151
|
van der Made CI, Hoischen A, Netea MG, van de Veerdonk FL. Primary immunodeficiencies in cytosolic pattern-recognition receptor pathways: Toward host-directed treatment strategies. Immunol Rev 2020; 297:247-272. [PMID: 32640080 DOI: 10.1111/imr.12898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022]
Abstract
In the last decade, the paradigm of primary immunodeficiencies (PIDs) as rare recessive familial diseases that lead to broad, severe, and early-onset immunological defects has shifted toward collectively more common, but sporadic autosomal dominantly inherited isolated defects in the immune response. Patients with PIDs constitute a formidable area of research to study the genetics and the molecular mechanisms of complex immunological pathways. A significant subset of PIDs affect the innate immune response, which is a crucial initial host defense mechanism equipped with pattern-recognition receptors. These receptors recognize pathogen- and damage-associated molecular patterns in both the extracellular and intracellular space. In this review, we will focus on primary immunodeficiencies caused by genetic defects in cytosolic pattern-recognition receptor pathways. We discuss these PIDs organized according to their mutational mechanisms and consequences for the innate host response. The advanced understanding of these pathways obtained by the study of PIDs creates the opportunity for the development of new host-directed treatment strategies.
Collapse
Affiliation(s)
- Caspar I van der Made
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud Institute of Molecular Life Sciences (RIMLS), Radboud Institute of Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander Hoischen
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud Institute of Molecular Life Sciences (RIMLS), Radboud Institute of Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud Institute of Molecular Life Sciences (RIMLS), Radboud Institute of Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.,Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud Institute of Molecular Life Sciences (RIMLS), Radboud Institute of Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
152
|
Wanrooij PH, Tran P, Thompson LJ, Carvalho G, Sharma S, Kreisel K, Navarrete C, Feldberg AL, Watt DL, Nilsson AK, Engqvist MKM, Clausen AR, Chabes A. Elimination of rNMPs from mitochondrial DNA has no effect on its stability. Proc Natl Acad Sci U S A 2020; 117:14306-14313. [PMID: 32513727 PMCID: PMC7322039 DOI: 10.1073/pnas.1916851117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ribonucleotides (rNMPs) incorporated in the nuclear genome are a well-established threat to genome stability and can result in DNA strand breaks when not removed in a timely manner. However, the presence of a certain level of rNMPs is tolerated in mitochondrial DNA (mtDNA) although aberrant mtDNA rNMP content has been identified in disease models. We investigated the effect of incorporated rNMPs on mtDNA stability over the mouse life span and found that the mtDNA rNMP content increased during early life. The rNMP content of mtDNA varied greatly across different tissues and was defined by the rNTP/dNTP ratio of the tissue. Accordingly, mtDNA rNMPs were nearly absent in SAMHD1-/- mice that have increased dNTP pools. The near absence of rNMPs did not, however, appreciably affect mtDNA copy number or the levels of mtDNA molecules with deletions or strand breaks in aged animals near the end of their life span. The physiological rNMP load therefore does not contribute to the progressive loss of mtDNA quality that occurs as mice age.
Collapse
Affiliation(s)
- Paulina H Wanrooij
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden;
| | - Phong Tran
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Liam J Thompson
- Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Gustavo Carvalho
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Katrin Kreisel
- Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Clara Navarrete
- Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Anna-Lena Feldberg
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Danielle L Watt
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Anna Karin Nilsson
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Martin K M Engqvist
- Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Anders R Clausen
- Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden;
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
153
|
Morris ER, Caswell SJ, Kunzelmann S, Arnold LH, Purkiss AG, Kelly G, Taylor IA. Crystal structures of SAMHD1 inhibitor complexes reveal the mechanism of water-mediated dNTP hydrolysis. Nat Commun 2020; 11:3165. [PMID: 32576829 PMCID: PMC7311409 DOI: 10.1038/s41467-020-16983-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/03/2020] [Indexed: 12/29/2022] Open
Abstract
SAMHD1 regulates cellular 2'-deoxynucleoside-5'-triphosphate (dNTP) homeostasis by catalysing the hydrolysis of dNTPs into 2'-deoxynucleosides and triphosphate. In CD4+ myeloid lineage and resting T-cells, SAMHD1 blocks HIV-1 and other viral infections by depletion of the dNTP pool to a level that cannot support replication. SAMHD1 mutations are associated with the autoimmune disease Aicardi-Goutières syndrome and hypermutated cancers. Furthermore, SAMHD1 sensitises cancer cells to nucleoside-analogue anti-cancer therapies and is linked with DNA repair and suppression of the interferon response to cytosolic nucleic acids. Nevertheless, despite its requirement in these processes, the fundamental mechanism of SAMHD1-catalysed dNTP hydrolysis remained unknown. Here, we present structural and enzymological data showing that SAMHD1 utilises an active site, bi-metallic iron-magnesium centre that positions a hydroxide nucleophile in-line with the Pα-O5' bond to catalyse phosphoester bond hydrolysis. This precise molecular mechanism for SAMHD1 catalysis, reveals how SAMHD1 down-regulates cellular dNTP and modulates the efficacy of nucleoside-based anti-cancer and anti-viral therapies.
Collapse
Affiliation(s)
- Elizabeth R Morris
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Sarah J Caswell
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,AstraZeneca, 50F49, Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Laurence H Arnold
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Pelago Bioscience, Banvaktsvägen 20, 171 48, Solna, Sweden
| | - Andrew G Purkiss
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Geoff Kelly
- The Medical Research Council Biomedical NMR Centre, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
154
|
Melki I, Frémond ML. Type I Interferonopathies: from a Novel Concept to Targeted Therapeutics. Curr Rheumatol Rep 2020; 22:32. [DOI: 10.1007/s11926-020-00909-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
155
|
Simpson SR, Hemphill WO, Hudson T, Perrino FW. TREX1 - Apex predator of cytosolic DNA metabolism. DNA Repair (Amst) 2020; 94:102894. [PMID: 32615442 DOI: 10.1016/j.dnarep.2020.102894] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022]
Abstract
The cytosolic Three prime Repair EXonuclease 1 (TREX1) is a powerful DNA-degrading enzyme required for clearing cytosolic DNA to prevent aberrant inflammation and autoimmunity. In the absence of TREX1 activity, cytosolic DNA pattern recognition receptors of the innate immune system are constitutively activated by undegraded TREX1 substrates. This triggers a chronic inflammatory response in humans expressing mutant TREX1 alleles, eliciting a spectrum of rare autoimmune diseases dependent on the nature of the mutation. The precise origins of cytosolic DNA targeted by TREX1 continue to emerge, but DNA emerging from the nucleus or taken up by the cell could represent potential sources. In this Review, we explore the biochemical and immunological data supporting the role of TREX1 in suppressing cytosolic DNA sensing, and discuss the possibility that TREX1 may contribute to maintenance of genome integrity.
Collapse
Affiliation(s)
- Sean R Simpson
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Wayne O Hemphill
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Teesha Hudson
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Fred W Perrino
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States.
| |
Collapse
|
156
|
Adang LA, Gavazzi F, Jawad AF, Cusack SV, Kopin K, Peer K, Besnier C, De Simone M, De Giorgis V, Orcesi S, Fazzi E, Galli J, Shults J, Vanderver A. Development of a neurologic severity scale for Aicardi Goutières Syndrome. Mol Genet Metab 2020; 130:153-160. [PMID: 32279991 PMCID: PMC7366613 DOI: 10.1016/j.ymgme.2020.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND PURPOSE Aicardi Goutières Syndrome (AGS) is a severe, autoinflammatory leukodystrophy characterized by global neurologic dysfunction. Our goal was to create an easy-to-apply scale relevant to the unique developmental challenges associated with AGS. METHODS All individuals were recruited through our natural history study. Individuals were classified by AGS severity as mild, moderate, or severe, and clinical encounters were assigned a composite score for neurologic function calculated from the sum of three functional classification scales. Through expert consensus, we identified 11 key items to reflect the severity of AGS across gross motor, fine motor, and cognitive skills to create the AGS Scale. There was strong interrater reliability. The AGS scale was applied across available medical records to evaluate neurologic function over time. The AGS scale was compared to performance on a standard measure of gross motor function (Gross Motor Function Measure-88, GMFM-88) and a putative diagnostic biomarker of disease, the interferon signaling gene expression score (ISG). RESULTS The AGS scale score correlated with severity classifications and the composite neurologic function scores. When retrospectively applied across our natural history study, the majority of individuals demonstrated an initial decline in function followed by stable scores. Within the first 6 months of disease, the AGS score was the most dynamic. The AGS scale correlated with performance by the GMFM-88, but did not correlate with ISG levels. CONCLUSIONS This study demonstrates the utility of the AGS scale as a multimodal tool for the assessment of neurologic function in AGS. The AGS scale correlates with clinical severity and with a more labor-intensive tool, GMFM-88. This study underscores the limitations of the ISG score as a marker of disease severity. With the AGS scale, we found that AGS neurologic severity is the most dynamic early in disease. This novel AGS scale is a promising tool to longitudinally follow neurologic function in this unique population.
Collapse
Affiliation(s)
- Laura A Adang
- Division of Neurology, Children's Hospital of Philadelphia, United States.
| | - Francesco Gavazzi
- Division of Neurology, Children's Hospital of Philadelphia, United States
| | - Abbas F Jawad
- Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at University of Pennsylvania, United States
| | - Stacy V Cusack
- Division of Occupational Therapy, Children's Hospital of Philadelphia, United States
| | - Kimberly Kopin
- Division of Physical Therapy, Children's Hospital of Philadelphia, United States
| | - Kyle Peer
- Division of Neurology, Children's Hospital of Philadelphia, United States
| | - Constance Besnier
- Division of Neurology, Children's Hospital of Philadelphia, United States
| | - Micaela De Simone
- Child Neurology and Psychiatry Unit, ASST Spedali Civili of Brescia, Italy
| | - Valentina De Giorgis
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy
| | - Simona Orcesi
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy
| | - Elisa Fazzi
- Child Neurology and Psychiatry Unit, ASST Spedali Civili of Brescia, Italy
| | - Jessica Galli
- Child Neurology and Psychiatry Unit, ASST Spedali Civili of Brescia, Italy
| | - Justine Shults
- Department of Biostatistics, Perelman School of Medicine at University of Pennsylvania, United States
| | - Adeline Vanderver
- Division of Neurology, Children's Hospital of Philadelphia, United States
| |
Collapse
|
157
|
Queiroz MAF, Amoras EDSG, Moura TCF, da Costa CA, de Sousa MS, Lima SS, Ishak R, Vallinoto ACR. The SAMHD1 rs6029941 (A/G) Polymorphism Seems to Influence the HTLV-1 Proviral Load and IFN-Alpha Levels. Front Cell Infect Microbiol 2020; 10:246. [PMID: 32656092 PMCID: PMC7326033 DOI: 10.3389/fcimb.2020.00246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/29/2020] [Indexed: 01/19/2023] Open
Abstract
SAMHD1, a host dNTPase, acts as a retroviral restriction factor by degrading the pool of nucleotides available for the initial reverse transcription of retroviruses, including HTLV-1. Polymorphisms in the SAMDH1 gene may alter the enzymatic expression and influence the course of infection by the virus. The present study investigated the effect of polymorphisms on HTLV-1 infection susceptibility and on progression to disease in 108 individuals infected by HTLV-1 (47 symptomatic and 61 asymptomatic) and 100 individuals in a control group. SAMHD1 rs6029941 (G/A) genotyping and HTLV-1 proviral load measurements were performed using real-time PCR and plasma IFN-α was measured by ELISA. Polymorphism frequency was not associated with HTLV-1 infection susceptibility or with the presence of symptoms. The proviral load was significantly higher in symptomatic individuals with the G allele (p = 0.0143), which presented lower levels of IFN-α (p = 0.0383). SAMHD1 polymorphism is associated with increased proviral load and reduced levels of IFN-α in symptomatic patients, and may be a factor that contributes to the appearance of disease symptoms.
Collapse
Affiliation(s)
| | | | | | - Carlos Araújo da Costa
- Laboratory of Cellular and Molecular Biology, Tropical Medicine Center, Federal University of Pará, Belém, Brazil
| | - Maisa Silva de Sousa
- Laboratory of Cellular and Molecular Biology, Tropical Medicine Center, Federal University of Pará, Belém, Brazil
| | - Sandra Souza Lima
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Ricardo Ishak
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | |
Collapse
|
158
|
Li J, Gao C, Huang S, Jin L, Jin C. SAMHD1 expression is associated with low immune activation but not correlated with HIV‑1 DNA levels in CD4+ T cells of patients with HIV‑1. Mol Med Rep 2020; 22:879-885. [PMID: 32468062 PMCID: PMC7339818 DOI: 10.3892/mmr.2020.11153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/07/2020] [Indexed: 12/30/2022] Open
Abstract
Sterile α motif and histidine/aspartic acid domain‑containing protein 1 (SAMHD1) can inhibit reverse transcription of human immunodeficiency virus‑1 (HIV‑1) by hydrolyzing intracellular deoxy‑ribonucleoside triphosphate. However, its role in HIV‑1 disease progression has not been extensively studied. To study the impacts of SAMHD1 on HIV‑1 disease progression, especially on DNA levels, we investigated SAMHD1 levels in the peripheral blood of HIV‑1 elite controllers (ECs), antiretroviral therapy (ART) naive viremic progressors (VPs) and patients with HIV‑1 receiving ART (HIV‑ARTs) compared with healthy controls. In addition, the present study analyzed the relationship between SAMHD1 and interferon‑α, immune activation and HIV‑1 DNA levels. The results of the present study demonstrated elevated SAMHD1 expression in the peripheral blood mononuclear cells of all patients withHIV‑1, but higher SAMHD1 expression in the CD4+ T cells of only ECs compared with healthy controls. Immune activation was increased in the VPs and decreased in the ECs compared with healthy controls. Substantially lower HIV‑1 DNA levels were identified in ECs compared with those in VPs and HIV‑ARTs. SAMHD1 expression was associated with low levels of immune activation. No significant correlation was observed between SAMHD1 and HIV‑1 DNA levels. Overall, the findings of the present study indicated that SAMHD1 was highly expressed in ECs, which may be associated with low immune activation levels, but was not directly related to HIV‑1 DNA levels.
Collapse
Affiliation(s)
- Jie Li
- Department of Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Chuanhua Gao
- Laboratory of Biochemistry and Biomaterials, Department of Materials, College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang 324000, P.R. China
| | - Shanshan Huang
- Department of Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Longteng Jin
- Department of Childhood Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Changzhong Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
159
|
Ray S, Chee L, Matson DR, Palermo NY, Bresnick EH, Hewitt KJ. Sterile α-motif domain requirement for cellular signaling and survival. J Biol Chem 2020; 295:7113-7125. [PMID: 32241909 PMCID: PMC7242717 DOI: 10.1074/jbc.ra119.011895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/01/2020] [Indexed: 01/21/2023] Open
Abstract
Hundreds of sterile α-motif (SAM) domains have predicted structural similarities and are reported to bind proteins, lipids, or RNAs. However, the majority of these domains have not been analyzed functionally. Previously, we demonstrated that a SAM domain-containing protein, SAMD14, promotes SCF/proto-oncogene c-Kit (c-Kit) signaling, erythroid progenitor function, and erythrocyte regeneration. Deletion of a Samd14 enhancer (Samd14-Enh), occupied by GATA2 and SCL/TAL1 transcription factors, reduces SAMD14 expression in bone marrow and spleen and is lethal in a hemolytic anemia mouse model. To rigorously establish whether Samd14-Enh deletion reduces anemia-dependent c-Kit signaling by lowering SAMD14 levels, we developed a genetic rescue assay in murine Samd14-Enh-/- primary erythroid precursor cells. SAMD14 expression at endogenous levels rescued c-Kit signaling. The conserved SAM domain was required for SAMD14 to increase colony-forming activity, c-Kit signaling, and progenitor survival. To elucidate the molecular determinants of SAM domain function in SAMD14, we substituted its SAM domain with distinct SAM domains predicted to be structurally similar. The chimeras were less effective than SAMD14 itself in rescuing signaling, survival, and colony-forming activities. Thus, the SAMD14 SAM domain has attributes that are distinct from other SAM domains and underlie SAMD14 function as a regulator of cellular signaling and erythrocyte regeneration.
Collapse
Affiliation(s)
- Suhita Ray
- Department of Genetics, Cell Biology and Anatomy, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Linda Chee
- Department of Genetics, Cell Biology and Anatomy, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Daniel R Matson
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705
| | - Nick Y Palermo
- Holland Computing Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| | - Emery H Bresnick
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705
| | - Kyle J Hewitt
- Department of Genetics, Cell Biology and Anatomy, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| |
Collapse
|
160
|
Davenne T, Klintman J, Sharma S, Rigby RE, Blest HTW, Cursi C, Bridgeman A, Dadonaite B, De Keersmaecker K, Hillmen P, Chabes A, Schuh A, Rehwinkel J. SAMHD1 Limits the Efficacy of Forodesine in Leukemia by Protecting Cells against the Cytotoxicity of dGTP. Cell Rep 2020; 31:107640. [PMID: 32402273 PMCID: PMC7225753 DOI: 10.1016/j.celrep.2020.107640] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 03/12/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
The anti-leukemia agent forodesine causes cytotoxic overload of intracellular deoxyguanosine triphosphate (dGTP) but is efficacious only in a subset of patients. We report that SAMHD1, a phosphohydrolase degrading deoxyribonucleoside triphosphate (dNTP), protects cells against the effects of dNTP imbalances. SAMHD1-deficient cells induce intrinsic apoptosis upon provision of deoxyribonucleosides, particularly deoxyguanosine (dG). Moreover, dG and forodesine act synergistically to kill cells lacking SAMHD1. Using mass cytometry, we find that these compounds kill SAMHD1-deficient malignant cells in patients with chronic lymphocytic leukemia (CLL). Normal cells and CLL cells from patients without SAMHD1 mutation are unaffected. We therefore propose to use forodesine as a precision medicine for leukemia, stratifying patients by SAMHD1 genotype or expression.
Collapse
Affiliation(s)
- Tamara Davenne
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Jenny Klintman
- Molecular Diagnostic Centre, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden
| | - Rachel E Rigby
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Henry T W Blest
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Chiara Cursi
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Anne Bridgeman
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Bernadeta Dadonaite
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Kim De Keersmaecker
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Peter Hillmen
- St James' Institute of Oncology, St James' University Hospital, Leeds LS9 7TF, UK
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden
| | - Anna Schuh
- Molecular Diagnostic Centre, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; Department of Oncology, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK; Department of Haematology, Oxford University Hospitals NHS Trust, Oxford OX3 7JL, UK
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
161
|
Weber T, Schlotawa L, Dosch R, Hamilton N, Kaiser J, Schiller S, Wenske B, Gärtner J, Henneke M. Zebrafish disease model of human RNASET2-deficient cystic leukoencephalopathy displays abnormalities in early microglia. Biol Open 2020; 9:bio049239. [PMID: 32295832 PMCID: PMC7225086 DOI: 10.1242/bio.049239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/02/2020] [Indexed: 12/14/2022] Open
Abstract
Human infantile-onset RNASET2-deficient cystic leukoencephalopathy is a Mendelian mimic of in utero cytomegalovirus brain infection with prenatally developing inflammatory brain lesions. We used an RNASET2-deficient zebrafish model to elucidate the underlying disease mechanisms. Mutant and wild-type zebrafish larvae brain development between 2 and 5 days post fertilization (dpf) was examined by confocal live imaging in fluorescent reporter lines of the major types of brain cells. In contrast to wild-type brains, RNASET2-deficient larvae displayed increased numbers of microglia with altered morphology, often containing inclusions of neurons. Furthermore, lysosomes within distinct populations of the myeloid cell lineage including microglia showed increased lysosomal staining. Neurons and oligodendrocyte precursor cells remained unaffected. This study provides a first look into the prenatal onset pathomechanisms of human RNASET2-deficient leukoencephalopathy, linking this inborn lysosomal disease to the innate immune system and other immune-related childhood encephalopathies like Aicardi-Goutières syndrome (AGS).
Collapse
Affiliation(s)
- Thomas Weber
- Department of Pediatrics and Adolescent Medicine, University Medical Center Goettingen, Robert- Koch- Str. 40, 37075 Goettingen, Germany
| | - Lars Schlotawa
- Department of Pediatrics and Adolescent Medicine, University Medical Center Goettingen, Robert- Koch- Str. 40, 37075 Goettingen, Germany
| | - Roland Dosch
- Department of Human Genetics, University Medical Center Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany
| | - Noémie Hamilton
- The Bateson Centre, University of Sheffield, Firth Court D31, Sheffield S10 2PT, United Kingdom
| | - Jens Kaiser
- Department of Pediatrics and Adolescent Medicine, University Medical Center Goettingen, Robert- Koch- Str. 40, 37075 Goettingen, Germany
| | - Stina Schiller
- Department of Pediatrics and Adolescent Medicine, University Medical Center Goettingen, Robert- Koch- Str. 40, 37075 Goettingen, Germany
| | - Britta Wenske
- Department of Haematology and Oncology, University Medical Center Goettingen, Robert- Koch- Str. 40, 37075 Goettingen, Germany
| | - Jutta Gärtner
- Department of Pediatrics and Adolescent Medicine, University Medical Center Goettingen, Robert- Koch- Str. 40, 37075 Goettingen, Germany
| | - Marco Henneke
- Department of Pediatrics and Adolescent Medicine, University Medical Center Goettingen, Robert- Koch- Str. 40, 37075 Goettingen, Germany
| |
Collapse
|
162
|
Valverde-Estrella L, López-Serrat M, Sánchez-Sànchez G, Vico T, Lloberas J, Celada A. Induction of Samhd1 by interferon gamma and lipopolysaccharide in murine macrophages requires IRF1. Eur J Immunol 2020; 50:1321-1334. [PMID: 32270872 DOI: 10.1002/eji.201948491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/02/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
Abstract
SAMHD1 is an enzyme with phosphohydrolase activity. Mutations in SAMHD1 have been linked to the development of Aicardi-Goutières syndrome in humans. This enzyme also has the capacity to restrict HIV virus replication in macrophages. Here, we report that Samhd1 is highly expressed in murine macrophages and is regulated by proinflammatory (IFN-γ and LPS) but not by anti-inflammatory (IL-4 or IL-10) activators. The induction of Samhd1 follows the pattern of an intermediate gene that requires protein synthesis. In transient transfection experiments using the Samhd1 promoter, we found that a fragment of 27 bps of this gene, falling between -937 and -910 bps relative to the transcription start site, is required for IFN-γ-dependent activation. Using EMSAs, we determined that IFN-γ treatment led to the elimination of a protein complex. Chromatin immunoprecipitation assays and siRNA experiments revealed that IRF1 is required for IFN-γ- or LPS-induced Samhd1 expression. Therefore, our results indicate that Samhd1 is stimulated by proinflammatory agents IFN-γ and LPS. Moreover, they reveal that these two agents, via IRF1, eliminate a protein complex that may be related to a repressor, thereby, triggering Samhd1 expression.
Collapse
Affiliation(s)
- Lorena Valverde-Estrella
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Martí López-Serrat
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Guillem Sánchez-Sànchez
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Tania Vico
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Jorge Lloberas
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Antonio Celada
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
163
|
SAMHD1 Functions and Human Diseases. Viruses 2020; 12:v12040382. [PMID: 32244340 PMCID: PMC7232136 DOI: 10.3390/v12040382] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/12/2022] Open
Abstract
Deoxynucleoside triphosphate (dNTP) molecules are essential for the replication and maintenance of genomic information in both cells and a variety of viral pathogens. While the process of dNTP biosynthesis by cellular enzymes, such as ribonucleotide reductase (RNR) and thymidine kinase (TK), has been extensively investigated, a negative regulatory mechanism of dNTP pools was recently found to involve sterile alpha motif (SAM) domain and histidine-aspartate (HD) domain-containing protein 1, SAMHD1. When active, dNTP triphosphohydrolase activity of SAMHD1 degrades dNTPs into their 2'-deoxynucleoside (dN) and triphosphate subparts, steadily depleting intercellular dNTP pools. The differential expression levels and activation states of SAMHD1 in various cell types contributes to unique dNTP pools that either aid (i.e., dividing T cells) or restrict (i.e., nondividing macrophages) viral replication that consumes cellular dNTPs. Genetic mutations in SAMHD1 induce a rare inflammatory encephalopathy called Aicardi-Goutières syndrome (AGS), which phenotypically resembles viral infection. Recent publications have identified diverse roles for SAMHD1 in double-stranded break repair, genome stability, and the replication stress response through interferon signaling. Finally, a series of SAMHD1 mutations were also reported in various cancer cell types while why SAMHD1 is mutated in these cancer cells remains to investigated. Here, we reviewed a series of studies that have begun illuminating the highly diverse roles of SAMHD1 in virology, immunology, and cancer biology.
Collapse
|
164
|
Riley JS, Tait SW. Mitochondrial DNA in inflammation and immunity. EMBO Rep 2020; 21:e49799. [PMID: 32202065 PMCID: PMC7132203 DOI: 10.15252/embr.201949799] [Citation(s) in RCA: 489] [Impact Index Per Article: 97.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/31/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are cellular organelles that orchestrate a vast range of biological processes, from energy production and metabolism to cell death and inflammation. Despite this seemingly symbiotic relationship, mitochondria harbour within them a potent agonist of innate immunity: their own genome. Release of mitochondrial DNA into the cytoplasm and out into the extracellular milieu activates a plethora of different pattern recognition receptors and innate immune responses, including cGAS‐STING, TLR9 and inflammasome formation leading to, among others, robust type I interferon responses. In this Review, we discuss how mtDNA can be released from the mitochondria, the various inflammatory pathways triggered by mtDNA release and its myriad biological consequences for health and disease.
Collapse
Affiliation(s)
- Joel S Riley
- Cancer Research UK Beatson Institute, Glasgow, UK.,Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Stephen Wg Tait
- Cancer Research UK Beatson Institute, Glasgow, UK.,Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
165
|
Pharmacological Modulation of SAMHD1 Activity by CDK4/6 Inhibitors Improves Anticancer Therapy. Cancers (Basel) 2020; 12:cancers12030713. [PMID: 32197329 PMCID: PMC7140116 DOI: 10.3390/cancers12030713] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/09/2020] [Accepted: 03/16/2020] [Indexed: 01/16/2023] Open
Abstract
Sterile alpha motif and histidine-aspartic acid domain-containing protein 1 (SAMHD1) is a dNTP triphosphohydrolase involved in the regulation of the intracellular dNTP pool, linked to viral restriction, cancer development and autoimmune disorders. SAMHD1 function is regulated by phosphorylation through a mechanism controlled by cyclin-dependent kinases and tightly linked to cell cycle progression. Recently, SAMHD1 has been shown to decrease the efficacy of nucleotide analogs used as chemotherapeutic drugs. Here, we demonstrate that SAMHD1 can enhance or decrease the efficacy of various classes of anticancer drug, including nucleotide analogues, but also anti-folate drugs and CDK inhibitors. Importantly, we show that selective CDK4/6 inhibitors are pharmacological activators of SAMHD1 that act by inhibiting its inactivation by phosphorylation. Combinations of a CDK4/6 inhibitor with nucleoside or folate antimetabolites potently enhanced drug efficacy, resulting in highly synergic drug combinations (CI < 0.04). Mechanistic analyses reveal that cell cycle-controlled modulation of SAMHD1 function is the central process explaining changes in anticancer drug efficacy, therefore providing functional proof of the potential of CDK4/6 inhibitors as a new class of adjuvants to boost chemotherapeutic regimens. The evaluation of SAMHD1 expression in cancer tissues allowed for the identification of cancer types that would benefit from the pharmacological modulation of SAMHD1 function. In conclusion, these results indicate that the modulation of SAMHD1 function may represent a promising strategy for the improvement of current antimetabolite-based treatments.
Collapse
|
166
|
Carter V, LaCava J, Taylor MS, Liang SY, Mustelin C, Ukadike KC, Bengtsson A, Lood C, Mustelin T. High Prevalence and Disease Correlation of Autoantibodies Against p40 Encoded by Long Interspersed Nuclear Elements in Systemic Lupus Erythematosus. Arthritis Rheumatol 2020; 72:89-99. [PMID: 31342656 DOI: 10.1002/art.41054] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Long interspersed nuclear element 1 (LINE-1) encodes 2 proteins, the RNA binding protein p40 and endonuclease and reverse transcriptase (open-reading frame 2p [ORF2p]), which are both required for LINE-1 to retrotranspose. In cells expressing LINE-1, these proteins assemble with LINE-1 RNA and additional RNA binding proteins, some of which are well-known autoantigens in patients with systemic lupus erythematosus (SLE). This study was undertaken to investigate whether SLE patients also produce autoantibodies against LINE-1 p40. METHODS Highly purified p40 protein was used to quantitate IgG autoantibodies in serum from 172 SLE patients and from disease controls and age-matched healthy subjects by immunoblotting and enzyme-linked immunosorbent assay (ELISA). Preparations of p40 that also contained associated proteins were analyzed by immunoblotting with patient sera. RESULTS Antibodies reactive with p40 were detected in the majority of patients and many healthy controls. Their levels were higher in patients with SLE, but not those with systemic sclerosis, compared to healthy subjects (P = 0.01). Anti-p40 reactivity was higher in patients during a flare than in patients with disease in remission (P = 0.03); correlated with the SLE Disease Activity Index score (P = 0.0002), type I interferon score (P = 0.006), decrease in complement C3 level (P = 0.0001), the presence of anti-DNA antibodies (P < 0.0001) and anti-C1q antibodies (P = 0.004), and current or past history of nephritis (P = 0.02 and P = 0.003, respectively); and correlated inversely with age (r = -0.49, P < 0.0001). SLE patient sera also reacted with p40-associated proteins. CONCLUSION Autoantibodies reacting with LINE-1 p40 characterize a population of SLE patients with severe and active disease. These autoantibodies may represent an early immune response against LINE-1 p40 that does not yet by itself imply clinically significant autoimmunity, but may represent an early, and still reversible, step toward SLE pathogenesis.
Collapse
Affiliation(s)
| | - John LaCava
- The Rockefeller University, New York, New York, and European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Martin S Taylor
- Massachusetts General Hospital, Boston, and Whitehead Institute, Cambridge, Massachusetts
| | | | | | | | | | | | | |
Collapse
|
167
|
Vincenzi M, Mercurio FA, Leone M. Sam Domains in Multiple Diseases. Curr Med Chem 2020; 27:450-476. [PMID: 30306850 DOI: 10.2174/0929867325666181009114445] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 07/26/2018] [Accepted: 08/27/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND The sterile alpha motif (Sam) domain is a small helical protein module, able to undergo homo- and hetero-oligomerization, as well as polymerization, thus forming different types of protein architectures. A few Sam domains are involved in pathological processes and consequently, they represent valuable targets for the development of new potential therapeutic routes. This study intends to collect state-of-the-art knowledge on the different modes by which Sam domains can favor disease onset and progression. METHODS This review was build up by searching throughout the literature, for: a) the structural properties of Sam domains, b) interactions mediated by a Sam module, c) presence of a Sam domain in proteins relevant for a specific disease. RESULTS Sam domains appear crucial in many diseases including cancer, renal disorders, cataracts. Often pathologies are linked to mutations directly positioned in the Sam domains that alter their stability and/or affect interactions that are crucial for proper protein functions. In only a few diseases, the Sam motif plays a kind of "side role" and cooperates to the pathological event by enhancing the action of a different protein domain. CONCLUSION Considering the many roles of the Sam domain into a significant variety of diseases, more efforts and novel drug discovery campaigns need to be engaged to find out small molecules and/or peptides targeting Sam domains. Such compounds may represent the pillars on which to build novel therapeutic strategies to cure different pathologies.
Collapse
Affiliation(s)
- Marian Vincenzi
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy.,Cirpeb, InterUniversity Research Centre on Bioactive Peptides, University of Naples "Federico II", Via Mezzocannone, 16, 80134 Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy.,Cirpeb, InterUniversity Research Centre on Bioactive Peptides, University of Naples "Federico II", Via Mezzocannone, 16, 80134 Naples, Italy
| |
Collapse
|
168
|
Zhang Z, Zheng L, Yu Y, Wu J, Yang F, Xu Y, Guo Q, Wu X, Cao S, Cao L, Song X. Involvement of SAMHD1 in dNTP homeostasis and the maintenance of genomic integrity and oncotherapy (Review). Int J Oncol 2020; 56:879-888. [PMID: 32319570 DOI: 10.3892/ijo.2020.4988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/07/2020] [Indexed: 11/06/2022] Open
Abstract
Sterile alpha motif and histidine/aspartic acid domain‑containing protein 1 (SAMHD1), the only deoxynucleotide triphosphate (dNTP) hydrolase in eukaryotes, plays a crucial role in regulating the dynamic balance and ratio of cellular dNTP pools. Furthermore, SAMHD1 has been reported to be involved in the pathological process of several diseases. Homozygous SAMHD1 mutations have been identified in immune system disorders, such as autoimmune disease Aicardi‑Goutières syndrome (AGS), whose primary pathogenesis is associated with the abnormal accumulation and disproportion of dNTPs. SAMHD1 is also considered to be an intrinsic virus‑restriction factor by suppressing the viral infection process, including reverse transcription, replication, packaging and transmission. In addition, SAMHD1 has been shown to promote genome integrity during homologous recombination following DNA damage, thus being considered a promising candidate for oncotherapy applications. The present review summarizes the molecular mechanisms of SAMHD1 regarding the regulation of dNTP homeostasis and DNA damage response. Additionally, its potential effects on tumorigenesis and oncotherapy are reported.
Collapse
Affiliation(s)
- Zhou Zhang
- College of Basic Medical Science, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Lixia Zheng
- College of Basic Medical Science, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yang Yu
- College of Basic Medical Science, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Jinying Wu
- College of Basic Medical Science, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Fan Yang
- College of Basic Medical Science, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yingxi Xu
- College of Basic Medical Science, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Qiqiang Guo
- College of Basic Medical Science, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xuan Wu
- College of Basic Medical Science, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Sunrun Cao
- College of Basic Medical Science, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Liu Cao
- College of Basic Medical Science, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xiaoyu Song
- College of Basic Medical Science, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
169
|
Qin Z, Bonifati S, St Gelais C, Li TW, Kim SH, Antonucci JM, Mahboubi B, Yount JS, Xiong Y, Kim B, Wu L. The dNTPase activity of SAMHD1 is important for its suppression of innate immune responses in differentiated monocytic cells. J Biol Chem 2020; 295:1575-1586. [PMID: 31914403 PMCID: PMC7008377 DOI: 10.1074/jbc.ra119.010360] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/22/2019] [Indexed: 12/18/2022] Open
Abstract
Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) is a deoxynucleoside triphosphohydrolase (dNTPase) with a nuclear localization signal (NLS). SAMHD1 suppresses innate immune responses to viral infection and inflammatory stimuli by inhibiting the NF-κB and type I interferon (IFN-I) pathways. However, whether the dNTPase activity and nuclear localization of SAMHD1 are required for its suppression of innate immunity remains unknown. Here, we report that the dNTPase activity, but not nuclear localization of SAMHD1, is important for its suppression of innate immune responses in differentiated monocytic cells. We generated monocytic U937 cell lines stably expressing WT SAMHD1 or mutated variants defective in dNTPase activity (HD/RN) or nuclear localization (mNLS). WT SAMHD1 in differentiated U937 cells significantly inhibited lipopolysaccharide-induced expression of tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) mRNAs, as well as IFN-α, IFN-β, and TNF-α mRNA levels induced by Sendai virus infection. In contrast, the HD/RN mutant did not exhibit this inhibition in either U937 or THP-1 cells, indicating that the dNTPase activity of SAMHD1 is important for suppressing NF-κB activation. Of note, in lipopolysaccharide-treated or Sendai virus-infected U937 or THP-1 cells, the mNLS variant reduced TNF-α or IFN-β mRNA expression to a similar extent as did WT SAMHD1, suggesting that SAMHD1-mediated inhibition of innate immune responses is independent of SAMHD1's nuclear localization. Moreover, WT and mutant SAMHD1 similarly interacted with key proteins in NF-κB and IFN-I pathways in cells. This study further defines the role and mechanisms of SAMHD1 in suppressing innate immunity.
Collapse
Affiliation(s)
- Zhihua Qin
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210; Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Serena Bonifati
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210
| | - Corine St Gelais
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210
| | - Tai-Wei Li
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210
| | - Sun-Hee Kim
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210
| | - Jenna M Antonucci
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210
| | - Bijan Mahboubi
- Center for Drug Discovery, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Jacob S Yount
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio 43210
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Baek Kim
- Center for Drug Discovery, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Li Wu
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210; Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242; Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio 43210.
| |
Collapse
|
170
|
Kellner V, Luke B. Molecular and physiological consequences of faulty eukaryotic ribonucleotide excision repair. EMBO J 2020; 39:e102309. [PMID: 31833079 PMCID: PMC6996501 DOI: 10.15252/embj.2019102309] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/22/2019] [Accepted: 11/26/2019] [Indexed: 01/11/2023] Open
Abstract
The duplication of the eukaryotic genome is an intricate process that has to be tightly safe-guarded. One of the most frequently occurring errors during DNA synthesis is the mis-insertion of a ribonucleotide instead of a deoxyribonucleotide. Ribonucleotide excision repair (RER) is initiated by RNase H2 and results in error-free removal of such mis-incorporated ribonucleotides. If left unrepaired, DNA-embedded ribonucleotides result in a variety of alterations within chromosomal DNA, which ultimately lead to genome instability. Here, we review how genomic ribonucleotides lead to chromosomal aberrations and discuss how the tight regulation of RER timing may be important for preventing unwanted DNA damage. We describe the structural impact of unrepaired ribonucleotides on DNA and chromatin and comment on the potential consequences for cellular fitness. In the context of the molecular mechanisms associated with faulty RER, we have placed an emphasis on how and why increased levels of genomic ribonucleotides are associated with severe autoimmune syndromes, neuropathology, and cancer. In addition, we discuss therapeutic directions that could be followed for pathologies associated with defective removal of ribonucleotides from double-stranded DNA.
Collapse
Affiliation(s)
- Vanessa Kellner
- Institute of Molecular Biology (IMB)MainzGermany
- Present address:
Department of BiologyNew York UniversityNew YorkNYUSA
| | - Brian Luke
- Institute of Molecular Biology (IMB)MainzGermany
- Institute of Developmental Biology and Neurobiology (IDN)Johannes Gutenberg UniversitätMainzGermany
| |
Collapse
|
171
|
Simpson SR, Rego SL, Harvey SE, Liu M, Hemphill WO, Venkatadri R, Sharma R, Grayson JM, Perrino FW. T Cells Produce IFN-α in the TREX1 D18N Model of Lupus-like Autoimmunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:348-359. [PMID: 31826941 PMCID: PMC6946867 DOI: 10.4049/jimmunol.1900220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 11/07/2019] [Indexed: 01/09/2023]
Abstract
Autoimmunity can result when cells fail to properly dispose of DNA. Mutations in the three-prime repair exonuclease 1 (TREX1) cause a spectrum of human autoimmune diseases resembling systemic lupus erythematosus. The cytosolic dsDNA sensor, cyclic GMP-AMP synthase (cGAS), and the stimulator of IFN genes (STING) are required for pathogenesis, but specific cells in which DNA sensing and subsequent type I IFN (IFN-I) production occur remain elusive. In this study, we demonstrate that TREX1 D18N catalytic deficiency causes dysregulated IFN-I signaling and autoimmunity in mice. Moreover, we show that bone marrow-derived cells drive this process. We identify both innate immune and, surprisingly, activated T cells as sources of pathological IFN-α production. These findings demonstrate that TREX1 enzymatic activity is crucial to prevent inappropriate DNA sensing and IFN-I production in immune cells, including normally low-level IFN-α-producing cells. These results expand our understanding of DNA sensing and innate immunity in T cells and may have relevance to the pathogenesis of human disease caused by TREX1 mutation.
Collapse
Affiliation(s)
- Sean R Simpson
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Stephen L Rego
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Scott E Harvey
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Mingyong Liu
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157; and
| | - Wayne O Hemphill
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Rajkumar Venkatadri
- Center for Immunity, Inflammation and Regenerative Medicine, Division of Nephrology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Rahul Sharma
- Center for Immunity, Inflammation and Regenerative Medicine, Division of Nephrology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Jason M Grayson
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157; and
| | - Fred W Perrino
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157;
| |
Collapse
|
172
|
Oo A, Kim DH, Schinazi RF, Kim B. Viral protein X reduces the incorporation of mutagenic noncanonical rNTPs during lentivirus reverse transcription in macrophages. J Biol Chem 2020; 295:657-666. [PMID: 31806704 PMCID: PMC6956541 DOI: 10.1074/jbc.ra119.011466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/02/2019] [Indexed: 11/21/2022] Open
Abstract
Unlike activated CD4+ T cells, nondividing macrophages have an extremely small dNTP pool, which restricts HIV-1 reverse transcription. However, rNTPs are equally abundant in both of these cell types and reach much higher concentrations than dNTPs. The greater difference in concentration between dNTPs and rNTPs in macrophages results in frequent misincorporation of noncanonical rNTPs during HIV-1 reverse transcription. Here, we tested whether the highly abundant SAM domain- and HD domain-containing protein 1 (SAMHD1) deoxynucleoside triphosphorylase in macrophages is responsible for frequent rNTP incorporation during HIV-1 reverse transcription. We also assessed whether Vpx (viral protein X), an accessory protein of HIV-2 and some simian immunodeficiency virus strains that targets SAMHD1 for proteolytic degradation, can counteract the rNTP incorporation. Results from biochemical simulation of HIV-1 reverse transcriptase-mediated DNA synthesis confirmed that rNTP incorporation is reduced under Vpx-mediated dNTP elevation. Using HIV-1 vector, we further demonstrated that dNTP pool elevation by Vpx or deoxynucleosides in human primary monocyte-derived macrophages reduces noncanonical rNTP incorporation during HIV-1 reverse transcription, an outcome similarly observed with the infectious HIV-1 89.6 strain. Furthermore, the simian immunodeficiency virus mac239 strain, encoding Vpx, displayed a much lower level of rNTP incorporation than its ΔVpx mutant in macrophages. Finally, the amount of rNMPs incorporated in HIV-1 proviral DNAs remained unchanged for ∼2 weeks in macrophages. These findings suggest that noncanonical rNTP incorporation is regulated by SAMHD1 in macrophages, whereas rNMPs incorporated in HIV-1 proviral DNA remain unrepaired. This suggests a potential long-term DNA damage impact of SAMHD1-mediated rNTP incorporation in macrophages.
Collapse
Affiliation(s)
- Adrian Oo
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia 30322
| | - Dong-Hyun Kim
- Department of Pharmacy, Kyung Hee University, Seoul 02447, South Korea
| | - Raymond F Schinazi
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia 30322
| | - Baek Kim
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia 30322; Center for Drug Discovery, Children's Healthcare of Atlanta, Atlanta, Georgia 30322.
| |
Collapse
|
173
|
Wang Z, Bhattacharya A, White T, Buffone C, McCabe A, Nguyen LA, Shepard CN, Pardo S, Kim B, Weintraub ST, Demeler B, Diaz-Griffero F, Ivanov DN. Functionality of Redox-Active Cysteines Is Required for Restriction of Retroviral Replication by SAMHD1. Cell Rep 2020; 24:815-823. [PMID: 30044979 PMCID: PMC6067006 DOI: 10.1016/j.celrep.2018.06.090] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 05/01/2018] [Accepted: 06/21/2018] [Indexed: 01/04/2023] Open
Abstract
SAMHD1 is a dNTP triphosphohydrolase (dNTPase) that impairs retroviral replication in a subset of noncycling immune cells. Here we show that SAMHD1 is a redox-sensitive enzyme and identify three redox-active cysteines within the protein: C341, C350, and C522. The three cysteines reside near one another and the allosteric nucleotide binding site. Mutations C341S and C522S abolish the ability of SAMHD1 to restrict HIV replication, whereas the C350S mutant remains restriction competent. The C522S mutation makes the protein resistant to inhibition by hydrogen peroxide but has no effect on the tetramerization-dependent dNTPase activity of SAMHD1 in vitro or on the ability of SAMHD1 to deplete cellular dNTPs. Our results reveal that enzymatic activation of SAMHD1 via nucleotide-dependent tetramerization is not sufficient for the establishment of the antiviral state and that retroviral restriction depends on the ability of the protein to undergo redox transformations.
Collapse
Affiliation(s)
- Zhonghua Wang
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Akash Bhattacharya
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Tommy White
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Cindy Buffone
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Aine McCabe
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Laura A Nguyen
- Center for Drug Discovery, Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Caitlin N Shepard
- Center for Drug Discovery, Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Sammy Pardo
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Baek Kim
- Center for Drug Discovery, Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA; School of Pharmacy, Kyunghee University, Seoul, South Korea
| | - Susan T Weintraub
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Borries Demeler
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Dmitri N Ivanov
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| |
Collapse
|
174
|
Li Z, Huan C, Wang H, Liu Y, Liu X, Su X, Yu J, Zhao Z, Yu XF, Zheng B, Zhang W. TRIM21-mediated proteasomal degradation of SAMHD1 regulates its antiviral activity. EMBO Rep 2020; 21:e47528. [PMID: 31797533 PMCID: PMC6944907 DOI: 10.15252/embr.201847528] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 10/09/2019] [Accepted: 11/13/2019] [Indexed: 01/01/2023] Open
Abstract
SAMHD1 possesses multiple functions, but whether cellular factors regulate SAMHD1 expression or its function remains not well characterized. Here, by investigating why cultured RD and HEK293T cells show different sensitivity to enterovirus 71 (EV71) infection, we demonstrate that SAMHD1 is a restriction factor for EV71. Importantly, we identify TRIM21, an E3 ubiquitin ligase, as a key regulator of SAMHD1, which specifically interacts and degrades SAMHD1 through the proteasomal pathway. However, TRIM21 has no effect on EV71 replication itself. Moreover, we prove that interferon production stimulated by EV71 infection induces increased TRIM21 and SAMHD1 expression, whereas increasing TRIM21 overrides SAMHD1 inhibition of EV71 in cells and in a neonatal mouse model. TRIM21-mediated degradation of SAMHD1 also affects SAMHD1-dependent restriction of HIV-1 and the regulation of interferon production. We further identify the functional domains in TRIM21 required for SAMHD1 binding and the ubiquitination site K622 in SAMHD1 and show that phosphorylation of SAMHD1 at T592 also blocks EV71 restriction. Our findings illuminate how EV71 overcomes SAMHD1 inhibition via the upregulation of TRIM21.
Collapse
Affiliation(s)
- Zhaolong Li
- The First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, China
| | - Chen Huan
- The First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, China
| | - Hong Wang
- The First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, China
| | - Yue Liu
- The First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, China
| | - Xin Liu
- The First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, China
| | - Xing Su
- The First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, China
| | - Jinghua Yu
- The First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, China
| | - Zhilei Zhao
- The First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, China
| | - Xiao-Fang Yu
- The First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Baisong Zheng
- The First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, China
| | - Wenyan Zhang
- The First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, China
| |
Collapse
|
175
|
Ablasser A, Hur S. Regulation of cGAS- and RLR-mediated immunity to nucleic acids. Nat Immunol 2020; 21:17-29. [PMID: 31819255 DOI: 10.1038/s41590-019-0556-1] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/29/2019] [Indexed: 12/13/2022]
Abstract
Pathogen-derived nucleic acids are crucial signals for innate immunity. Despite the structural similarity between those and host nucleic acids, mammalian cells have been able to evolve powerful innate immune signaling pathways that originate from the detection of cytosolic nucleic acid species, one of the most prominent being the cGAS-STING pathway for DNA and the RLR-MAVS pathway for RNA, respectively. Recent advances have revealed a plethora of regulatory mechanisms that are crucial for balancing the activity of nucleic acid sensors for the maintenance of overall cellular homeostasis. Elucidation of the various mechanisms that enable cells to maintain control over the activity of cytosolic nucleic acid sensors has provided new insight into the pathology of human diseases and, at the same time, offers a rich and largely unexplored source for new therapeutic targets. This Review addresses the emerging literature on regulation of the sensing of cytosolic DNA and RNA via cGAS and RLRs.
Collapse
Affiliation(s)
- Andrea Ablasser
- Global Health Institute, Swiss Federal Institute of Technology, Lausanne, Switzerland.
| | - Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
176
|
Adang L, Gavazzi F, De Simone M, Fazzi E, Galli J, Koh J, Kramer-Golinkoff J, De Giorgis V, Orcesi S, Peer K, Ulrick N, Woidill S, Shults J, Vanderver A. Developmental Outcomes of Aicardi Goutières Syndrome. J Child Neurol 2020; 35:7-16. [PMID: 31559893 PMCID: PMC7402202 DOI: 10.1177/0883073819870944] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aicardi Goutières syndrome is a monogenic interferonopathy caused by abnormalities in the intracellular nucleic acid sensing machinery (TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR1, or IFIH1). Most individuals affected by Aicardi Goutières syndrome exhibit some degree of neurologic impairment, from spastic paraparesis with relatively preserved cognition to tetraparesis and severe intellectual disability. Because of this heterogeneity, it is important to fully characterize the developmental trajectory in Aicardi Goutières syndrome. To characterize the clinical presentation in Aicardi Goutières syndrome, early features were collected from an international cohort of children (n = 100) with genetically confirmed Aicardi Goutières syndrome. There was a heterogeneous age of onset, with overlapping clusters of presenting symptoms: altered mental status, systemic inflammatory symptoms, and acute neurologic disability. Next, we created genotype-specific developmental milestone acquisition curves. Individuals with microcephaly or TREX1-related Aicardi Goutières syndrome secondary were the most severely affected and less likely to reach milestones, including head control, sitting, and nonspecific mama/dada. Individuals affected by SAMHD1, IFIH1, and ADAR attained the most advanced milestones, with 44% achieving verbal communication and 31% independently ambulating. Retrospective function scales (Gross Motor Function Classification System, Manual Ability Classification System, and Communication Function Classification System) demonstrated that two-thirds of the Aicardi Goutières syndrome population are severely affected. Our results suggest multifactorial influences on developmental trajectory, including a strong contribution from genotype. Further studies are needed to identify the additional factors that influence overall outcomes to better counsel families and to design clinical trials with appropriate clinical endpoints.
Collapse
Affiliation(s)
- Laura Adang
- Division of Neurology, Children’s Hospital of Philadelphia
| | | | | | - Elisa Fazzi
- Child Neurology and Psychiatry Unit, ASST Spedali Civili of Brescia,Department of Clinical and Experimental Sciences, University of Brescia
| | - Jessica Galli
- Child Neurology and Psychiatry Unit, ASST Spedali Civili of Brescia,Department of Clinical and Experimental Sciences, University of Brescia
| | - Jamie Koh
- Division of Neurology, Children’s Hospital of Philadelphia
| | | | | | - Simona Orcesi
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Kyle Peer
- Division of Neurology, Children’s Hospital of Philadelphia
| | - Nicole Ulrick
- Division of Neurology, Children’s Hospital of Philadelphia
| | - Sarah Woidill
- Division of Neurology, Children’s Hospital of Philadelphia
| | - Justine Shults
- Department of Biostatistics. Perelman School of Medicine at University of Pennsylvania
| | | |
Collapse
|
177
|
Forlani G, Shallak M, Ramia E, Tedeschi A, Accolla RS. Restriction factors in human retrovirus infections and the unprecedented case of CIITA as link of intrinsic and adaptive immunity against HTLV-1. Retrovirology 2019; 16:34. [PMID: 31783769 PMCID: PMC6884849 DOI: 10.1186/s12977-019-0498-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/23/2019] [Indexed: 12/17/2022] Open
Abstract
Background Immunity against pathogens evolved through complex mechanisms that only for sake of simplicity are defined as innate immunity and adaptive immunity. Indeed innate and adaptive immunity are strongly intertwined each other during evolution. The complexity is further increased by intrinsic mechanisms of immunity that rely on the action of intracellular molecules defined as restriction factors (RFs) that, particularly in virus infections, counteract the action of pathogen gene products acting at different steps of virus life cycle. Main body and conclusion Here we provide an overview on the nature and the mode of action of restriction factors involved in retrovirus infection, particularly Human T Leukemia/Lymphoma Virus 1 (HTLV-1) infection. As it has been extensively studied by our group, special emphasis is given to the involvement of the MHC class II transactivator CIITA discovered in our laboratory as regulator of adaptive immunity and subsequently as restriction factor against HIV-1 and HTLV-1, a unique example of dual function linking adaptive and intrinsic immunity during evolution. We describe the multiple molecular mechanisms through which CIITA exerts its restriction on retroviruses. Of relevance, we review the unprecedented findings pointing to a concerted action of several restriction factors such as CIITA, TRIM22 and TRIM19/PML in synergizing against retroviral replication. Finally, as CIITA profoundly affects HTLV-1 replication by interacting and inhibiting the function of HTLV-1 Tax-1 molecule, the major viral product associated to the virus oncogenicity, we also put forward the hypothesis of CIITA as counteractor of HTLV-1-mediated cancer initiation.
Collapse
Affiliation(s)
- Greta Forlani
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Surgery, School of Medicine, University of Insubria, Via Ottorino Rossi 9, 21100, Varese, Italy
| | - Mariam Shallak
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Surgery, School of Medicine, University of Insubria, Via Ottorino Rossi 9, 21100, Varese, Italy
| | - Elise Ramia
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Surgery, School of Medicine, University of Insubria, Via Ottorino Rossi 9, 21100, Varese, Italy
| | - Alessandra Tedeschi
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Surgery, School of Medicine, University of Insubria, Via Ottorino Rossi 9, 21100, Varese, Italy
| | - Roberto S Accolla
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Surgery, School of Medicine, University of Insubria, Via Ottorino Rossi 9, 21100, Varese, Italy.
| |
Collapse
|
178
|
Franzolin E, Coletta S, Ferraro P, Pontarin G, D'Aronco G, Stevanoni M, Palumbo E, Cagnin S, Bertoldi L, Feltrin E, Valle G, Russo A, Bianchi V, Rampazzo C. SAMHD1‐deficient fibroblasts from Aicardi‐Goutières Syndrome patients can escape senescence and accumulate mutations. FASEB J 2019; 34:631-647. [DOI: 10.1096/fj.201902508r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 01/16/2023]
Affiliation(s)
| | - Sara Coletta
- Department of Biology University of Padova Padova Italy
| | - Paola Ferraro
- Department of Biology University of Padova Padova Italy
| | | | | | | | - Elisa Palumbo
- Department of Molecular Medicine University of Padova Padova Italy
| | - Stefano Cagnin
- Department of Biology University of Padova Padova Italy
- CRIBI Biotechnology Center University of Padova Padova Italy
- CIR‐Myo Myology Center University of Padova Padova Italy
| | | | - Erika Feltrin
- Department of Biology University of Padova Padova Italy
| | - Giorgio Valle
- Department of Biology University of Padova Padova Italy
| | - Antonella Russo
- Department of Molecular Medicine University of Padova Padova Italy
| | - Vera Bianchi
- Department of Biology University of Padova Padova Italy
| | | |
Collapse
|
179
|
HIV-2/SIV Vpx targets a novel functional domain of STING to selectively inhibit cGAS-STING-mediated NF-κB signalling. Nat Microbiol 2019; 4:2552-2564. [PMID: 31659299 DOI: 10.1038/s41564-019-0585-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 09/10/2019] [Indexed: 12/28/2022]
Abstract
Innate immunity is the first line of host defence against pathogens. Suppression of innate immune responses is essential for the survival of all viruses. However, the interplay between innate immunity and HIV/SIV is only poorly characterized. We have discovered Vpx as a novel inhibitor of innate immune activation that associates with STING signalosomes and interferes with the nuclear translocation of NF-κB and the induction of innate immune genes. This new function of Vpx could be separated from its role in mediating degradation of the antiviral factor SAMHD1, and is conserved among diverse HIV-2/SIV Vpx. Vpx selectively suppressed cGAS-STING-mediated nuclear factor-κB signalling. Furthermore, Vpx and Vpr had complementary activities against cGAS-STING activity. Since SIVMAC lacking both Vpx and Vpr was less pathogenic than SIV deficient for Vpr or Vpx alone, suppression of innate immunity by HIV/SIV is probably a key pathogenic determinant, making it a promising target for intervention.
Collapse
|
180
|
Rutherford HA, Hamilton N. Animal models of leukodystrophy: a new perspective for the development of therapies. FEBS J 2019; 286:4176-4191. [DOI: 10.1111/febs.15060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/31/2019] [Accepted: 09/09/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Holly A. Rutherford
- The Bateson Centre, Department of Infection, Immunity and Cardiovascular Disease University of Sheffield UK
| | - Noémie Hamilton
- The Bateson Centre, Department of Infection, Immunity and Cardiovascular Disease University of Sheffield UK
| |
Collapse
|
181
|
Mandhana R, Qian LK, Horvath CM. Constitutively Active MDA5 Proteins Are Inhibited by Paramyxovirus V Proteins. J Interferon Cytokine Res 2019; 38:319-332. [PMID: 30130154 DOI: 10.1089/jir.2018.0049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Excessive interferon (IFN) production and signaling can lead to immunological and developmental defects giving rise to autoimmune diseases referred to collectively as "type I interferonopathies." A subset of these diseases is caused by monogenic mutations affecting proteins involved in nucleic acid sensing, homeostasis, and metabolism. Interferonopathic mutations in the cytosolic antiviral sensor MDA5 render it constitutively hyperactive, resulting in chronic IFN production and IFN-stimulated gene expression. Few therapeutic options are available for patients with interferonopathic diseases, but a large number of IFN evasion and antagonism strategies have evolved in viral pathogens that can counteract IFN production and signaling to enhance virus replication. To test the hypothesis that these natural IFN suppressors could be used to subdue the activity of interferonopathic signaling proteins, hyperactive MDA5 variants were assessed for susceptibility to a family of viral MDA5 inhibitors. In this study, Paramyxovirus V proteins were tested for their ability to counteract constitutively active MDA5 proteins. Results indicate that the V proteins are able to bind to and disrupt the signaling activity of these MDA5 proteins, irrespective of their specific mutations, reducing IFN production and IFN-stimulated gene expression to effectively suppress the hyperactive antiviral response.
Collapse
Affiliation(s)
- Roli Mandhana
- Department of Molecular Biosciences, Northwestern University , Evanston, Illinois
| | - Lily K Qian
- Department of Molecular Biosciences, Northwestern University , Evanston, Illinois
| | - Curt M Horvath
- Department of Molecular Biosciences, Northwestern University , Evanston, Illinois
| |
Collapse
|
182
|
West PK, Viengkhou B, Campbell IL, Hofer MJ. Microglia responses to interleukin-6 and type I interferons in neuroinflammatory disease. Glia 2019; 67:1821-1841. [PMID: 31033014 DOI: 10.1002/glia.23634] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 04/07/2019] [Accepted: 04/10/2019] [Indexed: 01/03/2025]
Abstract
Microglia are the resident macrophages of the central nervous system (CNS). They are a heterogenous, exquisitely responsive, and highly plastic cell population, which enables them to perform diverse roles. They sense and respond to the local production of many different signals, including an assorted range of cytokines. Microglia respond strongly to interleukin-6 (IL-6) and members of the type I interferon (IFN-I) family, IFN-alpha (IFN-α), and IFN-beta (IFN-β). Although these cytokines are essential in maintaining homeostasis and for activating and regulating immune responses, their chronic production has been linked to the development of distinct human neurological diseases, termed "cerebral cytokinopathies." IL-6 and IFN-α have been identified as key mediators in the pathogenesis of neuroinflammatory disorders including neuromyelitis optica and Aicardi-Goutières syndrome, respectively, whereas IFN-β has an emerging role as a causal factor in age-associated cognitive decline. One of the key features that unites these diseases is the presence of highly reactive microglia. The current understanding is that microglia contribute to the development of cerebral cytokinopathies and represent an important therapeutic target. However, it remains to be resolved whether microglia have beneficial or detrimental effects. Here we review and discuss what is currently known about the microglial response to IL-6 and IFN-I, based on both animal models and clinical studies. Foundational knowledge regarding the microglial response to IL-6 and IFN-I is now being used to devise therapeutic strategies to ameliorate neuroinflammation and promote repair: either through targeting microglia, or by targeting the reduction of CNS levels or downstream biological pathways of IL-6 or IFN-I.
Collapse
Affiliation(s)
- Phillip K West
- School of Life and Environmental Sciences, The Marie Bashir Institute for Infectious Diseases and Biosecurity, The Charles Perkins Centre, and The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Barney Viengkhou
- School of Life and Environmental Sciences, The Marie Bashir Institute for Infectious Diseases and Biosecurity, The Charles Perkins Centre, and The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Iain L Campbell
- School of Life and Environmental Sciences, The Marie Bashir Institute for Infectious Diseases and Biosecurity, The Charles Perkins Centre, and The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Markus J Hofer
- School of Life and Environmental Sciences, The Marie Bashir Institute for Infectious Diseases and Biosecurity, The Charles Perkins Centre, and The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
183
|
Camici M, Garcia-Gil M, Pesi R, Allegrini S, Tozzi MG. Purine-Metabolising Enzymes and Apoptosis in Cancer. Cancers (Basel) 2019; 11:cancers11091354. [PMID: 31547393 PMCID: PMC6769685 DOI: 10.3390/cancers11091354] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/03/2019] [Accepted: 09/07/2019] [Indexed: 12/17/2022] Open
Abstract
The enzymes of both de novo and salvage pathways for purine nucleotide synthesis are regulated to meet the demand of nucleic acid precursors during proliferation. Among them, the salvage pathway enzymes seem to play the key role in replenishing the purine pool in dividing and tumour cells that require a greater amount of nucleotides. An imbalance in the purine pools is fundamental not only for preventing cell proliferation, but also, in many cases, to promote apoptosis. It is known that tumour cells harbour several mutations that might lead to defective apoptosis-inducing pathways, and this is probably at the basis of the initial expansion of the population of neoplastic cells. Therefore, knowledge of the molecular mechanisms that lead to apoptosis of tumoural cells is key to predicting the possible success of a drug treatment and planning more effective and focused therapies. In this review, we describe how the modulation of enzymes involved in purine metabolism in tumour cells may affect the apoptotic programme. The enzymes discussed are: ectosolic and cytosolic 5'-nucleotidases, purine nucleoside phosphorylase, adenosine deaminase, hypoxanthine-guanine phosphoribosyltransferase, and inosine-5'-monophosphate dehydrogenase, as well as recently described enzymes particularly expressed in tumour cells, such as deoxynucleoside triphosphate triphosphohydrolase and 7,8-dihydro-8-oxoguanine triphosphatase.
Collapse
Affiliation(s)
- Marcella Camici
- Dipartimento di Biologia, Unità di Biochimica, Via S. Zeno 51, 56127 Pisa, Italy.
| | - Mercedes Garcia-Gil
- Dipartimento di Biologia, Unità di Fisiologia Generale, Via S. Zeno 31, 56127 Pisa, Italy
| | - Rossana Pesi
- Dipartimento di Biologia, Unità di Biochimica, Via S. Zeno 51, 56127 Pisa, Italy
| | - Simone Allegrini
- Dipartimento di Biologia, Unità di Biochimica, Via S. Zeno 51, 56127 Pisa, Italy
| | - Maria Grazia Tozzi
- Dipartimento di Biologia, Unità di Biochimica, Via S. Zeno 51, 56127 Pisa, Italy
| |
Collapse
|
184
|
Monit C, Morris ER, Ruis C, Szafran B, Thiltgen G, Tsai MHC, Mitchison NA, Bishop KN, Stoye JP, Taylor IA, Fassati A, Goldstein RA. Positive selection in dNTPase SAMHD1 throughout mammalian evolution. Proc Natl Acad Sci U S A 2019; 116:18647-18654. [PMID: 31451672 PMCID: PMC6744909 DOI: 10.1073/pnas.1908755116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The vertebrate protein SAMHD1 is highly unusual in having roles in cellular metabolic regulation, antiviral restriction, and regulation of innate immunity. Its deoxynucleoside triphosphohydrolase activity regulates cellular dNTP concentration, reducing levels below those required by lentiviruses and other viruses to replicate. To counter this threat, some primate lentiviruses encode accessory proteins that bind SAMHD1 and induce its degradation; in turn, positive diversifying selection has been observed in regions bound by these lentiviral proteins, suggesting that primate SAMHD1 has coevolved to evade these countermeasures. Moreover, deleterious polymorphisms in human SAMHD1 are associated with autoimmune disease linked to uncontrolled DNA synthesis of endogenous retroelements. Little is known about how evolutionary pressures affect these different SAMHD1 functions. Here, we examine the deeper history of these interactions by testing whether evolutionary signatures in SAMHD1 extend to other mammalian groups and exploring the molecular basis of this coevolution. Using codon-based likelihood models, we find positive selection in SAMHD1 within each mammal lineage for which sequence data are available. We observe positive selection at sites clustered around T592, a residue that is phosphorylated to regulate SAMHD1 activity. We verify experimentally that mutations within this cluster affect catalytic rate and lentiviral restriction, suggesting that virus-host coevolution has required adaptations of enzymatic function. Thus, persistent positive selection may have involved the adaptation of SAMHD1 regulation to balance antiviral, metabolic, and innate immunity functions.
Collapse
Affiliation(s)
- Christopher Monit
- Division of Infection and Immunity, University College London, WC1E 6BT London, United Kingdom
| | - Elizabeth R Morris
- Macromolecular Structure Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Christopher Ruis
- Division of Infection and Immunity, University College London, WC1E 6BT London, United Kingdom
| | - Bart Szafran
- Retrovirus-Host Interactions Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Grant Thiltgen
- Division of Infection and Immunity, University College London, WC1E 6BT London, United Kingdom
| | - Ming-Han Chloe Tsai
- Retroviral Replication Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - N Avrion Mitchison
- Division of Infection and Immunity, University College London, WC1E 6BT London, United Kingdom
| | - Kate N Bishop
- Retroviral Replication Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Jonathan P Stoye
- Retrovirus-Host Interactions Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Ariberto Fassati
- Division of Infection and Immunity, University College London, WC1E 6BT London, United Kingdom;
| | - Richard A Goldstein
- Division of Infection and Immunity, University College London, WC1E 6BT London, United Kingdom;
| |
Collapse
|
185
|
Morris ER, Taylor IA. The missing link: allostery and catalysis in the anti-viral protein SAMHD1. Biochem Soc Trans 2019; 47:1013-1027. [PMID: 31296733 PMCID: PMC7045340 DOI: 10.1042/bst20180348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022]
Abstract
Vertebrate protein SAMHD1 (sterile-α-motif and HD domain containing protein 1) regulates the cellular dNTP (2'-deoxynucleoside-5'-triphosphate) pool by catalysing the hydrolysis of dNTP into 2'-deoxynucleoside and triphosphate products. As an important regulator of cell proliferation and a key player in dNTP homeostasis, mutations to SAMHD1 are implicated in hypermutated cancers, and germline mutations are associated with Chronic Lymphocytic Leukaemia and the inflammatory disorder Aicardi-Goutières Syndrome. By limiting the supply of dNTPs for viral DNA synthesis, SAMHD1 also restricts the replication of several retroviruses, such as HIV-1, and some DNA viruses in dendritic and myeloid lineage cells and resting T-cells. SAMHD1 activity is regulated throughout the cell cycle, both at the level of protein expression and post-translationally, through phosphorylation. In addition, allosteric regulation further fine-tunes the catalytic activity of SAMHD1, with a nucleotide-activated homotetramer as the catalytically active form of the protein. In cells, GTP and dATP are the likely physiological activators of two adjacent allosteric sites, AL1 (GTP) and AL2 (dATP), that bridge monomer-monomer interfaces to stabilise the protein homotetramer. This review summarises the extensive X-ray crystallographic, biophysical and molecular dynamics experiments that have elucidated important features of allosteric regulation in SAMHD1. We present a comprehensive mechanism detailing the structural and protein dynamics components of the allosteric coupling between nucleotide-induced tetramerization and the catalysis of dNTP hydrolysis by SAMHD1.
Collapse
Affiliation(s)
- Elizabeth R Morris
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K.
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K
| |
Collapse
|
186
|
Interplay between Intrinsic and Innate Immunity during HIV Infection. Cells 2019; 8:cells8080922. [PMID: 31426525 PMCID: PMC6721663 DOI: 10.3390/cells8080922] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
Restriction factors are antiviral components of intrinsic immunity which constitute a first line of defense by blocking different steps of the human immunodeficiency virus (HIV) replication cycle. In immune cells, HIV infection is also sensed by several pattern recognition receptors (PRRs), leading to type I interferon (IFN-I) and inflammatory cytokines production that upregulate antiviral interferon-stimulated genes (ISGs). Several studies suggest a link between these two types of immunity. Indeed, restriction factors, that are generally interferon-inducible, are able to modulate immune responses. This review highlights recent knowledge of the interplay between restriction factors and immunity inducing antiviral defenses. Counteraction of this intrinsic and innate immunity by HIV viral proteins will also be discussed.
Collapse
|
187
|
Taft J, Bogunovic D. The Goldilocks Zone of Type I IFNs: Lessons from Human Genetics. THE JOURNAL OF IMMUNOLOGY 2019; 201:3479-3485. [PMID: 30530500 DOI: 10.4049/jimmunol.1800764] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/15/2018] [Indexed: 12/27/2022]
Abstract
Type I IFNs (IFN-Is) are powerful cytokines. They provide remarkable protection against viral infections, but their indiscriminate production causes severe self-inflicted damage that can be lethal, particularly in early development. In humans, inappropriately high IFN-I levels caused by defects in the regulatory mechanisms that control IFN-I production and response result in clinical conditions known as type I interferonopathies. In essence, type I interferonopathies define the upper limit of safe, IFN-related inflammation in vivo. Conversely, the loss of IFN-I responsiveness increases susceptibility to viral infections, but, surprisingly, most affected individuals survive despite these inborn errors of immunity. These findings suggest that too much IFN-I early in life is toxic, but that insensitivity to IFN-I is perhaps not the death sentence it was initially thought to be. Human genetic analyses have suggested that seemingly insignificant levels of IFN-regulated gene activity may be sufficient for most of the antiviral defenses used by humans in natura.
Collapse
Affiliation(s)
- Justin Taft
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Dusan Bogunovic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
188
|
Tam OH, Ostrow LW, Gale Hammell M. Diseases of the nERVous system: retrotransposon activity in neurodegenerative disease. Mob DNA 2019; 10:32. [PMID: 31372185 PMCID: PMC6659213 DOI: 10.1186/s13100-019-0176-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
Transposable Elements (TEs) are mobile genetic elements whose sequences constitute nearly half of the human genome. Each TE copy can be present in hundreds to thousands of locations within the genome, complicating the genetic and genomic studies of these highly repetitive sequences. The recent development of better tools for evaluating TE derived sequences in genomic studies has enabled an increasing appreciation for the contribution of TEs to human development and disease. While some TEs have contributed novel and beneficial host functions, this review will summarize the evidence for detrimental TE activity in neurodegenerative disorders. Much of the evidence for pathogenicity implicates endogenous retroviruses (ERVs), a subset of TEs that entered the genome by retroviral infections of germline cells in our evolutionary ancestors and have since been passed down as a substantial fraction of the human genome. Human specific ERVs (HERVs) represent some of the youngest ERVs in the genome, and thus are presumed to retain greater function and resultant pathogenic potential.
Collapse
Affiliation(s)
- Oliver H Tam
- 1Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724 USA
| | - Lyle W Ostrow
- 2Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Molly Gale Hammell
- 1Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724 USA
| |
Collapse
|
189
|
Günther C. Nucleic Acid Immunity in the Pathogenesis of Cutaneous Lupus Erythematosus. Front Immunol 2019; 10:1636. [PMID: 31379837 PMCID: PMC6646723 DOI: 10.3389/fimmu.2019.01636] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022] Open
Abstract
Cutaneous lupus erythematosus can be a devastating painful and mutilating disease that is associated with an inflammatory response in the skin driven by type I interferon activation. Clearance defects in the extra- and intracellular space lead to an enhanced prevalence of nucleic acids that represent danger signals for the innate immune system. Self nucleic acids can stimulate DNA and RNA sensors that have originally evolved to ensure viral defense. Their activation can induce a type I interferon dominated response in resident skin cells, macrophages and dendritic cells that subsequently progresses to adaptive immune stimulation. The genetic exploration of rare monogenic type I interferon driven diseases helped to identify these pathogenic concepts. Based on a genetic susceptibility lupus patients are more vulnerable to environmental trigger factors such as UV-irradiation that can provoke inflammation with local tissue destruction and eventually systemic disease. Understanding of these pathogenic concepts is a prerequisite for development of targeted therapies.
Collapse
Affiliation(s)
- Claudia Günther
- Department of Dermatology, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| |
Collapse
|
190
|
Kong J, Wang MM, He SY, Peng X, Qin XH. Structural characterization and directed modification of Sus scrofa SAMHD1 reveal the mechanism underlying deoxynucleotide regulation. FEBS J 2019; 286:3844-3857. [PMID: 31152619 DOI: 10.1111/febs.14943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/12/2019] [Accepted: 05/30/2019] [Indexed: 12/12/2022]
Abstract
Sterile α-motif/histidine-aspartate domain-containing protein 1 (SAMHD1) is an intrinsic antiviral restriction factor known to play a vital role in preventing multiple viral infections and in the control of the cellular deoxynucleoside triphosphate (dNTP) pool. Human and mouse SAMHD1 have both been extensively studied; however, our knowledge on porcine SAMHD1 is limited. Here, we report our findings from comprehensive structural and functional studies on porcine SAMHD1. We determined the crystal structure of porcine SAMHD1 and showed that it forms a symmetric tetramer. Moreover, we modified the deoxynucleotide triphosphohydrolase (dNTPase) activity of SAMHD1 by site-directed mutagenesis based on the crystal structure, and obtained an artificial dimeric enzyme possessing high dNTPase activity. Taken together, our results define the mechanism underlying dNTP regulation and provide a deeper understanding of the regulation of porcine SAMHD1 functions. Directed modification of key residues based on the protein structure enhances the activity of the enzyme, which will be beneficial in the search for new antiviral strategies and for future translational applications.
Collapse
Affiliation(s)
- Jia Kong
- School of Chemical Engineering and Technology, Tianjin University, China.,School of Life Sciences, Tianjin University, China
| | - Mei-Mei Wang
- School of Life Sciences, Tianjin University, China
| | - Shuang-Yi He
- School of Life Sciences, Tianjin University, China
| | - Xin Peng
- School of Life Sciences, Tianjin University, China
| | - Xiao-Hong Qin
- School of Life Sciences, Tianjin University, China.,State Key Laboratory of Medicinal Chemical Biology, NanKai University, Tianjin, China
| |
Collapse
|
191
|
Abstract
Healthy tissues of the body express relatively low basal levels of interferons. However, following detection of microbial invasion by sentinel receptors, a cascade of events initiates leading to the transcriptional induction of interferon genes. Interferons are secreted and act primarily as paracrine cytokines to bind neighboring cell surface receptors. Binding to interferon receptors activates a signal pathway to the nucleus inducing a set of interferon-stimulated genes. The biological activity of these genes confers the unique antiviral and innate immune response of interferons. The rapid induction of interferons is critical to survival, and equally critical is the recovery from this defensive state. Either an aberrant response to infection or an inherited genetic disorder that leads to sustained or increased interferon levels can tip the balance towards pathogenesis.
Collapse
Affiliation(s)
- Nancy C Reich
- Stony Brook University, Dept Molecular Genetics & Microbiology, 11796 Stony Brook, NY, USA.
| |
Collapse
|
192
|
Mustelin T, Lood C, Giltiay NV. Sources of Pathogenic Nucleic Acids in Systemic Lupus Erythematosus. Front Immunol 2019; 10:1028. [PMID: 31139185 PMCID: PMC6519310 DOI: 10.3389/fimmu.2019.01028] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/23/2019] [Indexed: 12/19/2022] Open
Abstract
A hallmark of systemic lupus erythematosus (SLE), and several related autoimmune diseases, is the presence of autoantibodies against nucleic acids and nucleic acid-binding proteins, as well as elevated type I interferons (IFNs), which appear to be instrumental in disease pathogenesis. Here we discuss the sources and proposed mechanisms by which a range of cellular RNA and DNA species can become pathogenic and trigger the nucleic acid sensors that drive type I interferon production. Potentially SLE-promoting DNA may originate from pieces of chromatin, from mitochondria, or from reverse-transcribed cellular RNA, while pathogenic RNA may arise from mis-localized, mis-processed, ancient retroviral, or transposable element-derived transcripts. These nucleic acids may leak out from dying cells to be internalized and reacted to by immune cells or they may be generated and remain to be sensed intracellularly in immune or non-immune cells. The presence of aberrant DNA or RNA is normally counteracted by effective counter-mechanisms, the loss of which result in a serious type I IFN-driven disease called Aicardi-Goutières Syndrome. However, in SLE it remains unclear which mechanisms are most critical in precipitating disease: aberrant RNA or DNA, overly sensitive sensor mechanisms, or faulty counter-acting defenses. We propose that the clinical heterogeneity of SLE may be reflected, in part, by heterogeneity in which pathogenic nucleic acid molecules are present and which sensors and pathways they trigger in individual patients. Elucidation of these events may result in the recognition of distinct "endotypes" of SLE, each with its distinct therapeutic choices.
Collapse
Affiliation(s)
- Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| | | | | |
Collapse
|
193
|
Lee JH, Chiang C, Gack MU. Endogenous Nucleic Acid Recognition by RIG-I-Like Receptors and cGAS. J Interferon Cytokine Res 2019; 39:450-458. [PMID: 31066607 DOI: 10.1089/jir.2019.0015] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The innate immune defense of mammalian hosts relies on its capacity to detect invading pathogens and then directly eliminate them or help guide adaptive immune responses. Recognition of microbial DNA and RNA by pattern recognition receptors (PRRs) is central to the detection of pathogens by initiating cytokine-mediated innate immunity. In contrast, disturbance of this pathogen surveillance system can result in aberrant innate immune activation, leading to proinflammatory or autoimmune diseases. Among the many important PRRs are proteins of the retinoic acid-inducible gene-I (RIG-I)-like receptor (RLR) family as well as cyclic GMP-AMP synthase (cGAS), which detect viral RNA and DNA, respectively, within the host cell. Intriguingly, recent evidence has shown that "unmasked," misprocessed, or mislocalized host-derived RNA or DNA molecules can also be recognized by RLRs or cGAS, thereby triggering antiviral host defenses or causing inflammation. Here, we review recent advances of endogenous nucleic acid recognition by RLRs and cGAS during viral infection and systemic proinflammatory/autoimmune disorders.
Collapse
Affiliation(s)
- Jung-Hyun Lee
- Department of Microbiology, The University of Chicago, Chicago, Illinois
| | - Cindy Chiang
- Department of Microbiology, The University of Chicago, Chicago, Illinois
| | - Michaela U Gack
- Department of Microbiology, The University of Chicago, Chicago, Illinois
| |
Collapse
|
194
|
Patra KK, Bhattacharya A, Bhattacharya S. Molecular dynamics investigation of a redox switch in the anti-HIV protein SAMHD1. Proteins 2019; 87:748-759. [PMID: 31017331 DOI: 10.1002/prot.25701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/11/2019] [Accepted: 04/22/2019] [Indexed: 12/17/2022]
Abstract
HIV-1 is restricted in macrophages and certain quiescent myeloid cells due to a "Scorched Earth" dNTP starvation strategy attributed to the sterile alpha motif and HD domain protein-SAMHD1. Active SAMHD1 tetramers are assembled by GTP-Mg+2-dNTP cross bridges and cleave the triphosphate groups of dNTPs at a K m of ~10 μM, which is consistent with dNTP concentrations in cycling cells, but far higher than the equivalent concentration in quiescent cells. Given the substantial disparity between the dNTP concentrations required to activate SAMHD1 tetramers (~10 μM) and the dNTP concentrations in noncycling cells (~10 nM), the possibility of alternate enzymatically active forms of SAMHD1, including monomers remains open. In particular, the possibility of redox regulation of such monomers is also an open question. There have been experimental studies on the regulation of SAMHD1 by Glutathione driven redox reactions recently. Therefore, in this work, we have performed all-atom molecular dynamics simulations to study the dynamics of monomeric SAMHD1 constructs in the context of the three redox-susceptible Cysteine residues and compared them to monomers assembled within a tetramer. Our results indicate that assembly into a tetramer causes ordering of the catalytic core and increased solvent accessibility of the Catalytic Site. We have also found that glutathionylation of surface exposed C522 causes long range allosteric disruptions extending into the protein core. Finally, we see evidence suggesting a transient interaction between C522 and C341. Such a disulfide linkage has been hypothesized by experimental models, but has never been observed in crystal structures before.
Collapse
Affiliation(s)
- Kajwal Kumar Patra
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Akash Bhattacharya
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Swati Bhattacharya
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
195
|
Buffone C, Kutzner J, Opp S, Martinez-Lopez A, Selyutina A, Coggings SA, Studdard LR, Ding L, Kim B, Spearman P, Schaller T, Diaz-Griffero F. The ability of SAMHD1 to block HIV-1 but not SIV requires expression of MxB. Virology 2019; 531:260-268. [PMID: 30959264 PMCID: PMC6487861 DOI: 10.1016/j.virol.2019.03.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022]
Abstract
SAMHD1 is a human restriction factor known to prevent infection of macrophages, resting CD4+ T cells, and dendritic cells by HIV-1. To test the contribution of MxB to the ability of SAMHD1 to block HIV-1 infection, we created human THP-1 cell lines that were knocked out for expression of MxB, SAMHD1, or both. Interestingly, MxB depletion renders SAMHD1 ineffective against HIV-1 but not SIVmac. We observed similar results in human primary macrophages that were knockdown for the expression of MxB. To understand how MxB assists SAMHD1 restriction of HIV-1, we examined direct interaction between SAMHD1 and MxB in pull-down experiments. In addition, we investigated several properties of SAMHD1 in the absence of MxB expression, including subcellular localization, phosphorylation of the SAMHD1 residue T592, and dNTPs levels. These experiments showed that SAMHD1 restriction of HIV-1 requires expression of MxB.
Collapse
Affiliation(s)
- Cindy Buffone
- Albert Einstein College of Medicine, Microbiology and Immunology, Bronx, NY, 10461, USA
| | - Juliane Kutzner
- University Hospital Heidelberg, Department of Infectious Diseases, Heidelberg, 69120, Germany
| | - Silvana Opp
- Albert Einstein College of Medicine, Microbiology and Immunology, Bronx, NY, 10461, USA
| | - Alicia Martinez-Lopez
- Albert Einstein College of Medicine, Microbiology and Immunology, Bronx, NY, 10461, USA
| | - Anastasia Selyutina
- Albert Einstein College of Medicine, Microbiology and Immunology, Bronx, NY, 10461, USA
| | | | | | - Lingmei Ding
- Cincinnati Children's Hospital, Infectious Diseases, Cincinnati, OH, 45229, USA
| | - Baek Kim
- Emory University, Pediatrics, Atlanta, 30322, Georgia
| | - Paul Spearman
- Cincinnati Children's Hospital, Infectious Diseases, Cincinnati, OH, 45229, USA
| | - Torsten Schaller
- University Hospital Heidelberg, Department of Infectious Diseases, Heidelberg, 69120, Germany
| | - Felipe Diaz-Griffero
- Albert Einstein College of Medicine, Microbiology and Immunology, Bronx, NY, 10461, USA.
| |
Collapse
|
196
|
Ng CS, Kato H, Fujita T. Fueling Type I Interferonopathies: Regulation and Function of Type I Interferon Antiviral Responses. J Interferon Cytokine Res 2019; 39:383-392. [PMID: 30897023 DOI: 10.1089/jir.2019.0037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In conjunction with the development of genome-wide technology, numerous studies have revealed the importance of regulatory mechanisms to avoid the onset of autoimmunity. In this, protein regulators and the newly identified low-abundant RNA species participate in the regulation of type I interferon (IFN-I) and proinflammatory genes induced by innate immune sensors. In this review, we briefly look into some of the autoimmune diseases profiled by dysregulations of IFN-I signaling and the regulatory mechanisms critical for immunological homeostasis.
Collapse
Affiliation(s)
- Chen Seng Ng
- 1 Institute for Quantitative and Computational Biosciences, Immunology and Molecular Genetics, University of California, Los Angeles, California.,2 Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California
| | - Hiroki Kato
- 3 Institute of Cardiovascular Immunology, University Hospitals, University of Bonn, Bonn, Germany
| | - Takashi Fujita
- 4 Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,5 Laboratory of Molecular and Cellular Immunology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
197
|
Shapson-Coe A, Valeiras B, Wall C, Rada C. Aicardi-Goutières Syndrome associated mutations of RNase H2B impair its interaction with ZMYM3 and the CoREST histone-modifying complex. PLoS One 2019; 14:e0213553. [PMID: 30889214 PMCID: PMC6424451 DOI: 10.1371/journal.pone.0213553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/24/2019] [Indexed: 11/18/2022] Open
Abstract
DNA-RNA hybrids arise in all cell types, and are removed by multiple enzymes, including the trimeric ribonuclease, RNase H2. Mutations in human RNase H2 result in Aicardi–Goutières syndrome (AGS), an inflammatory brain disorder notable for being a Mendelian mimic of congenital viral infection. Previous studies have shown that several AGS-associated mutations of the RNase H2B subunit do not affect trimer stability or catalytic activity and are clustered on the surface of the complex, leading us to speculate that these mutations might impair important interactions of RNase H2 with so far unidentified proteins. In this study, we show that AGS mutations in this cluster impair the interaction of RNase H2 with several members of the CoREST chromatin-silencing complex that include the histone deacetylase HDAC2 and the demethylase KDM1A, the transcriptional regulators RCOR1 and GTFII-I as well as ZMYM3, an MYM-type zinc finger protein. We also show that the interaction is mediated by the zinc finger protein ZMYM3, suggesting that ZMYM3 acts as a novel type of scaffold protein coordinating interactions between deacetylase, demethylase and RNase H type enzymes, raising the question of whether coordination between histone modifications and the degradation of RNA-DNA hybrids may be required to prevent inflammation in humans.
Collapse
Affiliation(s)
- Alexander Shapson-Coe
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
- * E-mail: (ASC); (CR)
| | - Brenda Valeiras
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Christopher Wall
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Cristina Rada
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
- * E-mail: (ASC); (CR)
| |
Collapse
|
198
|
Majer C, Schüssler JM, König R. Intertwined: SAMHD1 cellular functions, restriction, and viral evasion strategies. Med Microbiol Immunol 2019; 208:513-529. [PMID: 30879196 DOI: 10.1007/s00430-019-00593-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/08/2019] [Indexed: 01/01/2023]
Abstract
SAMHD1 was initially described for its ability to efficiently restrict HIV-1 replication in myeloid cells and resting CD4+ T cells. However, a growing body of evidence suggests that SAMHD1-mediated restriction is by far not limited to lentiviruses, but seems to be a general concept that applies to most retroviruses and at least a number of DNA viruses. SAMHD1 anti-viral activity was long believed to be solely due to its ability to deplete cellular dNTPs by enzymatic degradation. However, since its discovery, several new functions have been attributed to SAMHD1. It has been demonstrated to bind nucleic acids, to modulate innate immunity, as well as to participate in the DNA damage response and resolution of stalled replication forks. Consequently, it is likely that SAMHD1-mediated anti-viral activity is not or not exclusively mediated through its dNTPase activity. Therefore, in this review, we summarize current knowledge on SAMHD1 cellular functions and systematically discuss how these functions could contribute to the restriction of a broad range of viruses besides retroviruses: herpesviruses, poxviruses and hepatitis B virus. Furthermore, we aim to highlight different ways how viruses counteract SAMHD1-mediated restriction to bypass the SAMHD1-mediated block to viral infection.
Collapse
Affiliation(s)
- Catharina Majer
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225, Langen, Germany
| | | | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225, Langen, Germany. .,Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA. .,German Center for Infection Research (DZIF), 63225, Langen, Germany. .,Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225, Langen, Germany.
| |
Collapse
|
199
|
Nucleocytoplasmic shuttling of SAMHD1 is important for LINE-1 suppression. Biochem Biophys Res Commun 2019; 510:551-557. [DOI: 10.1016/j.bbrc.2019.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 02/02/2019] [Indexed: 11/21/2022]
|
200
|
Uggenti C, Lepelley A, Crow YJ. Self-Awareness: Nucleic Acid-Driven Inflammation and the Type I Interferonopathies. Annu Rev Immunol 2019; 37:247-267. [PMID: 30633609 DOI: 10.1146/annurev-immunol-042718-041257] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recognition of foreign nucleic acids is the primary mechanism by which a type I interferon-mediated antiviral response is triggered. Given that human cells are replete with DNA and RNA, this evolutionary strategy poses an inherent biological challenge, i.e., the fundamental requirement to reliably differentiate self-nucleic acids from nonself nucleic acids. We suggest that the group of Mendelian inborn errors of immunity referred to as the type I interferonopathies relate to a breakdown of self/nonself discrimination, with the associated mutant genotypes involving molecules playing direct or indirect roles in nucleic acid signaling. This perspective begs the question as to the sources of self-derived nucleic acids that drive an inappropriate immune response. Resolving this question will provide fundamental insights into immune tolerance, antiviral signaling, and complex autoinflammatory disease states. Here we develop these ideas, discussing type I interferonopathies within the broader framework of nucleic acid-driven inflammation.
Collapse
Affiliation(s)
- Carolina Uggenti
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom;
| | - Alice Lepelley
- Laboratory of Neurogenetics and Neuroinflammation, Institut Imagine, Paris 75015, France
| | - Yanick J Crow
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom; .,Laboratory of Neurogenetics and Neuroinflammation, Institut Imagine, Paris 75015, France.,Paris Descartes University, Sorbonne-Paris-Cité, Paris 75006, France
| |
Collapse
|