151
|
Xie W, Yang M, Chan J, Sun T, Mucci LA, Penney KL, Lee GSM, Kantoff PW. Association of genetic variations of selenoprotein genes, plasma selenium levels, and prostate cancer aggressiveness at diagnosis. Prostate 2016; 76:691-9. [PMID: 26847995 PMCID: PMC5510241 DOI: 10.1002/pros.23160] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/14/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Genetic variations in some of the selenoprotein genes, alone or together with an individual's selenium status, may influence risk or progression of prostate cancer. We investigated the impact of genetic variants of selenoproteins on plasma selenium levels and cancer aggressiveness at diagnosis in men with localized prostate cancer (PCa). METHODS The study cohort comprised 722 patients seen at Dana-Farber Cancer Institute who had localized/locally advanced PCa (i.e., stage T3 or less, N0, and M0) from 1994 to 2001. Fifty-five tagging single nucleotide polymorphisms (SNPs) from six selenoprotein genes (TXNRD1, TXNRD2, SEP15, GPX3, SELENBP1, and SEPP1) were analyzed. Logistic regression is used to examine associations of genotypes and plasma selenium levels with risk of aggressive disease, defined as D'Amico intermediate/high risk categories. Step down permutation was applied to adjust for multiple comparisons. RESULTS Three hundred and forty-eight patients (48%) had aggressive disease at diagnosis. Two SNPs were associated with cancer aggressiveness at diagnosis (unadjusted P = 0.017 and 0.018, respectively). The odds ratio for aggressive disease in patients carrying TXNRD2 rs1005873-AG/GG genotypes or SELENBP1 rs10788804-AG/AA genotypes was 1.54 (95% CI = 1.08, 2.20) and 1.45 (95% CI = 1.07, 1.98), respectively, compared to TXNRD2 rs1005873-AA or SELENBP1 rs10788804-GG carriers. Four SNPs in TXNRD2 (rs1005873, rs13054371, rs3788310, and rs9606174) and the rs230820 in SEPP1 were associated with plasma selenium levels (unadjusted P < 0.05). Permutation adjusted P-values were not statistically significant for all these comparisons at the cut-off point of 0.05. CONCLUSION We identified polymorphisms in selenoproteins that may influence the plasma selenium levels and may be associated with the risk of presenting with aggressive PCa in men with localized or locally advanced PCa. These results should be validated in other independent datasets.
Collapse
Affiliation(s)
- Wanling Xie
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Ming Yang
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - June Chan
- Department of Epidemiology and Biostatistics and Urology, University of California, San Francisco, CA
| | - Tong Sun
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Lorelei A. Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Kathryn L. Penney
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Gwo-Shu Mary Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Philip W. Kantoff
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| |
Collapse
|
152
|
Wang Y, Sun Y, Huang Y, Pan Y, Jia Z, Ma L, Ma L, Lan F, Zhou Y, Shi J, Yang X, Zhang L, Jiang H, Jiang M, Yin A, Cheng J, Wang L, Yang Y, Shi B. Association study between Van der Woude Syndrome causative gene GRHL3 and nonsyndromic cleft lip with or without cleft palate in a Chinese cohort. Gene 2016; 588:69-73. [PMID: 27129939 DOI: 10.1016/j.gene.2016.04.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 04/09/2016] [Accepted: 04/23/2016] [Indexed: 11/30/2022]
Abstract
Cleft lip with or without cleft palate (CL/P) is one of the most common birth defects worldwide and is characterized by abnormalities of the orofacial structure. Syndromic CL/P is mainly caused by Mendelian disorders such as Van der Woude Syndrome (VWS). However, >70% of CL/P cases are nonsyndromic, characterized by isolated orofacial cleft without any known syndrome. The etiology of nonsyndromic CL/P (NSCL/P) remains elusive, but it has been suggested that causative genes of syndromic CL/P might also contribute to NSCL/P. As such, the VWS causative gene IRF6 has been extensively studied in NSCL/P. Recently, GRHL3 was identified as another VWS causative gene. Thus, it may be a novel candidate gene for NSCL/P. In the present study, we genotyped 10 tag SNPs covering GRHL3 and performed association analysis with NSCL/P in 504 cases and 455 healthy controls. Our preliminary results identified rs10903078, rs4638975, and a haplotype rs10903078-rs6659209 of GRHL3 that exceeded the significance threshold (p<0.05), though none survived Bonferroni correction for multiple comparisons. As the first study between GRHL3 and NSCL/P, the contribution of this gene to NSCL/P etiology should be interpreted with caution based on existing evidence. Further, the robustness of association between GRHL3 and NSCL/P should be further validated in expanded cohorts.
Collapse
Affiliation(s)
- Yirui Wang
- Department of Biomedical Engineering, Medical Systems Biology Research Center, Tsinghua University School of Medicine, Beijing 100084, China; CapitalBio Corporation, Beijing 102206, China; National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
| | - Yimin Sun
- Department of Biomedical Engineering, Medical Systems Biology Research Center, Tsinghua University School of Medicine, Beijing 100084, China; CapitalBio Corporation, Beijing 102206, China; National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China; The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Yongqing Huang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Ningxia Medical University, Yinchuan 750004, China; General Hospital of Ningxia Medical University, Yinchuan 750004, China; National Engineering Research Center for Beijing Biochip Technology, Sub-center in Ningxia, Yinchuan 750004, China
| | - Yongchu Pan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
| | - Zhonglin Jia
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China; West China College of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lijuan Ma
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Ningxia Medical University, Yinchuan 750004, China; General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Lan Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
| | - Feifei Lan
- Medical Genetic Center, Guangdong, Women and Children Hospital, Guangzhou 511442, China; Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong, Women and Children Hospital, Guangzhou 511442, China; Biobank of Guangdong Women and Children Hospital, Guangzhou 511442, China
| | - Yuxi Zhou
- CapitalBio Corporation, Beijing 102206, China; National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
| | - Jiayu Shi
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Xiong Yang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Ningxia Medical University, Yinchuan 750004, China; General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Lei Zhang
- CapitalBio Corporation, Beijing 102206, China; National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
| | - Hongbing Jiang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
| | - Min Jiang
- General Hospital of Ningxia Medical University, Yinchuan 750004, China; National Engineering Research Center for Beijing Biochip Technology, Sub-center in Ningxia, Yinchuan 750004, China
| | - Aihua Yin
- Medical Genetic Center, Guangdong, Women and Children Hospital, Guangzhou 511442, China; Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong, Women and Children Hospital, Guangzhou 511442, China; Biobank of Guangdong Women and Children Hospital, Guangzhou 511442, China.
| | - Jing Cheng
- Department of Biomedical Engineering, Medical Systems Biology Research Center, Tsinghua University School of Medicine, Beijing 100084, China; CapitalBio Corporation, Beijing 102206, China; National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
| | - Lin Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China.
| | - Yinxue Yang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Ningxia Medical University, Yinchuan 750004, China; General Hospital of Ningxia Medical University, Yinchuan 750004, China; National Engineering Research Center for Beijing Biochip Technology, Sub-center in Ningxia, Yinchuan 750004, China.
| | - Bing Shi
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China; West China College of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
153
|
Polymorphisms in NRGN are associated with schizophrenia, major depressive disorder and bipolar disorder in the Han Chinese population. J Affect Disord 2016; 194:180-7. [PMID: 26828755 DOI: 10.1016/j.jad.2016.01.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/03/2016] [Accepted: 01/12/2016] [Indexed: 01/24/2023]
Abstract
BACKGROUND The NRGN gene locates on 11q24 and encodes a postsynaptic protein kinase substrate that binds calmodulin in the absence of calcium. In a previous genome-wide association study of schizophrenia in the Caucasian population, rs12807809 of NRGN was found to be significantly associated with schizophrenia, moreover, it was further found to be associated with bipolar disorder. METHODS We recruited 1248 schizophrenia cases, 1344 bipolar disorder cases, 1056 major depressive disorder cases, and 1248 healthy controls from Han Chinese population. Rs12807809 and another two tag SNPs of NRGN were genotyped and analyzed in three diseases respectively. A meta-analysis of rs12807809 was also conducted to verify its association with schizophrenia in Han Chinese population. RESULTS Rs7113041 was associated with bipolar disorder (odds ratio, 95% confidence interval (OR, 95% CI)=1.194, 1.032-1.383; Pgenotype=0.0126), and rs12278912 was associated with major depressive disorder (OR, 95% CI=0.789, 0.673-0.924; Pallele=0.0102, Pgenotype=0.0399) after Bonferroni correction. The "GA" haplotype of rs7113041-rs12278912 was significantly associated with schizophrenia, major depressive disorder and bipolar disorder (corresponding P values were 2.85E-04, 3.00E-03, and 5.40E-04 after Bonferroni correction). LIMITATIONS Despite the association between NRGN and psychoses we have found, we failed to validate the positive variant rs12807809, which was reported in the Caucasian genome-wide association study both in our single site association test and the meta-analysis. Functional studies are needed to illuminate the role of NRGN in the pathogenesis of these mental disorders. CONCLUSIONS Our findings prove that NRGN is a shared susceptibility gene of schizophrenia, major depression and bipolar disorder in Han Chinese, and this might provide a new target for the diagnosis and treatment of these mental disorders.
Collapse
|
154
|
Misra MK, Mishra A, Pandey SK, Kapoor R, Sharma RK, Agrawal S. Association of functional genetic variants of transcription factor Forkhead Box P3 and Nuclear Factor-κB with end-stage renal disease and renal allograft outcome. Gene 2016; 581:57-65. [DOI: 10.1016/j.gene.2016.01.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/30/2015] [Accepted: 01/16/2016] [Indexed: 12/19/2022]
|
155
|
Wen Z, Chen J, Khan RAW, Song Z, Wang M, Li Z, Shen J, Li W, Shi Y. Genetic association between NRG1 and schizophrenia, major depressive disorder, bipolar disorder in Han Chinese population. Am J Med Genet B Neuropsychiatr Genet 2016; 171B:468-78. [PMID: 26888291 DOI: 10.1002/ajmg.b.32428] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/29/2016] [Indexed: 12/14/2022]
Abstract
Schizophrenia, major depressive disorder, and bipolar disorder are three major psychiatric disorders affecting around 0.66%, 3.3%, and 1.5% of the Han Chinese population respectively. Several genetic linkage analyses and genome wide association studies identified NRG1 as a susceptibility gene of schizophrenia, which was validated by its role in neurodevelopment, glutamate, and other neurotransmitter receptor expression regulation. To further investigate whether NRG1 is a shared risk gene for major depressive disorder, bipolar disorder as well as schizophrenia, we performed an association study among 1,248 schizophrenia cases, 1,056 major depression cases, 1,344 bipolar disorder cases, and 1,248 controls. Totally 15 tag SNPs were genotyped and analyzed, and no population stratification was found in our sample set. Among the sites, rs4236710 (corrected Pgenotye = 0.015) and rs4512342 (Pallele = 0.03, Pgenotye = 0.045 after correction) were associated with schizophrenia, and rs2919375 (corrected Pgenotye = 0.004) was associated with major depressive disorder. The haplotype rs4512342-rs6982890 showed association with schizophrenia (P = 0.03 for haplotype "TC" after correction), and haplotype rs4531002-rs11989919 proved to be a shared risk factor for both major depressive disorder ("CC": corrected P = 0.009) and bipolar disorder ("CT": corrected P = 0.003). Our results confirmed that NRG1 was a shared common susceptibility gene for major mental disorders in Han Chinese population.
Collapse
Affiliation(s)
- Zujia Wen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jianhua Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Raja Amjad Waheed Khan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Zhijian Song
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Meng Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Zhiqiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jiawei Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Wenjin Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China.,Shanghai Changning Mental Health Center, Shanghai, P.R. China.,Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
156
|
Tcheandjieu C, Lesueur F, Sanchez M, Baron-Dubourdieu D, Guizard AV, Mulot C, Laurent-Puig P, Schvartz C, Truong T, Guenel P. Fine-mapping of two differentiated thyroid carcinoma susceptibility loci at 9q22.33 and 14q13.3 detects novel candidate functional SNPs in Europeans from metropolitan France and Melanesians from New Caledonia. Int J Cancer 2016; 139:617-27. [PMID: 26991144 DOI: 10.1002/ijc.30088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/05/2016] [Accepted: 02/15/2016] [Indexed: 12/13/2022]
Abstract
Incidence of differentiated thyroid carcinoma varies considerably between countries and ethnic groups, with particularly high incidence rates in Melanesians of New Caledonia. Differentiated thyroid cancer (DTC) has a familial relative risk higher than other cancers, highlighting the contribution of inherited factors to the disease. Recently, genome-wide association studies (GWAS) identified several DTC susceptibility loci. The most robust associations were reported at loci 9q22 (rs965513 and rs1867277) and 14q13 (rs944289 and rs116909734). In this study, we performed a fine-mapping study of the two gene regions among Europeans and Melanesians from Metropolitan France and New Caledonia. We examined 81 single nucleotide polymorphisms (SNPs) at 9q22 and 561 SNPs at 14q13 in Europeans (625 cases/776 controls) and in Melanesians (244 cases/189 controls). The association with the four SNPs previously identified in GWAS was replicated in Europeans while only rs944289 was replicated in Melanesians. Among Europeans, we found that the two SNPs previously reported at 9q22 were not independently associated to DTC and that rs965513 was the predominant signal; at 14q13, we showed that the haplotype rs944289[C]-rs116909374[C]-rs999460[T] was significantly associated with DTC risk and that the association with rs116909374 differed by smoking status (p-interaction = 0.03). Among Melanesians, a new independent signal was observed at 14q13 for rs1755774 which is strongly correlated to rs2787423; this latter is potentially a functional variant. Significant interactions with parity (p < 0.05) and body mass index were observed for rs1755774 and rs2787423. This study contributed to a better characterization of the DTC loci 9q22 and 14q13 in Europeans and in Melanesians and has identified novel variants to be prioritized for further functional studies.
Collapse
Affiliation(s)
| | - Fabienne Lesueur
- Inserm, U900, Paris, France.,Institut Curie, Paris, France.,PSL Research University, Paris, France.,Mines ParisTech, Fontainebleau, France
| | - Marie Sanchez
- CESP, INSERM, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | | | - Anne-Valerie Guizard
- Registre Général des tumeurs du Calvados, Centre François Baclesse, Caen, France.,U1086 Inserm-UCNB, Cancers and Prevention, Caen, France
| | - Claire Mulot
- Université Paris Descartes, Inserm UMR 5775 EPIGENETEC, Paris, France
| | | | - Claire Schvartz
- Centre de Lutte Contre le Cancer Jean GODINOT, Reims, France
| | - Therese Truong
- CESP, INSERM, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Pascal Guenel
- CESP, INSERM, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
157
|
Lin FY, Huang Z, Lu N, Chen W, Fang H, Han W. Controversial opinion: evaluation of EGR1 and LAMA2 loci for high myopia in Chinese populations. J Zhejiang Univ Sci B 2016; 17:225-35. [PMID: 26984843 DOI: 10.1631/jzus.b1500233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Functional studies have suggested the important role of early growth response 1 (EGR1) and Laminin α2-chain (LAMA2) in human eye development. Genetic studies have reported a significant association of the single nucleotide polymorphism (SNP) in the LAMA2 gene with myopia. This study aimed to evaluate the association of the tagging SNPs (tSNPs) in the EGR1 and LAMA2 genes with high myopia in two independent Han Chinese populations. Four tSNPs (rs11743810 in the EGR1 gene; rs2571575, rs9321170, and rs1889891 in the LAMA2 gene) were selected, according to the HapMap database (http://hapmap.ncbi.nlm.nih.gov), and were genotyped using the ligase detection reaction (LDR) approach for 167 Han Chinese nuclear families with extremely highly myopic offspring (<-10.0 diopters) and an independent group with 485 extremely highly myopic cases (<-10.0 diopters) and 499 controls. Direct sequencing was used to confirm the LDR results in twenty randomly selected subjects. Family-based association analysis was performed using the family-based association test (FBAT) software package (Version 1.5.5). Population-based association analysis was performed using the Chi-square test. The association analysis power was estimated using online software (http://design.cs.ucla.edu). The FBAT demonstrated that all four tSNPs tested did not show association with high myopia (P>0.05). Haplotype analysis of tSNPs in the LAMA2 genes also did not show a significant association (P>0.05). Meanwhile, population-based association analysis also showed no significant association results with high myopia (P>0.05). On the basis of our family- and population-based analyses for the Han Chinese population, we did not find positive association signals of the four SNPs in the LAMA2 and EGR1 genes with high myopia.
Collapse
Affiliation(s)
- Fang-yu Lin
- Department of Ophthalmology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Zhu Huang
- Department of Ophthalmology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Ning Lu
- Department of Ophthalmology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Wei Chen
- Department of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Hui Fang
- Department of Ophthalmology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Wei Han
- Department of Ophthalmology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
158
|
Lajunen TK, Jaakkola JJK, Jaakkola MS. Interleukin 6 SNP rs1800797 associates with the risk of adult-onset asthma. Genes Immun 2016; 17:193-8. [PMID: 26938664 DOI: 10.1038/gene.2016.8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/24/2015] [Accepted: 01/04/2016] [Indexed: 12/18/2022]
Abstract
Interleukin 6 (IL6) is an inflammatory cytokine that has been suggested to have an important role in the pathogenesis of asthma. IL6 single-nucleotide polymorphisms (SNPs) have been associated with levels of IL6, and with childhood and prevalent adult asthma. A recent study also suggested that IL6 SNPs associate especially with atopic asthma. However, association of IL6 SNPs with adult-onset asthma has not been studied. In a population-based study of 467 incident adult-onset asthma cases and 613 disease-free controls from South Finland, we analyzed association of 6 tagging SNPs of the IL6 locus with the risk of adult-onset asthma and with atopy. Asthma was clinically diagnosed, and atopy was defined based on Phadiatop test. IL6 SNP rs1800797 associated with the risk of adult-onset asthma in a log additive model, with adjusted odds ratio (aOR) 1.31 (95% confidence interval 1.09-1.57), and especially with the risk of atopic adult-onset asthma when compared with non-atopic controls, aOR 1.46 (95% CI 1.12-1.90). This is the first study to show an association of IL6 with adult-onset asthma, and especially with atopic adult-onset asthma.
Collapse
Affiliation(s)
- T K Lajunen
- Center for Environmental and Respiratory Health Research (CERH), University of Oulu, Oulu, Finland.,Medical Research Center Oulu (MRC Oulu), Oulu, Finland
| | - J J K Jaakkola
- Center for Environmental and Respiratory Health Research (CERH), University of Oulu, Oulu, Finland.,Medical Research Center Oulu (MRC Oulu), Oulu, Finland
| | - M S Jaakkola
- Center for Environmental and Respiratory Health Research (CERH), University of Oulu, Oulu, Finland.,Medical Research Center Oulu (MRC Oulu), Oulu, Finland
| |
Collapse
|
159
|
Raj P, Rai E, Song R, Khan S, Wakeland BE, Viswanathan K, Arana C, Liang C, Zhang B, Dozmorov I, Carr-Johnson F, Mitrovic M, Wiley GB, Kelly JA, Lauwerys BR, Olsen NJ, Cotsapas C, Garcia CK, Wise CA, Harley JB, Nath SK, James JA, Jacob CO, Tsao BP, Pasare C, Karp DR, Li QZ, Gaffney PM, Wakeland EK. Regulatory polymorphisms modulate the expression of HLA class II molecules and promote autoimmunity. eLife 2016; 5:e12089. [PMID: 26880555 PMCID: PMC4811771 DOI: 10.7554/elife.12089] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/13/2016] [Indexed: 12/15/2022] Open
Abstract
Targeted sequencing of sixteen SLE risk loci among 1349 Caucasian cases and controls produced a comprehensive dataset of the variations causing susceptibility to systemic lupus erythematosus (SLE). Two independent disease association signals in the HLA-D region identified two regulatory regions containing 3562 polymorphisms that modified thirty-seven transcription factor binding sites. These extensive functional variations are a new and potent facet of HLA polymorphism. Variations modifying the consensus binding motifs of IRF4 and CTCF in the XL9 regulatory complex modified the transcription of HLA-DRB1, HLA-DQA1 and HLA-DQB1 in a chromosome-specific manner, resulting in a 2.5-fold increase in the surface expression of HLA-DR and DQ molecules on dendritic cells with SLE risk genotypes, which increases to over 4-fold after stimulation. Similar analyses of fifteen other SLE risk loci identified 1206 functional variants tightly linked with disease-associated SNPs and demonstrated that common disease alleles contain multiple causal variants modulating multiple immune system genes.
Collapse
Affiliation(s)
- Prithvi Raj
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Ekta Rai
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Ran Song
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Shaheen Khan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Benjamin E Wakeland
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Kasthuribai Viswanathan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Carlos Arana
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Chaoying Liang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Bo Zhang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Igor Dozmorov
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Ferdicia Carr-Johnson
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Mitja Mitrovic
- Department of Neurology, Yale School of Medicine, New Haven, United States
| | - Graham B Wiley
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
| | - Jennifer A Kelly
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
| | - Bernard R Lauwerys
- Pole de pathologies rhumatismales, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Bruxelles, Belgium
| | - Nancy J Olsen
- Division of Rheumatology, Department of Medicine, Penn State Medical School, Hershey, United States
| | - Chris Cotsapas
- Department of Neurology, Yale School of Medicine, New Haven, United States
| | - Christine K Garcia
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, United States
| | - Carol A Wise
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, United States
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, United States
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, United States
| | - John B Harley
- Cincinnati VA Medical Center, Cincinnati, United States
- Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Swapan K Nath
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
| | - Judith A James
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
| | - Chaim O Jacob
- Department of Medicine, University of Southern California, Los Angeles, United States
| | - Betty P Tsao
- Department of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Chandrashekhar Pasare
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - David R Karp
- Rheumatic Diseases Division, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Quan Zhen Li
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Patrick M Gaffney
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
| | - Edward K Wakeland
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
160
|
He XW, Shen YG, Zhu M, Hu XF, Zheng Z, Liu P, Li C, Zhu F, Jin XP. Angiopoietin-like protein 4 serum levels and gene polymorphisms are associated with large artery atherosclerotic stroke. J Neurol Sci 2016; 362:333-8. [PMID: 26944173 DOI: 10.1016/j.jns.2016.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/25/2016] [Accepted: 02/03/2016] [Indexed: 01/23/2023]
Abstract
BACKGROUND Angiopoietin-like protein 4 (ANGPTL4) is a central player in lipid metabolism and atherosclerosis and may thus be involved in ischaemic stroke. However, no study in humans has investigated the association of ANGPTL4 gene polymorphisms or serum levels with ischaemic stroke. METHODS We investigated the influence of the tagged single nucleotide polymorphisms (tSNPs) rs4076317 (c.207C>G) and rs1044250 (c.797C>T; T266M) of the ANGPTL4 gene on ischaemic stroke risk in a large group of 712 large artery atherosclerotic (LAA) stroke patients and 828 controls. In addition, we examined the association of the serum ANGPTL4 levels with lipid metabolism, LAA stroke severity and ischaemic volume in a sample of 302 LAA stroke patients and 307 controls. RESULTS The findings reveal that rs4076317 exerts a co-dominant effect on lower serum TG levels compared with common homozygotes. Fewer stroke cases were homozygous for variants of rs4076317 compared with the controls (7.0% vs. 10.9%). The serum ANGPTL4 levels in patients were significantly higher than those in the controls in a univariate manner (P=0.001) and after adjustment for other risk factors (1.463 [1.215-1.835]; P<0.001). Consistently, the ANGPTL4 levels were statistically correlated with higher NIHSS scores (r=0.172, P=0.003) and larger lesion volumes (r=0.124, P=0.031). CONCLUSION We concluded that the tagged SNPs and high serum levels of ANGPTL4 are associated with LAA stroke and the lipid characteristics.
Collapse
Affiliation(s)
- Xin-Wei He
- Department of Neurology, Taizhou Hospital, Affiliated Hospital of Wenzhou Medical University, Taizhou, Zhejiang, PR China
| | - Yu-Guang Shen
- Department of Neurology, Taizhou Hospital, Affiliated Hospital of Wenzhou Medical University, Taizhou, Zhejiang, PR China
| | - Min Zhu
- Public Laboratory, Taizhou Hospital, Affiliated Hospital of Wenzhou Medical University, Taizhou, Zhejiang, PR China
| | - Xiao-Fei Hu
- Department of Neurology, Taizhou Hospital, Affiliated Hospital of Wenzhou Medical University, Taizhou, Zhejiang, PR China
| | - Zhou Zheng
- Department of Neurology, Taizhou Hospital, Affiliated Hospital of Wenzhou Medical University, Taizhou, Zhejiang, PR China
| | - Peng Liu
- Department of Neurology, Taizhou Hospital, Affiliated Hospital of Wenzhou Medical University, Taizhou, Zhejiang, PR China
| | - Cai Li
- Department of Neurology, Taizhou Hospital, Affiliated Hospital of Wenzhou Medical University, Taizhou, Zhejiang, PR China
| | - Feng Zhu
- Department of Neurology, Taizhou Hospital, Affiliated Hospital of Wenzhou Medical University, Taizhou, Zhejiang, PR China
| | - Xiao-Ping Jin
- Department of Neurology, Taizhou Hospital, Affiliated Hospital of Wenzhou Medical University, Taizhou, Zhejiang, PR China.
| |
Collapse
|
161
|
Xu J, Yuan Z, Ji J, Zhang X, Li H, Wu X, Xue F, Liu Y. A powerful score-based test statistic for detecting gene-gene co-association. BMC Genet 2016; 17:31. [PMID: 26822525 PMCID: PMC4731962 DOI: 10.1186/s12863-016-0331-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/13/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The genetic variants identified by Genome-wide association study (GWAS) can only account for a small proportion of the total heritability for complex disease. The existence of gene-gene joint effects which contains the main effects and their co-association is one of the possible explanations for the "missing heritability" problems. Gene-gene co-association refers to the extent to which the joint effects of two genes differ from the main effects, not only due to the traditional interaction under nearly independent condition but the correlation between genes. Generally, genes tend to work collaboratively within specific pathway or network contributing to the disease and the specific disease-associated locus will often be highly correlated (e.g. single nucleotide polymorphisms (SNPs) in linkage disequilibrium). Therefore, we proposed a novel score-based statistic (SBS) as a gene-based method for detecting gene-gene co-association. RESULTS Various simulations illustrate that, under different sample sizes, marginal effects of causal SNPs and co-association levels, the proposed SBS has the better performance than other existed methods including single SNP-based and principle component analysis (PCA)-based logistic regression model, the statistics based on canonical correlations (CCU), kernel canonical correlation analysis (KCCU), partial least squares path modeling (PLSPM) and delta-square (δ (2)) statistic. The real data analysis of rheumatoid arthritis (RA) further confirmed its advantages in practice. CONCLUSIONS SBS is a powerful and efficient gene-based method for detecting gene-gene co-association.
Collapse
Affiliation(s)
- Jing Xu
- Department of Biostatistics, School of Public Health, Shandong University, 44 Wen Hua Xi Road, PO Box 100, Jinan, 250012, China.
| | - Zhongshang Yuan
- Department of Biostatistics, School of Public Health, Shandong University, 44 Wen Hua Xi Road, PO Box 100, Jinan, 250012, China.
| | - Jiadong Ji
- Department of Biostatistics, School of Public Health, Shandong University, 44 Wen Hua Xi Road, PO Box 100, Jinan, 250012, China.
| | - Xiaoshuai Zhang
- Department of Biostatistics, School of Public Health, Shandong University, 44 Wen Hua Xi Road, PO Box 100, Jinan, 250012, China.
| | - Hongkai Li
- Department of Biostatistics, School of Public Health, Shandong University, 44 Wen Hua Xi Road, PO Box 100, Jinan, 250012, China.
| | - Xuesen Wu
- Department of Epidemiology and Statistics, Bengbu Medical College at Bengbu, Anhui, 233030, China.
| | - Fuzhong Xue
- Department of Biostatistics, School of Public Health, Shandong University, 44 Wen Hua Xi Road, PO Box 100, Jinan, 250012, China.
| | - Yanxun Liu
- Department of Biostatistics, School of Public Health, Shandong University, 44 Wen Hua Xi Road, PO Box 100, Jinan, 250012, China.
| |
Collapse
|
162
|
Linnik JE, Egli A. Impact of host genetic polymorphisms on vaccine induced antibody response. Hum Vaccin Immunother 2016; 12:907-15. [PMID: 26809773 DOI: 10.1080/21645515.2015.1119345] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Many host- and vaccine-specific factors modulate an antibody response. Host genetic polymorphisms, in particular, modulate the immune response in multiple ways on different scales. This review article describes how information on host genetic polymorphisms and corresponding immune cascades may be used to generate personalized vaccine strategies to optimize the antibody response.
Collapse
Affiliation(s)
- Janina E Linnik
- a Applied Microbiology Research , Department of Biomedicine, University Basel , Basel , Switzerland.,b Department of Biosystems Science and Engineering , ETH Zürich , Basel , Switzerland.,c Swiss Institute of Bioinformatics , Basel , Switzerland
| | - Adrian Egli
- a Applied Microbiology Research , Department of Biomedicine, University Basel , Basel , Switzerland.,d Clinical Microbiology, University Hospital Basel , Basel , Switzerland
| |
Collapse
|
163
|
Hildebrandt MAT, Reyes ME, Lin M, He Y, Nguyen SV, Hawk ET, Wu X. Germline Genetic Variants in the Wnt/β-Catenin Pathway as Predictors of Colorectal Cancer Risk. Cancer Epidemiol Biomarkers Prev 2016; 25:540-6. [PMID: 26809274 DOI: 10.1158/1055-9965.epi-15-0834] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/06/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The Wnt/β-catenin signaling pathway plays a key role in stem cell maintenance in the colorectum. Rare high-penetrance genetic mutations in components of this pathway result in familial colorectal cancer, yet the impact of common, germline variants remains unknown. METHODS We assessed 172 variants in 26 genes from the Wnt/β-catenin pathway in 809 colorectal cancer cases and 814 healthy controls, followed by replication of the top findings in another 691 cases and 775 controls. In silico informatic tools were used to predict functional effects of variants. RESULTS Eighteen SNPs in the pathway were significantly associated with colorectal cancer risk (P < 0.05) in the discovery phase. We observed a significant dose-response increase in colorectal cancer risk by number of risk genotypes carried (P = 4.19 × 10(-8)). Gene-based analysis implicated CSNK1D (P = 0.014), FZD3 (P = 0.023), and APC (P = 0.027) as significant for colorectal cancer risk. In the replication phase, FZD3:rs11775139 remained significantly associated with reduced risk with a pooled OR of 0.85 [95% confidence interval (CI), 0.76-0.94, P = 0.001]. Although borderline significant in the replication population, APC:rs2545162 was highly significant in the pooled analysis-OR, 1.42; 95% CI, 1.16-1.74; P = 0.00085. Functional assessment identified several potential biologic mechanisms underlying these associations. CONCLUSIONS Our findings suggest that common germline variants in the Wnt/β-catenin pathway may be involved in colorectal cancer development. IMPACT These variants may be informative in colorectal cancer risk assessment to identify individuals at increased risk who would be candidates for screening.
Collapse
Affiliation(s)
| | - Monica E Reyes
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Moubin Lin
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yonggang He
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Son V Nguyen
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ernest T Hawk
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xifeng Wu
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
164
|
Ouellet-Morin I, Côté SM, Vitaro F, Hébert M, Carbonneau R, Lacourse É, Turecki G, Tremblay RE. Effects of the MAOA gene and levels of exposure to violence on antisocial outcomes. Br J Psychiatry 2016; 208:42-8. [PMID: 26494873 DOI: 10.1192/bjp.bp.114.162081] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 02/23/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND The monoamine oxidase A (MAOA) gene has been shown to moderate the impact of maltreatment on antisocial behaviour. Replication efforts have, however, yielded inconsistent results. AIMS To investigate whether the interaction between the MAOA gene and violence is present across the full distribution of violence or emerges at higher levels of exposure. METHOD Participants were 327 male members of the Québec Longitudinal Study of Kindergarten Children. Exposure to violence comprised retrospective reports of mother's and father's maltreatment, sexual and physical abuse. Conduct disorder and antisocial personality symptoms were assessed in semi-structured interviews and partner violence, property-violent crimes and arrest were self-reported. RESULTS Non-linear interactions between the MAOA gene and violence were detected, suggesting that the genetic moderation may come about once a certain level of violence is experienced. CONCLUSIONS Future studies should investigate the mechanisms translating substantial violence exposure, which could, subsequently, trigger the expression of genetically based differences in antisocial behaviour.
Collapse
Affiliation(s)
- Isabelle Ouellet-Morin
- Isabelle Ouellet-Morin, PhD, School of Criminology, Université de Montréal & Research Center of the Montreal Mental Health University Institute, Montréal and Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal, Canada; Sylvana M. Côté, PhD, Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal, Department of Social and Preventive Medicine, Université de Montréal, Montréal, Canada and International Laboratory for Child and Adolescent Mental Health Development, INSERM U669, Paris, France; Frank Vitaro, PhD, Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal and School of Psychoéducation, Université de Montréal, Montréal, Canada; Martine Hébert, PhD, Department of Sexology, Université du Québec à Montréal, Montréal, Québec, Canada; René Carbonneau, PhD, Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal, Canada;Éric Lacourse, PhD, School of Criminology, Université de Montréal & Research Center of the Montreal Mental Health University Institute, Montréal, Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal, Canada and Department of Sociology, Université de Montréal & Research Center of the Sainte-Justine University Hospital, Montréal, Canada; Gustavo Turecki, MD, PhD, The McGill Group for Suicide Studies, Douglas Hospital Research Center, Montréal, Québec, Canada; Richard E. Tremblay, PhD, Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal, Canada, International Laboratory for Child and Adolescent Mental Health Development, INSERM U669, Paris, France, Department of Pediatrics, Psychiatry and Psychology, Université de Montréal, Montréal, Canada and School of Public Health, Physiotherapy and Population Science, University College Dublin, Ireland
| | - Sylvana M Côté
- Isabelle Ouellet-Morin, PhD, School of Criminology, Université de Montréal & Research Center of the Montreal Mental Health University Institute, Montréal and Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal, Canada; Sylvana M. Côté, PhD, Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal, Department of Social and Preventive Medicine, Université de Montréal, Montréal, Canada and International Laboratory for Child and Adolescent Mental Health Development, INSERM U669, Paris, France; Frank Vitaro, PhD, Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal and School of Psychoéducation, Université de Montréal, Montréal, Canada; Martine Hébert, PhD, Department of Sexology, Université du Québec à Montréal, Montréal, Québec, Canada; René Carbonneau, PhD, Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal, Canada;Éric Lacourse, PhD, School of Criminology, Université de Montréal & Research Center of the Montreal Mental Health University Institute, Montréal, Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal, Canada and Department of Sociology, Université de Montréal & Research Center of the Sainte-Justine University Hospital, Montréal, Canada; Gustavo Turecki, MD, PhD, The McGill Group for Suicide Studies, Douglas Hospital Research Center, Montréal, Québec, Canada; Richard E. Tremblay, PhD, Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal, Canada, International Laboratory for Child and Adolescent Mental Health Development, INSERM U669, Paris, France, Department of Pediatrics, Psychiatry and Psychology, Université de Montréal, Montréal, Canada and School of Public Health, Physiotherapy and Population Science, University College Dublin, Ireland
| | - Frank Vitaro
- Isabelle Ouellet-Morin, PhD, School of Criminology, Université de Montréal & Research Center of the Montreal Mental Health University Institute, Montréal and Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal, Canada; Sylvana M. Côté, PhD, Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal, Department of Social and Preventive Medicine, Université de Montréal, Montréal, Canada and International Laboratory for Child and Adolescent Mental Health Development, INSERM U669, Paris, France; Frank Vitaro, PhD, Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal and School of Psychoéducation, Université de Montréal, Montréal, Canada; Martine Hébert, PhD, Department of Sexology, Université du Québec à Montréal, Montréal, Québec, Canada; René Carbonneau, PhD, Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal, Canada;Éric Lacourse, PhD, School of Criminology, Université de Montréal & Research Center of the Montreal Mental Health University Institute, Montréal, Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal, Canada and Department of Sociology, Université de Montréal & Research Center of the Sainte-Justine University Hospital, Montréal, Canada; Gustavo Turecki, MD, PhD, The McGill Group for Suicide Studies, Douglas Hospital Research Center, Montréal, Québec, Canada; Richard E. Tremblay, PhD, Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal, Canada, International Laboratory for Child and Adolescent Mental Health Development, INSERM U669, Paris, France, Department of Pediatrics, Psychiatry and Psychology, Université de Montréal, Montréal, Canada and School of Public Health, Physiotherapy and Population Science, University College Dublin, Ireland
| | - Martine Hébert
- Isabelle Ouellet-Morin, PhD, School of Criminology, Université de Montréal & Research Center of the Montreal Mental Health University Institute, Montréal and Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal, Canada; Sylvana M. Côté, PhD, Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal, Department of Social and Preventive Medicine, Université de Montréal, Montréal, Canada and International Laboratory for Child and Adolescent Mental Health Development, INSERM U669, Paris, France; Frank Vitaro, PhD, Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal and School of Psychoéducation, Université de Montréal, Montréal, Canada; Martine Hébert, PhD, Department of Sexology, Université du Québec à Montréal, Montréal, Québec, Canada; René Carbonneau, PhD, Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal, Canada;Éric Lacourse, PhD, School of Criminology, Université de Montréal & Research Center of the Montreal Mental Health University Institute, Montréal, Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal, Canada and Department of Sociology, Université de Montréal & Research Center of the Sainte-Justine University Hospital, Montréal, Canada; Gustavo Turecki, MD, PhD, The McGill Group for Suicide Studies, Douglas Hospital Research Center, Montréal, Québec, Canada; Richard E. Tremblay, PhD, Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal, Canada, International Laboratory for Child and Adolescent Mental Health Development, INSERM U669, Paris, France, Department of Pediatrics, Psychiatry and Psychology, Université de Montréal, Montréal, Canada and School of Public Health, Physiotherapy and Population Science, University College Dublin, Ireland
| | - René Carbonneau
- Isabelle Ouellet-Morin, PhD, School of Criminology, Université de Montréal & Research Center of the Montreal Mental Health University Institute, Montréal and Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal, Canada; Sylvana M. Côté, PhD, Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal, Department of Social and Preventive Medicine, Université de Montréal, Montréal, Canada and International Laboratory for Child and Adolescent Mental Health Development, INSERM U669, Paris, France; Frank Vitaro, PhD, Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal and School of Psychoéducation, Université de Montréal, Montréal, Canada; Martine Hébert, PhD, Department of Sexology, Université du Québec à Montréal, Montréal, Québec, Canada; René Carbonneau, PhD, Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal, Canada;Éric Lacourse, PhD, School of Criminology, Université de Montréal & Research Center of the Montreal Mental Health University Institute, Montréal, Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal, Canada and Department of Sociology, Université de Montréal & Research Center of the Sainte-Justine University Hospital, Montréal, Canada; Gustavo Turecki, MD, PhD, The McGill Group for Suicide Studies, Douglas Hospital Research Center, Montréal, Québec, Canada; Richard E. Tremblay, PhD, Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal, Canada, International Laboratory for Child and Adolescent Mental Health Development, INSERM U669, Paris, France, Department of Pediatrics, Psychiatry and Psychology, Université de Montréal, Montréal, Canada and School of Public Health, Physiotherapy and Population Science, University College Dublin, Ireland
| | - Éric Lacourse
- Isabelle Ouellet-Morin, PhD, School of Criminology, Université de Montréal & Research Center of the Montreal Mental Health University Institute, Montréal and Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal, Canada; Sylvana M. Côté, PhD, Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal, Department of Social and Preventive Medicine, Université de Montréal, Montréal, Canada and International Laboratory for Child and Adolescent Mental Health Development, INSERM U669, Paris, France; Frank Vitaro, PhD, Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal and School of Psychoéducation, Université de Montréal, Montréal, Canada; Martine Hébert, PhD, Department of Sexology, Université du Québec à Montréal, Montréal, Québec, Canada; René Carbonneau, PhD, Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal, Canada;Éric Lacourse, PhD, School of Criminology, Université de Montréal & Research Center of the Montreal Mental Health University Institute, Montréal, Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal, Canada and Department of Sociology, Université de Montréal & Research Center of the Sainte-Justine University Hospital, Montréal, Canada; Gustavo Turecki, MD, PhD, The McGill Group for Suicide Studies, Douglas Hospital Research Center, Montréal, Québec, Canada; Richard E. Tremblay, PhD, Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal, Canada, International Laboratory for Child and Adolescent Mental Health Development, INSERM U669, Paris, France, Department of Pediatrics, Psychiatry and Psychology, Université de Montréal, Montréal, Canada and School of Public Health, Physiotherapy and Population Science, University College Dublin, Ireland
| | - Gustavo Turecki
- Isabelle Ouellet-Morin, PhD, School of Criminology, Université de Montréal & Research Center of the Montreal Mental Health University Institute, Montréal and Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal, Canada; Sylvana M. Côté, PhD, Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal, Department of Social and Preventive Medicine, Université de Montréal, Montréal, Canada and International Laboratory for Child and Adolescent Mental Health Development, INSERM U669, Paris, France; Frank Vitaro, PhD, Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal and School of Psychoéducation, Université de Montréal, Montréal, Canada; Martine Hébert, PhD, Department of Sexology, Université du Québec à Montréal, Montréal, Québec, Canada; René Carbonneau, PhD, Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal, Canada;Éric Lacourse, PhD, School of Criminology, Université de Montréal & Research Center of the Montreal Mental Health University Institute, Montréal, Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal, Canada and Department of Sociology, Université de Montréal & Research Center of the Sainte-Justine University Hospital, Montréal, Canada; Gustavo Turecki, MD, PhD, The McGill Group for Suicide Studies, Douglas Hospital Research Center, Montréal, Québec, Canada; Richard E. Tremblay, PhD, Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal, Canada, International Laboratory for Child and Adolescent Mental Health Development, INSERM U669, Paris, France, Department of Pediatrics, Psychiatry and Psychology, Université de Montréal, Montréal, Canada and School of Public Health, Physiotherapy and Population Science, University College Dublin, Ireland
| | - Richard E Tremblay
- Isabelle Ouellet-Morin, PhD, School of Criminology, Université de Montréal & Research Center of the Montreal Mental Health University Institute, Montréal and Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal, Canada; Sylvana M. Côté, PhD, Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal, Department of Social and Preventive Medicine, Université de Montréal, Montréal, Canada and International Laboratory for Child and Adolescent Mental Health Development, INSERM U669, Paris, France; Frank Vitaro, PhD, Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal and School of Psychoéducation, Université de Montréal, Montréal, Canada; Martine Hébert, PhD, Department of Sexology, Université du Québec à Montréal, Montréal, Québec, Canada; René Carbonneau, PhD, Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal, Canada;Éric Lacourse, PhD, School of Criminology, Université de Montréal & Research Center of the Montreal Mental Health University Institute, Montréal, Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal, Canada and Department of Sociology, Université de Montréal & Research Center of the Sainte-Justine University Hospital, Montréal, Canada; Gustavo Turecki, MD, PhD, The McGill Group for Suicide Studies, Douglas Hospital Research Center, Montréal, Québec, Canada; Richard E. Tremblay, PhD, Research Group on Child Psychosocial Maladjustment, Université de Montréal, Montréal, Canada, International Laboratory for Child and Adolescent Mental Health Development, INSERM U669, Paris, France, Department of Pediatrics, Psychiatry and Psychology, Université de Montréal, Montréal, Canada and School of Public Health, Physiotherapy and Population Science, University College Dublin, Ireland
| |
Collapse
|
165
|
Kebede AZ, Woldemariam T, Reid LM, Harris LJ. Quantitative trait loci mapping for Gibberella ear rot resistance and associated agronomic traits using genotyping-by-sequencing in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:17-29. [PMID: 26643764 DOI: 10.1007/s00122-015-2600-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/24/2015] [Indexed: 06/05/2023]
Abstract
Unique and co-localized chromosomal regions affecting Gibberella ear rot disease resistance and correlated agronomic traits were identified in maize. Dissecting the mechanisms underlying resistance to Gibberella ear rot (GER) disease in maize provides insight towards more informed breeding. To this goal, we evaluated 410 recombinant inbred lines (RIL) for GER resistance over three testing years using silk channel and kernel inoculation techniques. RILs were also evaluated for agronomic traits like days to silking, husk cover, and kernel drydown rate. The RILs showed significant genotypic differences for all traits with above average to high heritability estimates. Significant (P < 0.01) but weak genotypic correlations were observed between disease severity and agronomic traits, indicating the involvement of agronomic traits in disease resistance. Common QTLs were detected for GER resistance and kernel drydown rate, suggesting the existence of pleiotropic genes that could be exploited to improve both traits at the same time. The QTLs identified for silk and kernel resistance shared some common regions on chromosomes 1, 2, and 8 and also had some regions specific to each tissue on chromosomes 9 and 10. Thus, effective GER resistance breeding could be achieved by considering screening methods that allow exploitation of tissue-specific disease resistance mechanisms and include kernel drydown rate either in an index or as indirect selection criterion.
Collapse
Affiliation(s)
- Aida Z Kebede
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada
| | - Tsegaye Woldemariam
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada
| | - Lana M Reid
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada
| | - Linda J Harris
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada.
| |
Collapse
|
166
|
Mirkovic B, Laurent C, Podlipski MA, Frebourg T, Cohen D, Gerardin P. Genetic Association Studies of Suicidal Behavior: A Review of the Past 10 Years, Progress, Limitations, and Future Directions. Front Psychiatry 2016; 7:158. [PMID: 27721799 PMCID: PMC5034008 DOI: 10.3389/fpsyt.2016.00158] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/31/2016] [Indexed: 12/21/2022] Open
Abstract
Suicidal behaviors (SBs), which range from suicidal ideation to suicide attempts and completed suicide, represent a fatal dimension of mental ill-health. The involvement of genetic risk factors in SB is supported by family, twin, and adoption studies. The aim of this paper is to review recent genetic association studies in SBs including (i) case-control studies, (ii) family-based association studies, and (iii) genome-wide association studies (GWAS). Various studies on genetic associations have tended to suggest that a number of genes [e.g., tryptophan hydroxylase, serotonin receptors and transporters, or brain-derived neurotrophic factors (BDNFs)] are linked to SBs, but these findings are not consistently supported by the results obtained. Although the candidate-gene approach is useful, it is hampered by the present state of knowledge concerning the pathophysiology of diseases. Interpretations of GWAS results are mostly hindered by a lack of annotation describing the functions of most variation throughout the genome. Association studies have addressed a wide range of single-nucleotide polymorphisms in numerous genes. We have included 104 such studies, of which 10 are family-based association studies and 11 are GWAS. Numerous meta-analyses of case-control studies have shown significant associations of SB with variants in the serotonin transporter gene (5-HTT or SLC6A4) and the tryptophan hydroxylase 1 gene (TPH1), but others report contradictory results. The gene encoding BDNF and its receptor (NTRK2) are also promising candidates. Only two of the GWAS showed any significant associations. Several pathways are mentioned in an attempt to understand the lack of reproducibility and the disappointing results. Consequently, we review and discuss here the following aspects: (i) sample characteristics and confounding factors; (ii) statistical limits; (iii) gene-gene interactions; (iv) gene, environment, and by time interactions; and (v) technological and theoretical limits.
Collapse
Affiliation(s)
- Bojan Mirkovic
- Department of Child and Adolescent Psychiatry, CHU Charles Nicolle, Rouen, France; INSERM Unit U1079, Genetics of Cancer and Neurogenetics, University of Rouen, Rouen, France; Department of Child and Adolescent Psychiatry, Hôpital Pitié-Salpêtrière, Paris, France
| | - Claudine Laurent
- Department of Child and Adolescent Psychiatry, Hôpital Pitié-Salpêtrière, Paris, France; ICM - Brain and Spine Institute, Hôpital Pitié-Salpêtrière - University Pierre and Marie Curie, Paris, France
| | | | - Thierry Frebourg
- INSERM Unit U1079, Genetics of Cancer and Neurogenetics, University of Rouen, Rouen, France; Department of Genetics, CHU Charles Nicolle, Rouen, France
| | - David Cohen
- Department of Child and Adolescent Psychiatry, Hôpital Pitié-Salpêtrière, Paris, France; UMR 7222, Institute for Intelligent Systems and Robotics, University Pierre and Marie Curie, Paris, France
| | - Priscille Gerardin
- Department of Child and Adolescent Psychiatry, CHU Charles Nicolle, Rouen, France; Laboratoire Psy-NCA-EA-4700, University of Rouen, Rouen, France
| |
Collapse
|
167
|
de Toro-Martín J, Guénard F, Tchernof A, Deshaies Y, Pérusse L, Hould FS, Lebel S, Marceau P, Vohl MC. Methylation quantitative trait loci within the TOMM20 gene are associated with metabolic syndrome-related lipid alterations in severely obese subjects. Diabetol Metab Syndr 2016; 8:55. [PMID: 27478511 PMCID: PMC4966599 DOI: 10.1186/s13098-016-0171-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/14/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The TOMM20 gene was previously identified as differentially expressed and methylated between severely obese subjects with and without metabolic syndrome (MS). Since metabolic complications do not affect all obese patients to the same extent, the aim of this study was to identify methylation quantitative trait loci (meQTL) potentially associated with MS-related complications within the TOMM20 locus. METHODS Methylation profiling, SNP genotyping and meQTL association tests (general linear models) were performed in a population of 48 severely obese subjects. Genotyping was extended to a larger population of 1720 severely obese subjects with or without MS, where genotype- and diplotype-based association tests were assessed by logistic regression. In silico analyses were performed using TRAP. RESULTS Four SNPs were identified as significant meQTLs for the differentially methylated site cg16490124. Individuals carrying rare alleles of rs4567344 (A > G) (P = 4.9 × 10(-2)) and rs11301 (T > C) (P = 5.9 × 10(-3)) showed decreased methylation levels at this site, whereas those carrying rare alleles of rs4551650 (T > C) (P = 3.5 × 10(-15)) and rs17523127 (C > G) (P = 3.5 × 10(-15)) exhibited a significant increase in methylation. rs4567344 and rs11301 were associated with increased susceptibility to exhibit high plasma triglycerides (TG ≥ 1.69 mmol/L), while rare alleles of rs4551650 and rs17523127 were significantly more represented in the low plasma total-C group (total-C ≤ 6.2 mmol/L). Haplotype reconstruction with the four meQTLs (rs4567344, rs11301, rs4551650, rs17523127) led to the identification of ten different diplotypes, with H1/H2 (GCGG/ACGG) exhibiting a nearly absence of methylation at cg16490124, and showing the highest risk of elevated plasma TG levels [OR = 2.03 (1.59-3.59)], a novel association with elevated LDL-cholesterol [OR = 1.86 (1.06-3.27)] and the complete inversion of the protective effect on total-C levels [OR = 2.03 (1.59-3.59)], especially in men. In silico analyses revealed that rs17523127 overlapped the CpG site cg16490124 and encompassed the core binding sites of the transcription factors Egr 1, 2 and 3, located within the TOMM20 promoter region. CONCLUSION This study demonstrates that TOMM20 SNPs associated with MS-related lipid alterations are meQTLs potentially exerting their action through a CpG methylation-dependent effect. The strength of the diplotype-based associations may denote a novel meQTL additive action and point to this locus as particularly relevant in the inter-individual variability observed in the metabolic profiles of obese subjects.
Collapse
Affiliation(s)
- Juan de Toro-Martín
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC Canada
- School of Nutrition, Laval University, Québec, QC Canada
| | - Frédéric Guénard
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC Canada
- School of Nutrition, Laval University, Québec, QC Canada
| | - André Tchernof
- School of Nutrition, Laval University, Québec, QC Canada
- Québec Heart and Lung Institute, Québec, QC Canada
| | - Yves Deshaies
- Québec Heart and Lung Institute, Québec, QC Canada
- Department of Medicine, Laval University, Québec, QC Canada
| | - Louis Pérusse
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC Canada
- Department of Kinesiology, Laval University, Québec, QC Canada
| | | | - Stéfane Lebel
- Department of Surgery, Laval University, Québec, QC Canada
| | - Picard Marceau
- Department of Surgery, Laval University, Québec, QC Canada
| | - Marie-Claude Vohl
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC Canada
- School of Nutrition, Laval University, Québec, QC Canada
| |
Collapse
|
168
|
Luzón-Toro B, Bleda M, Navarro E, García-Alonso L, Ruiz-Ferrer M, Medina I, Martín-Sánchez M, Gonzalez CY, Fernández RM, Torroglosa A, Antiñolo G, Dopazo J, Borrego S. Identification of epistatic interactions through genome-wide association studies in sporadic medullary and juvenile papillary thyroid carcinomas. BMC Med Genomics 2015; 8:83. [PMID: 26690675 PMCID: PMC4685628 DOI: 10.1186/s12920-015-0160-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 12/14/2015] [Indexed: 01/27/2023] Open
Abstract
Background The molecular mechanisms leading to sporadic medullary thyroid carcinoma (sMTC) and juvenile papillary thyroid carcinoma (PTC), two rare tumours of the thyroid gland, remain poorly understood. Genetic studies on thyroid carcinomas have been conducted, although just a few loci have been systematically associated. Given the difficulties to obtain single-loci associations, this work expands its scope to the study of epistatic interactions that could help to understand the genetic architecture of complex diseases and explain new heritable components of genetic risk. Methods We carried out the first screening for epistasis by Multifactor-Dimensionality Reduction (MDR) in genome-wide association study (GWAS) on sMTC and juvenile PTC, to identify the potential simultaneous involvement of pairs of variants in the disease. Results We have identified two significant epistatic gene interactions in sMTC (CHFR-AC016582.2 and C8orf37-RNU1-55P) and three in juvenile PTC (RP11-648k4.2-DIO1, RP11-648k4.2-DMGDH and RP11-648k4.2-LOXL1). Interestingly, each interacting gene pair included a non-coding RNA, providing thus support to the relevance that these elements are increasingly gaining to explain carcinoma development and progression. Conclusions Overall, this study contributes to the understanding of the genetic basis of thyroid carcinoma susceptibility in two different case scenarios such as sMTC and juvenile PTC. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0160-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Berta Luzón-Toro
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain. .,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain.
| | - Marta Bleda
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain. .,Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), C/Eduardo Primo Yúfera, 3, 46012, Valencia, Spain. .,Present Address: Department of Medicine, University of Cambridge, School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, UK.
| | - Elena Navarro
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain. .,Department of Endocrinology, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.
| | - Luz García-Alonso
- Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), C/Eduardo Primo Yúfera, 3, 46012, Valencia, Spain. .,Present Address: European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| | - Macarena Ruiz-Ferrer
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain. .,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain.
| | - Ignacio Medina
- Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), C/Eduardo Primo Yúfera, 3, 46012, Valencia, Spain. .,Present Address: HPC Services, University of Cambridge, Cambridge, UK.
| | - Marta Martín-Sánchez
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain. .,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain.
| | - Cristina Y Gonzalez
- Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), C/Eduardo Primo Yúfera, 3, 46012, Valencia, Spain. .,Present Address: European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| | - Raquel M Fernández
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain. .,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain.
| | - Ana Torroglosa
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain. .,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain.
| | - Guillermo Antiñolo
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain. .,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain.
| | - Joaquin Dopazo
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain. .,Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), C/Eduardo Primo Yúfera, 3, 46012, Valencia, Spain. .,Functional Genomics Node, (INB) at CIPF, Valencia, Spain.
| | - Salud Borrego
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain. .,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain.
| |
Collapse
|
169
|
Rudd J, Zelaya RA, Demidenko E, Goode EL, Greene CS, Doherty JA. Leveraging global gene expression patterns to predict expression of unmeasured genes. BMC Genomics 2015; 16:1065. [PMID: 26666289 PMCID: PMC4678722 DOI: 10.1186/s12864-015-2250-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/27/2015] [Indexed: 12/31/2022] Open
Abstract
Background Large collections of paraffin-embedded tissue represent a rich resource to test hypotheses based on gene expression patterns; however, measurement of genome-wide expression is cost-prohibitive on a large scale. Using the known expression correlation structure within a given disease type (in this case, high grade serous ovarian cancer; HGSC), we sought to identify reduced sets of directly measured (DM) genes which could accurately predict the expression of a maximized number of unmeasured genes. Results We developed a greedy gene set selection (GGS) algorithm which returns a DM set of user specified size based on a specific correlation threshold (|rP|) and minimum number of DM genes that must be correlated to an unmeasured gene in order to infer the value of the unmeasured gene (redundancy). We evaluated GGS in the Cancer Genome Atlas (TCGA) HGSC data across 144 combinations of DM size, redundancy (1–3), and |rP| (0.60, 0.65, 0.70). Across the parameter sweep, GGS allows on average 9 times more gene expression information to be captured compared to the DM set alone. GGS successfully augments prognostic HGSC gene sets; the addition of 20 GGS selected genes more than doubles the number of genes whose expression is predictable. Moreover, the expression prediction is highly accurate. After training regression models for the predictable gene set using 2/3 of the TCGA data, the average accuracy (ranked correlation of true and predicted values) in the 1/3 testing partition and four independent populations is above 0.65 and approaches 0.8 for conservative parameter sets. We observe similar accuracies in the TCGA HGSC RNA-sequencing data. Specifically, the prediction accuracy increases with increasing redundancy and increasing |rP|. Conclusions GGS-selected genes, which maximize expression information about unmeasured genes, can be combined with candidate gene sets as a cost effective way to increase the amount of gene expression information obtained in large studies. This method can be applied to any organism, model system, disease, or tissue type for which whole genome gene expression data exists. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2250-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- James Rudd
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, One Medical Center Drive, 7927 Rubin Building, Lebanon, NH, 03756, USA.
| | - René A Zelaya
- Department of Genetics, Geisel School of Medicine at Dartmouth College; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, 10-131 SCTR, 34th & Civic Center Boulevard, Philadelphia, PA, 19104-5158, USA.
| | - Eugene Demidenko
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth College, One Medical Center Drive, 7927 Rubin Building, Lebanon, NH, 03756, USA.
| | - Ellen L Goode
- Department of Health Sciences Research, Division of Epidemiology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| | - Casey S Greene
- Department of Genetics, Geisel School of Medicine at Dartmouth College; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, 10-131 SCTR, 34th & Civic Center Boulevard, Philadelphia, PA, 19104-5158, USA.
| | - Jennifer A Doherty
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, One Medical Center Drive, 7927 Rubin Building, Lebanon, NH, 03756, USA.
| |
Collapse
|
170
|
Ermini L, Weale ME, Brown KM, Mesa IR, Howell WM, Vaughan R, Chowdhury P, Sacks SH, Sheerin NS. Systematic assessment of the influence of complement gene polymorphisms on kidney transplant outcome. Immunobiology 2015; 221:528-34. [PMID: 26797657 DOI: 10.1016/j.imbio.2015.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 12/10/2015] [Indexed: 01/01/2023]
Abstract
The importance of the innate immune system, including complement, in causing transplant injury and augmenting adaptive immune responses is increasingly recognized. Therefore variability in graft outcome may in part be due to genetic polymorphism in genes encoding proteins of the immune system. This study assessed the relationship between single nucleotide polymorphisms (SNPs) in complement genes and outcome after transplantation. Analysis was performed on two patient cohorts of 650 and 520 transplant recipients. 505 tagged SNPs in 47 genes were typed in both donor and recipient. The relationships between SNPs and graft survival, serum creatinine, delayed graft function and acute rejection were analyzed. One recipient SNP in the gene encoding mannose binding lectin was associated with graft outcome after correction for analysis of multiple SNPs (p=6.41 × 10(-5)). When further correction was applied to account for analysis of the effect of SNPs in both donor and recipient this lost significance. Despite association p values of <0.001 no SNP was significantly associated with clinical phenotypes after Bonferroni correction. In conclusion, the variability seen in transplant outcome in this patient cohort cannot be explained by variation in complement genes. If causal genetic effects exist in these genes, they are too small to be detected by this study.
Collapse
Affiliation(s)
- Luca Ermini
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Michael E Weale
- Department of Medical and Molecular Genetics, King's College, London SE1 9RT, UK.
| | | | - Irene Rebollo Mesa
- Department of Medical and Molecular Genetics, King's College, London SE1 9RT, UK.
| | | | - Robert Vaughan
- Clinical Transplantation Laboratory, GSTS Pathology, Guy's Hospital, London SE1 9RT, UK.
| | | | - Steven H Sacks
- MRC Centre for Transplantation, King's College, London SE1 9RT, UK.
| | - Neil S Sheerin
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
171
|
Cytotoxic T-lymphocyte antigen 4 gene polymorphism influences the incidence of symptomatic human cytomegalovirus infection after renal transplantation. Pharmacogenet Genomics 2015; 25:19-29. [PMID: 25356901 DOI: 10.1097/fpc.0000000000000102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The role of CTLA4 gene polymorphisms in T-cell-mediated immunity in association with human cytomegalovirus (HCMV) infection after transplantation is poorly understood. In the present study, we have made an attempt to investigate the impact of CTLA4 single nucleotide polymorphisms (SNPs) (rs231775, rs5742909, rs11571317, rs16840252, rs4553808, rs3087243) and dinucleotide (AT)n repeat polymorphism on the incidence of symptomatic HCMV infection (disease) among 270 renal allograft recipients. MATERIALS AND METHODS Genotyping of CTLA4 SNPs was performed by a PCR, followed by a restriction fragment length polymorphism assay. The detection of the dinucleotide (AT)n repeat polymorphism was carried out by PCR-polyacrylamide gel electrophoresis. RESULTS An almost three-fold increased risk was observed for the incidence of symptomatic HCMV infection in mutant genotype carriers of rs231775 and rs3087243 SNPs under additive and recessive models, respectively. The mutant haplotype carriers of six studied SNPs (rs231775, rs5742909, rs11571317, rs16840252, rs4553808 and rs3087243) showed an almost two-fold higher risk for symptomatic HCMV cases, whereas wild-type haplotype combinations of these six SNPs showed a protective effect. Subsequently, no correlation was observed in the promoter region SNPs of CTLA4, namely, rs5742909, rs11571317, rs16840252 and rs4553808 in symptomatic HCMV cases at the genotypic/allelic level. Survival analysis showed that the mutant genotypes of rs231775 and rs3087243 SNPs were associated with the lowest HCMV disease-free survival compared with heterozygous and wild genotypes. The crude and adjusted hazard ratios showed an almost three-fold and 2.5-fold increased risk in univariate and multivariate Cox regression models, respectively, for HCMV disease-free survival against mutant genotypes of rs231775 and rs3087243 SNPs. CTLA4 dinucleotide (AT)n repeat analysis showed that the smaller allele (102 bp) was associated with a protective effect, whereas the longer (110 and 116 bp) alleles showed a susceptible effect for symptomatic HCMV cases. CONCLUSION These results suggested that CTLA4 variants might be involved in the clinical manifestation of HCMV diseases.
Collapse
|
172
|
Shi J, Grundy A, Richardson H, Burstyn I, Schuetz JM, Lohrisch CA, SenGupta SK, Lai AS, Brooks-Wilson A, Spinelli JJ, Aronson KJ. Genetic variation in vitamin D-related genes and risk of breast cancer among women of European and East Asian descent. Tumour Biol 2015; 37:6379-87. [PMID: 26631034 DOI: 10.1007/s13277-015-4417-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/09/2015] [Indexed: 02/02/2023] Open
Abstract
Studies of vitamin D-related genetic variants and breast cancer have been inconsistent. This study aimed to investigate associations of vitamin D-related polymorphisms and breast cancer risk among European and East Asian women and potential interactions with menopausal status and breast tumour subtypes. Data from a case-control study of breast cancer (1037 cases and 1050 controls) were used to assess relationships between 21 polymorphisms in two vitamin D-related genes (GC and VDR) and breast cancer risk. Odds ratios were calculated in stratified analyses of European and East Asian women, using logistic regression in an additive genetic model. An interaction term was used to explore modification by menopausal status. Polytomous regression was used to assess heterogeneity by breast tumour subtype. False discovery rate adjustments were conducted to account for multiple testing. No association was observed between GC or VDR polymorphisms and breast cancer risk. Modification of these relationships by menopausal status was observed for select polymorphisms in both Europeans (VDR rs4328262 and rs11168292) and East Asians (GC rs7041 and VDR rs11168287). Heterogeneity by tumour subtype was seen for three VDR polymorphisms (rs1544410, rs7967152 and rs2239186) among Europeans, in which associations with ER-/PR-/HER2+ tumours, but not with other subtypes, were observed. In conclusion, associations between vitamin D-related genetic variants and breast cancer were not observed overall, although the relationships between vitamin D pathway polymorphisms and breast cancer may be modified by menopausal status and breast tumour subtype.
Collapse
Affiliation(s)
- Joy Shi
- Department of Public Health Sciences and Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Anne Grundy
- Alberta Cancer Prevention Legacy Fund, Alberta Health Services, Calgary, AB, Canada
| | - Harriet Richardson
- Department of Public Health Sciences and Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Igor Burstyn
- Department of Environmental and Occupational Health, Drexel University, Philadelphia, PA, USA
| | - Johanna M Schuetz
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Caroline A Lohrisch
- Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Sandip K SenGupta
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Agnes S Lai
- Department of Cancer Control Research, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Angela Brooks-Wilson
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada.,Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - John J Spinelli
- Department of Cancer Control Research, British Columbia Cancer Agency, Vancouver, BC, Canada.,School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Kristan J Aronson
- Department of Public Health Sciences and Cancer Research Institute, Queen's University, Kingston, ON, Canada. .,Division of Cancer Care and Epidemiology, Queen's Cancer Research Institute, 10 Stuart Street, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
173
|
Binder M, Shui IM, Wilson KM, Penney KL, Mucci LA, Kibel AS. Calcium intake, polymorphisms of the calcium-sensing receptor, and recurrent/aggressive prostate cancer. Cancer Causes Control 2015; 26:1751-9. [PMID: 26407952 PMCID: PMC4633306 DOI: 10.1007/s10552-015-0668-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 09/11/2015] [Indexed: 11/28/2022]
Abstract
PURPOSE To assess whether calcium intake and common genetic variants of the calcium-sensing receptor (CASR) are associated with either aggressive prostate cancer (PCa) or disease recurrence after prostatectomy. METHODS Calcium intake at diagnosis was assessed, and 65 common single-nucleotide polymorphisms (SNPs) in CASR were genotyped in 886 prostatectomy patients. We investigated the association between calcium intake and CASR variants with both PCa recurrence and aggressiveness (defined as Gleason score ≥4 + 3, stage ≥pT3, or nodal-positive disease). RESULTS A total of 285 men had aggressive disease and 91 experienced recurrence. A U-shaped relationship between calcium intake and both disease recurrence and aggressiveness was observed. Compared to the middle quintile, the HR for disease recurrence was 3.07 (95% CI 1.41-6.69) for the lowest quintile and 3.21 (95% CI 1.47-7.00) and 2.97 (95% CI 1.37-6.45) for the two upper quintiles, respectively. Compared to the middle quintile, the OR for aggressive disease was 1.80 (95% CI 1.11-2.91) for the lowest quintile and 1.75 (95% CI 1.08-2.85) for the highest quintile of calcium intake. The main effects of CASR variants were not associated with PCa recurrence or aggressiveness. In the subgroup of patients with moderate calcium intake, 31 SNPs in four distinct blocks of high linkage disequilibrium were associated with PCa recurrence. CONCLUSIONS We observed a protective effect of moderate calcium intake for PCa aggressiveness and recurrence. While CASR variants were not associated with these outcomes in the entire cohort, they may be associated with disease recurrence in men with moderate calcium intakes.
Collapse
Affiliation(s)
- Moritz Binder
- Master of Public Health Program, Harvard T. H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Irene M Shui
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Kathryn M Wilson
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
- Channing Division of Network Medicine, Brigham & Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02215, USA
| | - Kathryn L Penney
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
- Channing Division of Network Medicine, Brigham & Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02215, USA
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
- Channing Division of Network Medicine, Brigham & Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02215, USA
| | - Adam S Kibel
- Division of Urologic Surgery, Brigham and Women's Hospital, 45 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
174
|
Baeza-Richer C, Arroyo-Pardo E, Blanco-Rojo R, Toxqui L, Remacha A, Vaquero MP, López-Parra AM. Genetic contribution to iron status: SNPs related to iron deficiency anaemia and fine mapping of CACNA2D3 calcium channel subunit. Blood Cells Mol Dis 2015; 55:273-80. [DOI: 10.1016/j.bcmd.2015.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 12/13/2022]
|
175
|
Qu LS, Jin F, Guo YM, Liu TT, Xue RY, Huang XW, Xu M, Chen TY, Ni ZP, Shen XZ. Nine susceptibility loci for hepatitis B virus-related hepatocellular carcinoma identified by a pilot two-stage genome-wide association study. Oncol Lett 2015; 11:624-632. [PMID: 26870257 PMCID: PMC4727098 DOI: 10.3892/ol.2015.3958] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 10/26/2015] [Indexed: 12/12/2022] Open
Abstract
Previous studies have indicated that complex interactions among viral, environmental and genetic factors lead to hepatocellular carcinoma (HCC). To identify susceptibility alleles for hepatitis B virus (HBV)-related HCC, the present study conducted a pilot two-phase genome-wide association study (GWAS) in 660 Han Chinese individuals. In phase 1, a total of 500,447 single-nucleotide polymorphisms (SNPs) were genotyped in 50 HCC cases and 50 controls using Affymetrix GeneChip 500k Array Set. In phase 2, 1,152 SNPs were selected from phase 1 and genotyped in 282 cases and 278 controls using the Illumina GoldenGate platform. The prior probability of HCC in control subjects was assigned at 0.01, and false-positive report probability (FPRP) was utilized to evaluate the statistical significance. In phase 1, one SNP (rs2212522) showed a significant association with HCC (Pallele=5.23×10−8; ORallele=4.96; 95% CI, 2.72–9.03). In phase 2, among 27 SNPs with unadjusted Pallele<0.05, 9 SNPs were associated with HCC based on FPRP criteria (FPRP <0.20). The strongest statistical evidence for an association signal was with rs2120243 (combined ORallele=1.76; 95% CI, 1.39–2.22; P=2.00×10−6), which maps within the fourth intron of VEPH1. The second strongest statistical evidence for an association was identified for rs1350171 (combined ORallele=1.66; 95% CI, 1.33–2.07; P=6.48×10−6), which maps to the region downstream of the FZD4 gene. The other potential susceptibility genes included PCDH9, PRMT6, LHX1, KIF2B and L3MBTL4. In conclusion, this pilot two-phase GWAS provides the evidence for the existence of common susceptibility loci for HCC. These genes involved various signaling pathways, including those associated with transforming growth factor β, insulin/phosphoinositide 3 kinase, Wnt and epidermal growth factor receptor. These associations must be replicated and validated in larger studies.
Collapse
Affiliation(s)
- Li-Shuai Qu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Fei Jin
- Department of Gastroenterology, Shanghai Xuhui Central Hospital, Shanghai 200032, P.R. China
| | - Yan-Mei Guo
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Tao-Tao Liu
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Ru-Yi Xue
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Xiao-Wu Huang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Min Xu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Tao-Yang Chen
- Department of Liver Surgery, Qidong Liver Cancer Institute, Qidong, Jiangsu 226200, P.R. China
| | - Zheng-Ping Ni
- Department of Liver Surgery, Qidong Liver Cancer Institute, Qidong, Jiangsu 226200, P.R. China
| | - Xi-Zhong Shen
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
176
|
Näkki A, Rodriguez-Fontenla C, Gonzalez A, Harilainen A, Leino-Arjas P, Heliövaara M, Eriksson JG, Tallroth K, Videman T, Kaprio J, Saarela J, Kujala UM. Association study of MMP8 gene in osteoarthritis. Connect Tissue Res 2015; 57:44-52. [PMID: 26577236 DOI: 10.3109/03008207.2015.1099636] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Osteoarthritis (OA) is a joint disease common in the elderly. There is a prior functional evidence for different matrix metalloproteinases (MMPs), such as MMP8 and MMP9, having a role in the breakdown of cartilage extracellular matrix in OA. Thus, we analyzed whether the common genetic variants of MMP8 and MMP9 contribute to the risk of OA. MATERIALS AND METHODS In total, 13 common tagging single-nucleotide polymorphisms (SNPs) were studied in a discovery knee OA cohort of 185 cases and 895 controls. For validation, two knee OA replication cohorts and two hand OA replication cohorts were studied (altogether 1369 OA cases, 4445 controls in the five cohorts). The χ(2) test for individual study cohorts and Cochran-Mantel-Haenszel test for combined meta-analysis were calculated using Plink. RESULTS The rs1940475 SNP in MMP8 showed suggestive association in the discovery cohort (OR = 0.721, 95% CI 0.575-0.906; p = 0.005). Other knee and hand OA replication study cohorts showed similar trend for the predisposing allele without reaching statistical significance in independent replication cohorts nor in their meta-analysis (p > 0.05). Meta-analysis of all five hand and knee OA study cohorts yielded a p-value of 0.027 (OR = 0.904, 95% CI 0.826-0.989). CONCLUSIONS Initial analysis of the MMP8 gene showed suggestive association between rs1940475 and knee OA, but the finding did not replicate in other study cohorts, even though the trend for predisposing allele was similar in all five cohorts. MMP-8 is a good biological candidate for OA, but our study did not find common variants with significant association in the gene.
Collapse
Affiliation(s)
- Annu Näkki
- a Institute for Molecular Medicine Finland FIMM, University of Helsinki , Helsinki , Finland.,b Department of Public Health , University of Helsinki , Helsinki , Finland.,c Department of Medical Genetics , University of Helsinki , Helsinki , Finland.,d Public Health Genomics Unit, National Institute for Health and Welfare , Helsinki , Finland
| | - Cristina Rodriguez-Fontenla
- e Laboratorio Investigacion 10 , Instituto de Investigacion Sanitaria- Hospital Clinico Universitario de Santiago , Santiago de Compostela , Spain
| | - Antonio Gonzalez
- e Laboratorio Investigacion 10 , Instituto de Investigacion Sanitaria- Hospital Clinico Universitario de Santiago , Santiago de Compostela , Spain
| | - Arsi Harilainen
- f ORTON Orthopedic Hospital , Invalid Foundation , Helsinki , Finland
| | - Päivi Leino-Arjas
- g Department of Epidemiology and Biostatistics , Finnish Institute of Occupational Health , Helsinki , Finland
| | | | - Johan G Eriksson
- h National Institute for Health and Welfare , Helsinki , Finland.,i Department of Chronic Disease Prevention , The National Institute for Health and Welfare , Helsinki , Finland.,j Department of General Practice and Primary Health Care , University of Helsinki , Helsinki , Finland.,k Unit of General Practice , Helsinki University Central Hospital , Helsinki , Finland.,l Folkhälsan Research Center , Helsinki , Finland.,m Vasa Central Hospital , Vasa , Finland
| | - Kaj Tallroth
- f ORTON Orthopedic Hospital , Invalid Foundation , Helsinki , Finland
| | - Tapio Videman
- n Faculty of Rehabilitation Medicine , University of Alberta , Edmonton , Canada
| | - Jaakko Kaprio
- a Institute for Molecular Medicine Finland FIMM, University of Helsinki , Helsinki , Finland.,b Department of Public Health , University of Helsinki , Helsinki , Finland.,o Department of Mental Health , National Institute for Health and Welfare , Helsinki , Finland
| | - Janna Saarela
- a Institute for Molecular Medicine Finland FIMM, University of Helsinki , Helsinki , Finland
| | - Urho M Kujala
- p Department of Health Sciences , University of Jyväskylä, Jyväskylä , Finland
| |
Collapse
|
177
|
Hu YJ, Sun W, Tzeng JY, Perou CM. Proper Use of Allele-Specific Expression Improves Statistical Power for cis-eQTL Mapping with RNA-Seq Data. J Am Stat Assoc 2015; 110:962-974. [PMID: 26568645 DOI: 10.1080/01621459.2015.1038449] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Studies of expression quantitative trait loci (eQTLs) offer insight into the molecular mechanisms of loci that were found to be associated with complex diseases and the mechanisms can be classified into cis- and trans-acting regulation. At present, high-throughput RNA sequencing (RNA-seq) is rapidly replacing expression microarrays to assess gene expression abundance. Unlike microarrays that only measure the total expression of each gene, RNA-seq also provides information on allele-specific expression (ASE), which can be used to distinguish cis-eQTLs from trans-eQTLs and, more importantly, enhance cis-eQTL mapping. However, assessing the cis-effect of a candidate eQTL on a gene requires knowledge of the haplotypes connecting the candidate eQTL and the gene, which cannot be inferred with certainty. The existing two-stage approach that first phases the candidate eQTL against the gene and then treats the inferred phase as observed in the association analysis tends to attenuate the estimated cis-effect and reduce the power for detecting a cis-eQTL. In this article, we provide a maximum-likelihood framework for cis-eQTL mapping with RNA-seq data. Our approach integrates the inference of haplotypes and the association analysis into a single stage, and is thus unbiased and statistically powerful. We also develop a pipeline for performing a comprehensive scan of all local eQTLs for all genes in the genome by controlling for false discovery rate, and implement the methods in a computationally efficient software program. The advantages of the proposed methods over the existing ones are demonstrated through realistic simulation studies and an application to empirical breast cancer data from The Cancer Genome Atlas project.
Collapse
Affiliation(s)
- Yi-Juan Hu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322
| | - Wei Sun
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599
| | - Jung-Ying Tzeng
- Department of Statistics, North Carolina State University, Raleigh, NC 27695
| | - Charles M Perou
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
178
|
He WJ, Li C, Rao DC, Hixson JE, Huang J, Cao J, Rice TK, Shimmin LC, Gu D, Kelly TN. Associations of Renin-Angiotensin-Aldosterone System Genes With Blood Pressure Changes and Hypertension Incidence. Am J Hypertens 2015; 28:1310-5. [PMID: 25820244 DOI: 10.1093/ajh/hpv033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/11/2015] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The renin-angiotensin-aldosterone system (RAAS) plays an important role in blood pressure (BP) regulation. The current study uses single-marker and gene-based analyses to examine the association between RAAS genes and longitudinal BP phenotypes in a Han Chinese population. METHODS A total of 1,768 participants from the Genetic Epidemiology Network of Salt Sensitivity (GenSalt) follow-up study were included in the current study. Twenty-seven BP measurements were taken using random-zero sphygmomanometers at baseline and 2 follow-up visits. Mixed-effect models were used to assess the additive associations of 106 single-nucleotide polymorphisms (SNPs) in 10 RAAS genes with longitudinal BP changes and hypertension incidence. Gene-based analyses were conducted using the truncated product method. Attempts were made to replicate significant findings among Asian participants of the Multi-ethnic Study of Atherosclerosis (MESA). False discovery rate procedures were used to adjust for multiple testing. RESULTS During an average of 7.2 years of follow-up, average systolic and diastolic BP increased, and 32.1% (512) of participants free from hypertension at baseline developed hypertension. NR3C2 SNPs rs7694064 and rs6856803 were significantly associated with longitudinal changes in systolic BP (P interaction = 6.9×10(-5) and 8.2×10(-4), respectively). Through gene-based analysis, NR3C2 was found to be significantly associated with longitudinal systolic BP change (P value of 1.00×10(-7)), even after removal of significant markers rs7694064 and rs6856803 from the analysis. The association between NR3C2 and longitudinal systolic BP change was replicated in Asian MESA participants (P value of 1.00×10(-4)). CONCLUSIONS These findings indicate that NR3C2 may play an important role in BP progression and development of hypertension.
Collapse
Affiliation(s)
- William J He
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA; Isidore Newman School, New Orleans, Louisiana, USA
| | - Changwei Li
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Dabeeru C Rao
- Division of Biostatistics, Washing University School of Medicine, St. Louis, Missouri, USA
| | - James E Hixson
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, Texas, USA
| | - Jianfeng Huang
- Department of Evidence Based Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Cao
- Department of Evidence Based Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Treva K Rice
- Division of Biostatistics, Washing University School of Medicine, St. Louis, Missouri, USA
| | - Lawrence C Shimmin
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, Texas, USA
| | - Dongfeng Gu
- Department of Evidence Based Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tanika N Kelly
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA;
| |
Collapse
|
179
|
Andiappan AK, Sio YY, Lee B, Suri BK, Matta SA, Lum J, Foo S, Koh G, Liu J, Zolezzi F, Poidinger M, Wang DY, Rotzschke O, Chew FT. Functional variants of 17q12-21 are associated with allergic asthma but not allergic rhinitis. J Allergy Clin Immunol 2015; 137:758-66.e3. [PMID: 26483175 DOI: 10.1016/j.jaci.2015.08.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 08/02/2015] [Accepted: 08/25/2015] [Indexed: 01/12/2023]
Abstract
BACKGROUND Allergic rhinitis (AR) and asthma are common allergic conditions with a shared genetic component to their cause. The 17q12-21 locus includes several genes that have been linked to asthma susceptibility, but the role of this locus in AR is unclear. Asthma and AR in adults of Chinese ethnicity in Singapore are predominately caused by sensitization against house dust mites with a nearly complete penetrance of the allergen, which presents a unique opportunity for accurately identifying genetic associations with allergic diseases. OBJECTIVE We sought to define the functional role of 17q12-21 in patients with AR and allergic asthma. METHODS We asked whether single nucleotide polymorphisms (SNPs) in the 17q12-21 locus were associated with AR or asthma in a cohort of 3460 ethnic Chinese subjects residing in Singapore (1435 in the discovery phase and 2025 in the validation phase). Full-blood mRNA gene expression data, plasma IgE levels, and immune cell frequencies in peripheral blood were tested against the tag SNP genotypes. Luciferase assays were used to measure the effect of putative promoter SNPs on expression of the asthma-associated orosomucoid-like 3 gene (ORMDL3). RESULTS Within 17q12-21, only the tag SNP rs8076131 was significantly associated with asthma (P = 8.53 × 10(-10); odds ratio, 0.6715), and AR status was independent of SNPs in this region. C-A alleles at rs8076131 resulted in significantly increased ORMDL3 expression in HEK293 cells in vitro relative to T-G alleles. Moreover, subjects with the risk genotype AA exhibited significantly higher total IgE levels and higher blood eosinophil counts than those with the lower-risk genotypes. CONCLUSION The 17q12-21 locus has a strong genetic association with allergic asthma but not with AR. The polymorphic effect of this locus is attributed to the linkage set tagged by rs8076131, which affects the expression of ORMDL3, protein phosphatase 1, regulatory inhibitor subunit 1B (PPP1R1B), zona pellucida binding protein 2 (ZPBP2), and gasdermin B (GSDMB) and is correlated with high IgE levels and eosinophil counts in subjects bearing the risk genotype.
Collapse
Affiliation(s)
- Anand Kumar Andiappan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore; Department of Biological Sciences, National University of Singapore, Singapore
| | - Yang Yie Sio
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Bani Kaur Suri
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Sri Anusha Matta
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Shihui Foo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Geraldine Koh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jianjun Liu
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Francesca Zolezzi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - De Yun Wang
- Department of Otolaryngology, National University of Singapore, National University Health System, Singapore.
| | - Olaf Rotzschke
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore.
| | - Fook Tim Chew
- Department of Biological Sciences, National University of Singapore, Singapore.
| |
Collapse
|
180
|
Zucchini C, Martinelli M, De Sanctis P, Rodia MT, Mattei G, Ugolini G, Montroni I, Ghignone F, Solmi R. Possible Gender-Related Modulation by the ROCK1 Gene in Colorectal Cancer Susceptibility. Pathobiology 2015; 82:252-8. [PMID: 26562026 DOI: 10.1159/000439405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 08/12/2015] [Indexed: 11/19/2022] Open
Abstract
AIM In view of accumulating evidence supporting a pivotal role of the Rho/ROCK pathway in cancer, we investigated Rho-kinase polymorphisms as potential susceptibility factors in colorectal cancer (CRC) in a representative sample of the Italian population. METHODS DNA obtained from the peripheral blood samples of 137 CRC patients and 141 healthy controls was genotyped for four ROCK1 (rs35996865; rs73963110; rs2127958; rs288980) and five ROCK2 (rs12692437; rs7563468; rs35768389; rs17463896; rs16857265) selected single nucleotide polymorphisms. RESULTS None of the allelic variants of the nine selected markers was associated with the occurrence of CRC or with the development of regional lymph node metastasis. By contrast, the ROCK1 rs35996865 G variant allele was significantly more frequent in male patients (p = 0.028) than in the control group. CONCLUSION This finding is, at present, the first that points to a possible gender-related modulation by the ROCK1 gene in CRC susceptibility.
Collapse
Affiliation(s)
- Cinzia Zucchini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Hochner H, Allard C, Granot-Hershkovitz E, Chen J, Sitlani CM, Sazdovska S, Lumley T, McKnight B, Rice K, Enquobahrie DA, Meigs JB, Kwok P, Hivert MF, Borecki IB, Gomez F, Wang T, van Duijn C, Amin N, Rotter JI, Stamatoyannopoulos J, Meiner V, Manor O, Dupuis J, Friedlander Y, Siscovick DS. Parent-of-Origin Effects of the APOB Gene on Adiposity in Young Adults. PLoS Genet 2015; 11:e1005573. [PMID: 26451733 PMCID: PMC4599806 DOI: 10.1371/journal.pgen.1005573] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 09/15/2015] [Indexed: 01/23/2023] Open
Abstract
Loci identified in genome-wide association studies (GWAS) of cardio-metabolic traits account for a small proportion of the traits' heritability. To date, most association studies have not considered parent-of-origin effects (POEs). Here we report investigation of POEs on adiposity and glycemic traits in young adults. The Jerusalem Perinatal Family Follow-Up Study (JPS), comprising 1250 young adults and their mothers was used for discovery. Focusing on 18 genes identified by previous GWAS as associated with cardio-metabolic traits, we used linear regression to examine the associations of maternally- and paternally-derived offspring minor alleles with body mass index (BMI), waist circumference (WC), fasting glucose and insulin. We replicated and meta-analyzed JPS findings in individuals of European ancestry aged ≤50 belonging to pedigrees from the Framingham Heart Study, Family Heart Study and Erasmus Rucphen Family study (total N≅4800). We considered p<2.7x10-4 statistically significant to account for multiple testing. We identified a common coding variant in the 4th exon of APOB (rs1367117) with a significant maternally-derived effect on BMI (β = 0.8; 95%CI:0.4,1.1; p = 3.1x10-5) and WC (β = 2.7; 95%CI:1.7,3.7; p = 2.1x10-7). The corresponding paternally-derived effects were non-significant (p>0.6). Suggestive maternally-derived associations of rs1367117 were observed with fasting glucose (β = 0.9; 95%CI:0.3,1.5; p = 4.0x10-3) and insulin (ln-transformed, β = 0.06; 95%CI:0.03,0.1; p = 7.4x10-4). Bioinformatic annotation for rs1367117 revealed a variety of regulatory functions in this region in liver and adipose tissues and a 50% methylation pattern in liver only, consistent with allelic-specific methylation, which may indicate tissue-specific POE. Our findings demonstrate a maternal-specific association between a common APOB variant and adiposity, an association that was not previously detected in GWAS. These results provide evidence for the role of regulatory mechanisms, POEs specifically, in adiposity. In addition this study highlights the benefit of utilizing family studies for deciphering the genetic architecture of complex traits. To date, genetic variants identified in large-scale genetic studies using recent technical and methodological advances explain only a small proportion of the genetic basis of obesity, diabetes and other cardiovascular risk factors. These studies were typically conducted in samples of unrelated individuals. Here we utilize a family-based approach to identify genetic variants associated with obesity-related traits. Specifically, we examined the separate contribution of maternally- vs. paternally-inherited common genetic variants to these traits. By examining 1250 young adults and their mothers from Jerusalem, we show that a specific genetic variant, rs1367117, located in the APOB gene on chromosome 2 is related to body mass index and waist circumference when inherited from mother and not from father. This maternal effect is not restricted to Jerusalemites, but is also seen in a large sample of individuals of European descent from independent family studies worldwide. Our findings provide support of the role of complex genetic mechanisms in obesity, and highlight the benefit of utilizing family studies for uncovering genetic pathways underlying common risk factors and diseases.
Collapse
Affiliation(s)
- Hagit Hochner
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
- * E-mail:
| | - Catherine Allard
- Département de Mathématiques, Université de Sherbrooke and Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | - Jinbo Chen
- Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Colleen M. Sitlani
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Cardiovascular Health Research Unit, University of Washington, Seattle, Washington, United States of America
| | - Sandra Sazdovska
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Thomas Lumley
- Department of Statistics, University of Auckland, Auckland, New Zealand
| | - Barbara McKnight
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Daniel A. Enquobahrie
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - James B. Meigs
- Harvard Medical School and General Medicine Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Pui Kwok
- Institute of Human Genetics, University of California, San Francisco, California, United States of America
- Cardiovascular Research Institute, University of California, San Francisco, California, United States of America
- Department of Dermatology, University of California, San Francisco, California, United States of America
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Boston, Massachusetts, United States of America
| | - Ingrid B. Borecki
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Felicia Gomez
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Cornelia van Duijn
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands
| | - Najaf Amin
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - John Stamatoyannopoulos
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Vardiella Meiner
- Department of Genetics and Metabolism, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Orly Manor
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Yechiel Friedlander
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - David S. Siscovick
- New York Academy of Medicine, New York, New York, United States of America
| |
Collapse
|
182
|
Wang M, Chen J, He K, Wang Q, Li Z, Shen J, Wen Z, Song Z, Xu Y, Shi Y. The NVL gene confers risk for both major depressive disorder and schizophrenia in the Han Chinese population. Prog Neuropsychopharmacol Biol Psychiatry 2015; 62:7-13. [PMID: 25891250 DOI: 10.1016/j.pnpbp.2015.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 03/31/2015] [Accepted: 04/07/2015] [Indexed: 12/12/2022]
Abstract
NVL (nuclear VCP (valosin containing protein)/p97-Like), a member of the AAA-ATPase (ATPases associated with various cellular activities) family, encodes a novel hTERT (human telomerase reverse transcriptase)-interacting protein NVL2 which is a telomerase component essential for holoenzyme assembly. Previous researches have reported the impacts of telomerase activity on mental illness and the potential association between NVL and major depressive disorder. To validate the susceptibility of NVL to major depressive disorder, and to investigate the overlapping risk conferred by NVL for both major depressive disorder and schizophrenia, we analyzed 9 tag single nucleotide polymorphisms (tag SNPs) using TaqMan® technology, in 1045 major depressive disorder patients, 1235 schizophrenia patients and 1235 normal controls of Han Chinese origin. We found that rs10916583 (P(allele) = 0.020, P(genotype) = 0.028, OR = 1.156) and rs16846649 (adjusted P(allele) = 0.014, P(genotype) = 0.007, OR = 0.718) were associated with major depressive disorder, while rs10916583 (adjusted P(allele) = 1.08E-02, OR = 1.213), rs16846649 (adjusted P(allele) = 7.40E-06, adjusted P(genotype) = 8.07E-05, OR = 0.598) and rs10799541 (adjusted P(allele) = 8.10E-03, adjusted P(genotype) = 0.049, OR= 0.826) showed statistically significant association with schizophrenia after Bonferroni correction. Furthermore, rs10916583 (adjusted P(allele) = 9.00E-03, adjusted P(genotype) = 3.15E-02, OR = 1.187) and rs16846649 (adjusted P(allele) = 8.92E-06, adjusted P(genotype) = 8.84E-05, OR = 0.653) remained strongly associated with the analysis of combined cases of major depressive disorder and schizophrenia after Bonferroni correction. Our results indicated that the NVL gene may contain overlapping common genetic risk factors for major depressive disorder and schizophrenia in the Han Chinese population. The roles of NVL in telomerase biogenesis were also highlighted in psychiatric pathogenesis. The study on variants conferring overlapping risk for multiple psychiatric disorders could be tangible pathogenesis support and clinical or diagnostic references.
Collapse
Affiliation(s)
- Meng Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Jianhua Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Kuanjun He
- College of Life Science, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, PR China
| | - Qingzhong Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Zhiqiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Jiawei Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Zujia Wen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Zhijian Song
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Yifeng Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China; Shanghai Changning Mental Health Center, 299 Xiehe Road, Shanghai 200042, PR China; Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai 200042, PR China.
| |
Collapse
|
183
|
Maglione JE, Nievergelt CM, Parimi N, Evans DS, Ancoli-Israel S, Stone KL, Yaffe K, Redline S, Tranah GJ. Associations of PER3 and RORA Circadian Gene Polymorphisms and Depressive Symptoms in Older Adults. Am J Geriatr Psychiatry 2015; 23:1075-87. [PMID: 25892098 PMCID: PMC4568170 DOI: 10.1016/j.jagp.2015.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 01/23/2015] [Accepted: 03/04/2015] [Indexed: 01/13/2023]
Abstract
BACKGROUND Depressive symptoms are common in older adults and associated with poor outcomes. Although circadian genes have been implicated in depression, the relationship between circadian genes and depressive symptoms in older adults is unclear. METHODS A cross-sectional genetic association study of 529 single nucleotide polymorphisms (SNPs) representing 30 candidate circadian genes was performed in two population-based cohorts: the Osteoporotic Fractures in Men Study (MrOS; N=270, age: 76.58±5.61 years) and the Study of Osteoporotic Fractures (SOF) in women (N=1740, 84.05±3.53 years) and a meta-analysis was performed. Depressive symptoms were assessed with the Geriatric Depression Scale categorizing participants as having none-few symptoms (0-2), some depressive symptoms (>2 to <6), or many depressive symptoms (≥6). RESULTS We found associations meeting multiple testing criteria for significance between the PER3 intronic SNP rs12137927 and decreased odds of reporting "some depressive symptoms" in the SOF sample (odds ratio [OR]: 0.61, 95% confidence interval [CI]: 0.48-0.78, df=1, Wald χ2=-4.04, p=0.000054) and the meta-analysis (OR: 0.61, CI: 0.48-0.78, z=-4.04, p=0.000054) and between the PER3 intronic SNPs rs228644 (OR: 0.74, CI: 0.63-0.86, z=3.82, p=0.00013) and rs228682 (OR: 0.74, CI: 0.86-0.63, z=3.81, p=0.00014) and decreased odds of reporting "some depressive symptoms" in the meta-analysis compared to endorsing none-few depressive symptoms. The RORA intronic SNP rs11632098 was associated with greater odds of reporting "many depressive symptoms" (OR: 2.16, CI: 1.45-3.23, df=1, Wald χ2=3.76, p=0.000168) in the men. In the meta-analysis the association was attenuated and nominally significant (OR: 1.63, CI: 1.24-2.16, z=3.45, p=0.00056). CONCLUSION PER3 and RORA may play important roles in the development of depressive symptoms in older adults.
Collapse
Affiliation(s)
- Jeanne E. Maglione
- Department of Psychiatry, University of California, San Diego, La Jolla, CA
| | | | - Neeta Parimi
- California Pacific Medical Center Research Institute, San Francisco, CA
| | - Daniel S. Evans
- California Pacific Medical Center Research Institute, San Francisco, CA
| | - Sonia Ancoli-Israel
- Department of Psychiatry, University of California, San Diego, La Jolla, CA,Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Katie L. Stone
- California Pacific Medical Center Research Institute, San Francisco, CA
| | - Kristine Yaffe
- Departments of Psychiatry, Neurology and Epidemiology, University of California, San Francisco, CA
| | - Susan Redline
- Departments of Medicine, Brigham and Women’s Hospital and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Gregory J. Tranah
- California Pacific Medical Center Research Institute, San Francisco, CA
| | | |
Collapse
|
184
|
O’Mara TA, Glubb DM, Painter JN, Cheng T, Dennis J, Attia J, Holliday EG, McEvoy M, Scott RJ, Ashton K, Proietto T, Otton G, Shah M, Ahmed S, Healey CS, Gorman M, Martin L, Hodgson S, Fasching PA, Hein A, Beckmann MW, Ekici AB, Hall P, Czene K, Darabi H, Li J, Dürst M, Runnebaum I, Hillemanns P, Dörk T, Lambrechts D, Depreeuw J, Annibali D, Amant F, Zhao H, Goode EL, Dowdy SC, Fridley BL, Winham SJ, Salvesen HB, Njølstad TS, Trovik J, Werner HMJ, Tham E, Liu T, Mints M, Bolla MK, Michailidou K, Tyrer JP, Wang Q, Hopper JL, Peto J, Swerdlow AJ, Burwinkel B, Brenner H, Meindl A, Brauch H, Lindblom A, Chang-Claude J, Couch FJ, Giles GG, Kristensen VN, Cox A, Pharoah PDP, Dunning AM, Tomlinson I, Easton DF, Thompson DJ, Spurdle AB. Comprehensive genetic assessment of the ESR1 locus identifies a risk region for endometrial cancer. Endocr Relat Cancer 2015; 22:851-61. [PMID: 26330482 PMCID: PMC4559752 DOI: 10.1530/erc-15-0319] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Excessive exposure to estrogen is a well-established risk factor for endometrial cancer (EC), particularly for cancers of endometrioid histology. The physiological function of estrogen is primarily mediated by estrogen receptor alpha, encoded by ESR1. Consequently, several studies have investigated whether variation at the ESR1 locus is associated with risk of EC, with conflicting results. We performed comprehensive fine-mapping analyses of 3633 genotyped and imputed single nucleotide polymorphisms (SNPs) in 6607 EC cases and 37 925 controls. There was evidence of an EC risk signal located at a potential alternative promoter of the ESR1 gene (lead SNP rs79575945, P=1.86×10(-5)), which was stronger for cancers of endometrioid subtype (P=3.76×10(-6)). Bioinformatic analysis suggests that this risk signal is in a functionally important region targeting ESR1, and eQTL analysis found that rs79575945 was associated with expression of SYNE1, a neighbouring gene. In summary, we have identified a single EC risk signal located at ESR1, at study-wide significance. Given SNPs located at this locus have been associated with risk for breast cancer, also a hormonally driven cancer, this study adds weight to the rationale for performing informed candidate fine-scale genetic studies across cancer types.
Collapse
Affiliation(s)
- Tracy A O’Mara
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Dylan M Glubb
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Jodie N Painter
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Timothy Cheng
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | | | - John Attia
- Hunter Medical Research Institute, John Hunter Hospital, Newcastle, NSW, 2305, Australia
- Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health, University of Newcastle, NSW, 2305, Australia
| | - Elizabeth G Holliday
- Hunter Medical Research Institute, John Hunter Hospital, Newcastle, NSW, 2305, Australia
- Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health, University of Newcastle, NSW, 2305, Australia
| | - Mark McEvoy
- Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health, University of Newcastle, NSW, 2305, Australia
| | - Rodney J Scott
- Hunter Medical Research Institute, John Hunter Hospital, Newcastle, NSW, 2305, Australia
- Hunter Area Pathology Service, John Hunter Hospital, Newcastle, NSW, 2305, Australia
- Centre for Information Based Medicine, University of Newcastle, NSW, 2308, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Katie Ashton
- Hunter Medical Research Institute, John Hunter Hospital, Newcastle, NSW, 2305, Australia
- Centre for Information Based Medicine, University of Newcastle, NSW, 2308, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Tony Proietto
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Geoffrey Otton
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Shahana Ahmed
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Catherine S Healey
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Maggie Gorman
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Lynn Martin
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | | | - Shirley Hodgson
- Department of Clinical Genetics, St George’s, University of London, London, SW17 0RE, UK
| | - Peter A Fasching
- University of California at Los Angeles, Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, 91054, Germany
| | - Alexander Hein
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, 91054, Germany
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, 91054, Germany
| | - Arif B Ekici
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, 91054, Germany
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Hatef Darabi
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Jingmei Li
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Matthias Dürst
- Department of Gynaecology, Jena University Hospital - Friedrich Schiller University, Jena, 07743, Germany
| | - Ingo Runnebaum
- Department of Gynaecology, Jena University Hospital - Friedrich Schiller University, Jena, 07743, Germany
| | - Peter Hillemanns
- Hannover Medical School, Clinics of Gynaecology and Obstetrics, Hannover, 30625, Germany
| | - Thilo Dörk
- Hannover Medical School, Gynaecology Research Unit, Hannover, 30625, Germany
| | - Diether Lambrechts
- Vesalius Research Center, Leuven, 3000, Belgium
- Laboratory for Translational Genetics, Department of Oncology, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Jeroen Depreeuw
- Vesalius Research Center, Leuven, 3000, Belgium
- Laboratory for Translational Genetics, Department of Oncology, University Hospitals Leuven, Leuven, 3000, Belgium
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University Hospitals, KU Leuven - University of Leuven, 3000, Belgium
| | - Daniela Annibali
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University Hospitals, KU Leuven - University of Leuven, 3000, Belgium
| | - Frederic Amant
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University Hospitals, KU Leuven - University of Leuven, 3000, Belgium
| | - Hui Zhao
- Vesalius Research Center, Leuven, 3000, Belgium
- Laboratory for Translational Genetics, Department of Oncology, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Ellen L Goode
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sean C Dowdy
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Brooke L Fridley
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Stacey J Winham
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Helga B Salvesen
- Centre for Cancerbiomarkers, Department of Clinical Science, The University of Bergen, 5020, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, 5021, Norway
| | - Tormund S Njølstad
- Centre for Cancerbiomarkers, Department of Clinical Science, The University of Bergen, 5020, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, 5021, Norway
| | - Jone Trovik
- Centre for Cancerbiomarkers, Department of Clinical Science, The University of Bergen, 5020, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, 5021, Norway
| | - Henrica MJ Werner
- Centre for Cancerbiomarkers, Department of Clinical Science, The University of Bergen, 5020, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, 5021, Norway
| | - Emma Tham
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Tao Liu
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Miriam Mints
- Department of Women’s and Children’s Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, SE-171 77, Sweden
| | - RENDOCAS
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, SE-171 77, Sweden
- Department of Women’s and Children’s Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, SE-171 77, Sweden
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Jonathan P Tyrer
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Vic, 3010, Australia
| | - AOCS Group
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- Peter MacCallum Cancer Center, The University of Melbourne, Melbourne, 3002, Australia
| | - Julian Peto
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Anthony J Swerdlow
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, SM2 5NG, UK
- Division of Breast Cancer Research, Institute of Cancer Research, London, SM2 5NG, UK
| | - Barbara Burwinkel
- Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, 69120, Germany
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, 69120, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Alfons Meindl
- Department of Obstetrics and Gynecology, Division of Tumor Genetics, Technical University of Munich, Munich, 80333, Germany
| | - Hiltrud Brauch
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, 70376, Germany
- University of Tübingen, Tübingen, 72074, Germany
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, 69120, Germany
| | - Fergus J Couch
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Vic, 3010, Australia
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Vic, 3004, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic, 3004, Australia
| | - Vessela N Kristensen
- Department of Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, 0310, Norway
- The K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, 0316, Norway
- Department of Clinical Molecular Oncology, Division of Medicine, Akershus University Hospital, Lørenskog, 1478, Norway
| | - Angela Cox
- Sheffield Cancer Research, Department of Oncology, University of Sheffield, Sheffield, S10 2RX, UK
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Ian Tomlinson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Deborah J Thompson
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Amanda B Spurdle
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| |
Collapse
|
185
|
Choi JH, Balasubramanian R, Lee PH, Shaw ND, Hall JE, Plummer L, Buck CL, Kottler ML, Jarzabek K, Wołczynski S, Quinton R, Latronico AC, Dode C, Ogata T, Kim HG, Layman LC, Gusella JF, Crowley WF. Expanding the Spectrum of Founder Mutations Causing Isolated Gonadotropin-Releasing Hormone Deficiency. J Clin Endocrinol Metab 2015; 100. [PMID: 26207952 PMCID: PMC4596034 DOI: 10.1210/jc.2015-2262] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Loss of function (LoF) mutations in more than 20 genes are now known to cause isolated GnRH deficiency (IGD) in humans. Most causal IGD mutations are typically private, ie, limited to a single individual/pedigree. However, somewhat paradoxically, four IGD genes (GNRH1, TAC3, PROKR2, and GNRHR) have been shown to harbor LoF founder mutations that are shared by multiple unrelated individuals. It is not known whether similar founder mutations occur in other IGD genes. OBJECTIVE The objective of the study was to determine whether shared deleterious mutations in IGD-associated genes represent founder alleles. SETTING This study was an international collaboration among academic medical centers. METHODS IGD patients with shared mutations, defined as those documented in three or more unrelated probands in 14 IGD-associated genes, were identified from various academic institutions, the Human Gene Mutation Database, and literature reports by other international investigators. Haplotypes of single-nucleotide polymorphisms and short tandem repeats surrounding the mutations were constructed to assess genetic ancestry. RESULTS A total of eight founder mutations in five genes, GNRHR (Q106R, R262Q, R139H), TACR3 (W275X), PROKR2 (R85H), FGFR1 (R250Q, G687R), and HS6ST1 (R382W) were identified. Most founder alleles were present at low frequency in the general population. The estimated age of these mutant alleles ranged from 1925 to 5600 years and corresponded to the time of rapid human population expansion. CONCLUSIONS We have expanded the spectrum of founder alleles associated with IGD to a total of eight founder mutations. In contrast to the approximately 9000-year-old PROKR2 founder allele that may confer a heterozygote advantage, the rest of the founder alleles are relatively more recent in origin, in keeping with the timing of recent human population expansion and any selective heterozygote advantage of these alleles requires further evaluation.
Collapse
Affiliation(s)
- Jin-Ho Choi
- Harvard Reproductive Endocrine Sciences Center and Reproductive Endocrine Unit (J.-H.C., R.B., N.D.S., J.E.H., L.P., C.L.B., W.F.C.), and Department of Medicine, Psychiatric, and Neurodevelopmental Genetics Unit (P.H.L.), Analytic and Translational Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, and Center for Human Genetic Research (J.F.G.), Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts Boston, Massachusetts 02114; Department of Genetics (M.-L.K.), University Hospital, Caen, 14003, Caen Cedex, France; Department of Biology and Pathology of Human Reproduction in Bialystok (K.J.), Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, and Department of Reproduction and Gynecological Endocrinology (S.W.), Medical University of Bialystok, Sklodowskiej 24A, 15-276 Bialystok, Poland; Institute for Genetic Medicine (R.Q.), Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, United Kingdom; Disciplina de Endocrinologia (A.C.L.), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo, 05403-900 Sao Paulo, Brazil; Laboratoire de Biochimie et Génétique Moléculaire (C.D.), Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Université Paris-Descartes, 75014 Paris, France; Departments of Molecular Endocrinology and Pediatrics (T.O.), Hamamatsu University of School of Medicine, Hamamatsu 431-3192, Japan; Section of Reproductive Endocrinology, Infertility, and Genetics (H.-G.K., L.C.L.), Departments of Obstetrics and Gynecology and Neuroscience and Regenerative Medicine, Medical College of Georgia at Georgia Regents University, Augusta, Georgia 30912; and Department of Pediatrics (J.-H.C.), Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Ravikumar Balasubramanian
- Harvard Reproductive Endocrine Sciences Center and Reproductive Endocrine Unit (J.-H.C., R.B., N.D.S., J.E.H., L.P., C.L.B., W.F.C.), and Department of Medicine, Psychiatric, and Neurodevelopmental Genetics Unit (P.H.L.), Analytic and Translational Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, and Center for Human Genetic Research (J.F.G.), Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts Boston, Massachusetts 02114; Department of Genetics (M.-L.K.), University Hospital, Caen, 14003, Caen Cedex, France; Department of Biology and Pathology of Human Reproduction in Bialystok (K.J.), Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, and Department of Reproduction and Gynecological Endocrinology (S.W.), Medical University of Bialystok, Sklodowskiej 24A, 15-276 Bialystok, Poland; Institute for Genetic Medicine (R.Q.), Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, United Kingdom; Disciplina de Endocrinologia (A.C.L.), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo, 05403-900 Sao Paulo, Brazil; Laboratoire de Biochimie et Génétique Moléculaire (C.D.), Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Université Paris-Descartes, 75014 Paris, France; Departments of Molecular Endocrinology and Pediatrics (T.O.), Hamamatsu University of School of Medicine, Hamamatsu 431-3192, Japan; Section of Reproductive Endocrinology, Infertility, and Genetics (H.-G.K., L.C.L.), Departments of Obstetrics and Gynecology and Neuroscience and Regenerative Medicine, Medical College of Georgia at Georgia Regents University, Augusta, Georgia 30912; and Department of Pediatrics (J.-H.C.), Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Phil H Lee
- Harvard Reproductive Endocrine Sciences Center and Reproductive Endocrine Unit (J.-H.C., R.B., N.D.S., J.E.H., L.P., C.L.B., W.F.C.), and Department of Medicine, Psychiatric, and Neurodevelopmental Genetics Unit (P.H.L.), Analytic and Translational Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, and Center for Human Genetic Research (J.F.G.), Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts Boston, Massachusetts 02114; Department of Genetics (M.-L.K.), University Hospital, Caen, 14003, Caen Cedex, France; Department of Biology and Pathology of Human Reproduction in Bialystok (K.J.), Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, and Department of Reproduction and Gynecological Endocrinology (S.W.), Medical University of Bialystok, Sklodowskiej 24A, 15-276 Bialystok, Poland; Institute for Genetic Medicine (R.Q.), Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, United Kingdom; Disciplina de Endocrinologia (A.C.L.), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo, 05403-900 Sao Paulo, Brazil; Laboratoire de Biochimie et Génétique Moléculaire (C.D.), Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Université Paris-Descartes, 75014 Paris, France; Departments of Molecular Endocrinology and Pediatrics (T.O.), Hamamatsu University of School of Medicine, Hamamatsu 431-3192, Japan; Section of Reproductive Endocrinology, Infertility, and Genetics (H.-G.K., L.C.L.), Departments of Obstetrics and Gynecology and Neuroscience and Regenerative Medicine, Medical College of Georgia at Georgia Regents University, Augusta, Georgia 30912; and Department of Pediatrics (J.-H.C.), Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Natalie D Shaw
- Harvard Reproductive Endocrine Sciences Center and Reproductive Endocrine Unit (J.-H.C., R.B., N.D.S., J.E.H., L.P., C.L.B., W.F.C.), and Department of Medicine, Psychiatric, and Neurodevelopmental Genetics Unit (P.H.L.), Analytic and Translational Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, and Center for Human Genetic Research (J.F.G.), Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts Boston, Massachusetts 02114; Department of Genetics (M.-L.K.), University Hospital, Caen, 14003, Caen Cedex, France; Department of Biology and Pathology of Human Reproduction in Bialystok (K.J.), Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, and Department of Reproduction and Gynecological Endocrinology (S.W.), Medical University of Bialystok, Sklodowskiej 24A, 15-276 Bialystok, Poland; Institute for Genetic Medicine (R.Q.), Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, United Kingdom; Disciplina de Endocrinologia (A.C.L.), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo, 05403-900 Sao Paulo, Brazil; Laboratoire de Biochimie et Génétique Moléculaire (C.D.), Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Université Paris-Descartes, 75014 Paris, France; Departments of Molecular Endocrinology and Pediatrics (T.O.), Hamamatsu University of School of Medicine, Hamamatsu 431-3192, Japan; Section of Reproductive Endocrinology, Infertility, and Genetics (H.-G.K., L.C.L.), Departments of Obstetrics and Gynecology and Neuroscience and Regenerative Medicine, Medical College of Georgia at Georgia Regents University, Augusta, Georgia 30912; and Department of Pediatrics (J.-H.C.), Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Janet E Hall
- Harvard Reproductive Endocrine Sciences Center and Reproductive Endocrine Unit (J.-H.C., R.B., N.D.S., J.E.H., L.P., C.L.B., W.F.C.), and Department of Medicine, Psychiatric, and Neurodevelopmental Genetics Unit (P.H.L.), Analytic and Translational Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, and Center for Human Genetic Research (J.F.G.), Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts Boston, Massachusetts 02114; Department of Genetics (M.-L.K.), University Hospital, Caen, 14003, Caen Cedex, France; Department of Biology and Pathology of Human Reproduction in Bialystok (K.J.), Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, and Department of Reproduction and Gynecological Endocrinology (S.W.), Medical University of Bialystok, Sklodowskiej 24A, 15-276 Bialystok, Poland; Institute for Genetic Medicine (R.Q.), Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, United Kingdom; Disciplina de Endocrinologia (A.C.L.), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo, 05403-900 Sao Paulo, Brazil; Laboratoire de Biochimie et Génétique Moléculaire (C.D.), Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Université Paris-Descartes, 75014 Paris, France; Departments of Molecular Endocrinology and Pediatrics (T.O.), Hamamatsu University of School of Medicine, Hamamatsu 431-3192, Japan; Section of Reproductive Endocrinology, Infertility, and Genetics (H.-G.K., L.C.L.), Departments of Obstetrics and Gynecology and Neuroscience and Regenerative Medicine, Medical College of Georgia at Georgia Regents University, Augusta, Georgia 30912; and Department of Pediatrics (J.-H.C.), Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Lacey Plummer
- Harvard Reproductive Endocrine Sciences Center and Reproductive Endocrine Unit (J.-H.C., R.B., N.D.S., J.E.H., L.P., C.L.B., W.F.C.), and Department of Medicine, Psychiatric, and Neurodevelopmental Genetics Unit (P.H.L.), Analytic and Translational Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, and Center for Human Genetic Research (J.F.G.), Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts Boston, Massachusetts 02114; Department of Genetics (M.-L.K.), University Hospital, Caen, 14003, Caen Cedex, France; Department of Biology and Pathology of Human Reproduction in Bialystok (K.J.), Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, and Department of Reproduction and Gynecological Endocrinology (S.W.), Medical University of Bialystok, Sklodowskiej 24A, 15-276 Bialystok, Poland; Institute for Genetic Medicine (R.Q.), Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, United Kingdom; Disciplina de Endocrinologia (A.C.L.), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo, 05403-900 Sao Paulo, Brazil; Laboratoire de Biochimie et Génétique Moléculaire (C.D.), Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Université Paris-Descartes, 75014 Paris, France; Departments of Molecular Endocrinology and Pediatrics (T.O.), Hamamatsu University of School of Medicine, Hamamatsu 431-3192, Japan; Section of Reproductive Endocrinology, Infertility, and Genetics (H.-G.K., L.C.L.), Departments of Obstetrics and Gynecology and Neuroscience and Regenerative Medicine, Medical College of Georgia at Georgia Regents University, Augusta, Georgia 30912; and Department of Pediatrics (J.-H.C.), Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Cassandra L Buck
- Harvard Reproductive Endocrine Sciences Center and Reproductive Endocrine Unit (J.-H.C., R.B., N.D.S., J.E.H., L.P., C.L.B., W.F.C.), and Department of Medicine, Psychiatric, and Neurodevelopmental Genetics Unit (P.H.L.), Analytic and Translational Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, and Center for Human Genetic Research (J.F.G.), Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts Boston, Massachusetts 02114; Department of Genetics (M.-L.K.), University Hospital, Caen, 14003, Caen Cedex, France; Department of Biology and Pathology of Human Reproduction in Bialystok (K.J.), Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, and Department of Reproduction and Gynecological Endocrinology (S.W.), Medical University of Bialystok, Sklodowskiej 24A, 15-276 Bialystok, Poland; Institute for Genetic Medicine (R.Q.), Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, United Kingdom; Disciplina de Endocrinologia (A.C.L.), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo, 05403-900 Sao Paulo, Brazil; Laboratoire de Biochimie et Génétique Moléculaire (C.D.), Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Université Paris-Descartes, 75014 Paris, France; Departments of Molecular Endocrinology and Pediatrics (T.O.), Hamamatsu University of School of Medicine, Hamamatsu 431-3192, Japan; Section of Reproductive Endocrinology, Infertility, and Genetics (H.-G.K., L.C.L.), Departments of Obstetrics and Gynecology and Neuroscience and Regenerative Medicine, Medical College of Georgia at Georgia Regents University, Augusta, Georgia 30912; and Department of Pediatrics (J.-H.C.), Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Marie-Laure Kottler
- Harvard Reproductive Endocrine Sciences Center and Reproductive Endocrine Unit (J.-H.C., R.B., N.D.S., J.E.H., L.P., C.L.B., W.F.C.), and Department of Medicine, Psychiatric, and Neurodevelopmental Genetics Unit (P.H.L.), Analytic and Translational Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, and Center for Human Genetic Research (J.F.G.), Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts Boston, Massachusetts 02114; Department of Genetics (M.-L.K.), University Hospital, Caen, 14003, Caen Cedex, France; Department of Biology and Pathology of Human Reproduction in Bialystok (K.J.), Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, and Department of Reproduction and Gynecological Endocrinology (S.W.), Medical University of Bialystok, Sklodowskiej 24A, 15-276 Bialystok, Poland; Institute for Genetic Medicine (R.Q.), Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, United Kingdom; Disciplina de Endocrinologia (A.C.L.), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo, 05403-900 Sao Paulo, Brazil; Laboratoire de Biochimie et Génétique Moléculaire (C.D.), Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Université Paris-Descartes, 75014 Paris, France; Departments of Molecular Endocrinology and Pediatrics (T.O.), Hamamatsu University of School of Medicine, Hamamatsu 431-3192, Japan; Section of Reproductive Endocrinology, Infertility, and Genetics (H.-G.K., L.C.L.), Departments of Obstetrics and Gynecology and Neuroscience and Regenerative Medicine, Medical College of Georgia at Georgia Regents University, Augusta, Georgia 30912; and Department of Pediatrics (J.-H.C.), Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Katarzyna Jarzabek
- Harvard Reproductive Endocrine Sciences Center and Reproductive Endocrine Unit (J.-H.C., R.B., N.D.S., J.E.H., L.P., C.L.B., W.F.C.), and Department of Medicine, Psychiatric, and Neurodevelopmental Genetics Unit (P.H.L.), Analytic and Translational Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, and Center for Human Genetic Research (J.F.G.), Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts Boston, Massachusetts 02114; Department of Genetics (M.-L.K.), University Hospital, Caen, 14003, Caen Cedex, France; Department of Biology and Pathology of Human Reproduction in Bialystok (K.J.), Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, and Department of Reproduction and Gynecological Endocrinology (S.W.), Medical University of Bialystok, Sklodowskiej 24A, 15-276 Bialystok, Poland; Institute for Genetic Medicine (R.Q.), Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, United Kingdom; Disciplina de Endocrinologia (A.C.L.), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo, 05403-900 Sao Paulo, Brazil; Laboratoire de Biochimie et Génétique Moléculaire (C.D.), Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Université Paris-Descartes, 75014 Paris, France; Departments of Molecular Endocrinology and Pediatrics (T.O.), Hamamatsu University of School of Medicine, Hamamatsu 431-3192, Japan; Section of Reproductive Endocrinology, Infertility, and Genetics (H.-G.K., L.C.L.), Departments of Obstetrics and Gynecology and Neuroscience and Regenerative Medicine, Medical College of Georgia at Georgia Regents University, Augusta, Georgia 30912; and Department of Pediatrics (J.-H.C.), Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Sławomir Wołczynski
- Harvard Reproductive Endocrine Sciences Center and Reproductive Endocrine Unit (J.-H.C., R.B., N.D.S., J.E.H., L.P., C.L.B., W.F.C.), and Department of Medicine, Psychiatric, and Neurodevelopmental Genetics Unit (P.H.L.), Analytic and Translational Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, and Center for Human Genetic Research (J.F.G.), Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts Boston, Massachusetts 02114; Department of Genetics (M.-L.K.), University Hospital, Caen, 14003, Caen Cedex, France; Department of Biology and Pathology of Human Reproduction in Bialystok (K.J.), Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, and Department of Reproduction and Gynecological Endocrinology (S.W.), Medical University of Bialystok, Sklodowskiej 24A, 15-276 Bialystok, Poland; Institute for Genetic Medicine (R.Q.), Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, United Kingdom; Disciplina de Endocrinologia (A.C.L.), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo, 05403-900 Sao Paulo, Brazil; Laboratoire de Biochimie et Génétique Moléculaire (C.D.), Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Université Paris-Descartes, 75014 Paris, France; Departments of Molecular Endocrinology and Pediatrics (T.O.), Hamamatsu University of School of Medicine, Hamamatsu 431-3192, Japan; Section of Reproductive Endocrinology, Infertility, and Genetics (H.-G.K., L.C.L.), Departments of Obstetrics and Gynecology and Neuroscience and Regenerative Medicine, Medical College of Georgia at Georgia Regents University, Augusta, Georgia 30912; and Department of Pediatrics (J.-H.C.), Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Richard Quinton
- Harvard Reproductive Endocrine Sciences Center and Reproductive Endocrine Unit (J.-H.C., R.B., N.D.S., J.E.H., L.P., C.L.B., W.F.C.), and Department of Medicine, Psychiatric, and Neurodevelopmental Genetics Unit (P.H.L.), Analytic and Translational Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, and Center for Human Genetic Research (J.F.G.), Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts Boston, Massachusetts 02114; Department of Genetics (M.-L.K.), University Hospital, Caen, 14003, Caen Cedex, France; Department of Biology and Pathology of Human Reproduction in Bialystok (K.J.), Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, and Department of Reproduction and Gynecological Endocrinology (S.W.), Medical University of Bialystok, Sklodowskiej 24A, 15-276 Bialystok, Poland; Institute for Genetic Medicine (R.Q.), Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, United Kingdom; Disciplina de Endocrinologia (A.C.L.), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo, 05403-900 Sao Paulo, Brazil; Laboratoire de Biochimie et Génétique Moléculaire (C.D.), Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Université Paris-Descartes, 75014 Paris, France; Departments of Molecular Endocrinology and Pediatrics (T.O.), Hamamatsu University of School of Medicine, Hamamatsu 431-3192, Japan; Section of Reproductive Endocrinology, Infertility, and Genetics (H.-G.K., L.C.L.), Departments of Obstetrics and Gynecology and Neuroscience and Regenerative Medicine, Medical College of Georgia at Georgia Regents University, Augusta, Georgia 30912; and Department of Pediatrics (J.-H.C.), Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Ana Claudia Latronico
- Harvard Reproductive Endocrine Sciences Center and Reproductive Endocrine Unit (J.-H.C., R.B., N.D.S., J.E.H., L.P., C.L.B., W.F.C.), and Department of Medicine, Psychiatric, and Neurodevelopmental Genetics Unit (P.H.L.), Analytic and Translational Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, and Center for Human Genetic Research (J.F.G.), Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts Boston, Massachusetts 02114; Department of Genetics (M.-L.K.), University Hospital, Caen, 14003, Caen Cedex, France; Department of Biology and Pathology of Human Reproduction in Bialystok (K.J.), Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, and Department of Reproduction and Gynecological Endocrinology (S.W.), Medical University of Bialystok, Sklodowskiej 24A, 15-276 Bialystok, Poland; Institute for Genetic Medicine (R.Q.), Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, United Kingdom; Disciplina de Endocrinologia (A.C.L.), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo, 05403-900 Sao Paulo, Brazil; Laboratoire de Biochimie et Génétique Moléculaire (C.D.), Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Université Paris-Descartes, 75014 Paris, France; Departments of Molecular Endocrinology and Pediatrics (T.O.), Hamamatsu University of School of Medicine, Hamamatsu 431-3192, Japan; Section of Reproductive Endocrinology, Infertility, and Genetics (H.-G.K., L.C.L.), Departments of Obstetrics and Gynecology and Neuroscience and Regenerative Medicine, Medical College of Georgia at Georgia Regents University, Augusta, Georgia 30912; and Department of Pediatrics (J.-H.C.), Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Catherine Dode
- Harvard Reproductive Endocrine Sciences Center and Reproductive Endocrine Unit (J.-H.C., R.B., N.D.S., J.E.H., L.P., C.L.B., W.F.C.), and Department of Medicine, Psychiatric, and Neurodevelopmental Genetics Unit (P.H.L.), Analytic and Translational Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, and Center for Human Genetic Research (J.F.G.), Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts Boston, Massachusetts 02114; Department of Genetics (M.-L.K.), University Hospital, Caen, 14003, Caen Cedex, France; Department of Biology and Pathology of Human Reproduction in Bialystok (K.J.), Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, and Department of Reproduction and Gynecological Endocrinology (S.W.), Medical University of Bialystok, Sklodowskiej 24A, 15-276 Bialystok, Poland; Institute for Genetic Medicine (R.Q.), Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, United Kingdom; Disciplina de Endocrinologia (A.C.L.), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo, 05403-900 Sao Paulo, Brazil; Laboratoire de Biochimie et Génétique Moléculaire (C.D.), Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Université Paris-Descartes, 75014 Paris, France; Departments of Molecular Endocrinology and Pediatrics (T.O.), Hamamatsu University of School of Medicine, Hamamatsu 431-3192, Japan; Section of Reproductive Endocrinology, Infertility, and Genetics (H.-G.K., L.C.L.), Departments of Obstetrics and Gynecology and Neuroscience and Regenerative Medicine, Medical College of Georgia at Georgia Regents University, Augusta, Georgia 30912; and Department of Pediatrics (J.-H.C.), Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Tsutomu Ogata
- Harvard Reproductive Endocrine Sciences Center and Reproductive Endocrine Unit (J.-H.C., R.B., N.D.S., J.E.H., L.P., C.L.B., W.F.C.), and Department of Medicine, Psychiatric, and Neurodevelopmental Genetics Unit (P.H.L.), Analytic and Translational Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, and Center for Human Genetic Research (J.F.G.), Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts Boston, Massachusetts 02114; Department of Genetics (M.-L.K.), University Hospital, Caen, 14003, Caen Cedex, France; Department of Biology and Pathology of Human Reproduction in Bialystok (K.J.), Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, and Department of Reproduction and Gynecological Endocrinology (S.W.), Medical University of Bialystok, Sklodowskiej 24A, 15-276 Bialystok, Poland; Institute for Genetic Medicine (R.Q.), Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, United Kingdom; Disciplina de Endocrinologia (A.C.L.), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo, 05403-900 Sao Paulo, Brazil; Laboratoire de Biochimie et Génétique Moléculaire (C.D.), Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Université Paris-Descartes, 75014 Paris, France; Departments of Molecular Endocrinology and Pediatrics (T.O.), Hamamatsu University of School of Medicine, Hamamatsu 431-3192, Japan; Section of Reproductive Endocrinology, Infertility, and Genetics (H.-G.K., L.C.L.), Departments of Obstetrics and Gynecology and Neuroscience and Regenerative Medicine, Medical College of Georgia at Georgia Regents University, Augusta, Georgia 30912; and Department of Pediatrics (J.-H.C.), Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Hyung-Goo Kim
- Harvard Reproductive Endocrine Sciences Center and Reproductive Endocrine Unit (J.-H.C., R.B., N.D.S., J.E.H., L.P., C.L.B., W.F.C.), and Department of Medicine, Psychiatric, and Neurodevelopmental Genetics Unit (P.H.L.), Analytic and Translational Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, and Center for Human Genetic Research (J.F.G.), Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts Boston, Massachusetts 02114; Department of Genetics (M.-L.K.), University Hospital, Caen, 14003, Caen Cedex, France; Department of Biology and Pathology of Human Reproduction in Bialystok (K.J.), Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, and Department of Reproduction and Gynecological Endocrinology (S.W.), Medical University of Bialystok, Sklodowskiej 24A, 15-276 Bialystok, Poland; Institute for Genetic Medicine (R.Q.), Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, United Kingdom; Disciplina de Endocrinologia (A.C.L.), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo, 05403-900 Sao Paulo, Brazil; Laboratoire de Biochimie et Génétique Moléculaire (C.D.), Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Université Paris-Descartes, 75014 Paris, France; Departments of Molecular Endocrinology and Pediatrics (T.O.), Hamamatsu University of School of Medicine, Hamamatsu 431-3192, Japan; Section of Reproductive Endocrinology, Infertility, and Genetics (H.-G.K., L.C.L.), Departments of Obstetrics and Gynecology and Neuroscience and Regenerative Medicine, Medical College of Georgia at Georgia Regents University, Augusta, Georgia 30912; and Department of Pediatrics (J.-H.C.), Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Lawrence C Layman
- Harvard Reproductive Endocrine Sciences Center and Reproductive Endocrine Unit (J.-H.C., R.B., N.D.S., J.E.H., L.P., C.L.B., W.F.C.), and Department of Medicine, Psychiatric, and Neurodevelopmental Genetics Unit (P.H.L.), Analytic and Translational Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, and Center for Human Genetic Research (J.F.G.), Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts Boston, Massachusetts 02114; Department of Genetics (M.-L.K.), University Hospital, Caen, 14003, Caen Cedex, France; Department of Biology and Pathology of Human Reproduction in Bialystok (K.J.), Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, and Department of Reproduction and Gynecological Endocrinology (S.W.), Medical University of Bialystok, Sklodowskiej 24A, 15-276 Bialystok, Poland; Institute for Genetic Medicine (R.Q.), Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, United Kingdom; Disciplina de Endocrinologia (A.C.L.), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo, 05403-900 Sao Paulo, Brazil; Laboratoire de Biochimie et Génétique Moléculaire (C.D.), Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Université Paris-Descartes, 75014 Paris, France; Departments of Molecular Endocrinology and Pediatrics (T.O.), Hamamatsu University of School of Medicine, Hamamatsu 431-3192, Japan; Section of Reproductive Endocrinology, Infertility, and Genetics (H.-G.K., L.C.L.), Departments of Obstetrics and Gynecology and Neuroscience and Regenerative Medicine, Medical College of Georgia at Georgia Regents University, Augusta, Georgia 30912; and Department of Pediatrics (J.-H.C.), Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - James F Gusella
- Harvard Reproductive Endocrine Sciences Center and Reproductive Endocrine Unit (J.-H.C., R.B., N.D.S., J.E.H., L.P., C.L.B., W.F.C.), and Department of Medicine, Psychiatric, and Neurodevelopmental Genetics Unit (P.H.L.), Analytic and Translational Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, and Center for Human Genetic Research (J.F.G.), Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts Boston, Massachusetts 02114; Department of Genetics (M.-L.K.), University Hospital, Caen, 14003, Caen Cedex, France; Department of Biology and Pathology of Human Reproduction in Bialystok (K.J.), Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, and Department of Reproduction and Gynecological Endocrinology (S.W.), Medical University of Bialystok, Sklodowskiej 24A, 15-276 Bialystok, Poland; Institute for Genetic Medicine (R.Q.), Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, United Kingdom; Disciplina de Endocrinologia (A.C.L.), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo, 05403-900 Sao Paulo, Brazil; Laboratoire de Biochimie et Génétique Moléculaire (C.D.), Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Université Paris-Descartes, 75014 Paris, France; Departments of Molecular Endocrinology and Pediatrics (T.O.), Hamamatsu University of School of Medicine, Hamamatsu 431-3192, Japan; Section of Reproductive Endocrinology, Infertility, and Genetics (H.-G.K., L.C.L.), Departments of Obstetrics and Gynecology and Neuroscience and Regenerative Medicine, Medical College of Georgia at Georgia Regents University, Augusta, Georgia 30912; and Department of Pediatrics (J.-H.C.), Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - William F Crowley
- Harvard Reproductive Endocrine Sciences Center and Reproductive Endocrine Unit (J.-H.C., R.B., N.D.S., J.E.H., L.P., C.L.B., W.F.C.), and Department of Medicine, Psychiatric, and Neurodevelopmental Genetics Unit (P.H.L.), Analytic and Translational Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, and Center for Human Genetic Research (J.F.G.), Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts Boston, Massachusetts 02114; Department of Genetics (M.-L.K.), University Hospital, Caen, 14003, Caen Cedex, France; Department of Biology and Pathology of Human Reproduction in Bialystok (K.J.), Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, and Department of Reproduction and Gynecological Endocrinology (S.W.), Medical University of Bialystok, Sklodowskiej 24A, 15-276 Bialystok, Poland; Institute for Genetic Medicine (R.Q.), Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, United Kingdom; Disciplina de Endocrinologia (A.C.L.), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo, 05403-900 Sao Paulo, Brazil; Laboratoire de Biochimie et Génétique Moléculaire (C.D.), Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Université Paris-Descartes, 75014 Paris, France; Departments of Molecular Endocrinology and Pediatrics (T.O.), Hamamatsu University of School of Medicine, Hamamatsu 431-3192, Japan; Section of Reproductive Endocrinology, Infertility, and Genetics (H.-G.K., L.C.L.), Departments of Obstetrics and Gynecology and Neuroscience and Regenerative Medicine, Medical College of Georgia at Georgia Regents University, Augusta, Georgia 30912; and Department of Pediatrics (J.-H.C.), Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| |
Collapse
|
186
|
Yang SY, Huh IS, Baek JH, Cho EY, Choi MJ, Ryu S, Kim JS, Park T, Ha K, Hong KS. Association between ST8SIA2 and the Risk of Schizophrenia and Bipolar I Disorder across Diagnostic Boundaries. PLoS One 2015; 10:e0139413. [PMID: 26418860 PMCID: PMC4587961 DOI: 10.1371/journal.pone.0139413] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/14/2015] [Indexed: 12/11/2022] Open
Abstract
Background Findings from family studies and recent genome-wide association studies have indicated overlap in the risk genes between schizophrenia and bipolar disorder (BD). After finding a linkage between the ST8SIA2 (ST8 alpha-N-acetyl-neuraminide alpha-2, 8-sicalyltransferase 2 gene) locus (15q26) and mixed families with schizophrenia and BD, several studies have reported a significant association between this gene and schizophrenia or BD. We investigated the genetic association between ST8SIA2 and both schizophrenia and BD in the Korean population. Methods A total of 582 patients with schizophrenia, 339 patients with BD, and 502 healthy controls were included. Thirty-one tag single nucleotide polymorphisms (SNPs) across the ST8SIA2 region and three other SNPs showing significant associations in previous studies were genotyped. The associations were evaluated by logistic regression analysis using additive, dominant, and recessive genetic models. Results Fourteen of 34 SNPs showed a nominally significant association (p < 0.05) with at least one diagnostic group. These association trends were strongest for the schizophrenia and combined schizophrenia and bipolar I disorder (BD-I) groups. The strongest association was observed in rs11637898 for schizophrenia (p = 0.0033) and BD-I (p = 0.0050) under the dominant model. The association between rs11637898 and the combined schizophrenia and BD-I group (p = 0.0006, under the dominant model) remained significant after correcting for multiple testing. Discussion We identified a possible role of ST8SIA2 in the common susceptibility of schizophrenia and BD-I. However, no association trend was observed for bipolar II disorder. Further efforts are needed to identify a specific phenotype associated with this gene crossing the current diagnostic categories.
Collapse
Affiliation(s)
- So Yung Yang
- Department of Psychiatry, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea
| | - Ik Soo Huh
- Department of Statistics, Seoul National University, Seoul, Korea
| | - Ji Hyun Baek
- Department of Psychiatry, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea
| | - Eun-Young Cho
- Center for Clinical Research, Samsung Biomedical Research Institute, Seoul, Korea
| | - Mi Ji Choi
- Center for Clinical Research, Samsung Biomedical Research Institute, Seoul, Korea
| | - Seunghyong Ryu
- Department of Psychiatry, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea
| | - Ji Sun Kim
- Department of Psychiatry, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea
| | - Taesung Park
- Department of Statistics, Seoul National University, Seoul, Korea
| | - Kyooseob Ha
- Seoul National Hospital, Seoul, Korea
- Department of Neuropsychiatry, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Kyunggi-Do, Korea
| | - Kyung Sue Hong
- Department of Psychiatry, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea
- Center for Clinical Research, Samsung Biomedical Research Institute, Seoul, Korea
- * E-mail:
| |
Collapse
|
187
|
Villegas R, Delahanty R, Williams S, Li H, O'Brian R, Shi J, Cai Q, Xiang YB, Shu XO. Genetic Variation and Insulin Resistance in Middle-Aged Chinese Men. Ann Hum Genet 2015; 79:357-365. [PMID: 26252243 PMCID: PMC4949159 DOI: 10.1111/ahg.12124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 04/09/2015] [Indexed: 12/27/2022]
Abstract
We investigated the effect of variants in the first three genes in the insulin signaling pathway and genes identified from genome wide association studies (GWAS) of T2D quantitative traits with IR (fasting insulin and the homeostasis model assessment of IR, HOMA-IR) and evaluated gene-environment interactions with IR traits among 1879 nondiabetic middle-aged men from a population-based study conducted in Shanghai, China. One candidate gene, IGF1, was associated with fasting insulin and HOMA-IR. We observed four BMI-gene interactions (P < 0.05) with HOMA-IR (INRS rs7254060, INRS rs7254358, GLU4 rs2113050, and GLU4 rs7713127) and seven BMI-gene interactions with fasting insulin (INRS rs7254060, INRS rs7254358, INRS rs10417205, INRS rs1799817, GLU4 rs12054720 GLU4 rs2113050, and GLU4 rs7713127). There were four WHR-gene interactions with HOMA-IR (INRS rs10417205, INRS rs12971499, INRS rs7254060, and INRS rs7254358), five WHR-gene interactions with fasting insulin (INRS rs10417205, INRS rs7254060, INRS rs7254358, GLU4 rs2113050, and GLU4 rs7713127), eight physical activity-gene interactions with HOMA-IR (INRS rs10411676, INRS rs11671297, INRS rs2229431, INRS rs12461909, INRS rs6510950, INRS rs10420382, IRS2 rs913949, and IRS2 rs2241745) and five physical activity-gene interactions with fasting insulin (INRS rs2229431, INRS rs12461909, INRS rs10420382, IRS2 rs913949, and IRS2 rs2241745). Our results suggest that BMI, WHR and physical activity may modify IR-associated variants.
Collapse
Affiliation(s)
- Raquel Villegas
- Vanderbilt Epidemiology Center, Department of Medicine, Vanderbilt University Medical Center, TN, USA
| | - Ryan Delahanty
- Vanderbilt Epidemiology Center, Department of Medicine, Vanderbilt University Medical Center, TN, USA
| | - Scott Williams
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Honglan Li
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, P.R. China
| | - Richard O'Brian
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jiajun Shi
- Vanderbilt Epidemiology Center, Department of Medicine, Vanderbilt University Medical Center, TN, USA
| | - Qiuyin Cai
- Vanderbilt Epidemiology Center, Department of Medicine, Vanderbilt University Medical Center, TN, USA
| | - Yong-Bing Xiang
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, P.R. China
| | - Xiao Ou Shu
- Vanderbilt Epidemiology Center, Department of Medicine, Vanderbilt University Medical Center, TN, USA
| |
Collapse
|
188
|
Hogewind BF, Micheal S, Schoenmaker-Koller FE, Hoyng CB, den Hollander AI. Analyses of Sequence Variants in the MYOC Gene and of Single Nucleotide Polymorphisms in the NR3C1 and FKBP5 Genes in Corticosteroid-Induced Ocular Hypertension. Ophthalmic Genet 2015; 36:299-302. [PMID: 24417561 DOI: 10.3109/13816810.2013.879598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND To perform an independent replication study to determine whether genetic variants in MYOC, NR3C1 and FKBP5 are involved in steroid-induced ocular hypertension. MATERIALS AND METHODS A retrospective case-control study was peformed on native Dutch patients who were treated with 4.0 mg intravitreal triamcinolone acetonide (IVTA). The patients were divided into an intraocular hypertension group (intraocular pressure >21 mmHg within a year after IVTA) and a non-intraocular hypertension group. The cohort was genotyped for 31 single-nucleotide polymorphisms (SNPs): 21 in NR3C1 and 10 in FKBP5. In addition, the open reading frame of MYOC was sequenced. RESULTS A total of 102 patients were included in this study: 58 steroid responders and 44 non-responders. No significant associations were found for the studied SNPs in NR3C1 and FKBP5. Heterozygous amino acid variants were detected in the MYOC gene in two patients of the non-intraocular hypertension group. CONCLUSIONS This study does not confirm a role for genetic variants in the MYOC, NR3C1 and FKBP5 genes in the pathogenesis of corticosteroid-induced ocular hypertension.
Collapse
Affiliation(s)
- Barend F Hogewind
- a Department of Ophthalmology , Medical Centre Haaglanden , Den Haag .,b Department of Ophthalmology , and
| | | | | | | | - Anneke I den Hollander
- b Department of Ophthalmology , and.,c Department of Human Genetics , Radboud University Nijmegen Medical Centre , Nijmegen , the Netherlands
| |
Collapse
|
189
|
Shim U, Kim HN, Lee H, Oh JY, Sung YA, Kim HL. Pathway Analysis Based on a Genome-Wide Association Study of Polycystic Ovary Syndrome. PLoS One 2015; 10:e0136609. [PMID: 26308735 PMCID: PMC4550465 DOI: 10.1371/journal.pone.0136609] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/06/2015] [Indexed: 12/20/2022] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in women of reproductive age, and it is affected by both environmental and genetic factors. Although the genetic component of PCOS is evident, studies aiming to identify susceptibility genes have shown controversial results. This study conducted a pathway-based analysis using a dataset obtained through a genome-wide association study (GWAS) to elucidate the biological pathways that contribute to PCOS susceptibility and the associated genes. Methods We used GWAS data on 636,797 autosomal single nucleotide polymorphisms (SNPs) from 1,221 individuals (432 PCOS patients and 789 controls) for analysis. A pathway analysis was conducted using meta-analysis gene-set enrichment of variant associations (MAGENTA). Top-ranking pathways or gene sets associated with PCOS were identified, and significant genes within the pathways were analyzed. Results The pathway analysis of the GWAS dataset identified significant pathways related to oocyte meiosis and the regulation of insulin secretion by acetylcholine and free fatty acids (all nominal gene-set enrichment analysis (GSEA) P-values < 0.05). In addition, INS, GNAQ, STXBP1, PLCB3, PLCB2, SMC3 and PLCZ1 were significant genes observed within the biological pathways (all gene P-values < 0.05). Conclusions By applying MAGENTA pathway analysis to PCOS GWAS data, we identified significant pathways and candidate genes involved in PCOS. Our findings may provide new leads for understanding the mechanisms underlying the development of PCOS.
Collapse
Affiliation(s)
- Unjin Shim
- Department of Internal Medicine, Seoul Seonam Hospital, Ewha Womans University Medical Center, Seoul, Korea
| | - Han-Na Kim
- Department of Biochemistry, Ewha Womans University School of Medicine, Seoul, Korea
| | - Hyejin Lee
- Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Jee-Young Oh
- Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Yeon-Ah Sung
- Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Korea
- * E-mail: (YAS); (HLK)
| | - Hyung-Lae Kim
- Department of Biochemistry, Ewha Womans University School of Medicine, Seoul, Korea
- * E-mail: (YAS); (HLK)
| |
Collapse
|
190
|
Leiherer A, Muendlein A, Kinz E, Vonbank A, Rein P, Fraunberger P, Malin C, Saely CH, Drexel H. High plasma chemerin is associated with renal dysfunction and predictive for cardiovascular events - Insights from phenotype and genotype characterization. Vascul Pharmacol 2015; 77:60-8. [PMID: 26304698 DOI: 10.1016/j.vph.2015.08.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/17/2015] [Accepted: 08/10/2015] [Indexed: 01/21/2023]
Abstract
The novel adipokine chemerin, encoded by the RARRES2 gene, has been suggested to be linked to insulin resistance and to the metabolic syndrome (MetS). However, no well-defined cardiovascular profile has been reported and the association with coronary artery disease (CAD) is a matter of debate. Because there is a relation between renal dysfunction and CAD, we analyzed plasma chemerin levels and the estimated glomerular filtration rate (eGFR) in 495 patients undergoing coronary angiography for the evaluation of established or suspected stable CAD. Chemerin levels were higher in patients with Type 2 diabetes mellitus (T2DM, n=111) and the metabolic syndrome (MetS, n=147) than in subjects without T2DM (191.5±72.9 vs. 169.7±64.7ng/ml, p=0.001) or the MetS (201.2±71.0 vs. 163,1ng/ml, p<0.001), but did not differ significantly between patients with significant CAD (n=247) and those without significant CAD (177.1±67.0 vs. 171.7±67.2ng/ml, p=0.193). Analysis of covariance using age, sex, and BMI as covariates showed that chemerin was significantly and independently associated with eGFR (F=49.6, p<0.001). After an 8-year follow-up period, patients with high chemerin levels were more often affected by cardiovascular events (HR=1.72 [95% CI 1.19-2.47], p=0.004), even after appropriate adjustment for age, gender, BMI, as well as eGFR (adjusted HR 1.51 [95% CI 1.03-2.23], p=0.037). Given the cardiometabolic role of chemerin, we also applied a Cardio-Metabo Chip analysis and revealed a genome-wide significant association with SNPs (rs55709438, rs2444030, and rs3098423) located at chromosomal region 15q15-23, which were associated with metabolic traits and eGFR. This study for the first time demonstrates that high chemerin concentrations are significantly associated with renal impairment and predictive of cardiovascular events and that 15q15-23 might have an impact on chemerin levels beyond common genetic variations in RARRES2.
Collapse
Affiliation(s)
- Andreas Leiherer
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria; Private University of the Principality of Liechtenstein, Triesen, Liechtenstein; Medical Central Laboratories, Feldkirch, Austria
| | - Axel Muendlein
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria; Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Elena Kinz
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria; Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Alexander Vonbank
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria; Department of Medicine and Cardiology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | - Philipp Rein
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria; Department of Medicine and Cardiology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | - Peter Fraunberger
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein; Medical Central Laboratories, Feldkirch, Austria
| | - Cornelia Malin
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria; Department of Medicine and Cardiology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | - Christoph H Saely
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria; Department of Medicine and Cardiology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria; Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Heinz Drexel
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria; Department of Medicine and Cardiology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria; Private University of the Principality of Liechtenstein, Triesen, Liechtenstein; Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
191
|
Natural Variation in the Flag Leaf Morphology of Rice Due to a Mutation of the NARROW LEAF 1 Gene in Oryza sativa L. Genetics 2015; 201:795-808. [PMID: 26275424 DOI: 10.1534/genetics.115.181040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/03/2015] [Indexed: 11/18/2022] Open
Abstract
We investigated the natural variations in the flag leaf morphology of rice. We conducted a principal component analysis based on nine flag leaf morphology traits using 103 accessions from the National Institute of Agrobiological Sciences Core Collection. The first component explained 39% of total variance, and the variable with highest loading was the width of the flag leaf (WFL). A genome-wide association analysis of 102 diverse Japanese accessions revealed that marker RM6992 on chromosome 4 was highly associated with WFL. In analyses of progenies derived from a cross between Takanari and Akenohoshi, the most significant quantitative trait locus (QTL) for WFL was in a 10.3-kb region containing the NARROW LEAF 1 (NAL1) gene, located 0.4 Mb downstream of RM6992. Analyses of chromosomal segment substitution lines indicated that a mutation (G1509A single-nucleotide mutation, causing an R233H amino acid substitution in NAL1) was present at the QTL. This explained 13 and 20% of total variability in WFL and the distance between small vascular bundles, respectively. The mutation apparently occurred during rice domestication and spread into japonica, tropical japonica, and indica subgroups. Notably, one accession, Phulba, had a NAL1 allele encoding only the N-terminal, or one-fourth, of the wild-type peptide. Given that the Phulba allele and the histidine-type allele showed essentially the same phenotype, the histidine-type allele was regarded as malfunctional. The phenotypes of transgenic plants varied depending on the ratio of histidine-type alleles to arginine-type alleles, raising the possibility that H(233)-type products function differently from and compete with R(233)-type products.
Collapse
|
192
|
Evaluation of genetic susceptibility of common variants in CACNA1D with schizophrenia in Han Chinese. Sci Rep 2015; 5:12935. [PMID: 26255836 PMCID: PMC4530443 DOI: 10.1038/srep12935] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 07/10/2015] [Indexed: 11/23/2022] Open
Abstract
The heritability of schizophrenia (SCZ) has been estimated to be as high as 80%, suggesting that genetic factors may play an important role in the etiology of SCZ. Cav1.2 encoded by CACNA1C and Cav1.3 encoded by CACNA1D are dominant calcium channel-forming subunits of L-type Voltage-dependent Ca2+ channels, expressed in many types of neurons. The CACNA1C has been consistently found to be a risk gene for SCZ, but it is unknown for CACNA1D. To investigate the association of CACNA1D with SCZ, we designed a two-stage case-control study, including a testing set with 1117 cases and 1815 controls and a validation set with 1430 cases and 4295 controls in Han Chinese. A total of selected 97 tag single nucleotide polymorphisms (SNPs) in CACNA1D were genotyped, and single-SNP association, imputation analysis and gender-specific association analyses were performed in the two independent datasets. None was found to associate with SCZ. Further genotype and haplotype association analyses indicated a similar pattern in the two-stage study. Our findings suggested CACNA1D might not be a risk gene for SCZ in Han Chinese population, which add to the current state of knowledge regarding the susceptibility of CACNA1D to SCZ.
Collapse
|
193
|
Hancock DB, Wang JC, Gaddis NC, Levy JL, Saccone NL, Stitzel JA, Goate A, Bierut LJ, Johnson EO. A multiancestry study identifies novel genetic associations with CHRNA5 methylation in human brain and risk of nicotine dependence. Hum Mol Genet 2015. [PMID: 26220977 DOI: 10.1093/hmg/ddv303] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Nicotine dependence is influenced by chromosome 15q25.1 single nucleotide polymorphisms (SNPs), including the missense SNP rs16969968 that alters function of the α5 nicotinic acetylcholine receptor (CHRNA5) and noncoding SNPs that regulate CHRNA5 mRNA expression. We tested for cis-methylation quantitative trait loci (cis-meQTLs) using SNP genotypes and DNA methylation levels measured across the IREB2-HYKK-PSMA4-CHRNA5-CHRNA3-CHRNB4 genes on chromosome 15q25.1 in the BrainCloud and Brain QTL cohorts [total N = 175 European-Americans and 65 African-Americans (AAs)]. We identified eight SNPs that were significantly associated with CHRNA5 methylation in prefrontal cortex: P ranging from 6.0 × 10(-10) to 5.6 × 10(-5). These SNP-methylation associations were also significant in frontal cortex, temporal cortex and pons: P ranging from 4.8 × 10(-12) to 3.4 × 10(-3). Of the eight cis-meQTL SNPs, only the intronic CHRNB4 SNP rs11636753 was associated with CHRNA5 methylation independently of the known SNP effects in prefrontal cortex, and it was the most significantly associated SNP with nicotine dependence across five independent cohorts (total N = 7858 European ancestry and 3238 AA participants): P = 6.7 × 10(-4), odds ratio (OR) [95% confidence interval (CI)] = 1.11 (1.05-1.18). The rs11636753 major allele (G) was associated with lower CHRNA5 DNA methylation, lower CHRNA5 mRNA expression and increased nicotine dependence risk. Haplotype analyses showed that rs11636753-G and the functional rs16969968-A alleles together increased risk of nicotine dependence more than each variant alone: P = 3.1 × 10(-12), OR (95% CI) = 1.32 (1.22-1.43). Our findings identify a novel regulatory SNP association with nicotine dependence and connect, for the first time, previously observed differences in CHRNA5 mRNA expression and nicotine dependence risk to underlying DNA methylation differences.
Collapse
Affiliation(s)
- Dana B Hancock
- Behavioral and Urban Health Program, Behavioral Health and Criminal Justice Division,
| | - Jen-Chyong Wang
- Department of Neuroscience and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | | | - Jerry A Stitzel
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80309, USA
| | - Alison Goate
- Department of Neuroscience and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Laura J Bierut
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA and
| | - Eric O Johnson
- Fellow Program and Behavioral Health and Criminal Justice Division, Research Triangle Institute (RTI) International, Research Triangle Park, NC 27709, USA
| |
Collapse
|
194
|
Khankhanian P, Gourraud PA, Lizee A, Goodin DS. Haplotype-based approach to known MS-associated regions increases the amount of explained risk. J Med Genet 2015; 52:587-94. [PMID: 26185143 PMCID: PMC4552900 DOI: 10.1136/jmedgenet-2015-103071] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/07/2015] [Indexed: 11/18/2022]
Abstract
Genome-wide association studies (GWAS), using single nucleotide polymorphisms (SNPs), have yielded 110 non-human leucocyte antigen genomic regions that are associated with multiple sclerosis (MS). Despite this large number of associations, however, only 28% of MS-heritability can currently be explained. Here we compare the use of multi-SNP-haplotypes to the use of single-SNPs as alternative methods to describe MS genetic risk. SNP-haplotypes (of various lengths from 1 up to 15 contiguous SNPs) were constructed at each of the 110 previously identified, MS-associated, genomic regions. Even after correcting for the larger number of statistical comparisons made when using the haplotype-method, in 32 of the regions, the SNP-haplotype based model was markedly more significant than the single-SNP based model. By contrast, in no region was the single-SNP based model similarly more significant than the SNP-haplotype based model. Moreover, when we included the 932 MS-associated SNP-haplotypes (that we identified from 102 regions) as independent variables into a logistic linear model, the amount of MS-heritability, as assessed by Nagelkerke's R-squared, was 38%, which was considerably better than 29%, which was obtained by using only single-SNPs. This study demonstrates that SNP-haplotypes can be used to fine-map the genetic associations within regions of interest previously identified by single-SNP GWAS. Moreover, the amount of the MS genetic risk explained by the SNP-haplotype associations in the 110 MS-associated genomic regions was considerably greater when using SNP-haplotypes than when using single-SNPs. Also, the use of SNP-haplotypes can lead to the discovery of new regions of interest, which have not been identified by a single-SNP GWAS.
Collapse
Affiliation(s)
- Pouya Khankhanian
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA UCSF MS Center, University of California, San Francisco, San Francisco, California, USA
| | - Pierre-Antoine Gourraud
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA UCSF MS Center, University of California, San Francisco, San Francisco, California, USA
| | - Antoine Lizee
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA UCSF MS Center, University of California, San Francisco, San Francisco, California, USA
| | - Douglas S Goodin
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA UCSF MS Center, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
195
|
Genetic variation in the TNF/TRAF2/ASK1/p38 kinase signaling pathway as markers for postoperative pulmonary complications in lung cancer patients. Sci Rep 2015; 5:12068. [PMID: 26165383 PMCID: PMC4499815 DOI: 10.1038/srep12068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 06/10/2015] [Indexed: 11/08/2022] Open
Abstract
Post-operative pulmonary complications are the most common morbidity associated with lung resection in non-small cell lung cancer (NSCLC) patients. The TNF/TRAF2/ASK1/p38 kinase pathway is activated by stress stimuli and inflammatory signals. We hypothesized that genetic polymorphisms within this pathway may contribute to risk of complications. In this case-only study, we genotyped 173 germline genetic variants in a discovery population of 264 NSCLC patients who underwent a lobectomy followed by genotyping of the top variants in a replication population of 264 patients. Complications data was obtained from a prospective database at MD Anderson. MAP2K4:rs12452497 was significantly associated with a decreased risk in both phases, resulting in a 40% reduction in the pooled population (95% CI:0.43–0.83, P = 0.0018). In total, seven variants were significant for risk in the pooled analysis. Gene-based analysis supported the involvement of TRAF2, MAP2K4, and MAP3K5 as mediating complications risk and a highly significant trend was identified between the number of risk genotypes and complications risk (P = 1.63 × 10−8). An inverse relationship was observed between association with clinical outcomes and complications for two variants. These results implicate the TNF/TRAF2/ASK1/p38 kinase pathway in modulating risk of pulmonary complications following lobectomy and may be useful biomarkers to identify patients at high risk.
Collapse
|
196
|
Tao R, Chen Z, Wu P, Liu C, Peng Y, Zhao W, Hu C, Feng J. The possible role of EZH2 and DNMT1 polymorphisms in sporadic triple-negative breast carcinoma in southern Chinese females. Tumour Biol 2015; 36:9849-55. [PMID: 26162541 DOI: 10.1007/s13277-015-3754-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/02/2015] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) has a more invasive and metastatic potential than the other types of breast cancer and hence is associated with poor prognosis. Zeste homolog 2 (EZH2) and DNA methyltransferase 1 (DNMT1) could lead to tumorigenesis by separately methylating histone H3K27 and CpG islands in tumor suppressor genes. In order to investigate the association between oncogenesis and the distribution of single nucleotide polymorphisms (SNPs) of EZH2, DNMT1, a case-control study on SNPs in TNBC cases from south China was conducted. A total of 13 SNPs were genotyped from 234 cases of TNBC tissues, and 300 normal blood samples from age-matched control group were analyzed using Snapshot technology. The expressions of EZH2 and DNMT1 were examined in the 234 cases of TNBC tissues by immunohistochemistry (IHC). The T allele of rs2288349 and the C allele of rs16999593 increase the risk of TNBC, with relative risk coefficients of 1.76 and 1.69, respectively (p < 0.001). The TC genotypes of rs2288349 and rs16999593 were higher in TNBC compared with the control group; the cancer risk increased to 5.27 and 4.13, respectively (p < 0.001). There were no significant differences between the frequencies of the other 10 SNPs and the risk of TNBC (p > 0.05). Five common haplotypes (>8 % frequency) were identified with a cumulative frequency of 96 % in the controls, while the haplotypes of AAGTAG, GGGTGA, and GACCAG were significantly increased in the control group compared to that in patients (p < 0.05). The G allele of rs10274701 significantly increased the EZH2 expression level in TNBC (p = 0.01). This is the first study to demonstrate a significant association between TNBC risk and the polymorphisms of EZH2 and DNMT1, and our researches indicate that the SNPs of EZH2 and DNMT1 are risk predictors for TNBC.
Collapse
Affiliation(s)
- Ran Tao
- Laboratory Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201400, China
- Guangzhou Kingmed Centre for Clinical Laboratory, Guangzhou, 510330, China
| | - Zekun Chen
- Third Clinical College, Southern Medical University, Guangzhou, 510515, China
| | - Pingping Wu
- Laboratory Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201400, China
| | - Cuicui Liu
- Laboratory Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201400, China
| | - You Peng
- Laboratory Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201400, China
| | - Weiwei Zhao
- Laboratory Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201400, China
| | - Chaohui Hu
- Guangzhou Kingmed Centre for Clinical Laboratory, Guangzhou, 510330, China
| | - Jing Feng
- Laboratory Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201400, China.
| |
Collapse
|
197
|
Juliana P, Rutkoski JE, Poland JA, Singh RP, Murugasamy S, Natesan S, Barbier H, Sorrells ME. Genome-Wide Association Mapping for Leaf Tip Necrosis and Pseudo-black Chaff in Relation to Durable Rust Resistance in Wheat. THE PLANT GENOME 2015; 8:eplantgenome2015.01.0002. [PMID: 33228313 DOI: 10.3835/plantgenome2015.01.0002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/30/2015] [Indexed: 06/11/2023]
Abstract
The partial rust resistance genes Lr34 and Sr2 have been used extensively in wheat (Triticum aestivum L.) improvement, as they confer exceptional durability. Interestingly, the resistance of Lr34 is associated with the expression of leaf tip necrosis (LTN) and Sr2 with pseudo-black chaff (PBC). Genome-wide association mapping using CIMMYT's stem rust resistance screening nursery (SRRSN) wheat lines was done to identify genotyping-by-sequencing (GBS) markers linked to LTN and PBC. Phenotyping for these traits was done in Ithaca, New York (fall 2011); Njoro, Kenya (main and off-seasons, 2012), and Wellington, India (winter, 2013). Using the mixed linear model (MLM), 18 GBS markers were significantly associated with LTN. While some markers were linked to loci where the durable leaf rust resistance genes Lr34 (7DS), Lr46 (1BL), and Lr68 (7BL) were mapped, significant associations were also detected with other loci on 2BL, 5B, 3BS, 4BS, and 7BS. Twelve GBS markers linked to the Sr2 locus (3BS) and loci on 2DS, 4AL, and 7DS were significantly associated with PBC. This study provides insight into the complex genetic control of LTN and PBC. Further efforts to validate and study these loci might aid in determining the nature of their association with durable resistance.
Collapse
Affiliation(s)
- Philomin Juliana
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853
| | - Jessica E Rutkoski
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853
| | - Jesse A Poland
- Dep. of Agronomy, Kansas State University, Manhattan, KS, 66506
- USDA-ARS, Manhattan, KS, 66502
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo, Postal 6-641, 06600, Mexico, D.F., Mexico
| | - Sivasamy Murugasamy
- Wheat Research Station, Indian Agricultural Research Institute, Wellington, 643231, Nilgiris, India
| | | | - Hugues Barbier
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853
| | - Mark E Sorrells
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell Univ., Ithaca, NY, 14853
| |
Collapse
|
198
|
Prokopenko D, Hecker J, Silverman E, Nöthen MM, Schmid M, Lange C, Loehlein Fier H. Using Network Methodology to Infer Population Substructure. PLoS One 2015; 10:e0130708. [PMID: 26098940 PMCID: PMC4476755 DOI: 10.1371/journal.pone.0130708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/22/2015] [Indexed: 11/24/2022] Open
Abstract
One of the main caveats of association studies is the possible affection by bias due to population stratification. Existing methods rely on model-based approaches like structure and ADMIXTURE or on principal component analysis like EIGENSTRAT. Here we provide a novel visualization technique and describe the problem of population substructure from a graph-theoretical point of view. We group the sequenced individuals into triads, which depict the relational structure, on the basis of a predefined pairwise similarity measure. We then merge the triads into a network and apply community detection algorithms in order to identify homogeneous subgroups or communities, which can further be incorporated as covariates into logistic regression. We apply our method to populations from different continents in the 1000 Genomes Project and evaluate the type 1 error based on the empirical p-values. The application to 1000 Genomes data suggests that the network approach provides a very fine resolution of the underlying ancestral population structure. Besides we show in simulations, that in the presence of discrete population structures, our developed approach maintains the type 1 error more precisely than existing approaches.
Collapse
Affiliation(s)
- Dmitry Prokopenko
- Institute of Genomic Mathematics, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- * E-mail:
| | - Julian Hecker
- Institute of Genomic Mathematics, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Edwin Silverman
- Channing Laboratory, Brigham and Women's Hospital, Boston, United States of America
| | | | - Matthias Schmid
- Institute of Medical Biometrics, Informatics and Epidemiology, University of Bonn, Bonn, Germany
| | - Christoph Lange
- Institute of Genomic Mathematics, University of Bonn, Bonn, Germany
- Department of Biostatistics, Harvard School of Public Health, Boston, United States of America
- Channing Laboratory, Brigham and Women's Hospital, Boston, United States of America
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Heide Loehlein Fier
- Institute of Genomic Mathematics, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| |
Collapse
|
199
|
Dimitrakopoulos FID, Antonacopoulou AG, Kottorou A, Marousi S, Koukourikou I, Kalofonou M, Panagopoulos N, Scopa C, Dougenis D, Papadaki H, Papavassiliou AG, Kalofonos HP. Variant of BCL3 gene is strongly associated with five-year survival of non-small-cell lung cancer patients. Lung Cancer 2015; 89:311-9. [PMID: 26122346 DOI: 10.1016/j.lungcan.2015.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/18/2015] [Accepted: 06/11/2015] [Indexed: 01/15/2023]
Abstract
OBJECTIVES BCL3, a known atypical IκB family member, has been documented to be upregulated in hematological malignancies and in some solid tumors, functioning as a crucial player in tumor development. Recently, rs8100239, a tag-Single Nucleotide Polymorphism (SNP) in BCL3 (T>A) has been identified, but there are no data regarding its involvement in non-small-cell lung cancer (NSCLC) initiation and progression. MATERIALS AND METHODS To study the possible association of BCL3 with NSCLC, 268 patients and 279 healthy controls were genotyped for rs8100239. Moreover, BCL3 protein expression was also investigated in 112 NSCLC cases through an immunohistochemical analysis. RESULTS NSCLC patients with AA genotype displayed significantly worse prognosis compared to T allele carriers (P<0.001), who had less frequent intermediate nuclear BCL3 expression (P=0.042). In addition, overexpression of BCL3 was detected in tumor specimens, compared to normal tissue (P<0.001). Furthermore, BCL3 protein levels were associated with five-year survival (P=0.039), maximum diameter of lesion (P=0.012), grade (P=0.002) and relapse frequency (P=0.041). CONCLUSIONS The present study is the first to show a relationship between the genetic variation rs8100239 of BCL3 and cancer patients' survival. It also represents the first quantitative evaluation of BCL3 expression in NSCLC. Our findings indicate that rs8100239 may be considered as a novel prognostic indicator, demonstrating also the overexpression of BCL3 protein in NSCLC and implicating this pivotal molecule in the pathogenesis of NSCLC.
Collapse
Affiliation(s)
| | - Anna G Antonacopoulou
- Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Greece
| | - Anastasia Kottorou
- Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Greece
| | - Stella Marousi
- Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Greece
| | - Ioulia Koukourikou
- Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Greece
| | - Melpomeni Kalofonou
- Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Greece
| | | | - Chrisoula Scopa
- Department of Pathology, Medical School, University of Patras, Greece
| | - Dimitrios Dougenis
- Department of Cardiothoracic Surgery, Medical School, University of Patras, Greece
| | - Helen Papadaki
- Department of Anatomy, Medical School, University of Patras, Greece
| | | | - Haralabos P Kalofonos
- Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Greece.
| |
Collapse
|
200
|
Genetic Determinants of Methotrexate Toxicity in Tunisian Patients with Rheumatoid Arthritis: A Study of Polymorphisms Involved in the MTX Metabolic Pathway. Eur J Drug Metab Pharmacokinet 2015; 41:385-93. [DOI: 10.1007/s13318-015-0288-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|