151
|
Métrich M, Berthouze M, Morel E, Crozatier B, Gomez AM, Lezoualc'h F. Role of the cAMP-binding protein Epac in cardiovascular physiology and pathophysiology. Pflugers Arch 2009; 459:535-46. [PMID: 19855995 DOI: 10.1007/s00424-009-0747-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 10/09/2009] [Accepted: 10/11/2009] [Indexed: 12/24/2022]
Abstract
Exchange proteins directly activated by cyclic AMP (Epac) were discovered 10 years ago as new sensors for the second messenger cyclic AMP (cAMP). Epac family, including Epac1 and Epac2, are guanine nucleotide exchange factors for the Ras-like small GTPases Rap1 and Rap2 and function independently of protein kinase A. Given the importance of cAMP in the cardiovascular system, numerous molecular and cellular studies using specific Epac agonists have analyzed the role and the regulation of Epac proteins in cardiovascular physiology and pathophysiology. The specific functions of Epac proteins may depend upon their microcellular environments as well as their expression and localization. This review discusses recent data showing the involvement of Epac in vascular cell migration, endothelial permeability, and inflammation through specific signaling pathways. In addition, we present evidence that Epac regulates the activity of various cellular compartments of the cardiac myocyte and influences calcium handling and excitation-contraction coupling. The potential role of Epac in cardiovascular disorders such as cardiac hypertrophy and remodeling is also discussed.
Collapse
Affiliation(s)
- Mélanie Métrich
- Inserm, UMR-S 769, Signalisation et Physiopathologie Cardiaque, Châtenay-Malabry 92296, France
| | | | | | | | | | | |
Collapse
|
152
|
Siso-Nadal F, Fox JJ, Laporte SA, Hébert TE, Swain PS. Cross-talk between signaling pathways can generate robust oscillations in calcium and cAMP. PLoS One 2009; 4:e7189. [PMID: 19844582 PMCID: PMC2760754 DOI: 10.1371/journal.pone.0007189] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 09/03/2009] [Indexed: 11/18/2022] Open
Abstract
Background To control and manipulate cellular signaling, we need to understand cellular strategies for information transfer, integration, and decision-making. A key feature of signal transduction is the generation of only a few intracellular messengers by many extracellular stimuli. Methodology/Principal Findings Here we model molecular cross-talk between two classic second messengers, cyclic AMP (cAMP) and calcium, and show that the dynamical complexity of the response of both messengers increases substantially through their interaction. In our model of a non-excitable cell, both cAMP and calcium concentrations can oscillate. If mutually inhibitory, cross-talk between the two second messengers can increase the range of agonist concentrations for which oscillations occur. If mutually activating, cross-talk decreases the oscillation range, but can generate ‘bursting’ oscillations of calcium and may enable better filtering of noise. Conclusion We postulate that this increased dynamical complexity allows the cell to encode more information, particularly if both second messengers encode signals. In their native environments, it is unlikely that cells are exposed to one stimulus at a time, and cross-talk may help generate sufficiently complex responses to allow the cell to discriminate between different combinations and concentrations of extracellular agonists.
Collapse
Affiliation(s)
- Fernando Siso-Nadal
- Gene Network Sciences, Cambridge, Massachusetts, United States of America
- Centre for Non-linear Dynamics, McGill University, Montreal, Canada
| | - Jeffrey J. Fox
- Centre for Applied Mathematics, Cornell University, Ithaca, New York, United States of America
| | - Stéphane A. Laporte
- Department of Medicine, McGill University, Montreal, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Terence E. Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Peter S. Swain
- Centre for Non-linear Dynamics, McGill University, Montreal, Canada
- Centre for Systems Biology at Edinburgh, University of Edinburgh, Edinburgh, Scotland
- * E-mail:
| |
Collapse
|
153
|
Purves GI, Kamishima T, Davies LM, Quayle JM, Dart C. Exchange protein activated by cAMP (Epac) mediates cAMP-dependent but protein kinase A-insensitive modulation of vascular ATP-sensitive potassium channels. J Physiol 2009; 587:3639-50. [PMID: 19491242 DOI: 10.1113/jphysiol.2009.173534] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Exchange proteins directly activated by cyclic AMP (Epacs or cAMP-GEF) represent a family of novel cAMP-binding effector proteins. The identification of Epacs and the recent development of pharmacological tools that discriminate between cAMP-mediated pathways have revealed previously unrecognized roles for cAMP that are independent of its traditional target cAMP-dependent protein kinase (PKA). Here we show that Epac exists in a complex with vascular ATP-sensitive potassium (KATP) channel subunits and that cAMP-mediated activation of Epac modulates KATP channel activity via a Ca2+-dependent mechanism involving the activation of Ca2+-sensitive protein phosphatase 2B (PP-2B, calcineurin). Application of the Epac-specific cAMP analogue 8-pCPT-2'-O-Me-cAMP, at concentrations that activate Epac but not PKA, caused a 41.6 +/- 4.7% inhibition (mean +/- S.E.M.; n = 7) of pinacidil-evoked whole-cell KATP currents recorded in isolated rat aortic smooth muscle cells. Importantly, similar results were obtained when cAMP was elevated by addition of the adenylyl cyclase activator forskolin in the presence of the structurally distinct PKA inhibitors, Rp-cAMPS or KT5720. Activation of Epac by 8-pCPT-2'-O-Me-cAMP caused a transient 171.0 +/- 18.0 nM (n = 5) increase in intracellular Ca2+ in Fura-2-loaded aortic myocytes, which persisted in the absence of extracellular Ca2+. Inclusion of the Ca2+-specific chelator BAPTA in the pipette-filling solution or preincubation with the calcineurin inhibitors, cyclosporin A or ascomycin, significantly reduced the ability of 8-pCPT-2'-O-Me-cAMP to inhibit whole-cell KATP currents. These results highlight a previously undescribed cAMP-dependent regulatory mechanism that may be essential for understanding the physiological and pathophysiological roles ascribed to arterial KATP channels in the control of vascular tone and blood flow.
Collapse
Affiliation(s)
- Gregor I Purves
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | | | | | | | | |
Collapse
|
154
|
Roscioni SS, Kistemaker LEM, Menzen MH, Elzinga CRS, Gosens R, Halayko AJ, Meurs H, Schmidt M. PKA and Epac cooperate to augment bradykinin-induced interleukin-8 release from human airway smooth muscle cells. Respir Res 2009; 10:88. [PMID: 19788733 PMCID: PMC2764632 DOI: 10.1186/1465-9921-10-88] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Accepted: 09/29/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Airway smooth muscle contributes to the pathogenesis of pulmonary diseases by secreting inflammatory mediators such as interleukin-8 (IL-8). IL-8 production is in part regulated via activation of Gq-and Gs-coupled receptors. Here we study the role of the cyclic AMP (cAMP) effectors protein kinase A (PKA) and exchange proteins directly activated by cAMP (Epac1 and Epac2) in the bradykinin-induced IL-8 release from a human airway smooth muscle cell line and the underlying molecular mechanisms of this response. METHODS IL-8 release was assessed via ELISA under basal condition and after stimulation with bradykinin alone or in combination with fenoterol, the Epac activators 8-pCPT-2'-O-Me-cAMP and Sp-8-pCPT-2'-O-Me-cAMPS, the PKA activator 6-Bnz-cAMP and the cGMP analog 8-pCPT-2'-O-Me-cGMP. Where indicated, cells were pre-incubated with the pharmacological inhibitors Clostridium difficile toxin B-1470 (GTPases), U0126 (extracellular signal-regulated kinases ERK1/2) and Rp-8-CPT-cAMPS (PKA). The specificity of the cyclic nucleotide analogs was confirmed by measuring phosphorylation of the PKA substrate vasodilator-stimulated phosphoprotein. GTP-loading of Rap1 and Rap2 was evaluated via pull-down technique. Expression of Rap1, Rap2, Epac1 and Epac2 was assessed via western blot. Downregulation of Epac protein expression was achieved by siRNA. Unpaired or paired two-tailed Student's t test was used. RESULTS The beta2-agonist fenoterol augmented release of IL-8 by bradykinin. The PKA activator 6-Bnz-cAMP and the Epac activator 8-pCPT-2'-O-Me-cAMP significantly increased bradykinin-induced IL-8 release. The hydrolysis-resistant Epac activator Sp-8-pCPT-2'-O-Me-cAMPS mimicked the effects of 8-pCPT-2'-O-Me-cAMP, whereas the negative control 8-pCPT-2'-O-Me-cGMP did not. Fenoterol, forskolin and 6-Bnz-cAMP induced VASP phosphorylation, which was diminished by the PKA inhibitor Rp-8-CPT-cAMPS. 6-Bnz-cAMP and 8-pCPT-2'-O-Me-cAMP induced GTP-loading of Rap1, but not of Rap2. Treatment of the cells with toxin B-1470 and U0126 significantly reduced bradykinin-induced IL-8 release alone or in combination with the activators of PKA and Epac. Interestingly, inhibition of PKA by Rp-8-CPT-cAMPS and silencing of Epac1 and Epac2 expression by specific siRNAs largely decreased activation of Rap1 and the augmentation of bradykinin-induced IL-8 release by both PKA and Epac. CONCLUSION Collectively, our data suggest that PKA, Epac1 and Epac2 act in concert to modulate inflammatory properties of airway smooth muscle via signaling to the Ras-like GTPase Rap1 and to ERK1/2.
Collapse
Affiliation(s)
- Sara S Roscioni
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
155
|
The cAMP binding protein Epac regulates cardiac myofilament function. Proc Natl Acad Sci U S A 2009; 106:14144-9. [PMID: 19666481 DOI: 10.1073/pnas.0812536106] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In the heart, cAMP is a key regulator of excitation-contraction coupling and its biological effects are mainly associated with the activity of protein kinase A (PKA). The aim of this study was to investigate the contribution of the cAMP-binding protein Epac (Exchange protein directly activated by cAMP) in the regulation of the contractile properties of rat ventricular cardiac myocytes. We report that both PKA and Epac increased cardiac sarcomere contraction but through opposite mechanisms. Differently from PKA, selective Epac activation by the cAMP analog 8-(4-chlorophenylthio)-2'-O-methyl-cAMP (8-pCPT) reduced Ca(2+) transient amplitude and increased cell shortening in intact cardiomyocytes and myofilament Ca(2+) sensitivity in permeabilized cardiomyocytes. Moreover, ventricular myocytes, which were infected in vivo with a constitutively active form of Epac, showed enhanced myofilament Ca(2+) sensitivity compared to control cells infected with green fluorescent protein (GFP) alone. At the molecular level, Epac increased phosphorylation of 2 key sarcomeric proteins, cardiac Troponin I (cTnI) and cardiac Myosin Binding Protein-C (cMyBP-C). The effects of Epac activation on myofilament Ca(2+) sensitivity and on cTnI and cMyBP-C phosphorylation were independent of PKA and were blocked by protein kinase C (PKC) and Ca(2+) calmodulin kinase II (CaMKII) inhibitors. Altogether these findings identify Epac as a new regulator of myofilament function.
Collapse
|
156
|
Yaman E, Gasper R, Koerner C, Wittinghofer A, Tazebay UH. RasGEF1A and RasGEF1B are guanine nucleotide exchange factors that discriminate between Rap GTP-binding proteins and mediate Rap2-specific nucleotide exchange. FEBS J 2009; 276:4607-16. [DOI: 10.1111/j.1742-4658.2009.07166.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
157
|
Métrich M, Morel E, Berthouze M, Pereira L, Charron P, Gomez AM, Lezoualc'h F. Functional characterization of the cAMP-binding proteins Epac in cardiac myocytes. Pharmacol Rep 2009; 61:146-53. [PMID: 19307703 DOI: 10.1016/s1734-1140(09)70017-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 01/15/2009] [Indexed: 11/29/2022]
Abstract
The cyclic AMP (cAMP)-binding proteins, Epac, are guanine nucleotide exchange factors for the Ras-like small GTPases. Since their discovery in 1998 and with the development of specific Epac agonists, many data in the literature have illustrated their critical role in multiple cellular events mediated by the second messenger cAMP. Given the importance of cAMP in cardiovascular physiology and physiopathology, there is a growing interest to delineate the role of these multi-domain Epac in the cardiovascular system. This review will focus on recent pharmacological and biochemical studies aiming at understanding the role of Epac in cardiomyocyte signaling and hypertrophy.
Collapse
Affiliation(s)
- Mélanie Métrich
- Inserm, U769, Signalisation et Physiopathologie Cardiaque, Châtenay-Malabry, France
| | | | | | | | | | | | | |
Collapse
|
158
|
Borland G, Bird RJ, Palmer TM, Yarwood SJ. Activation of protein kinase Calpha by EPAC1 is required for the ERK- and CCAAT/enhancer-binding protein beta-dependent induction of the SOCS-3 gene by cyclic AMP in COS1 cells. J Biol Chem 2009; 284:17391-403. [PMID: 19423709 PMCID: PMC2719379 DOI: 10.1074/jbc.m109.015370] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 04/30/2009] [Indexed: 01/09/2023] Open
Abstract
We recently found that induction of the anti-inflammatory SOCS-3 gene by cyclic AMP occurs through novel cyclic AMP-dependent protein kinase-independent mechanisms involving activation of CCAAT/enhancer-binding protein (C/EBP) transcription factors, notably C/EBPbeta, by the cyclic AMP GEF EPAC1 and the Rap1 GTPase. In this study we show that down-regulation of phospholipase (PL) Cepsilon with small interfering RNA or blockade of PLC activity with chemical inhibitors ablates exchange protein directly activated by cyclic AMP (EPAC)-dependent induction of SOCS-3 in COS1 cells. Consistent with this, stimulation of cells with 1-oleoyl-2-acetyl-sn-glycerol and phorbol 12-myristate 13-acetate, both cell-permeable analogues of the PLC product diacylglycerol, are sufficient to induce SOCS-3 expression in a Ca2+-dependent manner. Moreover, the diacylglycerol- and Ca2+-dependent protein kinase C (PKC) isoform PKCalpha becomes activated following cyclic AMP elevation or EPAC stimulation. Conversely, down-regulation of PKC activity with chemical inhibitors or small interfering RNA-mediated depletion of PKCalpha or -delta blocks EPAC-dependent SOCS-3 induction. Using the MEK inhibitor U0126, we found that activation of ERK MAPKs is essential for SOCS-3 induction by either cyclic AMP or PKC. C/EBPbeta is known to be phosphorylated and activated by ERK. Accordingly, we found ERK activation to be essential for cyclic AMP-dependent C/EBP activation and C/EBPbeta-dependent SOCS-3 induction by cyclic AMP and PKC. Moreover, overexpression of a mutant form of C/EBPbeta (T235A), which lacks the ERK phosphorylation site, blocks SOCS-3 induction by cyclic AMP and PKC in a dominant-negative manner. Together, these results indicate that EPAC mediates novel regulatory cross-talk between the cyclic AMP and PKC signaling pathways leading to ERK- and C/EBPbeta-dependent induction of the SOCS-3 gene.
Collapse
Affiliation(s)
- Gillian Borland
- From the Division of Molecular and Cellular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Rebecca J. Bird
- From the Division of Molecular and Cellular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Timothy M. Palmer
- From the Division of Molecular and Cellular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Stephen J. Yarwood
- From the Division of Molecular and Cellular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| |
Collapse
|
159
|
Branham MT, Bustos MA, De Blas GA, Rehmann H, Zarelli VEP, Treviño CL, Darszon A, Mayorga LS, Tomes CN. Epac activates the small G proteins Rap1 and Rab3A to achieve exocytosis. J Biol Chem 2009; 284:24825-39. [PMID: 19546222 DOI: 10.1074/jbc.m109.015362] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Exocytosis of the acrosome (the acrosome reaction) relies on cAMP production, assembly of a proteinaceous fusion machinery, calcium influx from the extracellular medium, and mobilization from inositol 1,4,5-trisphosphate-sensitive intracellular stores. Addition of cAMP to human sperm suspensions bypasses some of these requirements and elicits exocytosis in a protein kinase A- and extracellular calcium-independent manner. The relevant cAMP target is Epac, a guanine nucleotide exchange factor for the small GTPase Rap. We show here that a soluble adenylyl cyclase synthesizes the cAMP required for the acrosome reaction. Epac stimulates the exchange of GDP for GTP on Rap1, upstream of a phospholipase C. The Epac-selective cAMP analogue 8-pCPT-2'-O-Me-cAMP induces a phospholipase C-dependent calcium mobilization in human sperm suspensions. In addition, our studies identify a novel connection between cAMP and Rab3A, a secretory granule-associated protein, revealing that the latter functions downstream of soluble adenylyl cyclase/cAMP/Epac but not of Rap1. Challenging sperm with calcium or 8-pCPT-2'-O-Me-cAMP boosts the exchange of GDP for GTP on Rab3A. Recombinant Epac does not release GDP from Rab3A in vitro, suggesting that the Rab3A-GEF activation by cAMP/Epac in vivo is indirect. We propose that Epac sits at a critical point during the exocytotic cascade after which the pathway splits into two limbs, one that assembles the fusion machinery into place and another that elicits intracellular calcium release.
Collapse
Affiliation(s)
- María T Branham
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, CC 56, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Wang J, Lindholm JR, Willis DK, Orth A, Goodman WG. Juvenile hormone regulation of Drosophila Epac--a guanine nucleotide exchange factor. Mol Cell Endocrinol 2009; 305:30-7. [PMID: 19433259 DOI: 10.1016/j.mce.2009.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 02/04/2009] [Accepted: 02/06/2009] [Indexed: 01/16/2023]
Abstract
Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to characterize the effects of juvenile hormone (JH) on Epac (Exchange Protein directly Activated by Cyclic AMP; NM_001103732), a guanine nucleotide exchange factor for Rap1 in Drosophila S2 cells. JH treatment led to a rapid, dose-dependent increase in Epac relative expression ratio (RER) when compared to treatment with methyl linoleate (MLA) that lacks biological activity. The minimal level of hormone needed to elicit a response was 100 ng/ml. Time-course studies indicated a significant rise in the RER 1h after treatment. S2 cells were challenged with 20-hydroxyecdysone and a series of compounds similar in structure to JH to determine the specificity of the response. Methoprene and JH III displayed the greatest increases in RER. Late third instar (96 h) Drosophila were exposed to diet containing methoprene (500 ng/g diet); significantly higher RERs for Epac were observed 12h after exposure. JH had no effect on Epac RERs in the human cell line HEK-293.
Collapse
Affiliation(s)
- Jun Wang
- Department of Entomology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | | | | | | | | |
Collapse
|
161
|
Kurian N, Hall CJ, Wilkinson GF, Sullivan M, Tobin AB, Willars GB. Full and partial agonists of muscarinic M3 receptors reveal single and oscillatory Ca2+ responses by beta 2-adrenoceptors. J Pharmacol Exp Ther 2009; 330:502-12. [PMID: 19420300 DOI: 10.1124/jpet.109.153619] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Under physiological circumstances, cellular responses often reflect integration of signaling by two or more different receptors activated coincidentally or sequentially. In addition to heterologous desensitization, there are examples in which receptor activation either reveals or potentiates signaling by a different receptor type, although this is perhaps less well explored. Here, we characterize one such interaction between endogenous receptors in human embryonic kidney 293 cells in which Galpha(q/11)-coupled muscarinic M(3) receptors facilitate Ca(2+) signaling by Galpha(s)-coupled beta(2)-adrenoceptors. Measurement of changes in intracellular [Ca(2+)] demonstrated that noradrenaline released Ca(2+) from thapsigargin-sensitive intracellular stores only during activation of muscarinic receptors. Agonists with low efficacy for muscarinic receptor-mediated Ca(2+) responses facilitated cross-talk more effectively than full agonists. The cross-talk required Galpha(s) and was dependent upon intracellular Ca(2+) release channels, particularly inositol (1,4,5)-trisphosphate receptors. However, beta(2)-adrenoceptor-mediated Ca(2+) release was independent of measurable increases in phospholipase C activity and resistant to inhibitors of protein kinases A and C. Interestingly, single-cell imaging demonstrated that particularly lower concentrations of muscarinic receptor agonists facilitated marked oscillatory Ca(2+) signaling to noradrenaline. Thus, activation of muscarinic M(3) receptors profoundly influences the magnitude and oscillatory behavior of intracellular Ca(2+) signaling by beta(2)-adrenoceptors. Although these receptor subtypes are often coexpressed and mediate contrasting acute physiological effects, altered oscillatory Ca(2+) signaling suggests that cross-talk could influence longer term events through, for example, regulating gene transcription.
Collapse
Affiliation(s)
- Nisha Kurian
- Department of Cell Physiology and Pharmacology, University of Leicester, LE1 9HN United Kingdom
| | | | | | | | | | | |
Collapse
|
162
|
Niimura M, Miki T, Shibasaki T, Fujimoto W, Iwanaga T, Seino S. Critical role of the N-terminal cyclic AMP-binding domain of Epac2 in its subcellular localization and function. J Cell Physiol 2009; 219:652-8. [PMID: 19170062 DOI: 10.1002/jcp.21709] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
cAMP is a well-known regulator of exocytosis, and cAMP-GEFII (Epac2) is involved in the potentiation of cAMP-dependent, PKA-independent regulated exocytosis in secretory cells. However, the mechanisms of its action are not fully understood. In the course of our study of Epac2 knockout mice, we identified a novel splicing variant of Epac2, which we designate Epac2B, while renaming the previously identified Epac2 Epac2A. Epac2B, which lacks the first cAMP-binding domain A in the N-terminus but has the second cAMP-binding domain B of Epac2A, possesses GEF activity towards Rap1, as was found for Epac2A. Immunocytochemical analysis revealed that exogenously introduced Epac2A into insulin-secreting MIN6 cells was localized near the plasma membrane, while Epac2B was found primarily in the cytoplasm. Interestingly, cAMP-binding domain A alone introduced into MIN6 cells was also localized near the plasma membrane. In MIN6 cells, Epac2A was involved in triggering hormone secretion by stimulation with 5.6 mM glucose plus 1 mM 8-Bromo-cAMP, but Epac2B was not. The addition of a membrane-targeting signal to the N-terminus of Epac2B was able to mimic the effect of Epac2A on hormone secretion. Thus, the present study indicates that the N-terminal cAMP-binding domain A of Epac2A plays a critical role in determining its subcellular localization and potentiating insulin secretion by cAMP. J. Cell. Physiol. 219: 652-658, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Manabu Niimura
- Division of Cellular and Molecular Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | | | | | | | | | | |
Collapse
|
163
|
Morara S, Wang LP, Filippov V, Dickerson IM, Grohovaz F, Provini L, Kettenmann H. Calcitonin gene-related peptide (CGRP) triggers Ca2+ responses in cultured astrocytes and in Bergmann glial cells from cerebellar slices. Eur J Neurosci 2009; 28:2213-20. [PMID: 19046367 DOI: 10.1111/j.1460-9568.2008.06514.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The neuropeptide calcitonin gene-related peptide (CGRP) is transiently expressed in cerebellar climbing fibers during development while its receptor is mainly expressed in astrocytes, in particular Bergmann glial cells. Here, we analyzed the effects of CGRP on astrocytic calcium signaling. Mouse cultured astrocytes from cerebellar or cerebral cortex as well as Bergmann glial cells from acutely isolated cerebellar slices were loaded with the Ca(2+) sensor Fura-2. CGRP triggered transient increases in intracellular Ca(2+) in astrocytes in culture as well as in acute slices. Responses were observed in the concentration range of 1 nm to 1 mm, in both the cell body and its processes. The calcium transients were dependent on release from intracellular stores as they were blocked by thapsigargin but not by the absence of extracellular calcium. In addition, after CGRP application a further delayed transient increase in calcium activity could be observed. Finally, cerebellar astrocytes from neonatal mice expressed receptor component protein, a component of the CGRP receptor, as revealed by immunofluorescence and confocal microscopy. It is thus proposed that the CGRP-containing afferent fibers in the cerebellum (the climbing fibers) modulate calcium in astrocytes by releasing the neuropeptide during development and hence possibly influence the differentiation of Purkinje cells.
Collapse
Affiliation(s)
- Stefano Morara
- C. N. R., Institute of Neuroscience, Via Privata Bianco 9, 20131 Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
164
|
Fraser CC. G protein-coupled receptor connectivity to NF-kappaB in inflammation and cancer. Int Rev Immunol 2009; 27:320-50. [PMID: 18853342 DOI: 10.1080/08830180802262765] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Complex intracellular network interactions regulate gene expression and cellular behavior. Whether at the site of inflammation or within a tumor, individual cells are exposed to a plethora of signals. The transcription factor nuclear factor-kappaB (NF-kappaB) regulates genes that control key cellular activities involved in inflammatory diseases and cancer. NF-kappaB is regulated by several distinct signaling pathways that may be activated individually or simultaneously. Multiple ligands and heterologous cell-cell interactions have an impact on NF-kappaB activity. The G protein-coupled receptor (GPCR) superfamily makes up the largest class of transmembrane receptors in the human genome and has multiple molecularly distinct natural ligands. GPCRs regulate proliferation, differentiation, and chemotaxis and play a major role in inflammatory diseases and cancer. Both GPCRs and NF-kappaB have been, and continue to be, major targets for drug discovery. A clear understanding of network interactions between GPCR signaling pathways and those that control NF-kB may be valuable for the development of better drugs and drug combinations.
Collapse
|
165
|
Rebecchi MJ, Raghubir A, Scarlata S, Hartenstine MJ, Brown T, Stallings JD. Expression and function of phospholipase C in breast carcinoma. ACTA ACUST UNITED AC 2009; 49:59-73. [DOI: 10.1016/j.advenzreg.2009.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
166
|
Gutknecht E, Van der Linden I, Van Kolen K, Verhoeven KFC, Vauquelin G, Dautzenberg FM. Molecular mechanisms of corticotropin-releasing factor receptor-induced calcium signaling. Mol Pharmacol 2008; 75:648-57. [PMID: 19098121 DOI: 10.1124/mol.108.050427] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The molecular mechanisms governing calcium signal transduction of corticotropin-releasing factor (CRF) receptors CRF(1) and CRF(2(a)) stably expressed in human embryonic kidney (HEK) 293 cells were investigated. Calcium signaling strictly depended on intracellular calcium sources, and this is the first study to establish a prominent contribution of the three major G-protein families to CRF receptor-mediated calcium signaling. Overexpression of Galpha(q/11) and Galpha(16) led to leftward shifts of the agonist concentration-response curves. Blockade of Galpha(q/11) proteins by the small interfering RNA (siRNA) technology partially reduced agonist-mediated calcium responses in CRF(1)- and CRF(2(a))-expressing HEK293 cells, thereby proving a contribution of the G(q) protein family. A small but significant inhibition of calcium signaling was recorded by pharmacological inhibition of G(i/o) proteins with pertussis toxin treatment. This effect was mediated by direct binding of Gbetagamma subunits to phospholipase C. G(i/o) inhibition also elevated cAMP responses in CRF receptor-overexpressing HEK293 cells and in Y79 retinoblastoma cells endogenously expressing human CRF(1) and CRF(2(a)) receptors, thereby demonstrating natural coupling of G(i) proteins to both CRF receptors. The strongest reduction of CRF receptor-mediated calcium mobilization was noted when blocking the G(s) signaling protein either by cholera toxin or by siRNA. It is noteworthy that simultaneous inhibition of two G-proteins shed light on the additive effects of G(s) and G(q) on the calcium signaling and, hence, that they act in parallel. On the other hand, G(i) coupling required prior G(s) activation.
Collapse
Affiliation(s)
- Eric Gutknecht
- Johnson and Johnson Research and Development, CNS Research, Beerse, Belgium.
| | | | | | | | | | | |
Collapse
|
167
|
Abstract
Ras and Rap proteins are closely related small GTPases. Whereas Ras is known for its role in cell proliferation and survival, Rap1 is predominantly involved in cell adhesion and cell junction formation. Ras and Rap are regulated by different sets of guanine nucleotide exchange factors and GTPase-activating proteins, determining one level of specificity. In addition, although the effector domains are highly similar, Rap and Ras interact with largely different sets of effectors, providing a second level of specificity. In this review, we discuss the regulatory proteins and effectors of Ras and Rap, with a focus on those of Rap.
Collapse
Affiliation(s)
- Judith H Raaijmakers
- Department of Physiological Chemistry, Centre for Biomedical Genetics, Universitair Medisch Centrum Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | |
Collapse
|
168
|
Harden TK, Hicks SN, Sondek J. Phospholipase C isozymes as effectors of Ras superfamily GTPases. J Lipid Res 2008; 50 Suppl:S243-8. [PMID: 19033212 DOI: 10.1194/jlr.r800045-jlr200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The physiological effects of many extracellular stimuli are initiated through receptor-promoted activation of phospholipase C and inositol lipid signaling pathways. The historical view that phospholipase C-promoted signaling primarily occurs through activation of heterotrimeric G proteins or tyrosine kinases has expanded in recent years with the realization that at least three different mammalian phospholipase C isozymes are directly activated by members of the Ras superfamily of GTPases. Thus, Ras, Rap, Rac, and Rho GTPases all specifically regulate certain phospholipase C isozymes, and insight into the physiological significance of these signaling responses is beginning to accrue. High resolution three-dimensional structures of phospholipase C isozymes also are beginning to shed light on their mechanism of activation.
Collapse
Affiliation(s)
- T Kendall Harden
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| | | | | |
Collapse
|
169
|
Tovey SC, Dedos SG, Taylor EJA, Church JE, Taylor CW. Selective coupling of type 6 adenylyl cyclase with type 2 IP3 receptors mediates direct sensitization of IP3 receptors by cAMP. ACTA ACUST UNITED AC 2008; 183:297-311. [PMID: 18936250 PMCID: PMC2568025 DOI: 10.1083/jcb.200803172] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Interactions between cyclic adenosine monophosphate (cAMP) and Ca2+ are widespread, and for both intracellular messengers, their spatial organization is important. Parathyroid hormone (PTH) stimulates formation of cAMP and sensitizes inositol 1,4,5-trisphosphate receptors (IP3R) to IP3. We show that PTH communicates with IP3R via “cAMP junctions” that allow local delivery of a supramaximal concentration of cAMP to IP3R, directly increasing their sensitivity to IP3. These junctions are robust binary switches that are digitally recruited by increasing concentrations of PTH. Human embryonic kidney cells express several isoforms of adenylyl cyclase (AC) and IP3R, but IP3R2 and AC6 are specifically associated, and inhibition of AC6 or IP3R2 expression by small interfering RNA selectively attenuates potentiation of Ca2+ signals by PTH. We define two modes of cAMP signaling: binary, where cAMP passes directly from AC6 to IP3R2; and analogue, where local gradients of cAMP concentration regulate cAMP effectors more remote from AC. Binary signaling requires localized delivery of cAMP, whereas analogue signaling is more dependent on localized cAMP degradation.
Collapse
Affiliation(s)
- Stephen C Tovey
- Department of Pharmacology, Univesrsity of Cambridge, Cambridge, England, UK
| | | | | | | | | |
Collapse
|
170
|
Sukhanova IF, Solomonova VG, Avdonin PV. Activators of protein kinase A and Epac proteins enhance the contractile response of the isolated snail (Helix pomatia) Heart to serotonin. BIOL BULL+ 2008. [DOI: 10.1134/s1062359008060101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
171
|
Oestreich EA, Malik S, Goonasekera SA, Blaxall BC, Kelley GG, Dirksen RT, Smrcka AV. Epac and phospholipase Cepsilon regulate Ca2+ release in the heart by activation of protein kinase Cepsilon and calcium-calmodulin kinase II. J Biol Chem 2008; 284:1514-22. [PMID: 18957419 DOI: 10.1074/jbc.m806994200] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, we identified a novel signaling pathway involving Epac, Rap, and phospholipase C (PLC)epsilon that plays a critical role in maximal beta-adrenergic receptor (betaAR) stimulation of Ca2+-induced Ca2+ release (CICR) in cardiac myocytes. Here we demonstrate that PLCepsilon phosphatidylinositol 4,5-bisphosphate hydrolytic activity and PLCepsilon-stimulated Rap1 GEF activity are both required for PLCepsilon-mediated enhancement of sarcoplasmic reticulum Ca2+ release and that PLCepsilon significantly enhances Rap activation in response to betaAR stimulation in the heart. Downstream of PLCepsilon hydrolytic activity, pharmacological inhibition of PKC significantly inhibited both betaAR- and Epac-stimulated increases in CICR in PLCepsilon+/+ myocytes but had no effect in PLCepsilon-/- myocytes. betaAR and Epac activation caused membrane translocation of PKCepsilon in PLCepsilon+/+ but not PLCepsilon-/- myocytes and small interfering RNA-mediated PKCepsilon knockdown significantly inhibited both betaAR and Epac-mediated CICR enhancement. Further downstream, the Ca2+/calmodulin-dependent protein kinase II (CamKII) inhibitor, KN93, inhibited betaAR- and Epac-mediated CICR in PLCepsilon+/+ but not PLCepsilon-/- myocytes. Epac activation increased CamKII Thr286 phosphorylation and enhanced phosphorylation at CamKII phosphorylation sites on the ryanodine receptor (RyR2) (Ser2815) and phospholamban (Thr17) in a PKC-dependent manner. Perforated patch clamp experiments revealed that basal and betaAR-stimulated peak L-type current density are similar in PLCepsilon+/+ and PLCepsilon-/- myocytes suggesting that control of sarcoplasmic reticulum Ca2+ release, rather than Ca2+ influx through L-type Ca2+ channels, is the target of regulation of a novel signal transduction pathway involving sequential activation of Epac, PLCepsilon, PKCepsilon, and CamKII downstream of betaAR activation.
Collapse
Affiliation(s)
- Emily A Oestreich
- Department of Pharmacology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
172
|
Rogers RC, Hermann GE. Mechanisms of action of CCK to activate central vagal afferent terminals. Peptides 2008; 29:1716-25. [PMID: 18655818 PMCID: PMC2650377 DOI: 10.1016/j.peptides.2008.06.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/10/2008] [Accepted: 06/16/2008] [Indexed: 12/29/2022]
Abstract
Cholecystokinin [CCK] is a peptide released as a hormone by the proximal gut in response to the presence of peptones and fatty acid in the gut. Considerable evidence suggests that CCK inhibits feeding behavior and gastric function by acting as a paracrine modulator of vagal afferents in the periphery, especially in the duodenum. CCK is also widely distributed throughout the mammalian brain and appears to function as a neurotransmitter and neuromodulator. More recent studies have suggested that CCK may act directly within the CNS to activate central vagal afferent terminal inputs to the solitary nucleus. We have developed an in vitro calcium imaging method that reveals, for the first time, the direct effects of this peptide on vagal terminals in the solitary nucleus. In vitro imaging reveals that CCK provokes increases in intracellular calcium in vagal afferent terminals as a consequence of a complex interaction between protein kinase A [PKA] and phospholipase C [PLC] transduction mechanisms that open L-type calcium channels and causes endoplasmic reticular [ER] calcium release. The subsequent activation of PKC may be responsible for initiating calcium spiking which is dependent on a TTX-sensitive mechanism. Thus, imaging of the isolated but spatially intact hindbrain slice has allowed a more complete appreciation of the interdependent transduction mechanisms used by CCK to excite identified central vagal afferent fibers and varicosities.
Collapse
Affiliation(s)
- Richard C Rogers
- Laboratory of Autonomic Neurosciences, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
| | | |
Collapse
|
173
|
Vandenbroucke E, Mehta D, Minshall R, Malik AB. Regulation of endothelial junctional permeability. Ann N Y Acad Sci 2008; 1123:134-45. [PMID: 18375586 DOI: 10.1196/annals.1420.016] [Citation(s) in RCA: 445] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The endothelium is a semi-permeable barrier that regulates the flux of liquid and solutes, including plasma proteins, between the blood and surrounding tissue. The permeability of the vascular barrier can be modified in response to specific stimuli acting on endothelial cells. Transport across the endothelium can occur via two different pathways: through the endothelial cell (transcellular) or between adjacent cells, through interendothelial junctions (paracellular). This review focuses on the regulation of the paracellular pathway. The paracellular pathway is composed of adhesive junctions between endothelial cells, both tight junctions and adherens junctions. The actin cytoskeleton is bound to each junction and controls the integrity of each through actin remodeling. These interendothelial junctions can be disassembled or assembled to either increase or decrease paracellular permeability. Mediators, such as thrombin, TNF-alpha, and LPS, stimulate their respective receptor on endothelial cells to initiate signaling that increases cytosolic Ca2+ and activates myosin light chain kinase (MLCK), as well as monomeric GTPases RhoA, Rac1, and Cdc42. Ca2+ activation of MLCK and RhoA disrupts junctions, whereas Rac1 and Cdc42 promote junctional assembly. Increased endothelial permeability can be reversed with "barrier stabilizing agents," such as sphingosine-1-phosphate and cyclic adenosine monophosphate (cAMP). This review provides an overview of the mechanisms that regulate paracellular permeability.
Collapse
Affiliation(s)
- Emily Vandenbroucke
- Department of Pharmacology and Center for Lung and Vascular Biology, The University of Illonois College of Medicine, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
174
|
Tawfeek HAW, Abou-Samra AB. Negative regulation of parathyroid hormone (PTH)-activated phospholipase C by PTH/PTH-related peptide receptor phosphorylation and protein kinase A. Endocrinology 2008; 149:4016-23. [PMID: 18450967 PMCID: PMC2488210 DOI: 10.1210/en.2007-1375] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PTH binding to the PTH/PTHrP receptor activates adenylate cyclase/protein kinase A (PKA) and phospholipase C (PLC) pathways and increases receptor phosphorylation. The mechanisms regulating PTH activation of PLC signaling are poorly understood. In the current study, we explored the role of PTH/PTHrP receptor phosphorylation and PKA in PTH activation of PLC. When treated with PTH, LLCPK-1 cells stably expressing a green fluorescent protein (GFP)-tagged wild-type (WT) PTH/PTHrP receptor show a small dose-dependent increase in PLC signaling as measured by inositol trisphosphate accumulation assay. In contrast, PTH treatment of LLCPK-1 cells stably expressing a GFP-tagged receptor mutated in its carboxyl-terminal tail so that it cannot be phosphorylated (PD-GFP) results in significantly higher PLC activation (P<0.001). The effects of PTH on PLC activation are dose dependent and reach maximum at the 100 nm PTH dose. When WT receptor-expressing cells are pretreated with H89, a specific inhibitor of PKA, PTH activation of PLC signaling is enhanced in a dose-dependent manner. H89 pretreatment in PD-GFP cells causes a further increase in PLC activation in response to PTH treatment. Interestingly, PTH and forskolin (adenylate cyclase/PKA pathway activator) treatment causes an increase in PLCbeta3 phosphorylation at the Ser1105 inhibitory site and that increase is blocked by the PKA inhibitor, H89. Expression of a mutant PLCbeta3 in which Ser1105 was mutated to alanine (PLCbeta3-SA), in WT or PD cells increases PTH stimulation of inositol 1,4,5-trisphosphate formation. Altogether, these data suggest that PTH signaling to PLC is negatively regulated by PTH/PTHrP receptor phosphorylation and PKA. Furthermore, phosphorylation at Ser1105 is demonstrated as a regulatory mechanism of PLCbeta3 by PKA.
Collapse
Affiliation(s)
- Hesham A W Tawfeek
- Endocrine Unit, Massachusetts General Hospital, 55 Fruit Street, Thier 1051, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
175
|
Ulfman LH, Kamp VM, van Aalst CW, Verhagen LP, Sanders ME, Reedquist KA, Buitenhuis M, Koenderman L. Homeostatic intracellular-free Ca2+ is permissive for Rap1-mediated constitutive activation of alpha4 integrins on eosinophils. THE JOURNAL OF IMMUNOLOGY 2008; 180:5512-9. [PMID: 18390735 DOI: 10.4049/jimmunol.180.8.5512] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although much progress has been made in understanding the molecular mechanisms underlying agonist-induced "inside-out" activation of integrins, little is known about how basal levels of integrin function are maintained. This is particularly important for nonactivated eosinophils, where intermediate activation of alpha(4)beta(1) integrin supports recruitment to endothelial cells under flow conditions. Depletion of intracellular Ca(2+) and pharmacological inhibition of phospholipase C (but not other intracellular signaling molecules, including PI3K, ERK1/2, p38 MAPK, and tyrosine kinase activity) abrogated basal alpha(4) integrin activity in nonactivated eosinophils. Basal alpha(4) integrin activation was associated with activation of the small GTPase Rap1, a known regulator of agonist-induced integrin function. Basal Rap activation was dependent upon phospholipase C, but not intracellular Ca(2+). However, depletion of intracellular Ca(2+) in CD34(+) hematopoietic progenitor cells abolished RapV12-mediated induction of alpha(4) integrin activity. Thus, residual Rap activity or constitutively active Rap activity in Ca(2+)-depleted cells is not sufficient to induce alpha(4) integrin activation. These data suggest that activation of functional alpha(4) integrin activity in resting eosinophils is mediated by Rap1 provided that the intracellular-free Ca(2+) is at a normal homeostatic concentration.
Collapse
Affiliation(s)
- Laurien H Ulfman
- Department of Respiratory Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Suh PG, Park JI, Manzoli L, Cocco L, Peak JC, Katan M, Fukami K, Kataoka T, Yun SU, Ryu SH. Multiple roles of phosphoinositide-specific phospholipase C isozymes. BMB Rep 2008; 41:415-34. [DOI: 10.5483/bmbrep.2008.41.6.415] [Citation(s) in RCA: 369] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
177
|
Li Y, Konings IBM, Zhao J, Price LS, de Heer E, Deen PMT. Renal expression of exchange protein directly activated by cAMP (Epac) 1 and 2. Am J Physiol Renal Physiol 2008; 295:F525-33. [PMID: 18495799 DOI: 10.1152/ajprenal.00448.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In the kidney, many physiological processes of ion transport and cellular proliferation are mediated via cAMP, which classically activates protein kinase A (PKA). Recently, however, two new cAMP targets, the exchange protein directly activated by cAMP (Epac) 1 and 2, were identified, which mediate alternative pathways to PKA. To investigate their renal expression, antibodies specifically recognizing Epac1 and Epac2 were generated and used in rat immunohistochemistry with antibodies recognizing aquaporin-1 (AQP1), Tamm-Horsfall protein, Calbindin-D(28K), and AQP2 to mark proximal tubules (PT)/thin descending limbs of Henle's loop (tDLH), thick ascending limbs of Henle's loop (TAL), distal convoluted tubule/connecting tubule (DCT/CNT), and the collecting duct (CD) principal cells, respectively. Epac1 and Epac2 were expressed at the brush border of PT cells but were absent from tDLH cells. In the TAL, Epac1 and Epac2 were expressed throughout the cells with some confinement toward the apical membrane. In the DCT/CNT, Epac1 was confined to the apical region of the cells, whereas Epac2 was mainly expressed in the apical and basolateral regions. In the CD, a dispersed Epac1 expression was found in intercalated cells only (cortical CD), principal and intercalated cells [outer medullary CD (OMCD)], and mainly AQP2-negative cells in the inner medullary CD (IMCD). In contrast, Epac2 expression was at the apical and basolateral membrane of cortical principal cells, dispersed and apical in the OMCD, and in all cells of the IMCD. A similar distribution for Epac1/2 was found in the human kidney. The observed expression in different tubular segments suggests a major role for Epac 1/2 in tubular transport physiology and cellular proliferation.
Collapse
Affiliation(s)
- Yuedan Li
- Department of Physiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
178
|
Epac mediates cyclic AMP-dependent axon growth, guidance and regeneration. Mol Cell Neurosci 2008; 38:578-88. [PMID: 18583150 DOI: 10.1016/j.mcn.2008.05.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Revised: 04/27/2008] [Accepted: 05/07/2008] [Indexed: 01/31/2023] Open
Abstract
A decline in developing neuronal cAMP levels appears to render mammalian axons susceptible to growth inhibitory factors in the damaged CNS. cAMP elevation enhances axon regeneration, but the cellular mechanisms involved have yet to be fully elucidated. Epac has been identified as a signaling protein that can be activated by cAMP independently of PKA, but little is known of its expression or role in the nervous system. We report that Epac expression is developmentally regulated in the rat nervous system, and that activation of Epac promotes DRG neurite outgrowth and is as effective as cAMP elevation in promoting neurite regeneration on spinal cord tissue. Additionally, siRNA mediated knockdown of Epac reduces DRG neurite outgrowth, prevents the increased growth promoted by cAMP elevation and also diminishes the ability of embryonic neurons to grow processes on spinal cord tissue. Furthermore, we show that asymmetric activation of Epac promotes attractive growth cone turning in a similar manner to cAMP activation. We propose that Epac plays a role in mediating cAMP-dependent axon growth and guidance, and may provide an important target for inducing axon regeneration in vivo.
Collapse
|
179
|
Petri net modelling of gene regulation of the Duchenne muscular dystrophy. Biosystems 2008; 92:189-205. [PMID: 18372101 DOI: 10.1016/j.biosystems.2008.02.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 02/15/2008] [Accepted: 02/15/2008] [Indexed: 12/31/2022]
Abstract
UNLABELLED Searching for therapeutic strategies for Duchenne muscular dystrophy, it is of great interest to understand the responsible molecular pathways down-stream of dystrophin completely. For this reason we have performed real-time PCR experiments to compare mRNA expression levels of relevant genes in tissues of affected patients and controls. To bring experimental data in context with the underlying pathway theoretical models are needed. Modelling of biological processes in the cell at higher description levels is still an open problem in the field of systems biology. In this paper, a new application of Petri net theory is presented to model gene regulatory processes of Duchenne muscular dystrophy. We have developed a Petri net model, which is based mainly on own experimental and literature data. We distinguish between up- and down-regulated states of gene expression. The analysis of the model comprises the computation of structural and dynamic properties with focus on a thorough T-invariant analysis, including clustering techniques and the decomposition of the network into maximal common transition sets (MCT-sets), which can be interpreted as functionally related building blocks. All possible pathways, which reflect the complex net behaviour in dependence of different gene expression patterns, are discussed. We introduce Mauritius maps of T-invariants, which enable, for example, theoretical knockout analysis. The resulted model serves as basis for a better understanding of pathological processes, and thereby for planning next experimental steps in searching for new therapeutic possibilities. AVAILABILITY Free availability of the Petri net editor and animator Snoopy and the clustering tool PInA via http://www-dssz.informatik.tu-cottbus.de/~ wwwdssz/. The Petri net models used can be accessed via http://www.tfh-berlin.de/bi/duchenne/.
Collapse
|
180
|
Dai R, Ali MK, Lezcano N, Bergson C. A crucial role for cAMP and protein kinase A in D1 dopamine receptor regulated intracellular calcium transients. Neurosignals 2008; 16:112-23. [PMID: 18253052 DOI: 10.1159/000111557] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
D1-like dopamine receptors stimulate Ca(2+) transients in neurons but the effector coupling and signaling mechanisms underlying these responses have not been elucidated. Here we investigated potential mechanisms using both HEK 293 cells that stably express D1 receptors (D1HEK293) and hippocampal neurons in culture. In D1HEK293 cells, the full D1 receptor agonist SKF 81297 evoked a robust dose-dependent increase in Ca(2+)(i) following 'priming' of endogenous G(q/11)-coupled muscarinic or purinergic receptors. The effect of SKF81297 could be mimicked by forskolin or 8-Br-cAMP. Further, cholera toxin and the cAMP-dependent protein kinase (PKA) inhibitors, KT5720 and H89, as well as thapsigargin abrogated the D1 receptor evoked Ca(2+) transients. Removal of the priming agonist and treatment with the phospholipase C inhibitor U73122 also blocked the SKF81297-evoked responses. D1R agonist did not stimulate IP(3) production, but pretreatment of cells with the D1R agonist potentiated G(q)-linked receptor agonist mobilization of intracellular Ca(2+) stores. In neurons, SKF81297 and SKF83959, a partial D1 receptor agonist, promoted Ca(2+) oscillations in response to G(q/11)-coupled metabotropic glutamate receptor (mGluR) stimulation. The effects of both D1R agonists on the mGluR-evoked Ca(2+) responses were PKA dependent. Altogether the data suggest that dopamine D1R activation and ensuing cAMP production dynamically regulates the efficiency and timing of IP(3)-mediated intracellular Ca(2+) store mobilization.
Collapse
Affiliation(s)
- Rujuan Dai
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA 30912-2300, USA
| | | | | | | |
Collapse
|
181
|
Kang G, Leech CA, Chepurny OG, Coetzee WA, Holz GG. Role of the cAMP sensor Epac as a determinant of KATP channel ATP sensitivity in human pancreatic beta-cells and rat INS-1 cells. J Physiol 2008; 586:1307-19. [PMID: 18202100 DOI: 10.1113/jphysiol.2007.143818] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Protein kinase A (PKA)-independent actions of adenosine 3',5'-cyclic monophosphate (cAMP) are mediated by Epac, a cAMP sensor expressed in pancreatic beta-cells. Evidence that Epac might mediate the cAMP-dependent inhibition of beta-cell ATP-sensitive K(+) channels (K(ATP)) was provided by one prior study of human beta-cells and a rat insulin-secreting cell line (INS-1 cells) in which it was demonstrated that an Epac-selective cAMP analogue (ESCA) inhibited a sulphonylurea-sensitive K(+) current measured under conditions of whole-cell recording. Using excised patches of plasma membrane derived from human beta-cells and rat INS-1 cells, we now report that 2'-O-Me-cAMP, an ESCA that activates Epac but not PKA, sensitizes single K(ATP) channels to the inhibitory effect of ATP, thereby reducing channel activity. In the presence of 2'-O-Me-cAMP (50 microM), the dose-response relationship describing ATP-dependent inhibition of K(ATP) channel activity (NP(o)) is left-shifted such that the concentration of ATP producing 50% inhibition (IC(50)) is reduced from 22 microM to 1 microM for human beta-cells, and from 14 microM to 4 microM for rat INS-1 cells. Conversely, when patches are exposed to a fixed concentration of ATP (10 microM), the administration of 2'-O-Me-cAMP inhibits channel activity in a dose-dependent and reversible manner (IC(50) 12 microM for both cell types). A cyclic nucleotide phosphodiesterase-resistant ESCA (Sp-8-pCPT-2'-O-Me-cAMPS) also inhibits K(ATP) channel activity, thereby demonstrating that the inhibitory actions of ESCAs reported here are unlikely to arise as a consequence of their hydrolysis to bioactive derivatives of adenosine. On the basis of such findings it is concluded that there exists in human beta-cells and rat INS-1 cells a novel form of ion channel modulation in which the ATP sensitivity of K(ATP) channels is regulated by Epac.
Collapse
Affiliation(s)
- Guoxin Kang
- Department of Physiology, New York University School of Medicine, New York, NY, USA
| | | | | | | | | |
Collapse
|
182
|
Roscioni SS, Elzinga CRS, Schmidt M. Epac: effectors and biological functions. Naunyn Schmiedebergs Arch Pharmacol 2008; 377:345-57. [PMID: 18176800 DOI: 10.1007/s00210-007-0246-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 12/05/2007] [Indexed: 12/17/2022]
Abstract
Epac1 (also known as cAMP-GEF-I) and Epac2 (also known as cAMP-GEF-II) are cyclic AMP-activated guanine nucleotide exchange factors for Ras-like GTPases. Since their discovery about 10 years ago, it is now accepted that Epac proteins are novel cAMP sensors that regulate several pivotal cellular processes, including calcium handling, cell proliferation, cell survival, cell differentiation, cell polarization, cell-cell adhesion events, gene transcription, secretion, ion transport, and neuronal signaling. Recent studies even indicated that Epac proteins might play a role in the regulation of inflammation and the development of cardiac hypertrophy. Meanwhile, a plethora of diverse effectors of Epac proteins have been assigned, such as Ras and Rho GTPases, phospholiase C-epsilon, phospholipase D, mitogen-activated protein kinases, protein kinase B/Akt, ion channels, secretory-granule associated proteins and regulators of the actin-microtubule network, the latter probably involved in the spatiotemporal dynamics of Epac-related signaling. This review highlights multi-faceted effectors and diverse biological functions driven by Epac proteins that might explain certain controversial signaling properties of cAMP.
Collapse
Affiliation(s)
- Sara S Roscioni
- Department of Molecular Pharmacology, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | | | | |
Collapse
|
183
|
Holz GG, Chepurny OG, Schwede F. Epac-selective cAMP analogs: new tools with which to evaluate the signal transduction properties of cAMP-regulated guanine nucleotide exchange factors. Cell Signal 2008; 20:10-20. [PMID: 17716863 PMCID: PMC2215344 DOI: 10.1016/j.cellsig.2007.07.009] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/03/2007] [Accepted: 07/18/2007] [Indexed: 11/22/2022]
Abstract
The identification of 2'-O-methyl substituted adenosine-3',5'-cyclic monophosphate (cAMP) analogs that activate the Epac family of cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs, also known as Epac1 and Epac2), has ushered in a new era of cyclic nucleotide research in which previously unrecognized signalling properties of the second messenger cAMP have been revealed. These Epac-Selective Cyclic AMP Analogs (ESCAs) incorporate a 2'-O-methyl substitution on the ribose ring of cAMP, a modification that impairs their ability to activate protein kinase A (PKA), while leaving intact their ability to activate Epac (the Exchange Protein directly Activated by Cyclic AMP). One such ESCA in wide-spread use is 8-pCPT-2'-O-Me-cAMP. It is a cell-permeant derivative of 2'-O-Me-cAMP, and it is a super activator of Epac. A wealth of newly published studies demonstrate that 8-pCPT-2'-O-Me-cAMP is a unique tool with which to asses atypical actions of cAMP that are PKA-independent. Particularly intriguing are recent reports demonstrating that ESCAs reproduce the PKA-independent actions of ligands known to stimulate Class I (Family A) and Class II (Family B) GTP-binding protein-coupled receptors (GPCRs). This topical review summarizes the current state of knowledge regarding the molecular pharmacology and signal transduction properties of Epac-selective cAMP analogs. Special attention is focused on the rational drug design of ESCAs in order to improve their Epac selectivity, membrane permeability, and stability. Also emphasized is the usefulness of ESCAs as new tools with which to assess the role of Epac as a determinant of intracellular Ca2+ signalling, ion channel function, neurotransmitter release, and hormone secretion.
Collapse
Affiliation(s)
- George G Holz
- Department of Physiology and Neuroscience, New York University School of Medicine, New York, NY, USA.
| | | | | |
Collapse
|
184
|
Shin MK, Kim MK, Bae YS, Jo I, Lee SJ, Chung CP, Park YJ, Min DS. A novel collagen-binding peptide promotes osteogenic differentiation via Ca2+/calmodulin-dependent protein kinase II/ERK/AP-1 signaling pathway in human bone marrow-derived mesenchymal stem cells. Cell Signal 2007; 20:613-24. [PMID: 18248957 DOI: 10.1016/j.cellsig.2007.11.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 11/14/2007] [Accepted: 11/18/2007] [Indexed: 10/22/2022]
Abstract
The intracellular signaling events controlling human mesenchymal stem cell (hMSC) differentiation into osteoblasts are poorly understood. Collagen-binding domain is considered an essential component of bone mineralization. In the present study, we investigated the regulatory mechanism of osteoblastic differentiation of hMSC by the peptide with a novel collagen-binding motif derived from osteopontin. The peptide induced influx of extracellular Ca2+ via calcium channels and increased intracellular Ca2+ concentration ([Ca2+]i) independent of both pertussis toxin and phospholipase C, and activated ERK, which was inhibited by Ca2+/calmodulin-dependent protein kinase (CaMKII) antagonist, KN93. The peptide-induced increase of [Ca2+]i is correlated with ERK activation in a various cell types. The peptide stimulated the migration of hMSC but suppressed cell proliferation. Furthermore, the peptide increased the phosphorylation of cAMP-response element-binding protein, leading to a significant increase in the transactivation of cAMP-response element and serum response element. Ultimately, the peptide increased AP-1 transactivation, c-jun expression, and bone mineralization, which are suppressed by KN93. Taken together, these results indicate that the novel collagen-binding peptide promotes osteogenic differentiation via Ca2+/CaMKII/ERK/AP-1 signaling pathway in hMSC, suggesting the potential application in cell therapy for bone regeneration.
Collapse
Affiliation(s)
- Min Kyoung Shin
- Department of Molecular Biology, College of Natural Science, Pusan National University, 30 Jangjeon dong, Geumjeong gu, Busan 609-735, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
185
|
Yun S, Möller A, Chae SK, Hong WP, Bae YJ, Bowtell DDL, Ryu SH, Suh PG. Siah proteins induce the epidermal growth factor-dependent degradation of phospholipase Cepsilon. J Biol Chem 2007; 283:1034-42. [PMID: 17998205 DOI: 10.1074/jbc.m705874200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholipase Cepsilon (PLCepsilon) is activated by various growth factors or G-protein-coupled receptor ligands via different activation mechanisms. The Ras association (RA) domain of PLCepsilon is known to be important for its ability to bind with Ras-family GTPase upon growth factor stimulation. In the present study, we identified Siah1 and Siah2 as novel binding partners of the PLCepsilon RA domain. Both Siah1 and Siah2 interacted with the RA2 domain of PLCepsilon, and the mutation of Lys-2186 of the PLCepsilon RA2 domain abolished this association. Moreover, Siah induced the ubiquitination and degradation of PLCepsilon upon epidermal growth factor (EGF) stimulation, and Siah proteins were phosphorylated on multiple tyrosine residues via an Src-dependent pathway upon EGF treatment. The Src inhibitor abolished the EGF-dependent ubiquitination of PLCepsilon, and the Siah1 phosphorylation-deficient mutant could not increase the EGF-dependent ubiquitination and degradation of PLCepsilon. The EGF-dependent degradation of PLCepsilon was blocked in mouse embryonic fibroblast (MEF) cells derived from Siah1a/Siah2 double knockout mice, and the extrinsic expression of wild-type Siah1 restored the degradation of PLCepsilon, whereas the phosphorylation-deficient mutant did not. Siah1 expression abolished PLCepsilon-dependent potentiation of EGF-dependent cell growth. In addition, the expression of wild-type Siah1 in Siah1a/Siah2-double knockout MEF cells inhibited EGF-dependent cell growth, and this inhibition was abolished by PLCepsilon knockdown. Our results suggest that the Siah-dependent degradation of PLCepsilon plays a role in the regulation of growth factor-dependent cell growth.
Collapse
Affiliation(s)
- Sanguk Yun
- Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, Kyung-Buk 790-784, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Affiliation(s)
- Alan V Smrcka
- Departments of Pharmacology and Physiology, The University of Rochester School of Medicine and Dentistry RochesterNY 14642, USA
| | - Emily A Oestreich
- Departments of Pharmacology and Physiology, The University of Rochester School of Medicine and Dentistry RochesterNY 14642, USA
| | - Burns C Blaxall
- Departments of Medicine, The University of Rochester School of Medicine and Dentistry RochesterNY 14642, USA
| | - Robert T Dirksen
- Departments of Medicine, The University of Rochester School of Medicine and Dentistry RochesterNY 14642, USA
| |
Collapse
|
187
|
Citro S, Malik S, Oestreich EA, Radeff-Huang J, Kelley GG, Smrcka AV, Brown JH. Phospholipase Cepsilon is a nexus for Rho and Rap-mediated G protein-coupled receptor-induced astrocyte proliferation. Proc Natl Acad Sci U S A 2007; 104:15543-8. [PMID: 17878312 PMCID: PMC2000505 DOI: 10.1073/pnas.0702943104] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phospholipase Cepsilon (PLCepsilon) has been suggested to transduce signals from small GTPases, but its biological function has not yet been clarified. Using astrocytes from PLCepsilon-deficient mice, we demonstrate that endogenous G protein-coupled receptors (GPCRs) for lysophosphatidic acid, sphingosine 1-phosphate, and thrombin regulate phosphoinositide hydrolysis primarily through PLCepsilon. Stimulation by lysophospholipids occurs through G(i), whereas thrombin activates PLC through Rho. Further studies reveal that PLCepsilon is required for thrombin- but not LPA-induced sustained ERK activation and DNA synthesis, providing a novel mechanism for GPCR and Rho signaling to cell proliferation. The requirement for PLCepsilon in this pathway can be explained by its role as a guanine nucleotide exchange factor for Rap1. Thus, PLCepsilon serves to transduce mitogenic signals through a mechanism distinct from its role in generation of PLC-derived second messengers.
Collapse
Affiliation(s)
- Simona Citro
- *Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093
| | - Sundeep Malik
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642
| | - Emily A. Oestreich
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642
| | - Julie Radeff-Huang
- *Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093
| | - Grant G. Kelley
- Departments of Medicine and Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210; and
| | - Alan V. Smrcka
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642
| | - Joan Heller Brown
- *Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
188
|
Han L, Stope MB, de Jesús ML, Oude Weernink PA, Urban M, Wieland T, Rosskopf D, Mizuno K, Jakobs KH, Schmidt M. Direct stimulation of receptor-controlled phospholipase D1 by phospho-cofilin. EMBO J 2007; 26:4189-202. [PMID: 17853892 PMCID: PMC2230846 DOI: 10.1038/sj.emboj.7601852] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 08/02/2007] [Indexed: 01/10/2023] Open
Abstract
The activity state of cofilin, which controls actin dynamics, is driven by a phosphorylation-dephosphorylation cycle. Phosphorylation of cofilin by LIM-kinases results in its inactivation, a process supported by 14-3-3zeta and reversed by dephosphorylation by slingshot phosphatases. Here we report on a novel cellular function for the phosphorylation-dephosphorylation cycle of cofilin. We demonstrate that muscarinic receptor-mediated stimulation of phospholipase D1 (PLD1) is controlled by LIM-kinase, slingshot phosphatase as well as 14-3-3zeta, and requires phosphorylatable cofilin. Cofilin directly and specifically interacts with PLD1 and upon phosphorylation by LIM-kinase1, stimulates PLD1 activity, an effect mimicked by phosphorylation-mimic cofilin mutants. The interaction of cofilin with PLD1 is under receptor control and encompasses a PLD1-specific fragment (aa 585-712). Expression of this fragment suppresses receptor-induced cofilin-PLD1 interaction as well as PLD stimulation and actin stress fiber formation. These data indicate that till now designated inactive phospho-cofilin exhibits an active cellular function, and suggest that phospho-cofilin by its stimulatory effect on PLD1 may control a large variety of cellular functions.
Collapse
Affiliation(s)
- Li Han
- Institut für Pharmakologie, Universitätsklinikum Essen, Essen, Germany
| | - Matthias B Stope
- Institut für Pharmakologie, Universitätsklinikum Essen, Essen, Germany
| | | | | | - Martina Urban
- Institut für Pharmakologie, Universitätsklinikum Essen, Essen, Germany
| | - Thomas Wieland
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Fakultät für Klinische Medizin Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Dieter Rosskopf
- Institut für Pharmakologie, Universitätsklinikum Essen, Essen, Germany
| | - Kensaku Mizuno
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Sendai, Miyagi, Japan
| | - Karl H Jakobs
- Institut für Pharmakologie, Universitätsklinikum Essen, Essen, Germany
| | - Martina Schmidt
- Institut für Pharmakologie, Universitätsklinikum Essen, Essen, Germany
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
- Department of Molecular Pharmacology, University of Groningen, A. Deusinglaan 1, Groningen 9713 AV, The Netherlands. Tel.: +31 50 363 3322; Fax: +31 50 363 6908; E-mail:
| |
Collapse
|
189
|
Eid AH, Maiti K, Mitra S, Chotani MA, Flavahan S, Bailey SR, Thompson-Torgerson CS, Flavahan NA. Estrogen increases smooth muscle expression of α2C-adrenoceptors and cold-induced constriction of cutaneous arteries. Am J Physiol Heart Circ Physiol 2007; 293:H1955-61. [PMID: 17644575 DOI: 10.1152/ajpheart.00306.2007] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Raynaud's phenomenon, which is characterized by intense cold-induced constriction of cutaneous arteries, is more common in women compared with men. Cold-induced constriction is mediated in part by enhanced activity of α2C-adrenoceptors (α2C-ARs) located on vascular smooth muscle cells (VSMs). Experiments were therefore performed to determine whether 17β-estradiol regulates α2C-AR expression and function in cutaneous VSMs. 17β-Estradiol (0.01–10 nmol/l) increased expression of the α2C-AR protein and the activity of the α2C-AR gene promoter in human cultured dermal VSMs, which was assessed following transient transfection of the cells with a promoter-reporter construct. The effect of 17β-estradiol was associated with increased accumulation of cAMP and activation of the cAMP-responsive Rap2 GTP-binding protein. Transient transfection of VSMs with a dominant-negative mutant of Rap2 inhibited the 17β-estradiol-induced activation of the α2C-AR gene promoter, whereas a constitutively active mutant of Rap2 increased α2C-AR promoter activity. The effects of 17β-estradiol were inhibited by the estrogen receptor (ER) antagonist, ICI-182780 (1 μmol/l), and were mimicked by a cell-impermeable form of the hormone (estrogen:BSA) or by the selective ER-α receptor agonist 4,4′,4‴-(4-propyl-[1H]-pyrazole-1,3,5-triyl)tris-phenol (PPT; 10 nmol/l) or the selective ER-β receptor agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN; 10 nmol/l). Therefore, 17β-estradiol increased expression of α2C-ARs by interacting with cell surface receptors to cause a cAMP/Rap2-dependent increase in α2C-AR transcription. In mouse tail arteries, 17β-estradiol (10 nmol/l) increased α2C-AR expression and selectively increased the cold-induced amplification of α2-AR constriction, which is mediated by α2C-ARs. An estrogen-dependent increase in expression of cold-sensitive α2C-ARs may contribute to the increased activity of cold-induced vasoconstriction under estrogen-replete conditions.
Collapse
Affiliation(s)
- A H Eid
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Wang C, Gu Y, Li GW, Huang LYM. A critical role of the cAMP sensor Epac in switching protein kinase signalling in prostaglandin E2-induced potentiation of P2X3 receptor currents in inflamed rats. J Physiol 2007; 584:191-203. [PMID: 17702820 PMCID: PMC2277053 DOI: 10.1113/jphysiol.2007.135616] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sensitization of purinergic P2X receptors is one of the mechanisms responsible for exaggerated pain responses to inflammatory injuries. Prostaglandin E2 (PGE2), produced by inflamed tissues, is known to contribute to abnormal pain states. In a previous study, we showed that PGE2 increases fast inactivating ATP currents that are mediated by homomeric P2X3 receptors in dorsal root ganglion (DRG) neurons isolated from normal rats. Protein kinase A (PKA) is the signalling pathway used by PGE2. Little is known about the action of PGE2 on ATP currents after inflammation, although the information is crucial for understanding the mechanisms underlying inflammation-induced sensitization of P2X receptors. We therefore studied the effects of PGE2 on P2X3 receptor-mediated ATP currents in DRG neurons dissociated from complete Freund's adjuvant (CFA)-induced inflamed rats. We found that PGE2 produces a large increase in ATP currents. PKCepsilon, in addition to PKA, becomes involved in the modulatory action of PGE2. Thus, PGE2 signalling switches from a solely PKA-dependent pathway under normal conditions to both PKA- and PKC-dependent pathways after inflammation. Studying the mechanisms underlying the switch, we demonstrated that cAMP-responsive guanine nucleotide exchange factor 1 (Epac1) is up-regulated after inflammation. The Epac agonist CPT-OMe mimics the potentiating effect of PGE2 and occludes the PKC-mediated PGE2 action on ATP currents. These results suggest that Epac plays a critical role in P2X3 sensitization by activation of de novo PKC-dependent signalling of PGE2 after inflammation and would be a useful therapeutic target for pain therapies.
Collapse
Affiliation(s)
- Congying Wang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1069, USA
| | | | | | | |
Collapse
|
191
|
Pereira L, Métrich M, Fernández-Velasco M, Lucas A, Leroy J, Perrier R, Morel E, Fischmeister R, Richard S, Bénitah JP, Lezoualc'h F, Gómez AM. The cAMP binding protein Epac modulates Ca2+ sparks by a Ca2+/calmodulin kinase signalling pathway in rat cardiac myocytes. J Physiol 2007; 583:685-94. [PMID: 17599964 PMCID: PMC2277038 DOI: 10.1113/jphysiol.2007.133066] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
cAMP is a powerful second messenger whose known general effector is protein kinase A (PKA). The identification of a cAMP binding protein, Epac, raises the question of its role in Ca(2+) signalling in cardiac myocytes. In this study, we analysed the effects of Epac activation on Ca(2+) handling by using confocal microscopy in isolated adult rat cardiomyocytes. [Ca(2+)](i) transients were evoked by electrical stimulation and Ca(2+) sparks were measured in quiescent myocytes. Epac was selectively activated by the cAMP analogue 8-(4-chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (8-CPT). Patch-clamp was used to record the L-type calcium current (I(Ca)), and Western blot to evaluate phosphorylated ryanodine receptor (RyR). [Ca(2+)](i) transients were slightly reduced by 10 microm 8-CPT (F/F(0): decreased from 4.7 +/- 0.5 to 3.8 +/- 0.4, P < 0.05), an effect that was boosted when cells were previously infected with an adenovirus encoding human Epac. I(Ca) was unaltered by Epac activation, so this cannot explain the decreased [Ca(2+)](i) transients. Instead, a decrease in the sarcoplasmic reticulum (SR) Ca(2+) load underlies the decrease in the [Ca(2+)](i) transients. This decrease in the SR Ca(2+) load was provoked by the increase in the SR Ca(2+) leak induced by Epac activation. 8-CPT significantly increased Ca(2+) spark frequency (Ca(2+) sparks s(-1) (100 microm)(-1): from 2.4 +/- 0.6 to 6.9 +/- 1.5, P < 0.01) while reducing their amplitude (F/F(0): 1.8 +/- 0.02 versus 1.6 +/- 0.01, P < 0.001) in a Ca(2+)/calmodulin kinase II (CaMKII)-dependent and PKA-independent manner. Accordingly, we found that Epac increased RyR phosphorylation at the CaMKII site. Altogether, our data reveal a new signalling pathway by which cAMP governs Ca(2+) release and signalling in cardiac myocytes.
Collapse
Affiliation(s)
- Laetitia Pereira
- Inserm U637, Physiopathologie Cardiovasculaire, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Escribá PV, Wedegaertner PB, Goñi FM, Vögler O. Lipid–protein interactions in GPCR-associated signaling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:836-52. [PMID: 17067547 DOI: 10.1016/j.bbamem.2006.09.001] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 09/05/2006] [Accepted: 09/06/2006] [Indexed: 10/24/2022]
Abstract
Signal transduction via G-protein-coupled receptors (GPCRs) is a fundamental pathway through which the functions of an individual cell can be integrated within the demands of a multicellular organism. Since this family of receptors first discovered, the proteins that constitute this signaling cascade and their interactions with one another have been studied intensely. In parallel, the pivotal role of lipids in the correct and efficient propagation of extracellular signals has attracted ever increasing attention. This is not surprising given that most of the signal transduction machinery is membrane-associated and therefore lipid-related. Hence, lipid-protein interactions exert a considerable influence on the activity of these proteins. This review focuses on the post-translational lipid modifications of GPCRs and G proteins (palmitoylation, myristoylation, and isoprenylation) and their significance for membrane binding, trafficking and signaling. Moreover, we address how the particular biophysical properties of different membrane structures may regulate the localization of these proteins and the potential functional consequences of this phenomenon in signal transduction. Finally, the interactions that occur between membrane lipids and GPCR effector enzymes such as PLC and PKC are also considered.
Collapse
Affiliation(s)
- Pablo V Escribá
- Laboratory of Molecular and Cellular Biomedicine, Institut Universitari d'Investigació en Ciències de la Salut, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain.
| | | | | | | |
Collapse
|
193
|
Ster J, De Bock F, Guérineau NC, Janossy A, Barrère-Lemaire S, Bos JL, Bockaert J, Fagni L. Exchange protein activated by cAMP (Epac) mediates cAMP activation of p38 MAPK and modulation of Ca2+-dependent K+ channels in cerebellar neurons. Proc Natl Acad Sci U S A 2007; 104:2519-24. [PMID: 17284589 PMCID: PMC1892910 DOI: 10.1073/pnas.0611031104] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The exchange factor directly activated by cAMP (Epac) is a newly discovered direct target for cAMP and a guanine-nucleotide exchange factor for the small GTPase Rap. Little is known about the neuronal functions of Epac. Here we show that activation of Epac by specific cAMP analogs or by the pituitary adenylate cyclase-activating polypeptide induces a potent activation of the Ca2+-sensitive big K+ channel, slight membrane hyperpolarization, and increased after-hyperpolarization in cultured cerebellar granule cells. These effects involve activation of Rap and p38 MAPK, which mobilizes intracellular Ca2+ stores. These findings reveal a cAMP Epac-dependent and protein kinase A-independent signaling cascade that controls neuronal excitability.
Collapse
Affiliation(s)
- Jeanne Ster
- *Institute of Functional Genomics, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 5203, Institute National de la Santé et de la Recherche Médicale U661, Universités Montpellier I et II, 34095 Montpellier, France; and
| | - Frédéric De Bock
- *Institute of Functional Genomics, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 5203, Institute National de la Santé et de la Recherche Médicale U661, Universités Montpellier I et II, 34095 Montpellier, France; and
| | - Nathalie C. Guérineau
- *Institute of Functional Genomics, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 5203, Institute National de la Santé et de la Recherche Médicale U661, Universités Montpellier I et II, 34095 Montpellier, France; and
| | - Andrea Janossy
- *Institute of Functional Genomics, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 5203, Institute National de la Santé et de la Recherche Médicale U661, Universités Montpellier I et II, 34095 Montpellier, France; and
| | - Stéphanie Barrère-Lemaire
- *Institute of Functional Genomics, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 5203, Institute National de la Santé et de la Recherche Médicale U661, Universités Montpellier I et II, 34095 Montpellier, France; and
| | - Johannes L. Bos
- Department of Physiological Chemistry and Centre for Biochemical Genetics, University Medical Centre Utrecht Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Joël Bockaert
- *Institute of Functional Genomics, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 5203, Institute National de la Santé et de la Recherche Médicale U661, Universités Montpellier I et II, 34095 Montpellier, France; and
| | - Laurent Fagni
- *Institute of Functional Genomics, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 5203, Institute National de la Santé et de la Recherche Médicale U661, Universités Montpellier I et II, 34095 Montpellier, France; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
194
|
Oestreich EA, Wang H, Malik S, Kaproth-Joslin KA, Blaxall BC, Kelley GG, Dirksen RT, Smrcka AV. Epac-mediated activation of phospholipase C(epsilon) plays a critical role in beta-adrenergic receptor-dependent enhancement of Ca2+ mobilization in cardiac myocytes. J Biol Chem 2006; 282:5488-95. [PMID: 17178726 DOI: 10.1074/jbc.m608495200] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recently we demonstrated that PLC(epsilon) plays an important role in beta-adrenergic receptor (betaAR) stimulation of Ca(2+)-induced Ca(2+) release (CICR) in cardiac myocytes. Here we have reported for the first time that a pathway downstream of betaAR involving the cAMP-dependent Rap GTP exchange factor, Epac, and PLC(epsilon) regulates CICR in cardiac myocytes. To demonstrate a role for Epac in the stimulation of CICR, cardiac myocytes were treated with an Epac-selective cAMP analog, 8-4-(chlorophenylthio)-2'-O-methyladenosine-3',5'-monophosphate (cpTOME). cpTOME treatment increased the amplitude of electrically evoked Ca(2+) transients, implicating Epac for the first time in cardiac CICR. This response is abolished in PLC(epsilon)(-/-) cardiac myocytes but rescued by transduction with PLC(epsilon), indicating that Epac is upstream of PLC(epsilon). Furthermore, transduction of PLC(epsilon)(+/+) cardiac myocytes with a Rap inhibitor, RapGAP1, significantly inhibited isoproterenol-dependent CICR. Using a combination of cpTOME and PKA-selective activators and inhibitors, we have shown that betaAR-dependent increases in CICR consist of two independent components mediated by PKA and the novel Epac/(epsilon) pathway. We also show that Epac/PLC(epsilon)-dependent effects on CICR are independent of sarcoplasmic reticulum loading and Ca(2+) clearance mechanisms. These data define a novel endogenous PKA-independent betaAR-signaling pathway through cAMP-dependent Epac activation, Rap, and PLC(epsilon) that enhances intracellular Ca(2+) release in cardiac myocytes.
Collapse
Affiliation(s)
- Emily A Oestreich
- Department of Pharmacology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
195
|
Gu Q, Lin YS, Lee LY. Epinephrine enhances the sensitivity of rat vagal chemosensitive neurons: role of beta3-adrenoceptor. J Appl Physiol (1985) 2006; 102:1545-55. [PMID: 17170206 PMCID: PMC1850626 DOI: 10.1152/japplphysiol.01010.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study was carried out to determine whether epinephrine alters the sensitivity of rat vagal sensory neurons. In anesthetized rats, inhalation of epinephrine aerosol (1 and 5 mg/ml, 3 min) induced an elevated baseline activity of pulmonary C fibers and enhanced their responses to lung inflation (20 cm H(2)O, 10 s) and right atrial injection of capsaicin (0.5 microg/kg). In isolated rat nodose and jugular ganglion neurons, perfusion of epinephrine (3 microM, 5 min) alone did not produce any detectable change of the intracellular Ca(2+) concentration. However, immediately after the pretreatment with epinephrine, the Ca(2+) transients evoked by chemical stimulants (capsaicin, KCl, and ATP) were markedly potentiated; for example, capsaicin (50 nM, 15 s)-evoked Ca(2+) transient was increased by 106% after epinephrine (P < 0.05; n = 11). The effect of epinephrine was mimicked by either BRL 37344 (5 microM, 5 min) or ICI 215,001 (5 microM, 5 min), two selective beta(3)-adrenoceptor agonists, and blocked by SR 59230A (5 microM, 10 min), a selective beta(3)-adrenoceptor antagonist, whereas pretreatment with phenylephrine (alpha(1)-adenoceptor agonist), guanabenz (alpha(2)-adrenoceptor agonist), dobutamine (beta(1)-adrenoceptor agonist), or salbutamol (beta(2)-adrenoceptor agonist) had no significant effect on capsaicin-evoked Ca(2+) transient. Furthermore, pretreatment with SQ 22536 (100-300 microM, 15 min), an adenylate cyclase inhibitor, and H89 (3 microM, 15 min), a PKA inhibitor, completely abolished the potentiating effect of epinephrine. Our results suggest that epinephrine enhances the excitability of rat vagal chemosensitive neurons. This sensitizing effect of epinephrine is likely mediated through the activation of beta(3)-adrenoceptor and intracellular cAMP-PKA signaling cascade.
Collapse
Affiliation(s)
- Qihai Gu
- Department of Physiology, University of Kentucky Medical Center, Lexington, Kentucky 40536-0298, USA
| | | | | |
Collapse
|
196
|
El-Yazbi AF, Cho WJ, Schulz R, Daniel EE. Caveolin-1 knockout alters beta-adrenoceptors function in mouse small intestine. Am J Physiol Gastrointest Liver Physiol 2006; 291:G1020-30. [PMID: 16782699 DOI: 10.1152/ajpgi.00159.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
beta-Adrenoceptors are G protein-coupled receptors whose functions are closely associated with caveolae in the heart and cultured cell lines. In the gut, they are responsible, at least in part, for the mediation of the sympathetic stimulation that might lead to intestinal paralysis postoperatively. We examined the effect of caveolin-1 knockout on the beta-adrenoceptor response in mouse small intestine. The relaxation response to (-)-isoprenaline in carbachol-contracted small intestinal tissue segments was reduced in caveolin-1 knockout mice (cav1(-/-)) compared with their genetic controls (cav1(+/+)). Immunohistochemical staining showed that beta-adrenoceptor expression was similar in both strains in gut smooth muscle. Selective beta-adrenoceptor blockers shifted the concentration response curve (CRC) of (-)-isoprenaline to the right in cav1(+/+) intestine, but not in cav1(-/-), with greatest shift in case of the beta(3)-blocker, SR59230A. The CRC of the selective beta(3)-agonist BRL 37344 was also shifted to the right in cav1(-/-) compared with cav1(+/+). The cAMP-dependent protein kinase (PKA) inhibitor H-89 shifted the CRC of (-)-isoprenaline to the right in cav1(+/+) but not in cav1(-/-). H-89 reduced the relaxation due to forskolin and dibutyryl cAMP in cav1(+/+) but not in cav1(-/-), suggesting a reduction in PKA activity in cav1(-/-). In cav1(+/+), PKA was colocalized with caveolin-1 in the cell membrane, but PKA immunoreactivity persisted in cav1(-/-). Examination of PKA expression in the lipid raft-rich membrane fraction of the jejunum revealed reduced PKA expression in cav1(-/-) compared with cav1(+/+). The results of the present study show that the function of beta-adrenoceptors is reduced in cav1(-/-) small intestine likely owing to reduced PKA activity.
Collapse
Affiliation(s)
- Ahmed F El-Yazbi
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
197
|
Bos JL. Epac proteins: multi-purpose cAMP targets. Trends Biochem Sci 2006; 31:680-6. [PMID: 17084085 DOI: 10.1016/j.tibs.2006.10.002] [Citation(s) in RCA: 411] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 09/21/2006] [Accepted: 10/20/2006] [Indexed: 02/06/2023]
Abstract
Epac1 and Epac2 are cAMP-dependent guanine-nucleotide-exchange factors for the small GTPases Rap1 and Rap2, and are known to be important mediators of cAMP signaling. The recent determination of the crystal structure of Epac2 has indicated a mechanism for the activation of the multi-domain Epac proteins. In addition, these proteins have been implicated in various cellular processes such as integrin-mediated cell adhesion and cell-cell junction formation, the control of insulin secretion and neurotransmitter release. In most of these processes, cAMP signaling through protein kinase A (PKA) is also involved, stressing the interconnectivity between Epac- and PKA-mediated signaling.
Collapse
Affiliation(s)
- Johannes L Bos
- Department of Physiological Chemistry and Centre for Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
198
|
Oude Weernink PA, Han L, Jakobs KH, Schmidt M. Dynamic phospholipid signaling by G protein-coupled receptors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:888-900. [PMID: 17054901 DOI: 10.1016/j.bbamem.2006.09.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 09/18/2006] [Accepted: 09/18/2006] [Indexed: 11/19/2022]
Abstract
G protein-coupled receptors (GPCRs) control a variety of fundamental cellular processes by regulating phospholipid signaling pathways. Essential for signaling by a large number of receptors is the hydrolysis of the membrane phosphoinositide PIP(2) by phospholipase C (PLC) into the second messengers IP(3) and DAG. Many receptors also stimulate phospholipase D (PLD), leading to the generation of the versatile lipid, phosphatidic acid. Particular PLC and PLD isoforms take differential positions in receptor signaling and are additionally regulated by small GTPases of the Ras, Rho and ARF families. It is now recognized that the PLC substrate, PIP(2), has signaling capacity by itself and can, by direct interaction, affect the activity and subcellular localization of PLD and several other proteins. As expected, the synthesis of PIP(2) by phosphoinositide 5-kinases is tightly regulated as well. In this review, we present an overview of how these signaling pathways are governed by GPCRs, explain the molecular basis for the spatially and temporally organized, highly dynamic quality of phospholipid signaling, and point to the functional connection of the pathways.
Collapse
Affiliation(s)
- Paschal A Oude Weernink
- Institut für Pharmakologie, Universitätsklinikum Essen, Hufelandstrasse 55, 45122 Essen, Germany.
| | | | | | | |
Collapse
|
199
|
Tan KS, Nackley AG, Satterfield K, Maixner W, Diatchenko L, Flood PM. Beta2 adrenergic receptor activation stimulates pro-inflammatory cytokine production in macrophages via PKA- and NF-kappaB-independent mechanisms. Cell Signal 2006; 19:251-60. [PMID: 16996249 DOI: 10.1016/j.cellsig.2006.06.007] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 06/21/2006] [Accepted: 06/29/2006] [Indexed: 12/28/2022]
Abstract
Activation of the beta(2) adrenergic receptor (beta(2)AR) located on macrophages has been reported to possess anti-inflammatory properties, inhibiting nuclear factor kappaB (NF-kappaB) activation and cytokine production induced by pro-inflammatory stimuli. Here, we show that activation of the beta(2)AR in the absence of pro-inflammatory stimuli produced up to an 80- and 8-fold increase in IL-1beta and IL-6 transcripts, respectively, in the RAW 264.7 murine macrophage cell line. This increase in mRNA expression was accompanied by a significant increase in IL-1beta and IL-6 protein production. Pre-treatment of RAW cells with pharmacological inhibitors of protein kinase A (PKA) or NF-kappaB pathway failed to block this cytokine increase. Instead, the beta(2)AR-mediated increase in cytokines required activation of both the B-raf-ERK1/2 and p38 pathways. Treatment of RAW cells with the exchange protein directly activated by cAMP (EPAC) agonist also resulted in the up-regulation of IL-1beta and IL-6 transcripts. Examination of the main transcription factors downstream of the ERK1/2 and p38 signaling revealed that beta(2)AR activation resulted in the stimulation of CRE-, but not C/EBPbeta-, ETS-, or NF-kappaB-dependent transcription. Western blot analysis further showed that among the transcription factors which recognize the CRE-binding site, ATF-1 and ATF-2 but not CREB proteins were phosphorylated in an ERK1/2- and p38-dependent manner. Collectively, these results demonstrate that beta(2)ARs possess pro-inflammatory properties and that their activation leads to IL-1beta and IL-6 production through ERK1/2- and p38-dependent activation of ATF-1 and ATF-2 transcription factors.
Collapse
Affiliation(s)
- Kai Soo Tan
- The Comprehensive Center for Inflammatory Disorders, School of Dentistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
200
|
Abstract
Epac is an acronym for the exchange proteins activated directly by cyclic AMP, a family of cAMP-regulated guanine nucleotide exchange factors (cAMPGEFs) that mediate protein kinase A (PKA)-independent signal transduction properties of the second messenger cAMP. Two variants of Epac exist (Epac1 and Epac2), both of which couple cAMP production to the activation of Rap, a small molecular weight GTPase of the Ras family. By activating Rap in an Epac-mediated manner, cAMP influences diverse cellular processes that include integrin-mediated cell adhesion, vascular endothelial cell barrier formation, and cardiac myocyte gap junction formation. Recently, the identification of previously unrecognized physiological processes regulated by Epac has been made possible by the development of Epac-selective cyclic AMP analogues (ESCAs). These cell-permeant analogues of cAMP activate both Epac1 and Epac2, whereas they fail to activate PKA when used at low concentrations. ESCAs such as 8-pCPT-2'-O-Me-cAMP and 8-pMeOPT-2'-O-Me-cAMP are reported to alter Na(+), K(+), Ca(2+) and Cl(-) channel function, intracellular [Ca(2+)], and Na(+)-H(+) transporter activity in multiple cell types. Moreover, new studies examining the actions of ESCAs on neurons, pancreatic beta cells, pituitary cells and sperm demonstrate a major role for Epac in the stimulation of exocytosis by cAMP. This topical review provides an update concerning novel PKA-independent features of cAMP signal transduction that are likely to be Epac-mediated. Emphasized is the emerging role of Epac in the cAMP-dependent regulation of ion channel function, intracellular Ca(2+) signalling, ion transporter activity and exocytosis.
Collapse
Affiliation(s)
- George G Holz
- Department of Physiology and Neuroscience, New York University School of Medicine, New York, NY 10016, USA.
| | | | | | | | | |
Collapse
|