151
|
Tomar S, Ganesan V, Sharma A, Zeng C, Waggoner L, Smith A, Kim CH, Licona-Limón P, Reinhardt RL, Flavell RA, Wang YH, Hogan SP. IL-4-BATF signaling directly modulates IL-9 producing mucosal mast cell (MMC9) function in experimental food allergy. J Allergy Clin Immunol 2021; 147:280-295. [PMID: 33069715 PMCID: PMC7856198 DOI: 10.1016/j.jaci.2020.08.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND This study group has previously identified IL-9-producing mucosal mast cell (MMC9) as the primary source of IL-9 to drive intestinal mastocytosis and experimental IgE-mediated food allergy. However, the molecular mechanisms that regulate the expansion of MMC9s remain unknown. OBJECTIVES This study hypothesized that IL-4 regulates MMC9 development and MMC9-dependent experimental IgE-mediated food allergy. METHODS An epicutaneous sensitization model was used and bone marrow reconstitution experiments were performed to test the requirement of IL-4 receptor α (IL-4Rα) signaling on MMC9s in experimental IgE-mediated food allergy. Flow cytometric, bulk, and single-cell RNA-sequencing analyses on small intestine (SI) MMC9s were performed to illuminate MMC9 transcriptional signature and the effect of IL-4Rα signaling on MMC9 function. A bone marrow-derived MMC9 culture system was used to define IL-4-BATF signaling in MMC9 development. RESULTS Epicutaneous sensitization- and bone marrow reconstitution-based models of IgE-mediated food allergy revealed an IL-4 signaling-dependent cell-intrinsic effect on SI MMC9 accumulation and food allergy severity. RNA-sequencing analysis of SI-MMC9s identified 410 gene transcripts reciprocally regulated by IL-4 signaling, including Il9 and Batf. Insilico analyses identified a 3491-gene MMC9 transcriptional signature and identified 2 transcriptionally distinct SI MMC9 populations enriched for metabolic or inflammatory programs. Employing an in vitro MMC9-culture model system showed that generation of MMC9-like cells was induced by IL-4 and this was in part dependent on BATF. CONCLUSIONS IL-4Rα signaling directly modulates MMC9 function and exacerbation of experimental IgE-mediated food allergic reactions. IL-4Rα regulation of MMC9s is in part BATF-dependent and occurs via modulation of metabolic transcriptional programs.
Collapse
Affiliation(s)
- Sunil Tomar
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Mary H Weiser Food Allergy Center, Michigan Medicine, University of Michigan, Ann Arbor, Mich; Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Mich
| | - Varsha Ganesan
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Mary H Weiser Food Allergy Center, Michigan Medicine, University of Michigan, Ann Arbor, Mich; Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Mich
| | - Ankit Sharma
- Mary H Weiser Food Allergy Center, Michigan Medicine, University of Michigan, Ann Arbor, Mich; Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Mich
| | - Chang Zeng
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lisa Waggoner
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Andrew Smith
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Chang H Kim
- Mary H Weiser Food Allergy Center, Michigan Medicine, University of Michigan, Ann Arbor, Mich; Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Mich
| | - Paula Licona-Limón
- Department of Immunobiology, Yale University School of Medicine, New Haven, Conn
| | - Richard L Reinhardt
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colo; Department of Biomedical Research, National Jewish Health, Denver, Colo
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, Conn; Howard Hughes Medical Institute, Chevy Chase, Md
| | - Yui-Hsi Wang
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Type 2 Inflammation and Fibrosis Cluster, Immunology and Inflammation Research, Sanofi, Cambridge, Mass.
| | - Simon P Hogan
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Mary H Weiser Food Allergy Center, Michigan Medicine, University of Michigan, Ann Arbor, Mich; Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Mich.
| |
Collapse
|
152
|
Giganti G, Atif M, Mohseni Y, Mastronicola D, Grageda N, Povoleri GA, Miyara M, Scottà C. Treg cell therapy: How cell heterogeneity can make the difference. Eur J Immunol 2020; 51:39-55. [PMID: 33275279 DOI: 10.1002/eji.201948131] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/18/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022]
Abstract
CD4+ CD25high CD127low/- FOXP3+ T regulatory cells are responsible for maintaining immune tolerance and controlling excessive immune responses. Treg cell use in pre-clinical animal models showed the huge therapeutic potential of these cells in immune-mediated diseases and laid the foundations for their applications in therapy in humans. Currently, there are several clinical trials utilizing the adoptive transfer of Treg cells to reduce the morbidity in autoimmune disorders, allogeneic HSC transplantation, and solid organ transplantation. However, a large part of them utilizes total Treg cells without distinction of their biological variability. Many studies on the heterogeneity of Treg cell population revealed distinct subsets with different functions in the control of the immune response and induction of peripheral tolerance. Some of these subsets also showed a role in controlling the general homeostasis of non-lymphoid tissues. All these Treg cell subsets and their peculiar properties can be therefore exploited to develop novel therapeutic approaches. This review describes these functionally distinct subsets, their phenotype, homing properties and functions in lymphoid and non-lymphoid tissues. In addition, we also discuss the limitations in using Treg cells as a cellular therapy and the strategies to enhance their efficacy.
Collapse
Affiliation(s)
- Giulio Giganti
- "Peter Gorer" Department of Immunobiology, School of Immunology & Microbiological Sciences, King's College London, London, UK
| | - Muhammad Atif
- Sorbonne Université, Inserm, Centre d'immunologie et des maladies infectieuses, Paris (CIMI-PARIS), AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Yasmin Mohseni
- "Peter Gorer" Department of Immunobiology, School of Immunology & Microbiological Sciences, King's College London, London, UK
| | - Daniela Mastronicola
- "Peter Gorer" Department of Immunobiology, School of Immunology & Microbiological Sciences, King's College London, London, UK
| | - Nathali Grageda
- "Peter Gorer" Department of Immunobiology, School of Immunology & Microbiological Sciences, King's College London, London, UK
| | - Giovanni Am Povoleri
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Makoto Miyara
- Sorbonne Université, Inserm, Centre d'immunologie et des maladies infectieuses, Paris (CIMI-PARIS), AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Cristiano Scottà
- "Peter Gorer" Department of Immunobiology, School of Immunology & Microbiological Sciences, King's College London, London, UK
| |
Collapse
|
153
|
Protein Prenylation Drives Discrete Signaling Programs for the Differentiation and Maintenance of Effector T reg Cells. Cell Metab 2020; 32:996-1011.e7. [PMID: 33207246 PMCID: PMC7887758 DOI: 10.1016/j.cmet.2020.10.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 08/09/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023]
Abstract
Effector regulatory T (eTreg) cells are essential for immune tolerance and depend upon T cell receptor (TCR) signals for generation. The immunometabolic signaling mechanisms that promote the differentiation and maintenance of eTreg cells remain unclear. Here, we show that isoprenoid-dependent posttranslational lipid modifications dictate eTreg cell accumulation and function by intersecting with TCR-induced intracellular signaling. We find that isoprenoids are essential for activated Treg cell suppressive activity, and Treg cell-specific deletion of the respective farnesylation- and geranylgeranylation-promoting enzymes Fntb or Pggt1b leads to the development of fatal autoimmunity, associated with reduced eTreg cell accumulation. Mechanistically, Fntb promotes eTreg cell maintenance by regulating mTORC1 activity and ICOS expression. In contrast, Pggt1b acts as a rheostat of TCR-dependent transcriptional programming and Rac-mediated signaling for establishment of eTreg cell differentiation and immune tolerance. Therefore, our results identify bidirectional metabolic signaling, specifically between immunoreceptor signaling and metabolism-mediated posttranslational lipid modifications, for the differentiation and maintenance of eTreg cells.
Collapse
|
154
|
Defective immunosuppressive function of Treg cells in visceral adipose tissue in MIF deficient mice. Cytokine 2020; 138:155372. [PMID: 33246771 DOI: 10.1016/j.cyto.2020.155372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 11/24/2022]
Abstract
Obesity, a global health problem nowadays, is a state of low-grade chronic inflammation of adipose tissue (AT) associated with increased adipocyte growth and proliferation and immune cell polarization towards an inflammatory phenotype within the stromal vascular fraction (SVF). Pro-inflammatory cells in the AT produce mediators of inflammation (IL-1β, TNF, macrophage migration inhibitory factor - MIF), thereby surpassing the anti-inflammatory response mediated by IL-10 and TGF-β, cytokines produced by regulatory T (Treg) cells. In this study we demonstrate that the absence of the pro-inflammatory cytokine MIF led to obesity and inflammation in the visceral AT (VAT) in 6 months old MIF-/- mice. Besides the increment of pro-inflammatory AT macrophages and the enhanced production of TNF and IL-1β, VAT of MIF-/- mice contained increased numbers of Treg cells. In situ proliferation of Treg cells did not differ between MIF-/- and wild type mice, but Treg cells isolated from the VAT of MIF-deficient mice, and not from the cervical lymph nodes, exhibited lower expression and production of IL-10 and TGF-β. Additionally, SVF cells had significantly lower levels of STAT3 and IL-33, altogether indicating that VAT Treg cells in MIF-/- mice, albeit abundantly present, are not fully functional. These results indicate that MIF is a new regulator of VAT Treg cell function, necessary for their immunosuppressive activities.
Collapse
|
155
|
Camacho V, Matkins VR, Patel SB, Lever JM, Yang Z, Ying L, Landuyt AE, Dean EC, George JF, Yang H, Ferrell PB, Maynard CL, Weaver CT, Turnquist HR, Welner RS. Bone marrow Tregs mediate stromal cell function and support hematopoiesis via IL-10. JCI Insight 2020; 5:135681. [PMID: 33208555 PMCID: PMC7710301 DOI: 10.1172/jci.insight.135681] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 10/07/2020] [Indexed: 12/31/2022] Open
Abstract
The nonimmune roles of Tregs have been described in various tissues, including the BM. In this study, we comprehensively phenotyped marrow Tregs, elucidating their key features and tissue-specific functions. We show that marrow Tregs are migratory and home back to the marrow. For trafficking, marrow Tregs use S1P gradients, and disruption of this axis allows for specific targeting of the marrow Treg pool. Following Treg depletion, the function and phenotype of both mesenchymal stromal cells (MSCs) and hematopoietic stem cells (HSCs) was impaired. Transplantation also revealed that a Treg-depleted niche has a reduced capacity to support hematopoiesis. Finally, we found that marrow Tregs are high producers of IL-10 and that Treg-secreted IL-10 has direct effects on MSC function. This is the first report to our knowledge revealing that Treg-secreted IL-10 is necessary for stromal cell maintenance, and our work outlines an alternative mechanism by which this cytokine regulates hematopoiesis.
Collapse
Affiliation(s)
| | | | | | - Jeremie M. Lever
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, and
| | - Zhengqin Yang
- Division of Cardiothoracic Surgery, Department of Surgery, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Li Ying
- Cancer Science Institute of Singapore & Department of Biochemistry, National University of Singapore, Singapore
| | - Ashley E. Landuyt
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Emma C. Dean
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - James F. George
- Division of Cardiothoracic Surgery, Department of Surgery, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Henry Yang
- Cancer Science Institute of Singapore & Department of Biochemistry, National University of Singapore, Singapore
| | - Paul Brent Ferrell
- Division of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Craig L. Maynard
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Casey T. Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Heth R. Turnquist
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
156
|
AlZaim I, Hammoud SH, Al-Koussa H, Ghazi A, Eid AH, El-Yazbi AF. Adipose Tissue Immunomodulation: A Novel Therapeutic Approach in Cardiovascular and Metabolic Diseases. Front Cardiovasc Med 2020; 7:602088. [PMID: 33282920 PMCID: PMC7705180 DOI: 10.3389/fcvm.2020.602088] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue is a critical regulator of systemic metabolism and bodily homeostasis as it secretes a myriad of adipokines, including inflammatory and anti-inflammatory cytokines. As the main storage pool of lipids, subcutaneous and visceral adipose tissues undergo marked hypertrophy and hyperplasia in response to nutritional excess leading to hypoxia, adipokine dysregulation, and subsequent low-grade inflammation that is characterized by increased infiltration and activation of innate and adaptive immune cells. The specific localization, physiology, susceptibility to inflammation and the heterogeneity of the inflammatory cell population of each adipose depot are unique and thus dictate the possible complications of adipose tissue chronic inflammation. Several lines of evidence link visceral and particularly perivascular, pericardial, and perirenal adipose tissue inflammation to the development of metabolic syndrome, insulin resistance, type 2 diabetes and cardiovascular diseases. In addition to the implication of the immune system in the regulation of adipose tissue function, adipose tissue immune components are pivotal in detrimental or otherwise favorable adipose tissue remodeling and thermogenesis. Adipose tissue resident and infiltrating immune cells undergo metabolic and morphological adaptation based on the systemic energy status and thus a better comprehension of the metabolic regulation of immune cells in adipose tissues is pivotal to address complications of chronic adipose tissue inflammation. In this review, we discuss the role of adipose innate and adaptive immune cells across various physiological and pathophysiological states that pertain to the development or progression of cardiovascular diseases associated with metabolic disorders. Understanding such mechanisms allows for the exploitation of the adipose tissue-immune system crosstalk, exploring how the adipose immune system might be targeted as a strategy to treat cardiovascular derangements associated with metabolic dysfunctions.
Collapse
Affiliation(s)
- Ibrahim AlZaim
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Safaa H. Hammoud
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon
| | - Houssam Al-Koussa
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | - Alaa Ghazi
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | - Ali H. Eid
- Department of Pharmacology and Therapeutics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Ahmed F. El-Yazbi
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
157
|
Sivasami P, Li C. Derivation and Differentiation of Adipose-Tissue Regulatory T Cells: A Stepwise, Multi-Site Process. Front Immunol 2020; 11:599277. [PMID: 33193452 PMCID: PMC7658365 DOI: 10.3389/fimmu.2020.599277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/12/2020] [Indexed: 01/07/2023] Open
Abstract
CD4+ Foxp3+ regulatory T cells (Tregs) not only enforce peripheral tolerance and restrain self-reactive immune responses, but also maintain organismal homeostasis and safeguard the function of parenchymal tissues. A paradigmatic tissue–Treg population resides in the visceral adipose tissue (VAT) and regulates organismal metabolism by interacting with adipocytes and local immunocytes. Compared with their lymphoid-tissue counterparts, VAT–Tregs have a distinct T cell receptor (TCR) repertoire and transcriptional profile, allowing them to maintain and function in the unique tissue microenvironment. However, when, where, and how VAT–Tregs acquire their distinct features and what signals drive their phenotypic diversification have just started to be unraveled. Here we summarize the recent advances in our understanding on the mechanisms of VAT–Treg derivation and differentiation. We discuss the origin and life history of VAT–Tregs, review the identification and characterization of a VAT–Treg precursor population in the secondary lymphoid organs, and highlight a stepwise reprogramming model of VAT–Treg differentiation that involves multiple stages at distinct locations. Lastly, we discuss whether a similar process may also be involved in the differentiation of Tregs from other non-lymphoid tissues and the imperative questions that remain to be addressed.
Collapse
Affiliation(s)
- Pulavendran Sivasami
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Chaoran Li
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
158
|
Wang K, Fu W. Transcriptional regulation of Treg homeostasis and functional specification. Cell Mol Life Sci 2020; 77:4269-4287. [PMID: 32350553 PMCID: PMC7606275 DOI: 10.1007/s00018-020-03534-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022]
Abstract
CD4+Foxp3+ regulatory T (Treg) cells are key players in keeping excessive inflammation in check. Mounting evidence has shown that Treg cells exert much more diverse functions in both immunological and non-immunological processes. The development, maintenance and functional specification of Treg cells are regulated by multilayered factors, including antigens and TCR signaling, cytokines, epigenetic modifiers and transcription factors (TFs). In the review, we will focus on TFs by summarizing their unique and redundant roles in Treg cells under physiological and pathophysiological conditions. We will also discuss the recent advances of Treg trajectories between lymphoid organs and non-lymphoid tissues. This review will provide an updated view of the newly identified TFs and new functions of known TFs in Treg biology.
Collapse
Affiliation(s)
- Ke Wang
- Pediatric Diabetes Research Center, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Wenxian Fu
- Pediatric Diabetes Research Center, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
159
|
Son J, Cho JW, Park HJ, Moon J, Park S, Lee H, Lee J, Kim G, Park SM, Lira SA, Mckenzie AN, Kim HY, Choi CY, Lim YT, Park SY, Kim HR, Park SH, Shin EC, Lee I, Ha SJ. Tumor-Infiltrating Regulatory T-cell Accumulation in the Tumor Microenvironment Is Mediated by IL33/ST2 Signaling. Cancer Immunol Res 2020; 8:1393-1406. [PMID: 32878747 DOI: 10.1158/2326-6066.cir-19-0828] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 07/08/2020] [Accepted: 08/27/2020] [Indexed: 11/16/2022]
Abstract
Regulatory T cells (Treg) are enriched in the tumor microenvironment (TME) and suppress antitumor immunity; however, the molecular mechanism underlying the accumulation of Tregs in the TME is poorly understood. In various tumor models, tumor-infiltrating Tregs were highly enriched in the TME and had significantly higher expression of immune checkpoint molecules. To characterize tumor-infiltrating Tregs, we performed bulk RNA sequencing (RNA-seq) and found that proliferation-related genes, immune suppression-related genes, and cytokine/chemokine receptor genes were upregulated in tumor-infiltrating Tregs compared with tumor-infiltrating CD4+Foxp3- conventional T cells or splenic Tregs from the same tumor-bearing mice. Single-cell RNA-seq and T-cell receptor sequencing also revealed active proliferation of tumor infiltrating Tregs by clonal expansion. One of these genes, ST2, an IL33 receptor, was identified as a potential factor driving Treg accumulation in the TME. Indeed, IL33-directed ST2 signaling induced the preferential proliferation of tumor-infiltrating Tregs and enhanced tumor progression, whereas genetic deletion of ST2 in Tregs limited their TME accumulation and delayed tumor growth. These data demonstrated the IL33/ST2 axis in Tregs as one of the critical pathways for the preferential accumulation of Tregs in the TME and suggests that the IL33/ST2 axis may be a potential therapeutic target for cancer immunotherapy.
Collapse
Affiliation(s)
- Jimin Son
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Republic of Korea
- Brain Korea 21 (BK21) PLUS Program, Initiative for Biological Functions & Systems, Yonsei University, Seoul, Republic of Korea
| | - Jae-Won Cho
- Brain Korea 21 (BK21) PLUS Program, Initiative for Biological Functions & Systems, Yonsei University, Seoul, Republic of Korea
- Department of Biotechnology, College of Life Science & Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Hyo Jin Park
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Republic of Korea
- Brain Korea 21 (BK21) PLUS Program, Initiative for Biological Functions & Systems, Yonsei University, Seoul, Republic of Korea
| | - Jihyun Moon
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Republic of Korea
- Brain Korea 21 (BK21) PLUS Program, Initiative for Biological Functions & Systems, Yonsei University, Seoul, Republic of Korea
| | - Seyeon Park
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Republic of Korea
- Brain Korea 21 (BK21) PLUS Program, Initiative for Biological Functions & Systems, Yonsei University, Seoul, Republic of Korea
| | - Hoyoung Lee
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon, Republic of Korea
| | - Jeewon Lee
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon, Republic of Korea
| | - Gamin Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su-Myeong Park
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sergio A Lira
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Andrew N Mckenzie
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Hye Young Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Cheol Yong Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Yong Taik Lim
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Seong Yong Park
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye Ryun Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su-Hyung Park
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Eui-Cheol Shin
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Insuk Lee
- Brain Korea 21 (BK21) PLUS Program, Initiative for Biological Functions & Systems, Yonsei University, Seoul, Republic of Korea.
- Department of Biotechnology, College of Life Science & Biotechnology, Yonsei University, Seoul, Republic of Korea
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Republic of Korea.
- Brain Korea 21 (BK21) PLUS Program, Initiative for Biological Functions & Systems, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
160
|
Aging and Immunometabolic Adaptations to Thermogenesis. Ageing Res Rev 2020; 63:101143. [PMID: 32810648 DOI: 10.1016/j.arr.2020.101143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/20/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022]
Abstract
Brown and subcutaneous adipose tissues play a key role in non-shivering thermogenesis both in mice and human, and their activation by adrenergic stimuli promotes energy expenditure, reduces adiposity, and protects against age-related metabolic diseases such as type 2 diabetes (T2D). Low-grade inflammation and insulin resistance characterize T2D. Even though the decline of thermogenic adipose tissues is well-established during ageing, the mechanisms by which this event affects immune system and contributes to the development of T2D is still poorly defined. It is emerging that activation of thermogenic adipose tissues promotes type 2 immunity skewing, limiting type 1 inflammation. Of note, metabolic substrates sustaining type 1 inflammation (e.g. glucose and succinate) are also used by activated adipocytes to promote thermogenesis. Keeping in mind this aspect, a nutrient competition between adipocytes and adipose tissue immune cell infiltrates could be envisaged. Herein, we reviewed the metabolic rewiring of adipocytes during thermogenesis in order to give important insight into the anti-inflammatory role of thermogenic adipose tissues and delineate how their decline during ageing may favor the setting of low-grade inflammatory states that predispose to type 2 diabetes in elderly. A brief description about the contribution of adipokines secreted by thermogenic adipocytes in modulation of immune cell activation is also provided. Finally, we have outlined experimental flow chart procedures and provided technical advices to investigate the physiological processes leading to thermogenic adipose tissue impairment that are behind the immunometabolic decline during aging.
Collapse
|
161
|
Cosovanu C, Neumann C. The Many Functions of Foxp3 + Regulatory T Cells in the Intestine. Front Immunol 2020; 11:600973. [PMID: 33193456 PMCID: PMC7606913 DOI: 10.3389/fimmu.2020.600973] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
Throughout the last years, gut-resident Foxp3+ regulatory T (Treg) cells have been associated with a growing number of tissue-specific functions in the intestine, comprising various aspects of gut immunity and physiology. Treg cells have pivotal roles in intestinal tolerance induction and host defense by actively controlling immune responses towards harmless dietary antigens and commensal microorganisms as well as towards invading pathogens. In addition to these immune-related roles, it has become increasingly clear that intestinal Treg cells also exert important non-immune functions in the gut, such as promoting local tissue repair and preserving the integrity of the epithelial barrier. Thereby, intestinal Treg cells critically contribute to the maintenance of tissue homeostasis. In order to account for this functional diversity, gut-resident Treg cells have specifically adapted to the intestinal tissue microenvironment. In this Review, we discuss the specialization of Treg cells in the intestine. We survey the different populations of gut-resident Treg cells focussing on their unique functions, phenotypes and distinct transcription factor dependencies.
Collapse
Affiliation(s)
- Catalina Cosovanu
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin, Berlin, Germany
| | - Christian Neumann
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
162
|
Liu W, Li D, Cao H, Li H, Wang Y. Expansion and inflammation of white adipose tissue - focusing on adipocyte progenitors. Biol Chem 2020; 402:123-132. [PMID: 33544474 DOI: 10.1515/hsz-2019-0451] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 10/01/2020] [Indexed: 12/22/2022]
Abstract
Adipose tissue is an important organ in our body, participating not only in energy metabolism but also immune regulation. It is broadly classified as white (WAT) and brown (BAT) adipose tissues. WAT is highly heterogeneous, composed of adipocytes, various immune, progenitor and stem cells, as well as the stromal vascular populations. The expansion and inflammation of WAT are hallmarks of obesity and play a causal role in the development of metabolic and cardiovascular diseases. The primary event triggering the inflammatory expansion of WAT remains unclear. The present review focuses on the role of adipocyte progenitors (APS), which give rise to specialized adipocytes, in obesity-associated WAT expansion, inflammation and fibrosis.
Collapse
Affiliation(s)
- Wenjing Liu
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Dahui Li
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Handi Cao
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Haoyun Li
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Yu Wang
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
163
|
De Boeck A, Ahn BY, D'Mello C, Lun X, Menon SV, Alshehri MM, Szulzewsky F, Shen Y, Khan L, Dang NH, Reichardt E, Goring KA, King J, Grisdale CJ, Grinshtein N, Hambardzumyan D, Reilly KM, Blough MD, Cairncross JG, Yong VW, Marra MA, Jones SJM, Kaplan DR, McCoy KD, Holland EC, Bose P, Chan JA, Robbins SM, Senger DL. Glioma-derived IL-33 orchestrates an inflammatory brain tumor microenvironment that accelerates glioma progression. Nat Commun 2020; 11:4997. [PMID: 33020472 PMCID: PMC7536425 DOI: 10.1038/s41467-020-18569-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Despite a deeper molecular understanding, human glioblastoma remains one of the most treatment refractory and fatal cancers. It is known that the presence of macrophages and microglia impact glioblastoma tumorigenesis and prevent durable response. Herein we identify the dual function cytokine IL-33 as an orchestrator of the glioblastoma microenvironment that contributes to tumorigenesis. We find that IL-33 expression in a large subset of human glioma specimens and murine models correlates with increased tumor-associated macrophages/monocytes/microglia. In addition, nuclear and secreted functions of IL-33 regulate chemokines that collectively recruit and activate circulating and resident innate immune cells creating a pro-tumorigenic environment. Conversely, loss of nuclear IL-33 cripples recruitment, dramatically suppresses glioma growth, and increases survival. Our data supports the paradigm that recruitment and activation of immune cells, when instructed appropriately, offer a therapeutic strategy that switches the focus from the cancer cell alone to one that includes the normal host environment.
Collapse
Affiliation(s)
- Astrid De Boeck
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bo Young Ahn
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Charlotte D'Mello
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Xueqing Lun
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Shyam V Menon
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mana M Alshehri
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Frank Szulzewsky
- Divison of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Yaoqing Shen
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Lubaba Khan
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ngoc Ha Dang
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Elliott Reichardt
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kimberly-Ann Goring
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jennifer King
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Cameron J Grisdale
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Natalie Grinshtein
- Department of Molecular Genetics, University of Toronto and Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute and the Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Karlyne M Reilly
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Michael D Blough
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - J Gregory Cairncross
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - V Wee Yong
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - David R Kaplan
- Department of Molecular Genetics, University of Toronto and Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Eric C Holland
- Divison of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Pinaki Bose
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jennifer A Chan
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Pathology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Stephen M Robbins
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Donna L Senger
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
164
|
Xiao Q, Song Y, Chu H, Tang M, Jiang J, Meng Q, Hao W, Wei X. 1,4NQ-BC enhances the lung inflammation by mediating the secretion of IL-33 which derived from macrophages. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114729. [PMID: 32563138 DOI: 10.1016/j.envpol.2020.114729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/17/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Black carbon (BC) is a product of incomplete combustion of fossil fuels and vegetation. The compelling evidence has demonstrated that it has a close relationship with several respiratory and cardiovascular diseases. BC provides the reactive sites and surfaces to absorb various chemicals, such as polycyclic aromatic hydrocarbons (PAH). Naphthoquinone is a typical PAHs which was found in particulate matter (PM) and 1,4NQ-BC owned high oxidative potential and cytotoxicity. IL-33 is an alarmin which increases innate immunity through Th2 responses. It was reported that IL-33 was a potent inducer of pro-inflammatory cytokines, like IL-6. In our previous study, it was revealed that 1,4NQ-BC instilled intratracheally to mice could trigger the lung inflammation and stimulate the secretion of IL-33 in lung tissue. We found that IL-33 could induce inflammation in lung itself. When the macrophages were eliminated, the secretion of IL-33 was reduced and the pathological damage in the lung was relieved after exposure to 1,4NQ-BC. Both MAPK and PI3K/AKT signal pathways were involved in the process of IL-33 secretion and the lung inflammation induced by 1,4NQ-BC. The findings herein support the notion that after exposure to 1,4NQ-BC, the increased secretion of IL-33 was mainly derived from macrophages through both MAPK and PI3K/AKT signal pathways.
Collapse
Affiliation(s)
- Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Yiming Song
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Hongqian Chu
- Translational Medicine Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, PR China; Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, PR China
| | - Mengmeng Tang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Jianjun Jiang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Qinghe Meng
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China.
| |
Collapse
|
165
|
Li A, Herbst RH, Canner D, Schenkel JM, Smith OC, Kim JY, Hillman M, Bhutkar A, Cuoco MS, Rappazzo CG, Rogers P, Dang C, Jerby-Arnon L, Rozenblatt-Rosen O, Cong L, Birnbaum M, Regev A, Jacks T. IL-33 Signaling Alters Regulatory T Cell Diversity in Support of Tumor Development. Cell Rep 2020; 29:2998-3008.e8. [PMID: 31801068 PMCID: PMC6990979 DOI: 10.1016/j.celrep.2019.10.120] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/07/2019] [Accepted: 10/29/2019] [Indexed: 02/08/2023] Open
Abstract
Regulatory T cells (Tregs) can impair anti-tumor immune responses and are associated with poor prognosis in multiple cancer types. Tregs in human tumors span diverse transcriptional states distinct from those of peripheral Tregs, but their contribution to tumor development remains unknown. Here, we use single-cell RNA sequencing (RNA-seq) to longitudinally profile dynamic shifts in the distribution of Tregs in a genetically engineered mouse model of lung adenocarcinoma. In this model, interferon-responsive Tregs are more prevalent early in tumor development, whereas a specialized effector phenotype characterized by enhanced expression of the interleukin-33 receptor ST2 is predominant in advanced disease. Treg-specific deletion of ST2 alters the evolution of effector Treg diversity, increases infiltration of CD8+ T cells into tumors, and decreases tumor burden. Our study shows that ST2 plays a critical role in Treg-mediated immunosuppression in cancer, highlighting potential paths for therapeutic intervention.
Collapse
Affiliation(s)
- Amy Li
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Rebecca H Herbst
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - David Canner
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jason M Schenkel
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Olivia C Smith
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Jonathan Y Kim
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Michelle Hillman
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Arjun Bhutkar
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Michael S Cuoco
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - C Garrett Rappazzo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, 21 Ames Street, Cambridge, MA 02142, USA
| | - Patricia Rogers
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Celeste Dang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Livnat Jerby-Arnon
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | | | - Le Cong
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Michael Birnbaum
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, 21 Ames Street, Cambridge, MA 02142, USA
| | - Aviv Regev
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
166
|
Wienke J, Brouwers L, van der Burg LM, Mokry M, Scholman RC, Nikkels PG, van Rijn BB, van Wijk F. Human Tregs at the materno-fetal interface show site-specific adaptation reminiscent of tumor Tregs. JCI Insight 2020; 5:137926. [PMID: 32809975 PMCID: PMC7526557 DOI: 10.1172/jci.insight.137926] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
Tregs are crucial for maintaining maternal immunotolerance against the semiallogeneic fetus. We investigated the elusive transcriptional profile and functional adaptation of human uterine Tregs (uTregs) during pregnancy. Uterine biopsies, from placental bed (materno-fetal interface) and incision site (control) and blood were obtained from women with uncomplicated pregnancies undergoing cesarean section. Tregs and CD4+ non-Tregs were isolated for transcriptomic profiling by Cel-Seq2. Results were validated on protein and single cell levels by flow cytometry. Placental bed uTregs showed elevated expression of Treg signature markers, including FOXP3, CTLA-4, and TIGIT. Their transcriptional profile was indicative of late-stage effector Treg differentiation and chronic activation, with increased expression of immune checkpoints GITR, TNFR2, OX-40, and 4-1BB; genes associated with suppressive capacity (HAVCR2, IL10, LAYN, and PDCD1); and transcription factors MAF, PRDM1, BATF, and VDR. uTregs mirrored non-Treg Th1 polarization and tissue residency. The particular transcriptional signature of placental bed uTregs overlapped strongly with that of tumor-infiltrating Tregs and was remarkably pronounced at the placental bed compared with uterine control site. In conclusion, human uTregs acquire a differentiated effector Treg profile similar to tumor-infiltrating Tregs, specifically at the materno-fetal interface. This introduces the concept of site-specific transcriptional adaptation of Tregs within 1 organ. Human regulatory T cells at the maternal-fetal interface show uterine site-specific functional adaptation with late-stage effector differentiation, chronic activation, Th1 polarization, and tumor-infiltrating, Treg-like features.
Collapse
Affiliation(s)
| | | | | | - Michal Mokry
- Regenerative Medicine Utrecht.,Laboratory of Clinical Chemistry and Hematology, and
| | | | - Peter Gj Nikkels
- Department of Pathology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Netherlands
| | - Bas B van Rijn
- Wilhelmina Children's Hospital Birth Center.,Obstetrics and Fetal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | | |
Collapse
|
167
|
Shen E, Rabe H, Luo L, Wang L, Wang Q, Yin J, Yang X, Liu W, Sido JM, Nakagawa H, Ao L, Kim HJ, Cantor H, Leavenworth JW. Control of Germinal Center Localization and Lineage Stability of Follicular Regulatory T Cells by the Blimp1 Transcription Factor. Cell Rep 2020; 29:1848-1861.e6. [PMID: 31722202 PMCID: PMC6897316 DOI: 10.1016/j.celrep.2019.10.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 07/19/2019] [Accepted: 10/02/2019] [Indexed: 12/22/2022] Open
Abstract
Follicular regulatory T (TFR) cells are a specialized suppressive subset that controls the germinal center (GC) response and maintains humoral self-tolerance. The mechanisms that maintain TFR lineage identity and suppressive activity remain largely unknown. Here, we show that expression of Blimp1 by FoxP3+ TFR cells is essential for TFR lineage stability, entry into the GC, and expression of regulatory activity. Deletion of Blimp1 in TFR cells reduced FoxP3 and CTLA-4 expression and increased pro-inflammatory cytokines and spontaneous production of autoantibodies, including elevated IgE. Maintenance of TFR stability reflected Blimp1-dependent repression of the IL-23R-STAT3 axis and activation of the CD25-STAT5 pathway, while silenced IL-23R-STAT3 or increased STAT5 activation rescued the Blimp1-deficient TFR phenotype. Blimp1-dependent control of CXCR5/CCR7 expression also regulated TFR homing into the GC. These findings uncover a Blimp1-dependent TFR checkpoint that enforces suppressive activity and acts as a gatekeeper of GC entry.
Collapse
Affiliation(s)
- Erxia Shen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Department of Pathogenic Biology and Immunology, Guangzhou Hoffmann Institute of Immunology, School of Basic Sciences, Guangzhou Medical University, Guangzhou 510182, China
| | - Hardis Rabe
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Lin Luo
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu 226001, China
| | - Lei Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Qin Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Jie Yin
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China
| | - Xueying Yang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Wenquan Liu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Department of Parasitology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jessica M Sido
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Hidetoshi Nakagawa
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Lin Ao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Hye-Jung Kim
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Harvey Cantor
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA.
| | - Jianmei W Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
168
|
Brown CY, Sadlon T, Hope CM, Wong YY, Wong S, Liu N, Withers H, Brown K, Bandara V, Gundsambuu B, Pederson S, Breen J, Robertson SA, Forrest A, Beyer M, Barry SC. Molecular Insights Into Regulatory T-Cell Adaptation to Self, Environment, and Host Tissues: Plasticity or Loss of Function in Autoimmune Disease. Front Immunol 2020; 11:1269. [PMID: 33072063 PMCID: PMC7533603 DOI: 10.3389/fimmu.2020.01269] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
There has been much interest in the ability of regulatory T cells (Treg) to switch function in vivo, either as a result of genetic risk of disease or in response to environmental and metabolic cues. The relationship between levels of FOXP3 and functional fitness plays a significant part in this plasticity. There is an emerging role for Treg in tissue repair that may be less dependent on FOXP3, and the molecular mechanisms underpinning this are not fully understood. As a result of detailed, high-resolution functional genomics, the gene regulatory networks and key functional mediators of Treg phenotype downstream of FOXP3 have been mapped, enabling a mechanistic insight into Treg function. This transcription factor-driven programming of T-cell function to generate Treg requires the switching on and off of key genes that form part of the Treg gene regulatory network and raises the possibility that this is reversible. It is plausible that subtle shifts in expression levels of specific genes, including transcription factors and non-coding RNAs, change the regulation of the Treg gene network. The subtle skewing of gene expression initiates changes in function, with the potential to promote chronic disease and/or to license appropriate inflammatory responses. In the case of autoimmunity, there is an underlying genetic risk, and the interplay of genetic and environmental cues is complex and impacts gene regulation networks frequently involving promoters and enhancers, the regulatory elements that control gene expression levels and responsiveness. These promoter–enhancer interactions can operate over long distances and are highly cell type specific. In autoimmunity, the genetic risk can result in changes in these enhancer/promoter interactions, and this mainly impacts genes which are expressed in T cells and hence impacts Treg/conventional T-cell (Tconv) function. Genetic risk may cause the subtle alterations to the responsiveness of gene regulatory networks which are controlled by or control FOXP3 and its target genes, and the application of assays of the 3D organization of chromatin, enabling the connection of non-coding regulatory regions to the genes they control, is revealing the direct impact of environmental/metabolic/genetic risk on T-cell function and is providing mechanistic insight into susceptibility to inflammatory and autoimmune conditions.
Collapse
Affiliation(s)
- Cheryl Y Brown
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Timothy Sadlon
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.,Women's and Children's Health Network, North Adelaide, SA, Australia
| | | | - Ying Y Wong
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Soon Wong
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Ning Liu
- Bioinformatics Hub, University of Adelaide, Adelaide, SA, Australia
| | - Holly Withers
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Katherine Brown
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Veronika Bandara
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Batjargal Gundsambuu
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Stephen Pederson
- Bioinformatics Hub, University of Adelaide, Adelaide, SA, Australia
| | - James Breen
- Bioinformatics Hub, University of Adelaide, Adelaide, SA, Australia
| | - Sarah Anne Robertson
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Alistair Forrest
- QEII Medical Centre and Centre for Medical Research, Harry Perkins Institute of Medical Research, Murdoch, WA, Australia
| | - Marc Beyer
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Simon Charles Barry
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.,Women's and Children's Health Network, North Adelaide, SA, Australia
| |
Collapse
|
169
|
Fischer-Posovszky P, Möller P. [The immune system of adipose tissue: obesity-associated inflammation]. DER PATHOLOGE 2020; 41:224-229. [PMID: 32253498 DOI: 10.1007/s00292-020-00782-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adipose tissue is an important endocrine organ. Via its secretion products, it cross-talks with other organs of the body and communicates the filling state of its triglyceride stores. Obesity is characterized by the excessive accumulation of body fat and leads to the infiltration and accumulation of immune cells in white adipose tissue. In this review article we introduce the various immune cell populations of adipose tissue and discuss their local and systemic influence.
Collapse
Affiliation(s)
- Pamela Fischer-Posovszky
- Universitätsklinik für Kinder- und Jugendmedizin, Universitätsklinikum Ulm, Eythstr. 24, 89075, Ulm, Deutschland.
| | - Peter Möller
- Institut für Pathologie, Universitätsklinikum Ulm, Ulm, Deutschland
| |
Collapse
|
170
|
Liu M, Silva-Sanchez A, Randall TD, Meza-Perez S. Specialized immune responses in the peritoneal cavity and omentum. J Leukoc Biol 2020; 109:717-729. [PMID: 32881077 DOI: 10.1002/jlb.5mir0720-271rr] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/13/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022] Open
Abstract
The peritoneal cavity is a fluid filled space that holds most of the abdominal organs, including the omentum, a visceral adipose tissue that contains milky spots or clusters of leukocytes that are organized similar to those in conventional lymphoid tissues. A unique assortment of leukocytes patrol the peritoneal cavity and migrate in and out of the milky spots, where they encounter Ags or pathogens from the peritoneal fluid and respond accordingly. The principal role of leukocytes in the peritoneal cavity is to preserve tissue homeostasis and secure tissue repair. However, when peritoneal homeostasis is disturbed by inflammation, infection, obesity, or tumor metastasis, specialized fibroblastic stromal cells and mesothelial cells in the omentum regulate the recruitment of peritoneal leukocytes and steer their activation in unique ways. In this review, the types of cells that reside in the peritoneal cavity, the role of the omentum in their maintenance and activation, and how these processes function in response to pathogens and malignancy will be discussed.
Collapse
Affiliation(s)
- Mingyong Liu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Aaron Silva-Sanchez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Troy D Randall
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Selene Meza-Perez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
171
|
An inducible circular RNA circKcnt2 inhibits ILC3 activation to facilitate colitis resolution. Nat Commun 2020; 11:4076. [PMID: 32796851 PMCID: PMC7427797 DOI: 10.1038/s41467-020-17944-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 07/28/2020] [Indexed: 12/30/2022] Open
Abstract
Group 3 innate lymphoid cells (ILC3) are an important regulator for immunity, inflammation and tissue homeostasis in the intestine, but how ILC3 activation is regulated remains elusive. Here we identify a new circular RNA (circRNA) circKcnt2 that is induced in ILC3s during intestinal inflammation. Deletion of circKcnt2 causes gut ILC3 activation and severe colitis in mice. Mechanistically, circKcnt2, as a nuclear circRNA, recruits the nucleosome remodeling deacetylase (NuRD) complex onto Batf promoter to inhibit Batf expression; this in turn suppresses Il17 expression and thereby ILC3 inactivation to promote innate colitis resolution. Furthermore, Mbd3−/−Rag1−/− and circKcnt2−/−Rag1−/− mice develop severe innate colitis following dextran sodium sulfate (DSS) treatments, while simultaneous deletion of Batf promotes colitis resolution. In summary, our data support a function of the circRNA circKcnt2 in regulating ILC3 inactivation and resolution of innate colitis. Type 3 innate lymphoid cells (ILC3) are involved in maintaining gut immune homeostasis. Here the authors identify a circular RNA, circKcnt2, to be induced in ILC3s from inflamed gut, yet circKcnt2 deletion aggravates mouse experimental colitis, thereby implicating circKcnt2 as a potential feedback regulator of ILC3 activation and gut immunity.
Collapse
|
172
|
Proenkephalin + regulatory T cells expanded by ultraviolet B exposure maintain skin homeostasis with a healing function. Proc Natl Acad Sci U S A 2020; 117:20696-20705. [PMID: 32769209 DOI: 10.1073/pnas.2000372117] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Regulatory T (Treg) cells, expressing CD25 (interleukin-2 receptor α chain) and Foxp3 transcription factor, maintain immunological self-tolerance and suppress various immune responses. Here we report a feature of skin Treg cells expanded by ultraviolet B (UVB) exposure. We found that skin Treg cells possessing a healing function are expanded by UVB exposure with the expression of an endogenous opioid precursor, proenkephalin (PENK). Upon UVB exposure, skin Treg cells were expanded with a unique TCR repertoire. Also, they highly expressed a distinctive set of genes enriched in "wound healing involved in inflammatory responses" and the "neuropeptide signaling pathway," as indicated by the high expression of Penk. We found that not only was PENK expression at the protein level detected in the UVB-expanded skin Treg (UVB-skin Treg) cells, but that a PENK-derived neuropeptide, methionine enkephalin (Met-ENK), from Treg cells promoted the outgrowth of epidermal keratinocytes in an ex vivo skin explant assay. Notably, UVB-skin Treg cells also promoted wound healing in an in vivo wound closure assay. In addition, UVB-skin Treg cells produced amphiregulin (AREG), which plays a key role in Treg-mediated tissue repair. Identification of a unique function of PENK+ UVB-skin Treg cells provides a mechanism for maintaining skin homeostasis.
Collapse
|
173
|
Vohralik EJ, Psaila AM, Knights AJ, Quinlan KGR. EoTHINophils: Eosinophils as key players in adipose tissue homeostasis. Clin Exp Pharmacol Physiol 2020; 47:1495-1505. [PMID: 32163614 DOI: 10.1111/1440-1681.13304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/24/2020] [Accepted: 03/09/2020] [Indexed: 12/22/2022]
Abstract
Eosinophils are granular cells of the innate immune system that are found in almost all vertebrates and some invertebrates. Knowledge of their wide-ranging roles in health and disease has largely been attained through studies in mice and humans. Although eosinophils are typically associated with helminth infections and allergic diseases such as asthma, there is building evidence that beneficial homeostatic eosinophils residing in specific niches are important for tissue development, remodelling and metabolic control. In recent years, the importance of immune cells in the regulation of adipose tissue homeostasis has been a focal point of research efforts. There is an abundance of anti-inflammatory innate immune cells in lean white adipose tissue, including macrophages, eosinophils and group 2 innate lymphoid cells, which promote energy homeostasis and stimulate the development of thermogenic beige adipocytes. This review will evaluate evidence for the role of adipose-resident eosinophils in local tissue homeostasis, beiging and systemic metabolism, highlighting where more research is needed to establish the specific effector functions that adipose eosinophils perform in response to different internal and external cues.
Collapse
Affiliation(s)
- Emily J Vohralik
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Annalise M Psaila
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Alexander J Knights
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
174
|
NLRP12- and NLRC4-mediated corneal epithelial pyroptosis is driven by GSDMD cleavage accompanied by IL-33 processing in dry eye. Ocul Surf 2020; 18:783-794. [PMID: 32735949 DOI: 10.1016/j.jtos.2020.07.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 06/16/2020] [Accepted: 07/06/2020] [Indexed: 01/26/2023]
Abstract
PURPOSE Dry eye disease (DED) is a common and multifactor-induced autoimmune ocular surface disease. Environmental factors, such as desiccating stress (DS) and hyperosmolarity, affect the corneal epithelium to induce ocular surface inflammation in DED. We aimed to explore the potential mechanisms by which innate immunity and pyroptosis are initiated in the mucosal epithelium in response to environmental stress. METHODS Experimental dry eye was established in C57BL/6 J mice and genetic mice on the background of C57BL/6 J mice by subcutaneous injection of scopolamine and exposure to a desiccating environment. SDHCEC cell line was subjected to hyperosmolarity stress (450 mOsM). The phenol red thread tear test and corneal epithelial defects evaluation were used as assessments of severity of DED. RNA-sequencing, quantitative real-time PCR, western blotting and immunofluorescence staining were performed in this study. RESULTS Loss-of-function studies indicated that genetic deletion of GSDMD alleviates DS-induced corneal epithelium defects, and GSDMD is needed for IL-33 processing. We further found that NLRP12 collaborates with NLRC4 inflammasome to initiate GSDMD-dependent pyroptosis, which requires TLR4-induced caspase-8 (CASP8) activation in the mucosal corneal epithelium in response to DS. CONCLUSIONS These findings provide compelling evidence that GSDMD-dependent pyroptosis plays a pivotal role in DED. A novel mechanism involving NLRP12 and NLRC4 inflammasomes-induced GSDMD-dependent pyroptosis, accompanied by IL-33 processing is responsible for ocular surface epithelial defects in response to environmental stress. GSDMD is required for IL-33 processing and the subsequent amplification of inflammatory cascades. These findings reveal novel therapeutic targets for treating DED.
Collapse
|
175
|
Peligero-Cruz C, Givony T, Sebé-Pedrós A, Dobeš J, Kadouri N, Nevo S, Roncato F, Alon R, Goldfarb Y, Abramson J. IL18 signaling promotes homing of mature Tregs into the thymus. eLife 2020; 9:e58213. [PMID: 32687059 PMCID: PMC7371425 DOI: 10.7554/elife.58213] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/03/2020] [Indexed: 12/22/2022] Open
Abstract
Foxp3+ regulatory T cells (Tregs) are potent suppressor cells, essential for the maintenance of immune homeostasis. Most Tregs develop in the thymus and are then released into the immune periphery. However, some Tregs populate the thymus and constitute a major subset of yet poorly understood cells. Here we describe a subset of thymus recirculating IL18R+ Tregs with molecular characteristics highly reminiscent of tissue-resident effector Tregs. Moreover, we show that IL18R+ Tregs are endowed with higher capacity to populate the thymus than their IL18R- or IL18R-/- counterparts, highlighting the key role of IL18R in this process. Finally, we demonstrate that IL18 signaling is critical for the induction of the key thymus-homing chemokine receptor - CCR6 on Tregs. Collectively, this study provides a detailed characterization of the mature Treg subsets in the mouse thymus and identifies a key role of IL18 signaling in controlling the CCR6-CCL20-dependent migration of Tregs into the thymus.
Collapse
Affiliation(s)
| | - Tal Givony
- Department of Immunology, Weizmann Institute of ScienceRehovotIsrael
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Jan Dobeš
- Department of Immunology, Weizmann Institute of ScienceRehovotIsrael
| | - Noam Kadouri
- Department of Immunology, Weizmann Institute of ScienceRehovotIsrael
| | - Shir Nevo
- Department of Immunology, Weizmann Institute of ScienceRehovotIsrael
| | - Francesco Roncato
- Department of Immunology, Weizmann Institute of ScienceRehovotIsrael
| | - Ronen Alon
- Department of Immunology, Weizmann Institute of ScienceRehovotIsrael
| | - Yael Goldfarb
- Department of Immunology, Weizmann Institute of ScienceRehovotIsrael
| | - Jakub Abramson
- Department of Immunology, Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
176
|
Li W, Li Y, Jin J. The essential function of IL-33 in metabolic regulation. Acta Biochim Biophys Sin (Shanghai) 2020; 52:768-775. [PMID: 32445465 DOI: 10.1093/abbs/gmaa045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 12/20/2019] [Accepted: 02/24/2020] [Indexed: 12/18/2022] Open
Abstract
Interleukin-33 (IL-33) is produced by various types of cells under physical or pathological conditions. As a multifunctional partner in health and disease, current evidence reveals that IL-33 also participates in several metabolic processes. IL-33 has been proven to contribute to regulating the activity of ST2+ group 2 innate lymphoid cells and regulatory T cells in adipose, which leads to the shift of insulin sensitivity and glucose clearance in glucose metabolism, thermogenesis, and adipocyte beiging in adipose metabolism. In this review, we briefly summarize the biological characteristics of Il-33 and discuss its regulatory function in glucose and adipose metabolism. By clarifying the underlying mechanism of IL-33, we highlight the crosstalk between immune response and metabolic processes mediated by IL-33.
Collapse
Affiliation(s)
- Wenping Li
- MOE Laboratory of Biosystem Homeostasis and Protection, and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yiyuan Li
- MOE Laboratory of Biosystem Homeostasis and Protection, and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jin Jin
- MOE Laboratory of Biosystem Homeostasis and Protection, and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
177
|
Morales Del Valle C, Maxwell JR, Xu MM, Menoret A, Mittal P, Tsurutani N, Adler AJ, Vella AT. Costimulation Induces CD4 T Cell Antitumor Immunity via an Innate-like Mechanism. Cell Rep 2020; 27:1434-1445.e3. [PMID: 31042471 DOI: 10.1016/j.celrep.2019.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 12/12/2018] [Accepted: 04/02/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic exposure to tumor-associated antigens inactivates cognate T cells, restricting the repertoire of tumor-specific effector T cells. This problem was studied here by transferring TCR transgenic CD4 T cells into recipient mice that constitutively express a cognate self-antigen linked to MHC II on CD11c-bearing cells. Immunotherapeutic agonists to CD134 plus CD137, "dual costimulation," induces specific CD4 T cell expansion and expression of the receptor for the Th2-associated IL-1 family cytokine IL-33. Rather than producing IL-4, however, they express the tumoricidal Th1 cytokine IFNγ when stimulated with IL-33 or IL-36 (a related IL-1 family member) plus IL-12 or IL-2. IL-36, which is induced within B16-F10 melanomas by dual costimulation, reduces tumor growth when injected intratumorally as a monotherapy and boosts the efficacy of tumor-nonspecific dual costimulated CD4 T cells. Dual costimulation thus enables chronic antigen-exposed CD4 T cells, regardless of tumor specificity, to elaborate tumoricidal function in response to tumor-associated cytokines.
Collapse
Affiliation(s)
| | - Joseph R Maxwell
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT 06030, USA
| | - Maria M Xu
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT 06030, USA
| | - Antoine Menoret
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT 06030, USA
| | - Payal Mittal
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT 06030, USA
| | - Naomi Tsurutani
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT 06030, USA
| | - Adam J Adler
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT 06030, USA.
| | - Anthony T Vella
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT 06030, USA.
| |
Collapse
|
178
|
Stivers KB, Chilton PM, Beare JE, Dale JR, Alard P, LeBlanc AJ, Hoying JB. Adipose‐resident myeloid‐derived suppressor cells modulate immune cell homeostasis in healthy mice. Immunol Cell Biol 2020; 98:650-666. [DOI: 10.1111/imcb.12360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/31/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Katlin B Stivers
- Cardiovascular Innovation Institute University of Louisville School of Medicine Louisville KY40202USA
- Department of Microbiology & Immunology University of Louisville School of Medicine Louisville KY40202USA
| | - Paula M Chilton
- Cardiovascular Innovation Institute University of Louisville School of Medicine Louisville KY40202USA
- Department of Microbiology & Immunology University of Louisville School of Medicine Louisville KY40202USA
| | - Jason E Beare
- Cardiovascular Innovation Institute University of Louisville School of Medicine Louisville KY40202USA
| | - Jacob R Dale
- Cardiovascular Innovation Institute University of Louisville School of Medicine Louisville KY40202USA
| | - Pascale Alard
- Department of Microbiology & Immunology University of Louisville School of Medicine Louisville KY40202USA
| | - Amanda J LeBlanc
- Cardiovascular Innovation Institute University of Louisville School of Medicine Louisville KY40202USA
- Department of Physiology University of Louisville School of Medicine Louisville KY40292USA
| | - James B Hoying
- Cardiovascular Innovation Institute University of Louisville School of Medicine Louisville KY40202USA
- Department of Physiology University of Louisville School of Medicine Louisville KY40292USA
| |
Collapse
|
179
|
Zhou Z, Yan F, Liu O. Interleukin (IL)-33: an orchestrator of immunity from host defence to tissue homeostasis. Clin Transl Immunology 2020; 9:e1146. [PMID: 32566227 PMCID: PMC7299676 DOI: 10.1002/cti2.1146] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
Interleukin (IL)-33, a member of the IL-1 superfamily, functions as an alarm signal, which is released upon cell injury or tissue damage to alert the immune system. It has emerged as a chief orchestrator in immunity and has a broad pleiotropic action that influences differentiation, maintenance and function of various immune cell types via the ST2 receptor. Although it has been strongly associated with immunopathology, critically, IL-33 is involved in host defence, tissue repair and homeostasis. In this review, we provide an overview of the signalling pathway of IL-33 and highlight its regulatory functions in immune cells. Furthermore, we attempt a broader discussion of the emerging functions of IL-33 in host defence, tissue repair, metabolism, inflammatory disease and cancer, suggesting potential avenues to manoeuvre IL-33/ST2 signalling as treatment options.
Collapse
Affiliation(s)
- Zekun Zhou
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology Central South University Changsha Hunan China
| | - Fei Yan
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology Central South University Changsha Hunan China
| | - Ousheng Liu
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology Central South University Changsha Hunan China
| |
Collapse
|
180
|
Eosinophil function in adipose tissue is regulated by Krüppel-like factor 3 (KLF3). Nat Commun 2020; 11:2922. [PMID: 32523103 PMCID: PMC7286919 DOI: 10.1038/s41467-020-16758-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/20/2020] [Indexed: 01/01/2023] Open
Abstract
The conversion of white adipocytes to thermogenic beige adipocytes represents a potential mechanism to treat obesity and related metabolic disorders. However, the mechanisms involved in converting white to beige adipose tissue remain incompletely understood. Here we show profound beiging in a genetic mouse model lacking the transcriptional repressor Krüppel-like factor 3 (KLF3). Bone marrow transplants from these animals confer the beige phenotype on wild type recipients. Analysis of the cellular and molecular changes reveal an accumulation of eosinophils in adipose tissue. We examine the transcriptomic profile of adipose-resident eosinophils and posit that KLF3 regulates adipose tissue function via transcriptional control of secreted molecules linked to beiging. Furthermore, we provide evidence that eosinophils may directly act on adipocytes to drive beiging and highlight the critical role of these little-understood immune cells in thermogenesis. Immune cells are important regulators of adipose tissue function, including adaptive thermogenesis. Here the authors show that mice with Krüppel-like factor 3 (KLF3) deficiency in bone marrow-derived cells have increased adipose tissue beiging which may at least in part be due to altered eosinophil paracrine signaling.
Collapse
|
181
|
Cook SL, Franke MC, Sievert EP, Sciammas R. A Synchronous IRF4-Dependent Gene Regulatory Network in B and Helper T Cells Orchestrating the Antibody Response. Trends Immunol 2020; 41:614-628. [PMID: 32467029 DOI: 10.1016/j.it.2020.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/18/2022]
Abstract
Control of diverse pathogens requires an adaptive antibody response, dependent on cellular division of labor to allocate antigen-dependent B- and CD4+ T-cell fates that collaborate to control the quantity and quality of antibody. This is orchestrated by the dynamic action of key transcriptional regulators mediating gene expression programs in response to pathogen-specific environmental inputs. We describe a conserved, likely ancient, gene regulatory network that intriguingly operates contemporaneously in B and CD4+ T cells to control their cell fate dynamics and thus, the character of the antibody response. The remarkable output of this network derives from graded expression, designated by antigen receptor signal strength, of a pivotal transcription factor that regulates alternate cell fate choices.
Collapse
Affiliation(s)
- Sarah L Cook
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, CA 95616, USA.
| | - Marissa C Franke
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, CA 95616, USA
| | - Evelyn P Sievert
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, CA 95616, USA
| | - Roger Sciammas
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
182
|
Abstract
Adipose tissue (AT) plays a central role in both metabolic health and pathophysiology. Its expansion in obesity results in increased mortality and morbidity, with contributions to cardiovascular disease, diabetes mellitus, fatty liver disease, and cancer. Obesity prevalence is at an all-time high and is projected to be 50% in the United States by 2030. AT is home to a large variety of immune cells, which are critical to maintain normal tissue functions. For example, γδ T cells are fundamental for AT innervation and thermogenesis, and macrophages are required for recycling of lipids released by adipocytes. The expansion of visceral white AT promotes dysregulation of its immune cell composition and likely promotes low-grade chronic inflammation, which has been proposed to be the underlying cause for the complications of obesity. Interestingly, weight loss after obesity alters the AT immune compartment, which may account for the decreased risk of developing these complications. Recent technological advancements that allow molecular investigation on a single-cell level have led to the discovery of previously unappreciated heterogeneity in many organs and tissues. In this review, we will explore the heterogeneity of immune cells within the visceral white AT and their contributions to homeostasis and pathology.
Collapse
Affiliation(s)
- Ada Weinstock
- Department of Medicine, Leon H. Charney Division of Cardiology, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Hernandez Moura Silva
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - Kathryn J. Moore
- Department of Medicine, Leon H. Charney Division of Cardiology, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Edward A. Fisher
- Department of Medicine, Leon H. Charney Division of Cardiology, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
183
|
Rao UK, Engelhardt BG. Predicting Immuno-Metabolic Complications After Allogeneic Hematopoietic Cell Transplant with the Cytokine Interleukin-33 (IL-33) and its Receptor Serum-Stimulation 2 (ST2). Clin Hematol Int 2020; 2:101-108. [PMID: 34595450 PMCID: PMC8432328 DOI: 10.2991/chi.d.200506.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/04/2020] [Indexed: 01/19/2023] Open
Abstract
Patients undergoing allogeneic hematopoietic cell transplantation (HCT) are at risk for numerous acute and long-term complications from this procedure. Post-transplant diabetes mellitus (PTDM) is a common but under-recognized problem. Similar to graft-versus-host disease (GVHD), new-onset diabetes is characterized by immune dysregulation that can negatively impact transplant outcomes. This review will discuss the biology of IL-33/ST2 in acute GVHD and PTDM development, and how this cytokine axis could be leveraged for predicting and treating immuno-metabolic complications after transplant.
Collapse
Affiliation(s)
- Uttam K Rao
- Department of Medicine, Vanderbilt University Medical Center, Medical Center Drive, Nashville, TN, USA
| | - Brian G Engelhardt
- Department of Medicine, Vanderbilt University Medical Center, Medical Center Drive, Nashville, TN, USA
| |
Collapse
|
184
|
Piconese S, Campello S, Natalini A. Recirculation and Residency of T Cells and Tregs: Lessons Learnt in Anacapri. Front Immunol 2020; 11:682. [PMID: 32431695 PMCID: PMC7214633 DOI: 10.3389/fimmu.2020.00682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/26/2020] [Indexed: 02/01/2023] Open
Abstract
"Location, location, and location": according to this mantra, the place where living beings settle has a key impact on the success of their activities; in turn, the living beings can, in many ways, modify their environment. This idea has now become more and more true for T cells. The ability of T cells to recirculate throughout blood or lymph, or to stably reside in certain tissues, turned out to determine immunity to pathogens, and tumors. If location matters also for human beings, the inspiring environment of Capri Island has contributed to the success of the EFIS-EJI Ruggero Ceppellini Advanced School of Immunology focused on "T cell memory," held in Anacapri from October 12, 2018 to October 15, 2018. In this minireview, we would like to highlight some novel concepts about T cell migration and residency and discuss their implications in relation to recent advances in the field, including the mechanisms regulating compartmentalization and cell cycle entry of T cells during activation, the role of mitochondrial metabolism in T cell movement, and the residency of regulatory T cells.
Collapse
Affiliation(s)
- Silvia Piconese
- Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari, Sapienza Università di Roma, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Silvia Campello
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Ambra Natalini
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy.,Dipartimento di Medicina Molecolare (DMM), Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
185
|
Spallanzani RG, Zemmour D, Xiao T, Jayewickreme T, Li C, Bryce PJ, Benoist C, Mathis D. Distinct immunocyte-promoting and adipocyte-generating stromal components coordinate adipose tissue immune and metabolic tenors. Sci Immunol 2020; 4:4/35/eaaw3658. [PMID: 31053654 DOI: 10.1126/sciimmunol.aaw3658] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/06/2019] [Indexed: 12/13/2022]
Abstract
Regulatory T cells (Tregs) are key brakes on the visceral adipose tissue (VAT) inflammation that regulates local and systemic metabolic tenor. Breakdown of this regulation promotes type 2 diabetes. The cytokine IL-33 expands and sustains the unique Treg population residing within VAT. Here, relying on single-cell RNA sequencing, we identified the major IL-33 producers in VAT to be particular mesenchymal stromal cell subtypes, related to but distinct from adipocyte progenitor cells. We explored modulation of the VAT stromal cell landscape with physiologic variables such as age and sex, as well as its remodeling in pathogenic states like obesity. Last, we uncovered a VAT Treg:stromal cell negative regulatory loop that keeps the potent effect of IL-33 under rein.
Collapse
Affiliation(s)
- Raul German Spallanzani
- Department of Immunology, Harvard Medical School and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - David Zemmour
- Department of Immunology, Harvard Medical School and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Tianli Xiao
- Department of Immunology, Harvard Medical School and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Teshika Jayewickreme
- Department of Immunology, Harvard Medical School and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Chaoran Li
- Department of Immunology, Harvard Medical School and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Paul J Bryce
- Immunology & Inflammation Therapeutic Area, Sanofi US, Cambridge, MA 02139, USA
| | - Christophe Benoist
- Department of Immunology, Harvard Medical School and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Diane Mathis
- Department of Immunology, Harvard Medical School and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
186
|
Zhao XY, Zhou L, Chen Z, Ji Y, Peng X, Qi L, Li S, Lin JD. The obesity-induced adipokine sST2 exacerbates adipose T reg and ILC2 depletion and promotes insulin resistance. SCIENCE ADVANCES 2020; 6:eaay6191. [PMID: 32426492 PMCID: PMC7220368 DOI: 10.1126/sciadv.aay6191] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 03/02/2020] [Indexed: 05/02/2023]
Abstract
Depletion of fat-resident regulatory T cells (Tregs) and group 2 innate lymphoid cells (ILC2s) has been causally linked to obesity-associated insulin resistance. However, the molecular nature of the pathogenic signals suppress adipose Tregs and ILC2s in obesity remains unknown. Here, we identified the soluble isoform of interleukin (IL)-33 receptor ST2 (sST2) as an obesity-induced adipokine that attenuates IL-33 signaling and disrupts Treg/ILC2 homeostasis in adipose tissue, thereby exacerbates obesity-associated insulin resistance in mice. We demonstrated sST2 is a target of TNFα signaling in adipocytes that is countered by Zbtb7b. Fat-specific ablation of Zbtb7b augments adipose sST2 gene expression, leading to diminished fat-resident Tregs/ILC2s, more pronounced adipose tissue inflammation and fibrosis, and impaired glucose homeostasis in mice. Mechanistically, Zbtb7b suppresses NF-κB activation in response to TNFα through destabilizing IκBα. These findings uncover an adipokine-immune signaling pathway that is engaged in obesity to drive the pathological changes of the immunometabolic landscape.
Collapse
Affiliation(s)
- Xu-Yun Zhao
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
- Corresponding author. (J.D.L.); (X.-Y.Z.)
| | - Linkang Zhou
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Zhimin Chen
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Yewei Ji
- Department of Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Xiaoling Peng
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Ling Qi
- Department of Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Siming Li
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Jiandie D. Lin
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
- Corresponding author. (J.D.L.); (X.-Y.Z.)
| |
Collapse
|
187
|
Makowski L, Chaib M, Rathmell JC. Immunometabolism: From basic mechanisms to translation. Immunol Rev 2020; 295:5-14. [PMID: 32320073 PMCID: PMC8056251 DOI: 10.1111/imr.12858] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 12/11/2022]
Abstract
Immunometabolism has emerged as a major mechanism central to adaptive and innate immune regulation. From early observations that inflammatory cytokines were induced in obese adipose tissue and that these cytokines contributed to metabolic disease, it was clear that metabolism and the immunological state are inextricably linked. With a second research wave arising from studies in cancer metabolism to also study the intrinsic metabolic pathways of immune cells themselves and how those pathways influence cell fate and function, immunometabolism is a rapidly maturing area of research. Several key themes and goals drive the field. There is abundant evidence that metabolic pathways are closely tied to cell signaling and differentiation which leads different subsets of immune cells to adopt unique metabolic programs specific to their state and environment. In this way, metabolic signaling drives cell fate. It is also apparent that microenvironment greatly influences cell metabolism. Immune cells adopt programs specific for the tissues where they infiltrate and reside. Ultimately, a central goal of the field is to apply immunometabolism findings to the discovery of novel therapeutic strategies in a wide range of diseases, including cancer, autoimmunity, and metabolic syndrome. This review summarizes these facets of immunometabolism and highlights opportunities for clinical translation.
Collapse
Affiliation(s)
- Liza Makowski
- Division of Hematology and Oncology, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Mehdi Chaib
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
188
|
Garg G, Muschaweckh A, Moreno H, Vasanthakumar A, Floess S, Lepennetier G, Oellinger R, Zhan Y, Regen T, Hiltensperger M, Peter C, Aly L, Knier B, Palam LR, Kapur R, Kaplan MH, Waisman A, Rad R, Schotta G, Huehn J, Kallies A, Korn T. Blimp1 Prevents Methylation of Foxp3 and Loss of Regulatory T Cell Identity at Sites of Inflammation. Cell Rep 2020; 26:1854-1868.e5. [PMID: 30759395 PMCID: PMC6389594 DOI: 10.1016/j.celrep.2019.01.070] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 12/13/2018] [Accepted: 01/17/2019] [Indexed: 01/16/2023] Open
Abstract
Foxp3+ regulatory T (Treg) cells restrict immune pathology in inflamed tissues; however, an inflammatory environment presents a threat to Treg cell identity and function. Here, we establish a transcriptional signature of central nervous system (CNS) Treg cells that accumulate during experimental autoimmune encephalitis (EAE) and identify a pathway that maintains Treg cell function and identity during severe inflammation. This pathway is dependent on the transcriptional regulator Blimp1, which prevents downregulation of Foxp3 expression and “toxic” gain-of-function of Treg cells in the inflamed CNS. Blimp1 negatively regulates IL-6- and STAT3-dependent Dnmt3a expression and function restraining methylation of Treg cell-specific conserved non-coding sequence 2 (CNS2) in the Foxp3 locus. Consequently, CNS2 is heavily methylated when Blimp1 is ablated, leading to a loss of Foxp3 expression and severe disease. These findings identify a Blimp1-dependent pathway that preserves Treg cell stability in inflamed non-lymphoid tissues. Most Foxp3+ Treg cells in the inflamed CNS express Blimp1 Blimp1 inhibits Dnmt3a and prevents methylation of the Foxp3 locus IL-6 contributes to methylation of the Foxp3 locus in a Dnmt3a-dependent manner Blimp1 counteracts the IL-6-driven destabilization of Treg cells
Collapse
Affiliation(s)
- Garima Garg
- Klinikum Rechts der Isar, Department of Experimental Neuroimmunology, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Andreas Muschaweckh
- Klinikum Rechts der Isar, Department of Experimental Neuroimmunology, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Helena Moreno
- Biomedical Center (BMC) and Center for Integrated Protein Science Munich, Faculty of Medicine, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Ajithkumar Vasanthakumar
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, 792 Elizabeth St., Melbourne Victoria 3000, Australia; The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Stefan Floess
- Experimental Immunology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Gildas Lepennetier
- Klinikum Rechts der Isar, Department of Experimental Neuroimmunology, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Rupert Oellinger
- Institute of Molecular Oncology and Functional Genomics, TranslaTUM Cancer Center, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; Klinikum Rechts der Isar, Department of Medicine II, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Yifan Zhan
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, 792 Elizabeth St., Melbourne Victoria 3000, Australia; The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Tommy Regen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Michael Hiltensperger
- Klinikum Rechts der Isar, Department of Experimental Neuroimmunology, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Christian Peter
- Klinikum Rechts der Isar, Department of Experimental Neuroimmunology, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Lilian Aly
- Klinikum Rechts der Isar, Department of Experimental Neuroimmunology, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Benjamin Knier
- Klinikum Rechts der Isar, Department of Experimental Neuroimmunology, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Lakshmi Reddy Palam
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 West Walnut St., Indianapolis, IN 46202, USA
| | - Reuben Kapur
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 West Walnut St., Indianapolis, IN 46202, USA
| | - Mark H Kaplan
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 West Walnut St., Indianapolis, IN 46202, USA
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, TranslaTUM Cancer Center, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; Klinikum Rechts der Isar, Department of Medicine II, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Gunnar Schotta
- Biomedical Center (BMC) and Center for Integrated Protein Science Munich, Faculty of Medicine, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Axel Kallies
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, 792 Elizabeth St., Melbourne Victoria 3000, Australia; The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Thomas Korn
- Klinikum Rechts der Isar, Department of Experimental Neuroimmunology, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 Munich, Germany.
| |
Collapse
|
189
|
Patwardhan RS, Singh B, Pal D, Checker R, Bandekar M, Sharma D, Sandur SK. Redox regulation of regulatory T-cell differentiation and functions. Free Radic Res 2020; 54:947-960. [DOI: 10.1080/10715762.2020.1745202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Raghavendra S. Patwardhan
- Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Babita Singh
- Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Debojyoti Pal
- Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Rahul Checker
- Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Mayuri Bandekar
- Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Deepak Sharma
- Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Santosh K. Sandur
- Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| |
Collapse
|
190
|
Ito M, Komai K, Nakamura T, Srirat T, Yoshimura A. Tissue regulatory T cells and neural repair. Int Immunol 2020; 31:361-369. [PMID: 30893423 DOI: 10.1093/intimm/dxz031] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/19/2019] [Indexed: 12/18/2022] Open
Abstract
Inflammation and immune responses after tissue injury play pivotal roles in the pathology, resolution of inflammation, tissue recovery, fibrosis and remodeling. Regulatory T cells (Tregs) are the cells responsible for suppressing immune responses and can be activated in secondary lymphatic tissues, where they subsequently regulate effector T cell and dendritic cell activation. Recently, Tregs that reside in non-lymphoid tissues, called tissue Tregs, have been shown to exhibit tissue-specific functions that contribute to the maintenance of tissue homeostasis and repair. Unlike other tissue Tregs, the role of Tregs in the brain has not been well elucidated because the number of brain Tregs is very small under normal conditions. However, we found that Tregs accumulate in the brain at the chronic phase of ischemic brain injury and control astrogliosis through secretion of a cytokine, amphiregulin (Areg). Brain Tregs resemble other tissue Tregs in many ways but, unlike the other tissue Tregs, brain Tregs express neural-cell-specific genes such as the serotonin receptor (Htr7) and respond to serotonin. Administering serotonin or selective serotonin reuptake inhibitors (SSRIs) in an experimental mouse model of stroke increases the number of brain Tregs and ameliorates neurological symptoms. Knowledge of brain Tregs will contribute to the understanding of various types of neuroinflammation.
Collapse
Affiliation(s)
- Minako Ito
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kyoko Komai
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Toshihiro Nakamura
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Tanakorn Srirat
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
191
|
Ishikawa A, Wada T, Nishimura S, Ito T, Okekawa A, Onogi Y, Watanabe E, Sameshima A, Tanaka T, Tsuneki H, Saito S, Sasaoka T. Estrogen regulates sex-specific localization of regulatory T cells in adipose tissue of obese female mice. PLoS One 2020; 15:e0230885. [PMID: 32240221 PMCID: PMC7117686 DOI: 10.1371/journal.pone.0230885] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/10/2020] [Indexed: 12/22/2022] Open
Abstract
Regulatory T cells (Treg) play essential roles in maintaining immune homeostasis. Resident Treg in visceral adipose tissue (VAT-Treg) decrease in male obese mice, which leads to the development of obesity-associated chronic inflammations and insulin resistance. Although gender differences in immune responses have been reported, the effects of the difference in metabolic environment on VAT-Treg are unclear. We investigated the localization of VAT-Treg in female mice in comparison with that in male mice. On a high-fat diet (HFD), VAT-Treg decreased in male mice but increased in female mice. The increase was abolished in ovariectomized and HFD-fed mice, but was restored by estrogen supplementation. The IL33 receptor ST2, which is important for the localization and maturation of VAT-Treg in males, was reduced in CD4+CD25+ T cells isolated from gonadal fat of obese mice of both genders, suggesting that a different system exists for VAT-Treg localization in females. Extensive analysis of chemokine expression in gonadal fat and adipose CD4+CD25+T cells revealed several chemokine signals related to female-specific VAT-Treg accumulation such as CCL24, CCR6, and CXCR3. Taken together, the current study demonstrated sexual dimorphism in VAT-Treg localization in obese mice. Estrogen may attenuate obesity-associated chronic inflammation partly through altering chemokine-related VAT-Treg localization in females.
Collapse
Affiliation(s)
- Akari Ishikawa
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | - Tsutomu Wada
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | - Sanshiro Nishimura
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | - Tetsuo Ito
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | - Akira Okekawa
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | - Yasuhiro Onogi
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | - Eri Watanabe
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | - Azusa Sameshima
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Tomoko Tanaka
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Hiroshi Tsuneki
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | - Shigeru Saito
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Toshiyasu Sasaoka
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| |
Collapse
|
192
|
Guo S, Luo Y. Brain Foxp3+ regulatory T cells can be expanded by Interleukin-33 in mouse ischemic stroke. Int Immunopharmacol 2020; 81:106027. [DOI: 10.1016/j.intimp.2019.106027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/14/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022]
|
193
|
Wheaton JD, Ciofani M. JunB Controls Intestinal Effector Programs in Regulatory T Cells. Front Immunol 2020; 11:444. [PMID: 32296416 PMCID: PMC7137613 DOI: 10.3389/fimmu.2020.00444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/26/2020] [Indexed: 12/25/2022] Open
Abstract
Foxp3-expressing regulatory T (Treg) cells are critical mediators of immunological tolerance to both self and microbial antigens. Tregs activate context-dependent transcriptional programs to adapt effector function to specific tissues; however, the factors controlling tissue-specific gene expression in Tregs remain unclear. Here, we find that the AP-1 transcription factor JunB regulates the intestinal adaptation of Tregs by controlling select gene expression programs in multiple Treg subsets. Treg-specific ablation of JunB results in immune dysregulation characterized by enhanced colonic T helper cell accumulation and cytokine production. However, in contrast to its classical binding-partner BATF, JunB is dispensable for maintenance of effector Tregs as well as most specialized Treg subsets. In the Peyer's patches, JunB activates a transcriptional program facilitating the maintenance of CD25- Tregs, leading to the complete loss of T follicular regulatory cells in the absence of JunB. This defect is compounded by loss of a separate effector program found in both major colonic Treg subsets that includes the cytolytic effector molecule granzyme B. Therefore, JunB is an essential regulator of intestinal Treg effector function through pleiotropic effects on gene expression.
Collapse
Affiliation(s)
- Joshua D. Wheaton
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Maria Ciofani
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, United States
| |
Collapse
|
194
|
The Role of IL-33 in Experimental Heart Transplantation. Cardiol Res Pract 2020; 2020:6108362. [PMID: 32257426 PMCID: PMC7106886 DOI: 10.1155/2020/6108362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/24/2019] [Accepted: 12/31/2019] [Indexed: 01/17/2023] Open
Abstract
Interleukin-33 (IL-33) is a member of the IL-1 family of proteins that are produced by a variety of cell types in multiple tissues. Under conditions of cell injury or death, IL-33 is passively released from the nucleus and acts as an "alarmin" upon binding to its specific receptor ST2, which leads to proinflammatory or anti-inflammatory effects depending on the pathological environment. To date, numerous studies have investigated the roles of IL-33 in human and murine models of diseases of the nervous system, digestive system, pulmonary system, as well as other organs and systems, including solid organ transplantation. With graft rejection and ischemia-reperfusion injury being the most common causes of grafted organ failure or dysfunction, researchers have begun to investigate the role of IL-33 in the immune-related mechanisms of graft tolerance and rejection using heart transplantation models. In the present review, we summarize the identified roles of IL-33 as well as the corresponding mechanisms by which IL-33 acts within the progression of graft rejection after heart transplantation in animal models.
Collapse
|
195
|
Bcl6 and Blimp1 reciprocally regulate ST2 + Treg-cell development in the context of allergic airway inflammation. J Allergy Clin Immunol 2020; 146:1121-1136.e9. [PMID: 32179158 DOI: 10.1016/j.jaci.2020.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 02/12/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Bcl6 is required for the development of T follicular helper cells and T follicular regulatory (Tfr) cells that regulate germinal center responses. Bcl6 also affects the function of regulatory T (Treg) cells. OBJECTIVE The goal of this study was to define the functions of Bcl6 in Treg cells, including Tfr cells, in the context of allergic airway inflammation. METHODS We used a model of house dust mite sensitization to challenge wild-type, Bcl6fl/fl Foxp3-Cre, and Prdm1 (Blimp1)fl/fl Foxp3-Cre mice to study the reciprocal roles of Bcl6 and Blimp1 in allergic airway inflammation. RESULTS In the house dust mite model, Tfr cells repress the production of IgE and Bcl6+ Treg cells suppress the generation of type 2 cytokine-producing cells in the lungs. In mice with Bcl6-deficient Treg cells, twice as many ST2+ (IL-33R+) Treg cells develop as are observed in wild-type mice. ST2+ Treg cells in the context of allergic airway inflammation are Blimp1 dependent, express type 2 cytokines, and share features of visceral adipose tissue Treg cells. Bcl6-deficient Treg cells are more susceptible, and Blimp1-deficient Treg cells are resistant, to acquiring the ST2+ Treg-cell phenotype in vitro and in vivo in response to IL-33. Bcl6-deficient ST2+ Treg cells, but not Bcl6-deficient ST2+ conventional T cells, strongly promote allergic airway inflammation when transferred into recipient mice. Lastly, ST2 is required for the exacerbated allergic airway inflammation in Bcl6fl/fl Foxp3-Cre mice. CONCLUSIONS During allergic airway inflammation, Bcl6 and Blimp1 play dual roles in regulating Tfr-cell activity in the germinal center and in the development of ST2+ Treg cells that promote type 2 cytokine responses.
Collapse
|
196
|
Li C, Spallanzani RG, Mathis D. Visceral adipose tissue Tregs and the cells that nurture them. Immunol Rev 2020; 295:114-125. [PMID: 32162339 DOI: 10.1111/imr.12850] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022]
Abstract
Visceral adipose tissue (VAT) is a primary site for storage of excess energy, but it also serves as an important endocrine organ that impacts organismal metabolism. Chronic, low-grade inflammation of VAT, and eventually systemically, is one of the major drivers of obesity-associated insulin resistance and metabolic abnormalities. A unique population of regulatory T cells (Tregs), with a distinct transcriptional profile and antigen receptor repertoire resides in VAT, keeps inflammation in check and regulates organismal metabolism. Accumulation of these cells depends on interactions with other local immunocytes and, importantly, subtypes of VAT mesenchymal stromal cells (VmSCs) that are either immunomodulators or adipogenic. We summarize our current understanding of the phenotype, function, dependencies, derivation, and modulations of VAT Tregs, and review the heterogeneity and regulation of VmSCs as well as their cross talk with VAT Tregs. Lastly, we discuss imperative questions remaining to be answered.
Collapse
Affiliation(s)
- Chaoran Li
- Department of Immunology, Harvard Medical School and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Raul German Spallanzani
- Department of Immunology, Harvard Medical School and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Diane Mathis
- Department of Immunology, Harvard Medical School and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
197
|
Wang K, Yaghi OK, Spallanzani RG, Chen X, Zemmour D, Lai N, Chiu IM, Benoist C, Mathis D. Neuronal, stromal, and T-regulatory cell crosstalk in murine skeletal muscle. Proc Natl Acad Sci U S A 2020; 117:5402-5408. [PMID: 32102913 PMCID: PMC7071852 DOI: 10.1073/pnas.1922559117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A distinct population of Foxp3+CD4+ regulatory T (Treg) cells promotes repair of acutely or chronically injured skeletal muscle. The accumulation of these cells depends critically on interleukin (IL)-33 produced by local mesenchymal stromal cells (mSCs). An intriguing physical association among muscle nerves, IL-33+ mSCs, and Tregs has been reported, and invites a deeper exploration of this cell triumvirate. Here we evidence a striking proximity between IL-33+ muscle mSCs and both large-fiber nerve bundles and small-fiber sensory neurons; report that muscle mSCs transcribe an array of genes encoding neuropeptides, neuropeptide receptors, and other nerve-related proteins; define muscle mSC subtypes that express both IL-33 and the receptor for the calcitonin-gene-related peptide (CGRP); and demonstrate that up- or down-tuning of CGRP signals augments or diminishes, respectively, IL-33 production by muscle mSCs and later accumulation of muscle Tregs. Indeed, a single injection of CGRP induced much of the genetic program elicited in mSCs early after acute skeletal muscle injury. These findings highlight neural/stromal/immune-cell crosstalk in tissue repair, suggesting future therapeutic approaches.
Collapse
Affiliation(s)
- Kathy Wang
- Department of Immunology, Harvard Medical School, Boston, MA 02115
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Omar K Yaghi
- Department of Immunology, Harvard Medical School, Boston, MA 02115
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Raul German Spallanzani
- Department of Immunology, Harvard Medical School, Boston, MA 02115
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Xin Chen
- Department of Immunology, Harvard Medical School, Boston, MA 02115
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - David Zemmour
- Department of Immunology, Harvard Medical School, Boston, MA 02115
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Nicole Lai
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | - Christophe Benoist
- Department of Immunology, Harvard Medical School, Boston, MA 02115;
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA 02115;
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| |
Collapse
|
198
|
Wang H, Lu CH, Ho PC. Metabolic adaptation orchestrates tissue context-dependent behavior in regulatory T cells. Immunol Rev 2020; 295:126-139. [PMID: 32147869 DOI: 10.1111/imr.12844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023]
Abstract
The diverse distribution and functions of regulatory T cells (Tregs) ensure tissue and immune homeostasis; however, it remains unclear which factors can guide distribution, local differentiation, and tissue context-specific behavior in Tregs. Although the emerging concept that Tregs could re-adjust their transcriptome based on their habitations is supported by recent findings, the underlying mechanisms that reprogram transcriptome in Tregs are unknown. In the past decade, metabolic machineries have been revealed as a new regulatory circuit, known as immunometabolic regulation, to orchestrate activation, differentiation, and functions in a variety of immune cells, including Tregs. Given that systemic and local alterations of nutrient availability and metabolite profile associate with perturbation of Treg abundance and functions, it highlights that immunometabolic regulation may be one of the mechanisms that orchestrate tissue context-specific regulation in Tregs. The understanding on how metabolic program instructs Tregs in peripheral tissues not only represents a critical opportunity to delineate a new avenue in Treg biology but also provides a unique window to harness Treg-targeting approaches for treating cancer and autoimmunity with minimizing side effects. This review will highlight the metabolic features on guiding Treg formation and function in a disease-oriented perspective and aim to pave the foundation for future studies.
Collapse
Affiliation(s)
- Haiping Wang
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Chun-Hao Lu
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
199
|
Vasanthakumar A, Chisanga D, Blume J, Gloury R, Britt K, Henstridge DC, Zhan Y, Torres SV, Liene S, Collins N, Cao E, Sidwell T, Li C, Spallanzani RG, Liao Y, Beavis PA, Gebhardt T, Trevaskis N, Nutt SL, Zajac JD, Davey RA, Febbraio MA, Mathis D, Shi W, Kallies A. Sex-specific adipose tissue imprinting of regulatory T cells. Nature 2020; 579:581-585. [PMID: 32103173 PMCID: PMC7241647 DOI: 10.1038/s41586-020-2040-3] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/14/2020] [Indexed: 12/16/2022]
Abstract
Adipose tissue is an energy store and a dynamic endocrine organ1,2. In particular, visceral adipose tissue (VAT) is critical for the regulation of systemic metabolism3,4. Impaired VAT function-for example, in obesity-is associated with insulin resistance and type 2 diabetes5,6. Regulatory T (Treg) cells that express the transcription factor FOXP3 are critical for limiting immune responses and suppressing tissue inflammation, including in the VAT7-9. Here we uncover pronounced sexual dimorphism in Treg cells in the VAT. Male VAT was enriched for Treg cells compared with female VAT, and Treg cells from male VAT were markedly different from their female counterparts in phenotype, transcriptional landscape and chromatin accessibility. Heightened inflammation in the male VAT facilitated the recruitment of Treg cells via the CCL2-CCR2 axis. Androgen regulated the differentiation of a unique IL-33-producing stromal cell population specific to the male VAT, which paralleled the local expansion of Treg cells. Sex hormones also regulated VAT inflammation, which shaped the transcriptional landscape of VAT-resident Treg cells in a BLIMP1 transcription factor-dependent manner. Overall, we find that sex-specific differences in Treg cells from VAT are determined by the tissue niche in a sex-hormone-dependent manner to limit adipose tissue inflammation.
Collapse
Affiliation(s)
- Ajithkumar Vasanthakumar
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia.
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
| | - David Chisanga
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Jonas Blume
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Renee Gloury
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Kara Britt
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Darren C Henstridge
- College of Health and Medicine, School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Yifan Zhan
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Santiago Valle Torres
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Sebastian Liene
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Institute of Experimental Immunology, University of Bonn, Bonn, Germany
| | - Nicholas Collins
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Enyuan Cao
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Tom Sidwell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Chaoran Li
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | | | - Yang Liao
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Paul A Beavis
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Thomas Gebhardt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Natalie Trevaskis
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Jeffrey D Zajac
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Rachel A Davey
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mark A Febbraio
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Wei Shi
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Computing and Information Systems, The University of Melbourne, Melbourne, Victoria, Australia
| | - Axel Kallies
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia.
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
| |
Collapse
|
200
|
Sidwell T, Liao Y, Garnham AL, Vasanthakumar A, Gloury R, Blume J, Teh PP, Chisanga D, Thelemann C, de Labastida Rivera F, Engwerda CR, Corcoran L, Kometani K, Kurosaki T, Smyth GK, Shi W, Kallies A. Attenuation of TCR-induced transcription by Bach2 controls regulatory T cell differentiation and homeostasis. Nat Commun 2020; 11:252. [PMID: 31937752 PMCID: PMC6959360 DOI: 10.1038/s41467-019-14112-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/11/2019] [Indexed: 01/06/2023] Open
Abstract
Differentiation and homeostasis of Foxp3+ regulatory T (Treg) cells are strictly controlled by T-cell receptor (TCR) signals; however, molecular mechanisms that govern these processes are incompletely understood. Here we show that Bach2 is an important regulator of Treg cell differentiation and homeostasis downstream of TCR signaling. Bach2 prevents premature differentiation of fully suppressive effector Treg (eTreg) cells, limits IL-10 production and is required for the development of peripherally induced Treg (pTreg) cells in the gastrointestinal tract. Bach2 attenuates TCR signaling-induced IRF4-dependent Treg cell differentiation. Deletion of IRF4 promotes inducible Treg cell differentiation and rescues pTreg cell differentiation in the absence of Bach2. In turn, loss of Bach2 normalizes eTreg cell differentiation of IRF4-deficient Treg cells. Mechanistically, Bach2 counteracts the DNA-binding activity of IRF4 and limits chromatin accessibility, thereby attenuating IRF4-dependent transcription. Thus, Bach2 balances TCR signaling induced transcriptional activity of IRF4 to maintain homeostasis of thymically-derived and peripherally-derived Treg cells.
Collapse
Affiliation(s)
- Tom Sidwell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
| | - Yang Liao
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Alexandra L Garnham
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Ajithkumar Vasanthakumar
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
| | - Renee Gloury
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
| | - Jonas Blume
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
| | - Peggy P Teh
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Renal Medicine, Alfred Health, Melbourne, VIC, 3004, Australia
- Department of Nephrology, Western Health, St Albans, VIC, 3021, Australia
| | - David Chisanga
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Christoph Thelemann
- Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
| | | | | | - Lynn Corcoran
- Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Kohei Kometani
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan
| | - Tomohiro Kurosaki
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Gordon K Smyth
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- School of Mathematics and Statistics, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Wei Shi
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- School of Computing and Information Systems, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Axel Kallies
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3010, Australia.
- Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia.
| |
Collapse
|