151
|
Age-Related Immune Profile of the T Cell Receptor Repertoire, Thymic Recent Output Function, and miRNAs. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5910823. [PMID: 33344643 PMCID: PMC7732372 DOI: 10.1155/2020/5910823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/13/2020] [Accepted: 11/24/2020] [Indexed: 11/18/2022]
Abstract
Background T cell immunity plays a central role in the body's defense system, including maintaining homeostasis and preventing tumorigenesis and viral infection. Immune system functions degenerate with age, leading to immune senescence. Physiologically, immune senescence is characterized by a decrease in T cell receptor diversity, naive T cell deficiency, and alterations in T cell immune-related miRNAs. However, little is known about the characteristics of T cell immunosenescence in Chinese individuals. Results A significant decrease in the miR-17, miR-92a, and miR-181a levels in PBMCs was detected with age. The miR-92a and miR-181a levels were upregulated in CBMCs when comparing healthy individuals to group I (0~9 years), whereas miR-17 was downregulated. The sjTREC level in PBMCs was negatively correlated with age, and a sharp decrease in sjTRECs was found between groups I and II (10~19 years). Twenty-four TCR Vβ subfamilies could be detected in most samples, and most displayed polyclonality, while skewed expression of the Vβ subfamilies as well as an increased oligoclonal tendency was found with age. Similarly, the frequencies of the TCR Vγ and Vδ subfamilies decreased with age, and the alteration in clonality appeared to be stable at different ages. Conclusion We made the novel observation of T cell immunosenescence with age in Chinese individuals, which may provide information for immune targets to enhance the T cell immune response in immunotherapy settings for elderly patients.
Collapse
|
152
|
Zhang L, Mack R, Breslin P, Zhang J. Molecular and cellular mechanisms of aging in hematopoietic stem cells and their niches. J Hematol Oncol 2020; 13:157. [PMID: 33228751 PMCID: PMC7686726 DOI: 10.1186/s13045-020-00994-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
Aging drives the genetic and epigenetic changes that result in a decline in hematopoietic stem cell (HSC) functioning. Such changes lead to aging-related hematopoietic/immune impairments and hematopoietic disorders. Understanding how such changes are initiated and how they progress will help in the development of medications that could improve the quality life for the elderly and to treat and possibly prevent aging-related hematopoietic diseases. Here, we review the most recent advances in research into HSC aging and discuss the role of HSC-intrinsic events, as well as those that relate to the aging bone marrow niche microenvironment in the overall processes of HSC aging. In addition, we discuss the potential mechanisms by which HSC aging is regulated.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Ryan Mack
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Peter Breslin
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Department of Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA. .,Department of Pathology, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
153
|
Impact of age on duration of viral RNA shedding in patients with COVID-19. Aging (Albany NY) 2020; 12:22399-22404. [PMID: 33223506 PMCID: PMC7746337 DOI: 10.18632/aging.104114] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/09/2020] [Indexed: 12/25/2022]
Abstract
Background: The aim of this study was to investigate the host factors of patients with COVID-19 that were associated with delayed viral RNA clearance in specimens obtained from the upper respiratory tract. Results: A median of a 32-day period of viral RNA shedding was observed, ranging from 4 days to 111 days. On multivariate analysis, elderly age was independently associated with prolonged viral shedding (OR = 1.02, 95% CI: 1.01–1.04, P = 0.003). An incremental increase in the duration of viral RNA shedding was observed with increasing age (P < 0.05). The median (quartile) duration of viral RNA shedding was 23 (22) days (≤ 40 years), 30 (18) days (41–50 years), 33 (21) days (51–60 years), 34 (17) days (61–70 years) and 34 (17) days (> 70 years). Conclusions: Viral RNA shedding can persist for as long as 111 days in the upper respiratory tract. Increasing age is associated with viral RNA persistence. Method: The demographic and virological data of patients with laboratory-confirmed COVID-19 were retrospectively analyzed. A multivariate logistic regression analysis was performed to identify significant risk factors associated with delayed viral RNA clearance. The duration of viral shedding was compared among age-stratified groups.
Collapse
|
154
|
Xiong Y, Wang Y, Zhang J, Zhao N, Zhang H, Zhang A, Zhao D, Yu Z, Yin Y, Song L, Xiong Y, Luan X. hPMSCs protects against D-galactose-induced oxidative damage of CD4 + T cells through activating Akt-mediated Nrf2 antioxidant signaling. Stem Cell Res Ther 2020; 11:468. [PMID: 33148324 PMCID: PMC7641865 DOI: 10.1186/s13287-020-01993-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/22/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) were considered a regenerative therapeutic approach in both acute and chronic diseases. However, whether MSCs regulate the antioxidant metabolism of CD4+ T cells and weaken immunosenescence remains unclear. Here, we reported the protective effects of hPMSCs in aging-related CD4+ T cell senescence and identified the underlying mechanisms using a D-gal-induced mouse aging model. METHODS In vivo study, 40 male C57BL/6 mice (8 weeks) were randomly divided into four groups: control group, D-gal group, hPMSC group, and PBS group. In in vitro experiment, human naive CD4+ T (CD4CD45RA) cells were prepared using a naive CD4+ T cell isolation kit II and pretreated with the Akt inhibitor LY294002 and Nrf2 inhibitor ML385. Then, isolated naive CD4+ T cell were co-cultured with hPMSCs for 72 h in the absence or presence of anti-CD3/CD28 Dynabeads and IL-2 as a mitogenic stimulus. Intracellular ROS changes were detected by flow cytometry. The activities of the antioxidant enzymes superoxide dismutase, glutathione peroxidase, and catalase were measured by colorimetric analysis. The senescent T cells were detected SA-β-gal stain. The expression of aging-related proteins was detected by Western blotting, RT-PCR, and confocal microscopy. RESULTS We found that hPMSC treatment markedly decreased the ROS level, SA-β-gal-positive cells number, senescence-associated secretory phenotype (IL-6 and OPN) expression, and aging-related protein (P16 and P21) expression in senescent CD4+ T cells. Furthermore, hPMSC treatment effectively upregulated Nrf2 nuclear translocation and the expression of downstream target genes (HO-1, CAT, GCLC, and NQO1) in senescent CD4+ T cells. Moreover, in vitro studies revealed that hPMSCs attenuated CD4+ T cell senescence by upregulating the Akt/GSK-3β/Fyn pathway to activate Nrf2 functions. Conversely, the antioxidant effects of hPMSCs were blocked by the Akt inhibitor LY294002 and Nrf2 inhibitor ML385 in senescent CD4+ T cells. CONCLUSIONS Our results indicate that hPMSCs attenuate D-gal-induced CD4+ T cell senescence by activating Nrf2-mediated antioxidant defenses and that upregulation of Nrf2 by hPMSCs is regulated via the Akt/GSK-3β/Fyn pathway.
Collapse
Affiliation(s)
- Yanlian Xiong
- Department of Anatomy, School of Basic Medicine, Binzhou Medical University, Yantai, People's Republic of China
| | - Yueming Wang
- Department of Anatomy, School of Basic Medicine, Binzhou Medical University, Yantai, People's Republic of China
| | - Jiashen Zhang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, People's Republic of China
| | - Nannan Zhao
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, People's Republic of China
| | - Hengchao Zhang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, People's Republic of China
| | - Aiping Zhang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, People's Republic of China
| | - Dongmei Zhao
- Department of Anatomy, School of Basic Medicine, Binzhou Medical University, Yantai, People's Republic of China
| | - Zhenhai Yu
- Department of Anatomy, School of Basic Medicine, Binzhou Medical University, Yantai, People's Republic of China
| | - Yancun Yin
- Department of Anatomy, School of Basic Medicine, Binzhou Medical University, Yantai, People's Republic of China
| | - Lele Song
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, People's Republic of China
| | - Yanlei Xiong
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China.
| | - Xiying Luan
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, People's Republic of China.
| |
Collapse
|
155
|
Pietrobon AJ, Teixeira FME, Sato MN. I mmunosenescence and Inflammaging: Risk Factors of Severe COVID-19 in Older People. Front Immunol 2020; 11:579220. [PMID: 33193377 PMCID: PMC7656138 DOI: 10.3389/fimmu.2020.579220] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/29/2020] [Indexed: 01/08/2023] Open
Abstract
Old individuals are more susceptible to various infections due to immunological changes that occur during the aging process. These changes named collectively as "immunosenescence" include decreases in both the innate and adaptive immune responses in addition to the exacerbated production of inflammatory cytokines. This scenario of immunological dysfunction and its relationship with disease development in older people has been widely studied, especially in infections that can be fatal, such as influenza and, more recently, COVID-19. In the current scenario of SARS-CoV-2 infection, many mechanisms of disease pathogenesis in old individuals have been proposed. To better understand the dynamics of COVID-19 in this group, aspects related to immunological senescence must be well elucidated. In this article, we discuss the main mechanisms involved in immunosenescence and their possible correlations with the susceptibility of individuals of advanced age to SARS-CoV-2 infection and the more severe conditions of the disease.
Collapse
Affiliation(s)
- Anna Julia Pietrobon
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Franciane Mouradian Emidio Teixeira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Notomi Sato
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
156
|
Haynes L. Aging of the Immune System: Research Challenges to Enhance the Health Span of Older Adults. FRONTIERS IN AGING 2020; 1:602108. [PMID: 35822168 PMCID: PMC9261332 DOI: 10.3389/fragi.2020.602108] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022]
|
157
|
Pereira B, Xu XN, Akbar AN. Targeting Inflammation and Immunosenescence to Improve Vaccine Responses in the Elderly. Front Immunol 2020; 11:583019. [PMID: 33178213 PMCID: PMC7592394 DOI: 10.3389/fimmu.2020.583019] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
One of the most appreciated consequences of immunosenescence is an impaired response to vaccines with advanced age. While most studies report impaired antibody responses in older adults as a correlate of vaccine efficacy, it is now widely appreciated that this may fail to identify important changes occurring in the immune system with age that may affect vaccine efficacy. The impact of immunosenescence on vaccination goes beyond the defects on antibody responses as T cell-mediated responses are reshaped during aging and certainly affect vaccination. Likewise, age-related changes in the innate immune system may have important consequences on antigen presentation and priming of adaptive immune responses. Importantly, a low-level chronic inflammatory status known as inflammaging has been shown to inhibit immune responses to vaccination and pharmacological strategies aiming at blocking baseline inflammation can be potentially used to boost vaccine responses. Yet current strategies aiming at improving immunogenicity in the elderly have mainly focused on the use of adjuvants to promote local inflammation. More research is needed to understand the role of inflammation in vaccine responses and to reconcile these seemingly paradoxical observations. Alternative approaches to improve vaccine responses in the elderly include the use of higher vaccine doses or alternative routes of vaccination showing only limited benefits. This review will explore novel targets and potential new strategies for enhancing vaccine responses in older adults, including the use of anti-inflammatory drugs and immunomodulators.
Collapse
Affiliation(s)
- Branca Pereira
- HIV/GUM Directorate, Chelsea and Westminster Hospital NHS Foundation Trust, London, United Kingdom.,Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Xiao-Ning Xu
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Arne N Akbar
- Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
158
|
Cappa F, Torrini G, Mazza G, Inghilesi AF, Benvenuti C, Viliani L, Roversi PF, Cervo R. Assessing immunocompetence in red palm weevil adult and immature stages in response to bacterial challenge and entomopathogenic nematode infection. INSECT SCIENCE 2020; 27:1031-1042. [PMID: 31633276 DOI: 10.1111/1744-7917.12732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/08/2019] [Accepted: 10/08/2019] [Indexed: 05/24/2023]
Abstract
Parasites and pathogens can follow different patterns of infection depending on the host developmental stage or sex. In fact, immune function is energetically costly for hosts and trade-offs exist between immune defenses and life history traits as growth, development and reproduction and organisms should thus optimize immune defense through their life cycle according to their developmental stage. Identifying the most susceptible target and the most virulent pathogen is particularly important in the case of insect pests, in order to develop effective control strategies targeting the most vulnerable individuals with the most effective control agent. Here, we carried out laboratory tests to identify the most susceptible target of infection by infecting different stages of the red palm weevil Rhynchophorus ferrugineus (larvae, pupae, male, and female adults) with both a generic pathogen, antibiotic-resistant Gram-negative bacteria Escherichia coli XL1-Blue, and two specific strains of entomopathogenic nematodes (EPNs), Steinernema carpocapsae ItS-CAO1 and Heterorhabditis bacteriophora ItH-LU1. By evaluating bacterial clearance, host mortality and parasite progeny release, we demonstrate that larvae are more resistant than adults to bacterial challenge and they release less EPNs progeny after infection despite a higher mortality compared to adults. Considering the two EPN strains, S. carpocapsae was more virulent than H. bacteriophora both in terms of host mortality and more abundant progeny released by hosts after death. The outcomes attained with unspecific and specific pathogens provide useful information for a more efficient and sustainable management of this invasive pest.
Collapse
Affiliation(s)
- Federico Cappa
- Department of Biology, University of Florence, Florence, Italy
| | - Giulia Torrini
- CREA Research Centre for Plant Protection and Certification, Florence, Italy
| | - Giuseppe Mazza
- CREA Research Centre for Plant Protection and Certification, Florence, Italy
| | | | - Claudia Benvenuti
- CREA Research Centre for Plant Protection and Certification, Florence, Italy
| | | | | | - Rita Cervo
- Department of Biology, University of Florence, Florence, Italy
| |
Collapse
|
159
|
Ciabattini A, Garagnani P, Santoro F, Rappuoli R, Franceschi C, Medaglini D. Shelter from the cytokine storm: pitfalls and prospects in the development of SARS-CoV-2 vaccines for an elderly population. Semin Immunopathol 2020; 42:619-634. [PMID: 33159214 PMCID: PMC7646713 DOI: 10.1007/s00281-020-00821-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023]
Abstract
The SARS-CoV-2 pandemic urgently calls for the development of effective preventive tools. COVID-19 hits greatly the elder and more fragile fraction of the population boosting the evergreen issue of the vaccination of older people. The development of a vaccine against SARS-CoV-2 tailored for the elderly population faces the challenge of the poor immune responsiveness of the older population due to immunosenescence, comorbidities, and pharmacological treatments. Moreover, it is likely that the inflammaging phenotype associated with age could both influence vaccination efficacy and exacerbate the risk of COVID-19-related "cytokine storm syndrome" with an overlap between the factors which impact vaccination effectiveness and those that boost virulence and worsen the prognosis of SARS-CoV-2 infection. The complex and still unclear immunopathological mechanisms of SARS-CoV-2 infection, together with the progressive age-related decline of immune responses, and the lack of clear correlates of protection, make the design of vaccination strategies for older people extremely challenging. In the ongoing effort in vaccine development, different SARS-CoV-2 vaccine candidates have been developed, tested in pre-clinical and clinical studies and are undergoing clinical testing, but only a small fraction of these are currently being tested in the older fraction of the population. Recent advances in systems biology integrating clinical, immunologic, and omics data can help to identify stable and robust markers of vaccine response and move towards a better understanding of SARS-CoV-2 vaccine responses in the elderly.
Collapse
Affiliation(s)
- Annalisa Ciabattini
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Paolo Garagnani
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute at Huddinge University Hospital, SE-171 77, Stockholm, Sweden
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40139, Bologna, Italy
- Interdepartmental Centre 'L. Galvan' (CIG), University of Bologna, Via G. Petroni 26, 40139, Bologna, Italy
| | - Francesco Santoro
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Rino Rappuoli
- GSK, Siena, Italy
- vAMRes Lab, Toscana Life Sciences, Siena, Italy
- Faculty of Medicine, Imperial College, London, UK
| | | | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical Biotechnologies, University of Siena, Siena, Italy.
| |
Collapse
|
160
|
Ortí G, Palacio-Garcia C, García-Cadenas I, Sánchez-Ortega I, Jimenez MJ, Azqueta C, Villacampa G, Ferrà C, Parody R, Martino R, Bosch F, Querol S, Valcárcel D. Analysis of Cell Subsets in Donor Lymphocyte Infusions from HLA Identical Sibling Donors after Allogeneic Hematopoietic Cell Transplant. Transplant Cell Ther 2020; 27:53.e1-53.e8. [PMID: 32987150 DOI: 10.1016/j.bbmt.2020.09.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/19/2022]
Abstract
Donor lymphocytes infusions (DLIs) are a major therapeutic approach to treat relapse and mixed chimerism after allogeneic hematopoietic cell transplant (alloHCT). The impact of the composition regarding different cell subsets in the development of graft-versus-host disease (GVHD) is not fully understood. We performed a cell subsets analysis of 56 DLIs from fully HLA-compatible identical matched sibling donors (MSDs) in 36 alloHCT patients and studied its association with GVHD. A median of one DLI was infused per patient. Fourteen patients (38%) developed GVHD. The cell composition analysis of the first DLI (DLI1) showed that a high dose of B cells (P = .03) and CD27+ B cells (P < .01) was associated with GVHD. We identified DLI dose cutoff points for several cell populations above which GVHD was more frequent (CD8+ TN >3 × 106 cells/kg, CD27+ B cells >2.6 × 106/kg, CD27+ NK >0.35 × 106 cells/kg, and mononuclear cells >0.83 × 108/kg). Noteworthy, the proportion of CD4+ naive T cells (TN) or unselected TN was not linked with GVHD and a DLI1 containing a higher dose of regulatory T cells was not protective for GVHD. We studied several transplant clinical variables and did not find any association with GVHD. Altogether, this study provides a comprehensive analysis of the cell populations in a DLI from MSDs and identifies potential key cell subsets, which provides insight for the understanding of GVHD after DLI.
Collapse
Affiliation(s)
- Guillermo Ortí
- Departament de Medicina, Universitat Autonoma de Barcelona, Barcelona, Spain; Department of Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Barcelona, Spain.
| | - Carles Palacio-Garcia
- Department of Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Barcelona, Spain
| | - Irene García-Cadenas
- Hematology Department, Hospital de la Santa Creu i Sant Pau, José Carreras Leukemia Research Institute and IIB Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Isabel Sánchez-Ortega
- Hematology Department, Institut Català d'Oncologia, Hospital Duran i Reynals, Barcelona, Spain
| | - María José Jimenez
- Hematology Department, Institut Català d'Oncologia, Hospital Universitari Germans Trias i Pujol, Jose Carreras Research Institute, Barcelona, Spain
| | - Carmen Azqueta
- Cellular Therapy Unit, Banc de Sang i Teixits, Barcelona, Spain
| | - Guillermo Villacampa
- Oncology Data Science (ODysSey) Group, Vall d´Hebron Institute of Oncology, Barcelona, Spain
| | - Christelle Ferrà
- Hematology Department, Institut Català d'Oncologia, Hospital Universitari Germans Trias i Pujol, Jose Carreras Research Institute, Barcelona, Spain
| | - Rocio Parody
- Hematology Department, Institut Català d'Oncologia, Hospital Duran i Reynals, Barcelona, Spain
| | - Rodrigo Martino
- Hematology Department, Hospital de la Santa Creu i Sant Pau, José Carreras Leukemia Research Institute and IIB Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francesc Bosch
- Department of Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Barcelona, Spain
| | - Sergi Querol
- Cellular Therapy Unit, Banc de Sang i Teixits, Barcelona, Spain
| | - David Valcárcel
- Department of Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Barcelona, Spain
| |
Collapse
|
161
|
Phillips SR, Goldberg TL, Muller MN, Machanda ZP, Otali E, Friant S, Carag J, Langergraber KE, Mitani JC, Wroblewski EE, Wrangham RW, Thompson ME. Faecal parasites increase with age but not reproductive effort in wild female chimpanzees. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190614. [PMID: 32951547 DOI: 10.1098/rstb.2019.0614] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Energy investment in reproduction is predicted to trade off against other necessary physiological functions like immunity, but it is unclear to what extent this impacts fitness in long-lived species. Among mammals, female primates, and especially apes, exhibit extensive periods of investment in each offspring. During this time, energy diverted to gestation and lactation is hypothesized to incur short and long-term deficits in maternal immunity and lead to accelerated ageing. We examined the relationship between reproduction and immunity, as measured by faecal parasite counts, in wild female chimpanzees (Pan troglodytes schweinfurthii) of Kibale National Park, Uganda. While we observed higher parasite shedding (counts of eggs, cysts and larvae) in pregnant chimpanzees relative to cycling females, parasites rapidly decreased during early lactation, the most energetically taxing phase of the reproductive cycle. Additionally, while our results indicate that parasite shedding increases with age, females with higher fertility for their age had lower faecal parasite counts. Such findings support the hypothesis that the relatively conservative rate of female reproduction in chimpanzees may be protective against the negative effects of reproductive effort on health. This article is part of the theme issue 'Evolution of the primate ageing process'.
Collapse
Affiliation(s)
| | - T L Goldberg
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI, USA
| | - M N Muller
- Department of Anthropology, University of New Mexico, Albuquerque, NM, USA
| | - Z P Machanda
- Department of Anthropology, Tufts University, Medford, MA, USA
| | - E Otali
- Kibale Chimpanzee Project, Fort Portal, Uganda
| | - S Friant
- Department of Anthropology, Pennsylvania State University, State College, PA, USA
| | - J Carag
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI, USA
| | - K E Langergraber
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA.,Institute of Human Origins, Arizona State University, Tempe, AZ, USA
| | - J C Mitani
- Department of Anthropology, University of Michigan, Ann Arbor, MI, USA
| | - E E Wroblewski
- Department of Anthropology, Washington University in St Louis, St Louis, MO, USA
| | - R W Wrangham
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - M Emery Thompson
- Department of Anthropology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
162
|
Zhen W, Shao Y, Wu Y, Li L, Pham VH, Abbas W, Wan Z, Guo Y, Wang Z. Dietary yeast β-glucan supplementation improves eggshell color and fertile eggs hatchability as well as enhances immune functions in breeder laying hens. Int J Biol Macromol 2020; 159:607-621. [DOI: 10.1016/j.ijbiomac.2020.05.134] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/07/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022]
|
163
|
Baran-Gale J, Morgan MD, Maio S, Dhalla F, Calvo-Asensio I, Deadman ME, Handel AE, Maynard A, Chen S, Green F, Sit RV, Neff NF, Darmanis S, Tan W, May AP, Marioni JC, Ponting CP, Holländer GA. Ageing compromises mouse thymus function and remodels epithelial cell differentiation. eLife 2020; 9:e56221. [PMID: 32840480 PMCID: PMC7490013 DOI: 10.7554/elife.56221] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022] Open
Abstract
Ageing is characterised by cellular senescence, leading to imbalanced tissue maintenance, cell death and compromised organ function. This is first observed in the thymus, the primary lymphoid organ that generates and selects T cells. However, the molecular and cellular mechanisms underpinning these ageing processes remain unclear. Here, we show that mouse ageing leads to less efficient T cell selection, decreased self-antigen representation and increased T cell receptor repertoire diversity. Using a combination of single-cell RNA-seq and lineage-tracing, we find that progenitor cells are the principal targets of ageing, whereas the function of individual mature thymic epithelial cells is compromised only modestly. Specifically, an early-life precursor cell population, retained in the mouse cortex postnatally, is virtually extinguished at puberty. Concomitantly, a medullary precursor cell quiesces, thereby impairing maintenance of the medullary epithelium. Thus, ageing disrupts thymic progenitor differentiation and impairs the core immunological functions of the thymus.
Collapse
Affiliation(s)
| | - Michael D Morgan
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- Cancer Research United Kingdom - Cambridge Institute, Li Ka Shing Centre, University of CambridgeCambridgeUnited Kingdom
| | - Stefano Maio
- Weatherall Institute of Molecular Medicine, University of OxfordOxfordUnited Kingdom
- Department of Paediatrics, University of Oxford, Cancer ResearchOxfordUnited Kingdom
| | - Fatima Dhalla
- Weatherall Institute of Molecular Medicine, University of OxfordOxfordUnited Kingdom
- Department of Paediatrics, University of Oxford, Cancer ResearchOxfordUnited Kingdom
| | - Irene Calvo-Asensio
- Department of Biomedicine, University of Basel, and University Children’s HospitalBaselSwitzerland
| | - Mary E Deadman
- Weatherall Institute of Molecular Medicine, University of OxfordOxfordUnited Kingdom
- Department of Paediatrics, University of Oxford, Cancer ResearchOxfordUnited Kingdom
| | - Adam E Handel
- Weatherall Institute of Molecular Medicine, University of OxfordOxfordUnited Kingdom
| | | | - Steven Chen
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Foad Green
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Rene V Sit
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Norma F Neff
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | | | - Weilun Tan
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Andy P May
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - John C Marioni
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- Cancer Research United Kingdom - Cambridge Institute, Li Ka Shing Centre, University of CambridgeCambridgeUnited Kingdom
- EMBL-EBI, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Chris P Ponting
- MRC Human Genetics Unit, University of EdinburghEdinburghUnited Kingdom
| | - Georg A Holländer
- Weatherall Institute of Molecular Medicine, University of OxfordOxfordUnited Kingdom
- Department of Paediatrics, University of Oxford, Cancer ResearchOxfordUnited Kingdom
- Department of Biomedicine, University of Basel, and University Children’s HospitalBaselSwitzerland
- Department of Biosystems Science and Engineering, ETH ZurichBaselSwitzerland
| |
Collapse
|
164
|
Singh J, Mohtashami M, Anderson G, Zúñiga-Pflücker JC. Thymic Engraftment by in vitro-Derived Progenitor T Cells in Young and Aged Mice. Front Immunol 2020; 11:1850. [PMID: 32973763 PMCID: PMC7462002 DOI: 10.3389/fimmu.2020.01850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
T cells play a critical role in mediating antigen-specific and long-term immunity against viral and bacterial pathogens, and their development relies on the highly specialized thymic microenvironment. T cell immunodeficiency can be acquired in the form of inborn errors, or can result from perturbations to the thymus due to aging or irradiation/chemotherapy required for cancer treatment. Hematopoietic stem cell transplant (HSCT) from compatible donors is a cornerstone for the treatment of hematological malignancies and immunodeficiency. Although it can restore a functional immune system, profound impairments exist in recovery of the T cell compartment. T cells remain absent or low in number for many months after HSCT, depending on a variety of factors including the age of the recipient. While younger patients have a shorter refractory period, the prolonged T cell recovery observed in older patients can lead to a higher risk of opportunistic infections and increased predisposition to relapse. Thus, strategies for enhancing T cell recovery in aged individuals are needed to counter thymic damage induced by radiation and chemotherapy toxicities, in addition to naturally occurring age-related thymic involution. Preclinical results have shown that robust and rapid long-term thymic reconstitution can be achieved when progenitor T cells, generated in vitro from HSCs, are co-administered during HSCT. Progenitor T cells appear to rely on lymphostromal crosstalk via receptor activator of NF-κB (RANK) and RANK-ligand (RANKL) interactions, creating chemokine-rich niches within the cortex and medulla that likely favor the recruitment of bone marrow-derived thymus seeding progenitors. Here, we employed preclinical mouse models to demonstrate that in vitro-generated progenitor T cells can effectively engraft involuted aged thymuses, which could potentially improve T cell recovery. The utility of progenitor T cells for aged recipients positions them as a promising cellular therapy for immune recovery and intrathymic repair following irradiation and chemotherapy, even in a post-involution thymus.
Collapse
Affiliation(s)
| | | | - Graham Anderson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Juan Carlos Zúñiga-Pflücker
- Department of Immunology, University of Toronto, Toronto, ON, Canada.,Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
165
|
Abstract
Adult stem cells undergo both replicative and chronological aging in their niches, with catastrophic declines in regenerative potential with age. Due to repeated environmental insults during aging, the chromatin landscape of stem cells erodes, with changes in both DNA and histone modifications, accumulation of damage, and altered transcriptional response. A body of work has shown that altered chromatin is a driver of cell fate changes and a regulator of self-renewal in stem cells and therefore a prime target for juvenescence therapeutics. This review focuses on chromatin changes in stem cell aging and provides a composite view of both common and unique epigenetic themes apparent from the studies of multiple stem cell types.
Collapse
Affiliation(s)
- Changyou Shi
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Lin Wang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Payel Sen
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
166
|
Valletta S, Thomas A, Meng Y, Ren X, Drissen R, Sengül H, Di Genua C, Nerlov C. Micro-environmental sensing by bone marrow stroma identifies IL-6 and TGFβ1 as regulators of hematopoietic ageing. Nat Commun 2020; 11:4075. [PMID: 32796847 PMCID: PMC7427787 DOI: 10.1038/s41467-020-17942-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 07/27/2020] [Indexed: 12/22/2022] Open
Abstract
Hematopoietic ageing involves declining erythropoiesis and lymphopoiesis, leading to frequent anaemia and decreased adaptive immunity. How intrinsic changes to the hematopoietic stem cells (HSCs), an altered microenvironment and systemic factors contribute to this process is not fully understood. Here we use bone marrow stromal cells as sensors of age-associated changes to the bone marrow microenvironment, and observe up-regulation of IL-6 and TGFβ signalling-induced gene expression in aged bone marrow stroma. Inhibition of TGFβ signalling leads to reversal of age-associated HSC platelet lineage bias, increased generation of lymphoid progenitors and rebalanced HSC lineage output in transplantation assays. In contrast, decreased erythropoiesis is not an intrinsic property of aged HSCs, but associated with decreased levels and functionality of erythroid progenitor populations, defects ameliorated by TGFβ-receptor and IL-6 inhibition, respectively. These results show that both HSC-intrinsic and -extrinsic mechanisms are involved in age-associated hematopoietic decline, and identify therapeutic targets that promote their reversal.
Collapse
Affiliation(s)
- Simona Valletta
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Alexander Thomas
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Yiran Meng
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Xiying Ren
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Roy Drissen
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Hilal Sengül
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Cristina Di Genua
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Claus Nerlov
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK.
| |
Collapse
|
167
|
Meier T, Enders M. High reproducibility of the interferon-gamma release assay T-SPOT.TB in serial testing. Eur J Clin Microbiol Infect Dis 2020; 40:85-93. [PMID: 32770282 DOI: 10.1007/s10096-020-03997-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
Longitudinal studies regarding the reproducibility of Interferon-gamma release assay (IGRA) T-SPOT.TB for the diagnosis of Mycobacterium tuberculosis (M. tb) infection in serial testing are limited. We retrospectively analysed results of serially tested subjects in a medical laboratory in Germany over a time period of 14 years. From October 2004 to December 2018, a total of 5440 subjects were identified with a second T-SPOT.TB test after a median time interval of 258 days (interquartile range [IQR] 62-665). Consistently negative (n = 4520) or positive results (n = 682) were observed in 5202 (95.6%) subjects, indicating a high degree of concordance in serial testing (κ = 0.83). Test conversions occurred in 101 of 4621 (2.2%) subjects with initially negative tests. Of 819 subjects with initially positive test results, 137 (16.7%) had a test reversion which was associated with low spot numbers of the first test. Of 529 subjects retested within 1 year, only 60 (11.3%) displayed a test reversion. In subjects retested after more than 1 year, 77 of 290 (26.6%) tests reverted. This significantly higher rate of test reversions after more than 1 year was age-dependent and only observed in subjects above the age of 40 years. In the medical laboratory, the T-SPOT.TB test demonstrates a high reproducibility in serial testing.
Collapse
Affiliation(s)
- Thomas Meier
- Laboratory Prof. Gisela Enders and colleagues, MVZ, Rosenbergstrasse 85, D-70193, Stuttgart, Germany.
| | - Martin Enders
- Laboratory Prof. Gisela Enders and colleagues, MVZ, Rosenbergstrasse 85, D-70193, Stuttgart, Germany
| |
Collapse
|
168
|
Characterization of PD-1/PD-L1 Immune Checkpoint Expression in Osteosarcoma. Diagnostics (Basel) 2020; 10:diagnostics10080528. [PMID: 32751195 PMCID: PMC7459780 DOI: 10.3390/diagnostics10080528] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 01/01/2023] Open
Abstract
Recent data have suggested that PD-1 and PD-L1 are involved in osteosarcoma (OS) pathogenesis; however, their contributions are not well-established. Here, the PD-1/PD-L1 expression was evaluated in (OS) cases. Preoperative needle biopsy specimens were obtained from 16 patients with OS. Immunostaining for CD4, CD8, PD-1, and PD-L1 was performed on pathological specimens. Clinical parameters, including age, tumor size, preoperative alkaline phosphatase (ALP) level, standardized uptake value (SUV)-max level, and survival rate, were compared between PD-1/PD-L1-positive and -negative groups. CD4-, CD8-, PD-1-, and PD-L1-positive rates among all specimens were 75%, 75%, 18.7%, and 62.5%, respectively. The rates of co-expression of CD4 and CD8 with PD-L1 were 56.2% and 50%, respectively. Tumors were significantly larger in PD-L1-negative cases than in PD-L1-positive cases. Age, size and ALP and SUV-max levels did not differ significantly between PD-1/PD-L1-positive and -negative cases. The 3-year survival rates did not differ significantly between PD-1-positive and -negative cases or between PD-L1-positive and -negative cases. However, the occurrence of cancer-related events, including recurrence, metastasis, and death was associated with the PD-1-negative and PD-L1-positive status. The PD-1/PD-L1 checkpoint is likely involved in the immune microenvironment in OS and may be involved in the occurrence of cancer-related events.
Collapse
|
169
|
Brandimarti ME, Gray R, Coulson G, Cripps JK, Wilson ME, Death C, Snape M, Wimpenny C, Silva FRO, Miller EJ, Scanes E, Spielman D, Thomas G, Herbert CA. Reference intervals for parameters of health of eastern grey kangaroos Macropus giganteus and management implications across their geographic range. WILDLIFE BIOLOGY 2020. [DOI: 10.2981/wlb.00692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Maquel E. Brandimarti
- M. E. Brandimarti (https://orcid.org/0000-0002-4055-6623) ✉ , G. Thomas, C. A. Herbert (https://orcid.org/0000-0003-0174-0898), F. R. O. Silva and E. Scanes (https://orcid.org/0000-0001-7520-3804), School of Life and
| | - Rachael Gray
- R. Gray and D. Spielman, Sydney School of Veterinary Science, The Univ. of Sydney, Camperdown, New South Wales, Australia
| | - Graeme Coulson
- G. Coulson (https://orcid.org/0000-0001-9873-8203), J. K. Cripps (https://orcid.org/0000-0003-3049-5510) and M. E. Wilson, School of BioSciences, The Univ. of Melbourne, Melbourne, Victoria, Australia. JKC also at: Dept of Environment, Land, Water an
| | - Jemma K. Cripps
- G. Coulson (https://orcid.org/0000-0001-9873-8203), J. K. Cripps (https://orcid.org/0000-0003-3049-5510) and M. E. Wilson, School of BioSciences, The Univ. of Melbourne, Melbourne, Victoria, Australia. JKC also at: Dept of Environment, Land, Water an
| | - Michelle E. Wilson
- G. Coulson (https://orcid.org/0000-0001-9873-8203), J. K. Cripps (https://orcid.org/0000-0003-3049-5510) and M. E. Wilson, School of BioSciences, The Univ. of Melbourne, Melbourne, Victoria, Australia. JKC also at: Dept of Environment, Land, Water an
| | - Clare Death
- C. Death, Faculty of Veterinary and Agricultural Sciences, The Univ. of Melbourne, Werribee, Victoria, Australia
| | - Melissa Snape
- M. Snape and C. Wimpenny, Conservation Research, Environment, Planning and Sustainable Development Directorate, ACT Government, Canberra, ACT, Australia
| | - Claire Wimpenny
- M. Snape and C. Wimpenny, Conservation Research, Environment, Planning and Sustainable Development Directorate, ACT Government, Canberra, ACT, Australia
| | - Fabiola Rodrigues Oliveira Silva
- M. E. Brandimarti (https://orcid.org/0000-0002-4055-6623) ✉ , G. Thomas, C. A. Herbert (https://orcid.org/0000-0003-0174-0898), F. R. O. Silva and E. Scanes (https://orcid.org/0000-0001-7520-3804), School of Life and
| | - Emily J. Miller
- E. J. Miller, The Univ. of Sydney, Camperdown, New South Wales, Australia
| | - Elliot Scanes
- M. E. Brandimarti (https://orcid.org/0000-0002-4055-6623) ✉ , G. Thomas, C. A. Herbert (https://orcid.org/0000-0003-0174-0898), F. R. O. Silva and E. Scanes (https://orcid.org/0000-0001-7520-3804), School of Life and
| | - Derek Spielman
- R. Gray and D. Spielman, Sydney School of Veterinary Science, The Univ. of Sydney, Camperdown, New South Wales, Australia
| | - Georgia Thomas
- M. E. Brandimarti (https://orcid.org/0000-0002-4055-6623) ✉ , G. Thomas, C. A. Herbert (https://orcid.org/0000-0003-0174-0898), F. R. O. Silva and E. Scanes (https://orcid.org/0000-0001-7520-3804), School of Life and
| | - Catherine A. Herbert
- M. E. Brandimarti (https://orcid.org/0000-0002-4055-6623) ✉ , G. Thomas, C. A. Herbert (https://orcid.org/0000-0003-0174-0898), F. R. O. Silva and E. Scanes (https://orcid.org/0000-0001-7520-3804), School of Life and
| |
Collapse
|
170
|
Warny M, Helby J, Nordestgaard BG, Birgens H, Bojesen SE. Incidental lymphopenia and mortality: a prospective cohort study. CMAJ 2020; 192:E25-E33. [PMID: 31932337 DOI: 10.1503/cmaj.191024] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND It is unknown if incidental lymphopenia detected in the general population is associated with higher all-cause and cause-specific mortality. We aimed to identify the associations between lymphopenia and all-cause and cause specific mortality. METHODS In a prospective cohort study, we examined and followed participants enrolled in the Copenhagen General Population Study between November 2003 and April 2015. In our analysis, we modelled risks using Cox proportional hazards regression for 3 groups: participants with a lymphocyte count below the 2.5th percentile; those with a lymphocyte count at or between the 2.5th and 97.5th percentiles (reference category); and those with a lymphocyte count above the 97.5th percentile. RESULTS The cohort included 108 135 participants with a median age of 68 years. During a median follow-up of 9 (interquartile range [IQR] 0-14) years, 10 372 participants died. We found that participants with lymphopenia (lymphocyte count < 1.1 × 109/L) compared with those with a lymphocyte count in the reference range (1.1-3.7 × 109/L) had higher mortality with multivariable adjusted hazard ratios (HRs) of 1.63 (95% confidence interval [CI] 1.51-1.76) for all causes, 1.67 (95% CI 1.42-1.97) for nonhematologic cancers, 2.79 (95% CI 1.82-4.28) for hematologic cancers, 1.88 (95% CI 1.61-2.20) for cardiovascular diseases, 1.88 (95% CI 1.55-2.29) for respiratory diseases, 1.86 (95% CI 1.53-2.25) for infectious diseases, and 1.50 (95% CI 1.19-1.88) for other causes. For all-cause mortality, the highest absolute 2-year risks of death were observed in women (61%) and men (75%) who smoked and were aged 80 years or older with lymphocyte counts less than 0.5 × 109/L. Participants with a lymphocyte count higher than the reference category had increased mortality (adjusted HR 1.17, 95% CI 1.04-1.31). INTERPRETATION We found that lymphopenia was associated with an increased risk of all-cause and cause-specific mortality.
Collapse
Affiliation(s)
- Marie Warny
- Departments of Hematology (Warny, Birgens), Internal Medicine (Helby) and Clinical Biochemistry (Helby, Nordestgaard, Bojesen), Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark; Faculty of Health and Medical Science (Warny, Nordestgaard, Birgens, Bojesen), University of Copenhagen, Copenhagen, Denmark
| | - Jens Helby
- Departments of Hematology (Warny, Birgens), Internal Medicine (Helby) and Clinical Biochemistry (Helby, Nordestgaard, Bojesen), Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark; Faculty of Health and Medical Science (Warny, Nordestgaard, Birgens, Bojesen), University of Copenhagen, Copenhagen, Denmark
| | - Børge Grønne Nordestgaard
- Departments of Hematology (Warny, Birgens), Internal Medicine (Helby) and Clinical Biochemistry (Helby, Nordestgaard, Bojesen), Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark; Faculty of Health and Medical Science (Warny, Nordestgaard, Birgens, Bojesen), University of Copenhagen, Copenhagen, Denmark
| | - Henrik Birgens
- Departments of Hematology (Warny, Birgens), Internal Medicine (Helby) and Clinical Biochemistry (Helby, Nordestgaard, Bojesen), Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark; Faculty of Health and Medical Science (Warny, Nordestgaard, Birgens, Bojesen), University of Copenhagen, Copenhagen, Denmark
| | - Stig Egil Bojesen
- Departments of Hematology (Warny, Birgens), Internal Medicine (Helby) and Clinical Biochemistry (Helby, Nordestgaard, Bojesen), Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark; Faculty of Health and Medical Science (Warny, Nordestgaard, Birgens, Bojesen), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
171
|
Franceschini E, De Biasi S, Digaetano M, Bianchini E, Lo Tartaro D, Gibellini L, Menozzi M, Zona S, Tarantino G, Nasi M, Codeluppi M, Guaraldi G, Magistri P, Di Benedetto F, Pinti M, Mussini C, Cossarizza A. Efficient T-Cell Compartment in HIV-Positive Patients Receiving Orthotopic Liver Transplant and Immunosuppressive Therapy. J Infect Dis 2020; 223:482-493. [PMID: 32620016 DOI: 10.1093/infdis/jiaa395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/26/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND In patients undergoing orthotopic liver transplant (OLT), immunosuppressive treatment is mandatory and infections are leading causes of morbidity/mortality. Thus, it is essential to understand the functionality of cell-mediated immunity after OLT. The aim of the study was to identify changes in T-cell phenotype and polyfunctionality in human immunodeficiency virus-positive (HIV+) and -negative (HIV-) patients undergoing immunosuppressive treatment after OLT. METHODS We studied peripheral blood mononuclear cells from 108 subjects divided into 4 groups of 27: HIV+ transplanted patients, HIV- transplanted patients, HIV+ nontransplanted patients, and healthy subjects. T-cell activation, differentiation, and cytokine production were analyzed by flow cytometry. RESULTS Median age was 55 years (interquartile range, 52-59 years); the median CD4 count in HIV+ patients was 567 cells/mL, and all had undetectable viral load. CD4+ and CD8+ T-cell subpopulations showed different distributions between HIV+ and HIV- OLT patients. A cluster representing effector cells expressing PD1 was abundant in HIV- transplanted patients and they were characterized by higher levels of CD4+ T cells able to produce interferon-γ and tumor necrosis factor-α. CONCLUSIONS HIV- transplanted patients have more exhausted or inflammatory T cells compared to HIV+ transplanted patients, suggesting that patients who have already experienced a form of immunosuppression due to HIV infection respond differently to anti-rejection therapy.
Collapse
Affiliation(s)
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Elena Bianchini
- Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Marianna Menozzi
- Clinic of Infectious Diseases, University Hospital, Modena, Italy
| | - Stefano Zona
- Clinic of Infectious Diseases, University Hospital, Modena, Italy
| | - Giuseppe Tarantino
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, University Hospital, Modena, Italy
| | - Milena Nasi
- Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Mauro Codeluppi
- Clinic of Infectious Diseases, University Hospital, Modena, Italy
| | - Giovanni Guaraldi
- Clinic of Infectious Diseases, University Hospital, Modena, Italy.,Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Paolo Magistri
- Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, University Hospital, Modena, Italy
| | - Fabrizio Di Benedetto
- Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, University Hospital, Modena, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Cristina Mussini
- Clinic of Infectious Diseases, University Hospital, Modena, Italy.,Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy.,Istituto Nazionale per le Ricerche Cardiovascolari, Bologna, Italy
| |
Collapse
|
172
|
Jilani LZ, Shaan ZH, Ranjan R, Faizan M, Ahmad S, Asif N. Management of complex non union of tibia using rail external fixator. J Clin Orthop Trauma 2020; 11:S578-S584. [PMID: 32774032 PMCID: PMC7394815 DOI: 10.1016/j.jcot.2019.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/25/2019] [Accepted: 12/28/2019] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Management of the complex non union of tibia is a challenging task due to infection, bony gap, deformity, poor bone quality and poor soft tissue cover at fracture site. The limb reconstruction system (LRS) or Rail fixator has emerged as a viable option for the treatment of the same as it can address most of all above problems. It is more patient friendly and easier to apply in comparison to Ilizarov ring fixator. MATERIAL AND METHODS Twenty two patients (17 males and 5 females) with complex non union of tibia underwent thorough debridement and resection of non viable bone followed by bone transport to fill the gap and then lengthening (8 patients) or acute docking & lengthening (14 patients) by the use of rail fixator. The average time to union, bone gap filled, lengthening achieved, treatment index were measured. The bone and functional outcome assessment was done by ASAMI score. The complications were classified according to Paley's classification. RESULTS Union without residual infection was achieved in 20 (90.1%) patients while 2 patients had failure. As per ASAMI criteria bone results were excellent in 12 (54.5%), good in 5 (22.7%), fair in 3 (13.6%) and poor in 2 (9.1%). Functional results were excellent in 11 (50%), good in 5 (22.72%), fair in 4 (18.18%) and failure in 2 (9%). Mean treatment duration was 8.2 months (range 7-19 months). Mean follow up duration was 11.3 months (range - 8.3 to 22 months). Average lengthening achieved was 4 cm (0-9 cm). Treatment index was 2.1 month/cm. CONCLUSION The monolateral rail fixator is simple, effective, easier to apply and more patient compliant with acceptable functional and radiological outcome.
Collapse
Affiliation(s)
| | - Ziaul Hoda Shaan
- Corresponding author. Department of Orthopaedic Surgery, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, UP, 202002, India.
| | | | | | | | | |
Collapse
|
173
|
Almanan M, Raynor J, Ogunsulire I, Malyshkina A, Mukherjee S, Hummel SA, Ingram JT, Saini A, Xie MM, Alenghat T, Way SS, Deepe GS, Divanovic S, Singh H, Miraldi E, Zajac AJ, Dent AL, Hölscher C, Chougnet C, Hildeman DA. IL-10-producing Tfh cells accumulate with age and link inflammation with age-related immune suppression. SCIENCE ADVANCES 2020; 6:eabb0806. [PMID: 32832688 PMCID: PMC7439492 DOI: 10.1126/sciadv.abb0806] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/11/2020] [Indexed: 05/02/2023]
Abstract
Aging results in profound immune dysfunction, resulting in the decline of vaccine responsiveness previously attributed to irreversible defects in the immune system. In addition to increased interleukin-6 (IL-6), we found aged mice exhibit increased systemic IL-10 that requires forkhead box P3-negative (FoxP3-), but not FoxP3+, CD4+T cells. Most IL-10-producing cells manifested a T follicular helper (Tfh) phenotype and required the Tfh cytokines IL-6 and IL-21 for their accrual, so we refer to them as Tfh10 cells. IL-21 was also required to maintain normal serum levels of IL-6 and IL-10. Notably, antigen-specific Tfh10 cells arose after immunization of aged mice, and neutralization of IL-10 receptor signaling significantly restored Tfh-dependent antibody responses, whereas depletion of FoxP3+ regulatory and follicular regulatory cells did not. Thus, these data demonstrate that immune suppression with age is reversible and implicate Tfh10 cells as an intriguing link between "inflammaging" and impaired immune responses with age.
Collapse
Affiliation(s)
- Maha Almanan
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Jana Raynor
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Ireti Ogunsulire
- Division of Infection Immunology, Research Center Borstel, Borstel, Germany
| | - Anna Malyshkina
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Shibabrata Mukherjee
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Sarah A. Hummel
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Jennifer T. Ingram
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ankur Saini
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Center for Systems Immunology, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA
| | - Markus M. Xie
- Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Theresa Alenghat
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Center for Systems Immunology, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA
| | - Sing Sing Way
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - George S. Deepe
- Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Senad Divanovic
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Harinder Singh
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Center for Systems Immunology, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA
| | - Emily Miraldi
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Center for Systems Immunology, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA
| | - Allan J. Zajac
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alexander L. Dent
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Christoph Hölscher
- Division of Infection Immunology, Research Center Borstel, Borstel, Germany
| | - Claire Chougnet
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Center for Systems Immunology, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA
| | - David A. Hildeman
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Center for Systems Immunology, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA
| |
Collapse
|
174
|
Shimazui T, Nakada TA, Walley KR, Oshima T, Abe T, Ogura H, Shiraishi A, Kushimoto S, Saitoh D, Fujishima S, Mayumi T, Shiino Y, Tarui T, Hifumi T, Otomo Y, Okamoto K, Umemura Y, Kotani J, Sakamoto Y, Sasaki J, Shiraishi SI, Takuma K, Tsuruta R, Hagiwara A, Yamakawa K, Masuno T, Takeyama N, Yamashita N, Ikeda H, Ueyama M, Fujimi S, Gando S. Significance of body temperature in elderly patients with sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:387. [PMID: 32605659 PMCID: PMC7329464 DOI: 10.1186/s13054-020-02976-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/12/2020] [Indexed: 01/05/2023]
Abstract
Background Elderly patients have a blunted host response, which may influence vital signs and clinical outcomes of sepsis. This study was aimed to investigate whether the associations between the vital signs and mortality are different in elderly and non-elderly patients with sepsis. Methods This was a retrospective observational study. A Japanese multicenter sepsis cohort (FORECAST, n = 1148) was used for the discovery analyses. Significant discovery results were tested for replication using two validation cohorts of sepsis (JAAMSR, Japan, n = 624; SPH, Canada, n = 1004). Patients were categorized into elderly and non-elderly groups (age ≥ 75 or < 75 years). We tested for association between vital signs (body temperature [BT], heart rate, mean arterial pressure, systolic blood pressure, and respiratory rate) and 90-day in-hospital mortality (primary outcome). Results In the discovery cohort, non-elderly patients with BT < 36.0 °C had significantly increased 90-day mortality (P = 0.025, adjusted hazard ratio 1.70, 95% CI 1.07–2.71). In the validation cohorts, non-elderly patients with BT < 36.0 °C had significantly increased mortality (JAAMSR, P = 0.0024, adjusted hazard ratio 2.05, 95% CI 1.29–3.26; SPH, P = 0.029, adjusted hazard ratio 1.36, 95% CI 1.03–1.80). These differences were not observed in elderly patients in the three cohorts. Associations between the other four vital signs and mortality were not different in elderly and non-elderly patients. The interaction of age and hypothermia/fever was significant (P < 0.05). Conclusions In septic patients, we found mortality in non-elderly sepsis patients was increased with hypothermia and decreased with fever. However, mortality in elderly patients was not associated with BT. These results illuminate the difference in the inflammatory response of the elderly compared to non-elderly sepsis patients.
Collapse
Affiliation(s)
- Takashi Shimazui
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo, Chiba, 260-8677, Japan
| | - Taka-Aki Nakada
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo, Chiba, 260-8677, Japan.
| | - Keith R Walley
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada
| | - Taku Oshima
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo, Chiba, 260-8677, Japan
| | - Toshikazu Abe
- Department of General Medicine, Juntendo University, Tokyo, Japan.,Health Services Research and Development Center, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | - Shigeki Kushimoto
- Division of Emergency and Critical Care Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Daizoh Saitoh
- Division of Traumatology, Research Institute, National Defense Medical College, Tokorozawa, Japan
| | - Seitaro Fujishima
- Center for General Medicine Education, Keio University School of Medicine, Tokyo, Japan
| | - Toshihiko Mayumi
- Department of Emergency Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yasukazu Shiino
- Department of Acute Medicine, Kawasaki Medical School, Kurashiki, Japan
| | - Takehiko Tarui
- Department of Trauma and Critical Care Medicine, Kyorin University School of Medicine, Mitaka, Japan
| | - Toru Hifumi
- Department of Emergency and Critical Care Medicine, St. Luke's International Hospital, Tokyo, Japan
| | - Yasuhiro Otomo
- Trauma and Acute Critical Care Center, Medical Hospital, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohji Okamoto
- Department of Surgery, Center for Gastroenterology and Liver Disease, Kitakyushu City Yahata Hospital, Kitakyushu, Japan
| | - Yutaka Umemura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Joji Kotani
- Division of Disaster and Emergency Medicine, Department of Surgery Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuichiro Sakamoto
- Emergency and Critical Care Medicine, Saga University Hospital, Saga, Japan
| | - Junichi Sasaki
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shin-Ichiro Shiraishi
- Department of Emergency and Critical Care Medicine, Aizu Chuo Hospital, Aizuwakamatsu, Japan
| | - Kiyotsugu Takuma
- Emergency & Critical Care Center, Kawasaki Municipal Kawasaki Hospital, Kawasaki, Japan
| | - Ryosuke Tsuruta
- Advanced Medical Emergency & Critical Care Center, Yamaguchi University Hospital, Ube, Japan
| | - Akiyoshi Hagiwara
- Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Kazuma Yamakawa
- Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Osaka, Japan
| | - Tomohiko Masuno
- Department of Emergency and Critical Care Medicine, Nippon Medical School, Tokyo, Japan
| | - Naoshi Takeyama
- Advanced Critical Care Center, Aichi Medical University Hospital, Nagakute, Japan
| | - Norio Yamashita
- Advanced Emergency Medical Service Center, Kurume University Hospital, Kurume, Japan
| | - Hiroto Ikeda
- Department of Emergency Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Masashi Ueyama
- Department of Trauma, Critical Care Medicine, and Burn Center, Japan Community Healthcare Organization, Chukyo Hospital, Nagoya, Japan
| | - Satoshi Fujimi
- Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Osaka, Japan
| | - Satoshi Gando
- Division of Acute and Critical Care Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan.,Acute and Critical Care Center, Department of Acute and Critical Care Medicine, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| | | |
Collapse
|
175
|
Abstract
T-cell immunity undergoes a complex and continuous remodeling with aging. Understanding those dynamics is essential in refining immunosuppression. Aging is linked to phenotypic and metabolic changes in T-cell immunity, many resulting into impaired function and compromised effectiveness. Those changes may impact clinical immunosuppression with evidences suggesting age-specific efficacies of some (CNI and mammalian target of rapamycin inhibitors) but not necessarily all immunosuppressants. Metabolic changes of T cells with aging have only recently been appreciated and may provide novel ways of immunosuppression. Here, we provide an update on changes of T-cell immunity in aging.
Collapse
|
176
|
Lisanti C, Basile D, Parnofiello A, Bertoli E, Andreotti VJ, Garattini SK, Bartoletti M, Cattaneo M, Di Nardo P, Bonotto M, Casagrande M, Da Ros L, Cinausero M, Foltran L, Pella N, Buonadonna A, Aprile G, Fasola G, Puglisi F. The SENECA study: Prognostic role of serum biomarkers in older patients with metastatic colorectal cancer. J Geriatr Oncol 2020; 11:1268-1273. [PMID: 32576519 DOI: 10.1016/j.jgo.2020.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/27/2020] [Accepted: 06/03/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Aging induces meaningful changes in the immune system and inflammation response with increase in monocyte-lymphocyte ratio (MLR) and serum lactate dehydrogenase (LDH) levels. Aim of this study was to explore the prognostic role of MLR and LDH levels in older patients (pts) with metastatic colorectal cancer (mCRC). METHODS We conducted a retrospective analysis of a consecutive cohort of 168 older (>70 years) patients with mCRC. The prognostic impact of MLR and LDH levels on overall survival (OS) was investigated through uni-and multivariate Cox regression analyses. Moreover, we categorized patients into three groups according to MLR and LDH levels (group 1: MLR-low and LDH-low; group 2: MLR-high or LDH-high; group 3: MLR-high and LDH-high). RESULTS By univariate analysis, high LDH level (HR 1.74, 95% CI 1.05-2.90) and high MLR level (HR 2.19, 95% CI 1.48-3.44) were significantly associated with a worse OS. Conversely, primary tumor resection and left-sidedness were significantly associated with a longer OS. By multivariate analysis, high LDH level (HR 2.00, 95% CI 1.13-3.55) and high MLR level (HR 2.99, 95% CI 1.68-5.33) were independent prognostic factors of worse prognosis. Compared to group 1, a shorter survival was reported for patients included in group 2 (HR 1.97, 95% CI 1.21-3.23 in univariate; HR 2.54, 95% CI 1.43-4.51 in multivariate) or in group 3 (HR 2.42, 95% CI 24-4.74, p = .010 in univariate; HR 5.59, 95% CI 2.15-14.54 in multivariate) CONCLUSIONS: High baseline levels of LDH, MLR or both are independent unfavorable prognostic factors in older patients treated with first-line chemotherapy for mCRC.
Collapse
Affiliation(s)
- Camilla Lisanti
- Department of Medicine (DAME), University of Udine, Udine, IT, Italy; Department of Medical Oncology, Unit of medical oncology and cancer prevention, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, IT, Italy
| | - Debora Basile
- Department of Medicine (DAME), University of Udine, Udine, IT, Italy; Department of Medical Oncology, Unit of medical oncology and cancer prevention, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, IT, Italy.
| | - Annamaria Parnofiello
- Department of Medicine (DAME), University of Udine, Udine, IT, Italy; Department of Medical Oncology, Unit of medical oncology and cancer prevention, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, IT, Italy
| | - Elisa Bertoli
- Department of Medicine (DAME), University of Udine, Udine, IT, Italy; Department of Oncology, ASUIUD Santa Maria della Misericordia, Udine, IT, Italy
| | - Victoria Josephine Andreotti
- Department of Medicine (DAME), University of Udine, Udine, IT, Italy; Department of Oncology, ASUIUD Santa Maria della Misericordia, Udine, IT, Italy
| | - Silvio Ken Garattini
- Department of Medicine (DAME), University of Udine, Udine, IT, Italy; Department of Oncology, ASUIUD Santa Maria della Misericordia, Udine, IT, Italy
| | - Michele Bartoletti
- Department of Medicine (DAME), University of Udine, Udine, IT, Italy; Department of Medical Oncology, Unit of medical oncology and cancer prevention, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, IT, Italy
| | - Monica Cattaneo
- Department of Medicine (DAME), University of Udine, Udine, IT, Italy; Department of Oncology, ASUIUD Santa Maria della Misericordia, Udine, IT, Italy
| | - Paola Di Nardo
- Department of Medical Oncology, Unit of medical oncology and cancer prevention, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, IT, Italy
| | - Marta Bonotto
- Department of Oncology, ASUIUD Santa Maria della Misericordia, Udine, IT, Italy
| | | | - Lucia Da Ros
- Department of Medical Oncology, Unit of medical oncology and cancer prevention, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, IT, Italy
| | - Marika Cinausero
- Department of Oncology, ASUIUD Santa Maria della Misericordia, Udine, IT, Italy
| | - Luisa Foltran
- Department of Medical Oncology, Unit of medical oncology and cancer prevention, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, IT, Italy
| | - Nicoletta Pella
- Department of Oncology, ASUIUD Santa Maria della Misericordia, Udine, IT, Italy
| | - Angela Buonadonna
- Department of Medical Oncology, Unit of medical oncology and cancer prevention, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, IT, Italy
| | - Giuseppe Aprile
- Department of Oncology, San Bortolo General Hospital, Azienda ULSS8 Berica, Vicenza, Italy
| | - Gianpiero Fasola
- Department of Oncology, ASUIUD Santa Maria della Misericordia, Udine, IT, Italy
| | - Fabio Puglisi
- Department of Medicine (DAME), University of Udine, Udine, IT, Italy; Department of Medical Oncology, Unit of medical oncology and cancer prevention, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, IT, Italy
| |
Collapse
|
177
|
Wang D, Du J, Song Y, Wang B, Song R, Hao Y, Zeng Y, Xiao J, Zheng H, Zeng H, Zhao H, Kong Y. CD70 contributes to age-associated T cell defects and overwhelming inflammatory responses. Aging (Albany NY) 2020; 12:12032-12050. [PMID: 32559178 PMCID: PMC7343466 DOI: 10.18632/aging.103368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/01/2020] [Indexed: 12/25/2022]
Abstract
Aging is associated with immune dysregulation, especially T cell disorders, which result in increased susceptibility to various diseases. Previous studies have shown that loss of co-stimulatory receptors or accumulation of co-inhibitory molecules play important roles in T cell aging. In the present study, CD70, which was generally regarded as a costimulatory molecule, was found to be upregulated on CD4+ and CD8+ T cells of elderly individuals. Aged CD70+ T cells displayed a phenotype of over-activation, and expressed enhanced levels of numerous inhibitory receptors including PD-1, 2B4 and LAG-3. CD70+ T cells from elderly individuals exhibited increased susceptibility to apoptosis and high levels of inflammatory cytokines. Importantly, the functional dysregulation of CD70+ T cells associated with aging was reversed by blocking CD70. Collectively, this study demonstrated CD70 as a prominent regulator involved in immunosenescence, which led to defects and overwhelming inflammatory responses of T cells during aging. These findings provide a strong rationale for targeting CD70 to prevent dysregulation related to immunosenescence.
Collapse
Affiliation(s)
- Di Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Juan Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yangzi Song
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Beibei Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Rui Song
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yu Hao
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yongqin Zeng
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Jiang Xiao
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Hong Zheng
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Hui Zeng
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Hongxin Zhao
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yaxian Kong
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| |
Collapse
|
178
|
Meryk A, Pangrazzi L, Hagen M, Hatzmann F, Jenewein B, Jakic B, Hermann-Kleiter N, Baier G, Jylhävä J, Hurme M, Trieb K, Grubeck-Loebenstein B. Fcμ receptor as a Costimulatory Molecule for T Cells. Cell Rep 2020; 26:2681-2691.e5. [PMID: 30840890 DOI: 10.1016/j.celrep.2019.02.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/28/2019] [Accepted: 02/07/2019] [Indexed: 11/17/2022] Open
Abstract
Fc receptor for IgM (FcμR)-deficient mice display dysregulated function of neutrophils, dendritic cells, and B cells. The relevance of FcμR to human T cells is still unknown. We show that FcμR is mostly stored inside the cell and that surface expression is tightly regulated. Decreased surface expression on T cells from elderly individuals is associated with alterations in the methylation pattern of the FCMR gene. Binding and internalization of IgM stimulate transport of FcμR to the cell surface to ensure sustained IgM uptake. Concurrently, IgM accumulates within the cell, and the surface expression of other receptors increases, among them the T cell receptor (TCR) and costimulatory molecules. This leads to enhanced TCR signaling, proliferation, and cytokine release, in response to low, but not high, doses of antigen. Our findings indicate that FcμR is an important regulator of T cell function and reveal an additional mode of interaction between B and T cells.
Collapse
Affiliation(s)
- Andreas Meryk
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria.
| | - Luca Pangrazzi
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria
| | - Magdalena Hagen
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria
| | - Florian Hatzmann
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria
| | - Brigitte Jenewein
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria
| | - Bojana Jakic
- Division of Translational Cell Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Division of Translational Cell Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Gottfried Baier
- Division of Translational Cell Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Juulia Jylhävä
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Mikko Hurme
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere 33014, Finland
| | - Klemens Trieb
- Department of Orthopedic Surgery, Hospital Wels-Grieskirchen, 4600 Wels, Austria
| | - Beatrix Grubeck-Loebenstein
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
179
|
Kochar B, Cai W, Cagan A, Ananthakrishnan AN. Pretreatment Frailty Is Independently Associated With Increased Risk of Infections After Immunosuppression in Patients With Inflammatory Bowel Diseases. Gastroenterology 2020; 158:2104-2111.e2. [PMID: 32105728 DOI: 10.1053/j.gastro.2020.02.032] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/13/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Infections are an important adverse effect of immunosuppression for treatment of inflammatory bowel diseases (IBDs). However, risk of infection cannot be sufficiently determined based on patients' ages or comorbidities. Frailty has been associated with outcomes of patients with other inflammatory diseases. We aimed to determine the association between frailty and risk of infections after immunosuppression for IBD. METHODS We performed a cohort study of 11,001 patients with IBD, using a validated frailty definition based on International Classification of Disease codes to identify patients who were frail vs fit in the 2 years before initiation of an anti-tumor necrosis factor (TNF) or immunomodulator therapy, from 1996 through 2010. Our primary outcome was an infection in the first year after treatment. We constructed multivariable logistic regression models, adjusting for clinically pertinent confounders (age, comorbidities, steroid use, and combination therapy) to determine the association between frailty and posttreatment infections. RESULTS There were 1299 patients treated with an anti-TNF agent and 2676 patients treated with an immunomodulator. In this cohort, 5% of patients who received anti-TNF therapy and 7% of patients who received an immunomodulator were frail in the 2 years before immunosuppression. Frail patients were older and had more comorbidities. Higher proportions of frail patients developed infections after treatment (19% after TNF and 17% after immunomodulators) compared with fit patients (9% after TNF and 7% after immunomodulators; P < .01 for frail vs fit in both groups). Frail patients had an increased risk of infection after we adjusted for age, comorbidities, and concomitant medications (anti-TNF adjusted odds ratio, 2.05 [95% confidence interval, 1.07-3.93] and immunomodulator adjusted odds ratio, 1.81 [95% confidence interval, 1.22-2.70]). CONCLUSIONS Frailty was associated with infections after immunosuppression in patients with IBD after we adjust for age and comorbidities. Systematic assessment and strategies to improve frailty might reduce infection risk in patients with IBD.
Collapse
Affiliation(s)
- Bharati Kochar
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts; Clinical Translational Epidemiology Unit, The Mongan Institute, Boston, Massachusetts
| | - Winston Cai
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Ashwin N Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts; Clinical Translational Epidemiology Unit, The Mongan Institute, Boston, Massachusetts.
| |
Collapse
|
180
|
Dalzini A, Petrara MR, Ballin G, Zanchetta M, Giaquinto C, De Rossi A. Biological Aging and Immune Senescence in Children with Perinatally Acquired HIV. J Immunol Res 2020; 2020:8041616. [PMID: 32509884 PMCID: PMC7246406 DOI: 10.1155/2020/8041616] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic HIV-infected children suffer from premature aging and aging-related diseases. Viral replication induces an ongoing inflammation process, with the release of pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), the activation of the immune system, and the production of proinflammatory cytokines. Although combined highly active antiretroviral therapy (ART) has significantly modified the natural course of HIV infection, normalization of T and B cell phenotype is not completely achievable; thus, many HIV-infected children display several phenotypical alterations, including higher percentages of activated cells, that favor an accelerated telomere attrition, and higher percentages of exhausted and senescent cells. All these features ultimately lead to the clinical manifestations related to premature aging and comorbidities typically observed in older general population, including non-AIDS-related malignancies. Therefore, even under effective treatment, the premature aging process of HIV-infected children negatively impacts their quality and length of life. This review examines the available data on the impact of HIV and ART on immune and biological senescence of HIV-infected children.
Collapse
Affiliation(s)
- Annalisa Dalzini
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, Unit of Viral Oncology and AIDS Reference Center, University of Padova, Padova, Italy
| | - Maria Raffaella Petrara
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, Unit of Viral Oncology and AIDS Reference Center, University of Padova, Padova, Italy
| | - Giovanni Ballin
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, Unit of Viral Oncology and AIDS Reference Center, University of Padova, Padova, Italy
| | | | - Carlo Giaquinto
- Department of Mother and Child Health, University of Padova, Padova, Italy
| | - Anita De Rossi
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, Unit of Viral Oncology and AIDS Reference Center, University of Padova, Padova, Italy
- Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| |
Collapse
|
181
|
Wang W, Thomas R, Sizova O, Su DM. Thymic Function Associated With Cancer Development, Relapse, and Antitumor Immunity - A Mini-Review. Front Immunol 2020; 11:773. [PMID: 32425946 PMCID: PMC7203483 DOI: 10.3389/fimmu.2020.00773] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
The thymus is the central lymphoid organ for T cell development, a cradle of T cells, and for central tolerance establishment, an educator of T cells, maintaining homeostatic cellular immunity. T cell immunity is critical to control cancer occurrence, relapse, and antitumor immunity. Evidence on how aberrant thymic function influences cancer remains largely insufficient, however, there has been recent progress. For example, the involuted thymus results in reduced output of naïve T cells and a restricted T cell receptor (TCR) repertoire, inducing immunosenescence and potentially dampening immune surveillance of neoplasia. In addition, the involuted thymus relatively enhances regulatory T (Treg) cell generation. This coupled with age-related accumulation of Treg cells in the periphery, potentially provides a supportive microenvironment for tumors to escape T cell-mediated antitumor responses. Furthermore, acute thymic involution from chemotherapy can create a tumor reservoir, resulting from an inflammatory microenvironment in the thymus, which is suitable for disseminated tumor cells to hide, survive chemotherapy, and become dormant. This may eventually result in cancer metastatic relapse. On the other hand, if thymic involution is wisely taken advantage of, it may be potentially beneficial to antitumor immunity, since the involuted thymus increases output of self-reactive T cells, which may recognize certain tumor-associated self-antigens and enhance antitumor immunity, as demonstrated through depletion of autoimmune regulator (AIRE) gene in the thymus. Herein, we briefly review recent research progression regarding how altered thymic function modifies T cell immunity against tumors.
Collapse
Affiliation(s)
- Weikan Wang
- Cell Biology, Immunology, and Microbiology Graduate Program, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Rachel Thomas
- Cell Biology, Immunology, and Microbiology Graduate Program, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Olga Sizova
- Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dong-Ming Su
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
182
|
Subesinghe S, Kleymann A, Rutherford AI, Bechman K, Norton S, Benjamin Galloway J. The association between lymphopenia and serious infection risk in rheumatoid arthritis. Rheumatology (Oxford) 2020; 59:762-766. [PMID: 31504905 DOI: 10.1093/rheumatology/kez349] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/15/2019] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To investigate the relationship between occurrence of serious infection (SI) and lymphocyte counts in patients with RA using data from a single centre. METHODS We used routinely captured data from a single tertiary rheumatology centre to explore the relationship between lymphopenia and SI risk. Adult RA patients were included over a 5-year follow-up period. Admissions due to confirmed SI were considered. SI rate with 95% confidence intervals was calculated. The association between SI with baseline lymphocyte counts, time-averaged lymphocyte counts throughout all follow-up, and a nadir lymphocyte count was assessed using Cox proportional hazards regression. The relationship between lymphopenia over time and SI was analysed using a mixed-effect model of lymphocyte counts prior to SI. RESULTS This analysis included 1095 patients with 205 SIs during 2016 person-years of follow-up. The SI rate was 4.61/100 patient-years (95% CI: 3.76, 5.65). Compared with patients with nadir lymphocyte counts >1.5 × 109 cells/l, nadir lymphopenia <1 × 109 cells/l was significantly associated with higher SI risk (HR 3.28; 95% CI: 1.59, 6.76), increasing to HR 8.08 (95% CI: 3.74, 17.44) in patients with lymphopenia <0.5 × 109 cells/l. Lymphocyte counts were observed to be reduced in the 30-day period prior to SI. CONCLUSION Lymphocyte counts below <1.0 × 109 cells/l were associated with higher SI risk in RA patients; the strongest association between lymphopenia and SI was observed when lymphocyte counts were below <0.5 × 109 cells/l. Lymphopenia may be used as a measure to stratify patients at risk of SI.
Collapse
Affiliation(s)
- Sujith Subesinghe
- Academic Department of Rheumatology, Weston Education Centre, King's College London
- Department of Rheumatology and Lupus, Guy's and St Thomas' NHS Foundation Trust, Great Maze Pond, London, UK
| | - Alexander Kleymann
- Academic Department of Rheumatology, Weston Education Centre, King's College London
- UNI-Klinikum Carl Gustav Carus Medizinische Klinik III, Dresden, Sachsen, Germany
| | - Andrew Ian Rutherford
- Academic Department of Rheumatology, Weston Education Centre, King's College London
- Department of Rheumatology, King's College Hospital NHS Foundation Trust, London, UK
| | - Katie Bechman
- Academic Department of Rheumatology, Weston Education Centre, King's College London
| | - Sam Norton
- Academic Department of Rheumatology, Weston Education Centre, King's College London
| | | |
Collapse
|
183
|
Lee JY, Hong SH. Hematopoietic Stem Cells and Their Roles in Tissue Regeneration. Int J Stem Cells 2020; 13:1-12. [PMID: 31887851 PMCID: PMC7119209 DOI: 10.15283/ijsc19127] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/18/2019] [Accepted: 12/01/2019] [Indexed: 12/22/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are regarded as one of essential cell sources for treating regenerative diseases. Among many stem cells, the feasibility of using adult-derived hematopoietic stem cells in therapeutic approaches is very diverse, and is unarguably regarded as an important cell source in stem cell biology. So far, many investigators are exploring HSCs and modified HSCs for use in clinical and basic science. In the present review, we briefly summarized HSCs and their application in pathophysiologic conditions, including non-hematopoietic tissue regeneration as well as blood disorders. HSCs and HSCs-derived progenitors are promising cell sources in regenerative medicine and their contributions can be properly applied to treat pathophysiologic conditions. Among many adult stem cells, HSCs are a powerful tool to treat patients with diseases such as hematologic malignancies and liver disease. Since HSCs can be differentiated into diverse progenitors including endothelial progenitors, they may be useful for constructing strategies for effective therapy.
Collapse
Affiliation(s)
- Ji Yoon Lee
- CHA Advanced Research Institute, CHA University, Seongnam, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
184
|
Hypercholesterolemia Accelerates the Aging Phenotypes of Hematopoietic Stem Cells by a Tet1-Dependent Pathway. Sci Rep 2020; 10:3567. [PMID: 32107419 PMCID: PMC7046636 DOI: 10.1038/s41598-020-60403-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
Hypercholesterolemia accelerates the phenotypes of aging in hematopoietic stem cells (HSCs). As yet, little is known about the underlying mechanism. We found that hypercholesterolemia downregulates Ten eleven translocation 1 (Tet1) in HSCs. The total HSC population was increased, while the long-term (LT) population, side population and reconstitution capacity of HSCs were significantly decreased in Tet1−/− mice. Expression of the Tet1 catalytic domain in HSCs effectively restored the LT population and reconstitution capacity of HSCs isolated from Tet1−/− mice. While Tet1 deficiency upregulated the expression of p19 and p21 in HSCs by decreasing the H3K27me3 modification, the restoration of Tet1 activity reduced the expression of p19, p21 and p27 by restoring the H3K27me3 and H3K36me3 modifications on these genes. These results indicate that Tet1 plays a critical role in maintaining the quiescence and reconstitution capacity of HSCs and that hypercholesterolemia accelerates HSC aging phenotypes by decreasing Tet1 expression in HSCs.
Collapse
|
185
|
Abstract
Aging manifests with architectural alteration and functional decline of multiple organs throughout an organism. In mammals, aged skin is accompanied by a marked reduction in hair cycling and appearance of bald patches, leading researchers to propose that hair follicle stem cells (HFSCs) are either lost, differentiate, or change to an epidermal fate during aging. Here, we employed single-cell RNA-sequencing to interrogate aging-related changes in the HFSCs. Surprisingly, although numbers declined, aging HFSCs were present, maintained their identity, and showed no overt signs of shifting to an epidermal fate. However, they did exhibit prevalent transcriptional changes particularly in extracellular matrix genes, and this was accompanied by profound structural perturbations in the aging SC niche. Moreover, marked age-related changes occurred in many nonepithelial cell types, including resident immune cells, sensory neurons, and arrector pili muscles. Each of these SC niche components has been shown to influence HF regeneration. When we performed skin injuries that are known to mobilize young HFSCs to exit their niche and regenerate HFs, we discovered that aged skin is defective at doing so. Interestingly, however, in transplantation assays in vivo, aged HFSCs regenerated HFs when supported with young dermis, while young HFSCs failed to regenerate HFs when combined with aged dermis. Together, our findings highlight the importance of SC:niche interactions and favor a model where youthfulness of the niche microenvironment plays a dominant role in dictating the properties of its SCs and tissue health and fitness.
Collapse
|
186
|
Szade K, Zukowska M, Szade A, Nowak W, Skulimowska I, Ciesla M, Bukowska‐Strakova K, Gulati GS, Kachamakova‐Trojanowska N, Kusienicka A, Einwallner E, Kijowski J, Czauderna S, Esterbauer H, Benes V, L Weissman I, Dulak J, Jozkowicz A. Heme oxygenase-1 deficiency triggers exhaustion of hematopoietic stem cells. EMBO Rep 2020; 21:e47895. [PMID: 31885181 PMCID: PMC7001511 DOI: 10.15252/embr.201947895] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 11/14/2019] [Accepted: 11/22/2019] [Indexed: 01/01/2023] Open
Abstract
While intrinsic changes in aging hematopoietic stem cells (HSCs) are well characterized, it remains unclear how extrinsic factors affect HSC aging. Here, we demonstrate that cells in the niche-endothelial cells (ECs) and CXCL12-abundant reticular cells (CARs)-highly express the heme-degrading enzyme, heme oxygenase 1 (HO-1), but then decrease its expression with age. HO-1-deficient animals (HO-1-/- ) have altered numbers of ECs and CARs that produce less hematopoietic factors. HSCs co-cultured in vitro with HO-1-/- mesenchymal stromal cells expand, but have altered kinetic of growth and differentiation of derived colonies. HSCs from young HO-1-/- animals have reduced quiescence and regenerative potential. Young HO-1-/- HSCs exhibit features of premature exhaustion on the transcriptional and functional level. HO-1+/+ HSCs transplanted into HO-1-/- recipients exhaust their regenerative potential early and do not reconstitute secondary recipients. In turn, transplantation of HO-1-/- HSCs to the HO-1+/+ recipients recovers the regenerative potential of HO-1-/- HSCs and reverses their transcriptional alterations. Thus, HSC-extrinsic activity of HO-1 prevents HSCs from premature exhaustion and may restore the function of aged HSCs.
Collapse
Affiliation(s)
- Krzysztof Szade
- Department of Medical BiotechnologyFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
- Institute for Stem Cell Biology and Regenerative MedicineStanford UniversityStanfordCAUSA
| | - Monika Zukowska
- Department of Medical BiotechnologyFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| | - Agata Szade
- Department of Medical BiotechnologyFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| | - Witold Nowak
- Department of Medical BiotechnologyFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| | - Izabella Skulimowska
- Department of Medical BiotechnologyFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| | - Maciej Ciesla
- Department of Medical BiotechnologyFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| | - Karolina Bukowska‐Strakova
- Department of Medical BiotechnologyFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
- Department of Clinical ImmunologyInstitute of PediatricsJagiellonian University Medical CollegeKrakowPoland
| | - Gunsagar Singh Gulati
- Institute for Stem Cell Biology and Regenerative MedicineStanford UniversityStanfordCAUSA
| | - Neli Kachamakova‐Trojanowska
- Department of Medical BiotechnologyFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
- Malopolska Centre of BiotechnologyJagiellonian UniversityKrakowPoland
| | - Anna Kusienicka
- Department of Medical BiotechnologyFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| | - Elisa Einwallner
- Department of Laboratory MedicineCenter of Translational ResearchMedical University of ViennaViennaAustria
| | - Jacek Kijowski
- Department of TransplantationInstitute of PediatricsJagiellonian University Medical CollegeKrakowPoland
| | - Szymon Czauderna
- Department of Medical BiotechnologyFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| | - Harald Esterbauer
- Department of Laboratory MedicineCenter of Translational ResearchMedical University of ViennaViennaAustria
| | | | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative MedicineStanford UniversityStanfordCAUSA
| | - Jozef Dulak
- Department of Medical BiotechnologyFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
- Malopolska Centre of BiotechnologyJagiellonian UniversityKrakowPoland
| | - Alicja Jozkowicz
- Department of Medical BiotechnologyFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| |
Collapse
|
187
|
Kissel M, Rambeau A, Achkar S, Lecuru F, Mathevet P. Challenges and advances in cervix cancer treatment in elder women. Cancer Treat Rev 2020; 84:101976. [PMID: 32006796 DOI: 10.1016/j.ctrv.2020.101976] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 01/18/2023]
Abstract
With population ageing, cancer treatments in elder patients is becoming a true public health care issue. There is an authentic dilemma between patient's frailty, residual life expectancy and the toll that take anticancer treatments. Since elder patients are almost always excluded from clinical trials, it is hard to get robust scientific data on the tolerability of oncologic treatments and to set in place recommendations. Cervix cancer is traditionally diagnosed in younger women but it has a 2nd incidence peak between 60 and 70 years old. Cervix cancer in elder patients is a subject to many questions in terms of screening and is a therapeutic challenge. This article reviews literature data on these different aspects, from screening to surgery, from radiotherapy to brachytherapy, from chemotherapy to supportive care, from immunotherapy to geriatric assessment. We tried to show how modern therapeutic innovations may benefit elder patients. Expected benefits in terms of efficacy and toxicity may overcome the long-lasting tendency to undertreatment in elder patients and improve their quality of life after cancer treatment. In 2020, there seems to be less and less reasons justifying that elder women with cervix cancer may not receive the appropriate treatment.
Collapse
Affiliation(s)
- M Kissel
- Radiation Oncology Department, Institut Gustave Roussy, Villejuif, France.
| | - A Rambeau
- Department of Medical Oncology, Centre François Baclesse, ARCHADE, Caen, France
| | - S Achkar
- Radiation Oncology Department, Institut Gustave Roussy, Villejuif, France
| | - F Lecuru
- Department of Gynecologic Oncology, Georges Pompidou European Hospital, Paris, France
| | - P Mathevet
- Gynecology Department, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| |
Collapse
|
188
|
Thomas R, Wang W, Su DM. Contributions of Age-Related Thymic Involution to Immunosenescence and Inflammaging. IMMUNITY & AGEING 2020; 17:2. [PMID: 31988649 PMCID: PMC6971920 DOI: 10.1186/s12979-020-0173-8] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/02/2020] [Indexed: 01/10/2023]
Abstract
Immune system aging is characterized by the paradox of immunosenescence (insufficiency) and inflammaging (over-reaction), which incorporate two sides of the same coin, resulting in immune disorder. Immunosenescence refers to disruption in the structural architecture of immune organs and dysfunction in immune responses, resulting from both aged innate and adaptive immunity. Inflammaging, described as a chronic, sterile, systemic inflammatory condition associated with advanced age, is mainly attributed to somatic cellular senescence-associated secretory phenotype (SASP) and age-related autoimmune predisposition. However, the inability to reduce senescent somatic cells (SSCs), because of immunosenescence, exacerbates inflammaging. Age-related adaptive immune system deviations, particularly altered T cell function, are derived from age-related thymic atrophy or involution, a hallmark of thymic aging. Recently, there have been major developments in understanding how age-related thymic involution contributes to inflammaging and immunosenescence at the cellular and molecular levels, including genetic and epigenetic regulation, as well as developments of many potential rejuvenation strategies. Herein, we discuss the research progress uncovering how age-related thymic involution contributes to immunosenescence and inflammaging, as well as their intersection. We also describe how T cell adaptive immunity mediates inflammaging and plays a crucial role in the progression of age-related neurological and cardiovascular diseases, as well as cancer. We then briefly outline the underlying cellular and molecular mechanisms of age-related thymic involution, and finally summarize potential rejuvenation strategies to restore aged thymic function.
Collapse
Affiliation(s)
- Rachel Thomas
- Cell Biology, Immunology, and Microbiology Graduate Program, Graduate School of Biomedical Sciences, Fort Worth, Texas 76107 USA
| | - Weikan Wang
- Cell Biology, Immunology, and Microbiology Graduate Program, Graduate School of Biomedical Sciences, Fort Worth, Texas 76107 USA
| | - Dong-Ming Su
- 2Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107 USA
| |
Collapse
|
189
|
Song L, Yuan J, Ni S, Zhou Y, Wang X, Chen Y, Zhang S. Enhancement of adaptive immune responses of aged mice by dietary intake of β-glucans, with special emphasis on anti-aging activity. Mol Immunol 2020; 117:160-167. [DOI: 10.1016/j.molimm.2019.10.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/20/2019] [Accepted: 10/26/2019] [Indexed: 12/12/2022]
|
190
|
Mayne K, White JA, McMurran CE, Rivera FJ, de la Fuente AG. Aging and Neurodegenerative Disease: Is the Adaptive Immune System a Friend or Foe? Front Aging Neurosci 2020; 12:572090. [PMID: 33173502 PMCID: PMC7538701 DOI: 10.3389/fnagi.2020.572090] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases of the central nervous system (CNS) are characterized by progressive neuronal death and neurological dysfunction, leading to increased disability and a loss of cognitive or motor functions. Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis have neurodegeneration as a primary feature. However, in other CNS diseases such as multiple sclerosis, stroke, traumatic brain injury, and spinal cord injury, neurodegeneration follows another insult, such as demyelination or ischaemia. Although there are different primary causes to these diseases, they all share a hallmark of neuroinflammation. Neuroinflammation can occur through the activation of resident immune cells such as microglia, cells of the innate and adaptive peripheral immune system, meningeal inflammation and autoantibodies directed toward components of the CNS. Despite chronic inflammation being pathogenic in these diseases, local inflammation after insult can also promote endogenous regenerative processes in the CNS, which are key to slowing disease progression. The normal aging process in the healthy brain is associated with a decline in physiological function, a steady increase in levels of neuroinflammation, brain shrinkage, and memory deficits. Likewise, aging is also a key contributor to the progression and exacerbation of neurodegenerative diseases. As there are associated co-morbidities within an aging population, pinpointing the precise relationship between aging and neurodegenerative disease progression can be a challenge. The CNS has historically been considered an isolated, "immune privileged" site, however, there is mounting evidence that adaptive immune cells are present in the CNS of both healthy individuals and diseased patients. Adaptive immune cells have also been implicated in both the degeneration and regeneration of the CNS. In this review, we will discuss the key role of the adaptive immune system in CNS degeneration and regeneration, with a focus on how aging influences this crosstalk.
Collapse
Affiliation(s)
- Katie Mayne
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, United Kingdom
| | - Jessica A. White
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, United Kingdom
| | | | - Francisco J. Rivera
- Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Alerie G. de la Fuente
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, United Kingdom
- *Correspondence: Alerie G. de la Fuente,
| |
Collapse
|
191
|
Arata Y, Watanabe A, Motosugi R, Murakami R, Goto T, Hori S, Hirayama S, Hamazaki J, Murata S. Defective induction of the proteasome associated with T-cell receptor signaling underlies T-cell senescence. Genes Cells 2019; 24:801-813. [PMID: 31621149 DOI: 10.1111/gtc.12728] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022]
Abstract
The proteasome degradation machinery is essential for a variety of cellular processes including senescence and T-cell immunity. Decreased proteasome activity is associated with the aging process; however, the regulation of the proteasome in CD4+ T cells in relation to aging is unclear. Here, we show that defects in the induction of the proteasome in CD4+ T cells upon T-cell receptor (TCR) stimulation underlie T-cell senescence. Proteasome dysfunction promotes senescence-associated phenotypes, including defective proliferation, cytokine production and increased levels of PD-1+ CD44High CD4+ T cells. Proteasome induction by TCR signaling via MEK-, IKK- and calcineurin-dependent pathways is attenuated with age and decreased in PD-1+ CD44High CD4+ T cells, the proportion of which increases with age. Our results indicate that defective induction of the proteasome is a hallmark of CD4+ T-cell senescence.
Collapse
Affiliation(s)
- Yoshiyuki Arata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ayaka Watanabe
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryo Motosugi
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryuichi Murakami
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Goto
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shohei Hori
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shoshiro Hirayama
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Jun Hamazaki
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
192
|
Tatara T, Suzuki S, Kanaji S, Yamamoto M, Matsuda Y, Hasegawa H, Yamashita K, Matsuda T, Oshikiri T, Nakamura T, Kakeji Y. Lymphopenia predicts poor prognosis in older gastric cancer patients after curative gastrectomy. Geriatr Gerontol Int 2019; 19:1215-1219. [PMID: 31674139 DOI: 10.1111/ggi.13794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/08/2019] [Accepted: 09/19/2019] [Indexed: 01/08/2023]
Abstract
AIM Total lymphocyte count in preoperative peripheral blood is associated with prognosis in various cancers. The predictive value of preoperative total lymphocyte count for survival was assessed in older gastric cancer patients after gastrectomy. METHODS A total of 200 gastric cancer patients aged ≥75 years who underwent curative resection from 2000 to 2014 were included in this retrospective study. The cut-off value of total lymphocyte count in preoperative peripheral blood was determined using receiver operating characteristic curve analysis, and the association with prognosis was examined. RESULTS The cut-off value of total lymphocyte count was 1462/μL, and 94 patients were classified as low total lymphocyte count patients and 106 patients were classified as high total lymphocyte count patients. In univariate analysis, American Society of Anesthesiologists score ≥3, Charlson Comorbidity Index ≥3, total lymphocyte count <1462/μL, stage III, open approach, total gastrectomy, splenectomy and infectious complication were significantly associated with overall survival. In multivariate analysis, total lymphocyte count <1462/μL (P = 0.003), American Society of Anesthesiologists score ≥3 (P = 0.01) and stage III (P = 0.017) were independent prognostic factors. Low total lymphocyte count significantly reduced overall survival in stage I (P = 0.037) and II (P = 0.009) patients, but not stage III patients (P = 0.29). CONCLUSION Total lymphocyte count in preoperative peripheral blood can predict postoperative survival of older patients with relatively early-stage gastric cancer. Geriatr Gerontol Int 2019; 19: 1215-1219.
Collapse
Affiliation(s)
- Takashi Tatara
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoshi Suzuki
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shingo Kanaji
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masashi Yamamoto
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshiko Matsuda
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Hasegawa
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kimihiro Yamashita
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takeru Matsuda
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Taro Oshikiri
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tetsu Nakamura
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshihiro Kakeji
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
193
|
Coll PP, Costello VW, Kuchel GA, Bartley J, McElhaney JE. The Prevention of Infections in Older Adults: Vaccination. J Am Geriatr Soc 2019; 68:207-214. [PMID: 31613000 DOI: 10.1111/jgs.16205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022]
Abstract
All living beings are at risk for experiencing infections; humans are no exception. The prestige and credibility of modern medicine is built in large part on achievements in preventing and treating infectious diseases. For most of human history, there was little that could be done to prevent and treat infections. Millions of humans, of all ages, have died from infections; and in some parts of the world, infection-related deaths remain common. Advances in preventing and treating infectious diseases include improved sanitization, sterilization, pasteurization, immunization, and antibiotics. Vaccination has played a major role in the prevention of lethal diseases, such as smallpox, diphtheria, cholera, and influenza. Because of developing or waning immune function, the young and the old are at particularly high risk of experiencing infections. Influenza and pneumonia remain common causes of death in older adults. Influenza, in particular, has the potential to result in premature mortality for all age groups, including those who are older and particularly those who live in congregate settings. Vaccination is important in promoting healthy aging. J Am Geriatr Soc 68:207-214, 2019.
Collapse
Affiliation(s)
- Patrick P Coll
- Department of Family Medicine and Center on Aging, University of Connecticut Health Center, Farmington, Connecticut
| | - Victoria W Costello
- Center on Aging, University of Connecticut Health Center, Farmington, Connecticut
| | - George A Kuchel
- Center on Aging, University of Connecticut Health Center, Farmington, Connecticut
| | - Jenna Bartley
- Center on Aging, University of Connecticut Health Center, Farmington, Connecticut
| | | |
Collapse
|
194
|
Lieshout SHJ, Bretman A, Newman C, Buesching CD, Macdonald DW, Dugdale HL. Individual variation in early‐life telomere length and survival in a wild mammal. Mol Ecol 2019; 28:4152-4165. [DOI: 10.1111/mec.15212] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Sil H. J. Lieshout
- School of Biology Faculty of Biological Sciences University of Leeds Leeds UK
- NERC Biomolecular Analysis Facility Department of Animal and Plant Sciences University of Sheffield Sheffield UK
| | - Amanda Bretman
- School of Biology Faculty of Biological Sciences University of Leeds Leeds UK
| | - Chris Newman
- Wildlife Conservation Research Unit Department of Zoology University of Oxford Abingdon UK
| | - Christina D. Buesching
- Wildlife Conservation Research Unit Department of Zoology University of Oxford Abingdon UK
| | - David W. Macdonald
- Wildlife Conservation Research Unit Department of Zoology University of Oxford Abingdon UK
| | - Hannah L. Dugdale
- School of Biology Faculty of Biological Sciences University of Leeds Leeds UK
| |
Collapse
|
195
|
Abstract
Background Immunization for herpes zoster (HZ) aims to reverse the decline in cell-mediated immunity to varicella zoster virus that occurs with advancing age or immunocompromise. There are 2 vaccines available, one live attenuated (Zoster vaccine, live attenuated [ZVL]) and, recently, a recombinant subunit vaccine (HZ/su). Methods The literature relevant to the two HZ vaccines was reviewed. Results ZVL has overall efficacies of 51% and 65% against HZ and postherpetic neuralgia, respectively, with a prominent decline in efficacy with advancing age of the vaccinee. This compares to approximately 90% efficacy against HZ for HZ/su that is minimally affected with advancing age. The efficacy of ZVL against HZ declines over 4 and 8 years, compared with minimal decline so far over 4 years with HZ/su, and immunogenicity that is maintained for 9 years. Local and systemic reactogenicity to HZ/su is much greater than to ZVL. Conclusions HZ/su establishes an important principle-that a single recombinant viral protein with an effective adjuvant combination can stimulate immunogenicity superior to that of a live attenuated vaccine, and that this can diminish immunosenescence. This provides hope for improvement of other vaccines for aging patients. However, key questions remain unanswered, including the durability of the efficacy of HZ/su, its efficacy as a booster for previous recipients of ZVL, and its efficacy in immunocompromised patients.
Collapse
Affiliation(s)
- Anthony L Cunningham
- Westmead Institute for Medical Research.,University of Sydney, New South Wales, Australia
| | - Myron J Levin
- Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora
| |
Collapse
|
196
|
Davies JS, Thompson HL, Pulko V, Padilla Torres J, Nikolich-Žugich J. Role of Cell-Intrinsic and Environmental Age-Related Changes in Altered Maintenance of Murine T Cells in Lymphoid Organs. J Gerontol A Biol Sci Med Sci 2019; 73:1018-1026. [PMID: 28582491 DOI: 10.1093/gerona/glx102] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/01/2017] [Indexed: 12/29/2022] Open
Abstract
Age-related changes in primary lymphoid organs are well described. Less is known about age-related changes affecting peripheral lymphoid organs, although defects in old peripheral lymph nodes (pLNs) were recently described in both steady state and during viral infection. To address whether such pLN defects were intrinsic to old T cells or extrinsic (due to aging microenvironment), we employed heterochronic parabiosis. We found no age-related intrinsic or extrinsic barriers to T cell circulation and seeding of pLN, spleen, and bone marrow. However, heterochronic parabiosis failed to improve cellularity of old pLN, suggesting an environment-based limit on pLN cellularity. Furthermore, upon parabiosis, pLN of the adult partner exhibited reduced, old-like stromal and T cell cellularity, which was restored following separation of parabionts. Decay measurement of adult and old T cell subsets following separation of heterochronic parabionts delineated both T cell-intrinsic and environmental changes in T cell maintenance. Moreover, parabiotic separation revealed differences between CD4 and CD8 T cell subset maintenance with aging, the basis of which will require further investigation. Reasons for this asymmetric and subset-specific pattern of differential maintenance are discussed in light of possible age-related changes in lymph nodes as the key sites for peripheral T cell maintenance.
Collapse
Affiliation(s)
- John S Davies
- Department of Immunobiology, University of Arizona, Tucson, Arizona.,Arizona Center on Aging, University of Arizona, Tucson, Arizona
| | - Heather L Thompson
- Department of Immunobiology, University of Arizona, Tucson, Arizona.,Arizona Center on Aging, University of Arizona, Tucson, Arizona
| | - Vesna Pulko
- Department of Immunobiology, University of Arizona, Tucson, Arizona.,Arizona Center on Aging, University of Arizona, Tucson, Arizona
| | - Jose Padilla Torres
- Department of Immunobiology, University of Arizona, Tucson, Arizona.,Arizona Center on Aging, University of Arizona, Tucson, Arizona
| | - Janko Nikolich-Žugich
- Department of Immunobiology, University of Arizona, Tucson, Arizona.,Arizona Center on Aging, University of Arizona, Tucson, Arizona
| |
Collapse
|
197
|
Shembrey C, Huntington ND, Hollande F. Impact of Tumor and Immunological Heterogeneity on the Anti-Cancer Immune Response. Cancers (Basel) 2019; 11:E1217. [PMID: 31438563 PMCID: PMC6770225 DOI: 10.3390/cancers11091217] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/16/2022] Open
Abstract
Metastatic tumors are the primary cause of cancer-related mortality. In recent years, interest in the immunologic control of malignancy has helped establish escape from immunosurveillance as a critical requirement for incipient metastases. Our improved understanding of the immune system's interactions with cancer cells has led to major therapeutic advances but has also unraveled a previously unsuspected level of complexity. This review will discuss the vast spatial and functional heterogeneity in the tumor-infiltrating immune system, with particular focus on natural killer (NK) cells, as well as the impact of tumor cell-specific factors, such as secretome composition, receptor-ligand repertoire, and neoantigen diversity, which can further drive immunological heterogeneity. We emphasize how tumor and immunological heterogeneity may undermine the efficacy of T-cell directed immunotherapies and explore the potential of NK cells to be harnessed to circumvent these limitations.
Collapse
Affiliation(s)
- Carolyn Shembrey
- Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Melbourne, VIC 3000, Australia
- Centre for Cancer Research, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Nicholas D Huntington
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Frédéric Hollande
- Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Melbourne, VIC 3000, Australia.
- Centre for Cancer Research, The University of Melbourne, Melbourne, VIC 3000, Australia.
| |
Collapse
|
198
|
Stumper A, Moriarity DP, Coe CL, Ellman LM, Abramson LY, Alloy LB. Pubertal Status and Age are Differentially Associated with Inflammatory Biomarkers in Female and Male Adolescents. J Youth Adolesc 2019; 49:1379-1392. [PMID: 31410721 DOI: 10.1007/s10964-019-01101-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/01/2019] [Indexed: 12/21/2022]
Abstract
A better understanding of the maturational correlates of inflammatory activity during adolescence is needed to more appropriately study both normal and abnormal development. Inflammation is the immune system's first response to infection, injury, or psychological stress, and it has been shown to be elevated in individuals with both physical and psychological conditions. This study examined unique associations between (1) pubertal status and inflammatory biomarkers, and (2) age and inflammatory biomarkers, and whether these relationships differed by sex in a diverse sample of 155 adolescents (54.2% female, 45.8% male; Mage = 16.22) from a northeastern city in the US. A more advanced pubertal status was uniquely associated with lower levels of tumor necrosis factor alpha (TNF-α) and interleukin-8 (IL-8). Chronological age was uniquely associated with lower IL-8 levels. The association between pubertal status and C-reactive protein (CRP) levels differed by sex: more mature females had higher CRP, whereas pubertal status and CRP were not significantly associated in males. These findings highlight an important relation between pubertal development and inflammatory activity during adolescence.
Collapse
|
199
|
Zheng Z, Ai J, Guo L, Ye X, Bondada S, Howatt D, Daugherty A, Li XA. SR-BI (Scavenger Receptor Class B Type 1) Is Critical in Maintaining Normal T-Cell Development and Enhancing Thymic Regeneration. Arterioscler Thromb Vasc Biol 2019; 38:2706-2717. [PMID: 30354229 DOI: 10.1161/atvbaha.118.311728] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective- Continuous T-cell production from thymus is essential in replenishing naïve T-cell pool and maintaining optimal T-cell functions. However, the underlying mechanisms regulating the T-cell development in thymus remains largely unknown. Approach and Results- We identified SR-BI (scavenger receptor class B type 1), an HDL (high-density lipoprotein) receptor, as a novel modulator in T-cell development. We found that SR-BI deficiency in mice led to reduced thymus size and decreased T-cell production, which was accompanied by narrowed peripheral naïve T-cell pool. Further investigation revealed that SR-BI deficiency impaired progenitor thymic homing, causing a dramatic reduction in the percentage of earliest thymic progenitors, but did not affect other downstream T-cell developmental steps inside the thymus. As a result of the impaired progenitor thymic homing, SR-BI-deficient mice displayed delayed thymic regeneration postirradiation. Using a variety of experimental approaches, we revealed that the impaired T-cell development in SR-BI-deficient mice was not caused by hematopoietic SR-BI deficiency or SR-BI deficiency-induced hypercholesterolemia, but mainly attributed to the SR-BI deficiency in adrenal glands, as adrenal-specific SR-BI-deficient mice exhibited similar defects in T-cell development and thymic regeneration with SR-BI-deficient mice. Conclusions- This study demonstrates that SR-BI deficiency impaired T-cell development and delayed thymic regeneration by affecting progenitor thymic homing in mice, elucidating a previously unrecognized link between SR-BI and adaptive immunity.
Collapse
Affiliation(s)
- Zhong Zheng
- From the Department of Pharmacology and Nutritional Sciences (Z.Z., J.A., X.-A.L.), University of Kentucky College of Medicine, Lexington.,Saha Cardiovascular Research Center (Z.Z., J.A., L.G., X.Y., D.H., A.D., X.-A.L.), University of Kentucky College of Medicine, Lexington
| | - Junting Ai
- From the Department of Pharmacology and Nutritional Sciences (Z.Z., J.A., X.-A.L.), University of Kentucky College of Medicine, Lexington.,Saha Cardiovascular Research Center (Z.Z., J.A., L.G., X.Y., D.H., A.D., X.-A.L.), University of Kentucky College of Medicine, Lexington
| | - Ling Guo
- Saha Cardiovascular Research Center (Z.Z., J.A., L.G., X.Y., D.H., A.D., X.-A.L.), University of Kentucky College of Medicine, Lexington
| | - Xiang Ye
- Saha Cardiovascular Research Center (Z.Z., J.A., L.G., X.Y., D.H., A.D., X.-A.L.), University of Kentucky College of Medicine, Lexington
| | - Subbarao Bondada
- Department of Microbiology (S.B.), University of Kentucky College of Medicine, Lexington
| | - Deborah Howatt
- Saha Cardiovascular Research Center (Z.Z., J.A., L.G., X.Y., D.H., A.D., X.-A.L.), University of Kentucky College of Medicine, Lexington
| | - Alan Daugherty
- Saha Cardiovascular Research Center (Z.Z., J.A., L.G., X.Y., D.H., A.D., X.-A.L.), University of Kentucky College of Medicine, Lexington.,Department of Physiology (A.D., X.-A.L.), University of Kentucky College of Medicine, Lexington
| | - Xiang-An Li
- From the Department of Pharmacology and Nutritional Sciences (Z.Z., J.A., X.-A.L.), University of Kentucky College of Medicine, Lexington.,Saha Cardiovascular Research Center (Z.Z., J.A., L.G., X.Y., D.H., A.D., X.-A.L.), University of Kentucky College of Medicine, Lexington.,Department of Physiology (A.D., X.-A.L.), University of Kentucky College of Medicine, Lexington
| |
Collapse
|
200
|
Min B, Park M, Jeon K, Park JS, Seo H, Jeong S, Kang YK. Age-associated bimodal transcriptional drift reduces intergenic disparities in transcription. Aging (Albany NY) 2019; 10:789-807. [PMID: 29706608 PMCID: PMC5940109 DOI: 10.18632/aging.101428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 04/20/2018] [Indexed: 02/03/2023]
Abstract
This study addressed the question of how well the quantitative transcriptome structure established in early life is maintained and how consistently it appears with increasing age, and if there is age-associated alteration of gene expression (A3GE), how much influence the Huntington’s disease (HD) genotype exerts on it. We examined 285 exonic sequences of 175 genes using targeted PCR sequencing in skeletal muscle, brain, and splenic CD4+ T cells of wild-type and HD mice. In contrast to the muscle and brain, T cells exhibited large A3GE, suggesting a strong contribution to functional decline of the organism. This A3GE was markedly intensified in age-matched HD T cells, which exhibited accelerated aging as determined by reduced telomere length. Regression analysis suggested that gene expression levels change at a rate of approximately 3% per month with age. We found a bimodal relationship in A3GE in T cells in that weakly expressed genes in young mice were increasingly transcribed in older animals whereas highly expressed genes in the young were decreasingly expressed with age. This bimodal transcriptional drift in the T cell transcriptome data causes the differences in transcription rate between genes to progressively reduce with age.
Collapse
Affiliation(s)
- Byungkuk Min
- Development and Differentiation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, South Korea
| | - Myungsun Park
- Development and Differentiation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, South Korea
| | - Kyuheum Jeon
- Development and Differentiation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, South Korea
| | - Jung Sun Park
- Development and Differentiation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, South Korea
| | - Hyemyung Seo
- Department of Molecular and Life Sciences, Hanyang University, Sangnok-gu, Ansan, Gyeonggi-do 15588, South Korea
| | - Sangkyun Jeong
- Mibyeong Research Center, Korea Institute of Oriental Medicine (KIOM), Daejeon 305-811, Korea
| | - Yong-Kook Kang
- Development and Differentiation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, South Korea
| |
Collapse
|