151
|
Grigoletto A, Tedeschini T, Canato E, Pasut G. The evolution of polymer conjugation and drug targeting for the delivery of proteins and bioactive molecules. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1689. [PMID: 33314717 DOI: 10.1002/wnan.1689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022]
Abstract
Polymer conjugation can be considered one of the leading approaches within the vast field of nanotechnology-based drug delivery systems. In fact, such technology can be exploited for delivering an active molecule, such as a small drug, a protein, or genetic material, or it can be applied to other drug delivery systems as a strategy to improve their in vivo behavior or pharmacokinetic activities such as prolonging the half-life of a drug, conferring stealth properties, providing external stimuli responsiveness, and so on. If on the one hand, polymer conjugation with biotech drug is considered the linchpin of the protein delivery field boasting several products in clinical use, on the other, despite dedicated research, conjugation with low molecular weight drugs has not yet achieved the milestone of the first clinical approval. Some of the primary reasons for this debacle are the difficulties connected to achieving selective targeting to diseased tissue, organs, or cells, which is the main goal not only of polymer conjugation but of all delivery systems of small drugs. In light of the need to achieve better drug targeting, researchers are striving to identify more sophisticated, biocompatible delivery approaches and to open new horizons for drug targeting methodologies leading to successful clinical applications. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Antonella Grigoletto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Tommaso Tedeschini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Elena Canato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Gianfranco Pasut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
152
|
Biancacci I, Sun Q, Möckel D, Gremse F, Rosenhain S, Kiessling F, Bartneck M, Hu Q, Thewissen M, Storm G, Hennink WE, Shi Y, Rijcken CJ, Lammers T, Sofias AM. Optical imaging of the whole-body to cellular biodistribution of clinical-stage PEG-b-pHPMA-based core-crosslinked polymeric micelles. J Control Release 2020; 328:805-816. [DOI: 10.1016/j.jconrel.2020.09.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/31/2022]
|
153
|
Hejmady S, Pradhan R, Alexander A, Agrawal M, Singhvi G, Gorain B, Tiwari S, Kesharwani P, Dubey SK. Recent advances in targeted nanomedicine as promising antitumor therapeutics. Drug Discov Today 2020; 25:2227-2244. [DOI: 10.1016/j.drudis.2020.09.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/29/2020] [Accepted: 09/26/2020] [Indexed: 12/18/2022]
|
154
|
Affiliation(s)
- Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
155
|
Zhao YD, Muhetaerjiang M, An HW, Fang X, Zhao Y, Wang H. Nanomedicine enables spatiotemporally regulating macrophage-based cancer immunotherapy. Biomaterials 2020; 268:120552. [PMID: 33307365 DOI: 10.1016/j.biomaterials.2020.120552] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Cancer immunotherapy, leveraging the host's coordinated immune system to fight against tumor has been clinically validated. However, the modest response owing to the multiple ways of tumor immune evasion is one of the challenges in cancer immunotherapy. Tumor associated macrophages (TAMs), as a major component of the leukocytes infiltrating in all tumors, play crucial roles in driving cancer initiation, progress and metastasis via multiple mechanisms such as mediating chronic inflammation, promoting angiogenesis, taming protective immune responses, and supporting migration and intravasation. TAMs targeted therapeutics have achieved remarkable successes in clinical trials mostly through the use of small-molecule agents and antibodies. However, efforts for further application have met with challenges of limited efficacy and safety. Nanomaterials can provide versatile approaches to realize the superior spatiotemporal control over immunomodulation to amplify immune responses, ultimately enhancing the therapeutic benefits and reducing toxicity. Here, the potential drugs used in TAM-centered cancer treatment in clinic are summarized and the recent advances of TAMs targeted nanomedicines in this filed are highlighted. More importantly, we focus on how nanomedicine can exert their advantages in spatial and temporal control of immunomodulation.
Collapse
Affiliation(s)
- Yong-Dan Zhao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; School of Pharmacy, Shanxi Medical University, Shanxi, 030009, PR China
| | - Mamuti Muhetaerjiang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; GBA Research Innovation Institute for Nanotechnology, Guangdong, 510700, PR China
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; GBA Research Innovation Institute for Nanotechnology, Guangdong, 510700, PR China
| | - Xiaohong Fang
- University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Yuliang Zhao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, PR China; GBA Research Innovation Institute for Nanotechnology, Guangdong, 510700, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, PR China; GBA Research Innovation Institute for Nanotechnology, Guangdong, 510700, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
156
|
Deng Z, Wang N, Ai F, Wang Z, Zhu G. Nanomaterial‐mediated platinum drug‐based combinatorial cancer therapy. VIEW 2020. [DOI: 10.1002/viw.20200030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Zhiqin Deng
- Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
- Shenzhen Research Institute City University of Hong Kong Shenzhen P. R. China
| | - Na Wang
- Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
- Shenzhen Research Institute City University of Hong Kong Shenzhen P. R. China
| | - Fujin Ai
- College of Health Science and Environment Engineering Shenzhen Technology University Shenzhen P. R. China
| | - Zhigang Wang
- School of Pharmaceutical Sciences Health Science Center Shenzhen University Shenzhen P. R. China
| | - Guangyu Zhu
- Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
- Shenzhen Research Institute City University of Hong Kong Shenzhen P. R. China
| |
Collapse
|
157
|
Self-assembled bovine serum albumin nanoparticles as pesticide delivery vectors for controlling trunk-boring pests. J Nanobiotechnology 2020; 18:165. [PMID: 33168011 PMCID: PMC7653776 DOI: 10.1186/s12951-020-00725-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/27/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trunk-boring pests (TBPs) are an important type of forest pest, TBPs not only feed on the branches and trunks of trees, but also spread quarantine diseases in forests. However, because the larvae of TBPs live inside the trunk and are well concealed, prevention and control are difficult. The lack of effective control methods leads to the death of many trees in forests. In this study, a novel nanopesticide featuring high bioactivity and slow-release properties was developed to control TBPs. Thiacloprid (THI), which is commonly used to control Coleoptera species, was used as a model pesticide. RESULTS The oleophobic properties of bovine serum albumin (BSA) were exploited to encapsulate the hydrophobic pesticide THI by self-assembly, and the size of the obtained nanoparticles, THI@BSA·NPs, was approximately 23 nm. The loading efficiency reached 70.4%, and THI@BSA·NPs could be released continuously for over 15 days, with the cumulative release reaching 93.5%. The fluorescein isothiocyanate (FITC)-labeled nanoparticles were evenly distributed in the digestive tract and body surface of a typical TBPs, M. alternatus, and the stomach and contact toxicities increased by 33.7% and 25.9%, respectively, compared with those of free THI. Furthermore, the results showed that the transport efficiency of THI@BSA·NPs was highest at a concentration of 50 μg/mL, and the THI@BSA·NPs content in the trunk, from to lower to higher layers, was 8.8, 8.2, 7.6, and 5.8 μg/g. At the same time, THI@BSA·NPs also exhibited high transport efficiency in dead trees. CONCLUSION The transport efficiency and toxicity of the active ingredients are the key factors for the control of TBPs. This work provided idea for the application of biological delivery system encapsulated hydrophobic pesticides. The novel self-assembled THI@BSA·NPs have promising potential for sustainable control of TBPs.
Collapse
|
158
|
Ng TSC, Gunda V, Li R, Prytyskach M, Iwamoto Y, Kohler RH, Parangi S, Weissleder R, Miller MA. Detecting Immune Response to Therapies Targeting PDL1 and BRAF by Using Ferumoxytol MRI and Macrin in Anaplastic Thyroid Cancer. Radiology 2020; 298:123-132. [PMID: 33107799 DOI: 10.1148/radiol.2020201791] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Anaplastic thyroid cancer (ATC) is aggressive with a poor prognosis, partly because of the immunosuppressive microenvironment created by tumor-associated macrophages (TAMs). Purpose To understand the relationship between TAM infiltration, tumor vascularization, and corresponding drug delivery by using ferumoxytol-enhanced MRI and macrin in an ATC mouse model. Materials and Methods ATC tumors were generated in 6-8-week-old female B6129SF1/J mice through intrathyroid injection to model orthotopic tumors, or intravenously to model hematogenous metastasis, and prospectively enrolled randomly into treatment cohorts (n = 94 total; August 1, 2018, to January 15, 2020). Mice were treated with vehicle or combined serine/threonine-protein kinase B-Raf (BRAF) kinase inhibitor (BRAFi) and anti-PDL1 antibody (aPDL1). A subset was cotreated with therapies, including an approximately 70-nm model drug delivery nanoparticle (DDNP) to target TAM, and an antibody-neutralizing colony stimulating factor 1 receptor (CSF1R). Imaging was performed at the macroscopic level with ferumoxytol-MRI and microscopically with macrin. Genetically engineered BrafV600E/WT p53-null allografts were used and complemented by a GFP-transgenic derivative and human xenografts. Tumor-bearing organs were processed by using tissue clearing and imaged with confocal microscopy and MRI. Two-tailed Wilcoxon tests were used for comparison (≥five per group). Results TAM levels were higher in orthotopic thyroid tumors compared with pulmonary metastatic lesions by 79% ± 23 (standard deviation; P < .001). These findings were concordant with ferumoxytol MRI, which showed 136% ± 88 higher uptake in thyroid lesions (P = .02) compared with lung lesions. BRAFi and aPDL1 combination therapy resulted in higher tumor DDNP delivery by 39% ± 14 in pulmonary lesions (P = .004). Compared with the untreated group, tumors following BRAFi, aPDL1, and CSF1R-blocking antibody combination therapy did not show greater levels of TAM or DDNP (P = .82). Conclusion In a mouse model of anaplastic thyroid cancer, ferumoxytol MRI showed 136% ± 88 greater uptake in orthotopic thyroid tumors compared with pulmonary lesions, which reflected high vascularization and greater tumor-associated macrophage (TAM) levels. Serine/threonine-protein kinase B-Raf inhibitor and anti-programmed death ligand 1 antibody elicited higher local TAM levels and 43% ± 20 greater therapeutic nanoparticle delivery but not higher vascularization in pulmonary tumors. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Luker in this issue.
Collapse
Affiliation(s)
- Thomas S C Ng
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge St, Suite 5.210, Boston, MA 02114 (T.S.C.N., R.L., M.P., Y.I., R.H.K., R.W., M.A.M.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (T.S.C.N.); Departments of Surgery (V.G., S.P.) and Radiology (R.L., R.W., M.A.M.), Massachusetts General Hospital and Harvard Medical School, Boston, Mass; and Department of Systems Biology, Harvard Medical School, Boston, Mass (R.W.)
| | - Viswanath Gunda
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge St, Suite 5.210, Boston, MA 02114 (T.S.C.N., R.L., M.P., Y.I., R.H.K., R.W., M.A.M.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (T.S.C.N.); Departments of Surgery (V.G., S.P.) and Radiology (R.L., R.W., M.A.M.), Massachusetts General Hospital and Harvard Medical School, Boston, Mass; and Department of Systems Biology, Harvard Medical School, Boston, Mass (R.W.)
| | - Ran Li
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge St, Suite 5.210, Boston, MA 02114 (T.S.C.N., R.L., M.P., Y.I., R.H.K., R.W., M.A.M.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (T.S.C.N.); Departments of Surgery (V.G., S.P.) and Radiology (R.L., R.W., M.A.M.), Massachusetts General Hospital and Harvard Medical School, Boston, Mass; and Department of Systems Biology, Harvard Medical School, Boston, Mass (R.W.)
| | - Mark Prytyskach
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge St, Suite 5.210, Boston, MA 02114 (T.S.C.N., R.L., M.P., Y.I., R.H.K., R.W., M.A.M.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (T.S.C.N.); Departments of Surgery (V.G., S.P.) and Radiology (R.L., R.W., M.A.M.), Massachusetts General Hospital and Harvard Medical School, Boston, Mass; and Department of Systems Biology, Harvard Medical School, Boston, Mass (R.W.)
| | - Yoshiko Iwamoto
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge St, Suite 5.210, Boston, MA 02114 (T.S.C.N., R.L., M.P., Y.I., R.H.K., R.W., M.A.M.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (T.S.C.N.); Departments of Surgery (V.G., S.P.) and Radiology (R.L., R.W., M.A.M.), Massachusetts General Hospital and Harvard Medical School, Boston, Mass; and Department of Systems Biology, Harvard Medical School, Boston, Mass (R.W.)
| | - Rainer H Kohler
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge St, Suite 5.210, Boston, MA 02114 (T.S.C.N., R.L., M.P., Y.I., R.H.K., R.W., M.A.M.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (T.S.C.N.); Departments of Surgery (V.G., S.P.) and Radiology (R.L., R.W., M.A.M.), Massachusetts General Hospital and Harvard Medical School, Boston, Mass; and Department of Systems Biology, Harvard Medical School, Boston, Mass (R.W.)
| | - Sareh Parangi
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge St, Suite 5.210, Boston, MA 02114 (T.S.C.N., R.L., M.P., Y.I., R.H.K., R.W., M.A.M.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (T.S.C.N.); Departments of Surgery (V.G., S.P.) and Radiology (R.L., R.W., M.A.M.), Massachusetts General Hospital and Harvard Medical School, Boston, Mass; and Department of Systems Biology, Harvard Medical School, Boston, Mass (R.W.)
| | - Ralph Weissleder
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge St, Suite 5.210, Boston, MA 02114 (T.S.C.N., R.L., M.P., Y.I., R.H.K., R.W., M.A.M.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (T.S.C.N.); Departments of Surgery (V.G., S.P.) and Radiology (R.L., R.W., M.A.M.), Massachusetts General Hospital and Harvard Medical School, Boston, Mass; and Department of Systems Biology, Harvard Medical School, Boston, Mass (R.W.)
| | - Miles A Miller
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge St, Suite 5.210, Boston, MA 02114 (T.S.C.N., R.L., M.P., Y.I., R.H.K., R.W., M.A.M.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (T.S.C.N.); Departments of Surgery (V.G., S.P.) and Radiology (R.L., R.W., M.A.M.), Massachusetts General Hospital and Harvard Medical School, Boston, Mass; and Department of Systems Biology, Harvard Medical School, Boston, Mass (R.W.)
| |
Collapse
|
159
|
Shofolawe-Bakare OT, Stokes LD, Hossain M, Smith AE, Werfel TA. Immunostimulatory biomaterials to boost tumor immunogenicity. Biomater Sci 2020; 8:5516-5537. [PMID: 33049007 PMCID: PMC7837217 DOI: 10.1039/d0bm01183e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer immunotherapy is exhibiting great promise as a new therapeutic modality for cancer treatment. However, immunotherapies are limited by the inability of some tumors to provoke an immune response. These tumors with a 'cold' immunological phenotype are characterized by low numbers of tumor-infiltrating lymphocytes, high numbers of immunosuppressive leukocytes (e.g. regulatory T cells, tumor-associated macrophages), and high production of immune-dampening signals (e.g. IL-10, TGF-β, IDO-1). Strategies to boost the aptitude of tumors to initiate an immune response (i.e. boost tumor immunogenicity) will turn 'cold' tumors 'hot' and augment the anti-tumor efficacy of current immunotherapies. Approaches to boost tumor immunogenicity already show promise; however, multifaceted delivery and immunobiology challenges exist. For instance, systemic delivery of many immune-stimulating agents causes off-target toxicity and/or the development of autoimmunity, limiting the administrable dose below the threshold needed to achieve efficacy. Moreover, once administered in vivo, molecules such as the nucleic acid-based agonists for many pattern recognition receptors are either rapidly cleared or degraded, and don't efficiently traffic to the intracellular compartments where the receptors are located. Thus, these nucleic acid-based drugs are ineffective without a delivery system. Biomaterials-based approaches aim to enhance current strategies to boost tumor immunogenicity, enable novel strategies, and spare dose-limiting toxicities. Here, we review recent progress to improve cancer immunotherapies by boosting immunogenicity within tumors using immunostimulatory biomaterials.
Collapse
|
160
|
Lázaro I, Sharp P, Gurcan C, Ceylan A, Stylianou M, Kisby T, Chen Y, Vranic S, Barr K, Taheri H, Ozen A, Bussy C, Yilmazer A, Kostarelos K. Deep Tissue Translocation of Graphene Oxide Sheets in Human Glioblastoma 3D Spheroids and an Orthotopic Xenograft Model. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Irene Lázaro
- Nanomedicine Lab, National Graphene Institute and Faculty of Biology, Medicine and Health University of Manchester AV Hill Building Manchester M13 9PT UK
- John A Paulson School of Engineering and Applied Sciences Harvard University 58 Oxford Street Cambridge MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University 3 Blackfan Circle Boston MA 02115 USA
| | - Paul Sharp
- Nanomedicine Lab, National Graphene Institute and Faculty of Biology, Medicine and Health University of Manchester AV Hill Building Manchester M13 9PT UK
| | - Cansu Gurcan
- Department of Biomedical Engineering, Faculty of Engineering Ankara University Ankara 06830 Turkey
- Stem Cell Institute Ankara University Ankara 06520 Turkey
| | - Ahmet Ceylan
- Department of Histology Embryology, Faculty of Veterinary Medicine Ankara University Ankara 06110 Turkey
| | - Maria Stylianou
- Nanomedicine Lab, National Graphene Institute and Faculty of Biology, Medicine and Health University of Manchester AV Hill Building Manchester M13 9PT UK
| | - Thomas Kisby
- Nanomedicine Lab, National Graphene Institute and Faculty of Biology, Medicine and Health University of Manchester AV Hill Building Manchester M13 9PT UK
| | - Yingxian Chen
- Nanomedicine Lab, National Graphene Institute and Faculty of Biology, Medicine and Health University of Manchester AV Hill Building Manchester M13 9PT UK
| | - Sandra Vranic
- Nanomedicine Lab, National Graphene Institute and Faculty of Biology, Medicine and Health University of Manchester AV Hill Building Manchester M13 9PT UK
| | - Katharine Barr
- Nanomedicine Lab, National Graphene Institute and Faculty of Biology, Medicine and Health University of Manchester AV Hill Building Manchester M13 9PT UK
| | - Hadiseh Taheri
- Department of Biomedical Engineering, Faculty of Engineering Ankara University Ankara 06830 Turkey
| | - Asuman Ozen
- Department of Histology Embryology, Faculty of Veterinary Medicine Ankara University Ankara 06110 Turkey
| | - Cyrill Bussy
- Nanomedicine Lab, National Graphene Institute and Faculty of Biology, Medicine and Health University of Manchester AV Hill Building Manchester M13 9PT UK
| | - Acelya Yilmazer
- Department of Biomedical Engineering, Faculty of Engineering Ankara University Ankara 06830 Turkey
- Stem Cell Institute Ankara University Ankara 06520 Turkey
| | - Kostas Kostarelos
- Nanomedicine Lab, National Graphene Institute and Faculty of Biology, Medicine and Health University of Manchester AV Hill Building Manchester M13 9PT UK
- Catalan Institute of Nanoscience and Nanotechnology (ICN2) UAB Campus Bellaterra Barcelona 08193 Spain
| |
Collapse
|
161
|
Liang C, Bai X, Qi C, Sun Q, Han X, Lan T, Zhang H, Zheng X, Liang R, Jiao J, Zheng Z, Fang J, Lei P, Wang Y, Möckel D, Metselaar JM, Storm G, Hennink WE, Kiessling F, Wei H, Lammers T, Shi Y, Wei B. Π electron-stabilized polymeric micelles potentiate docetaxel therapy in advanced-stage gastrointestinal cancer. Biomaterials 2020; 266:120432. [PMID: 33069116 DOI: 10.1016/j.biomaterials.2020.120432] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/10/2020] [Accepted: 10/03/2020] [Indexed: 12/12/2022]
Abstract
Gastrointestinal (GI) cancers are among the most lethal malignancies. The treatment of advanced-stage GI cancer involves standard chemotherapeutic drugs, such as docetaxel, as well as targeted therapeutics and immunomodulatory agents, all of which are only moderately effective. We here show that Π electron-stabilized polymeric micelles based on PEG-b-p(HPMAm-Bz) can be loaded highly efficiently with docetaxel (loading capacity up to 23 wt%) and potentiate chemotherapy responses in multiple advanced-stage GI cancer mouse models. Complete cures and full tumor regression were achieved upon intravenously administering micellar docetaxel in subcutaneous gastric cancer cell line-derived xenografts (CDX), as well as in CDX models with intraperitoneal and lung metastases. Nanoformulated docetaxel also outperformed conventional docetaxel in a patient-derived xenograft (PDX) model, doubling the extent of tumor growth inhibition. Furthermore, micellar docetaxel modulated the tumor immune microenvironment in CDX and PDX tumors, increasing the ratio between M1-and M2-like macrophages, and toxicologically, it was found to be very well-tolerated. These findings demonstrate that Π electron-stabilized polymeric micelles loaded with docetaxel hold significant potential for the treatment of advanced-stage GI cancers.
Collapse
Affiliation(s)
- Chenghua Liang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiangyang Bai
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, 52074, Aachen, Germany
| | - Cuiling Qi
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qingxue Sun
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, 52074, Aachen, Germany
| | - Xiaoyan Han
- Central Laboratory, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Tianyun Lan
- Central Laboratory, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Haibo Zhang
- Central Laboratory, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiaoming Zheng
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Rongpu Liang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Ju Jiao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Zongheng Zheng
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jiafeng Fang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Purun Lei
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yan Wang
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, the Netherlands
| | - Diana Möckel
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, 52074, Aachen, Germany
| | - Josbert M Metselaar
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, 52074, Aachen, Germany
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, the Netherlands; Department of Biomaterials Science & Technology (BST), University of Twente, 7500 AE, Enschede, the Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, the Netherlands
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, 52074, Aachen, Germany; Fraunhofer MEVIS, Institute for Medical Image Computing, 52074, Aachen, Germany
| | - Hongbo Wei
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, 52074, Aachen, Germany; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, the Netherlands; Department of Biomaterials Science & Technology (BST), University of Twente, 7500 AE, Enschede, the Netherlands.
| | - Yang Shi
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, 52074, Aachen, Germany.
| | - Bo Wei
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
162
|
Visualization of the distribution of nanoparticle-formulated AZD2811 in mouse tumor model using matrix-assisted laser desorption ionization mass spectrometry imaging. Sci Rep 2020; 10:15535. [PMID: 32968211 PMCID: PMC7511311 DOI: 10.1038/s41598-020-72665-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Penetration of nanoparticles into viable tumor regions is essential for an effective response. Mass spectrometry imaging (MSI) is a novel method for evaluating the intratumoral pharmacokinetics (PK) of a drug in terms of spatial distribution. The application of MSI for analysis of nanomedicine PK remains in its infancy. In this study, we evaluated the applicability of MALDI-MSI for nanoparticle-formulated drug visualization in tumors and biopsies, with an aim toward future application in clinical nanomedicine research. We established an analytic method for the free drug (AZD2811) and then applied it to visualize nanoparticle-formulated AZD2811. MSI analysis demonstrated heterogeneous intratumoral drug distribution in three xenograft tumors. The intensity of MSI signals correlated well with total drug concentration in tumors, indicating that drug distribution can be monitored quantitatively. Analysis of tumor biopsies indicated that MSI is applicable for analyzing the distribution of nanoparticle-formulated drugs in tumor biopsies, suggesting clinical applicability.
Collapse
|
163
|
UCNP-based Photoluminescent Nanomedicines for Targeted Imaging and Theranostics of Cancer. Molecules 2020; 25:molecules25184302. [PMID: 32961731 PMCID: PMC7571190 DOI: 10.3390/molecules25184302] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022] Open
Abstract
Theranostic approach is currently among the fastest growing trends in cancer treatment. It implies the creation of multifunctional agents for simultaneous precise diagnosis and targeted impact on tumor cells. A new type of theranostic complexes was created based on NaYF4: Yb,Tm upconversion nanoparticles coated with polyethylene glycol and functionalized with the HER2-specific recombinant targeted toxin DARPin-LoPE. The obtained agents bind to HER2-overexpressing human breast adenocarcinoma cells and demonstrate selective cytotoxicity against this type of cancer cells. Using fluorescent human breast adenocarcinoma xenograft models, the possibility of intravital visualization of the UCNP-based complexes biodistribution and accumulation in tumor was demonstrated.
Collapse
|
164
|
Macpherson AM, Barry SC, Ricciardelli C, Oehler MK. Epithelial Ovarian Cancer and the Immune System: Biology, Interactions, Challenges and Potential Advances for Immunotherapy. J Clin Med 2020; 9:E2967. [PMID: 32937961 PMCID: PMC7564553 DOI: 10.3390/jcm9092967] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022] Open
Abstract
Recent advances in the understanding of immune function and the interactions with tumour cells have led to the development of various cancer immunotherapies and strategies for specific cancer types. However, despite some stunning successes with some malignancies such as melanomas and lung cancer, most patients receive little or no benefit from immunotherapy, which has been attributed to the tumour microenvironment and immune evasion. Although the US Food and Drug Administration have approved immunotherapies for some cancers, to date, only the anti-angiogenic antibody bevacizumab is approved for the treatment of epithelial ovarian cancer. Immunotherapeutic strategies for ovarian cancer are still under development and being tested in numerous clinical trials. A detailed understanding of the interactions between cancer and the immune system is vital for optimisation of immunotherapies either alone or when combined with chemotherapy and other therapies. This article, in two main parts, provides an overview of: (1) components of the normal immune system and current knowledge regarding tumour immunology, biology and their interactions; (2) strategies, and targets, together with challenges and potential innovative approaches for cancer immunotherapy, with attention given to epithelial ovarian cancer.
Collapse
Affiliation(s)
- Anne M. Macpherson
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia; (A.M.M.); (C.R.)
| | - Simon C. Barry
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide 5005, Australia;
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia; (A.M.M.); (C.R.)
| | - Martin K. Oehler
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia; (A.M.M.); (C.R.)
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide 5000, Australia
| |
Collapse
|
165
|
Li R, Ng TS, Garlin MA, Weissleder R, Miller MA. Understanding the in vivo Fate of Advanced Materials by Imaging. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910369. [PMID: 38545084 PMCID: PMC10972611 DOI: 10.1002/adfm.201910369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/09/2020] [Indexed: 11/13/2024]
Abstract
Engineered materials are ubiquitous in biomedical applications ranging from systemic drug delivery systems to orthopedic implants, and their actions unfold across multiple time- and length-scales. The efficacy and safety of biologics, nanomaterials, and macroscopic implants are all dictated by the same general principles of pharmacology as apply to small molecule drugs, comprising how the body affects materials (pharmacokinetics, PK) and conversely how materials affect the body (pharmacodynamics, PD). Imaging technologies play an increasingly insightful role in monitoring both of these processes, often simultaneously: translational macroscopic imaging modalities such as MRI and PET/CT offer whole-body quantitation of biodistribution and structural or molecular response, while ex vivo approaches and optical imaging via in vivo (intravital) microscopy reveal behaviors at subcellular resolution. In this review, the authors survey developments in imaging the in situ behavior of systemically and locally administered materials, with a particular focus on using microscopy to understand transport, target engagement, and downstream host responses at a single-cell level. The themes of microenvironmental influence, controlled drug release, on-target molecular action, and immune response, especially as mediated by macrophages and other myeloid cells are examined. Finally, the future directions of how new imaging technologies may propel efficient clinical translation of next-generation therapeutics and medical devices are proposed.
Collapse
Affiliation(s)
- Ran Li
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Thomas S.C. Ng
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Michelle A. Garlin
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School
- Department of Systems Biology, Harvard Medical School
| | - Miles A. Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School
| |
Collapse
|
166
|
Chen Y, Huang Y, Zhou S, Sun M, Chen L, Wang J, Xu M, Liu S, Liang K, Zhang Q, Jiang T, Song Q, Jiang G, Tang X, Gao X, Chen J. Tailored Chemodynamic Nanomedicine Improves Pancreatic Cancer Treatment via Controllable Damaging Neoplastic Cells and Reprogramming Tumor Microenvironment. NANO LETTERS 2020; 20:6780-6790. [PMID: 32809834 DOI: 10.1021/acs.nanolett.0c02622] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) strongly resists standard therapies since KRAS-mutated cancer cells harbor endogenous resistance toward chemotherapy-induced apoptosis and tumor-associated macrophages (TAMs) activate stroma cells to create the nearly impenetrable matrix. Herein, we developed a tailored nanocomplex through the self-assembly of synthetic 4-(phosphonooxy)phenyl-2,4-dinitrobenzenesulfonate and Fe3+ followed by hyaluronic acid decoration, realizing chemodynamic therapy (CDT) to combat PDAC. By controllably releasing its components in a GSH-sensitive manner under the distinctive redox homeostasis in cancer cells and TAMs, the nanocomplex selectively triggered a Fenton reaction to induce oxidative damage in cancer cells and simultaneously repolarized TAMs to deactivate stromal cells and thus attenuate stroma. Compared to gemcitabine, CDT remarkably inhibited tumor growth and prolonged animal survival in orthotopic PDAC models without noticeable side effects. This study provides a promising strategy to improve the treatment of PDAC through CDT-mediated controlled cancer cells damage and reprogramming of the stromal microenvironment.
Collapse
Affiliation(s)
- Yu Chen
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Yukun Huang
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Songlei Zhou
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Minli Sun
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, People's Republic of China
| | - Liang Chen
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Jiahao Wang
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Minjun Xu
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Shanshan Liu
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Kaifan Liang
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Qian Zhang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, People's Republic of China
| | - Tianze Jiang
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Qingxiang Song
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, People's Republic of China
| | - Gan Jiang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, People's Republic of China
| | - Xuyi Tang
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Xiaoling Gao
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, People's Republic of China
| | - Jun Chen
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, People's Republic of China
| |
Collapse
|
167
|
Li J, Wang H, Wang Y, Gong X, Xu X, Sha X, Zhang A, Zhang Z, Li Y. Tumor-Activated Size-Enlargeable Bioinspired Lipoproteins Access Cancer Cells in Tumor to Elicit Anti-Tumor Immune Responses. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002380. [PMID: 33252171 DOI: 10.1002/adma.202002380] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/11/2020] [Indexed: 06/12/2023]
Abstract
The limited lymphocytes infiltration and immunosuppression in tumor are the major challenges of cancer immunotherapy. The use of immunogenic cell death (ICD)-inducing agents has potential to potentiate antitumor immune responses, but is tremendously hampered by the poor delivery efficiency. Herein, a tumor-activated size-enlargeable bioinspired lipoprotein of oxaliplatin (TA-OBL) is designed to access cancer cells and boost the ICD-induced antitumor immunity for synergizing immune-checkpoint blockades (ICBs)-mediated immunotherapy. TA-OBL is constructed by integrating a legumain-sensitive melittin conjugate for improving intratumoral permeation and cancer cell accessibility, a pH-sensitive phospholipid for triggering size-enlargement and drug release in intracellular acidic environments, a nitroreductase-sensitive hydrophobic oxaliplatin prodrug (N-OXP) for eliciting antitumor immunity into the bioinspired nano-sized lipoprotein system. TA-OBL treatment produced robust antitumor immune responses and its combination with ICBs demonstrates strong therapeutic benefits with delayed tumor growth and extended survival rate, making it a promising delivery nanoplatform to elicit antitumor immunity for cancer immunotherapy.
Collapse
Affiliation(s)
- Jie Li
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, 19A Yuqian Road, Beijing, 100049, China
| | - Hong Wang
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 19A Yuqian Road, Beijing, 100049, China
| | - Yuqi Wang
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiang Gong
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 19A Yuqian Road, Beijing, 100049, China
| | - Xiaoxuan Xu
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 19A Yuqian Road, Beijing, 100049, China
| | - Xianyi Sha
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Ao Zhang
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, 19A Yuqian Road, Beijing, 100049, China
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiwen Zhang
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 19A Yuqian Road, Beijing, 100049, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong, 264000, China
| | - Yaping Li
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 19A Yuqian Road, Beijing, 100049, China
| |
Collapse
|
168
|
Zhukova OV, Kovaleva TF, Arkhipova EV, Ryabov SA, Mukhina IV. Tumor-associated macrophages: Role in the pathological process of tumorigenesis and prospective therapeutic use (Review). Biomed Rep 2020; 13:47. [PMID: 32934819 DOI: 10.3892/br.2020.1354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 07/10/2020] [Indexed: 12/26/2022] Open
Abstract
The aim of the present study was to evaluate the current body of knowledge regarding tumor-associated macrophages (TAMs) and their potential use in antitumor therapy, based on their role in the pathological process of tumorigenesis. For this purpose, a critical analysis of published data and summarization of the findings available from original studies, focusing on the role of TAMs in the pathological process, and their potential therapeutic application was performed. Promising key avenues of research were identified in this field. The following issues seem the most promising and thus worth further investigation: i) The process of M1/M2 macrophage polarization, macrophage characteristics at intermediate polarization steps and their role in the tumor process; ii) determining the conditions necessary for transitions between the M1 and M2 macrophage phenotypes and the role of signals from the microenvironment in this process; iii) cause-and-effect associations between the quantity and quality of macrophages, and the prognosis and outcome of the pathological process; iv) modulation of macrophages and stimulation of their phagocytic activity with drugs; v) targeted vector-based systems for drug delivery to macrophages; and vi) targeted drug delivery systems with macrophages as carriers, thus potentially combining chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Olga V Zhukova
- Department of Pharmaceutical Technology, Privolzhsky Research Medical University, Nizhny Novgorod 603005, Russia
| | - Tatiana F Kovaleva
- Department of Molecular and Cellular Technologies, Privolzhsky Research Medical University, Nizhny Novgorod 603005, Russia
| | - Evgenia V Arkhipova
- Pre-Clinical Research Center, Central Research Laboratory, Privolzhsky Research Medical University, Nizhny Novgorod 603005, Russia
| | - Sergey A Ryabov
- Department of High-Molecular and Colloid Chemistry, National Research Lobachevsky State University, Nizhny Novgorod 603950, Russia
| | - Irina V Mukhina
- Fundamental Medicine Institute and Physiology Department, Privolzhsky Research Medical University, Nizhny Novgorod 603005, Russia
| |
Collapse
|
169
|
Wang T, Mu W, Li F, Zhang J, Hou T, Pang X, Yin X, Zhang N. "Layer peeling" co-delivery system for enhanced RNA interference-based tumor associated macrophages-specific chemoimmunotherapy. NANOSCALE 2020; 12:16851-16863. [PMID: 32761008 DOI: 10.1039/d0nr04025h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
RNA interference (RNAi)-based immunotherapy combined with chemotherapy has emerged as a promising therapeutic strategy for cancer treatment. The transport of siRNA and small molecular agents from the tumor vasculature to a separate therapeutic target has been impeded by multiple physiological barriers, which has restricted the development of RNAi-based chemoimmunotherapy. A nanotechnology-based co-delivery system was superior in improving the co-localization of gene and drug in the same tumor cell, while a co-delivery system for chemoimmunotherapy was expected to realize xenotype cell-targeting, which means delivering immunotherapy agents and chemotherapy drugs to immune cells and tumor cells, respectively. A multilayer structure co-delivery system was outstanding in crossing these barriers and targeting different cells in tumor tissue. Herein, a "layer peeling" co-delivery system (CDMPR) was developed with co-loaded IKKβ-siRNA and doxorubicin (DOX), in which IKKβ-siRNA was used for RNAi-based tumor associated macrophages (TAMs) polarization for immunotherapy and DOX was used for chemotherapy. A transwell assay in vitro and an immunofluorescence assay in Hepa1-6 tumor-bearing mice indicated that CDMPR exhibited a pH-sensitive disassembly ability in tumor tissue, IKKβ-siRNA was precisely delivered to M2-type TAMs and DOX was internalized into tumor cells. An M2-type TAMs polarization ability study of CDMPR demonstrated that M2-type TAMs could be polarized to M1-type TAMs by CDMPR in vitro and in vivo. In Hepa1-6 tumor-bearing mice, CDMPR exhibited improved antitumor efficiency with M2-type re-polarization ability by the precise delivery of IKKβ-siRNA and DOX to M2-type TAMs and tumor cells, respectively. Consequently, the combination of RNAi-based TAMs polarization and chemotherapy by the "layer peeling" co-delivery system would achieve an enhanced chemoimmunotherapy effect, which provides a novel strategy to improve cancer therapeutic effects.
Collapse
Affiliation(s)
- Tianqi Wang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province 250012, China.
| | - Weiwei Mu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province 250012, China.
| | - Feifei Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province 250012, China.
| | - Jing Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province 250012, China.
| | - Teng Hou
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province 250012, China.
| | - Xiuping Pang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province 250012, China.
| | - Xiaolan Yin
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province 250012, China.
| | - Na Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province 250012, China.
| |
Collapse
|
170
|
A magnetism/laser-auxiliary cascaded drug delivery to pulmonary carcinoma. Acta Pharm Sin B 2020; 10:1549-1562. [PMID: 32963949 PMCID: PMC7488357 DOI: 10.1016/j.apsb.2019.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/08/2019] [Accepted: 11/30/2019] [Indexed: 01/16/2023] Open
Abstract
Although high-efficiency targeted delivery is investigated for years, the efficiency of tumor targeting seems still a hard core to smash. To overcome this problem, we design a three-step delivery strategy based on streptavidin–biotin interaction with the help of c(RGDfK), magnetic fields and lasers. The ultrasmall superparamagnetic iron oxide nanoparticles (USIONPs) modified with c(RGDfK) and biotin are delivered at step 1, followed by streptavidin and the doxorubicin (Dox) loaded nanosystems conjugated with biotin at steps 2 and 3, respectively. The delivery systems were proved to be efficient on A549 cells. The co-localization of signal for each step revealed the targeting mechanism. The external magnetic field could further amplify the endocytosis of USPIONs based on c(RGDfK), and magnify the uptake distinctions among different test groups. Based on photoacoustic imaging, laser-heating treatment could enhance the permeability of tumor venous blood vessels and change the insufficient blood flow in cancer. Then, it was noticed in vivo that only three-step delivery with laser-heating and magnetic fields realized the highest tumor distribution of nanosystem. Finally, the magnetism/laser-auxiliary cascaded delivery exhibited the best antitumor efficacy. Generally, this study demonstrated the necessity of combining physical, biological and chemical means of targeting.
Collapse
|
171
|
Sofias AM, Toner YC, Meerwaldt AE, van Leent MMT, Soultanidis G, Elschot M, Gonai H, Grendstad K, Flobak Å, Neckmann U, Wolowczyk C, Fisher EL, Reiner T, Davies CDL, Bjørkøy G, Teunissen AJP, Ochando J, Pérez-Medina C, Mulder WJM, Hak S. Tumor Targeting by α vβ 3-Integrin-Specific Lipid Nanoparticles Occurs via Phagocyte Hitchhiking. ACS NANO 2020; 14:7832-7846. [PMID: 32413260 PMCID: PMC7392528 DOI: 10.1021/acsnano.9b08693] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 05/15/2020] [Indexed: 05/05/2023]
Abstract
Although the first nanomedicine was clinically approved more than two decades ago, nanoparticles' (NP) in vivo behavior is complex and the immune system's role in their application remains elusive. At present, only passive-targeting nanoformulations have been clinically approved, while more complicated active-targeting strategies typically fail to advance from the early clinical phase stage. This absence of clinical translation is, among others, due to the very limited understanding for in vivo targeting mechanisms. Dynamic in vivo phenomena such as NPs' real-time targeting kinetics and phagocytes' contribution to active NP targeting remain largely unexplored. To better understand in vivo targeting, monitoring NP accumulation and distribution at complementary levels of spatial and temporal resolution is imperative. Here, we integrate in vivo positron emission tomography/computed tomography imaging with intravital microscopy and flow cytometric analyses to study αvβ3-integrin-targeted cyclic arginine-glycine-aspartate decorated liposomes and oil-in-water nanoemulsions in tumor mouse models. We observed that ligand-mediated accumulation in cancerous lesions is multifaceted and identified "NP hitchhiking" with phagocytes to contribute considerably to this intricate process. We anticipate that this understanding can facilitate rational improvement of nanomedicine applications and that immune cell-NP interactions can be harnessed to develop clinically viable nanomedicine-based immunotherapies.
Collapse
Affiliation(s)
- Alexandros Marios Sofias
- Department
of Circulation and Medical Imaging, Faculty of Medicine and Health
Sciences, Norwegian University of Science
and Technology (NTNU), 7030 Trondheim, Norway
- BioMedical
Engineering and Imaging Institute, Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department
of Nanomedicine and Theranostics, Institute for Experimental Molecular
Imaging, Faculty of Medicine, RWTH Aachen
University, 52074 Aachen, Germany
| | - Yohana C. Toner
- BioMedical
Engineering and Imaging Institute, Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Anu E. Meerwaldt
- BioMedical
Engineering and Imaging Institute, Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
- Biomedical
MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Mandy M. T. van Leent
- BioMedical
Engineering and Imaging Institute, Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department
of Medical Biochemistry, Amsterdam University
Medical Centers, 1105 AZ Amsterdam, The Netherlands
| | - Georgios Soultanidis
- BioMedical
Engineering and Imaging Institute, Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Mattijs Elschot
- Department
of Circulation and Medical Imaging, Faculty of Medicine and Health
Sciences, Norwegian University of Science
and Technology (NTNU), 7030 Trondheim, Norway
- Department
of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
| | - Haruki Gonai
- BioMedical
Engineering and Imaging Institute, Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Kristin Grendstad
- Department
of Physics, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
| | - Åsmund Flobak
- The
Cancer Clinic, St. Olav’s University
Hospital, 7030 Trondheim, Norway
- Department
of Clinical and Molecular Medicine, Faculty of Medicine and Health
Sciences, Norwegian University of Science
and Technology (NTNU), 7030 Trondheim, Norway
| | - Ulrike Neckmann
- Department
of Biomedical Laboratory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), 7030 Trondheim, Norway
- Centre
of Molecular Inflammation Research (CEMIR), Faculty of Medicine and
Health Sciences, Norwegian University of
Science and Technology (NTNU), 7030 Trondheim, Norway
| | - Camilla Wolowczyk
- Department
of Biomedical Laboratory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), 7030 Trondheim, Norway
- Centre
of Molecular Inflammation Research (CEMIR), Faculty of Medicine and
Health Sciences, Norwegian University of
Science and Technology (NTNU), 7030 Trondheim, Norway
| | - Elizabeth L. Fisher
- BioMedical
Engineering and Imaging Institute, Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Thomas Reiner
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10065, United States
- Department
of Radiology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Catharina de Lange Davies
- Department
of Physics, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
| | - Geir Bjørkøy
- Department
of Clinical and Molecular Medicine, Faculty of Medicine and Health
Sciences, Norwegian University of Science
and Technology (NTNU), 7030 Trondheim, Norway
- Department
of Biomedical Laboratory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), 7030 Trondheim, Norway
- Centre
of Molecular Inflammation Research (CEMIR), Faculty of Medicine and
Health Sciences, Norwegian University of
Science and Technology (NTNU), 7030 Trondheim, Norway
| | - Abraham J. P. Teunissen
- BioMedical
Engineering and Imaging Institute, Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jordi Ochando
- Department
of Oncological Sciences, Icahn School of
Medicine at Mount Sinai, New York, New York 10029, United States
- Transplant
Immunology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Carlos Pérez-Medina
- BioMedical
Engineering and Imaging Institute, Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Willem J. M. Mulder
- BioMedical
Engineering and Imaging Institute, Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department
of Medical Biochemistry, Amsterdam University
Medical Centers, 1105 AZ Amsterdam, The Netherlands
- Laboratory
of Chemical Biology, Department of Biochemical Engineering, Eindhoven University of Technology, 5612 AP Eindhoven, The Netherlands
| | - Sjoerd Hak
- Department
of Circulation and Medical Imaging, Faculty of Medicine and Health
Sciences, Norwegian University of Science
and Technology (NTNU), 7030 Trondheim, Norway
- Department
of Biotechnology and Nanomedicine, SINTEF
Industry, 7034 Trondheim, Norway
| |
Collapse
|
172
|
Luthria G, Li R, Wang S, Prytyskach M, Kohler RH, Lauffenburger DA, Mitchison TJ, Weissleder R, Miller MA. In vivo microscopy reveals macrophage polarization locally promotes coherent microtubule dynamics in migrating cancer cells. Nat Commun 2020; 11:3521. [PMID: 32665556 PMCID: PMC7360550 DOI: 10.1038/s41467-020-17147-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 06/02/2020] [Indexed: 01/07/2023] Open
Abstract
Microtubules (MTs) mediate mitosis, directional signaling, and are therapeutic targets in cancer. Yet in vivo analysis of cancer cell MT behavior within the tumor microenvironment remains challenging. Here we developed an imaging pipeline using plus-end tip tracking and intravital microscopy to quantify MT dynamics in live xenograft tumor models. Among analyzed features, cancer cells in vivo displayed higher coherent orientation of MT dynamics along their cell major axes compared with 2D in vitro cultures, and distinct from 3D collagen gel cultures. This in vivo MT phenotype was reproduced in vitro when cells were co-cultured with IL4-polarized MΦ. MΦ depletion, MT disruption, targeted kinase inhibition, and altered MΦ polarization via IL10R blockade all reduced MT coherence and/or tumor cell elongation. We show that MT coherence is a defining feature for in vivo tumor cell dynamics and migration, modulated by local signaling from pro-tumor macrophages. The regulation of microtubule (MT) dynamics in cancer cells within the tumor microenvironment is less understood. Here, the authors develop an imaging platform to examine MT dynamics in live xenograft models and show that pro-tumor macrophages modulate MT coherence and alignment to promote cancer cell migration.
Collapse
Affiliation(s)
- Gaurav Luthria
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, 02114, USA.,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Ran Li
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, 02114, USA.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Stephanie Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02181, USA
| | - Mark Prytyskach
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, 02114, USA
| | - Rainer H Kohler
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, 02114, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02181, USA
| | - Timothy J Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, 02114, USA. .,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02115, USA. .,Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, 02114, USA. .,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
173
|
Dacoba TG, Anfray C, Mainini F, Allavena P, Alonso MJ, Torres Andón F, Crecente-Campo J. Arginine-Based Poly(I:C)-Loaded Nanocomplexes for the Polarization of Macrophages Toward M1-Antitumoral Effectors. Front Immunol 2020; 11:1412. [PMID: 32733469 PMCID: PMC7358452 DOI: 10.3389/fimmu.2020.01412] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Tumor-associated macrophages (TAMs), with M2-like immunosuppressive profiles, are key players in the development and dissemination of tumors. Hence, the induction of M1 pro-inflammatory and anti-tumoral states is critical to fight against cancer cells. The activation of the endosomal toll-like receptor 3 by its agonist poly(I:C) has shown to efficiently drive this polarization process. Unfortunately, poly(I:C) presents significant systemic toxicity, and its clinical use is restricted to a local administration. Therefore, the objective of this work has been to facilitate the delivery of poly(I:C) to macrophages through the use of nanotechnology, that will ultimately drive their phenotype toward pro-inflammatory states. Methods: Poly(I:C) was complexed to arginine-rich polypeptides, and then further enveloped with an anionic polymeric layer either by film hydration or incubation. Physicochemical characterization of the nanocomplexes was conducted by dynamic light scattering and transmission electron microscopy, and poly(I:C) association efficiency by gel electrophoresis. Primary human-derived macrophages were used as relevant in vitro cell model. Alamar Blue assay, ELISA, PCR and flow cytometry were used to determine macrophage viability, polarization, chemokine secretion and uptake of nanocomplexes. The cytotoxic activity of pre-treated macrophages against PANC-1 cancer cells was assessed by flow cytometry. Results: The final poly(I:C) nanocomplexes presented sizes lower than 200 nm, with surface charges ranging from +40 to −20 mV, depending on the envelopment. They all presented high poly(I:C) loading values, from 12 to 50%, and great stability in cell culture media. In vitro, poly(I:C) nanocomplexes were highly taken up by macrophages, in comparison to the free molecule. Macrophage treatment with these nanocomplexes did not reduce their viability and efficiently stimulated the secretion of the T-cell recruiter chemokines CXCL10 and CCL5, of great importance for an effective anti-tumor immune response. Finally, poly(I:C) nanocomplexes significantly increased the ability of treated macrophages to directly kill cancer cells. Conclusion: Overall, these enveloped poly(I:C) nanocomplexes might represent a therapeutic option to fight cancer through the induction of cytotoxic M1-polarized macrophages.
Collapse
Affiliation(s)
- Tamara G Dacoba
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), IDIS Research Institute, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Clément Anfray
- Laboratory of Cellular Immunology, Humanitas Clinical and Research Center IRCCS, Milan, Italy
| | - Francesco Mainini
- Laboratory of Cellular Immunology, Humanitas Clinical and Research Center IRCCS, Milan, Italy
| | - Paola Allavena
- Laboratory of Cellular Immunology, Humanitas Clinical and Research Center IRCCS, Milan, Italy
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), IDIS Research Institute, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Fernando Torres Andón
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), IDIS Research Institute, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Laboratory of Cellular Immunology, Humanitas Clinical and Research Center IRCCS, Milan, Italy
| | - José Crecente-Campo
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), IDIS Research Institute, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
174
|
Chillà A, Margheri F, Biagioni A, Del Rosso T, Fibbi G, Del Rosso M, Laurenzana A. Cell-Mediated Release of Nanoparticles as a Preferential Option for Future Treatment of Melanoma. Cancers (Basel) 2020; 12:cancers12071771. [PMID: 32630815 PMCID: PMC7408438 DOI: 10.3390/cancers12071771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 01/15/2023] Open
Abstract
Targeted and immune therapies have unquestionably improved the prognosis of melanoma patients. However the treatment of this neoplasm still requires approaches with a higher therapeutic index, in order to reduce shortcomings related to toxic effects and aspecific targeting. This means developing therapeutic tools derived with high affinity molecules for tumor components differentially expressed in melanoma cells with respect to their normal counterpart. Nanomedicine has sought to address this problem owing to the high modulability of nanoparticles. This approach exploits not only the enhanced permeability and retention effect typical of the tumor microenvironment (passive targeting), but also the use of specific "molecular antennas" that recognize some tumor-overexpressed molecules (active targeting). This line of research has given rise to the so-called "smart nanoparticles," some of which have already passed the preclinical phase and are under clinical trials in melanoma patients. To further improve nanoparticles partition within tumors, for some years now a line of thought is exploiting the molecular systems that regulate the innate tumor-homing activity of platelets, granulocytes, monocytes/macrophages, stem cells, endothelial-colony-forming cells, and red blood cells loaded with nanoparticles. This new vision springs from the results obtained with some of these cells in regenerative medicine, an approach called "cell therapy." This review takes into consideration the advantages of cell therapy as the only one capable of overcoming the limits of targeting imposed by the increased interstitial pressure of tumors.
Collapse
Affiliation(s)
- Anastasia Chillà
- Department of Experimental and Clinical Biomedical Sciences School of Health Sciences, University of Florence-Viale G.B. Morgagni, 50–50134 Florence, Italy; (A.C.); (F.M.); (A.B.); (G.F.)
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences School of Health Sciences, University of Florence-Viale G.B. Morgagni, 50–50134 Florence, Italy; (A.C.); (F.M.); (A.B.); (G.F.)
| | - Alessio Biagioni
- Department of Experimental and Clinical Biomedical Sciences School of Health Sciences, University of Florence-Viale G.B. Morgagni, 50–50134 Florence, Italy; (A.C.); (F.M.); (A.B.); (G.F.)
| | - Tommaso Del Rosso
- Department of Physics, Pontifical Catholic University of Rio de Janeiro, 22451-900 Rio de Janeiro-RJ, Brazil;
| | - Gabriella Fibbi
- Department of Experimental and Clinical Biomedical Sciences School of Health Sciences, University of Florence-Viale G.B. Morgagni, 50–50134 Florence, Italy; (A.C.); (F.M.); (A.B.); (G.F.)
| | - Mario Del Rosso
- Department of Experimental and Clinical Biomedical Sciences School of Health Sciences, University of Florence-Viale G.B. Morgagni, 50–50134 Florence, Italy; (A.C.); (F.M.); (A.B.); (G.F.)
- Correspondence: (M.D.R.); (A.L.)
| | - Anna Laurenzana
- Department of Experimental and Clinical Biomedical Sciences School of Health Sciences, University of Florence-Viale G.B. Morgagni, 50–50134 Florence, Italy; (A.C.); (F.M.); (A.B.); (G.F.)
- Correspondence: (M.D.R.); (A.L.)
| |
Collapse
|
175
|
Design principles of drug combinations for chemotherapy. J Control Release 2020; 323:36-46. [DOI: 10.1016/j.jconrel.2020.04.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022]
|
176
|
Shi Y, van der Meel R, Chen X, Lammers T. The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Am J Cancer Res 2020; 10:7921-7924. [PMID: 32685029 PMCID: PMC7359085 DOI: 10.7150/thno.49577] [Citation(s) in RCA: 477] [Impact Index Per Article: 95.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Following its discovery more than 30 years ago, the enhanced permeability and retention (EPR) effect has become the guiding principle for cancer nanomedicine development. Over the years, the tumor-targeted drug delivery field has made significant progress, as evidenced by the approval of several nanomedicinal anticancer drugs. Recently, however, the existence and the extent of the EPR effect - particularly in patients - have become the focus of intense debate. This is partially due to the disbalance between the huge number of preclinical cancer nanomedicine papers and relatively small number of cancer nanomedicine drug products reaching the market. To move the field forward, we have to improve our understanding of the EPR effect, of its cancer type-specific pathophysiology, of nanomedicine interactions with the heterogeneous tumor microenvironment, of nanomedicine behavior in the body, and of translational aspects that specifically complicate nanomedicinal drug development. In this virtual special issue, 24 research articles and reviews discussing different aspects of the EPR effect and cancer nanomedicine are collected, together providing a comprehensive and complete overview of the current state-of-the-art and future directions in tumor-targeted drug delivery.
Collapse
|
177
|
Peng C, Huang Y, Zheng J. Renal clearable nanocarriers: Overcoming the physiological barriers for precise drug delivery and clearance. J Control Release 2020; 322:64-80. [PMID: 32194171 PMCID: PMC8696951 DOI: 10.1016/j.jconrel.2020.03.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/27/2020] [Accepted: 03/15/2020] [Indexed: 01/10/2023]
Abstract
Physiological barriers encountered in the clinical translation of cancer nanomedicines inspire the community to more deeply understand nano-bio interactions in not only tumor microenvironment but also entire body and develop new nanocarriers to tackle these barriers. Renal clearable nanocarriers are one kind of these newly emerged drug delivery systems (DDSs), which enable drugs to rapidly penetrate into the tumor cores with no need of long blood retention and escape macrophage uptake in the meantime they can also enhance body elimination of non-targeted anticancer drugs. As a result, they can improve therapeutic efficacies and reduce side effects of anticancer drugs. Not limited to anticancer drugs, diagnostic agents can also be achieved with these renal clearable DDSs, which might also be applied to improve the precision in the gene editing and immunotherapy in the future.
Collapse
Affiliation(s)
- Chuanqi Peng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Yingyu Huang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Jie Zheng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA.
| |
Collapse
|
178
|
Neophytou CM, Pierides C, Christodoulou MI, Costeas P, Kyriakou TC, Papageorgis P. The Role of Tumor-Associated Myeloid Cells in Modulating Cancer Therapy. Front Oncol 2020; 10:899. [PMID: 32656079 PMCID: PMC7325995 DOI: 10.3389/fonc.2020.00899] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/07/2020] [Indexed: 12/20/2022] Open
Abstract
Myeloid cells include various cellular subtypes that are distinguished into mononuclear and polymorphonuclear cells, derived from either common myeloid progenitor cells (CMPs) or myeloid stem cells. They play pivotal roles in innate immunity since, following invasion by pathogens, myeloid cells are recruited and initiate phagocytosis and secretion of inflammatory cytokines into local tissues. Moreover, mounting evidence suggests that myeloid cells may also regulate cancer development by infiltrating the tumor to directly interact with cancer cells or by affecting the tumor microenvironment. Importantly, mononuclear phagocytes, including macrophages and dendritic cells (DCs), can have either a positive or negative impact on the efficacy of chemotherapy, radiotherapy as well as targeted anti-cancer therapies. Tumor-associated macrophages (TAMs), profusely found in the tumor stroma, can promote resistance to chemotherapeutic drugs, such as Taxol and Paclitaxel, whereas the suppression of TAMs can lead to an improved radiotherapy outcome. On the contrary, the presence of TAMs may be beneficial for targeted therapies as they can facilitate the accumulation of large quantities of nanoparticles carrying therapeutic compounds. Tumor infiltrating DCs, however, are generally thought to enhance cytotoxic therapies, including those using anthracyclines. This review focuses on the role of tumor-infiltrating and stroma myeloid cells in modulating tumor responses to various treatments. We herein report the impact of myeloid cells in a number of therapeutic approaches across a wide range of malignancies, as well as the efforts toward the elimination of myeloid cells or the exploitation of their presence for the enhancement of therapeutic efficacy against cancer.
Collapse
Affiliation(s)
- Christiana M Neophytou
- European University Research Centre, Nicosia, Cyprus.,Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Chryso Pierides
- The Center for the Study of Haematological Malignancies, Nicosia, Cyprus
| | | | - Paul Costeas
- The Center for the Study of Haematological Malignancies, Nicosia, Cyprus.,The Cyprus Cancer Research Institute, Nicosia, Cyprus
| | | | - Panagiotis Papageorgis
- European University Research Centre, Nicosia, Cyprus.,Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| |
Collapse
|
179
|
Ullah R, Wazir J, Khan FU, Diallo MT, Ihsan AU, Mikrani R, Aquib M, Zhou X. Factors Influencing the Delivery Efficiency of Cancer Nanomedicines. AAPS PharmSciTech 2020; 21:132. [PMID: 32409932 DOI: 10.1208/s12249-020-01691-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/13/2020] [Indexed: 01/01/2023] Open
Abstract
The superiority of nanomedicine over conventional medicines in the treatment of cancer has gained immediate recognition worldwide. As traditional cancer therapies are nonspecific and detrimental to healthy cells, the ability of nanomedicine to release drugs to target tumor cells specifically instead of healthy cells has brought new hope to cancer patients. This review focuses on the effects of various factors of nanoparticles such as transport, concentration in cells, tumor microenvironment, interaction with protein, penetration, uptake by tumor cells, cancer cell mutations, and intracellular trafficking of the nanoparticle. Besides the history of nanomedicine, future perspectives of nanomedicines are also explored in this text.
Collapse
|
180
|
Wang SJ, Li R, Ng TSC, Luthria G, Oudin MJ, Prytyskach M, Kohler RH, Weissleder R, Lauffenburger DA, Miller MA. Efficient blockade of locally reciprocated tumor-macrophage signaling using a TAM-avid nanotherapy. SCIENCE ADVANCES 2020; 6:eaaz8521. [PMID: 32494745 PMCID: PMC7244320 DOI: 10.1126/sciadv.aaz8521] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/20/2020] [Indexed: 05/07/2023]
Abstract
Interpreting how multicellular interactions in the tumor affect resistance pathways to BRAF and MEK1/2 MAPK inhibitors (MAPKi) remains a challenge. To investigate this, we profiled global ligand-receptor interactions among tumor and stromal/immune cells from biopsies of MAPK-driven disease. MAPKi increased tumor-associated macrophages (TAMs) in some patients, which correlated with poor clinical response, and MAPKi coamplified bidirectional tumor-TAM signaling via receptor tyrosine kinases (RTKs) including AXL, MERTK, and their ligand GAS6. In xenograft tumors, intravital microscopy simultaneously monitored in situ single-cell activities of multiple kinases downstream of RTKs, revealing MAPKi increased TAMs and enhanced bypass signaling in TAM-proximal tumor cells. As a proof-of-principle strategy to block this signaling, we developed a multi-RTK kinase inhibitor nanoformulation that accumulated in TAMs and delayed disease progression. Thus, bypass signaling can reciprocally amplify across nearby cell types, offering new opportunities for therapeutic design.
Collapse
Affiliation(s)
- Stephanie J. Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Ran Li
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Thomas S. C. Ng
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Gaurav Luthria
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Madeleine J. Oudin
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Mark Prytyskach
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Rainer H. Kohler
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | | | - Miles A. Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
181
|
Liu LY, Ma XZ, Ouyang B, Ings DP, Marwah S, Liu J, Chen AY, Gupta R, Manuel J, Chen XC, Gage BK, Cirlan I, Khuu N, Chung S, Camat D, Cheng M, Sekhon M, Zagorovsky K, Abdou Mohamed MA, Thoeni C, Atif J, Echeverri J, Kollmann D, Fischer S, Bader GD, Chan WCW, Michalak TI, McGilvray ID, MacParland SA. Nanoparticle Uptake in a Spontaneous and Immunocompetent Woodchuck Liver Cancer Model. ACS NANO 2020; 14:4698-4715. [PMID: 32255624 DOI: 10.1021/acsnano.0c00468] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
There is a tremendous focus on the application of nanomaterials for the treatment of cancer. Nonprimate models are conventionally used to assess the biomedical utility of nanomaterials. However, these animals often lack an intact immunological background, and the tumors in these animals do not develop spontaneously. We introduce a preclinical woodchuck hepatitis virus-induced liver cancer model as a platform for nanoparticle (NP)-based in vivo experiments. Liver cancer development in these out-bred animals occurs as a result of persistent viral infection, mimicking human hepatitis B virus-induced HCC development. We highlight how this model addresses key gaps associated with other commonly used tumor models. We employed this model to (1) track organ biodistribution of gold NPs after intravenous administration, (2) examine their subcellular localization in the liver, (3) determine clearance kinetics, and (4) characterize the identity of hepatic macrophages that take up NPs using RNA-sequencing (RNA-seq). We found that the liver and spleen were the primary sites of NP accumulation. Subcellular analyses revealed accumulation of NPs in the lysosomes of CD14+ cells. Through RNA-seq, we uncovered that immunosuppressive macrophages within the woodchuck liver are the major cell type that take up injected NPs. The woodchuck-HCC model has the potential to be an invaluable tool to examine NP-based immune modifiers that promote host anti-tumor immunity.
Collapse
Affiliation(s)
- Lewis Y Liu
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
- Department of Immunology, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 6271, Toronto, Ontario, Canada M5S 1A8
| | - Xue-Zhong Ma
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Ben Ouyang
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Rosebrugh Building, Room 407, Toronto, Ontario, Canada M5S 3G9
| | - Danielle P Ings
- Molecular Virology and Hepatology Research Group, Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, Newfoundland, Canada A1B 3V6
| | - Sagar Marwah
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Jeff Liu
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Room 230, Toronto, Ontario, Canada M5S 3E1
| | - Annie Y Chen
- Molecular Virology and Hepatology Research Group, Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, Newfoundland, Canada A1B 3V6
| | - Rahul Gupta
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Justin Manuel
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Xu-Chun Chen
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Blair K Gage
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
- McEwen Stem Cell Institute, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Iulia Cirlan
- Princess Margaret Genomics Centre, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Nicholas Khuu
- Princess Margaret Genomics Centre, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Sai Chung
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
- Department of Immunology, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 6271, Toronto, Ontario, Canada M5S 1A8
| | - Damra Camat
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
- Department of Immunology, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 6271, Toronto, Ontario, Canada M5S 1A8
| | - Michael Cheng
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
- Luna Nanotech, Toronto, Ontario, Canada M5G 1Y8
| | - Manmeet Sekhon
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Kyryl Zagorovsky
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Rosebrugh Building, Room 407, Toronto, Ontario, Canada M5S 3G9
- Luna Nanotech, Toronto, Ontario, Canada M5G 1Y8
| | - Mohamed A Abdou Mohamed
- Luna Nanotech, Toronto, Ontario, Canada M5G 1Y8
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt 44519
| | - Cornelia Thoeni
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Jawairia Atif
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
- Department of Immunology, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 6271, Toronto, Ontario, Canada M5S 1A8
| | - Juan Echeverri
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Dagmar Kollmann
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Sandra Fischer
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 6271, Toronto, Ontario, Canada M5S 1A8
| | - Gary D Bader
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Room 230, Toronto, Ontario, Canada M5S 3E1
| | - Warren C W Chan
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Rosebrugh Building, Room 407, Toronto, Ontario, Canada M5S 3G9
- Department of Materials Science and Engineering, University of Toronto, 160 College Street, Room 450, Toronto, Ontario, Canada M5S 3E1
| | - Tomasz I Michalak
- Molecular Virology and Hepatology Research Group, Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, Newfoundland, Canada A1B 3V6
| | - Ian D McGilvray
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Sonya A MacParland
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
- Department of Immunology, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 6271, Toronto, Ontario, Canada M5S 1A8
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 6271, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
182
|
Improving Treatment Efficacy of In Situ Forming Implants via Concurrent Delivery of Chemotherapeutic and Chemosensitizer. Sci Rep 2020; 10:6587. [PMID: 32313056 PMCID: PMC7170888 DOI: 10.1038/s41598-020-63636-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 03/31/2020] [Indexed: 01/12/2023] Open
Abstract
P-glycoprotein (Pgp), a member of the ATP-binding cassette family, is one of the major causes of multidrug resistance in tumors. Current clinical treatments to overcome MDR involve the co-delivery of a Pgp inhibitor and a chemotherapeutic. A concern for this treatment that has led to varied clinical trial success is the associated systemic toxicities involving endogenous Pgp. Local drug delivery systems, such as in situ forming implants (ISFIs), alleviate this problem by delivering a high concentration of the drug directly to the target site without the associated systemic toxicities. ISFIs are polymeric drug solutions that undergo a phase transition upon injection into an aqueous environment to form a solid drug eluting depot allowing for a high initial intratumoral drug concentration. In this study, we have developed an ISFI capable of overcoming the Pgp resistance by co-delivering a chemotherapeutic, Doxorubicin (Dox), with a Pgp inhibitor, either Pluronic P85 or Valspodar (Val). Studies investigated in vitro cytotoxicity of Dox when combined with either Pgp inhibitor, effect of the inhibitors on release of Dox from implants in PBS, in vivo Dox distribution and retention in a subcutaneous flank colorectal murine tumor, and therapeutic response characterized by tumor growth curves and histopathology. Dox + Val showed a 4-fold reduction in the 50% lethal dose (LD50) after 48 hours. Concurrent delivery of Dox and Val showed the greatest difference at 16 days post injection for both Dox penetration and retention. This treatment group had a 5-fold maximum Dox penetration compared to Dox alone ISFIs (0.53 ± 0.22 cm vs 0.11 ± 0.11 cm, respectively, from the center of the ISFI). Additionally, there was a 3-fold increase in normalized total intratumoral Dox intensity with the Dox + Val ISFIs compared to Dox alone ISFIs (0.54 ± 0.11 vs 0.18 ± 0.09, respectively). Dox + Val ISFIs showed a 2-fold reduction in tumor growth and a 27.69% increase in necrosis 20 days post-injection compared to Dox alone ISFIs. These findings demonstrate that co-delivery of Dox and Val via ISFI can avoid systemic toxicity issues seen with clinical Pgp inhibitors.
Collapse
|
183
|
Mi P, Cabral H, Kataoka K. Ligand-Installed Nanocarriers toward Precision Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902604. [PMID: 31353770 DOI: 10.1002/adma.201902604] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/04/2019] [Indexed: 05/20/2023]
Abstract
Development of drug-delivery systems that selectively target neoplastic cells has been a major goal of nanomedicine. One major strategy for achieving this milestone is to install ligands on the surface of nanocarriers to enhance delivery to target tissues, as well as to enhance internalization of nanocarriers by target cells, which improves accuracy, efficacy, and ultimately enhances patient outcomes. Herein, recent advances regarding the development of ligand-installed nanocarriers are introduced and the effect of their design on biological performance is discussed. Besides academic achievements, progress on ligand-installed nanocarriers in clinical trials is presented, along with the challenges faced by these formulations. Lastly, the future perspectives of ligand-installed nanocarriers are discussed, with particular emphasis on their potential for emerging precision therapies.
Collapse
Affiliation(s)
- Peng Mi
- Department of Radiology, Center for Medical Imaging, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17 People's South Road, Chengdu, 610041, China
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazunori Kataoka
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
- Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
184
|
Sylvestre M, Crane CA, Pun SH. Progress on Modulating Tumor-Associated Macrophages with Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902007. [PMID: 31559665 PMCID: PMC7098849 DOI: 10.1002/adma.201902007] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/25/2019] [Indexed: 05/14/2023]
Abstract
Tumor-associated macrophages (TAMs) are a complex and heterogeneous population of cells within the tumor microenvironment. In many tumor types, TAMs contribute toward tumor malignancy and are therefore a therapeutic target of interest. Here, three major strategies for regulating TAMs are highlighted, emphasizing the role of biomaterials in these approaches. First, systemic methods for targeting tumor-associated macrophage are summarized and limitations to both passive and active targeting approaches considered. Second, lessons learned from the significant literature on wound healing and macrophage response to implanted biomaterials are discussed with the vision of applying these principles to localized, biomaterial-based modulation of tumor-associated macrophage. Finally, the developing field of engineered macrophages, including genetic engineering and integration with biomaterials or drug delivery systems, is examined. Analysis of major challenges in the field along with exciting opportunities for the future of macrophage-based therapies in oncology are included.
Collapse
Affiliation(s)
- Meilyn Sylvestre
- Department of Bioengineering, University of Washington, 3720 15th Ave. NE, Seattle, WA, 98195, USA
| | - Courtney A Crane
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle Children's Research Institute, Ben Towne Center for Childhood Research, Seattle, WA, 98101, USA
| | - Suzie H Pun
- Department of Bioengineering, University of Washington, 3720 15th Ave. NE, Seattle, WA, 98195, USA
| |
Collapse
|
185
|
The expanding landscape of inflammatory cells affecting cancer therapy. Nat Biomed Eng 2020; 4:489-498. [PMID: 32203281 DOI: 10.1038/s41551-020-0524-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/04/2020] [Indexed: 12/12/2022]
Abstract
Tumour-infiltrating myeloid cells (TIMCs) are critical regulators of cancer growth. The different phenotypes, functions and therapeutic effects of these phagocytes have, however, been difficult to study. With the advent of single-cell-based technologies, a new 'worldview' is emerging: the classification of TIMCs into subtypes that are conserved across patients and across species. As the landscape of TIMCs is beginning to be understood, it opens up questions about the function of each TIMC subtype and its drugability. In this Perspective, we outline the current map of TIMC populations in cancer and their known and presumed functions, and discuss their therapeutic implications and the biological research questions that they give rise to. The answers should be particularly relevant for bioengineers, materials scientists and the chemical and pharmaceutical communities developing the next generation of cancer therapies.
Collapse
|
186
|
Gaspar N, Zambito G, Löwik CMWG, Mezzanotte L. Active Nano-targeting of Macrophages. Curr Pharm Des 2020; 25:1951-1961. [PMID: 31291874 DOI: 10.2174/1381612825666190710114108] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/25/2019] [Indexed: 01/01/2023]
Abstract
Macrophages play a role in almost every disease such as cancer, infections, injuries, metabolic and inflammatory diseases and are becoming an attractive therapeutic target. However, understanding macrophage diversity, tissue distribution and plasticity will help in defining precise targeting strategies and effective therapies. Active targeting of macrophages using nanoparticles for therapeutic purposes is still at its infancy but holds promises since macrophages have shown high specific uptake of nanoparticles. Here, we highlight recent progress in active nanotechnology-based systems gaining pivotal roles to target diverse macrophage subsets in diseased tissues.
Collapse
Affiliation(s)
- Natasa Gaspar
- Optical Molecular Imaging, Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Molecular Genetics, Erasmus Medical Center, Rotterdam, Netherlands.,Percuros B.V., Department of Developmental BioEngineering, University of Twente, Enschede, Netherlands
| | - Giorgia Zambito
- Optical Molecular Imaging, Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Molecular Genetics, Erasmus Medical Center, Rotterdam, Netherlands.,Medres-Medical Research gmbh, Cologne, Germany
| | - Clemens M W G Löwik
- Optical Molecular Imaging, Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Molecular Genetics, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Oncology, Lausanne University Hospital (CHUV), UNIL, Switzerland
| | - Laura Mezzanotte
- Optical Molecular Imaging, Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Molecular Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
187
|
Neutrophil-mediated transport is crucial for delivery of short-circulating magnetic nanoparticles to tumors. Acta Biomater 2020; 104:176-187. [PMID: 31945505 DOI: 10.1016/j.actbio.2020.01.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/20/2019] [Accepted: 01/09/2020] [Indexed: 12/31/2022]
Abstract
Recently neutrophil-based nanoparticles (NPs) drug delivery systems have gained considerable attention in cancer therapy. Numerous studies have been conducted to identify optimal NPs parameters for passive tumor targeting, while there is a fundamental dearth of knowledge about the factors governing cell-mediated delivery. Here, by using intravital microscopy and magnetic resonance imaging, we describe accumulation dynamics of 140 nm magnetic cubes and clusters in murine breast cancer (4T1) and colon cancer (CT26) models. Notwithstanding rapid clearance from the blood flow, NPs readily accumulated in tumors at later time points. Both NPs types were captured mostly by intravascular neutrophils immediately after injection, and transmigration of NPs-bound neutrophils through the vessel wall was first shown in real-time. A dramatic drop in NPs accumulation upon Ly6G and Gr1 depletion further confirmed the role of neutrophils as a biocarrier for targeting tumors. Of note, for shorter circulating NPs, a cell-dependent delivery route was more impactful, while the accumulation of longer circulating counterpart was less compromised by neutrophil depletion. Neutrophil-mediated transport was also shown to depend on tumor type, with more efficiency noted in neutrophil-rich tumors. Revealing NPs characteristics and host factors influencing the neutrophil-based tumor targeting will help to rationally design drug delivery systems for improved cancer treatment. STATEMENT OF SIGNIFICANCE: Utilizing host cells as trojan horses for delivery nanodrugs to tumor site is a promising approach for cancer therapy. However, it is not clear yet how nanoparticles characteristics and tumor properties affect the efficiency of cell-based nanoparticles transport. Here, we compare neutrophil-based delivery of different-shaped magnetic nanoparticles (cubes and clusters) in two tumor models. The results suggest that neutrophil-mediated route is more impactful for rapidly cleared cubes, than for longer circulating clusters. The efficiency of cell-based accumulation also correlated with the level of neutrophils recruitment to different tumor types. These finding are important for rationale design of nanocarriers and predicting the efficiency of neutrophil-mediated drug delivery between patients and tumor types.
Collapse
|
188
|
Tan T, Wang Y, Wang J, Wang Z, Wang H, Cao H, Li J, Li Y, Zhang Z, Wang S. Targeting peptide-decorated biomimetic lipoproteins improve deep penetration and cancer cells accessibility in solid tumor. Acta Pharm Sin B 2020; 10:529-545. [PMID: 32140397 PMCID: PMC7049576 DOI: 10.1016/j.apsb.2019.05.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 12/21/2022] Open
Abstract
The limited penetration of nanoparticles and their poor accessibility to cancer cell fractions in tumor remain essential challenges for effective anticancer therapy. Herein, we designed a targeting peptide-decorated biomimetic lipoprotein (termed as BL-RD) to enable their deep penetration and efficient accessibility to cancer cell fractions in a tumor, thereby improving the combinational chemo-photodynamic therapy of triple negative breast cancer. BL-RD was composed of phospholipids, apolipoprotein A1 mimetic peptide (PK22), targeting peptide-conjugated cytotoxic mertansine (RM) and photodynamic agents of DiIC18(5) (DiD). The counterpart biomimetic lipoprotein system without RM (termed as BL-D) was fabricated as control. Both BL-D and BL-RD were nanometer-sized particles with a mean diameter of less than 30 nm and could be efficiently internalized by cancer cells. After intravenous injection, they can be specifically accumulated at tumor sites. When comparing to the counterpart BL-D, BL-RD displayed superior capability to permeate across the tumor mass, extravasate from tumor vasculature to distant regions and efficiently access the cancer cell fractions in a solid tumor, thus producing noticeable depression of the tumor growth. Taken together, BL-RD can be a promising delivery nanoplatform with prominent tumor-penetrating and cancer cells-accessing capability for effective tumor therapy.
Collapse
Key Words
- 4T1-GFP, 4T1 cancer cells with stable expression of green fluorescence protein
- ApoA1, apolipoprotein A1
- BL-D, biomimetic lipoprotein system without targeting peptide
- BL-RD, targeting peptide decorated biomimetic lipoprotein system
- CAF, cancer-associated fibroblasts
- CLSM, confocal laser scanning microscopy
- Cancer therapy
- DAPI, 4′,6-diamidino-2-phenylindole
- DCFH-DA, 2′,7′-dichlorodihydrofluorescein diacetate
- DOPC, 1,2-dioleoyl-sn-glycero-3-phosphocholine
- DiD, DiIC18(5)
- Drug delivery
- EC, endothelial cells
- ECM, extracellular matrix
- EE, encapsulation efficiency
- FBS, fetal bovine serum
- GSH, glutathione
- H&E staining, hematoxylin-eosin staining
- HDL, high density lipoprotein
- HPLC, high performance liquid chromatography
- IC50, half-inhibitory concentration
- Lipo-D, liposome system without targeting peptide
- Lipo-RD, targeting peptide decorated biomimetic lipoprotein system
- Lipoprotein
- MCS, multicellular spheroids
- MTT, thiazolyl blue tetrazolium bromide
- Nanoparticles
- PBS, phosphate buffered solution
- PDT, photodynamic therapy
- RM, targeting peptide-conjugated cytotoxic mertansine
- ROS, reactive oxygen species
- SOSG, singlet oxygen sensor green
- TAM, tumor-associated macrophage
- TEM, transmission electronic microscope
- TGI, tumor growth index
- Tumor penetration
- α-SMA, α-smooth muscle actin
Collapse
Affiliation(s)
- Tao Tan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuqi Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jing Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhiwan Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hong Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Haiqiang Cao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jie Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
- Corresponding authors. Tel./fax: +86 21 20231979.
| | - Zhiwen Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
- Corresponding authors. Tel./fax: +86 21 20231979.
| | - Siling Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
- Corresponding authors. Tel./fax: +86 21 20231979.
| |
Collapse
|
189
|
Xu X, Gong X, Wang Y, Li J, Wang H, Wang J, Sha X, Li Y, Zhang Z. Reprogramming Tumor Associated Macrophages toward M1 Phenotypes with Nanomedicine for Anticancer Immunotherapy. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaoxuan Xu
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiang Gong
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yuqi Wang
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of Sciences Shanghai 201203 China
| | - Jie Li
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hong Wang
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiaoying Wang
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of Sciences Shanghai 201203 China
| | - Xianyi Sha
- School of PharmacyFudan University Shanghai 201203 China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of Sciences Shanghai 201203 China
- School of PharmacyYantai University Shandong 264000 China
| | - Zhiwen Zhang
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of Sciences Shanghai 201203 China
- Yantai Key Laboratory of Nanomedicine & Advanced PreparationsYantai Institute of Materia Medica Shandong 264000 China
| |
Collapse
|
190
|
Liu K, Liu K, Liu J, Ren Q, Zhao Z, Wu X, Li D, Yuan F, Ye K, Li B. Copper chalcogenide materials as photothermal agents for cancer treatment. NANOSCALE 2020; 12:2902-2913. [PMID: 31967164 DOI: 10.1039/c9nr08737k] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Copper-based chalcogenide nanomaterials have made tremendous progress for cancer theranostics due to their simple preparation, low cost, stable performance, and easy functionalization. But a systematic review and analysis about them does not exist. Therefore, we offer an account, mainly focusing on the design and functionalization of the copper-based chalcogenide nanomaterials for cancer theranostics, aiming to briefly demonstrate the design and concepts, summarize some of the past studies and analyze the development trends in the copper-based chalcogenide nanomaterials for clinical application.
Collapse
Affiliation(s)
- Kun Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Kai Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China. and Department of vascular surgery, Qingdao Municipal Hospital Affiliated to Qingdao University, Qindao 266000, Shandong, China
| | - Junchao Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Qilong Ren
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhen Zhao
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Xiaoyu Wu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Dalin Li
- Department of vascular surgery, Qingdao Municipal Hospital Affiliated to Qingdao University, Qindao 266000, Shandong, China
| | - Fukang Yuan
- Department of General Surgery of XuZhou Central Hospital, XuZhou 221009, Jiangsu, China. and XuZhou Clinical School of Xuzhou Medical University, XuZhou 221009, Jiangsu, China
| | - Kaichuang Ye
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Bo Li
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
191
|
McMahon NP, Solanki A, Jones J, Kwon S, Chang YH, Chin K, Nederlof MA, Gray JW, Gibbs SL. Fluorescent Imaging for In Situ Measurement of Drug Target Engagement and Cell Signaling Pathways. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2020; 11219:112190O. [PMID: 32296256 PMCID: PMC7158854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Successful cancer treatment continues to elude modern medicine and its arsenal of therapeutic strategies. Therapy resistance is driven by significant tumor heterogeneity, complex interactions between malignant, microenvironmental and immune cells and cross talk between signaling pathways. Advances in molecular characterization technologies such as next generation sequencing have helped unravel this network of interactions and identify druggable therapeutic targets. Tyrosine kinase inhibitors (TKI) are a class of drugs seeking to inhibit signaling pathways critical to sustaining proliferative signaling, resisting cell death, and the other hallmarks of cancer. While tumors may initially respond to TKI therapy, disease progression is near universal due to mechanisms of acquired resistance largely involving cellular signaling pathway reprogramming. With the ultimate goal of improved TKI therapeutic efficacy our group has developed intracellular paired agent imaging (iPAI) to quantify drug target interactions and oligonucleotide conjugated antibody (Ab-oligo) cyclic immunofluorescence (cycIF) imaging to characterize perturbed signaling pathways in response to therapy. iPAI uses spectrally distinct, fluorescently labeled targeted and untargeted drug derivatives, correcting for non-specific drug distribution and facilitating quantitative assessment of the drug binding before and after therapy. Ab-oligo cycIF exploits in situ hybridization of complementary oligonucleotides for biomarker labeling while oligonucleotide modifications facilitate signal removal for sequential rounds of fluorescent tagging and imaging. Ab-oligo CycIF is capable of generating extreme multi-parametric images for quantifying total and phosphorylated protein expression to quantify protein activation, expression, and spatial distribution. Together iPAI and Ab-oligo cycIF can be applied to interrogate drug uptake and target binding as well as changes to heterogenous cell populations within tumors that drive variable therapeutic responses in patients.
Collapse
Affiliation(s)
- Nathan P. McMahon
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97201
| | - Allison Solanki
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97201
| | - Jocelyn Jones
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97201
| | - Sunjong Kwon
- Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR 97201
| | - Young-Hwan Chang
- Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR 97201
- Computational Biology Program, Oregon Health and Science University, Portland, OR 97201
| | - Koei Chin
- Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR 97201
| | | | - Joe W. Gray
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97201
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201
- Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR 97201
| | - Summer L. Gibbs
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97201
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201
- Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR 97201
| |
Collapse
|
192
|
Ren Z, Sun S, Sun R, Cui G, Hong L, Rao B, Li A, Yu Z, Kan Q, Mao Z. A Metal-Polyphenol-Coordinated Nanomedicine for Synergistic Cascade Cancer Chemotherapy and Chemodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906024. [PMID: 31834662 DOI: 10.1002/adma.201906024] [Citation(s) in RCA: 273] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/12/2019] [Indexed: 05/11/2023]
Abstract
The clinical application of chemotherapy is impeded by the unsatisfactory efficacy and severe side effects. Chemodynamic therapy (CDT) has emerged as an efficient strategy for cancer treatment utilizing Fenton chemistry to destroy cancer cells by converting endogenous H2 O2 into highly toxic reactive oxygen species. Apart from the chemotherapeutic effect, cisplatin is able to act as an artificial enzyme to produce H2 O2 for CDT through cascade reactions, thus remarkably improving the anti-tumor outcomes. Herein, an organic theranostic nanomedicine (PTCG NPs) is constructed with high loading capability using epigallocatechin-3-gallate (EGCG), phenolic platinum(IV) prodrug (Pt-OH), and polyphenol modified block copolymer (PEG-b-PPOH) as the building blocks. The high stability of PTCG NPs during circulation stems from their strong metal-polyphenol coordination interactions, and efficient drug release is realized after cellular internalization. The activated cisplatin elevates the intracellular H2 O2 level through cascade reactions. This is further utilized to produce highly toxic reactive oxygen species catalyzed by an iron-based Fenton reaction. In vitro and in vivo investigations demonstrate that the combination of chemotherapy and chemodynamic therapy achieves excellent anticancer efficacy. Meanwhile, systemic toxicity faced by platinum-based drugs is avoided through this nanoformulation. This work provides a promising strategy to develop advanced nanomedicine for cascade cancer therapy.
Collapse
Affiliation(s)
- Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shichao Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Ranran Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Guangying Cui
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Liangjie Hong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Benchen Rao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ang Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zujiang Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Quancheng Kan
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
193
|
Abstract
Therapeutic targeting of the immune system in cancer is now a clinical reality and marked successes have been achieved, most notably through the use of checkpoint blockade antibodies and chimeric antigen receptor T cell therapy. However, efforts to develop new immunotherapy agents or combination treatments to increase the proportion of patients who benefit have met with challenges of limited efficacy and/or significant toxicity. Nanomedicines - therapeutics composed of or formulated in carrier materials typically smaller than 100 nm - were originally developed to increase the uptake of chemotherapy agents by tumours and to reduce their off-target toxicity. Here, we discuss how nanomedicine-based treatment strategies are well suited to immunotherapy on the basis of nanomaterials' ability to direct immunomodulators to tumours and lymphoid organs, to alter the way biologics engage with target immune cells and to accumulate in myeloid cells in tumours and systemic compartments. We also discuss early efforts towards clinical translation of nanomedicine-based immunotherapy.
Collapse
|
194
|
Darguzyte M, Drude N, Lammers T, Kiessling F. Riboflavin-Targeted Drug Delivery. Cancers (Basel) 2020; 12:cancers12020295. [PMID: 32012715 PMCID: PMC7072493 DOI: 10.3390/cancers12020295] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/14/2020] [Accepted: 01/25/2020] [Indexed: 12/30/2022] Open
Abstract
Active targeting can improve the retention of drugs and drug delivery systems in tumors, thereby enhancing their therapeutic efficacy. In this context, vitamin receptors that are overexpressed in many cancers are promising targets. In the last decade, attention and research were mainly centered on vitamin B9 (folate) targeting; however, the focus is slowly shifting towards vitamin B2 (riboflavin). Interestingly, while the riboflavin carrier protein was discovered in the 1960s, the three riboflavin transporters (RFVT 1-3) were only identified recently. It has been shown that riboflavin transporters and the riboflavin carrier protein are overexpressed in many tumor types, tumor stem cells, and the tumor neovasculature. Furthermore, a clinical study has demonstrated that tumor cells exhibit increased riboflavin metabolism as compared to normal cells. Moreover, riboflavin and its derivatives have been conjugated to ultrasmall iron oxide nanoparticles, polyethylene glycol polymers, dendrimers, and liposomes. These conjugates have shown a high affinity towards tumors in preclinical studies. This review article summarizes knowledge on RFVT expression in healthy and pathological tissues, discusses riboflavin internalization pathways, and provides an overview of RF-targeted diagnostics and therapeutics.
Collapse
Affiliation(s)
- Milita Darguzyte
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany; (M.D.); (N.D.); (T.L.)
| | - Natascha Drude
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany; (M.D.); (N.D.); (T.L.)
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany; (M.D.); (N.D.); (T.L.)
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany; (M.D.); (N.D.); (T.L.)
- Fraunhofer MEVIS, Institute for Medical Image Computing, Forckenbeckstrasse 55, 52074 Aachen, Germany
- Correspondence:
| |
Collapse
|
195
|
Koch PD, Rodell CB, Kohler RH, Pittet MJ, Weissleder R. Myeloid Cell-Targeted Nanocarriers Efficiently Inhibit Cellular Inhibitor of Apoptosis for Cancer Immunotherapy. Cell Chem Biol 2020; 27:94-104.e5. [PMID: 31902676 DOI: 10.1016/j.chembiol.2019.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/02/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023]
Abstract
Immune-checkpoint blockers can promote sustained clinical responses in a subset of cancer patients. Recent research has shown that a subpopulation of tumor-infiltrating dendritic cells functions as gatekeepers, sensitizing tumors to anti-PD-1 treatment via production of interleukin-12 (IL-12). Hypothesizing that myeloid cell-targeted nanomaterials could be used to deliver small-molecule IL-12 inducers, we performed high-content image-based screening to identify the most efficacious small-molecule compounds. Using one lead candidate, LCL161, we created a myeloid-targeted nanoformulation that induced IL-12 production in intratumoral myeloid cells in vivo, slowed tumor growth as a monotherapy, and had no significant systemic toxicity. These results pave the way for developing combination immunotherapeutics by harnessing IL-12 production for immunostimulation.
Collapse
Affiliation(s)
- Peter D Koch
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
| | - Christopher B Rodell
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
| | - Rainer H Kohler
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
| | - Mikael J Pittet
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
196
|
Li H, Luo Q, Zhu H, Li Z, Wang X, Roberts N, Zhang H, Gong Q, Gu Z, Luo K. An advanced micelle-based biodegradable HPMA polymer-gadolinium contrast agent for MR imaging of murine vasculatures and tumors. Polym Chem 2020. [DOI: 10.1039/d0py01133a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A biodegradable HPMA polymeric micelle-based MR contrast agent containing gadolinium (Gd3+) for imaging murine vascular structures and tumors.
Collapse
|
197
|
Gabizon AA, de Rosales RT, La-Beck NM. Translational considerations in nanomedicine: The oncology perspective. Adv Drug Deliv Rev 2020; 158:140-157. [PMID: 32526450 DOI: 10.1016/j.addr.2020.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 12/13/2022]
Abstract
Nanoparticles can provide effective control of the release rate and tissue distribution of their drug payload, leading to major pharmacokinetic and pharmacodynamic changes vis-à-vis the conventional administration of free drugs. In the last two decades, we have witnessed major progress in the synthesis and characterization of engineered nanoparticles for imaging and treatment of cancers, resulting in the approval for clinical use of several products and in new and promising approaches. Despite these advances, clinical applications of nanoparticle-based therapeutic and imaging agents remain limited due to biological, immunological, and translational barriers. There is a need to make high impact advances toward translation. In this review, we address biological, toxicological, immunological, and translational aspects of nanomedicine and discuss approaches to move the field forward productively. Overcoming these barriers may dramatically improve the development potential and role of nanomedicines in the oncology field and help meet the high expectations.
Collapse
|
198
|
Norouzi M, Amerian M, Amerian M, Atyabi F. Clinical applications of nanomedicine in cancer therapy. Drug Discov Today 2020; 25:107-125. [DOI: 10.1016/j.drudis.2019.09.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/03/2019] [Accepted: 09/24/2019] [Indexed: 12/23/2022]
|
199
|
Ng TS, Garlin MA, Weissleder R, Miller MA. Improving nanotherapy delivery and action through image-guided systems pharmacology. Theranostics 2020; 10:968-997. [PMID: 31938046 PMCID: PMC6956809 DOI: 10.7150/thno.37215] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/04/2019] [Indexed: 12/12/2022] Open
Abstract
Despite recent advances in the translation of therapeutic nanoparticles (TNPs) into the clinic, the field continues to face challenges in predictably and selectively delivering nanomaterials for the treatment of solid cancers. The concept of enhanced permeability and retention (EPR) has been coined as a convenient but simplistic descriptor of high TNP accumulation in some tumors. However, in practice EPR represents a number of physiological variables rather than a single one (including dysfunctional vasculature, compromised lymphatics and recruited host cells, among other aspects of the tumor microenvironment) — each of which can be highly heterogenous within a given tumor, patient and across patients. Therefore, a clear need exists to dissect the specific biophysical factors underlying the EPR effect, to formulate better TNP designs, and to identify patients with high-EPR tumors who are likely to respond to TNP. The overall pharmacology of TNP is governed by an interconnected set of spatially defined and dynamic processes that benefit from a systems-level quantitative approach, and insights into the physiology have profited from the marriage between in vivo imaging and quantitative systems pharmacology (QSP) methodologies. In this article, we review recent developments pertinent to image-guided systems pharmacology of nanomedicines in oncology. We first discuss recent developments of quantitative imaging technologies that enable analysis of nanomaterial pharmacology at multiple spatiotemporal scales, and then examine reports that have adopted these imaging technologies to guide QSP approaches. In particular, we focus on studies that have integrated multi-scale imaging with computational modeling to derive insights about the EPR effect, as well as studies that have used modeling to guide the manipulation of the EPR effect and other aspects of the tumor microenvironment for improving TNP action. We anticipate that the synergistic combination of imaging with systems-level computational methods for effective clinical translation of TNPs will only grow in relevance as technologies increase in resolution, multiplexing capability, and in the ability to examine heterogeneous behaviors at the single-cell level.
Collapse
|
200
|
Zhao M, van Straten D, Broekman ML, Préat V, Schiffelers RM. Nanocarrier-based drug combination therapy for glioblastoma. Theranostics 2020; 10:1355-1372. [PMID: 31938069 PMCID: PMC6956816 DOI: 10.7150/thno.38147] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/04/2019] [Indexed: 12/19/2022] Open
Abstract
The current achievements in treating glioblastoma (GBM) patients are not sufficient because many challenges exist, such as tumor heterogeneity, the blood brain barrier, glioma stem cells, drug efflux pumps and DNA damage repair mechanisms. Drug combination therapies have shown increasing benefits against those challenges. With the help of nanocarriers, enhancement of the efficacy and safety could be gained using synergistic combinations of different therapeutic agents. In this review, we will discuss the major issues for GBM treatment, the rationales of drug combinations with or without nanocarriers and the principle of enhanced permeability and retention effect involved in nanomedicine-based tumor targeting and promising nanodiagnostics or -therapeutics. We will also summarize the recent progress and discuss the clinical perspectives of nanocarrier-based combination therapies. The goal of this article was to provide better understanding and key considerations to develop new nanomedicine combinations and nanotheranostics options to fight against GBM.
Collapse
Affiliation(s)
- Mengnan Zhao
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73, B1 73.12, 1200 Brussels, Belgium
| | - Demian van Straten
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Marike L.D. Broekman
- Department of Neurosurgery, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Véronique Préat
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73, B1 73.12, 1200 Brussels, Belgium
| | - Raymond M. Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| |
Collapse
|