151
|
Hu X, Fan Q, Hou H, Yan R. Neurological dysfunctions associated with altered BACE1-dependent Neuregulin-1 signaling. J Neurochem 2016; 136:234-49. [PMID: 26465092 PMCID: PMC4833723 DOI: 10.1111/jnc.13395] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 01/09/2023]
Abstract
Inhibition of BACE1 is being pursued as a therapeutic target to treat patients suffering from Alzheimer's disease because BACE1 is the sole β-secretase that generates β-amyloid peptide. Knowledge regarding other cellular functions of BACE1 is therefore critical for the safe use of BACE1 inhibitors in human patients. Neuregulin-1 (Nrg1) is a BACE1 substrate and BACE1 cleavage of Nrg1 is critical for signaling functions in myelination, remyelination, synaptic plasticity, normal psychiatric behaviors, and maintenance of muscle spindles. This review summarizes the most recent discoveries associated with BACE1-dependent Nrg1 signaling in these areas. This body of knowledge will help to provide guidance for preventing unwanted Nrg1-based side effects following BACE1 inhibition in humans. To initiate its signaling cascade, membrane anchored Neuregulin (Nrg), mainly type I and III β1 Nrg1 isoforms and Nrg3, requires ectodomain shedding. BACE1 is one of such indispensable sheddases to release the functional Nrg signaling fragment. The dependence of Nrg on the cleavage by BACE1 is best manifested by disrupting the critical role of Nrg in the control of axonal myelination, schizophrenic behaviors as well as the formation and maintenance of muscle spindles.
Collapse
Affiliation(s)
- Xiangyou Hu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Qingyuan Fan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Hailong Hou
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| |
Collapse
|
152
|
Immunotherapy Against N-Truncated Amyloid-β Oligomers. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2016. [DOI: 10.1007/978-1-4939-3560-4_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
153
|
Caution When Diagnosing Your Mouse With Schizophrenia: The Use and Misuse of Model Animals for Understanding Psychiatric Disorders. Biol Psychiatry 2016; 79:32-8. [PMID: 26058706 DOI: 10.1016/j.biopsych.2015.04.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 03/26/2015] [Accepted: 04/23/2015] [Indexed: 12/14/2022]
Abstract
Animal models are widely used in biomedical research, but their applicability to psychiatric disorders is less clear. There are several reasons for this, including 1) emergent features of psychiatric illness that are not captured by the sum of individual symptoms, 2) a lack of equivalency between model animal behavior and human psychiatric symptoms, and 3) the possibility that model organisms do not have (and may not be capable of having) the same illnesses as humans. Here, we discuss the effective use, and inherent limitations, of model animals for psychiatric research. As disrupted-in-schizophrenia 1 (DISC1) is a genetic risk factor across a spectrum of psychiatric disorders, we focus on the results of studies using mice with various mutations of DISC1. The data from a broad range of studies show remarkable consistency with the effects of DISC1 mutation on developmental/anatomical endophenotypes. However, when one expands the phenotype to include behavioral correlates of human psychiatric diseases, much of this consistency ends. Despite these challenges, model animals remain valuable for understanding the basic brain processes that underlie psychiatric diseases. We argue that model animals have great potential to help us understand the core neurobiological dysfunction underlying psychiatric disorders and that marrying genetics and brain circuits with behavior is a good way forward.
Collapse
|
154
|
Why therapies for Alzheimer's disease do not work: Do we have consensus over the path to follow? Ageing Res Rev 2016; 25:70-84. [PMID: 26375861 DOI: 10.1016/j.arr.2015.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/09/2015] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) represents a personal tragedy of enormous magnitude, which imposes a daunting worldwide challenge for health-care providers and society as well. In last five decades, global research in clinics and laboratories has illuminated many features of this sinister and eventually fatal disease. Notwithstanding this development, the Alzheimer's research apparently has come across a phase of disappointment and a little reservation about the direction to follow. Persistently distressing controversies and a significant number of missing facts shed further uncertainty about the path forward. A detailed description of some of the main controversies in AD research may assist the field towards finding a resolution. Here I reviewed some alarming concerns or controversies related to these primary issues and emphasized on a possible mechanism to settle them.
Collapse
|
155
|
Chen AC, Kim S, Shepardson N, Patel S, Hong S, Selkoe DJ. Physical and functional interaction between the α- and γ-secretases: A new model of regulated intramembrane proteolysis. J Cell Biol 2015; 211:1157-76. [PMID: 26694839 PMCID: PMC4687875 DOI: 10.1083/jcb.201502001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 11/11/2015] [Indexed: 12/20/2022] Open
Abstract
Many single-transmembrane proteins are sequentially cleaved by ectodomain-shedding α-secretases and the γ-secretase complex, a process called regulated intramembrane proteolysis (RIP). These cleavages are thought to be spatially and temporally separate. In contrast, we provide evidence for a hitherto unrecognized multiprotease complex containing both α- and γ-secretase. ADAM10 (A10), the principal neuronal α-secretase, interacted and cofractionated with γ-secretase endogenously in cells and mouse brain. A10 immunoprecipitation yielded γ-secretase proteolytic activity and vice versa. In agreement, superresolution microscopy showed that portions of A10 and γ-secretase colocalize. Moreover, multiple γ-secretase inhibitors significantly increased α-secretase processing (r = -0.86) and decreased β-secretase processing of β-amyloid precursor protein. Select members of the tetraspanin web were important both in the association between A10 and γ-secretase and the γ → α feedback mechanism. Portions of endogenous BACE1 coimmunoprecipitated with γ-secretase but not A10, suggesting that β- and α-secretases can form distinct complexes with γ-secretase. Thus, cells possess large multiprotease complexes capable of sequentially and efficiently processing transmembrane substrates through a spatially coordinated RIP mechanism.
Collapse
Affiliation(s)
- Allen C Chen
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Sumin Kim
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Nina Shepardson
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Sarvagna Patel
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Soyon Hong
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
156
|
Wu H, Chen S, Ammar AB, Xu J, Wu Q, Pan K, Zhang J, Hong Y. Crosstalk Between Macroautophagy and Chaperone-Mediated Autophagy: Implications for the Treatment of Neurological Diseases. Mol Neurobiol 2015; 52:1284-1296. [PMID: 25330936 PMCID: PMC4586010 DOI: 10.1007/s12035-014-8933-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/09/2014] [Indexed: 12/19/2022]
Abstract
Macroautophagy and chaperone-mediated autophagy (CMA) are two important subtypes of autophagy that play a critical role in cellular quality control under physiological and pathological conditions. Despite the marked differences between these two autophagic pathways, macroautophagy and CMA are intimately connected with each other during the autophagy-lysosomal degradation process, in particular, in the setting of neurological illness. Macroautophagy serves as a backup mechanism to removal of malfunctioning proteins (i.e., aberrant α-synuclein) from the cytoplasm when CMA is compromised, and vice versa. The molecular mechanisms underlying the conversation between macroautophagy and CMA are being clarified. Herein, we survey current overviews concentrating on the complex interactions between macroautophagy and CMA, and present therapeutic potentials through utilization and manipulation of macroautophagy-CMA crosstalk in the treatment of neurological diseases.
Collapse
Affiliation(s)
- Haijian Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Al-Baadani Ammar
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qun Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kum Pan
- Department of Neurological Surgery, Weill Cornell Medical College, New York, USA
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuan Hong
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
157
|
Cavaleri F. Review of Amyotrophic Lateral Sclerosis, Parkinson’s and Alzheimer’s diseases helps further define pathology of the novel paradigm for Alzheimer’s with heavy metals as primary disease cause. Med Hypotheses 2015; 85:779-90. [DOI: 10.1016/j.mehy.2015.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/25/2015] [Accepted: 10/11/2015] [Indexed: 01/07/2023]
|
158
|
Amemori T, Jendelova P, Ruzicka J, Urdzikova LM, Sykova E. Alzheimer's Disease: Mechanism and Approach to Cell Therapy. Int J Mol Sci 2015; 16:26417-51. [PMID: 26556341 PMCID: PMC4661820 DOI: 10.3390/ijms161125961] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia. The risk of AD increases with age. Although two of the main pathological features of AD, amyloid plaques and neurofibrillary tangles, were already recognized by Alois Alzheimer at the beginning of the 20th century, the pathogenesis of the disease remains unsettled. Therapeutic approaches targeting plaques or tangles have not yet resulted in satisfactory improvements in AD treatment. This may, in part, be due to early-onset and late-onset AD pathogenesis being underpinned by different mechanisms. Most animal models of AD are generated from gene mutations involved in early onset familial AD, accounting for only 1% of all cases, which may consequently complicate our understanding of AD mechanisms. In this article, the authors discuss the pathogenesis of AD according to the two main neuropathologies, including senescence-related mechanisms and possible treatments using stem cells, namely mesenchymal and neural stem cells.
Collapse
Affiliation(s)
- Takashi Amemori
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Pavla Jendelova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
- Department of Neuroscience, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague 5, Czech Republic.
| | - Jiri Ruzicka
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Lucia Machova Urdzikova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Eva Sykova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
- Department of Neuroscience, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague 5, Czech Republic.
| |
Collapse
|
159
|
Janssen L, Keppens C, De Deyn PP, Van Dam D. Late age increase in soluble amyloid-beta levels in the APP23 mouse model despite steady-state levels of amyloid-beta-producing proteins. Biochim Biophys Acta Mol Basis Dis 2015; 1862:105-12. [PMID: 26542217 DOI: 10.1016/j.bbadis.2015.10.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/01/2015] [Accepted: 10/29/2015] [Indexed: 10/22/2022]
Affiliation(s)
- Leen Janssen
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Cleo Keppens
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Peter P De Deyn
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium; University of Groningen, University Medical Center Groningen (UMCG), Department of Neurology and Alzheimer Research Center, Groningen, The Netherlands; Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; University of Groningen, University Medical Center Groningen (UMCG), Department of Neurology and Alzheimer Research Center, Groningen, The Netherlands.
| |
Collapse
|
160
|
Atwood CS, Bowen RL. The endocrine dyscrasia that accompanies menopause and andropause induces aberrant cell cycle signaling that triggers re-entry of post-mitotic neurons into the cell cycle, neurodysfunction, neurodegeneration and cognitive disease. Horm Behav 2015; 76:63-80. [PMID: 26188949 PMCID: PMC4807861 DOI: 10.1016/j.yhbeh.2015.06.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 06/23/2015] [Accepted: 06/23/2015] [Indexed: 12/26/2022]
Abstract
This article is part of a Special Issue "SBN 2014". Sex hormones are physiological factors that promote neurogenesis during embryonic and fetal development. During childhood and adulthood these hormones support the maintenance of brain structure and function via neurogenesis and the formation of dendritic spines, axons and synapses required for the capture, processing and retrieval of information (memories). Not surprisingly, changes in these reproductive hormones that occur with menopause and during andropause are strongly correlated with neurodegeneration and cognitive decline. In this connection, much evidence now indicates that Alzheimer's disease (AD) involves aberrant re-entry of post-mitotic neurons into the cell cycle. Cell cycle abnormalities appear very early in the disease, prior to the appearance of plaques and tangles, and explain the biochemical, neuropathological and cognitive changes observed with disease progression. Intriguingly, a recent animal study has demonstrated that induction of adult neurogenesis results in the loss of previously encoded memories while decreasing neurogenesis after memory formation during infancy mitigated forgetting. Here we review the biochemical, epidemiological and clinical evidence that alterations in sex hormone signaling associated with menopause and andropause drive the aberrant re-entry of post-mitotic neurons into an abortive cell cycle that leads to neurite retraction, neuron dysfunction and neuron death. When the reproductive axis is in balance, gonadotropins such as luteinizing hormone (LH), and its fetal homolog, human chorionic gonadotropin (hCG), promote pluripotent human and totipotent murine embryonic stem cell and neuron proliferation. However, strong evidence supports menopausal/andropausal elevations in the LH:sex steroid ratio as driving aberrant mitotic events. These include the upregulation of tumor necrosis factor; amyloid-β precursor protein processing towards the production of mitogenic Aβ; and the activation of Cdk5, a key regulator of cell cycle progression and tau phosphorylation (a cardinal feature of both neurogenesis and neurodegeneration). Cognitive and biochemical studies confirm the negative consequences of a high LH:sex steroid ratio on dendritic spine density and human cognitive performance. Prospective epidemiological and clinical evidence in humans supports the premise that rebalancing the ratio of circulating gonadotropins:sex steroids reduces the incidence of AD. Together, these data support endocrine dyscrasia and the subsequent loss of cell cycle control as an important etiological event in the development of neurodegenerative diseases including AD, stroke and Parkinson's disease.
Collapse
Affiliation(s)
- Craig S Atwood
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA; Geriatric Research, Education and Clinical Center, Veterans Administration Hospital, Madison, WI 53705, USA; School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup, 6027 WA, Australia.
| | - Richard L Bowen
- OTB Research, 217 Calhoun St, Unit 1, Charleston, SC 29401, USA
| |
Collapse
|
161
|
Proteomics in Traditional Chinese Medicine with an Emphasis on Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:393510. [PMID: 26557146 PMCID: PMC4628675 DOI: 10.1155/2015/393510] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 07/27/2015] [Indexed: 12/12/2022]
Abstract
In recent years, there has been an increasing worldwide interest in traditional Chinese medicine (TCM). This increasing demand for TCM needs to be accompanied by a deeper understanding of the mechanisms of action of TCM-based therapy. However, TCM is often described as a concept of Chinese philosophy, which is incomprehensible for Western medical society, thereby creating a gap between TCM and Western medicine (WM). In order to meet this challenge, TCM research has applied proteomics technologies for exploring the mechanisms of action of TCM treatment. Proteomics enables TCM researchers to oversee various pathways that are affected by treatment, as well as the dynamics of their interactions with one another. This review discusses the utility of comparative proteomics to better understand how TCM treatment may be used as a complementary therapy for Alzheimer's disease (AD). Additionally, we review the data from comparative AD-related TCM proteomics studies and establish the relevance of the data with available AD hypotheses, most notably regarding the ubiquitin proteasome system (UPS).
Collapse
|
162
|
Pujol-Pina R, Vilaprinyó-Pascual S, Mazzucato R, Arcella A, Vilaseca M, Orozco M, Carulla N. SDS-PAGE analysis of Aβ oligomers is disserving research into Alzheimer´s disease: appealing for ESI-IM-MS. Sci Rep 2015; 5:14809. [PMID: 26450154 PMCID: PMC4598734 DOI: 10.1038/srep14809] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/09/2015] [Indexed: 12/20/2022] Open
Abstract
The characterization of amyloid-beta peptide (Aβ) oligomer forms and structures is crucial to the advancement in the field of Alzheimer´s disease (AD). Here we report a critical evaluation of two methods used for this purpose, namely sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), extensively used in the field, and ion mobility coupled to electrospray ionization mass spectrometry (ESI-IM-MS), an emerging technique with great potential for oligomer characterization. To evaluate their performance, we first obtained pure cross-linked Aβ40 and Aβ42 oligomers of well-defined order. Analysis of these samples by SDS-PAGE revealed that SDS affects the oligomerization state of Aβ42 oligomers, thus providing flawed information on their order and distribution. In contrast, ESI-IM-MS provided accurate information, while also reported on the chemical nature and on the structure of the oligomers. Our findings have important implications as they challenge scientific paradigms in the AD field built upon SDS-PAGE characterization of Aβ oligomer samples.
Collapse
Affiliation(s)
- Rosa Pujol-Pina
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, Barcelona 08028, Spain
| | | | - Roberta Mazzucato
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, Barcelona 08028, Spain
| | - Annalisa Arcella
- Joint IRB-BSC Research Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, Barcelona 08028, Spain
| | - Marta Vilaseca
- Mass Spectrometry Core Facility, Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, Barcelona 08028, Spain
| | - Modesto Orozco
- Joint IRB-BSC Research Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, Barcelona 08028, Spain.,Department of Biochemistry and Molecular Biology, University of Barcelona, Diagonal 647, Barcelona 08028, Spain
| | - Natàlia Carulla
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, Barcelona 08028, Spain
| |
Collapse
|
163
|
Wang X, Cui J, Li W, Zeng X, Zhao J, Pei G. γ-Secretase Modulators and Inhibitors Induce Different Conformational Changes of Presenilin 1 Revealed by FLIM and FRET. J Alzheimers Dis 2015; 47:927-37. [DOI: 10.3233/jad-150313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Xin Wang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Graduate School, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jin Cui
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Graduate School, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Li
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Graduate School, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xianglu Zeng
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jian Zhao
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Gang Pei
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, and the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
| |
Collapse
|
164
|
Ling IF, Golde TE, Galasko DR, Koo EH. Modulation of Aβ42 in vivo by γ-secretase modulator in primates and humans. ALZHEIMERS RESEARCH & THERAPY 2015; 7:55. [PMID: 26244059 PMCID: PMC4523931 DOI: 10.1186/s13195-015-0137-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/02/2015] [Indexed: 01/10/2023]
Abstract
Introduction Ibuprofen is one of the nonsteroidal anti-inflammatory drugs that have been shown to selectively lower pathogenic amyloid beta-peptide (Aβ)42 without impairing overall γ-secretase activity in vitro. This γ-secretase modulator (GSM) activity has been hypothesized to contribute to the reduction in risk of developing Alzheimer’s disease in chronic users of nonsteroidal anti-inflammatory drugs. However, it is unclear whether ibuprofen, within therapeutic dosing range, demonstrates GSM activity in humans. In this study, we evaluated the effects of ibuprofen and a second-generation GSM, GSM-1, on Aβ levels in cerebrospinal fluid and plasma of young nonhuman primates and humans. Methods Five to seven conscious cynomolgus monkeys (Macaca fascicularis) were nontreated or treated with 30 mg/kg GSM-1 or 50 or 100 mg/kg ibuprofen and the plasma and cerebrospinal fluid were sampled at −8, 0 (baseline or right before treatment), 2, 4, 6, 8, 12, and 24 h postdosing. In addition, sixteen healthy human subjects were randomly assigned to receive either placebo or 800 mg ibuprofen given by intravenous administration and plasma were collected at 0 (before drug infusion), 0.5, 1, 2, 4, 6, 8, 10, and 24 h after dosing. Results A single dose of GSM-1 (30 mg/kg) decreased the ratio of Aβ42 to Aβ40 to 60 % in plasma and the ratio of Aβ42 to total Aβ to 65 % in cerebrospinal fluid from baseline to postdosing in monkeys. However, no significant changes were detected following ibuprofen treatment at 100 mg/kg. Consistent with the results from nonhuman primates, ibuprofen did not alter plasma Aβ levels in human volunteers after a single 800 mg dose. Conclusions GSM-1 exerted potent lowering of the ratio of Aβ42 to Aβ40 in nonhuman primates but the hypothesized GSM activity of ibuprofen could not be demonstrated in nonhuman primates and humans after acute dosing.
Collapse
Affiliation(s)
- I-Fang Ling
- Department of Neurosciences, University of California, La Jolla, San Diego, CA USA
| | - Todd E Golde
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL USA
| | - Douglas R Galasko
- Department of Neurosciences, University of California, La Jolla, San Diego, CA USA
| | - Edward H Koo
- Department of Neurosciences, University of California, La Jolla, San Diego, CA USA ; Departments of Medicine and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
165
|
Cai Y, An SSA, Kim S. Mutations in presenilin 2 and its implications in Alzheimer's disease and other dementia-associated disorders. Clin Interv Aging 2015; 10:1163-72. [PMID: 26203236 PMCID: PMC4507455 DOI: 10.2147/cia.s85808] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Mutations in the genes encoding presenilin 1 (PSEN1), presenilin 2 (PSEN2), and amyloid precursor protein have been identified as the main genetic causes of familial AD. To date, more than 200 mutations have been described worldwide in PSEN1, which is highly homologous with PSEN2, while mutations in PSEN2 have been rarely reported. We performed a systematic review of studies describing the mutations identified in PSEN2. Most PSEN2 mutations were detected in European and in African populations. Only two were found in Korean populations. Interestingly, PSEN2 mutations appeared not only in AD patients but also in patients with other disorders, including frontotemporal dementia, dementia with Lewy bodies, breast cancer, dilated cardiomyopathy, and Parkinson's disease with dementia. Here, we have summarized the PSEN2 mutations and the potential implications of these mutations in dementia-associated disorders.
Collapse
Affiliation(s)
- Yan Cai
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam-si, Gyeonggi-do, South Korea
| | - Seong Soo A An
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam-si, Gyeonggi-do, South Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, South Korea
| |
Collapse
|
166
|
Vandal M, Bourassa P, Calon F. Can insulin signaling pathways be targeted to transport Aβ out of the brain? Front Aging Neurosci 2015; 7:114. [PMID: 26136681 PMCID: PMC4468380 DOI: 10.3389/fnagi.2015.00114] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 05/29/2015] [Indexed: 12/11/2022] Open
Abstract
Although the causal role of Amyloid-β (Aβ) in Alzheimer’s disease (AD) is unclear, it is still reasonable to expect that lowering concentrations of Aβ in the brain may decrease the risk of developing the neurocognitive symptoms of the disease. Brain capillary endothelial cells forming the blood-brain barrier (BBB) express transporters regulating the efflux of Aβ out of the cerebral tissue. Age-related BBB dysfunctions, that have been identified in AD patients, might impair Aβ clearance from the brain. Thus, targeting BBB outward transport systems has been suggested as a way to stimulate the clearance of Aβ from the brain. Recent data indicate that the increase in soluble brain Aβ and behavioral impairments in 3×Tg-AD mice generated by months of intake of a high-fat diet can be acutely reversed by the administration of a single dose of insulin. A concomitant increase in plasma Aβ suggests that clearance from the brain through the BBB is a likely mechanism for this rapid effect of insulin. Here, we review how BBB insulin response pathways could be stimulated to decrease brain Aβ concentrations and improve cognitive performance, at least on the short term.
Collapse
Affiliation(s)
- Milene Vandal
- Faculté de Pharmacie, Université Laval Quebec, QC, Canada ; Axe Neurosciences, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUL) Québec, QC, Canada ; Institut des Nutraceutiques et des Aliments Fonctionnels, Université Laval Québec, QC, Canada
| | - Philippe Bourassa
- Faculté de Pharmacie, Université Laval Quebec, QC, Canada ; Axe Neurosciences, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUL) Québec, QC, Canada ; Institut des Nutraceutiques et des Aliments Fonctionnels, Université Laval Québec, QC, Canada
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval Quebec, QC, Canada ; Axe Neurosciences, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUL) Québec, QC, Canada ; Institut des Nutraceutiques et des Aliments Fonctionnels, Université Laval Québec, QC, Canada
| |
Collapse
|
167
|
Chen M. The Maze of APP Processing in Alzheimer's Disease: Where Did We Go Wrong in Reasoning? Front Cell Neurosci 2015; 9:186. [PMID: 26052267 PMCID: PMC4447002 DOI: 10.3389/fncel.2015.00186] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/28/2015] [Indexed: 02/04/2023] Open
Abstract
Why has Alzheimer’s disease (AD) remained a conundrum today? The main reason is the stagnation in understanding the origins of plaques and tangles. While they are widely thought to be the products of the “aberrant” pathways, we believe that plaques and tangles result from natural aging. From this new perspective, we have proposed that age-related inefficiency of α-secretase is the underpinning for Aβ overproduction. This view contrasts sharply with the current doctrine that Aβ overproduction is the product of the “overactivated” β- and γ-secretases. Following this doctrine, it has been claimed that the two secretases are “positively identified” and that their inhibitors have “successfully reduced Aβ levels.” But, why have these studies not led to the understanding of AD or successful clinical trials? And if so, where did they go off course in reasoning? These questions may touch the basics of biological science and must be answered. In this paper, I dissected several prevailing assumptions and some influential reports with an attempt to trace the origins of the conundrum. This work led me to an original model for Aβ overproduction and also to a serious question: given the universal knowledge that boosting α-secretase reduces Aβ, a straightforward highway for intervention, then why is there such an obsession on “inhibiting β- and γ-secretases,” a much more costly and twisting road even if possible? This issue requires the attention of policymakers and all researchers. I therefore call for a game change in AD study.
Collapse
Affiliation(s)
- Ming Chen
- Aging Research Laboratory, Research and Development Service, Bay Pines VA Healthcare System , Bay Pines, FL , USA ; Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine , Tampa, FL , USA
| |
Collapse
|
168
|
Grimm MOW, Mett J, Stahlmann CP, Grösgen S, Haupenthal VJ, Blümel T, Hundsdörfer B, Zimmer VC, Mylonas NT, Tanila H, Müller U, Grimm HS, Hartmann T. APP intracellular domain derived from amyloidogenic β- and γ-secretase cleavage regulates neprilysin expression. Front Aging Neurosci 2015; 7:77. [PMID: 26074811 PMCID: PMC4443740 DOI: 10.3389/fnagi.2015.00077] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/24/2015] [Indexed: 01/30/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by an accumulation of Amyloid-β (Aβ), released by sequential proteolytic processing of the amyloid precursor protein (APP) by β - and γ-secretase. Aβ peptides can aggregate, leading to toxic Aβ oligomers and amyloid plaque formation. Aβ accumulation is not only dependent on de novo synthesis but also on Aβ degradation. Neprilysin (NEP) is one of the major enzymes involved in Aβ degradation. Here we investigate the molecular mechanism of NEP regulation, which is up to now controversially discussed to be affected by APP processing itself. We found that NEP expression is highly dependent on the APP intracellular domain (AICD), released by APP processing. Mouse embryonic fibroblasts devoid of APP processing, either by the lack of the catalytically active subunit of the γ-secretase complex [presenilin (PS) 1/2] or by the lack of APP and the APP-like protein 2 (APLP2), showed a decreased NEP expression, activity and protein level. Similar results were obtained by utilizing cells lacking a functional AICD domain (APPΔCT15) or expressing mutations in the genes encoding for PS1. AICD supplementation or retransfection with an AICD encoding plasmid could rescue the down-regulation of NEP further strengthening the link between AICD and transcriptional NEP regulation, in which Fe65 acts as an important adaptor protein. Especially AICD generated by the amyloidogenic pathway seems to be more involved in the regulation of NEP expression. In line, analysis of NEP gene expression in vivo in six transgenic AD mouse models (APP and APLP2 single knock-outs, APP/APLP2 double knock-out, APP-swedish, APP-swedish/PS1Δexon9, and APPΔCT15) confirmed the results obtained in cell culture. In summary, in the present study we clearly demonstrate an AICD-dependent regulation of the Aβ-degrading enzyme NEP in vitro and in vivo and elucidate the underlying mechanisms that might be beneficial to develop new therapeutic strategies for the treatment of AD.
Collapse
Affiliation(s)
- Marcus O W Grimm
- Department of Experimental Neurology, Saarland University Homburg, Germany ; Department of Neurodegeneration and Neurobiology, Saarland University Homburg, Germany ; Deutsches Institut für DemenzPrävention, Saarland University Homburg, Germany
| | - Janine Mett
- Department of Experimental Neurology, Saarland University Homburg, Germany
| | | | - Sven Grösgen
- Department of Experimental Neurology, Saarland University Homburg, Germany
| | - Viola J Haupenthal
- Department of Experimental Neurology, Saarland University Homburg, Germany
| | - Tamara Blümel
- Department of Experimental Neurology, Saarland University Homburg, Germany
| | | | - Valerie C Zimmer
- Department of Experimental Neurology, Saarland University Homburg, Germany
| | - Nadine T Mylonas
- Department of Experimental Neurology, Saarland University Homburg, Germany
| | - Heikki Tanila
- Department of Neurobiology, A.I. Virtanen Institute, University of Eastern Finland Kuopio, Finland ; Department of Neurology, Kuopio University Hospital Kuopio, Finland
| | - Ulrike Müller
- Department of Functional Genomics, Institute for Pharmacy and Molecular Biotechnology, Heidelberg University Heidelberg, Germany
| | - Heike S Grimm
- Department of Experimental Neurology, Saarland University Homburg, Germany
| | - Tobias Hartmann
- Department of Experimental Neurology, Saarland University Homburg, Germany ; Department of Neurodegeneration and Neurobiology, Saarland University Homburg, Germany ; Deutsches Institut für DemenzPrävention, Saarland University Homburg, Germany
| |
Collapse
|
169
|
Barone E, Mosser S, Fraering PC. Inactivation of brain Cofilin-1 by age, Alzheimer's disease and γ-secretase. Biochim Biophys Acta Mol Basis Dis 2015; 1842:2500-9. [PMID: 25315299 DOI: 10.1016/j.bbadis.2014.10.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/21/2014] [Accepted: 10/06/2014] [Indexed: 11/19/2022]
Abstract
Rapid remodeling of the actin cytoskeleton in the pre- and/or post-synaptic compartments is responsible for the regulation of neuronal plasticity,which is an important process for learning and memory. Cofilin1 plays an essential role in these processes and a dysregulation of its activity was associated with the cognitive decline observed during normal aging and Alzheimer's disease (AD). To understand the mechanism(s) regulating Cofilin1 activity we evaluated changes occurring with regard to Cofilin1 and its up-stream regulators Lim kinase-1 (LIMK1) and Slingshot phosphatase-1 (SSH1) in (i) human AD brain, (ii) 1-, 4-, and 10-months old APP/PS1 mice, (iii) wildtype 3-, 8-, 12-, 18- and 26-months old mice, as well as in cellular models including (iv) mouse primary cortical neurons (PCNs, cultured for 5, 10, 15 and 20 days in vitro) and (v) mouse embryonic fibroblasts (MEF). Interestingly,we found an increased Cofilin1 phosphorylation/inactivation with age and AD pathology, both in vivo and in vitro. These changes were associated with a major inactivation of SSH1. Interestingly, inhibition of ã-secretase activity with Compound-E (10 ìM) prevented Cofilin1 phosphorylation/inactivation through an increase of SSH1 activity in PCNs. Similarly, MEF cells double knock-out for ã-secretase catalytic subunits presenilin-1 and -2(MEFDKO) showed a strong decrease of both Cofilin1 and SSH1 phosphorylation,which were rescued by the over expression of human ã-secretase. Together, these results shed new light in understanding the molecular mechanisms promoting Cofilin1 dysregulation, both during aging and AD. They further have the potential to impact the development of therapies to safely treat AD.
Collapse
|
170
|
Busche MA, Konnerth A. Neuronal hyperactivity - A key defect in Alzheimer's disease? Bioessays 2015; 37:624-32. [DOI: 10.1002/bies.201500004] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/25/2015] [Accepted: 03/02/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Marc Aurel Busche
- Institute of Neuroscience; Technische Universität München; München Germany
- Department of Psychiatry and Psychotherapy; Technische Universität München; München Germany
- Munich Cluster for Systems Neurology (SyNergy) and Center for Integrated Protein Sciences (CIPSM); Technische Universität München; Munich Germany
| | - Arthur Konnerth
- Institute of Neuroscience; Technische Universität München; München Germany
- Munich Cluster for Systems Neurology (SyNergy) and Center for Integrated Protein Sciences (CIPSM); Technische Universität München; Munich Germany
| |
Collapse
|
171
|
Bohm C, Chen F, Sevalle J, Qamar S, Dodd R, Li Y, Schmitt-Ulms G, Fraser PE, St George-Hyslop PH. Current and future implications of basic and translational research on amyloid-β peptide production and removal pathways. Mol Cell Neurosci 2015; 66:3-11. [PMID: 25748120 PMCID: PMC4503820 DOI: 10.1016/j.mcn.2015.02.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 01/12/2023] Open
Abstract
Inherited variants in multiple different genes are associated with increased risk for Alzheimer's disease (AD). In many of these genes, the inherited variants alter some aspect of the production or clearance of the neurotoxic amyloid β-peptide (Aβ). Thus missense, splice site or duplication mutants in the presenilin 1 (PS1), presenilin 2 (PS2) or the amyloid precursor protein (APP) genes, which alter the levels or shift the balance of Aβ produced, are associated with rare, highly penetrant autosomal dominant forms of Familial Alzheimer's Disease (FAD). Similarly, the more prevalent late-onset forms of AD are associated with both coding and non-coding variants in genes such as SORL1, PICALM and ABCA7 that affect the production and clearance of Aβ. This review summarises some of the recent molecular and structural work on the role of these genes and the proteins coded by them in the biology of Aβ. We also briefly outline how the emerging knowledge about the pathways involved in Aβ generation and clearance can be potentially targeted therapeutically. This article is part of Special Issue entitled "Neuronal Protein".
Collapse
Affiliation(s)
- C Bohm
- Tanz Centre for Research in Neurodegenerative Diseases, Departments of Medicine, Laboratory Medicine and Pathobiology and Medical Biophysics, University of Toronto, Krembil Discovery Tower, 6th Floor-6KD417, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - F Chen
- Tanz Centre for Research in Neurodegenerative Diseases, Departments of Medicine, Laboratory Medicine and Pathobiology and Medical Biophysics, University of Toronto, Krembil Discovery Tower, 6th Floor-6KD417, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - J Sevalle
- Tanz Centre for Research in Neurodegenerative Diseases, Departments of Medicine, Laboratory Medicine and Pathobiology and Medical Biophysics, University of Toronto, Krembil Discovery Tower, 6th Floor-6KD417, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - S Qamar
- Cambridge Institute for Medical Research, Wellcome Trust MRC Building, Addenbrookes Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - R Dodd
- Cambridge Institute for Medical Research, Wellcome Trust MRC Building, Addenbrookes Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - Y Li
- Cambridge Institute for Medical Research, Wellcome Trust MRC Building, Addenbrookes Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - G Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, Departments of Medicine, Laboratory Medicine and Pathobiology and Medical Biophysics, University of Toronto, Krembil Discovery Tower, 6th Floor-6KD417, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - P E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, Departments of Medicine, Laboratory Medicine and Pathobiology and Medical Biophysics, University of Toronto, Krembil Discovery Tower, 6th Floor-6KD417, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - P H St George-Hyslop
- Tanz Centre for Research in Neurodegenerative Diseases, Departments of Medicine, Laboratory Medicine and Pathobiology and Medical Biophysics, University of Toronto, Krembil Discovery Tower, 6th Floor-6KD417, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada; Cambridge Institute for Medical Research, Wellcome Trust MRC Building, Addenbrookes Hospital, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
172
|
Abstract
Sporadic Alzheimer's disease (spAD) has three successive phases: preclinical, mild cognitive impairment, and dementia. Individuals in the preclinical phase are cognitively normal. Diagnosis of preclinical spAD requires evidence of pathologic brain changes provided by established biomarkers. Histopathologic features of spAD include (i) extra-cellular cerebral amyloid plaques and intracellular neurofibrillary tangles that embody hyperphosphorylated tau; and (ii) neuronal and synaptic loss. Amyloid-PET brain scans conducted during spAD's preclinical phase have disclosed abnormal accumulations of amyloid-beta (Aβ) in cognitively normal, high-risk individuals. However, this measure correlates poorly with changes in cognitive status. In contrast, MRI measures of brain atrophy consistently parallel cognitive deterioration. By the time dementia appears, amyloid deposition has already slowed or ceased. When a new treatment offers promise of arresting or delaying progression of preclinical spAD, its effectiveness must be inferred from intervention-correlated changes in biomarkers. Herein, differing tenets of the amyloid cascade hypothesis (ACH) and the mitochondrial cascade hypothesis (MCH) are compared. Adoption of the ACH suggests therapeutic research continue to focus on aspects of the amyloid pathways. Adoption of the MCH suggests research emphasis be placed on restoration and stabilization of mitochondrial function. Ketone ester (KE)-induced elevation of plasma ketone body (KB) levels improves mitochondrial metabolism and prevents or delays progression of AD-like pathologic changes in several AD animal models. Thus, as a first step, it is imperative to determine whether KE-caused hyperketonemia can bring about favorable changes in biomarkers of AD pathology in individuals who are in an early stage of AD's preclinical phase.
Collapse
Affiliation(s)
- Theodore B VanItallie
- Department of Medicine, St. Luke's Hospital, Columbia University College of Physicians & Surgeons, New York, NY 10025.
| |
Collapse
|
173
|
Cu2+ accentuates distinct misfolding of Aβ(1–40) and Aβ(1–42) peptides, and potentiates membrane disruption. Biochem J 2015; 466:233-42. [DOI: 10.1042/bj20141168] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cu2+ homoeostasis has been linked to Alzheimer's disease. We demonstrate that Cu2+ causes oligomer and protofibril formation for Aβ(1–42) only, and promotes membrane disruption. Differences in synaptic toxicity of Aβ(1–42) and Aβ(1–40) may be enhanced by the presence of Cu2+.
Collapse
|
174
|
Delgado-Cortés MJ, Espinosa-Oliva AM, Sarmiento M, Argüelles S, Herrera AJ, Mauriño R, Villarán RF, Venero JL, Machado A, de Pablos RM. Synergistic Deleterious Effect of Chronic Stress and Sodium Azide in the Mouse Hippocampus. Chem Res Toxicol 2015; 28:651-61. [DOI: 10.1021/tx5004408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- María José Delgado-Cortés
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Sevilla, 41012-Sevilla, Spain
- Instituto de Biomedicina
de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad
de Sevilla, 41013-Sevilla, Spain
| | - Ana M. Espinosa-Oliva
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Sevilla, 41012-Sevilla, Spain
- Instituto de Biomedicina
de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad
de Sevilla, 41013-Sevilla, Spain
| | - Manuel Sarmiento
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Sevilla, 41012-Sevilla, Spain
- Instituto de Biomedicina
de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad
de Sevilla, 41013-Sevilla, Spain
| | - Sandro Argüelles
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Sevilla, 41012-Sevilla, Spain
- Instituto de Biomedicina
de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad
de Sevilla, 41013-Sevilla, Spain
| | - Antonio J. Herrera
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Sevilla, 41012-Sevilla, Spain
- Instituto de Biomedicina
de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad
de Sevilla, 41013-Sevilla, Spain
| | - Raquel Mauriño
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Sevilla, 41012-Sevilla, Spain
- Instituto de Biomedicina
de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad
de Sevilla, 41013-Sevilla, Spain
| | - Ruth F. Villarán
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Sevilla, 41012-Sevilla, Spain
- Instituto de Biomedicina
de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad
de Sevilla, 41013-Sevilla, Spain
| | - José L. Venero
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Sevilla, 41012-Sevilla, Spain
- Instituto de Biomedicina
de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad
de Sevilla, 41013-Sevilla, Spain
| | - Alberto Machado
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Sevilla, 41012-Sevilla, Spain
- Instituto de Biomedicina
de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad
de Sevilla, 41013-Sevilla, Spain
| | - Rocío M. de Pablos
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Sevilla, 41012-Sevilla, Spain
- Instituto de Biomedicina
de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad
de Sevilla, 41013-Sevilla, Spain
| |
Collapse
|
175
|
Cavaleri F. Paradigm shift redefining molecular, metabolic and structural events in Alzheimer's disease involves a proposed contribution by transition metals. Defined lengthy preclinical stage provides new hope to circumvent advancement of disease- and age-related neurodegeneration. Med Hypotheses 2015; 84:460-9. [PMID: 25691377 DOI: 10.1016/j.mehy.2015.01.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 01/30/2015] [Indexed: 12/28/2022]
Abstract
It is estimated that 5.5 Million North Americans suffer from varying degrees of Alzheimer's disease (AD) and by the year 2050 it may be one in 85 people globally (100 Million). It will be shown that heavy metal toxicity plays a significant role in sporadic AD. Although current literature speaks to involvement of metal ions (via Fenton reaction), studies and reviewers have yet to link cellular events including known structural changes such as amyloid plaque development to this metal toxicity the way it is proposed here. Contrary to the current AD model which positions BACE1 (β-secretase) as an aberrant or AD-advancing enzyme, it is proposed herein that the neuron's protective counteraction to this metal toxicity is, in fact, a justified increase in BACE1 activity and amyloid precursor protein (APP) processing to yield more secreted APP (sAPP) and β-amyloid peptide in response to metal toxicity. This new perspective which justifies a functional role for APP, BACE1 enzyme activity and the peptide products from this activity may at first appear to be counterintuitive. Compelling evidence, however, is presented and a mechanism is shown herein that validate BACE1 recruitment and the resulting β-amyloid protein as strategic countermeasures serving the cell effectively against neuro-impeding disease. It is proposed that β-amyloid peptide chelates and sequesters free heavy metals in the extracellular medium to aggregate as amyloid plaque while unchelated β-amyloid migrates across the cell membrane to chelate intracellular free divalent metals. The sequestered intracellular metal is subsequently chaperoned as a metallo-peptide to cross the plasma membrane and aggregate as amyloid plaques extracellularly. The BACE1 countermeasure is not genetic or metabolic aberration; and this novel conclusion demonstrates that it must not be inhibited as currently targeted. APP, BACE1, β-amyloid peptide, and sAPP play positive roles against the preclinical oxidative load that predates AD symptoms for as long as 20 years. A healthy neuron may tolerate free metal toxicity, such as iron in the case of injury-induced amyloid, for as long as twenty years due to this very BACE1 activity. In later stages, the uncontrolled metals and ROS are compounded by other factors which together overcome this BACE1/β-amyloid protein countermeasure. This results in a sudden increase in IL-1 leading to Tau's hyperphosphorylation as cited and eventually to Tau dissociation from the microtubule cytoskeleton interrupting cell trafficking. At this later stage of AD the β-amyloid protein which once served as a vehicle to escort toxic metals to the extracellular medium and a trap to form a relatively benign extraneuronal disposal site is no longer translocated due to interruption of trafficking and now accumulates intracellularly facilitating hyper-oxidative ROS levels and contributes to irreversible neuron apoptosis.
Collapse
Affiliation(s)
- Franco Cavaleri
- Brain Research Center, UBC Hospital, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada.
| |
Collapse
|
176
|
Sethi M, Joshi SS, Webb RL, Beckett TL, Donohue KD, Murphy MP, O'Hara BF, Duncan MJ. Increased fragmentation of sleep-wake cycles in the 5XFAD mouse model of Alzheimer's disease. Neuroscience 2015; 290:80-9. [PMID: 25637807 PMCID: PMC4361816 DOI: 10.1016/j.neuroscience.2015.01.035] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 01/19/2023]
Abstract
Sleep perturbations including fragmented sleep with frequent night-time awakenings and daytime naps are common in patients with Alzheimer's disease (AD), and these daily disruptions are a major factor for institutionalization. The objective of this study was to investigate if sleep-wake patterns are altered in 5XFAD mice, a well-characterized double transgenic mouse model of AD which exhibits an early onset of robust AD pathology and memory deficits. These mice have five distinct human mutations in two genes, the amyloid precursor protein (APP) and Presenilin1 (PS1) engineered into two transgenes driven by a neuron-specific promoter (Thy1), and thus develop severe amyloid deposition by 4 months of age. Age-matched (4-6.5 months old) male and female 5XFAD mice were monitored and compared to wild-type littermate controls for multiple sleep traits using a non-invasive, high throughput, automated piezoelectric system which detects breathing and gross body movements to characterize sleep and wake. Sleep-wake patterns were recorded continuously under baseline conditions (undisturbed) for 3 days and after sleep deprivation of 4h, which in mice produces a significant sleep debt and challenge to sleep homeostasis. Under baseline conditions, 5XFAD mice exhibited shorter bout lengths (14% lower values for males and 26% for females) as compared to controls (p<0.001). In females, the 5XFAD mice also showed 12% less total sleep than WT (p<0.01). Bout length reductions were greater during the night (the active phase for mice) than during the day, which does not model the human condition of disrupted sleep at night (the inactive period). However, the overall decrease in bout length suggests increased fragmentation and disruption in sleep consolidation that may be relevant to human sleep. The 5XFAD mice may serve as a useful model for testing therapeutic strategies to improve sleep consolidation in AD patients.
Collapse
Affiliation(s)
- M Sethi
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - S S Joshi
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - R L Webb
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Sanders-Brown Center on Aging and Alzheimer's Disease Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - T L Beckett
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Sanders-Brown Center on Aging and Alzheimer's Disease Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - K D Donohue
- Department of Electrical and Computer Engineering, University of Kentucky, KY 40506, USA
| | - M P Murphy
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Sanders-Brown Center on Aging and Alzheimer's Disease Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - B F O'Hara
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - M J Duncan
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
177
|
Nayak A, Salt G, Verma SK, Kishore U. Proteomics Approach to Identify Biomarkers in Neurodegenerative Diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 121:59-86. [DOI: 10.1016/bs.irn.2015.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
178
|
Zhang X, Li Y, Xu H, Zhang YW. The γ-secretase complex: from structure to function. Front Cell Neurosci 2014; 8:427. [PMID: 25565961 PMCID: PMC4263104 DOI: 10.3389/fncel.2014.00427] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 11/27/2014] [Indexed: 12/21/2022] Open
Abstract
One of the most critical pathological features of Alzheimer’s disease (AD) is the accumulation of β-amyloid (Aβ) peptides that form extracellular senile plaques in the brain. Aβ is derived from β-amyloid precursor protein (APP) through sequential cleavage by β- and γ-secretases. γ-secretase is a high molecular weight complex minimally composed of four components: presenilins (PS), nicastrin, anterior pharynx defective 1 (APH-1), and presenilin enhancer 2 (PEN-2). In addition to APP, γ-secretase also cleaves many other type I transmembrane (TM) protein substrates. As a crucial enzyme for Aβ production, γ-secretase is an appealing therapeutic target for AD. Here, we summarize current knowledge on the structure and function of γ-secretase, as well as recent progress in developing γ-secretase targeting drugs for AD treatment.
Collapse
Affiliation(s)
- Xian Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University Xiamen, FJ, China
| | - Yanfang Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University Xiamen, FJ, China
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University Xiamen, FJ, China ; Degenerative Disease Research Program, Sanford-Burnham Medical Research Institute La Jolla, CA, USA
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University Xiamen, FJ, China
| |
Collapse
|
179
|
Chen M, Nguyen HT. Our "energy-Ca(2+) signaling deficits" hypothesis and its explanatory potential for key features of Alzheimer's disease. Front Aging Neurosci 2014; 6:329. [PMID: 25489296 PMCID: PMC4253736 DOI: 10.3389/fnagi.2014.00329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/10/2014] [Indexed: 12/15/2022] Open
Abstract
Sporadic Alzheimer's disease (sAD) has not been explained by any current theories, so new hypotheses are urgently needed. We proposed that "energy and Ca(2+) signaling deficits" are perhaps the earliest modifiable defects in brain aging underlying memory decline and tau deposits (by means of inactivating Ca(2+)-dependent protease calpain). Consistent with this hypothesis, we now notice that at least eight other known calpain substrates have also been reported to accumulate in aging and AD. Thus, protein accumulation or aggregation is not a "pathogenic" event, but occurs naturally and selectively to a peculiar family of proteins, and is best explained by calpain inactivation. Why are only calpain substrates accumulated and how can they stay for decades in the brain without being attacked by many other non-specific proteases there? We believe that these long-lasting puzzles can be explained by calpain's unique properties, especially its unusual specificity and exclusivity in substrate recognition, which can protect the substrates from other proteases' attacks after calpain inactivation. Interestingly, our model, in essence, may also explain tau phosphorylation and the formation of amyloid plaques. Our studies suggest that α-secretase is an energy-/Ca(2+)-dual dependent protease and is also the primary determinant for Aβ levels. Therefore, β- and γ-secretases can only play secondary roles and, by biological laws, they are unlikely to be "positively identified". This study thus raises serious questions for policymakers and researchers and these questions may help explain why sAD can remain an enigma today.
Collapse
Affiliation(s)
- Ming Chen
- Aging Research Laboratory, Research and Development Service, Bay Pines Veterans Affairs Healthcare System Bay Pines, FL, USA ; Department of Molecular Pharmacology and Physiology, University of South Florida Tampa, FL, USA
| | - Huey T Nguyen
- Aging Research Laboratory, Research and Development Service, Bay Pines Veterans Affairs Healthcare System Bay Pines, FL, USA
| |
Collapse
|
180
|
Identification of tetrahydrocarbazoles as novel multifactorial drug candidates for treatment of Alzheimer's disease. Transl Psychiatry 2014; 4:e489. [PMID: 25514752 PMCID: PMC4270312 DOI: 10.1038/tp.2014.132] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/12/2014] [Accepted: 11/17/2014] [Indexed: 01/08/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative brain disorder and the most frequent cause of dementia. To date, there are only a few approved drugs for AD, which show little or no effect on disease progression. Impaired intracellular calcium homeostasis is believed to occur early in the cascade of events leading to AD. Here, we examined the possibility of normalizing the disrupted calcium homeostasis in the endoplasmic reticulum (ER) store as an innovative approach for AD drug discovery. High-throughput screening of a small-molecule compound library led to the identification of tetrahydrocarbazoles, a novel multifactorial class of compounds that can normalize the impaired ER calcium homeostasis. We found that the tetrahydrocarbazole lead structure, first, dampens the enhanced calcium release from ER in HEK293 cells expressing familial Alzheimer's disease (FAD)-linked presenilin 1 mutations. Second, the lead structure also improves mitochondrial function, measured by increased mitochondrial membrane potential. Third, the same lead structure also attenuates the production of amyloid-beta (Aβ) peptides by decreasing the cleavage of amyloid precursor protein (APP) by β-secretase, without notably affecting α- and γ-secretase cleavage activities. Considering the beneficial effects of tetrahydrocarbazoles addressing three key pathological aspects of AD, these compounds hold promise for the development of potentially effective AD drug candidates.
Collapse
|
181
|
Gan KJ, Morihara T, Silverman MA. Atlas stumbled: Kinesin light chain-1 variant E triggers a vicious cycle of axonal transport disruption and amyloid-β generation in Alzheimer's disease. Bioessays 2014; 37:131-41. [DOI: 10.1002/bies.201400131] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Kathlyn J. Gan
- Department of Molecular Biology and Biochemistry; Simon Fraser University; Burnaby BC Canada
| | - Takashi Morihara
- Department of Psychiatry; Graduate School of Medicine; Osaka University; Osaka Japan
| | - Michael A. Silverman
- Department of Molecular Biology and Biochemistry; Simon Fraser University; Burnaby BC Canada
- Department of Biological Sciences; Simon Fraser University; Burnaby BC Canada
- Brain Research Centre; University of British Columbia; Vancouver BC Canada
| |
Collapse
|
182
|
Morris GP, Clark IA, Vissel B. Inconsistencies and controversies surrounding the amyloid hypothesis of Alzheimer's disease. Acta Neuropathol Commun 2014; 2:135. [PMID: 25231068 PMCID: PMC4207354 DOI: 10.1186/s40478-014-0135-5] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 08/30/2014] [Indexed: 12/16/2022] Open
Abstract
The amyloid hypothesis has driven drug development strategies for Alzheimer's disease for over 20 years. We review why accumulation of amyloid-beta (Aβ) oligomers is generally considered causal for synaptic loss and neurodegeneration in AD. We elaborate on and update arguments for and against the amyloid hypothesis with new data and interpretations, and consider why the amyloid hypothesis may be failing therapeutically. We note several unresolved issues in the field including the presence of Aβ deposition in cognitively normal individuals, the weak correlation between plaque load and cognition, questions regarding the biochemical nature, presence and role of Aβ oligomeric assemblies in vivo, the bias of pre-clinical AD models toward the amyloid hypothesis and the poorly explained pathological heterogeneity and comorbidities associated with AD. We also illustrate how extensive data cited in support of the amyloid hypothesis, including genetic links to disease, can be interpreted independently of a role for Aβ in AD. We conclude it is essential to expand our view of pathogenesis beyond Aβ and tau pathology and suggest several future directions for AD research, which we argue will be critical to understanding AD pathogenesis.
Collapse
Affiliation(s)
- Gary P Morris
- />Garvan Institute of Medical Research, Neuroscience Department, Neurodegenerative Disorders Laboratory, 384 Victoria Street, Darlinghurst, NSW 2010 Australia
- />Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Ian A Clark
- />Research School of Biology, Australian National University, Canberra, Australia
| | - Bryce Vissel
- />Garvan Institute of Medical Research, Neuroscience Department, Neurodegenerative Disorders Laboratory, 384 Victoria Street, Darlinghurst, NSW 2010 Australia
- />Faculty of Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
183
|
Pensalfini A, Albay R, Rasool S, Wu JW, Hatami A, Arai H, Margol L, Milton S, Poon WW, Corrada MM, Kawas CH, Glabe CG. Intracellular amyloid and the neuronal origin of Alzheimer neuritic plaques. Neurobiol Dis 2014; 71:53-61. [PMID: 25092575 DOI: 10.1016/j.nbd.2014.07.011] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/24/2014] [Accepted: 07/08/2014] [Indexed: 01/19/2023] Open
Abstract
Genetic analysis of familial forms of Alzheimer's disease (AD) causally links the proteolytic processing of the amyloid precursor protein (APP) and AD. However, the specific type of amyloid and mechanisms of amyloid pathogenesis remain unclear. We conducted a detailed analysis of intracellular amyloid with an aggregation specific conformation dependent monoclonal antibody, M78, raised against fibrillar Aß42. M78 immunoreactivity colocalizes with Aß and the carboxyl terminus of APP (APP-CTF) immunoreactivities in perinuclear compartments at intermediate times in 10month 3XTg-AD mice, indicating that this represents misfolded and aggregated protein rather than normally folded APP. At 12months, M78 immunoreactivity also accumulates in the nucleus. Neuritic plaques at 12months display the same spatial organization of centrally colocalized M78, diffuse chromatin and neuronal nuclear NeuN staining surrounded by peripheral M78 and APP-CTF immunoreactivity as observed in neurons, indicating that neuritic plaques arise from degenerating neurons with intracellular amyloid immunoreactivity. The same staining pattern was observed in neuritic plaques in human AD brains, showing elevated intracellular M78 immunoreactivity at intermediate stages of amyloid pathology (Braak A and B) compared to no amyloid pathology and late stage amyloid pathology (Braak 0 and C, respectively). These results indicate that intraneuronal protein aggregation and amyloid accumulation is an early event in AD and that neuritic plaques are initiated by the degeneration and death of neurons by a mechanism that may be related to the formation of extracellular traps by neutrophils.
Collapse
Affiliation(s)
- Anna Pensalfini
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA.
| | - Ricardo Albay
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Suhail Rasool
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Jessica W Wu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Asa Hatami
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Hiromi Arai
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Lawrence Margol
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Saskia Milton
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Wayne W Poon
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Maria M Corrada
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA; Department of Neurology, University of California, Irvine, CA 92697, USA
| | - Claudia H Kawas
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA; Department of Neurology, University of California, Irvine, CA 92697, USA; Department of Neurobiology & Behavior, University of California, Irvine, CA 92697, USA
| | - Charles G Glabe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA; Biochemistry Department and Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
184
|
Menting KW, Claassen JAHR. β-secretase inhibitor; a promising novel therapeutic drug in Alzheimer's disease. Front Aging Neurosci 2014; 6:165. [PMID: 25100992 PMCID: PMC4104928 DOI: 10.3389/fnagi.2014.00165] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/30/2014] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) and vascular dementia are responsible for up to 90% of dementia cases. According to the World Health Organization (WHO), a staggering number of 35.6 million people are currently diagnosed with dementia. Blocking disease progression or preventing AD altogether is desirable for both social and economic reasons and recently focus has shifted to a new and promising drug: the β-secretase inhibitor. Much of AD research has investigated the amyloid cascade hypothesis, which postulates that AD is caused by changes in amyloid beta (Aβ) stability and aggregation. Blocking Aβ production by inhibiting the first protease required for its generation, β-secretase/BACE1, may be the next step in blocking AD progression. In April 2012, promising phase I data on inhibitor MK-8931 was presented. This drug reduced Aβ cerebral spinal fluids (CSF) levels up to 92% and was well tolerated by patients. In March 2013 data was added from a one week trial in 32 mild to moderate AD patients, showing CSF Aβ levels decreased up to 84%. However, β-site APP cleaving enzyme 1 (BACE1) inhibitors require further research. First, greatly reducing Aβ levels through BACE1 inhibition may have harmful side effects. Second, BACE1 inhibitors have yet to pass clinical trial phase II/III and no data on possible side effects on AD patients are available. And third, there remains doubt about the clinical efficacy of BACE1 inhibitors. In moderate AD patients, Aβ plaques have already been formed. BACE1 inhibitors prevent production of new Aβ plaques, but hypothetically do not influence already existing Aβ peptides. Therefore, BACE1 inhibitors are potentially better at preventing AD instead of having therapeutic use.
Collapse
Affiliation(s)
- Kelly Willemijn Menting
- Department of Geriatric Medicine and Radboud Alzheimer Center, Radboud University Medical Center Nijmegen, Gelderland, Netherlands
| | - Jurgen A H R Claassen
- Department of Geriatric Medicine and Radboud Alzheimer Center, Radboud University Medical Center Nijmegen, Gelderland, Netherlands
| |
Collapse
|
185
|
Inhibition of stress induced premature senescence in presenilin-1 mutated cells with water soluble Coenzyme Q10. Mitochondrion 2014; 17:106-15. [PMID: 25034304 DOI: 10.1016/j.mito.2014.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/28/2014] [Accepted: 07/09/2014] [Indexed: 01/05/2023]
Abstract
A water-soluble formulation of CoQ10 (WS-CoQ10) was shown to stabilize mitochondria and prevent oxidative stress-induced neuronal death. Presenilin-1 (PS-1)-mutated Alzheimer's Disease (AD) fibroblasts (PSAF) were used for studying the effects of PS-1 mutation. PS-1 mutation correlated to increased reactive oxygen species (ROS) production and stress induced premature senescence (SIPS) in PSAF; WS-CoQ10 treatment decreased ROS generation, increased population doublings, and postponed SIPS. Treated PSAF had higher PCNA expression, and lower levels of MnSOD, p21, p16Ink4A, and Rb. WS-CoQ10 caused the resumption of autophagy in PSAF. Thus, WS-CoQ10 as inhibitor of SIPS and ameliorator of autophagy could be an effective prophylactic/therapeutic agent for AD.
Collapse
|
186
|
Neha, Sodhi RK, Jaggi AS, Singh N. Animal models of dementia and cognitive dysfunction. Life Sci 2014; 109:73-86. [DOI: 10.1016/j.lfs.2014.05.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/16/2014] [Accepted: 05/22/2014] [Indexed: 12/28/2022]
|
187
|
Wolfe MS. Unlocking truths of γ-secretase in Alzheimer's disease: what is the translational potential? FUTURE NEUROLOGY 2014; 9:419-429. [PMID: 26146489 DOI: 10.2217/fnl.14.35] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Considerable evidence, particularly from genetics, points to the aggregation-prone amyloid β-peptide as a pathogenic entity in Alzheimer's disease. Hence, the proteases that produce this peptide from its precursor protein have been prime targets for the development of potential therapeutics. One of these proteases, γ-secretase, has been a particular focus. Many inhibitors and modulators of this membrane-embedded protease complex have been identified, with some brought into late-stage clinical trials, where they have spectacularly failed. The reasons for these failures will be discussed, along with recent findings on the mechanism of γ-secretase and of Alzheimer-causing mutations that may suggest new strategies for targeting this enzyme.
Collapse
Affiliation(s)
- Michael S Wolfe
- Center for Neurologic Disease, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Tel.: +1 617 525 5511
| |
Collapse
|
188
|
Johnson RD, Steel DG, Gafni A. Structural evolution and membrane interactions of Alzheimer's amyloid-beta peptide oligomers: new knowledge from single-molecule fluorescence studies. Protein Sci 2014; 23:869-83. [PMID: 24753305 DOI: 10.1002/pro.2479] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 04/15/2014] [Accepted: 04/17/2014] [Indexed: 02/05/2023]
Abstract
Amyloid-β peptide (Aβ) oligomers may represent the proximal neurotoxin in Alzheimer's disease. Single-molecule microscopy (SMM) techniques have recently emerged as a method for overcoming the innate difficulties of working with amyloid-β, including the peptide's low endogenous concentrations, the dynamic nature of its oligomeric states, and its heterogeneous and complex membrane interactions. SMM techniques have revealed that small oligomers of the peptide bind to model membranes and cells at low nanomolar-to-picomolar concentrations and diffuse at rates dependent on the membrane characteristics. These methods have also shown that oligomers grow or dissociate based on the presence of specific inhibitors or promoters and on the ratio of Aβ40 to Aβ42. Here, we discuss several types of single-molecule imaging that have been applied to the study of Aβ oligomers and their membrane interactions. We also summarize some of the recent insights SMM has provided into oligomer behavior in solution, on planar lipid membranes, and on living cell membranes. A brief overview of the current limitations of the technique, including the lack of sensitive assays for Aβ-induced toxicity, is included in hopes of inspiring future development in this area of research.
Collapse
Affiliation(s)
- Robin D Johnson
- Department of Biophysics, The University of Michigan, Ann Arbor, Michigan, 48109; University of Michigan Medical School, The University of Michigan, Ann Arbor, Michigan, 48105
| | | | | |
Collapse
|
189
|
Age-associated dysregulation of microglial activation is coupled with enhanced blood-brain barrier permeability and pathology in APP/PS1 mice. Neurobiol Aging 2014; 35:1442-52. [DOI: 10.1016/j.neurobiolaging.2013.12.026] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 12/20/2013] [Accepted: 12/21/2013] [Indexed: 11/17/2022]
|
190
|
Wanngren J, Lara P, Ojemalm K, Maioli S, Moradi N, Chen L, Tjernberg LO, Lundkvist J, Nilsson I, Karlström H. Changed membrane integration and catalytic site conformation are two mechanisms behind the increased Aβ42/Aβ40 ratio by presenilin 1 familial Alzheimer-linked mutations. FEBS Open Bio 2014; 4:393-406. [PMID: 24918054 PMCID: PMC4050182 DOI: 10.1016/j.fob.2014.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 04/16/2014] [Accepted: 04/17/2014] [Indexed: 01/11/2023] Open
Abstract
Familial Alzheimer disease (FAD) mutations affect presenilin membrane integration. The transmembrane domains around the catalytic site are vulnerable to changes. All FAD mutations cause changes in the active site of the γ-secretase complex. The FAD mutants lead to a complex processing pattern of the amyloid precursor protein.
The enzyme complex γ-secretase generates amyloid β-peptide (Aβ), a 37–43-residue peptide associated with Alzheimer disease (AD). Mutations in presenilin 1 (PS1), the catalytical subunit of γ-secretase, result in familial AD (FAD). A unifying theme among FAD mutations is an alteration in the ratio Aβ species produced (the Aβ42/Aβ40 ratio), but the molecular mechanisms responsible remain elusive. In this report we have studied the impact of several different PS1 FAD mutations on the integration of selected PS1 transmembrane domains and on PS1 active site conformation, and whether any effects translate to a particular amyloid precursor protein (APP) processing phenotype. Most mutations studied caused an increase in the Aβ42/Aβ40 ratio, but via different mechanisms. The mutations that caused a particular large increase in the Aβ42/Aβ40 ratio did also display an impaired APP intracellular domain (AICD) formation and a lower total Aβ production. Interestingly, seven mutations close to the catalytic site caused a severely impaired integration of proximal transmembrane/hydrophobic sequences into the membrane. This structural defect did not correlate to a particular APP processing phenotype. Six selected FAD mutations, all of which exhibited different APP processing profiles and impact on PS1 transmembrane domain integration, were found to display an altered active site conformation. Combined, our data suggest that FAD mutations affect the PS1 structure and active site differently, resulting in several complex APP processing phenotypes, where the most aggressive mutations in terms of increased Aβ42/Aβ40 ratio are associated with a decrease in total γ-secretase activity.
Collapse
Key Words
- AD, Alzheimer disease
- AICD, amyloid precursor protein intracellular domain
- APP, amyloid precursor protein
- Alzheimer disease
- Amyloid β-peptide
- Aβ, amyloid-β peptide
- BD8, blastocyst-derived embryonic stem cells
- Bis-Tris, 2-(bis(2-hydroxyethyl)amino)-2-(hydroxymethyl)propane-1,3-diol
- CHAPSO, 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonic acid
- CRM, column-washed dog pancreas rough microsomes
- CTF, C-terminal fragment
- ER, endoplasmic reticulum
- Endo H, endoglycosidase H
- FAD, familial AD
- FLIM/FRET, Fluorescence Lifetime Imaging/ Fluorescence Resonance Energy Transfer
- GCB, γ-secretase inhibitor coupled to biotin
- GVP, Gal4VP16
- Lep, leader peptidase
- MGD, minimal glycosylation distance
- MSD, Meso Scale Discovery
- Membrane integration
- NTF, N-terminal fragment
- PS, presenilin
- Protein structure
- RM, rough microsomes
- TMD, transmembrane domains
- WT, wild type
- γ-Secretase
Collapse
Affiliation(s)
- Johanna Wanngren
- Department of NVS, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Patricia Lara
- Department of Biochemistry & Biophysics, Stockholm University, Stockholm, Sweden
| | - Karin Ojemalm
- Department of Biochemistry & Biophysics, Stockholm University, Stockholm, Sweden
| | - Silvia Maioli
- Department of NVS, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Nasim Moradi
- Department of Biochemistry & Biophysics, Stockholm University, Stockholm, Sweden
| | - Lu Chen
- Department of Biochemistry & Biophysics, Stockholm University, Stockholm, Sweden
| | - Lars O Tjernberg
- Department of NVS, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | | | - IngMarie Nilsson
- Department of Biochemistry & Biophysics, Stockholm University, Stockholm, Sweden
| | - Helena Karlström
- Department of NVS, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
191
|
Kuwabara Y, Ishizeki M, Watamura N, Toba J, Yoshii A, Inoue T, Ohshima T. Impairments of long-term depression induction and motor coordination precede Aβ accumulation in the cerebellum of APPswe/PS1dE9 double transgenic mice. J Neurochem 2014; 130:432-43. [DOI: 10.1111/jnc.12728] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 03/23/2014] [Accepted: 03/27/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Yuki Kuwabara
- Laboratory for Molecular Brain Science; Department of Life Science and Medical Bioscience; Waseda University; Tokyo Japan
| | - Masato Ishizeki
- Laboratory of Neurophysiology; Department of Life Science and Medical Bioscience; Waseda University; Tokyo Japan
| | - Naoto Watamura
- Laboratory for Molecular Brain Science; Department of Life Science and Medical Bioscience; Waseda University; Tokyo Japan
| | - Junya Toba
- Laboratory for Molecular Brain Science; Department of Life Science and Medical Bioscience; Waseda University; Tokyo Japan
| | - Aya Yoshii
- Laboratory for Molecular Brain Science; Department of Life Science and Medical Bioscience; Waseda University; Tokyo Japan
| | - Takafumi Inoue
- Laboratory of Neurophysiology; Department of Life Science and Medical Bioscience; Waseda University; Tokyo Japan
| | - Toshio Ohshima
- Laboratory for Molecular Brain Science; Department of Life Science and Medical Bioscience; Waseda University; Tokyo Japan
- Laboratory for Developmental Neurobiology; RIKEN Brain Science Institute; Wako Saitama Japan
| |
Collapse
|
192
|
Puzzo D, Lee L, Palmeri A, Calabrese G, Arancio O. Behavioral assays with mouse models of Alzheimer's disease: practical considerations and guidelines. Biochem Pharmacol 2014; 88:450-67. [PMID: 24462904 PMCID: PMC4014001 DOI: 10.1016/j.bcp.2014.01.011] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 12/14/2022]
Abstract
In Alzheimer's disease (AD) basic research and drug discovery, mouse models are essential resources for uncovering biological mechanisms, validating molecular targets and screening potential compounds. Both transgenic and non-genetically modified mouse models enable access to different types of AD-like pathology in vivo. Although there is a wealth of genetic and biochemical studies on proposed AD pathogenic pathways, as a disease that centrally features cognitive failure, the ultimate readout for any interventions should be measures of learning and memory. This is particularly important given the lack of knowledge on disease etiology - assessment by cognitive assays offers the advantage of targeting relevant memory systems without requiring assumptions about pathogenesis. A multitude of behavioral assays are available for assessing cognitive functioning in mouse models, including ones specific for hippocampal-dependent learning and memory. Here we review the basics of available transgenic and non-transgenic AD mouse models and detail three well-established behavioral tasks commonly used for testing hippocampal-dependent cognition in mice - contextual fear conditioning, radial arm water maze and Morris water maze. In particular, we discuss the practical considerations, requirements and caveats of these behavioral testing paradigms.
Collapse
Affiliation(s)
- Daniela Puzzo
- Department of Bio-Medical Sciences - Section of Physiology, University of Catania, Viale A. Doria 6, Catania 95125, Italy
| | - Linda Lee
- Department of Pathology & Cell Biology, The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, P&S #12-420D, 630W 168th Street, New York, NY 10032, USA
| | - Agostino Palmeri
- Department of Bio-Medical Sciences - Section of Physiology, University of Catania, Viale A. Doria 6, Catania 95125, Italy
| | - Giorgio Calabrese
- Department of Pharmacy, Federico II University, Via D. Montesano 49, Naples 80131, Italy
| | - Ottavio Arancio
- Department of Pathology & Cell Biology, The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, P&S #12-420D, 630W 168th Street, New York, NY 10032, USA.
| |
Collapse
|
193
|
Wang XL, Zeng J, Feng J, Tian YT, Liu YJ, Qiu M, Yan X, Yang Y, Xiong Y, Zhang ZH, Wang Q, Wang JZ, Liu R. Helicobacter pylori filtrate impairs spatial learning and memory in rats and increases β-amyloid by enhancing expression of presenilin-2. Front Aging Neurosci 2014; 6:66. [PMID: 24782763 PMCID: PMC3990046 DOI: 10.3389/fnagi.2014.00066] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/25/2014] [Indexed: 12/20/2022] Open
Abstract
Helicobacter pylori (H. pylori) infection is related with a high risk of Alzheimer's disease (AD), but the intrinsic link between H. pylori infection and AD development is still missing. In the present study, we explored the effect of H. pylori infection on cognitive function and β-amyloid production in rats. We found that intraperitoneal injection of H. pylori filtrate induced spatial learning and memory deficit in rats with a simultaneous retarded dendritic spine maturation in hippocampus. Injection of H. pylori filtrate significantly increased Aβ42 both in the hippocampus and cortex, together with an increased level of presenilin-2 (PS-2), one key component of γ-secretase involved in Aβ production. Incubation of H. pylori filtrate with N2a cells which over-express amyloid precursor protein (APP) also resulted in increased PS-2 expression and Aβ42 overproduction. Injection of Escherichia coli (E.coli) filtrate, another common intestinal bacterium, had no effect on cognitive function in rats and Aβ production in rats and cells. These data suggest a specific effect of H. pylori on cognition and Aβ production. We conclude that soluble surface fractions of H. pylori may promote Aβ42 formation by enhancing the activity of γ-secretase, thus induce cognitive impairment through interrupting the synaptic function.
Collapse
Affiliation(s)
- Xiu-Lian Wang
- Key Laboratory of Neurological Disease, Ministry of Education, Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China ; Department of Pathology, Hubei University of Chinese Medicine Wuhan, China
| | - Ji Zeng
- Department of Clinical Laboratory, Wuhan Pu Ai Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Jin Feng
- Key Laboratory of Neurological Disease, Ministry of Education, Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Yi-Tao Tian
- Key Laboratory of Neurological Disease, Ministry of Education, Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Yu-Jian Liu
- Key Laboratory of Neurological Disease, Ministry of Education, Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Mei Qiu
- Key Laboratory of Neurological Disease, Ministry of Education, Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Xiong Yan
- Key Laboratory of Neurological Disease, Ministry of Education, Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Yang Yang
- Key Laboratory of Neurological Disease, Ministry of Education, Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Yan Xiong
- Key Laboratory of Neurological Disease, Ministry of Education, Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Zhi-Hua Zhang
- Department of Pathology, Hubei University of Chinese Medicine Wuhan, China
| | - Qun Wang
- Key Laboratory of Neurological Disease, Ministry of Education, Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Jian-Zhi Wang
- Key Laboratory of Neurological Disease, Ministry of Education, Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Rong Liu
- Key Laboratory of Neurological Disease, Ministry of Education, Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| |
Collapse
|
194
|
Novel presenilin mutations within Moroccan patients with Early-Onset Alzheimer's Disease. Neuroscience 2014; 269:215-22. [PMID: 24704512 DOI: 10.1016/j.neuroscience.2014.03.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 03/06/2014] [Accepted: 03/26/2014] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease (AD) is a progressive brain disorder that causes gradual and irreversible loss of higher brain functions and is the most common cause of dementia in the elderly, as assessed by autopsy and clinical series. Furthermore, it has an annual incidence of approximately 3% in the 65-74-year-old age group. This incidence rate doubles with every increment of 5 years above the age of 65. In Morocco, AD affects almost 30,000 individuals and this number will possibly increase to 75,000 by 2020 (projections of the World Health Organization (WHO)). Genetically, AD is caused by a mutation in one of at least 3 genes: presenilin 1 (PS1), presenilin 2 (PS2) and the amyloid precursor protein (APP). Most cases are late onset and apparently sporadic, most likely as a result of a combination of environmental and non-dominant genetic factors. In Morocco, the genes predisposing individuals to AD and predicting disease incidence remain elusive. The purpose of the present study was to evaluate the genetic contribution of mutations in PS1 and PS2 genes to familial early-onset AD cases and sporadic late-onset AD cases. Seventeen sporadic late-onset AD cases and eight familial early-onset AD cases were seen at the memory clinic of the University of Casablanca Neurology Department. These patients underwent standard somatic neurological examination, cognitive function assessment, brain imaging and laboratory tests. Direct sequencing of each exon in PS1 and PS2 genes was performed on genomic DNA of AD patients. Further, we identified 1 novel frameshift mutation in the PS1 gene and 2 novel frameshift mutations in the PS2 gene. Our mutational analysis reports a correlation between clinical symptoms and genetic factors in our cases of Early-Onset Alzheimer's Disease (EOAD). These putative mutations cosegregate with affected family members suggesting a direct mutagenic effect.
Collapse
|
195
|
Liao D, Miller EC, Teravskis PJ. Tau acts as a mediator for Alzheimer's disease-related synaptic deficits. Eur J Neurosci 2014; 39:1202-13. [PMID: 24712999 PMCID: PMC3983570 DOI: 10.1111/ejn.12504] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/04/2014] [Accepted: 01/06/2014] [Indexed: 12/11/2022]
Abstract
The two histopathological hallmarks of Alzheimer's disease (AD) are amyloid plaques containing multiple forms of amyloid beta (Aβ) and neurofibrillary tangles containing phosphorylated tau proteins. As mild cognitive impairment frequently occurs long before the clinical diagnosis of AD, the scientific community has been increasingly interested in the roles of Aβ and tau in earlier cellular changes that lead to functional deficits. Therefore, great progress has recently been made in understanding how Aβ or tau causes synaptic dysfunction. However, the interaction between the Aβ and tau-initiated intracellular cascades that lead to synaptic dysfunction remains elusive. The cornerstone of the two-decade-old hypothetical amyloid cascade model is that amyloid pathologies precede tau pathologies. Although the premise of Aβ-tau pathway remains valid, the model keeps evolving as new signaling events are discovered that lead to functional deficits and neurodegeneration. Recent progress has been made in understanding Aβ-PrP(C) -Fyn-mediated neurotoxicity and synaptic deficits. Although still elusive, many novel upstream and downstream signaling molecules have been found to modulate tau mislocalization and tau hyperphosphorylation. Here we will discuss the mechanistic interactions between Aβ-PrP(C) -mediated neurotoxicity and tau-mediated synaptic deficits in an updated amyloid cascade model with calcium and tau as the central mediators.
Collapse
Affiliation(s)
- Dezhi Liao
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN 55455
| | - Eric C. Miller
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN 55455
| | - Peter J. Teravskis
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN 55455
- College of Biological Sciences University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
196
|
Development of a novel cellular model of Alzheimer's disease utilizing neurosphere cultures derived from B6C3-Tg(APPswe,PSEN1dE9)85Dbo/J embryonic mouse brain. SPRINGERPLUS 2014; 3:161. [PMID: 25140287 PMCID: PMC4137416 DOI: 10.1186/2193-1801-3-161] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 03/07/2014] [Indexed: 12/29/2022]
Abstract
Increased production, oligomerization and aggregation of amyloid-β (Aβ) peptides are hallmark pathologies of Alzheimer’s disease (AD). Expressing familial AD mutations (amyloid precursor protein and/or presenilins mutations), the Aβ-pathologies of AD has been recapitulated in animal models of AD. Very few primary cell culture-based models of AD are available and they exhibit very weak Aβ-pathologies compared to what is seen in AD patients and animal models of AD. CNS stem/progenitor cells are present in both embryonic and adult brains. They can be isolated, grown as neurospheres and differentiated into neurons, astrocytes and oligodendrocytes. It is not yet known whether CNS stem/progenitor cells can support the production of Aβ peptides in culture. In this report, we have established Aβ-pathologies such as production, secretion, oligomerization and aggregation of Aβ peptides utilizing neurosphere cultures to create a new cellular model of AD. These cultures were developed from E15 embryonic brains of transgenic mice carrying the Swedish mutations in humanized mouse APP cDNA and the exon-9 deleted human presenilin 1 cDNA both regulated by mouse prion protein gene (Prnp) promoter. Results demonstrated the expression of transgene transcripts, APPswe protein and its processed products only in transgene positive neurosphere cultures. These cultures generate and secrete both Aβ40 and Aβ42 peptides into culture medium at levels comparable to the Aβ load in the brain of AD patients and animal models of AD, and produce pathogenic oligomers of Aβ peptides. The Aβ42/Aβ40 ratio in the medium of transgene positive neurosphere cultures is higher than any known cellular models of AD. Conformation dependent immunocytochemistry demonstrated the possible presence of intracellular and extracellular aggregation of Aβ peptides in neurosphere cultures, which are also seen in AD brain and animal models of AD. Collectively, our neurosphere cultures provide robust Aβ-pathologies of AD better than existing cellular model of Alzheimer’s disease.
Collapse
|
197
|
Abstract
As radiologists, our role in the workup of the dementia patient has long been limited by the sensitivity of our imaging tools and lack of effective treatment options. Over the past 30 years, we have made tremendous strides in understanding the genetic, molecular, and cellular basis of Alzheimer disease (AD). We now know that the pathologic features of AD are present 1 to 2 decades prior to development of symptoms, though currently approved symptomatic therapies are administered much later in the disease course. The search for true disease-modifying therapy continues and many clinical trials are underway. Current outcome measures, based on cognitive tests, are relatively insensitive to pathologic disease progression, requiring long, expensive trials with large numbers of participants. Biomarkers, including neuroimaging, have great potential to increase the power of trials by matching imaging methodology with therapeutic mechanism. One of the most important advances over the past decade has been the development of in vivo imaging probes targeted to amyloid beta protein, and one agent is already available for clinical use. Additional advances include automated volumetric imaging methods to quantitate cerebral volume loss. Use of such techniques in small, early phase trials are expected to significantly increase the number and quality of candidate drugs for testing in larger trials. In addition to a critical role in trials, structural, molecular, and functional imaging techniques can give us a window on the etiology of AD and other neurodegenerative diseases. This combination of developments has potential to bring diagnostic radiology to the forefront in AD research, therapeutic trials, and patient care.
Collapse
Affiliation(s)
- Jeffrey R Petrella
- From the Division of Neuroradiology, Duke University Medical Center, DUMC-Box 3808, Durham, NC
| |
Collapse
|
198
|
A lifespan observation of a novel mouse model: in vivo evidence supports aβ oligomer hypothesis. PLoS One 2014; 9:e85885. [PMID: 24465766 PMCID: PMC3897547 DOI: 10.1371/journal.pone.0085885] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/03/2013] [Indexed: 12/31/2022] Open
Abstract
Transgenic mouse models are powerful tools in exploring the mechanisms of AD. Most current transgenic models of AD mimic the memory impairment and the main pathologic features, among which the formation of beta-amyloid (Aβ) plaques is considered a dominant pathologic event. Recently, Aβ oligomers have been identified as more neurotoxic than Aβ plaques. However, no ideal transgenic mouse model directly support Aβ oligomers as a neurotoxic species due to the puzzling effects of amyloid plaques in the more widely-used models. Here, we constructed a single-mutant transgenic (Tg) model harboring the PS1V97L mutation and used Non-Tg littermates as a control group. Employing the Morris water maze, electrophysiology, immunohistochemistry, biochemistry, and electron microscopy, we investigated behavioral changes and pathology progression in our single-mutant transgenic model. We discovered the pathological alteration of intraneuronal accumulation of Aβ oligomers without Aβ plaques in the PS1V97L-Tg mouse model, which might be the result of PS1 gene mutation. Following Aβ oligomers, we detected synaptic alteration, tau hyperphosphorylation and glial activation. This model supports an initial role for Aβ oligomers in the onset of AD and suggests that Aβ plaques may not be the only prerequisite. This model provides a useful tool for studying the role of Aβ oligomers in AD pathogenesis.
Collapse
|
199
|
Early onset Alzheimer's disease and oxidative stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:375968. [PMID: 24669286 PMCID: PMC3942075 DOI: 10.1155/2014/375968] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/18/2013] [Indexed: 01/30/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in elderly adults. It is estimated that 10% of the world's population aged more than 60-65 years could currently be affected by AD, and that in the next 20 years, there could be more than 30 million people affected by this pathology. One of the great challenges in this regard is that AD is not just a scientific problem; it is associated with major psychosocial and ethical dilemmas and has a negative impact on national economies. The neurodegenerative process that occurs in AD involves a specific nervous cell dysfunction, which leads to neuronal death. Mutations in APP, PS1, and PS2 genes are causes for early onset AD. Several animal models have demonstrated that alterations in these proteins are able to induce oxidative damage, which in turn favors the development of AD. This paper provides a review of many, although not all, of the mutations present in patients with familial Alzheimer's disease and the association between some of these mutations with both oxidative damage and the development of the pathology.
Collapse
|
200
|
Relkin NR. Beyond symptomatic therapy: a re-examination of acetylcholinesterase inhibitors in Alzheimer’s disease. Expert Rev Neurother 2014; 7:735-48. [PMID: 17561789 DOI: 10.1586/14737175.7.6.735] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Acetylcholinesterase inhibitors (AChEIs) are generally regarded as palliative treatments for Alzheimer's disease that slow the progression of dementia symptoms without altering Alzheimer's disease's underlying pathogenic mechanisms. This concept is based on inference rather than evidence, and has limited the scope and persistence of AChEI use in clinical practice. Recent preclinical studies demonstrate that AChEIs exhibit a number of biological effects in addition to cholinesterase inhibition. A broader understanding of the possible mechanisms of action of AChEIs in Alzheimer's disease could result in more effective use and assist in the development of new and improved therapies. The available evidence brings into question the prevailing view that AChEIs are exclusively symptomatic treatments and supports the use of these agents persistently throughout the course of Alzheimer's disease.
Collapse
Affiliation(s)
- Norman R Relkin
- Joan and Sanford I. Weill Medical College of Cornell University, 428 East 72nd Street, Suite 500, NY 10017, USA.
| |
Collapse
|