed highly accurate diagnoses of COVID-19 by simultaneously detecting the spike glycoprotein and nucleocapsid-encoding RNA in saliva and nasopharyngeal swab samples. Altogether, the single-particle detection of antigens and viral RNA provides a tunable framework for the diagnosis, monitoring, and mutation screening of current and future outbreaks.
Collapse
Affiliation(s)
- Kim Truc Nguyen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Xilal Y Rima
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Diabetes and Metabolism Research Center, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Luong T H Nguyen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Xinyu Wang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | | | - Min Jin Yoon
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Hong Li
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Chi-Ling Chiang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Jacob Doon-Ralls
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | | | | | | | | | - Setty M Magaña
- Translational Neuroimmunology, Center for Clinical and Translational Research, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Inyoul Lee
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | | | | | - Henry G Kaplan
- Providence Swedish Cancer Institute, Seattle, WA, 98104, USA
| | - Jason D Goldman
- Providence Swedish Medical Center, Seattle, WA, 98104, USA
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, 98195, USA
| | - James R Heath
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Kai Wang
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Preeti Pancholi
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, 43203, USA
| | - L James Lee
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Eduardo Reátegui
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
162
|
Halabi S, Gostin LO, Egbokhare O, Kavanagh MM. Global Health Law for a Safer and Fairer World. N Engl J Med 2024; 390:1925-1931. [PMID: 38718375 DOI: 10.1056/nejmms2403267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Affiliation(s)
- Sam Halabi
- From the O'Neill Institute for National and Global Health Law, Georgetown University Law Center and Georgetown University School of Health, Washington, DC
| | - Lawrence O Gostin
- From the O'Neill Institute for National and Global Health Law, Georgetown University Law Center and Georgetown University School of Health, Washington, DC
| | - Olohikhuae Egbokhare
- From the O'Neill Institute for National and Global Health Law, Georgetown University Law Center and Georgetown University School of Health, Washington, DC
| | - Matthew M Kavanagh
- From the O'Neill Institute for National and Global Health Law, Georgetown University Law Center and Georgetown University School of Health, Washington, DC
| |
Collapse
|
163
|
Haq Z, Nazir J, Manzoor T, Saleem A, Hamadani H, Khan AA, Saleem Bhat S, Jha P, Ahmad SM. Zoonotic spillover and viral mutations from low and middle-income countries: improving prevention strategies and bridging policy gaps. PeerJ 2024; 12:e17394. [PMID: 38827296 PMCID: PMC11144393 DOI: 10.7717/peerj.17394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/25/2024] [Indexed: 06/04/2024] Open
Abstract
The increasing frequency of zoonotic spillover events and viral mutations in low and middle-income countries presents a critical global health challenge. Contributing factors encompass cultural practices like bushmeat consumption, wildlife trade for traditional medicine, habitat disruption, and the encroachment of impoverished settlements onto natural habitats. The existing "vaccine gap" in many developing countries exacerbates the situation by allowing unchecked viral replication and the emergence of novel mutant viruses. Despite global health policies addressing the root causes of zoonotic disease emergence, there is a significant absence of concrete prevention-oriented initiatives, posing a potential risk to vulnerable populations. This article is targeted at policymakers, public health professionals, researchers, and global health stakeholders, particularly those engaged in zoonotic disease prevention and control in low and middle-income countries. The article underscores the importance of assessing potential zoonotic diseases at the animal-human interface and comprehending historical factors contributing to spillover events. To bridge policy gaps, comprehensive strategies are proposed that include education, collaborations, specialized task forces, environmental sampling, and the establishment of integrated diagnostic laboratories. These strategies advocate simplicity and unity, breaking down barriers, and placing humanity at the forefront of addressing global health challenges. Such a strategic and mental shift is crucial for constructing a more resilient and equitable world in the face of emerging zoonotic threats.
Collapse
Affiliation(s)
- Zulfqarul Haq
- ICMR project, Division of Livestock Production and Management, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| | - Junaid Nazir
- Department of Clinical Biochemistry, Lovely Professional University, Phagwara, Punjab, India
- Division of Animal Biotechnology, Faculty of veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| | - Tasaduq Manzoor
- Division of Animal Biotechnology, Faculty of veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| | - Afnan Saleem
- Division of Animal Biotechnology, Faculty of veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| | - H. Hamadani
- ICMR project, Division of Livestock Production and Management, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| | - Azmat Alam Khan
- ICMR project, Division of Livestock Production and Management, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| | - Sahar Saleem Bhat
- Division of Animal Biotechnology, Faculty of veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| | - Priyanka Jha
- Department of Clinical Biochemistry, Lovely Professional University, Phagwara, Punjab, India
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Faculty of veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
164
|
Moraes IDS, Silva VLDB, de Andrade-Silva BE, Gomes APN, de Urzedo NF, Abolis VB, Gonçalves RDS, Arpon KV, de Assis-Silva ZM, da Silva LF, Zago EA, Gonçalves MB, Braga ÍA, Saturnino KC, Colodel EM, Júnior AM, Pacheco RDC, Ramos DGDS. Gastrointestinal Helminths in Wild Felids in the Cerrado and Pantanal: Zoonotic Bioindicators in Important Brazilian Biomes. Animals (Basel) 2024; 14:1622. [PMID: 38891670 PMCID: PMC11171020 DOI: 10.3390/ani14111622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Environmental changes in the Brazilian Pantanal and Cerrado facilitate the spread of parasitic diseases in wildlife, with significant implications for public health owing to their zoonotic potential. This study aimed to examine the occurrence and diversity of gastrointestinal parasites in wild felids within these regions to assess their ecological and health impacts. We collected and analyzed helminth-positive samples from 27 wild felids using specific taxonomic keys. Diverse parasitic taxa were detected, including zoonotic helminths, such as Ancylostoma braziliense, Ancylostoma caninum, Ancylostoma pluridentatum, Toxocara cati, Toxocara canis, Dipylidium caninum, Taenia spp., Echinococcus spp., and Spirometra spp. Other nematodes, such as Physaloptera praeputialis and Physaloptera anomala, were identified, along with acanthocephalans from the genus Oncicola and a trematode, Neodiplostomum spp. (potentially the first record of this parasite in wild felids in the Americas). Human encroachment into natural habitats has profound effects on wild populations, influencing parasitic infection rates and patterns. This study underscores the importance of continuous monitoring and research on parasitic infections as a means of safeguarding both wildlife and human populations and highlights the role of wild felids as bioindicators of environmental health.
Collapse
Affiliation(s)
- Iago de Sá Moraes
- Laboratório de Parasitologia e Análises Clínicas Veterinária, Instituto de Ciências Agrárias, Universidade Federal de Jataí, Jataí 75801-615, GO, Brazil; (I.d.S.M.); (N.F.d.U.); (V.B.A.); (Z.M.d.A.-S.); (L.F.d.S.); (Í.A.B.)
| | - Victória Luiza de Barros Silva
- Laboratório de Parasitologia Veterinária e Doenças Parasitárias dos Animais Domésticos e Silvestres, Faculdade de Medicina Veterinária, Universidade Federal de Mato Grosso, Cuiabá 78060-900, MT, Brazil; (V.L.d.B.S.); (E.A.Z.); (M.B.G.); (R.d.C.P.)
| | - Beatriz Elise de Andrade-Silva
- Laboratório de Biologia e Parasitologia de Mamíferos Reservatórios, Instituto Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (B.E.d.A.-S.); (A.P.N.G.); (R.d.S.G.); (K.V.A.); (A.M.J.)
| | - Ana Paula Nascimento Gomes
- Laboratório de Biologia e Parasitologia de Mamíferos Reservatórios, Instituto Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (B.E.d.A.-S.); (A.P.N.G.); (R.d.S.G.); (K.V.A.); (A.M.J.)
| | - Nicoly Ferreira de Urzedo
- Laboratório de Parasitologia e Análises Clínicas Veterinária, Instituto de Ciências Agrárias, Universidade Federal de Jataí, Jataí 75801-615, GO, Brazil; (I.d.S.M.); (N.F.d.U.); (V.B.A.); (Z.M.d.A.-S.); (L.F.d.S.); (Í.A.B.)
| | - Vitória Breda Abolis
- Laboratório de Parasitologia e Análises Clínicas Veterinária, Instituto de Ciências Agrárias, Universidade Federal de Jataí, Jataí 75801-615, GO, Brazil; (I.d.S.M.); (N.F.d.U.); (V.B.A.); (Z.M.d.A.-S.); (L.F.d.S.); (Í.A.B.)
| | - Renata de Souza Gonçalves
- Laboratório de Biologia e Parasitologia de Mamíferos Reservatórios, Instituto Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (B.E.d.A.-S.); (A.P.N.G.); (R.d.S.G.); (K.V.A.); (A.M.J.)
| | - Karina Varella Arpon
- Laboratório de Biologia e Parasitologia de Mamíferos Reservatórios, Instituto Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (B.E.d.A.-S.); (A.P.N.G.); (R.d.S.G.); (K.V.A.); (A.M.J.)
| | - Zara Mariana de Assis-Silva
- Laboratório de Parasitologia e Análises Clínicas Veterinária, Instituto de Ciências Agrárias, Universidade Federal de Jataí, Jataí 75801-615, GO, Brazil; (I.d.S.M.); (N.F.d.U.); (V.B.A.); (Z.M.d.A.-S.); (L.F.d.S.); (Í.A.B.)
| | - Lizandra Fernandes da Silva
- Laboratório de Parasitologia e Análises Clínicas Veterinária, Instituto de Ciências Agrárias, Universidade Federal de Jataí, Jataí 75801-615, GO, Brazil; (I.d.S.M.); (N.F.d.U.); (V.B.A.); (Z.M.d.A.-S.); (L.F.d.S.); (Í.A.B.)
| | - Ellen Amanda Zago
- Laboratório de Parasitologia Veterinária e Doenças Parasitárias dos Animais Domésticos e Silvestres, Faculdade de Medicina Veterinária, Universidade Federal de Mato Grosso, Cuiabá 78060-900, MT, Brazil; (V.L.d.B.S.); (E.A.Z.); (M.B.G.); (R.d.C.P.)
| | - Michelle Benevides Gonçalves
- Laboratório de Parasitologia Veterinária e Doenças Parasitárias dos Animais Domésticos e Silvestres, Faculdade de Medicina Veterinária, Universidade Federal de Mato Grosso, Cuiabá 78060-900, MT, Brazil; (V.L.d.B.S.); (E.A.Z.); (M.B.G.); (R.d.C.P.)
| | - Ísis Assis Braga
- Laboratório de Parasitologia e Análises Clínicas Veterinária, Instituto de Ciências Agrárias, Universidade Federal de Jataí, Jataí 75801-615, GO, Brazil; (I.d.S.M.); (N.F.d.U.); (V.B.A.); (Z.M.d.A.-S.); (L.F.d.S.); (Í.A.B.)
| | - Klaus Casaro Saturnino
- Laboratório de Anatomia Patológica Veterinária, Instituto de Ciências Agrárias, Universidade Federal de Jataí, Jataí 75801-615, GO, Brazil;
| | - Edson Moleta Colodel
- Laboratório de Patologia Veterinária, Faculdade de Medicina Veterinária, Universidade Federal de Mato Grosso, Cuiabá 78060-900, MT, Brazil;
| | - Arnaldo Maldonado Júnior
- Laboratório de Biologia e Parasitologia de Mamíferos Reservatórios, Instituto Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (B.E.d.A.-S.); (A.P.N.G.); (R.d.S.G.); (K.V.A.); (A.M.J.)
| | - Richard de Campos Pacheco
- Laboratório de Parasitologia Veterinária e Doenças Parasitárias dos Animais Domésticos e Silvestres, Faculdade de Medicina Veterinária, Universidade Federal de Mato Grosso, Cuiabá 78060-900, MT, Brazil; (V.L.d.B.S.); (E.A.Z.); (M.B.G.); (R.d.C.P.)
| | - Dirceu Guilherme de Souza Ramos
- Laboratório de Parasitologia e Análises Clínicas Veterinária, Instituto de Ciências Agrárias, Universidade Federal de Jataí, Jataí 75801-615, GO, Brazil; (I.d.S.M.); (N.F.d.U.); (V.B.A.); (Z.M.d.A.-S.); (L.F.d.S.); (Í.A.B.)
| |
Collapse
|
165
|
Leandri M, Dalmas L. One Health Economics: why and how economics should take on the interdisciplinary challenges of a promising public health paradigm. Front Public Health 2024; 12:1379176. [PMID: 38883196 PMCID: PMC11177617 DOI: 10.3389/fpubh.2024.1379176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
In this perspective paper, we argue that Economics could and should contribute to the development and implementation of the One Health approach currently emerging as a relevant interdisciplinary framework to address present and future infectious diseases. We show how proven tools from Health and Environmental Economics, such as burden evaluation, can be extended to fit the One Health multisectoral perspective. This global health framework could also benefit significantly from Economics to design efficient schemes for prevention and disease control. In return, adapting Economics to the challenges of One Health issues could pave the way for exciting developments in the Economics discipline itself, across many subfields.
Collapse
Affiliation(s)
- Marc Leandri
- UMI SOURCE, Université Paris-Saclay, UVSQ, IRD, Guyancourt, France
| | - Laurent Dalmas
- UMI SOURCE, Université Paris-Saclay, UVSQ, IRD, Guyancourt, France
| |
Collapse
|
166
|
Ng TW, Furuyama W, Wirchnianski AS, Saavedra-Ávila NA, Johndrow CT, Chandran K, Jacobs WR, Marzi A, Porcelli SA. A viral vaccine design harnessing prior BCG immunization confers protection against Ebola virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.595735. [PMID: 38853867 PMCID: PMC11160617 DOI: 10.1101/2024.05.28.595735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Previous studies have demonstrated the efficacy and feasibility of an anti-viral vaccine strategy that takes advantage of pre-existing CD4 + helper T (Th) cells induced by Mycobacterium bovis bacille Calmette-Guérin (BCG) vaccination. This strategy uses immunization with recombinant fusion proteins comprised of a cell surface expressed viral antigen, such as a viral envelope glycoprotein, engineered to contain well-defined BCG Th cell epitopes, thus rapidly recruiting Th cells induced by prior BCG vaccination to provide intrastructural help to virus-specific B cells. In the current study, we show that Th cells induced by BCG were localized predominantly outside of germinal centers and promoted antibody class switching to isotypes characterized by strong Fc receptor interactions and effector functions. Furthermore, BCG vaccination also upregulated FcγR expression to potentially maximize antibody-dependent effector activities. Using a mouse model of Ebola virus (EBOV) infection, this vaccine strategy provided sustained antibody levels with strong IgG2c bias and protection against lethal challenge. This general approach can be easily adapted to other viruses, and may be a rapid and effective method of immunization against emerging pandemics in populations that routinely receive BCG vaccination.
Collapse
|
167
|
Breban R. Emergence failure of early epidemics: A mathematical modeling approach. PLoS One 2024; 19:e0301415. [PMID: 38809831 PMCID: PMC11135784 DOI: 10.1371/journal.pone.0301415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/16/2024] [Indexed: 05/31/2024] Open
Abstract
Epidemic or pathogen emergence is the phenomenon by which a poorly transmissible pathogen finds its evolutionary pathway to become a mutant that can cause an epidemic. Many mathematical models of pathogen emergence rely on branching processes. Here, we discuss pathogen emergence using Markov chains, for a more tractable analysis, generalizing previous work by Kendall and Bartlett about disease invasion. We discuss the probability of emergence failure for early epidemics, when the number of infected individuals is small and the number of the susceptible individuals is virtually unlimited. Our formalism addresses both directly transmitted and vector-borne diseases, in the cases where the original pathogen is 1) one step-mutation away from the epidemic strain, and 2) undergoing a long chain of neutral mutations that do not change the epidemiology. We obtain analytic results for the probabilities of emergence failure and two features transcending the transmission mechanism. First, the reproduction number of the original pathogen is determinant for the probability of pathogen emergence, more important than the mutation rate or the transmissibility of the emerged pathogen. Second, the probability of mutation within infected individuals must be sufficiently high for the pathogen undergoing neutral mutations to start an epidemic, the mutation threshold depending again on the basic reproduction number of the original pathogen. Finally, we discuss the parameterization of models of pathogen emergence, using SARS-CoV1 as an example of zoonotic emergence and HIV as an example for the emergence of drug resistance. We also discuss assumptions of our models and implications for epidemiology.
Collapse
Affiliation(s)
- Romulus Breban
- Institut Pasteur, Unité d’Epidémiologie des Maladies Emergentes, Paris, France
| |
Collapse
|
168
|
Tschritter CM, van Coeverden de Groot P, Branigan M, Dyck M, Sun Z, Jenkins E, Buhler K, Lougheed SC. The geographic distribution, and the biotic and abiotic predictors of select zoonotic pathogen detections in Canadian polar bears. Sci Rep 2024; 14:12027. [PMID: 38797747 PMCID: PMC11128453 DOI: 10.1038/s41598-024-62800-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 05/21/2024] [Indexed: 05/29/2024] Open
Abstract
Increasing Arctic temperatures are facilitating the northward expansion of more southerly hosts, vectors, and pathogens, exposing naïve populations to pathogens not typical at northern latitudes. To understand such rapidly changing host-pathogen dynamics, we need sensitive and robust surveillance tools. Here, we use a novel multiplexed magnetic-capture and droplet digital PCR (ddPCR) tool to assess a sentinel Arctic species, the polar bear (Ursus maritimus; n = 68), for the presence of five zoonotic pathogens (Erysipelothrix rhusiopathiae, Francisella tularensis, Mycobacterium tuberculosis complex, Toxoplasma gondii and Trichinella spp.), and observe associations between pathogen presence and biotic and abiotic predictors. We made two novel detections: the first detection of a Mycobacterium tuberculosis complex member in Arctic wildlife and the first of E. rhusiopathiae in a polar bear. We found a prevalence of 37% for E. rhusiopathiae, 16% for F. tularensis, 29% for Mycobacterium tuberculosis complex, 18% for T. gondii, and 75% for Trichinella spp. We also identify associations with bear age (Trichinella spp.), harvest season (F. tularensis and MTBC), and human settlements (E. rhusiopathiae, F. tularensis, MTBC, and Trichinella spp.). We demonstrate that monitoring a sentinel species, the polar bear, could be a powerful tool in disease surveillance and highlight the need to better characterize pathogen distributions and diversity in the Arctic.
Collapse
Affiliation(s)
| | | | - Marsha Branigan
- Department of Environment and Climate Change, Government of the Northwest Territories, Inuvik, Northwest Territories, Canada
| | - Markus Dyck
- Department of Environment, Government of Nunavut, Igloolik, NT, Canada
| | - Zhengxin Sun
- Department of Biology, Queen's University, Kingston, ON, Canada
| | - Emily Jenkins
- Western College of Veterinary Medicine (WCVM), Saskatoon, SK, Canada
| | - Kayla Buhler
- Western College of Veterinary Medicine (WCVM), Saskatoon, SK, Canada
| | | |
Collapse
|
169
|
Conteddu K, English HM, Byrne AW, Amin B, Griffin LL, Kaur P, Morera-Pujol V, Murphy KJ, Salter-Townshend M, Smith AF, Ciuti S. A scoping review on bovine tuberculosis highlights the need for novel data streams and analytical approaches to curb zoonotic diseases. Vet Res 2024; 55:64. [PMID: 38773649 PMCID: PMC11110237 DOI: 10.1186/s13567-024-01314-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 03/20/2024] [Indexed: 05/24/2024] Open
Abstract
Zoonotic diseases represent a significant societal challenge in terms of their health and economic impacts. One Health approaches to managing zoonotic diseases are becoming more prevalent, but require novel thinking, tools and cross-disciplinary collaboration. Bovine tuberculosis (bTB) is one example of a costly One Health challenge with a complex epidemiology involving humans, domestic animals, wildlife and environmental factors, which require sophisticated collaborative approaches. We undertook a scoping review of multi-host bTB epidemiology to identify trends in species publication focus, methodologies, and One Health approaches. We aimed to identify knowledge gaps where novel research could provide insights to inform control policy, for bTB and other zoonoses. The review included 532 articles. We found different levels of research attention across episystems, with a significant proportion of the literature focusing on the badger-cattle-TB episystem, with far less attention given to tropical multi-host episystems. We found a limited number of studies focusing on management solutions and their efficacy, with very few studies looking at modelling exit strategies. Only a small number of studies looked at the effect of human disturbances on the spread of bTB involving wildlife hosts. Most of the studies we reviewed focused on the effect of badger vaccination and culling on bTB dynamics with few looking at how roads, human perturbations and habitat change may affect wildlife movement and disease spread. Finally, we observed a lack of studies considering the effect of weather variables on bTB spread, which is particularly relevant when studying zoonoses under climate change scenarios. Significant technological and methodological advances have been applied to bTB episystems, providing explicit insights into its spread and maintenance across populations. We identified a prominent bias towards certain species and locations. Generating more high-quality empirical data on wildlife host distribution and abundance, high-resolution individual behaviours and greater use of mathematical models and simulations are key areas for future research. Integrating data sources across disciplines, and a "virtuous cycle" of well-designed empirical data collection linked with mathematical and simulation modelling could provide additional gains for policy-makers and managers, enabling optimised bTB management with broader insights for other zoonoses.
Collapse
Affiliation(s)
- Kimberly Conteddu
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.
| | - Holly M English
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Andrew W Byrne
- Department of Agriculture, Food and the Marine, One Health Scientific Support Unit, Dublin, Ireland
| | - Bawan Amin
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Laura L Griffin
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Prabhleen Kaur
- School of Mathematics and Statistics, University College Dublin, Dublin, Ireland
| | - Virginia Morera-Pujol
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Kilian J Murphy
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | | | - Adam F Smith
- Department of Wildlife Ecology and Management, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
- The Frankfurt Zoological Society, Frankfurt, Germany
- Department of National Park Monitoring and Animal Management, Bavarian Forest National Park, Grafenau, Germany
| | - Simone Ciuti
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
170
|
Mishra A, Lzaod S, Dutta T, Bhattacharya S. Selective Bacterial Growth Inactivation by pH-Sensitive Sulfanilamide Functionalized Carbon Dots. ACS APPLIED BIO MATERIALS 2024; 7:2752-2761. [PMID: 38662509 DOI: 10.1021/acsabm.3c01130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Carbon dots (CDs) were synthesized hydrothermally by mixing citric acid (CA) and an antifolic agent, sulfanilamide (SNM), employed for pH sensing and bacterial growth inactivation. Sulfanilamide is a prodrug; aromatic hetero cyclization of the amine moiety along with other chemical modifications produces an active pharmacological compound (chloromycetin and miconazole), mostly administered for the treatment of various microbial infections. On the other hand, the efficacy of the sulfanilamide molecule as a drug for antimicrobial activity was very low. We anticipated that the binding of the sulfanilamide molecule on the carbon dot (CD) surface may form antibacterial CDs. Citric acid was hybridized with sulfanilamide during the hydrothermal preparation of the CDs. The molecular fragments of bioactivated sulfanilamide molecule play a crucial role in bacterial growth inactivation for Gram-positive and Gram-negative bacteria. The functional groups of citric acid and sulfanilamide were conserved during the CD formation, facilitating the zwitterionic behavior of CDs associated with its photophysical activity. At low concentrations of CDs, the antibacterial activity was apparent for Gram-positive bacteria only. This Gram-positive bacteria selectivity was also rationalized by zeta potential measurement.
Collapse
Affiliation(s)
- Anurag Mishra
- Department of Chemistry, National Institute of Technology Raipur, Raipur 492010, India
| | - Stanzin Lzaod
- Department of Chemistry, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Tanmay Dutta
- Department of Chemistry, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Sagarika Bhattacharya
- Department of Chemistry, National Institute of Technology Raipur, Raipur 492010, India
| |
Collapse
|
171
|
Chen L, Wang L, Xing Y, Xie J, Su B, Geng M, Ren X, Zhang Y, Liu J, Ma T, Chen M, Miller JE, Dong Y, Song Y, Ma J, Sawyer S. Persistence and Variation of the Indirect Effects of COVID-19 Restrictions on the Spectrum of Notifiable Infectious Diseases in China: Analysis of National Surveillance Among Children and Adolescents From 2018 to 2021. JMIR Public Health Surveill 2024; 10:e47626. [PMID: 38748469 PMCID: PMC11137434 DOI: 10.2196/47626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Beyond the direct effect of COVID-19 infection on young people, the wider impact of the pandemic on other infectious diseases remains unknown. OBJECTIVE This study aims to assess changes in the incidence and mortality of 42 notifiable infectious diseases during the pandemic among children and adolescents in China, compared with prepandemic levels. METHODS The Notifiable Infectious Disease Surveillance System of China was used to detect new cases and fatalities among individuals aged 5-22 years across 42 notifiable infectious diseases spanning from 2018 to 2021. These infectious diseases were categorized into 5 groups: respiratory, gastrointestinal and enterovirus, sexually transmitted and blood-borne, zoonotic, and vector-borne diseases. Each year (2018-2021) was segmented into 4 phases: phase 1 (January 1-22), phase 2 (January 23-April 7), phase 3 (April 8-August 31), and phase 4 (September 1-December 31) according to the varying intensities of pandemic restrictive measures in 2020. Generalized linear models were applied to assess the change in the incidence and mortality within each disease category, using 2018 and 2019 as the reference. RESULTS A total of 4,898,260 incident cases and 3701 deaths were included. The overall incidence of notifiable infectious diseases decreased sharply during the first year of the COVID-19 pandemic (2020) compared with prepandemic levels (2018 and 2019), and then rebounded in 2021, particularly in South China. Across the past 4 years, the number of deaths steadily decreased. The incidence of diseases rebounded differentially by the pandemic phase. For instance, although seasonal influenza dominated respiratory diseases in 2019, it showed a substantial decline during the pandemic (percent change in phase 2 2020: 0.21, 95% CI 0.09-0.50), which persisted until 2021 (percent change in phase 4 2021: 1.02, 95% CI 0.74-1.41). The incidence of gastrointestinal and enterovirus diseases decreased by 33.6% during 2020 but rebounded by 56.9% in 2021, mainly driven by hand, foot, and mouth disease (percent change in phase 3 2021: 1.28, 95% CI 1.17-1.41) and infectious diarrhea (percent change in phase 3 2020: 1.22, 95% CI 1.17-1.28). Sexually transmitted and blood-borne diseases were restrained during the first year of 2021 but rebounded quickly in 2021, mainly driven by syphilis (percent change in phase 3 2020: 1.31, 95% CI 1.23-1.40) and gonorrhea (percent change in phase 3 2020: 1.10, 95% CI 1.05-1.16). Zoonotic diseases were not dampened by the pandemic but continued to increase across the study period, mainly due to brucellosis (percent change in phase 2 2020: 0.94, 95% CI 0.75-1.16). Vector-borne diseases showed a continuous decline during 2020, dominated by hemorrhagic fever (percent change in phase 2 2020: 0.68, 95% CI 0.53-0.87), but rebounded in 2021. CONCLUSIONS The COVID-19 pandemic was associated with a marked decline in notifiable infectious diseases in Chinese children and adolescents. These effects were not sustained, with evidence of a rebound to prepandemic levels by late 2021. To effectively address the postpandemic resurgence of infectious diseases in children and adolescents, it will be essential to maintain disease surveillance and strengthen the implementation of various initiatives. These include extending immunization programs, prioritizing the management of sexually transmitted infections, continuing feasible nonpharmaceutical intervention projects, and effectively managing imported infections.
Collapse
Affiliation(s)
- Li Chen
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China
| | - Liping Wang
- Division of Infectious Disease Control and Prevention, Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yi Xing
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China
| | - Junqing Xie
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Binbin Su
- Institute of Population Research, Peking University Asia-Pacific Economic Cooperation Health Sciences Academy, Beijing, China
| | - Mengjie Geng
- Division of Infectious Disease Control and Prevention, Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiang Ren
- Division of Infectious Disease Control and Prevention, Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yi Zhang
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China
| | - Jieyu Liu
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China
| | - Tao Ma
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China
| | - Manman Chen
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China
| | - Jessica E Miller
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Yanhui Dong
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China
| | - Yi Song
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China
| | - Jun Ma
- Institute of Child and Adolescent Health, School of Public Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China
| | - Susan Sawyer
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
172
|
Gupta P, Hiller A, Chowdhury J, Lim D, Lim DY, Saeij JPJ, Babaian A, Rodriguez F, Pereira L, Morales-Tapia A. A parasite odyssey: An RNA virus concealed in Toxoplasma gondii. Virus Evol 2024; 10:veae040. [PMID: 38817668 PMCID: PMC11137675 DOI: 10.1093/ve/veae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/05/2024] [Accepted: 05/10/2024] [Indexed: 06/01/2024] Open
Abstract
We are entering a 'Platinum Age of Virus Discovery', an era marked by exponential growth in the discovery of virus biodiversity, and driven by advances in metagenomics and computational analysis. In the ecosystem of a human (or any animal) there are more species of viruses than simply those directly infecting the animal cells. Viruses can infect all organisms constituting the microbiome, including bacteria, fungi, and unicellular parasites. Thus the complexity of possible interactions between host, microbe, and viruses is unfathomable. To understand this interaction network we must employ computationally assisted virology as a means of analyzing and interpreting the millions of available samples to make inferences about the ways in which viruses may intersect human health. From a computational viral screen of human neuronal datasets, we identified a novel narnavirus Apocryptovirus odysseus (Ao) which likely infects the neurotropic parasite Toxoplasma gondii. Previously, several parasitic protozoan viruses (PPVs) have been mechanistically established as triggers of host innate responses, and here we present in silico evidence that Ao is a plausible pro-inflammatory factor in human and mouse cells infected by T. gondii. T. gondii infects billions of people worldwide, yet the prognosis of toxoplasmosis disease is highly variable, and PPVs like Ao could function as a hitherto undescribed hypervirulence factor. In a broader screen of over 7.6 million samples, we explored phylogenetically proximal viruses to Ao and discovered nineteen Apocryptovirus species, all found in libraries annotated as vertebrate transcriptome or metatranscriptomes. While samples containing this genus of narnaviruses are derived from sheep, goat, bat, rabbit, chicken, and pigeon samples, the presence of virus is strongly predictive of parasitic Apicomplexa nucleic acid co-occurrence, supporting the fact that Apocryptovirus is a genus of parasite-infecting viruses. This is a computational proof-of-concept study in which we rapidly analyze millions of datasets from which we distilled a mechanistically, ecologically, and phylogenetically refined hypothesis. We predict that this highly diverged Ao RNA virus is biologically a T. gondii infection, and that Ao, and other viruses like it, will modulate this disease which afflicts billions worldwide.
Collapse
Affiliation(s)
- Purav Gupta
- The Woodlands Secondary School, 3225 Erindale Station Rd,Mississauga, ON L5C 1Y5, Canada
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- The Donnelly Centre for Cellular + Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
- The Woodlands Secondary School, 3225 Erindale Station Rd, Mississauga, ON L5C 1Y5, Canada
| | - Aiden Hiller
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- The Donnelly Centre for Cellular + Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
- The Woodlands Secondary School, 3225 Erindale Station Rd, Mississauga, ON L5C 1Y5, Canada
| | - Jawad Chowdhury
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- The Donnelly Centre for Cellular + Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
- The Woodlands Secondary School, 3225 Erindale Station Rd, Mississauga, ON L5C 1Y5, Canada
| | - Declan Lim
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- The Donnelly Centre for Cellular + Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
- The Woodlands Secondary School, 3225 Erindale Station Rd, Mississauga, ON L5C 1Y5, Canada
| | - Dillon Yee Lim
- The Woodlands Secondary School, 3225 Erindale Station Rd, Mississauga, ON L5C 1Y5, Canada
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Sherrington Road, Oxford, Oxfordshire, OX1 3PT, UK
| | - Jeroen P J Saeij
- The Woodlands Secondary School, 3225 Erindale Station Rd, Mississauga, ON L5C 1Y5, Canada
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, 1 Shields Ave, Davis, CA 95616, USA
| | - Artem Babaian
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- The Donnelly Centre for Cellular + Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
- The Woodlands Secondary School, 3225 Erindale Station Rd, Mississauga, ON L5C 1Y5, Canada
| | - Felipe Rodriguez
- The Woodlands Secondary School, 3225 Erindale Station Rd, Mississauga, ON L5C 1Y5, Canada
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, 1 Shields Ave, Davis, CA 95616, USA
| | - Luke Pereira
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- The Donnelly Centre for Cellular + Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
- The Woodlands Secondary School, 3225 Erindale Station Rd, Mississauga, ON L5C 1Y5, Canada
| | - Alejandro Morales-Tapia
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- The Donnelly Centre for Cellular + Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
- The Woodlands Secondary School, 3225 Erindale Station Rd, Mississauga, ON L5C 1Y5, Canada
| |
Collapse
|
173
|
Rengiiyiler S, Teközel M. Visual attention is not attuned to non-human animal targets' pathogenicity: an evolutionary mismatch perspective. THE JOURNAL OF GENERAL PSYCHOLOGY 2024:1-22. [PMID: 38733318 DOI: 10.1080/00221309.2024.2349005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
A considerable amount of research has revealed that there exists an evolutionary mismatch between ancestral environments and conditions following the rise of agriculture regarding the contact between humans and animal reservoirs of infectious diseases. Based on this evolutionary mismatch framework, we examined whether visual attention exhibits adaptive attunement toward animal targets' pathogenicity. Consistent with our predictions, faces bearing heuristic infection cues held attention to a greater extent than did animal vectors of zoonotic infectious diseases. Moreover, the results indicated that attention showed a specialized vigilance toward processing facial cues connoting the presence of infectious diseases, whereas it was allocated comparably between animal disease vectors and disease-irrelevant animals. On the other hand, the pathogen salience manipulation employed to amplify the participants' contextual-level anti-pathogen motives did not moderate the selective allocation of attentional resources. The fact that visual attention seems poorly equipped to detect and encode animals' zoonotic transmission risk supports the idea that our evolved disease avoidance mechanisms might have limited effectiveness in combating global outbreaks originating from zoonotic emerging infectious diseases.
Collapse
Affiliation(s)
| | - Mert Teközel
- Department of Psychology, Ege University, Izmir, Turkey
| |
Collapse
|
174
|
Savage JDT, Moore CM. How do host population dynamics impact Lyme disease risk dynamics in theoretical models? PLoS One 2024; 19:e0302874. [PMID: 38722910 PMCID: PMC11081252 DOI: 10.1371/journal.pone.0302874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 04/15/2024] [Indexed: 05/13/2024] Open
Abstract
Lyme disease is the most common wildlife-to-human transmitted disease reported in North America. The study of this disease requires an understanding of the ecology of the complex communities of ticks and host species involved in harboring and transmitting this disease. Much of the ecology of this system is well understood, such as the life cycle of ticks, and how hosts are able to support tick populations and serve as disease reservoirs, but there is much to be explored about how the population dynamics of different host species and communities impact disease risk to humans. In this study, we construct a stage-structured, empirically-informed model with host dynamics to investigate how host population dynamics can affect disease risk to humans. The model describes a tick population and a simplified community of three host species, where primary nymph host populations are made to fluctuate on an annual basis, as commonly observed in host populations. We tested the model under different environmental conditions to examine the effect of environment on the interactions of host dynamics and disease risk. Results show that allowing for host dynamics in the model reduces mean nymphal infection prevalence and increases the maximum annual prevalence of nymphal infection and the density of infected nymphs. Effects of host dynamics on disease measures of nymphal infection prevalence were nonlinear and patterns in the effect of dynamics on amplitude in nymphal infection prevalence varied across environmental conditions. These results highlight the importance of further study of the effect of community dynamics on disease risk. This will involve the construction of further theoretical models and collection of robust field data to inform these models. With a more complete understanding of disease dynamics we can begin to better determine how to predict and manage disease risk using these models.
Collapse
Affiliation(s)
- Joseph D. T. Savage
- Biology Department, Colby College, Waterville, Maine, United States of America
- Department of Geography, Graduate Program in Ecology, Evolution, Environment, and Society, Dartmouth College, Hanover, New Hampshire, United States of America
| | | |
Collapse
|
175
|
Swart IC, Van Gelder W, De Haan CAM, Bosch BJ, Oliveira S. Next generation single-domain antibodies against respiratory zoonotic RNA viruses. Front Mol Biosci 2024; 11:1389548. [PMID: 38784667 PMCID: PMC11111979 DOI: 10.3389/fmolb.2024.1389548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
The global impact of zoonotic viral outbreaks underscores the pressing need for innovative antiviral strategies, particularly against respiratory zoonotic RNA viruses. These viruses possess a high potential to trigger future epidemics and pandemics due to their high mutation rate, broad host range and efficient spread through airborne transmission. Recent pandemics caused by coronaviruses and influenza A viruses underscore the importance of developing targeted antiviral strategies. Single-domain antibodies (sdAbs), originating from camelids, also known as nanobodies or VHHs (Variable Heavy domain of Heavy chain antibodies), have emerged as promising tools to combat current and impending zoonotic viral threats. Their unique structure, coupled with attributes like robustness, compact size, and cost-effectiveness, positions them as strong alternatives to traditional monoclonal antibodies. This review describes the pivotal role of sdAbs in combating respiratory zoonotic viruses, with a primary focus on enhancing sdAb antiviral potency through optimization techniques and diverse administration strategies. We discuss both the promises and challenges within this dynamically growing field.
Collapse
Affiliation(s)
- Iris C. Swart
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Virology Section, Infectious Diseases and Immunology Division, Department Biomolecular Health Sciences, Faculty Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Willem Van Gelder
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Cornelis A. M. De Haan
- Virology Section, Infectious Diseases and Immunology Division, Department Biomolecular Health Sciences, Faculty Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Berend-Jan Bosch
- Virology Section, Infectious Diseases and Immunology Division, Department Biomolecular Health Sciences, Faculty Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Sabrina Oliveira
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Pharmaceutics, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
176
|
Li JD, Gao YY, Stevens EJ, King KC. Dual stressors of infection and warming can destabilize host microbiomes. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230069. [PMID: 38497264 PMCID: PMC10945407 DOI: 10.1098/rstb.2023.0069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/02/2024] [Indexed: 03/19/2024] Open
Abstract
Climate change is causing extreme heating events and intensifying infectious disease outbreaks. Animals harbour microbial communities, which are vital for their survival and fitness under stressful conditions. Understanding how microbiome structures change in response to infection and warming may be important for forecasting host performance under global change. Here, we evaluated alterations in the microbiomes of several wild Caenorhabditis elegans isolates spanning a range of latitudes, upon warming temperatures and infection by the parasite Leucobacter musarum. Using 16S rRNA sequencing, we found that microbiome diversity decreased, and dispersion increased over time, with the former being more prominent in uninfected adults and the latter aggravated by infection. Infection reduced dominance of specific microbial taxa, and increased microbiome dispersion, indicating destabilizing effects on host microbial communities. Exposing infected hosts to warming did not have an additive destabilizing effect on their microbiomes. Moreover, warming during pre-adult development alleviated the destabilizing effects of infection on host microbiomes. These results revealed an opposing interaction between biotic and abiotic factors on microbiome structure. Lastly, we showed that increased microbiome dispersion might be associated with decreased variability in microbial species interaction strength. Overall, these findings improve our understanding of animal microbiome dynamics amidst concurrent climate change and epidemics. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- J. D. Li
- Department of Biology, University of Oxford, Oxford OX1 2JD, UK
| | - Y. Y. Gao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, People's Republic of China
- School of Ecology and Nature Conservation, Beijing Forestry University, 35 Tsinghua East Road, Beijing 100083, People's Republic of China
| | - E. J. Stevens
- Department of Biology, University of Oxford, Oxford OX1 2JD, UK
| | - K. C. King
- Department of Biology, University of Oxford, Oxford OX1 2JD, UK
- Department of Zoology, University of British Columbia, Vancouver, V6T 1Z4, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, V6T 1Z3, Canada
| |
Collapse
|
177
|
Pan YF, Zhao H, Gou QY, Shi PB, Tian JH, Feng Y, Li K, Yang WH, Wu D, Tang G, Zhang B, Ren Z, Peng S, Luo GY, Le SJ, Xin GY, Wang J, Hou X, Peng MW, Kong JB, Chen XX, Yang CH, Mei SQ, Liao YQ, Cheng JX, Wang J, Chaolemen, Wu YH, Wang JB, An T, Huang X, Eden JS, Li J, Guo D, Liang G, Jin X, Holmes EC, Li B, Wang D, Li J, Wu WC, Shi M. Metagenomic analysis of individual mosquito viromes reveals the geographical patterns and drivers of viral diversity. Nat Ecol Evol 2024; 8:947-959. [PMID: 38519631 DOI: 10.1038/s41559-024-02365-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/11/2024] [Indexed: 03/25/2024]
Abstract
Mosquito transmitted viruses are responsible for an increasing burden of human disease. Despite this, little is known about the diversity and ecology of viruses within individual mosquito hosts. Here, using a meta-transcriptomic approach, we determined the viromes of 2,438 individual mosquitoes (81 species), spanning ~4,000 km along latitudes and longitudes in China. From these data we identified 393 viral species associated with mosquitoes, including 7 (putative) species of arthropod-borne viruses (that is, arboviruses). We identified potential mosquito species and geographic hotspots of viral diversity and arbovirus occurrence, and demonstrated that the composition of individual mosquito viromes was strongly associated with host phylogeny. Our data revealed a large number of viruses shared among mosquito species or genera, enhancing our understanding of the host specificity of insect-associated viruses. We also detected multiple virus species that were widespread throughout the country, perhaps reflecting long-distance mosquito dispersal. Together, these results greatly expand the known mosquito virome, linked viral diversity at the scale of individual insects to that at a country-wide scale, and offered unique insights into the biogeography and diversity of viruses in insect vectors.
Collapse
Affiliation(s)
- Yuan-Fei Pan
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Hailong Zhao
- BGI Research, Shenzhen, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
| | - Qin-Yu Gou
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Pei-Bo Shi
- BGI Research, Shenzhen, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Hua Tian
- Wuhan Center for Disease Control and Prevention, Wuhan, China
| | - Yun Feng
- Department of Viral and Rickettsial Disease Control, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, China
| | - Kun Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wei-Hong Yang
- Department of Viral and Rickettsial Disease Control, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, China
| | - De Wu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Guangpeng Tang
- Guizhou Center for Disease Control and Prevention, Guiyang, China
| | - Bing Zhang
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Zirui Ren
- BGI Research, Shenzhen, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
| | - Shiqin Peng
- BGI Research, Shenzhen, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
| | - Geng-Yan Luo
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shi-Jia Le
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Gen-Yang Xin
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Jing Wang
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xin Hou
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Min-Wu Peng
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Jian-Bin Kong
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xin-Xin Chen
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Chun-Hui Yang
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shi-Qiang Mei
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yu-Qi Liao
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Jing-Xia Cheng
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Juan Wang
- Department of Viral and Rickettsial Disease Control, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, China
| | - Chaolemen
- Old Barag Banner Center for Disease Control and Prevention, Hulunbuir, China
| | - Yu-Hui Wu
- Old Barag Banner Center for Disease Control and Prevention, Hulunbuir, China
| | - Jian-Bo Wang
- Hulunbuir Center for Disease Control and Prevention, Hulunbuir, China
| | - Tongqing An
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinyi Huang
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - John-Sebastian Eden
- Centre for Virus Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Jun Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Deyin Guo
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, China
| | - Guodong Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xin Jin
- BGI Research, Shenzhen, China
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Bo Li
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China.
- Ministry of Education Key Laboratory for Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China.
| | - Daxi Wang
- BGI Research, Shenzhen, China.
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China.
| | - Junhua Li
- BGI Research, Shenzhen, China.
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China.
| | - Wei-Chen Wu
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
| | - Mang Shi
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
178
|
Melepat B, Li T, Vinkler M. Natural selection directing molecular evolution in vertebrate viral sensors. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 154:105147. [PMID: 38325501 DOI: 10.1016/j.dci.2024.105147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 12/30/2023] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Diseases caused by pathogens contribute to molecular adaptations in host immunity. Variety of viral pathogens challenging animal immunity can drive positive selection diversifying receptors recognising the infections. However, whether distinct virus sensing systems differ across animals in their evolutionary modes remains unclear. Our review provides a comparative overview of natural selection shaping molecular evolution in vertebrate viral-binding pattern recognition receptors (PRRs). Despite prevailing negative selection arising from the functional constraints, multiple lines of evidence now suggest diversifying selection in the Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-I-like receptors (RLRs) and oligoadenylate synthetases (OASs). In several cases, location of the positively selected sites in the ligand-binding regions suggests effects on viral detection although experimental support is lacking. Unfortunately, in most other PRR families including the AIM2-like receptor family, C-type lectin receptors (CLRs), and cyclic GMP-AMP synthetase studies characterising their molecular evolution are rare, preventing comparative insight. We indicate shared characteristics of the viral sensor evolution and highlight priorities for future research.
Collapse
Affiliation(s)
- Balraj Melepat
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, EU, Czech Republic
| | - Tao Li
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, EU, Czech Republic
| | - Michal Vinkler
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, EU, Czech Republic.
| |
Collapse
|
179
|
Mahon MB, Sack A, Aleuy OA, Barbera C, Brown E, Buelow H, Civitello DJ, Cohen JM, de Wit LA, Forstchen M, Halliday FW, Heffernan P, Knutie SA, Korotasz A, Larson JG, Rumschlag SL, Selland E, Shepack A, Vincent N, Rohr JR. A meta-analysis on global change drivers and the risk of infectious disease. Nature 2024; 629:830-836. [PMID: 38720068 DOI: 10.1038/s41586-024-07380-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 04/03/2024] [Indexed: 05/24/2024]
Abstract
Anthropogenic change is contributing to the rise in emerging infectious diseases, which are significantly correlated with socioeconomic, environmental and ecological factors1. Studies have shown that infectious disease risk is modified by changes to biodiversity2-6, climate change7-11, chemical pollution12-14, landscape transformations15-20 and species introductions21. However, it remains unclear which global change drivers most increase disease and under what contexts. Here we amassed a dataset from the literature that contains 2,938 observations of infectious disease responses to global change drivers across 1,497 host-parasite combinations, including plant, animal and human hosts. We found that biodiversity loss, chemical pollution, climate change and introduced species are associated with increases in disease-related end points or harm, whereas urbanization is associated with decreases in disease end points. Natural biodiversity gradients, deforestation and forest fragmentation are comparatively unimportant or idiosyncratic as drivers of disease. Overall, these results are consistent across human and non-human diseases. Nevertheless, context-dependent effects of the global change drivers on disease were found to be common. The findings uncovered by this meta-analysis should help target disease management and surveillance efforts towards global change drivers that increase disease. Specifically, reducing greenhouse gas emissions, managing ecosystem health, and preventing biological invasions and biodiversity loss could help to reduce the burden of plant, animal and human diseases, especially when coupled with improvements to social and economic determinants of health.
Collapse
Affiliation(s)
- Michael B Mahon
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
- Environmental Change Initiative, University of Notre Dame, Notre Dame, IN, USA
| | - Alexandra Sack
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
- Eck Institute of Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - O Alejandro Aleuy
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Carly Barbera
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Ethan Brown
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Heather Buelow
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | | - Jeremy M Cohen
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Luz A de Wit
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Meghan Forstchen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
- Eck Institute of Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Fletcher W Halliday
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Patrick Heffernan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Sarah A Knutie
- Department of Ecology and Evolutionary Biology, Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Alexis Korotasz
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Joanna G Larson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Samantha L Rumschlag
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
- Environmental Change Initiative, University of Notre Dame, Notre Dame, IN, USA
| | - Emily Selland
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
- Eck Institute of Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Alexander Shepack
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Nitin Vincent
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Jason R Rohr
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
- Environmental Change Initiative, University of Notre Dame, Notre Dame, IN, USA.
- Eck Institute of Global Health, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
180
|
Bayles BR, George MF, Christofferson RC. Long-term trends and spatial patterns of West Nile Virus emergence in California, 2004-2021. Zoonoses Public Health 2024; 71:258-266. [PMID: 38110854 DOI: 10.1111/zph.13106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/20/2023]
Abstract
AIMS West Nile Virus (WNV) has remained a persistent source of vector-borne disease risk in California since first being identified in the state in 2003. The geographic distribution of WNV activity is relatively widespread, but varies considerably across different regions within the state. Spatial variation in human WNV infection depends upon social-ecological factors that influence mosquito populations and virus transmission dynamics. Measuring changes in spatial patterns over time is necessary for uncovering the underlying regional drivers of disease risk. METHODS AND RESULTS In this study, we utilized statewide surveillance data to quantify temporal changes and spatial patterns of WNV activity in California. We obtained annual WNV mosquito surveillance data from 2004 through 2021 from the California Arbovirus Surveillance Program. Geographic coordinates for mosquito pools were analysed using a suite of spatial statistics to identify and classify patterns in WNV activity over time. CONCLUSIONS We detected clear patterns of non-random WNV risk during the study period, including emerging hot spots in the Central Valley and non-random periods of oscillating WNV risk in Southern and Northern California subregions. Our findings offer new insights into 18 years of spatio-temporal variation in WNV activity across California, which may be used for targeted surveillance efforts and public health interventions.
Collapse
Affiliation(s)
- Brett R Bayles
- Department of Global Public Health, Dominican University of California, San Rafael, California, USA
- Department of Natural Sciences and Mathematics, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Michaela F George
- Department of Global Public Health, Dominican University of California, San Rafael, California, USA
| | | |
Collapse
|
181
|
Tan CCS, van Dorp L, Balloux F. The evolutionary drivers and correlates of viral host jumps. Nat Ecol Evol 2024; 8:960-971. [PMID: 38528191 DOI: 10.1038/s41559-024-02353-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 03/27/2024]
Abstract
Most emerging and re-emerging infectious diseases stem from viruses that naturally circulate in non-human vertebrates. When these viruses cross over into humans, they can cause disease outbreaks, epidemics and pandemics. While zoonotic host jumps have been extensively studied from an ecological perspective, little attention has gone into characterizing the evolutionary drivers and correlates underlying these events. To address this gap, we harnessed the entirety of publicly available viral genomic data, employing a comprehensive suite of network and phylogenetic analyses to investigate the evolutionary mechanisms underpinning recent viral host jumps. Surprisingly, we find that humans are as much a source as a sink for viral spillover events, insofar as we infer more viral host jumps from humans to other animals than from animals to humans. Moreover, we demonstrate heightened evolution in viral lineages that involve putative host jumps. We further observe that the extent of adaptation associated with a host jump is lower for viruses with broader host ranges. Finally, we show that the genomic targets of natural selection associated with host jumps vary across different viral families, with either structural or auxiliary genes being the prime targets of selection. Collectively, our results illuminate some of the evolutionary drivers underlying viral host jumps that may contribute to mitigating viral threats across species boundaries.
Collapse
Affiliation(s)
- Cedric C S Tan
- UCL Genetics Institute, University College London, London, UK.
- The Francis Crick Institute, London, UK.
| | - Lucy van Dorp
- UCL Genetics Institute, University College London, London, UK
| | | |
Collapse
|
182
|
Barrile GM, Cross PC, Stewart C, Malmberg J, Jakopak RP, Binfet J, Monteith KL, Werner B, Jennings‐Gaines J, Merkle JA. Chronic wasting disease alters the movement behavior and habitat use of mule deer during clinical stages of infection. Ecol Evol 2024; 14:e11418. [PMID: 38779534 PMCID: PMC11108800 DOI: 10.1002/ece3.11418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/13/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Integrating host movement and pathogen data is a central issue in wildlife disease ecology that will allow for a better understanding of disease transmission. We examined how adult female mule deer (Odocoileus hemionus) responded behaviorally to infection with chronic wasting disease (CWD). We compared movement and habitat use of CWD-infected deer (n = 18) to those that succumbed to starvation (and were CWD-negative by ELISA and IHC; n = 8) and others in which CWD was not detected (n = 111, including animals that survived the duration of the study) using GPS collar data from two distinct populations collared in central Wyoming, USA during 2018-2022. CWD and predation were the leading causes of mortality during our study (32/91 deaths attributed to CWD and 27/91 deaths attributed to predation). Deer infected with CWD moved slower and used lower elevation areas closer to rivers in the months preceding death compared with uninfected deer that did not succumb to starvation. Although CWD-infected deer and those that died of starvation moved at similar speeds during the final months of life, CWD-infected deer used areas closer to streams with less herbaceous biomass than starved deer. These behavioral differences may allow for the development of predictive models of disease status from movement data, which will be useful to supplement field and laboratory diagnostics or when mortalities cannot be quickly retrieved to assess cause-specific mortality. Furthermore, identifying individuals who are sick before predation events could help to assess the extent to which disease mortality is compensatory with predation. Finally, infected animals began to slow down around 4 months prior to death from CWD. Our approach for detecting the timing of infection-induced shifts in movement behavior may be useful in application to other disease systems to better understand the response of wildlife to infectious disease.
Collapse
Affiliation(s)
- Gabriel M. Barrile
- Department of Zoology and PhysiologyUniversity of WyomingLaramieWyomingUSA
| | - Paul C. Cross
- U.S. Geological Survey, Northern Rocky Mountain Science CenterBozemanMontanaUSA
| | | | - Jennifer Malmberg
- Department of Veterinary SciencesUniversity of WyomingLaramieWyomingUSA
- USDA‐APHIS, Wildlife Services, National Wildlife Research CenterFort CollinsColoradoUSA
| | - Rhiannon P. Jakopak
- Haub School of Environment and Natural ResourcesUniversity of WyomingLaramieWyomingUSA
| | | | - Kevin L. Monteith
- Haub School of Environment and Natural Resources, Department of Zoology and Physiology, Wyoming Cooperative Fish and Wildlife Research UnitUniversity of WyomingLaramieWyomingUSA
| | | | | | - Jerod A. Merkle
- Department of Zoology and PhysiologyUniversity of WyomingLaramieWyomingUSA
| |
Collapse
|
183
|
Leta S, Chibssa TR, Paeshuyse J. CRISPR-Cas12/Cas13: Bibliometric analysis and systematic review of its application in infectious disease detection. J Infect Public Health 2024; 17:741-747. [PMID: 38518680 DOI: 10.1016/j.jiph.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/29/2024] [Accepted: 03/03/2024] [Indexed: 03/24/2024] Open
Abstract
BACKGROUND Infectious diseases impose a significant burden on the global public health and economy, resulting in an estimated 15 million deaths out of 57 million annually worldwide. This study examines the current state of CRISPR-Cas12/Cas13 research, focusing on its applications in infectious disease detection and its evolutionary trajectory. METHODS A bibliometric analysis and systematic review were conducted by retrieving CRISPR-Cas12/Cas13-related articles published between January 1, 2015 to December 31, 2022, from the Web of Science database. The research protocol was registered with International Platform of Registered Systematic Review and Meta-analysis Protocols (INPLASY202380062). RESULTS Our search identified 1987 articles, of which, 1856 were included in the bibliometric analysis and 445 were used in qualitative analysis. The study reveals a substantial increase in scientific production on CRISPR-Cas12/Cas13, with an annual growth rate of 104.5%. The United States leads in the number of published articles. The systematic review identified 580 different diagnostic assays targeting 170 pathogens, with SARS-CoV-2 dominating with 158 assays. Recombinase polymerase amplification (RPA)/reverse transcription-RPA (RT-RPA) emerged as the predominant amplification method, while lateral flow assay was the most common readout method. Approximately 72% of the diagnostic assays developed are suitable for point-of-care testing. CONCLUSION The rapid increase in research on CRISPR-Cas12/Cas13 between 2015 and 2022 suggests promising potential for advancements in infectious disease diagnosis. Given the numerous advantages of CRISPR-Cas technology for disease detection over other methods, and the dedicated efforts of scientists from around the world, it is reasonable to anticipate that CRISPR-Cas technology may emerge as a formidable alternative, offering the possibility of expedited point-of-care testing in the not-too-distant future.
Collapse
Affiliation(s)
- Samson Leta
- Laboratory of Host Pathogen Interaction in Livestock, Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium; Department of Biomedical Sciences, College of Veterinary Medicine and Agriculture, Addis Ababa University, P.O. Box 34, Bishoftu, Ethiopia
| | | | - Jan Paeshuyse
- Laboratory of Host Pathogen Interaction in Livestock, Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium.
| |
Collapse
|
184
|
Xu JL, Chen JT, Hu B, Guo WW, Guo JJ, Xiong CR, Qin LX, Yu XN, Chen XM, Cai K, Li YR, Liu MQ, Chen LJ, Hou W. Discovery and genetic characterization of novel paramyxoviruses from small mammals in Hubei Province, Central China. Microb Genom 2024; 10:001229. [PMID: 38700925 PMCID: PMC11145887 DOI: 10.1099/mgen.0.001229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/26/2024] [Indexed: 05/05/2024] Open
Abstract
Paramyxoviruses are a group of single-stranded, negative-sense RNA viruses, some of which are responsible for acute human disease, including parainfluenza virus, measles virus, Nipah virus and Hendra virus. In recent years, a large number of novel paramyxoviruses, particularly members of the genus Jeilongvirus, have been discovered in wild mammals, suggesting that the diversity of paramyxoviruses may be underestimated. Here we used hemi-nested reverse transcription PCR to obtain 190 paramyxovirus sequences from 969 small mammals in Hubei Province, Central China. These newly identified paramyxoviruses were classified into four clades: genera Jeilongvirus, Morbillivirus, Henipavirus and Narmovirus, with most of them belonging to the genus Jeilongvirus. Using Illumina sequencing and Sanger sequencing, we successfully recovered six near-full-length genomes with different genomic organizations, revealing the more complex genome content of paramyxoviruses. Co-divergence analysis of jeilongviruses and their known hosts indicates that host-switching occurred more frequently in the evolutionary histories of the genus Jeilongvirus. Together, our findings demonstrate the high prevalence of paramyxoviruses in small mammals, especially jeilongviruses, and highlight the diversity of paramyxoviruses and their genome content, as well as the evolution of jeilongviruses.
Collapse
Affiliation(s)
- Jia-le Xu
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Jin-tao Chen
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Bing Hu
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control & Prevention, 6 Zhuodaoquan Road, Wuhan, Hubei, 430079, PR China
| | - Wei-wei Guo
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Jing-jing Guo
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Chao-rui Xiong
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Ling-xin Qin
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Xin-nai Yu
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Xiao-min Chen
- Division of Virology, Wuhan Center for Disease Control & Prevention, 288 Machang Road, Wuhan, Hubei, 430015, PR China
| | - Kun Cai
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control & Prevention, 6 Zhuodaoquan Road, Wuhan, Hubei, 430079, PR China
| | - Yi-rong Li
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Man-qing Liu
- Division of Virology, Wuhan Center for Disease Control & Prevention, 288 Machang Road, Wuhan, Hubei, 430015, PR China
| | - Liang-jun Chen
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Wei Hou
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
- School of Public Health, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| |
Collapse
|
185
|
Doras C, Özcelik R, Abakar MF, Issa R, Kimala P, Youssouf S, Bolon I, Dürr S. Community-based symptom reporting among agro-pastoralists and their livestock in Chad in a One Health approach. Acta Trop 2024; 253:107167. [PMID: 38458407 DOI: 10.1016/j.actatropica.2024.107167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/02/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024]
Abstract
One Health Syndromic Surveillance has a high potential for detecting early epidemiological events in remote and hard-to-reach populations. Chadian pastoralists living close to their animals and being socio-economically unprivileged have an increased risk for zoonosis exposure. Engaging communities in disease surveillance could also strengthen preparedness capacities for outbreaks in rural Chad. This study describes a retrospective cross-sectional survey that collected data on clinical symptoms reported in people and livestock in Chadian agro-pastoral communities. In January-February 2018, interviews were conducted in rural households living in nomadic camps or settled villages in the Yao and Danamadji health districts. The questionnaire covered demographic data and symptoms reported in humans and animals for the hot, wet, and cold seasons over the last 12 months. Incidence rates of human and animal symptoms were comparatively analyzed at the household level. Ninety-two households with a homogeneous socio-demographic distribution were included. We observed cough and diarrhea as the most frequent symptoms reported simultaneously in humans and animals. In all species, the incidence rate of cough was significantly higher during the cold season, and diarrhea tended to occur more frequently during the wet season. However, the incidence rate of cough and diarrhea in animals did not predict the incidence rate of these symptoms in humans. Overall, the variations in reported symptoms were consistent with known seasonal, regional, and sociological influences on endemic diseases. Our retrospective study demonstrated the feasibility of collecting relevant health data in humans and animals in remote regions with low access to health services by actively involving community members. This encourages establishing real-time community-based syndromic surveillance in areas such as rural Chad.
Collapse
Affiliation(s)
- Camille Doras
- Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Veterinary Public Health Institute, Vetsuisse Faculty Bern, University of Bern, Bern, Switzerland
| | - Ranya Özcelik
- Veterinary Public Health Institute, Vetsuisse Faculty Bern, University of Bern, Bern, Switzerland
| | | | - Ramadan Issa
- Institut de Recherche en Elevage pour le Développement (IRED), N'Djamena, Chad
| | - Pidou Kimala
- Institut de Recherche en Elevage pour le Développement (IRED), N'Djamena, Chad
| | - Soumaya Youssouf
- Institut de Recherche en Elevage pour le Développement (IRED), N'Djamena, Chad
| | - Isabelle Bolon
- Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Salome Dürr
- Veterinary Public Health Institute, Vetsuisse Faculty Bern, University of Bern, Bern, Switzerland.
| |
Collapse
|
186
|
Li Z, Tang C, Li Y, Zhang Y, Wang G, Peng R, Huang Y, Hu X, Xin H, Cao X, Shen L, Guo T, He Y, Fen B, Huang J, Liang JG, Cui X, Niu L, Yang J, Yang F, Lu G, Gao L, Jin Q, Zhao M, Yin F, Du J. Virome survey of the bat, Rhinolophus affinis, in Hainan Province, China. Microbes Infect 2024; 26:105331. [PMID: 38537769 DOI: 10.1016/j.micinf.2024.105331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/01/2024]
Abstract
Bats are important mammal reservoirs of zoonotic pathogens. However, due to research limitations involving species, locations, pathogens, or sample types, the full diversity of viruses in bats remains to be discovered. We used next-generation sequencing technology to characterize the mammalian virome and analyze the phylogenetic evolution and diversity of mammalian viruses carried by bats from Haikou City and Tunchang County in Hainan Province, China. We collected 200 pharyngeal swab and anal swab samples from Rhinolophus affinis, combining them into nine pools based on the sample type and collection location. We subjected the samples to next-generation sequencing and conducted bioinformatics analysis. All samples were screened via specific PCR and phylogenetic analysis. The diverse viral reads, closely related to mammals, were assigned into 17 viral families. We discovered many novel bat viruses and identified some closely related to known human/animal pathogens. In the current study, 6 complete genomes and 2 partial genomic sequences of 6 viral families and 8 viral genera have been amplified, among which 5 strains are suggested to be new virus species. These included coronavirus, pestivirus, bastrovirus, bocavirus, papillomavirus, parvovirus, and paramyxovirus. The primary finding is that a SADS-related CoV and a HoBi-like pestivirus identified in R. affinis in Hainan Province could be pathogenic to livestock. This study expands our understanding of bats as a virus reservoir, providing a basis for further research on the transmission of viruses from bats to humans.
Collapse
Affiliation(s)
- Zihan Li
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China; NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China; Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
| | - Chuanning Tang
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China; Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
| | - Youyou Li
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China; Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China; The Affiliated Cancer Hospital of Guizhou Medical University, China
| | - Yun Zhang
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China; Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
| | - Gaoyu Wang
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China; Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
| | - Ruoyan Peng
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China; Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
| | - Yi Huang
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China; Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
| | - Xiaoyuan Hu
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China; Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
| | - Henan Xin
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Xuefang Cao
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Lingyu Shen
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Tonglei Guo
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Yijun He
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Boxuan Fen
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Juanjuan Huang
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Jian Guo Liang
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Xiuji Cui
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China; Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
| | - Lina Niu
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China; Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
| | - Jian Yang
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Fan Yang
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Gang Lu
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China; Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China
| | - Lei Gao
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Mingming Zhao
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China; TCM School of Hainan Medical University, Haikou, 571199, China.
| | - Feifei Yin
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China; Department of Pathogen Biology, Hainan Medical University, Haikou, 571199, China.
| | - Jiang Du
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China; NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
187
|
Wang KC, Chang CL, Wei SH, Chang CC. The study on setting priorities of zoonotic agents for medical preparedness and allocation of research resources. PLoS One 2024; 19:e0299527. [PMID: 38687751 PMCID: PMC11060589 DOI: 10.1371/journal.pone.0299527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/13/2024] [Indexed: 05/02/2024] Open
Abstract
The aim of this study is to develop a scoring platform to be used as a reference for both medical preparedness and research resource allocation in the prioritization of zoonoses. Using a case-control design, a comprehensive analysis of 46 zoonoses was conducted to identify factors influencing disease prioritization. This analysis provides a basis for constructing models and calculating prioritization scores for different diseases. The case group (n = 23) includes diseases that require immediate notification to health authorities within 24 hours of diagnosis. The control group (n = 23) includes diseases that do not require such immediate notification. Two different models were developed for primary disease prioritization: one model incorporated the four most commonly used prioritization criteria identified through an extensive literature review. The second model used the results of multiple logistic regression analysis to identify significant factors (with p-value less than 0.1) associated with 24-hour reporting, allowing for objective determination of disease prioritization criteria. These different modeling approaches may result in different weights and positive or negative effects of relevant factors within each model. Our study results highlight the variability of zoonotic disease information across time and geographic regions. It provides an objective platform to rank zoonoses and highlights the critical need for regular updates in the prioritization process to ensure timely preparedness. This study successfully established an objective framework for assessing the importance of zoonotic diseases. From a government perspective, it advocates applying principles that consider disease characteristics and medical resource preparedness in prioritization. The results of this study also emphasize the need for dynamic prioritization to effectively improve preparedness to prevent and control disease.
Collapse
Affiliation(s)
- Kung-Ching Wang
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Chia-Lin Chang
- Department of Applied Economics, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Sung-Hsi Wei
- Children’s Hospital, China Medical University, Taichung, Taiwan, R.O.C
| | - Chao-Chin Chang
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan, R.O.C
| |
Collapse
|
188
|
McGrath-Blaser SE, McGathey N, Pardon A, Hartmann AM, Longo AV. Invasibility of a North American soil ecosystem to amphibian-killing fungal pathogens. Proc Biol Sci 2024; 291:20232658. [PMID: 38628130 PMCID: PMC11021929 DOI: 10.1098/rspb.2023.2658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
North American salamanders are threatened by intercontinental spread of chytridiomycosis, a deadly disease caused by the fungal pathogen Batrachochytrium salamandrivorans (Bsal). To predict potential dispersal of Bsal spores to salamander habitats, we evaluated the capacity of soil microbial communities to resist invasion. We determined the degree of habitat invasibility using soils from five locations throughout the Great Smoky Mountains National Park, a region with a high abundance of susceptible hosts. Our experimental design consisted of replicate soil microcosms exposed to different propagule pressures of the non-native pathogen, Bsal, and an introduced but endemic pathogen, B. dendrobatidis (Bd). To compare growth and competitive interactions, we used quantitative PCR, live/dead cell viability assays, and full-length 16S rRNA sequencing. We found that soil microcosms with intact bacterial communities inhibited both Bsal and Bd growth, but inhibitory capacity diminished with increased propagule pressure. Bsal showed greater persistence than Bd. Linear discriminant analysis (LDA) identified the family Burkolderiaceae as increasing in relative abundance with the decline of both pathogens. Although our findings provide evidence of environmental filtering in soils, such barriers weakened in response to pathogen type and propagule pressure, showing that habitats vary their invasibility based on properties of their local microbial communities.
Collapse
Affiliation(s)
| | - Natalie McGathey
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Allison Pardon
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Arik M. Hartmann
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Ana V. Longo
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
189
|
Iketani S, Ho DD. SARS-CoV-2 resistance to monoclonal antibodies and small-molecule drugs. Cell Chem Biol 2024; 31:632-657. [PMID: 38640902 PMCID: PMC11084874 DOI: 10.1016/j.chembiol.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/21/2024]
Abstract
Over four years have passed since the beginning of the COVID-19 pandemic. The scientific response has been rapid and effective, with many therapeutic monoclonal antibodies and small molecules developed for clinical use. However, given the ability for viruses to become resistant to antivirals, it is perhaps no surprise that the field has identified resistance to nearly all of these compounds. Here, we provide a comprehensive review of the resistance profile for each of these therapeutics. We hope that this resource provides an atlas for mutations to be aware of for each agent, particularly as a springboard for considerations for the next generation of antivirals. Finally, we discuss the outlook and thoughts for moving forward in how we continue to manage this, and the next, pandemic.
Collapse
Affiliation(s)
- Sho Iketani
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
190
|
Tsakmakidis I, Lefkaditis M, Zaralis K, Arsenos G. Alternative hosts of Leishmania infantum: a neglected parasite in Europe. Trop Anim Health Prod 2024; 56:128. [PMID: 38630347 PMCID: PMC11189345 DOI: 10.1007/s11250-024-03978-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/05/2024] [Indexed: 04/19/2024]
Abstract
Multi-host pathogens that infect various animal species and humans are considered of great importance for public and animal health. Leishmania spp. parasites are a characteristic example of such pathogens. Although leishmaniosis in humans is endemic for about 100 countries around the world it is classified as a neglected tropical disease. There are three main forms of leishmaniosis in humans: cutaneous (CL), visceral (VL) and mucocutaneous leishmaniosis (MCL). Each year, about 30,000 new cases of VL and more than 1 million new cases of CL are recorded. In Europe L. infantum is the dominant species with dogs being reservoir hosts. Apart from dogs, infection has been recorded in various animals, which suggests that other species could play a role in the maintenance of the parasite in nature. Herein we provide an in-depth review of the literature with respect to studies that deal with Leishmania infantum infections in domestic and wild animal species in Europe. Given the fact that domesticated and wild animals could contribute to the incidences of leishmaniosis in humans, the aim of this paper is to provide a comprehensive review which could potentially be used for the development of measures when it comes to the control of the Leishmania infantum parasite.
Collapse
Affiliation(s)
- Ioannis Tsakmakidis
- School of Agricultural Sciences, Department of Agriculture, University of Western Macedonia, end of Kontopoulou str, Florina, 53100, Greece
| | | | - Konstantinos Zaralis
- School of Agricultural Sciences, Department of Agriculture, University of Western Macedonia, end of Kontopoulou str, Florina, 53100, Greece.
| | - Georgios Arsenos
- Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
191
|
Streicher T, Brinker P, Tragust S, Paxton RJ. Host Barriers Limit Viral Spread in a Spillover Host: A Study of Deformed Wing Virus in the Bumblebee Bombus terrestris. Viruses 2024; 16:607. [PMID: 38675948 PMCID: PMC11053533 DOI: 10.3390/v16040607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/13/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
The transmission of pathogens from reservoir to recipient host species, termed pathogen spillover, can profoundly impact plant, animal, and public health. However, why some pathogens lead to disease emergence in a novel species while others fail to establish or do not elicit disease is often poorly understood. There is strong evidence that deformed wing virus (DWV), an (+)ssRNA virus, spills over from its reservoir host, the honeybee Apis mellifera, into the bumblebee Bombus terrestris. However, the low impact of DWV on B. terrestris in laboratory experiments suggests host barriers to virus spread in this recipient host. To investigate potential host barriers, we followed the spread of DWV genotype B (DWV-B) through a host's body using RT-PCR after experimental transmission to bumblebees in comparison to honeybees. Inoculation was per os, mimicking food-borne transmission, or by injection into the bee's haemocoel, mimicking vector-based transmission. In honeybees, DWV-B was present in both honeybee faeces and haemolymph within 3 days of inoculation per os or by injection. In contrast, DWV-B was not detected in B. terrestris haemolymph after inoculation per os, suggesting a gut barrier that hinders DWV-B's spread through the body of a B. terrestris. DWV-B was, however, detected in B. terrestris faeces after injection and feeding, albeit at a lower abundance than that observed for A. mellifera, suggesting that B. terrestris sheds less DWV-B than A. mellifera in faeces when infected. Barriers to viral spread in B. terrestris following oral infection may limit DWV's impact on this spillover host and reduce its contribution to the community epidemiology of DWV.
Collapse
Affiliation(s)
- Tabea Streicher
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
| | - Pina Brinker
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Simon Tragust
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
| | - Robert J. Paxton
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| |
Collapse
|
192
|
Ilbeigi K, Barata C, Barbosa J, Bertram MG, Caljon G, Costi MP, Kroll A, Margiotta-Casaluci L, Thoré ES, Bundschuh M. Assessing Environmental Risks during the Drug Development Process for Parasitic Vector-Borne Diseases: A Critical Reflection. ACS Infect Dis 2024; 10:1026-1033. [PMID: 38533709 PMCID: PMC11019539 DOI: 10.1021/acsinfecdis.4c00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Parasitic vector-borne diseases (VBDs) represent nearly 20% of the global burden of infectious diseases. Moreover, the spread of VBDs is enhanced by global travel, urbanization, and climate change. Treatment of VBDs faces challenges due to limitations of existing drugs, as the potential for side effects in nontarget species raises significant environmental concerns. Consequently, considering environmental risks early in drug development processes is critically important. Here, we examine the environmental risk assessment process for veterinary medicinal products in the European Union and identify major gaps in the ecotoxicity data of these drugs. By highlighting the scarcity of ecotoxicological data for commonly used antiparasitic drugs, we stress the urgent need for considering the One Health concept. We advocate for employing predictive tools and nonanimal methodologies such as New Approach Methodologies at early stages of antiparasitic drug research and development. Furthermore, adopting progressive approaches to mitigate ecological risks requires the integration of nonstandard tests that account for real-world complexities and use environmentally relevant exposure scenarios. Such a strategy is vital for a sustainable drug development process as it adheres to the principles of One Health, ultimately contributing to a healthier and more sustainable world.
Collapse
Affiliation(s)
- Kayhan Ilbeigi
- Laboratory
of Microbiology, Parasitology and Hygiene, University of Antwerp, 2610 Wilrijk, Belgium
| | - Carlos Barata
- Institute
of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - João Barbosa
- Blue
Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400 Ostend, Belgium
| | - Michael G. Bertram
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, 90187 Umeå, Sweden
- Department
of Zoology, Stockholm University, Svante Arrhenius väg 18b, 114 18 Stockholm, Sweden
- School of
Biological Sciences, Monash University, 25 Rainforest Walk, 3800 Melbourne, Australia
| | - Guy Caljon
- Laboratory
of Microbiology, Parasitology and Hygiene, University of Antwerp, 2610 Wilrijk, Belgium
| | - Maria Paola Costi
- Department
of Life Sciences, University of Modena and
Reggio Emilia, 41125 Modena, Italy
| | - Alexandra Kroll
- Swiss
Centre for Applied Ecotoxicology, CH-8600 Dübendorf, Switzerland
| | - Luigi Margiotta-Casaluci
- Institute
of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King’s College London, WC2R 2LS London, United Kingdom
| | - Eli S.J. Thoré
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, 90187 Umeå, Sweden
- Department
of Zoology, Stockholm University, Svante Arrhenius väg 18b, 114 18 Stockholm, Sweden
- TRANSfarm - Science, Engineering,
& Technology Group, KU
Leuven, 3360 Lovenjoel, Belgium
| | - Mirco Bundschuh
- iES
Landau, Institute for Environmental Sciences,
RPTU Kaiserslautern-Landau, Fortstrasse 7, 76829 Landau, Germany
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences, Lennart Hjelms väg 9, SWE-75007 Uppsala, Sweden
| |
Collapse
|
193
|
Rosario-Cruz R, Domínguez-García DI, Almazán C. Inclusion of Anti-Tick Vaccines into an Integrated Tick Management Program in Mexico: A Public Policy Challenge. Vaccines (Basel) 2024; 12:403. [PMID: 38675785 PMCID: PMC11053712 DOI: 10.3390/vaccines12040403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Acaricides are the most widely used method to control the cattle tick Rhipicephalus microplus. However, its use increases production costs, contaminates food and the environment, and directly affects animal and human health. The intensive use of chemical control has resulted in the selection of genes associated with resistance to acaricides, and consumers are increasingly less tolerant of food contamination. This scenario has increased the interest of different research groups around the world for anti-tick vaccine development, in order to reduce the environmental impact, the presence of residues in food, and the harmful effects on animal and human health. There is enough evidence that vaccination with tick antigens induces protection against tick infestations, reducing tick populations and acaricide treatments. Despite the need for an anti-tick vaccine in Mexico, vaccination against ticks has been limited to one vaccine that is used in some regions. The aim of this review is to contribute to the discussion on tick control issues and provide a reference for readers interested in the importance of using anti-tick vaccines encouraging concerted action on the part of Mexican animal health authorities, livestock organizations, cattle producers, and academics. Therefore, it is suggested that an anti-tick vaccine should be included as a part of an integrated tick management program in Mexico.
Collapse
Affiliation(s)
- Rodrigo Rosario-Cruz
- Biotechnology in Health and Environmental Sciences Research Laboratory, Natural Sciences College, Autónomous Guerrero State University, Chilpancingo 39105, Guerrero, Mexico;
| | - Delia Inés Domínguez-García
- Biotechnology in Health and Environmental Sciences Research Laboratory, Natural Sciences College, Autónomous Guerrero State University, Chilpancingo 39105, Guerrero, Mexico;
| | - Consuelo Almazán
- Immunology and Vaccines Laboratory, College of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro 76230, Queretaro, Mexico;
| |
Collapse
|
194
|
Orf GS, Ahouidi AD, Mata M, Diedhiou C, Mboup A, Padane A, Manga NM, Dela-del Lawson AT, Averhoff F, Berg MG, Cloherty GA, Mboup S. Next-generation sequencing survey of acute febrile illness in Senegal (2020-2022). Front Microbiol 2024; 15:1362714. [PMID: 38655084 PMCID: PMC11037400 DOI: 10.3389/fmicb.2024.1362714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/13/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Acute febrile illnesses (AFI) in developing tropical and sub-tropical nations are challenging to diagnose due to the numerous causes and non-specific symptoms. The proliferation of rapid diagnostic testing and successful control campaigns against malaria have revealed that non-Plasmodium pathogens still contribute significantly to AFI burden. Thus, a more complete understanding of local trends and potential causes is important for selecting the correct treatment course, which in turn will reduce morbidity and mortality. Next-generation sequencing (NGS) in a laboratory setting can be used to identify known and novel pathogens in individuals with AFI. Methods In this study, plasma was collected from 228 febrile patients tested negative for malaria at clinics across Senegal from 2020-2022. Total nucleic acids were extracted and converted to metagenomic NGS libraries. To identify viral pathogens, especially those present at low concentration, an aliquot of each library was processed with a viral enrichment panel and sequenced. Corresponding metagenomic libraries were also sequenced to identify non-viral pathogens. Results and Discussion Sequencing reads for pathogens with a possible link to febrile illness were identified in 51/228 specimens, including (but not limited to): Borrelia crocidurae (N = 7), West Nile virus (N = 3), Rickettsia felis (N = 2), Bartonella quintana (N = 1), human herpesvirus 8 (N = 1), and Saffold virus (N = 1). Reads corresponding to Plasmodium falciparum were detected in 19 specimens, though their presence in the cohort was likely due to user error of rapid diagnostic testing or incorrect specimen segregation at the clinics. Mosquito-borne pathogens were typically detected just after the conclusion of the rainy season, while tick-borne pathogens were mostly detected before the rainy season. The three West Nile virus strains were phylogenetically characterized and shown to be related to both European and North American clades. Surveys such as this will increase the understanding of the potential causes of non-malarial AFI, which may help inform diagnostic and treatment options for clinicians who provide care to patients in Senegal.
Collapse
Affiliation(s)
- Gregory S. Orf
- Core Diagnostics, Abbott Laboratories, Abbott Park, IL, United States
- Abbott Pandemic Defense Coalition, Abbott Park, IL, United States
| | - Ambroise D. Ahouidi
- Abbott Pandemic Defense Coalition, Abbott Park, IL, United States
- Institut de Recherche en Santé, de Surveillance Epidémiologique et de Formation, Dakar, Senegal
| | - Maximillian Mata
- Core Diagnostics, Abbott Laboratories, Abbott Park, IL, United States
- Abbott Pandemic Defense Coalition, Abbott Park, IL, United States
| | - Cyrille Diedhiou
- Abbott Pandemic Defense Coalition, Abbott Park, IL, United States
- Institut de Recherche en Santé, de Surveillance Epidémiologique et de Formation, Dakar, Senegal
| | - Aminata Mboup
- Abbott Pandemic Defense Coalition, Abbott Park, IL, United States
- Institut de Recherche en Santé, de Surveillance Epidémiologique et de Formation, Dakar, Senegal
| | - Abdou Padane
- Abbott Pandemic Defense Coalition, Abbott Park, IL, United States
- Institut de Recherche en Santé, de Surveillance Epidémiologique et de Formation, Dakar, Senegal
| | - Noel Magloire Manga
- Unit of Infectious and Tropical Diseases, Université Assane Seck, Hôpital de la Paix, Ziguinchor, Senegal
| | | | - Francisco Averhoff
- Core Diagnostics, Abbott Laboratories, Abbott Park, IL, United States
- Abbott Pandemic Defense Coalition, Abbott Park, IL, United States
| | - Michael G. Berg
- Core Diagnostics, Abbott Laboratories, Abbott Park, IL, United States
- Abbott Pandemic Defense Coalition, Abbott Park, IL, United States
| | - Gavin A. Cloherty
- Core Diagnostics, Abbott Laboratories, Abbott Park, IL, United States
- Abbott Pandemic Defense Coalition, Abbott Park, IL, United States
| | - Souleymane Mboup
- Abbott Pandemic Defense Coalition, Abbott Park, IL, United States
- Institut de Recherche en Santé, de Surveillance Epidémiologique et de Formation, Dakar, Senegal
| |
Collapse
|
195
|
Bouyer F, Thiongane O, Hobeika A, Arsevska E, Binot A, Corrèges D, Dub T, Mäkelä H, van Kleef E, Jori F, Lancelot R, Mercier A, Fagandini F, Valentin S, Van Bortel W, Ruault C. Epidemic intelligence in Europe: a user needs perspective to foster innovation in digital health surveillance. BMC Public Health 2024; 24:973. [PMID: 38582850 PMCID: PMC10999084 DOI: 10.1186/s12889-024-18466-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/27/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND European epidemic intelligence (EI) systems receive vast amounts of information and data on disease outbreaks and potential health threats. The quantity and variety of available data sources for EI, as well as the available methods to manage and analyse these data sources, are constantly increasing. Our aim was to identify the difficulties encountered in this context and which innovations, according to EI practitioners, could improve the detection, monitoring and analysis of disease outbreaks and the emergence of new pathogens. METHODS We conducted a qualitative study to identify the need for innovation expressed by 33 EI practitioners of national public health and animal health agencies in five European countries and at the European Centre for Disease Prevention and Control (ECDC). We adopted a stepwise approach to identify the EI stakeholders, to understand the problems they faced concerning their EI activities, and to validate and further define with practitioners the problems to address and the most adapted solutions to their work conditions. We characterized their EI activities, professional logics, and desired changes in their activities using NvivoⓇ software. RESULTS Our analysis highlights that EI practitioners wished to collectively review their EI strategy to enhance their preparedness for emerging infectious diseases, adapt their routines to manage an increasing amount of data and have methodological support for cross-sectoral analysis. Practitioners were in demand of timely, validated and standardized data acquisition processes by text mining of various sources; better validated dataflows respecting the data protection rules; and more interoperable data with homogeneous quality levels and standardized covariate sets for epidemiological assessments of national EI. The set of solutions identified to facilitate risk detection and risk assessment included visualization, text mining, and predefined analytical tools combined with methodological guidance. Practitioners also highlighted their preference for partial rather than full automation of analyses to maintain control over the data and inputs and to adapt parameters to versatile objectives and characteristics. CONCLUSIONS The study showed that the set of solutions needed by practitioners had to be based on holistic and integrated approaches for monitoring zoonosis and antimicrobial resistance and on harmonization between agencies and sectors while maintaining flexibility in the choice of tools and methods. The technical requirements should be defined in detail by iterative exchanges with EI practitioners and decision-makers.
Collapse
Affiliation(s)
- Fanny Bouyer
- Groupe d'Expérimentation et de Recherche: Développement et Actions Locales (GERDAL), Angers, France.
| | - Oumy Thiongane
- Joint Research Unit Animal, Health, Territories, Risks, Ecosystems (UMR ASTRE), French Agricultural Research Centre for International Development (CIRAD), National Research Institute for Agriculture, Food and Environment (INRAE), Montpellier, France
| | - Alexandre Hobeika
- UMR MOISA, French Agricultural Research Centre for International Development (CIRAD), 34398, Montpellier, France
- MOISA, University Montpellier, CIHEAM-IAMM, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Elena Arsevska
- Joint Research Unit Animal, Health, Territories, Risks, Ecosystems (UMR ASTRE), French Agricultural Research Centre for International Development (CIRAD), National Research Institute for Agriculture, Food and Environment (INRAE), Montpellier, France
| | - Aurélie Binot
- Joint Research Unit Animal, Health, Territories, Risks, Ecosystems (UMR ASTRE), French Agricultural Research Centre for International Development (CIRAD), National Research Institute for Agriculture, Food and Environment (INRAE), Montpellier, France
| | - Déborah Corrèges
- Joint Research Unit EPIdemiological On Animal and Zoonotic Diseases (UMR EPIA), National School of Veterinary Services (VetAgro Sup), National Research Institute for Agriculture, Food and Environment (INRAE), Marcy L'Etoile, France
| | - Timothée Dub
- Department of Health Security, Finish Institute for Health and Welfare, Helsinki, Finland
| | - Henna Mäkelä
- Department of Health Security, Finish Institute for Health and Welfare, Helsinki, Finland
| | - Esther van Kleef
- Institute of Tropical Medicine, Department of Biomedical Sciences, Outbreak Research Team, Antwerp, Belgium
| | - Ferran Jori
- Joint Research Unit Animal, Health, Territories, Risks, Ecosystems (UMR ASTRE), French Agricultural Research Centre for International Development (CIRAD), National Research Institute for Agriculture, Food and Environment (INRAE), Montpellier, France
| | - Renaud Lancelot
- Joint Research Unit Animal, Health, Territories, Risks, Ecosystems (UMR ASTRE), French Agricultural Research Centre for International Development (CIRAD), National Research Institute for Agriculture, Food and Environment (INRAE), Montpellier, France
| | - Alize Mercier
- Joint Research Unit Animal, Health, Territories, Risks, Ecosystems (UMR ASTRE), French Agricultural Research Centre for International Development (CIRAD), National Research Institute for Agriculture, Food and Environment (INRAE), Montpellier, France
| | - Francesca Fagandini
- Joint Research Unit Land, Remote Sensing and Spatial Information (UMR TETIS), French Agricultural Research Centre for International Development (CIRAD), Montpellier, France
| | - Sarah Valentin
- Joint Research Unit Land, Remote Sensing and Spatial Information (UMR TETIS), French Agricultural Research Centre for International Development (CIRAD), Montpellier, France
| | - Wim Van Bortel
- Institute of Tropical Medicine, Department of Biomedical Sciences, Outbreak Research Team, Antwerp, Belgium
- Institute of Tropical Medicine, Department of Biomedical Sciences, Unit of Entomology, Antwerp, Belgium
| | - Claire Ruault
- Groupe d'Expérimentation et de Recherche: Développement et Actions Locales (GERDAL), Angers, France
| |
Collapse
|
196
|
Sun T, Jin B, Wu Y, Bao J. A study of the attenuation stage of a global infectious disease. Front Public Health 2024; 12:1379481. [PMID: 38645440 PMCID: PMC11026565 DOI: 10.3389/fpubh.2024.1379481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/14/2024] [Indexed: 04/23/2024] Open
Abstract
Introduction Differences in control measures and response speeds between regions may be responsible for the differences in the number of infections of global infectious diseases. Therefore, this article aims to examine the decay stage of global infectious diseases. We demonstrate our method by considering the first wave of the COVID-19 epidemic in 2020. Methods We introduce the concept of the attenuation rate into the varying coefficient SEIR model to measure the effect of different cities on epidemic control, and make inferences through the integrated adjusted Kalman filter algorithm. Results We applied the varying coefficient SEIR model to 136 cities in China where the total number of confirmed cases exceeded 20 after the implementation of control measures and analyzed the relationship between the estimated attenuation rate and local factors. Subsequent analysis and inference results show that the attenuation rate is significantly related to the local annual GDP and the longitude and latitude of a city or a region. We also apply the varying coefficient SEIR model to other regions outside China. We find that the fitting curve of the average daily number of new confirmed cases simulated by the variable coefficient SEIR model is consistent with the real data. Discussion The results show that the cities with better economic development are able to control the epidemic more effectively to a certain extent. On the other hand, geographical location also affected the effectiveness of regional epidemic control. In addition, through the results of attenuation rate analysis, we conclude that China and South Korea have achieved good results in controlling the epidemic in 2020.
Collapse
Affiliation(s)
- Tianyi Sun
- Department of Statistics and Finance, University of Science and Technology of China, Hefei, China
| | - Baisuo Jin
- Department of Statistics and Finance, University of Science and Technology of China, Hefei, China
| | - Yuehua Wu
- Department of Mathematics and Statistics, York University, Toronto, ON, Canada
| | - Junjun Bao
- Endoscopy Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
197
|
Carlin E, Standley CE, Hardy E, Donachie D, Brand T, Greve L, Fevre S, Wenham C. Animal health emergencies: a gender-based analysis for planning and policy. Front Vet Sci 2024; 11:1350256. [PMID: 38645647 PMCID: PMC11027496 DOI: 10.3389/fvets.2024.1350256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/11/2024] [Indexed: 04/23/2024] Open
Abstract
There has been increasing recognition of gender-based inequity as a barrier to successful policy implementation. This consensus, coupled with an increasing frequency of emergencies in human and animal populations, including infectious disease events, has prompted policy makers to re-evaluate gender-sensitivity in emergency management planning. Seeking to identify key publications relating to gendered impacts and considerations across diverse stakeholders in different types of animal health emergencies, we conducted a non-exhaustive, targeted scoping review. We developed a matrix for both academic and policy literature that separated animal health emergencies into two major categories: humanitarian crises and infectious disease events. We then conducted semi-structured interviews with key animal health experts. We found minimal evidence of explicit gender responsive planning in animal health emergencies, whether humanitarian or infectious disease events. This was particularly salient in Global North literature and policy planning documents. Although there are some references to gender in policy documents pertaining to endemic outbreaks of African swine fever (ASF) in Uganda, most research remains gender blind. Despite this, implicit gendered themes emerged from the literature review and interviews as being direct or indirect considerations of some research, policy, and implementation efforts: representation; gendered exposure risks; economic impact; and unpaid care. Absent from both the literature and our conversations with experts were considerations of mental health, gender-based violence, and intersectional impacts. To remedy the gaps in gender-based considerations, we argue that the intentional inclusion of a gender transformative lens in animal health emergency planning is essential. This can be done in the following ways: (1) collection of disaggregated data (race, gender, sexual orientation, etc.); (2) inclusion of gender experts; and (3) inclusion of primary gendered impacts (minimal representation of women in policy positions, gender roles, economic and nutrition impacts) and secondary gendered impacts (gender-based violence, mental health, additional unpaid care responsibilities) in future planning.
Collapse
Affiliation(s)
- Ellen Carlin
- Center for Global Health Science and Security, Georgetown University, Washington, DC, United States
- Parapet Science & Policy Consulting, Washinton DC, United States
| | - Claire E. Standley
- Center for Global Health Science and Security, Georgetown University, Washington, DC, United States
| | - Emily Hardy
- Center for Global Health Science and Security, Georgetown University, Washington, DC, United States
| | | | - Tianna Brand
- World Organisation for Animal Health, Paris, France
| | - Lydia Greve
- World Organisation for Animal Health, Paris, France
| | - Sonia Fevre
- World Organisation for Animal Health, Paris, France
| | - Clare Wenham
- London School of Economics and Political Science, London, United Kingdom
| |
Collapse
|
198
|
Meyer M, Melville DW, Baldwin HJ, Wilhelm K, Nkrumah EE, Badu EK, Oppong SK, Schwensow N, Stow A, Vallo P, Corman VM, Tschapka M, Drosten C, Sommer S. Bat species assemblage predicts coronavirus prevalence. Nat Commun 2024; 15:2887. [PMID: 38575573 PMCID: PMC10994947 DOI: 10.1038/s41467-024-46979-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 03/15/2024] [Indexed: 04/06/2024] Open
Abstract
Anthropogenic disturbances and the subsequent loss of biodiversity are altering species abundances and communities. Since species vary in their pathogen competence, spatio-temporal changes in host assemblages may lead to changes in disease dynamics. We explore how longitudinal changes in bat species assemblages affect the disease dynamics of coronaviruses (CoVs) in more than 2300 cave-dwelling bats captured over two years from five caves in Ghana. This reveals uneven CoV infection patterns between closely related species, with the alpha-CoV 229E-like and SARS-related beta-CoV 2b emerging as multi-host pathogens. Prevalence and infection likelihood for both phylogenetically distinct CoVs is influenced by the abundance of competent species and naïve subadults. Broadly, bat species vary in CoV competence, and highly competent species are more common in less diverse communities, leading to increased CoV prevalence in less diverse bat assemblages. In line with the One Health framework, our work supports the notion that biodiversity conservation may be the most proactive measure to prevent the spread of pathogens with zoonotic potential.
Collapse
Affiliation(s)
- Magdalena Meyer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany.
| | - Dominik W Melville
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Heather J Baldwin
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Kerstin Wilhelm
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Evans Ewald Nkrumah
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Ebenezer K Badu
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Samuel Kingsley Oppong
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Nina Schwensow
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Adam Stow
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Peter Vallo
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Victor M Corman
- Charité - Universitätsmedizin Berlin Institute of Virology, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
| | - Marco Tschapka
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Christian Drosten
- Charité - Universitätsmedizin Berlin Institute of Virology, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany.
| |
Collapse
|
199
|
Cabezón O, Martínez-Orellana P, Ribas MP, Baptista CJ, Gassó D, Velarde R, Aguilar XF, Solano-Gallego L. Leishmania Infection in Wild Lagomorphs and Domestic Dogs in North-East Spain. Animals (Basel) 2024; 14:1080. [PMID: 38612318 PMCID: PMC11011062 DOI: 10.3390/ani14071080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Leishmania infantum is a zoonotic protozoan parasite distributed worldwide that is transmitted by phlebotomine sandflies. Dogs are the main reservoir for human infections. However, in recent years, the capacity of lagomorphs to contribute to Leishmania transmission has been confirmed. The present study aimed to assess Leishmania spp. exposure and infection in lagomorphs and sympatric domestic dogs in NE Spain. Sera from European hares, European rabbits, and rural dogs were tested for antibodies against L. infantum using an in-house indirect ELISA. PCR analysis targeting Leishmania spp. was performed in spleens from L. europaeus. Antibodies against Leishmania spp. were detected in all the species analyzed. Total sample prevalence was significantly higher in O. cuniculus (27.9%) than in L. europaeus (2.0%). Results of the PCR were all negative. The present study expands knowledge about Leishmania infections in free-ranging lagomorphs in the Iberian Peninsula, suggesting a more important role of O. cuniculus in the study area. Given the strong correlation between lagomorph densities and human leishmaniasis outbreaks in Spain, the high rabbit and human densities in NE Spain, and the high Leishmania spp. seroprevalence in rabbits, it becomes imperative to establish surveillance programs for lagomorphs in this region.
Collapse
Affiliation(s)
- Oscar Cabezón
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain; (O.C.); (M.P.R.); (X.F.A.)
- Unitat Mixta d’Investigació IRTA-UAB, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Catalonia, Spain
| | - Pamela Martínez-Orellana
- Infectious and Inflammatory Diseases in Companion Animals Research Group (MIAC), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain;
| | - Maria Puig Ribas
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain; (O.C.); (M.P.R.); (X.F.A.)
| | - Catarina Jota Baptista
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal;
| | - Diana Gassó
- Departament de Ciència Animal, Escola Tècnica Superior d’Enginyeria Agroalimentaria i Forestal i de Veterinària (ETSEAFIV), Universitat de Lleida (UdL), 25199 Lleida, Catalonia, Spain;
| | - Roser Velarde
- Wildlife Ecology and Health Group (WE&H), and Servei d’ Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain;
| | - Xavier Fernández Aguilar
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain; (O.C.); (M.P.R.); (X.F.A.)
| | - Laia Solano-Gallego
- Infectious and Inflammatory Diseases in Companion Animals Research Group (MIAC), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain;
| |
Collapse
|
200
|
Tschopp R, Kidanu AG. Knowledge-attitude and practice of Anthrax and brucellosis: Implications for zoonotic disease surveillance and control in pastoral communities of Afar and Somali region, Ethiopia. PLoS Negl Trop Dis 2024; 18:e0012067. [PMID: 38574113 PMCID: PMC11020881 DOI: 10.1371/journal.pntd.0012067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/16/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Anthrax and brucellosis are endemic national priority zoonotic diseases in Ethiopia. This study assess the possible factors explaining the current limited information available on animal and human cases in pastoral communities. METHODS Two questionnaire surveys gathered data from 509 pastoralists and 51 healthcare providers between February and April 2019 in five districts of Afar and the Somali region (SRS). RESULTS Among the 51 healthcare providers, 25 (49%) and 38 (74.5%) had heard of brucellosis, and anthrax, respectively. Of those, only 3 (12%) and 14 (36.8%) knew the symptoms of brucellosis and Anthrax. None of the Health Extension Workers knew any disease symptoms. Healthcare providers recalled two human cases of brucellosis and 39 cases of Anthrax in the last 12 months, based on symptom-based diagnosis. Pastoralists had a moderate level of knowledge about diseases in their animals, with over half (52.4%; n = 267/509) understanding that animals can transmit diseases to people. Overall, 280 out of 508 (55.1%) and 333 out of 507 (65.7%) pastoralists had heard of brucellosis and Anthrax, respectively. Among the latter, 282 (51.3%) knew at least one preventive measure for Anthrax. However, disease knowledge among women was poor. Despite their knowledge, pastoralists engaged in risky unprotected animal handling, animal product consumption/usage as well as husbandry behaviors exposing them to pathogens and favoring the spread of diseases. They identified Anthrax as the most important zoonosis (47.6%) and as one of top three diseases suspected to cause mortality in their livestock. Pastoralists highlighted lack of vaccine coverage, availability and their timely administration. Both, pastoralists and healthcare providers stated the lack of disease awareness and the unavailability of drugs in the market as important challenges. Health facilities lacked protocols and standard operating procedures for managing zoonotic diseases, and did not have access to laboratory confirmation of pathogens. CONCLUSION Our study revealed significant under-reporting of Anthrax and brucellosis, and weak prevention and response in humans, mostly associated with poor disease knowledge of healthcare providers. Ability to respond to animal outbreaks was limited by vaccine and drugs availability, timely vaccine administration and the mobility of pastoralists.
Collapse
Affiliation(s)
- Rea Tschopp
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Switzerland
- One Health Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | |
Collapse
|