151
|
Alors-Pérez E, Pedraza-Arevalo S, Blázquez-Encinas R, Moreno-Montilla MT, García-Vioque V, Berbel I, Luque RM, Sainz B, Ibáñez-Costa A, Castaño JP. Splicing alterations in pancreatic ductal adenocarcinoma: a new molecular landscape with translational potential. J Exp Clin Cancer Res 2023; 42:282. [PMID: 37880792 PMCID: PMC10601233 DOI: 10.1186/s13046-023-02858-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal cancers worldwide, mainly due to its late diagnosis and lack of effective therapies, translating into a low 5-year 12% survival rate, despite extensive clinical efforts to improve outcomes. International cooperative studies have provided informative multiomic landscapes of PDAC, but translation of these discoveries into clinical advances are lagging. Likewise, early diagnosis biomarkers and new therapeutic tools are sorely needed to tackle this cancer. The study of poorly explored molecular processes, such as splicing, can provide new tools in this regard. Alternative splicing of pre-RNA allows the generation of multiple RNA variants from a single gene and thereby contributes to fundamental biological processes by finely tuning gene expression. However, alterations in alternative splicing are linked to many diseases, and particularly to cancer, where it can contribute to tumor initiation, progression, metastasis and drug resistance. Splicing defects are increasingly being associated with PDAC, including both mutations or dysregulation of components of the splicing machinery and associated factors, and altered expression of specific relevant gene variants. Such disruptions can be a key element enhancing pancreatic tumor progression or metastasis, while they can also provide suitable tools to identify potential candidate biomarkers and discover new actionable targets. In this review, we aimed to summarize the current information about dysregulation of splicing-related elements and aberrant splicing isoforms in PDAC, and to describe their relationship with the development, progression and/or aggressiveness of this dismal cancer, as well as their potential as therapeutic tools and targets.
Collapse
Affiliation(s)
- Emilia Alors-Pérez
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Reina Sofía University Hospital (HURS), Cordoba, Spain
| | - Sergio Pedraza-Arevalo
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Reina Sofía University Hospital (HURS), Cordoba, Spain
| | - Ricardo Blázquez-Encinas
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Reina Sofía University Hospital (HURS), Cordoba, Spain
| | - María Trinidad Moreno-Montilla
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Reina Sofía University Hospital (HURS), Cordoba, Spain
| | - Víctor García-Vioque
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Reina Sofía University Hospital (HURS), Cordoba, Spain
| | - Inmaculada Berbel
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Reina Sofía University Hospital (HURS), Cordoba, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Reina Sofía University Hospital (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERObn), Córdoba, Spain
| | - Bruno Sainz
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Area 3, Cancer, Madrid, Spain
- Gastrointestinal Tumours Research Programme, Biomedical Research Network in Cancer (CIBERONC), Madrid, Spain
| | - Alejandro Ibáñez-Costa
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.
- Reina Sofía University Hospital (HURS), Cordoba, Spain.
| | - Justo P Castaño
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.
- Reina Sofía University Hospital (HURS), Cordoba, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERObn), Córdoba, Spain.
| |
Collapse
|
152
|
Shah K, He S, Turner DJ, Corbo J, Rebbani K, Bateman JM, Cheloufi S, Igreja C, Valkov E, Murn J. A paradigm for regulation at the effector interface with RNA-binding proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558714. [PMID: 37790431 PMCID: PMC10542489 DOI: 10.1101/2023.09.20.558714] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
RNA-binding proteins (RBPs) are key regulators of gene expression, but how RBPs convey regulatory instructions to the core effectors of RNA processing is unclear. Here we document the existence and functions of a multivalent RBP-effector interface. We show that the effector interface of a deeply conserved RBP with an essential role in metazoan development, Unkempt, is mediated by a novel type of 'dual-purpose' peptide motifs that can contact two different surfaces of interacting proteins. Unexpectedly, we find that the multivalent contacts do not merely serve effector recruitment but are required for the accuracy of RNA recognition by the recruiting RBP. Systems analyses reveal that multivalent RBP-effector contacts can repurpose the principal activity of an effector for a different function, as we demonstrate for reuse of the central eukaryotic mRNA decay factor CCR4-NOT in translational control. Our study establishes the molecular assembly and functional principles of an RBP-effector interface, with implications for the evolution and function of RBP-operated regulatory networks.
Collapse
Affiliation(s)
- Kriti Shah
- Department of Biochemistry, University of California, Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA 92521, U.S.A
- Center for RNA Biology and Medicine, 900 University Ave, Riverside, CA 92521, U.S.A
- These authors contributed equally
| | - Shiyang He
- Department of Biochemistry, University of California, Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA 92521, U.S.A
- Center for RNA Biology and Medicine, 900 University Ave, Riverside, CA 92521, U.S.A
- These authors contributed equally
| | - David J. Turner
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, U.S.A
- These authors contributed equally
| | - Joshua Corbo
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, U.S.A
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, U.S.A
| | - Khadija Rebbani
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Joseph M. Bateman
- Maurice Wohl Clinical Neuroscience Institute, King’s College London, 5 Cutcombe Road, London, SE5 9RX, U.K
| | - Sihem Cheloufi
- Department of Biochemistry, University of California, Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA 92521, U.S.A
- Center for RNA Biology and Medicine, 900 University Ave, Riverside, CA 92521, U.S.A
- Stem Cell Center, University of California, Riverside, 900 University Ave, Riverside, CA 92521, U.S.A
| | - Cátia Igreja
- Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, D-72076 Tübingen, Germany
| | - Eugene Valkov
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Jernej Murn
- Department of Biochemistry, University of California, Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA 92521, U.S.A
- Center for RNA Biology and Medicine, 900 University Ave, Riverside, CA 92521, U.S.A
- Lead contact
| |
Collapse
|
153
|
Peng L, Zhang X, Du Y, Li F, Han J, Liu O, Dai S, Zhang X, Liu GE, Yang L, Zhou Y. New insights into transcriptome variation during cattle adipocyte adipogenesis by direct RNA sequencing. iScience 2023; 26:107753. [PMID: 37692285 PMCID: PMC10492216 DOI: 10.1016/j.isci.2023.107753] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/31/2023] [Accepted: 08/24/2023] [Indexed: 09/12/2023] Open
Abstract
We performed direct RNA sequencing (DRS) together with PCR-amplified cDNA long and short read sequencing for cattle adipocyte at different stages. We proved that the DRS was with advantages to avoid artificial transcripts and questionable exitrons. Totally, we obtained 68,124 transcripts with information of alternative splicing, poly (A) length and mRNA modification. The number of transcripts for adipogenesis was expanded by alternative splicing, which lead regulation mechanisms far more complex than ever known. We detected 891 differentially expressed genes (DEGs). However, 62.78% transcripts of DEGs were not significantly differentially expressed, and 248 transcripts showed opposite changing directions with their genes. The poly (A) tail became globally shorter in differentiated adipocyte than in primary adipocyte, and had a weak negative correlation with gene/transcript expression. Moreover, the study of different mRNA modifications implied their potential roles in gene expression and alternative splicing. Overall, our study promoted better understanding of adipogenesis mechanisms in cattle adipocytes.
Collapse
Affiliation(s)
- Lingwei Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaolian Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuqin Du
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Fan Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiazheng Han
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Oujin Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Shoulu Dai
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD 20705, USA
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
154
|
Pei Y, Lin C, Li H, Feng Z. Genetic background influences pig responses to porcine reproductive and respiratory syndrome virus. Front Vet Sci 2023; 10:1289570. [PMID: 37929286 PMCID: PMC10623566 DOI: 10.3389/fvets.2023.1289570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly infectious and economically significant virus that causes respiratory and reproductive diseases in pigs. It results in reduced productivity and increased mortality in pigs, causing substantial economic losses in the industry. Understanding the factors affecting pig responses to PRRSV is crucial to develop effective control strategies. Genetic background has emerged as a significant determinant of susceptibility and resistance to PRRSV in pigs. This review provides an overview of the basic infection process of PRRSV in pigs, associated symptoms, underlying immune mechanisms, and roles of noncoding RNA and alternative splicing in PRRSV infection. Moreover, it emphasized breed-specific variations in these aspects that may have implications for individual treatment options.
Collapse
Affiliation(s)
- Yangli Pei
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Chenghong Lin
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zheng Feng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
155
|
Li X, Zhao Y, Kong H, Song C, Liu J, Xia J. Identification of region-specific splicing QTLs in human hippocampal tissue and its distinctive role in brain disorders. iScience 2023; 26:107958. [PMID: 37810239 PMCID: PMC10558811 DOI: 10.1016/j.isci.2023.107958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/28/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
Alternative splicing (AS) regulation has an essential role in complex diseases. However, the AS profiles in the hippocampal (HIPPO) region of human brain are underexplored. Here, we investigated cis-acting sQTLs of HIPPO region in 264 samples and identified thousands of significant sQTLs. By enrichment analysis and functional characterization of these sQTLs, we found that the HIPPO sQTLs were enriched among histone-marked regions, transcription factors binding sites, RNA binding proteins sites, and brain disorders-associated loci. Comparative analyses with the dorsolateral prefrontal cortex revealed the importance of AS regulation in HIPPO (rg = 0.87). Furthermore, we performed a transcriptome-wide association study of Alzheimer's disease and identified 16 significant genes whose genetically regulated splicing levels may have a causal role in Alzheimer. Overall, our study improves our knowledge of the transcriptome gene regulation in the HIPPO region and provides novel insights into elucidating the pathogenesis of potential genes associated with brain disorders.
Collapse
Affiliation(s)
- Xiaoyan Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province and Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Yiran Zhao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province and Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Hui Kong
- Information Materials and Intelligent Sensing Laboratory of Anhui Province and Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Chengcheng Song
- Information Materials and Intelligent Sensing Laboratory of Anhui Province and Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Jie Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province and Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Junfeng Xia
- Information Materials and Intelligent Sensing Laboratory of Anhui Province and Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
156
|
Ma N, Xu H, Zhang W, Sun X, Guo R, Liu D, Zhang L, Liu Y, Zhang J, Qiao C, Chen D, Luo A, Bai J. Genome-wide analysis revealed the dysregulation of RNA binding protein-correlated alternative splicing events in myocardial ischemia reperfusion injury. BMC Med Genomics 2023; 16:251. [PMID: 37858115 PMCID: PMC10585833 DOI: 10.1186/s12920-023-01706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Myocardial ischemia reperfusion injury (MIRI), the tissue damage which is caused by the returning of blood supply to tissue after a period of ischemia, greatly reduces the therapeutic effect of treatment of myocardial infarction. But the underlying functional mechanisms of MIRI are still unclear. METHODS We constructed mouse models of MIRI, extracted injured and healthy myocardial tissues, and performed transcriptome sequencing experiments (RNA-seq) to systematically investigate the dysregulated transcriptome of MIRI, especially the alternative splicing (AS) regulation and RNA binding proteins (RBPs). Selected RBPs and MIRI-associated AS events were then validated by RT-qPCR experiments. RESULTS The differentially expressed gene (DEG) analyses indicated that transcriptome profiles were changed by MIRI and that DEGs' enriched functions were consistent with MIRI's dysregulated pathways. Furthermore, the AS profile was synergistically regulated and showed clear differences between the mouse model and the healthy samples. The exon skipping events significantly increased in MIRI model samples, while the opposite cassette exon events significantly decreased. According to the functional analysis, regulated alternative splicing genes (RASGs) were enriched in protein transport, cell division /cell cycle, RNA splicing, and endocytosis pathways, which were associated with the development of MIRI. Meanwhile, 493 differentially expressed RBPs (DE RBPs) were detected, most of which were correlated with the changed ratios of AS events. In addition, nine DE RBP genes were validated, including Eif5, Pdia6, Tagln2, Vasp, Zfp36l2, Grsf1, Idh2, Ndrg2, and Uqcrc1. These nine DE RBPs were correlated with RASGs enriched in translation process, cell growth and division, and endocytosis pathways, highly consistent with the functions of all RASGs. Finally, we validated the AS ratio changes of five regulated alternative splicing events (RASEs) derived from important regulatory genes, including Mtmr3, Cdc42, Cd47, Fbln2, Vegfa, and Fhl2. CONCLUSION Our study emphasized the critical roles of the dysregulated AS profiles in MIRI development, investigated the potential functions of MIRI-associated RASGs, and identified regulatory RBPs involved in AS regulation. We propose that the identified RASEs and RBPs could serve as important regulators and potential therapeutic targets in MIRI treatment in the future.
Collapse
Affiliation(s)
- Ning Ma
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Hao Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Weihua Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Xiaoke Sun
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Ruiming Guo
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Donghai Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Liang Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Yang Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Jian Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Chenhui Qiao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Dong Chen
- Wuhan Ruixing Biotechnology Co., Ltd, Wuhan, 430206, Hubei, P.R. China
| | - Ailing Luo
- Wuhan Ruixing Biotechnology Co., Ltd, Wuhan, 430206, Hubei, P.R. China
| | - Jingyun Bai
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China.
| |
Collapse
|
157
|
EL-Seedy A, Pellerin L, Page G, Ladeveze V. Identification of Intron Retention in the Slc16a3 Gene Transcript Encoding the Transporter MCT4 in the Brain of Aged and Alzheimer-Disease Model (APPswePS1dE9) Mice. Genes (Basel) 2023; 14:1949. [PMID: 37895298 PMCID: PMC10606527 DOI: 10.3390/genes14101949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
The monocarboxylate transporter 4 (MCT4; Slc16a3) is expressed in the central nervous system, notably by astrocytes. It is implicated in lactate release and the regulation of glycolytic flux. Whether its expression varies during normal and/or pathological aging is unclear. As the presence of its mature transcript in the brain of young and old mice was determined, an unexpectedly longer RT-PCR fragment was detected in the mouse frontal cortex and hippocampus at 12 vs. 3 months of age. Cultured astrocytes expressed the expected 516 base pair (bp) fragment but treatment with IL-1β to mimic inflammation as can occur during aging led to the additional expression of a 928 bp fragment like that seen in aged mice. In contrast, cultured pericytes (a component of the blood-brain barrier) only exhibited the 516 bp fragment. Intriguingly, cultured endothelial cells constitutively expressed both fragments. When RT-PCR was performed on brain subregions of an Alzheimer mouse model (APPswePS1dE9), no fragment was detected at 3 months, while only the 928 bp fragment was present at 12 months. Sequencing of MCT4 RT-PCR products revealed the presence of a remaining intron between exon 2 and 3, giving rise to the longer fragment detected by RT-PCR. These results unravel the existence of intron retention for the MCT4 gene in the central nervous system. Such alternative splicing appears to increase with age in the brain and might be prominent in neurodegenerative diseases such as Alzheimer's disease. Hence, further studies in vitro and in vivo of intron 2 retention in the Slc16a3 gene transcript are required for adequate characterization concerning the biological roles of Slc16a3 isoforms in the context of aging and Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Ayman EL-Seedy
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Alexandria University, Aflaton Street, El-Shatby, Alexandria 21545, Egypt;
- Neurovascular Unit and Cognitive Disorders (NEUVACOD), Faculty of Pharmacy (GP), Faculty of Fundamental and Applied Science (VL), University of Poitiers, Pôle Biologie Santé, 86073 Poitiers, France;
| | - Luc Pellerin
- IRMETIST, INSERM, Faculty of Medicine, University of Poitiers (U1313), CHU de Poitiers, 86021 Poitiers, France;
| | - Guylène Page
- Neurovascular Unit and Cognitive Disorders (NEUVACOD), Faculty of Pharmacy (GP), Faculty of Fundamental and Applied Science (VL), University of Poitiers, Pôle Biologie Santé, 86073 Poitiers, France;
| | - Veronique Ladeveze
- Neurovascular Unit and Cognitive Disorders (NEUVACOD), Faculty of Pharmacy (GP), Faculty of Fundamental and Applied Science (VL), University of Poitiers, Pôle Biologie Santé, 86073 Poitiers, France;
| |
Collapse
|
158
|
Wang G, Chen B, Su Y, Qu N, Zhou D, Zhou W. CEP55 as a Promising Immune Intervention Marker to Regulate Tumor Progression: A Pan-Cancer Analysis with Experimental Verification. Cells 2023; 12:2457. [PMID: 37887301 PMCID: PMC10605621 DOI: 10.3390/cells12202457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
CEP55, a member of the centrosomal protein family, affects cell mitosis and promotes the progression of several malignancies. However, the relationship between CEP55 expression levels and prognosis, as well as their role in cancer progression and immune infiltration in different cancer types, remains unclear. We used a combined form of several databases to validate the expression of CEP55 in pan-cancer and its association with immune infiltration, and we further screened its targeted inhibitors with CEP55. Our results showed the expression of CEP55 was significantly higher in most tumors than in the corresponding normal tissues, and it correlated with the pathological grade and age of the patients and affected the prognosis. In breast cancer cells, CEP55 knockdown significantly decreased cell survival, proliferation, and migration, while overexpression of CEP55 significantly promoted breast cancer cell proliferation and migration. Moreover, CEP55 expression was positively correlated with immune cell infiltration, immune checkpoints, and immune-related genes in the tumor microenvironment. CD-437 was screened as a potential CEP55-targeted small-molecule compound inhibitor. In conclusion, our study highlights the prognostic value of CEP55 in cancer and further provides a potential target selection for CEP55 as a potential target for intervention in tumor immune infiltration and related immune genes.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Bo Chen
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Yue Su
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Na Qu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Duanfang Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Weiying Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
159
|
Li F, Zafar A, Luo L, Denning AM, Gu J, Bennett A, Yuan F, Zhang Y. R-Loops in Genome Instability and Cancer. Cancers (Basel) 2023; 15:4986. [PMID: 37894353 PMCID: PMC10605827 DOI: 10.3390/cancers15204986] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
R-loops are unique, three-stranded nucleic acid structures that primarily form when an RNA molecule displaces one DNA strand and anneals to the complementary DNA strand in a double-stranded DNA molecule. R-loop formation can occur during natural processes, such as transcription, in which the nascent RNA molecule remains hybridized with the template DNA strand, while the non-template DNA strand is displaced. However, R-loops can also arise due to many non-natural processes, including DNA damage, dysregulation of RNA degradation pathways, and defects in RNA processing. Despite their prevalence throughout the whole genome, R-loops are predominantly found in actively transcribed gene regions, enabling R-loops to serve seemingly controversial roles. On one hand, the pathological accumulation of R-loops contributes to genome instability, a hallmark of cancer development that plays a role in tumorigenesis, cancer progression, and therapeutic resistance. On the other hand, R-loops play critical roles in regulating essential processes, such as gene expression, chromatin organization, class-switch recombination, mitochondrial DNA replication, and DNA repair. In this review, we summarize discoveries related to the formation, suppression, and removal of R-loops and their influence on genome instability, DNA repair, and oncogenic events. We have also discussed therapeutical opportunities by targeting pathological R-loops.
Collapse
Affiliation(s)
- Fang Li
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Alyan Zafar
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Liang Luo
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ariana Maria Denning
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jun Gu
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ansley Bennett
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Fenghua Yuan
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Yanbin Zhang
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
160
|
Khan MS, Hanif W, Alsakhen N, Jabbar B, Shamkh IM, Alsaiari AA, Almehmadi M, Alghamdi S, Shakoori A, Al Farraj DA, Almutairi SM, Hussein Issa Mohammed Y, Abouzied AS, Rehman AU, Huwaimel B. Isoform switching leads to downregulation of cytokine producing genes in estrogen receptor positive breast cancer. Front Genet 2023; 14:1230998. [PMID: 37900178 PMCID: PMC10611502 DOI: 10.3389/fgene.2023.1230998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Objective: Estrogen receptor breast cancer (BC) is characterized by the expression of estrogen receptors. It is the most common cancer among women, with an incidence rate of 2.26 million cases worldwide. The aim of this study was to identify differentially expressed genes and isoform switching between estrogen receptor positive and triple negative BC samples. Methods: The data were collected from ArrayExpress, followed by preprocessing and subsequent mapping from HISAT2. Read quantification was performed by StringTie, and then R package ballgown was used to perform differential expression analysis. Functional enrichment analysis was conducted using Enrichr, and then immune genes were shortlisted based on the ScType marker database. Isoform switch analysis was also performed using the IsoformSwitchAnalyzeR package. Results: A total of 9,771 differentially expressed genes were identified, of which 86 were upregulated and 117 were downregulated. Six genes were identified as mainly associated with estrogen receptor positive BC, while a novel set of ten genes were found which have not previously been reported in estrogen receptor positive BC. Furthermore, alternative splicing and subsequent isoform usage in the immune system related genes were determined. Conclusion: This study identified the differential usage of isoforms in the immune system related genes in cancer cells that suggest immunosuppression due to the dysregulation of CXCR chemokine receptor binding, iron ion binding, and cytokine activity.
Collapse
Affiliation(s)
| | - Waqar Hanif
- Department of Bioinformatics, Department of Sciences, School of Interdisciplinary Engineering & Science (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Nada Alsakhen
- Department of Chemistry, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Basit Jabbar
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Israa M. Shamkh
- Chemo and Bioinformatics Lab, Bio Search Research Institution, Giza, Egypt
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Afnan Shakoori
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Dunia A. Al Farraj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saeedah Musaed Almutairi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Amr S. Abouzied
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia
- Department of Pharmaceutical Chemistry, National Organization for Drug Control and Research (NOD CAR), Giza, Egypt
| | - Aziz-Ur Rehman
- Keystone Pharmacogenomics LLC, Bensalem, PA, United States
| | - Bader Huwaimel
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia
- Medical and Diagnostic Research Center, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
161
|
Song X, Li X, Ge Y, Song J, Wei Q, He M, Wei M, Zhang Y, Chen T, Zhao L. Alternative splicing events and function in the tumor microenvironment: New opportunities and challenges. Int Immunopharmacol 2023; 123:110718. [PMID: 37597404 DOI: 10.1016/j.intimp.2023.110718] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/21/2023]
Abstract
Alternative splicing controls gene expression at the transcriptional level, producing structurally and functionally distinct protein heterodimers. Aberrant alternative splicing greatly affects cell development and plays an important role in the invasion and metastasis of many types of cancer. Recently, it has been shown that alternative splicing can alter the tumor microenvironment and regulate processes such as remodeling, immunity, and inflammation in the tumor microenvironment. However, there is no comprehensive literature review of the complex relationship between alternative splicing and the tumor microenvironment. Therefore, this review aims to collect all the latest data on this topic and provide a new perspective on the therapeutic and potential prognostic markers of cancer.
Collapse
Affiliation(s)
- Xueyi Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, Shenyang 110122, PR China.
| | - Xuehao Li
- Department of thoracic surgery, The First Affiliated Hospital of China Medical University, Shenyang, China.
| | - Yuexin Ge
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, Shenyang 110122, PR China.
| | - Jia Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, Shenyang 110122, PR China.
| | - Qian Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, Shenyang 110122, PR China.
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, Shenyang 110122, PR China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, Shenyang 110122, PR China.
| | - Yining Zhang
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, Shenyang, China.
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland.
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
162
|
Liu HL, Lu XM, Wang HY, Hu KB, Wu QY, Liao P, Li S, Long ZY, Wang YT. The role of RNA splicing factor PTBP1 in neuronal development. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119506. [PMID: 37263298 DOI: 10.1016/j.bbamcr.2023.119506] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023]
Abstract
Alternative pre-mRNA splicing, which produces various mRNA isoforms with distinct structures and functions from a single gene, is regulated by specific RNA-binding proteins and is an essential method for regulating gene expression in mammals. Recent studies have shown that abnormal change during neuronal development triggered by splicing mis-regulation is an important feature of various neurological diseases. Polypyrimidine tract binding protein 1 (PTBP1) is a kind of RNA-binding proteins with extensive biological functions. As a well-known splicing regulator, it affects the neuronal development process through its involvement in axon formation, synaptogenesis, and neuronal apoptosis, according to the most recent studies. Here, we summarized the mechanism of alternative splicing, structure and function of PTBP1, and the latest research progress on the role of alternative splicing events regulated by PTBP1 in axon formation, synaptogenesis and neuronal apoptosis, to reveal the mechanism of PTBP1-regulated changes in neuronal development process.
Collapse
Affiliation(s)
- Hui-Lin Liu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China; State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Kai-Bin Hu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Qing-Yun Wu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Ping Liao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Sen Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Zai-Yun Long
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Yong-Tang Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China.
| |
Collapse
|
163
|
Vorobeva MA, Skvortsov DA, Pervouchine DD. Cooperation and Competition of RNA Secondary Structure and RNA-Protein Interactions in the Regulation of Alternative Splicing. Acta Naturae 2023; 15:23-31. [PMID: 38234601 PMCID: PMC10790352 DOI: 10.32607/actanaturae.26826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 01/19/2024] Open
Abstract
The regulation of alternative splicing in eukaryotic cells is carried out through the coordinated action of a large number of factors, including RNA-binding proteins and RNA structure. The RNA structure influences alternative splicing by blocking cis-regulatory elements, or bringing them closer or farther apart. In combination with RNA-binding proteins, it generates transcript conformations that help to achieve the necessary splicing outcome. However, the binding of regulatory proteins depends on RNA structure and, vice versa, the formation of RNA structure depends on the interaction with regulators. Therefore, RNA structure and RNA-binding proteins are inseparable components of common regulatory mechanisms. This review highlights examples of alternative splicing regulation by RNA-binding proteins, the regulation through local and long-range RNA structures, as well as how these elements work together, cooperate, and compete.
Collapse
Affiliation(s)
- M. A. Vorobeva
- M.V. Lomonosov Moscow State University, Moscow, 119192 Russian Federation
| | - D. A. Skvortsov
- M.V. Lomonosov Moscow State University, Moscow, 119192 Russian Federation
| | - D. D. Pervouchine
- Skolkovo Institute of Science and Technology, Moscow, 121205 Russian Federation
| |
Collapse
|
164
|
Feng L, Guo M, Jin C. Identification of alternative splicing and RNA-binding proteins involved in myocardial ischemia-reperfusion injury. Genome 2023; 66:261-268. [PMID: 37466303 DOI: 10.1139/gen-2022-0102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Alternative splicing (AS) and RNA-binding proteins (RBPs) have been implicated in various cardiovascular diseases. Yet, a comprehensive understanding of their role in myocardial ischemia-reperfusion injury (MIRI) remains elusive. We aimed to identify potential therapeutic targets for MIRI by studying genome-wide changes in AS events and RBPs. We analyzed RNA-seq data from ischemia-reperfusion mouse models and the control group from the GSE130217 data set using Splicing Site Usage Variation Analysis software. We identified 28 regulated alternative splicing events (RASEs) and 47 differentially expressed RBP (DE-RBP) genes in MIRI. Most variable splicing events were involved in cassette exon, alternative 5' splice, alternative 3' splice, and retained intron types. Gene Ontology and Kyoto Encyclopedia of Genes (KOBAS 2.0 server) and Genomes pathway enrichment analyses showed that the differentially expressed variable splicing and RBP genes were mainly enriched in pathways related to myocardial function. The RBP-RASE network demonstrated a common variance relationship between DE-RBPs and RASEs, indicating that RBPs regulate variable shear events in MIRI. This study systematically identified important alterations in RASEs and RBPs in MIRI, expanding our understanding of the underlying pathogenesis of MIRI.
Collapse
Affiliation(s)
- Li Feng
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Min Guo
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Chunrong Jin
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| |
Collapse
|
165
|
Haddad-Mashadrizeh A, Mirahmadi M, Taghavizadeh Yazdi ME, Gholampour-Faroji N, Bahrami A, Zomorodipour A, Moghadam Matin M, Qayoomian M, Saebnia N. Introns and Their Therapeutic Applications in Biomedical Researches. IRANIAN JOURNAL OF BIOTECHNOLOGY 2023; 21:e3316. [PMID: 38269198 PMCID: PMC10804063 DOI: 10.30498/ijb.2023.334488.3316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/23/2023] [Indexed: 01/26/2024]
Abstract
Context Although for a long time, it was thought that intervening sequences (introns) were junk DNA without any function, their critical roles and the underlying molecular mechanisms in genome regulation have only recently come to light. Introns not only carry information for splicing, but they also play many supportive roles in gene regulation at different levels. They are supposed to function as useful tools in various biological processes, particularly in the diagnosis and treatment of diseases. Introns can contribute to numerous biological processes, including gene silencing, gene imprinting, transcription, mRNA metabolism, mRNA nuclear export, mRNA localization, mRNA surveillance, RNA editing, NMD, translation, protein stability, ribosome biogenesis, cell growth, embryonic development, apoptosis, molecular evolution, genome expansion, and proteome diversity through various mechanisms. Evidence Acquisition In order to fulfill the objectives of this study, the following databases were searched: Medline, Scopus, Web of Science, EBSCO, Open Access Journals, and Google Scholar. Only articles published in English were included. Results & Conclusions The intervening sequences of eukaryotic genes have critical functions in genome regulation, as well as in molecular evolution. Here, we summarize recent advances in our understanding of how introns influence genome regulation, as well as their effects on molecular evolution. Moreover, therapeutic strategies based on intron sequences are discussed. According to the obtained results, a thorough understanding of intron functional mechanisms could lead to new opportunities in disease diagnosis and therapies, as well as in biotechnology applications.
Collapse
Affiliation(s)
- Aliakbar Haddad-Mashadrizeh
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahdi Mirahmadi
- Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Nazanin Gholampour-Faroji
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmadreza Bahrami
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Maryam Moghadam Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohsen Qayoomian
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Saebnia
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
166
|
Liu X, Han W, Hu X. Post-transcriptional regulation of myeloid cell-mediated inflammatory responses. Adv Immunol 2023; 160:59-82. [PMID: 38042586 DOI: 10.1016/bs.ai.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
Myeloid cells, particularly macrophages, act as the frontline responders to infectious agents and initiate inflammation. While the molecular mechanisms driving inflammatory responses have primarily focused on pattern recognition by myeloid cells and subsequent transcriptional events, it is crucial to note that post-transcriptional regulation plays a pivotal role in this process. In addition to the transcriptional regulation of innate immune responses, additional layers of intricate network of post-transcriptional mechanisms critically determine the quantity and duration of key inflammatory products and thus the outcome of immune responses. A multitude of mechanisms governing post-transcriptional regulation in innate immunity have been uncovered, encompassing RNA alternative splicing, mRNA stability, and translational regulation. This review encapsulates the current insights into the post-transcriptional regulation of inflammatory genes within myeloid cells, with particular emphasis on translational regulation during inflammation. While acknowledging the advancements, we also shed light on the existing gaps in immunological research pertaining to post-transcriptional levels and propose perspectives that controlling post-transcriptional process may serve as potential targets for therapeutic interventions in inflammatory diseases.
Collapse
Affiliation(s)
- Xingxian Liu
- Institute for Immunology, Tsinghua University, Beijing, P.R. China; Department of Basic Medical Sciences, Tsinghua University, Beijing, P.R. China; Tsinghua-Peking Center for Life Sciences, Beijing, P.R. China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, P.R. China
| | - Weidong Han
- Department of Bio-therapeutic, the First Medical Center, Chinese PLA General Hospital, Beijing, P.R. China
| | - Xiaoyu Hu
- Institute for Immunology, Tsinghua University, Beijing, P.R. China; Department of Basic Medical Sciences, Tsinghua University, Beijing, P.R. China; Tsinghua-Peking Center for Life Sciences, Beijing, P.R. China; The State Key Laboratory of Membrane Biology, Beijing, P.R. China.
| |
Collapse
|
167
|
Yang W, Chen SC, Wang TE, Tsai PS, Chen JC, Chen PL. L1cam alternative shorter transcripts encoding the extracellular domains were overexpressed in the intestine of L1cam knockdown mice. Gene 2023; 881:147643. [PMID: 37453721 DOI: 10.1016/j.gene.2023.147643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/25/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Hirschsprung disease (HSCR) is a congenital disorder of functional bowel obstruction due to the absence of enteric ganglia in distal bowel. Different L1cam variants were reportedly associated with L1cam syndrome and HSCR, whose phenotypes lacked predictable relevance to their genotypes. Using next-generation sequencing (NGS), we found an L1CAM de novo frameshift mutation in a female with mild hydrocephalus and skip-type HSCR. A nearly identical L1cam variant was introduced into FVB/NJ mice via the CRISPR-EZ method. A silent mutation was created via ssODN to gain an artificial Ncol restriction enzyme site for easier genotyping. Six L1cam protein-coding alternative transcripts were quantitatively measured. Immunofluorescence staining with polyclonal and monoclonal L1cam antibodies was used to characterize L1cam isoform proteins in enteric ganglia. Fifteen mice, seven males and eight females, generated via CRISPR-EZ, were confirmed to carry the L1cam frameshift variant, resulting in a premature stop codon. There was no prominent hydrocephalus nor HSCR-like presentation in these mice, but male infertility was noticed after observation for three generations in a total of 176 mice. Full-length L1cam transcripts were detected at a very low level in the intestinal tissues and almost none in the brain of these mice. Alternative shorter transcripts encoding the extracellular domains were overexpressed in the intestine of L1cam knockdown mice. Immunofluorescence confirmed no fulllength L1cam protein in enteric ganglia. These shorter L1cam isoform proteins might play a role in protecting L1cam knockdown mice from HSCR.
Collapse
Affiliation(s)
- Wendy Yang
- Department of Surgery, Chang Gung Children's Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Pediatric Research Center, Chang Gung Children's Hospital, Taoyuan, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Szu-Chieh Chen
- Pediatric Research Center, Chang Gung Children's Hospital, Taoyuan, Taiwan
| | - Tse-En Wang
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, 10617 Taipei, Taiwan
| | - Pei-Shiue Tsai
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, 10617 Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, 10617 Taipei, Taiwan
| | - Jeng-Chang Chen
- Department of Surgery, Chang Gung Children's Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Pediatric Research Center, Chang Gung Children's Hospital, Taoyuan, Taiwan.
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taiwan; Departments of Medical Genetics, National Taiwan University Hospital, Taiwan; Departments of Internal Medicine, National Taiwan University Hospital, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
168
|
McLean DT, Meudt JJ, Lopez Rivera LD, Schomberg DT, Pavelec DM, Duellman TT, Buehler DG, Schwartz PB, Graham M, Lee LM, Graff KD, Reichert JL, Bon-Durant SS, Konsitzke CM, Ronnekleiv-Kelly SM, Shanmuganayagam D, Rubinstein CD. Single-cell RNA sequencing of neurofibromas reveals a tumor microenvironment favorable for neural regeneration and immune suppression in a neurofibromatosis type 1 porcine model. Front Oncol 2023; 13:1253659. [PMID: 37817770 PMCID: PMC10561395 DOI: 10.3389/fonc.2023.1253659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Neurofibromatosis Type 1 (NF1) is one of the most common genetically inherited disorders that affects 1 in 3000 children annually. Clinical manifestations vary widely but nearly always include the development of cutaneous, plexiform and diffuse neurofibromas that are managed over many years. Recent single-cell transcriptomics profiling efforts of neurofibromas have begun to reveal cell signaling processes. However, the cell signaling networks in mature, non-cutaneous neurofibromas remain unexplored. Here, we present insights into the cellular composition and signaling within mature neurofibromas, contrasting with normal adjacent tissue, in a porcine model of NF1 using single-cell RNA sequencing (scRNA-seq) analysis and histopathological characterization. These neurofibromas exhibited classic diffuse-type histologic morphology and expected patterns of S100, SOX10, GFAP, and CD34 immunohistochemistry. The porcine mature neurofibromas closely resemble human neurofibromas histologically and contain all known cellular components of their human counterparts. The scRNA-seq confirmed the presence of all expected cell types within these neurofibromas and identified novel populations of fibroblasts and immune cells, which may contribute to the tumor microenvironment by suppressing inflammation, promoting M2 macrophage polarization, increasing fibrosis, and driving the proliferation of Schwann cells. Notably, we identified tumor-associated IDO1 +/CD274+ (PD-L1) + dendritic cells, which represent the first such observation in any NF1 animal model and suggest the role of the upregulation of immune checkpoints in mature neurofibromas. Finally, we observed that cell types in the tumor microenvironment are poised to promote immune evasion, extracellular matrix reconstruction, and nerve regeneration.
Collapse
Affiliation(s)
- Dalton T. McLean
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
- Molecular & Environmental Toxicology Program, University of Wisconsin–Madison, Madison, WI, United States
| | - Jennifer J. Meudt
- Biomedical & Genomic Research Group, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Loren D. Lopez Rivera
- Molecular & Environmental Toxicology Program, University of Wisconsin–Madison, Madison, WI, United States
| | - Dominic T. Schomberg
- Biomedical & Genomic Research Group, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Derek M. Pavelec
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Tyler T. Duellman
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Darya G. Buehler
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Patrick B. Schwartz
- Molecular & Environmental Toxicology Program, University of Wisconsin–Madison, Madison, WI, United States
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Melissa Graham
- Research Animal Resources and Compliance (RARC), Office of the Vice Chancellor for Research and Graduate Education, University of Wisconsin–Madison, Madison, WI, United States
| | - Laura M. Lee
- Research Animal Resources and Compliance (RARC), Office of the Vice Chancellor for Research and Graduate Education, University of Wisconsin–Madison, Madison, WI, United States
| | - Keri D. Graff
- Swine Research and Teaching Center, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Jamie L. Reichert
- Swine Research and Teaching Center, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Sandra S. Bon-Durant
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Charles M. Konsitzke
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Sean M. Ronnekleiv-Kelly
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Dhanansayan Shanmuganayagam
- Molecular & Environmental Toxicology Program, University of Wisconsin–Madison, Madison, WI, United States
- Biomedical & Genomic Research Group, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Center for Biomedical Swine Research and Innovation, University of Wisconsin–Madison, Madison, WI, United States
| | - C. Dustin Rubinstein
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
169
|
Zhang Q, Cao L, Song H, Lin K, Pang E. MkcDBGAS: a reference-free approach to identify comprehensive alternative splicing events in a transcriptome. Brief Bioinform 2023; 24:bbad367. [PMID: 37833843 PMCID: PMC10576019 DOI: 10.1093/bib/bbad367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/31/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Alternative splicing (AS) is an essential post-transcriptional mechanism that regulates many biological processes. However, identifying comprehensive types of AS events without guidance from a reference genome is still a challenge. Here, we proposed a novel method, MkcDBGAS, to identify all seven types of AS events using transcriptome alone, without a reference genome. MkcDBGAS, modeled by full-length transcripts of human and Arabidopsis thaliana, consists of three modules. In the first module, MkcDBGAS, for the first time, uses a colored de Bruijn graph with dynamic- and mixed- kmers to identify bubbles generated by AS with precision higher than 98.17% and detect AS types overlooked by other tools. In the second module, to further classify types of AS, MkcDBGAS added the motifs of exons to construct the feature matrix followed by the XGBoost-based classifier with the accuracy of classification greater than 93.40%, which outperformed other widely used machine learning models and the state-of-the-art methods. Highly scalable, MkcDBGAS performed well when applied to Iso-Seq data of Amborella and transcriptome of mouse. In the third module, MkcDBGAS provides the analysis of differential splicing across multiple biological conditions when RNA-sequencing data is available. MkcDBGAS is the first accurate and scalable method for detecting all seven types of AS events using the transcriptome alone, which will greatly empower the studies of AS in a wider field.
Collapse
Affiliation(s)
- Quanbao Zhang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Lei Cao
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Hongtao Song
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Kui Lin
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Erli Pang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
170
|
Liu Z, Du Y, Sun Z, Cheng B, Bi Z, Yao Z, Liang Y, Zhang H, Yao R, Kang S, Shi Y, Wan H, Qin D, Xiang L, Leng L, Chen S. Manual correction of genome annotation improved alternative splicing identification of Artemisia annua. PLANTA 2023; 258:83. [PMID: 37721598 DOI: 10.1007/s00425-023-04237-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/04/2023] [Indexed: 09/19/2023]
Abstract
Gene annotation is essential for genome-based studies. However, algorithm-based genome annotation is difficult to fully and correctly reveal genomic information, especially for species with complex genomes. Artemisia annua L. is the only commercial resource of artemisinin production though the content of artemisinin is still to be improved. Genome-based genetic modification and breeding are useful strategies to boost artemisinin content and therefore, ensure the supply of artemisinin and reduce costs, but better gene annotation is urgently needed. In this study, we manually corrected the newly released genome annotation of A. annua using second- and third-generation transcriptome data. We found that incorrect gene information may lead to differences in structural, functional, and expression levels compared to the original expectations. We also identified alternative splicing events and found that genome annotation information impacted identifying alternative splicing genes. We further demonstrated that genome annotation information and alternative splicing could affect gene expression estimation and gene function prediction. Finally, we provided a valuable version of A. annua genome annotation and demonstrated the importance of gene annotation in future research.
Collapse
Affiliation(s)
- Zhaoyu Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yupeng Du
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Zhihao Sun
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bohan Cheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zenghao Bi
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhicheng Yao
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Yuting Liang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Huiling Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Run Yao
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shen Kang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuhua Shi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huihua Wan
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Dou Qin
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urmuqi, 830000, China
| | - Li Xiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urmuqi, 830000, China.
| | - Liang Leng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Shilin Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
171
|
Hınçer A, Ahan RE, Aras E, Şeker UÖŞ. Making the Next Generation of Therapeutics: mRNA Meets Synthetic Biology. ACS Synth Biol 2023; 12:2505-2515. [PMID: 37672348 PMCID: PMC10510722 DOI: 10.1021/acssynbio.3c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Indexed: 09/08/2023]
Abstract
The development of mRNA-based therapeutics centers around the natural functioning of mRNA molecules to provide the genetic information required for protein translation. To improve the efficacy of these therapeutics and minimize side effects, researchers can focus on the features of mRNA itself or the properties of the delivery agent to achieve the desired response. The tools considered for mRNA manipulation can be improved in terms of targetability, tunability, and translatability to medicine. While ongoing studies are dedicated to improving conventional approaches, innovative approaches can also be considered to unleash the full potential of mRNA-based therapeutics. Here, we discuss the opportunities that emerged from introducing synthetic biology to mRNA therapeutics. It includes a discussion of modular self-assembled mRNA nanoparticles, logic gates on a single mRNA molecule, and other possibilities.
Collapse
Affiliation(s)
- Ahmet Hınçer
- UNAM
− Institute of Materials Science and Nanotechnology, National
Nanotechnology Research Center, Bilkent
University, Ankara 06800, Turkey
| | - Recep Erdem Ahan
- UNAM
− Institute of Materials Science and Nanotechnology, National
Nanotechnology Research Center, Bilkent
University, Ankara 06800, Turkey
| | - Ebru Aras
- UNAM
− Institute of Materials Science and Nanotechnology, National
Nanotechnology Research Center, Bilkent
University, Ankara 06800, Turkey
| | - Urartu Özgür Şafak Şeker
- UNAM
− Institute of Materials Science and Nanotechnology, National
Nanotechnology Research Center, Bilkent
University, Ankara 06800, Turkey
| |
Collapse
|
172
|
Rodriguez Gallo MC, Uhrig RG. Phosphorylation mediated regulation of RNA splicing in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1249057. [PMID: 37780493 PMCID: PMC10539000 DOI: 10.3389/fpls.2023.1249057] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023]
Abstract
For the past two decades, the study of alternative splicing (AS) and its involvement in plant development and stress response has grown in popularity. Only recently however, has the focus shifted to the study of how AS regulation (or lack-thereof) affects downstream mRNA and protein landscapes and how these AS regulatory events impact plant development and stress tolerance. In humans, protein phosphorylation represents one of the predominant mechanisms by which AS is regulated and thus the protein kinases governing these phosphorylation events are of interest for further study. Large-scale phosphoproteomic studies in plants have consistently found that RNA splicing-related proteins are extensively phosphorylated, however, the signaling pathways involved in AS regulation have not been resolved. In this mini-review, we summarize our current knowledge of the three major splicing-related protein kinase families in plants that are suggested to mediate AS phospho-regulation and draw comparisons to their metazoan orthologs. We also summarize and contextualize the phosphorylation events identified as occurring on splicing-related protein families to illustrate the high degree to which splicing-related proteins are modified, placing a new focus on elucidating the impacts of AS at the protein and PTM-level.
Collapse
Affiliation(s)
| | - R. Glen Uhrig
- University of Alberta, Department of Biological Sciences, Edmonton, AB, Canada
- University of Alberta, Department of Biochemistry, Edmonton, AB, Canada
| |
Collapse
|
173
|
Schertzer MD, Stirn A, Isaev K, Pereira L, Das A, Harbison C, Park SH, Wessels HH, Sanjana NE, Knowles DA. Cas13d-mediated isoform-specific RNA knockdown with a unified computational and experimental toolbox. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557474. [PMID: 37745416 PMCID: PMC10515814 DOI: 10.1101/2023.09.12.557474] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Alternative splicing is an essential mechanism for diversifying proteins, in which mature RNA isoforms produce proteins with potentially distinct functions. Two major challenges in characterizing the cellular function of isoforms are the lack of experimental methods to specifically and efficiently modulate isoform expression and computational tools for complex experimental design. To address these gaps, we developed and methodically tested a strategy which pairs the RNA-targeting CRISPR/Cas13d system with guide RNAs that span exon-exon junctions in the mature RNA. We performed a high-throughput essentiality screen, quantitative RT-PCR assays, and PacBio long read sequencing to affirm our ability to specifically target and robustly knockdown individual RNA isoforms. In parallel, we provide computational tools for experimental design and screen analysis. Considering all possible splice junctions annotated in GENCODE for multi-isoform genes and our gRNA efficacy predictions, we estimate that our junction-centric strategy can uniquely target up to 89% of human RNA isoforms, including 50,066 protein-coding and 11,415 lncRNA isoforms. Importantly, this specificity spans all splicing and transcriptional events, including exon skipping and inclusion, alternative 5' and 3' splice sites, and alternative starts and ends.
Collapse
Affiliation(s)
- Megan D Schertzer
- New York Genome Center, New York, NY
- Department of Computer Science, Columbia University, New York, NY
| | - Andrew Stirn
- New York Genome Center, New York, NY
- Department of Computer Science, Columbia University, New York, NY
| | - Keren Isaev
- New York Genome Center, New York, NY
- Department of Systems Biology, Columbia University, New York, NY
| | | | - Anjali Das
- New York Genome Center, New York, NY
- Department of Computer Science, Columbia University, New York, NY
| | | | - Stella H Park
- New York Genome Center, New York, NY
- Department of Biomedical Engineering, Columbia University, New York, NY
| | - Hans-Hermann Wessels
- New York Genome Center, New York, NY
- Department of Biology, New York University, New York, NY
| | - Neville E Sanjana
- New York Genome Center, New York, NY
- Department of Biology, New York University, New York, NY
| | - David A Knowles
- New York Genome Center, New York, NY
- Department of Computer Science, Columbia University, New York, NY
- Department of Systems Biology, Columbia University, New York, NY
- Data Science Institute, Columbia University, New York, NY
| |
Collapse
|
174
|
Lei WL, Li YY, Du Z, Su R, Meng TG, Ning Y, Hou G, Schatten H, Wang ZB, Han Z, Sun F, Qian WP, Liu C, Sun QY. SRSF1-mediated alternative splicing is required for spermatogenesis. Int J Biol Sci 2023; 19:4883-4897. [PMID: 37781512 PMCID: PMC10539708 DOI: 10.7150/ijbs.83474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
Alternative splicing (AS) plays significant roles in a multitude of fundamental biological activities. AS is prevalent in the testis, but the regulations of AS in spermatogenesis is only little explored. Here, we report that Serine/arginine-rich splicing factor 1 (SRSF1) plays critical roles in alternative splicing and male reproduction. Male germ cell-specific deletion of Srsf1 led to complete infertility by affecting spermatogenesis. Mechanistically, by combining RNA-seq data with LACE-seq data, we showed that SRSF1 affected the AS of Stra8 in a direct manner and Dazl, Dmc1, Mre11a, Syce2 and Rif1 in an indirect manner. Our findings demonstrate that SRSF1 has crucial functions in spermatogenesis and male fertility by regulating alternative splicing.
Collapse
Affiliation(s)
- Wen-Long Lei
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, The Center of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen 518000, China
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yuan-Yuan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zongchang Du
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruibao Su
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hongkong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Tie-Gang Meng
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hongkong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Yan Ning
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guanmei Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zhiming Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Fei Sun
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Wei-Ping Qian
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, The Center of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen 518000, China
| | - Chenli Liu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hongkong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| |
Collapse
|
175
|
Zhang Z, Bae B, Cuddleston WH, Miura P. Coordination of alternative splicing and alternative polyadenylation revealed by targeted long read sequencing. Nat Commun 2023; 14:5506. [PMID: 37679364 PMCID: PMC10484994 DOI: 10.1038/s41467-023-41207-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Nervous system development is associated with extensive regulation of alternative splicing (AS) and alternative polyadenylation (APA). AS and APA have been extensively studied in isolation, but little is known about how these processes are coordinated. Here, the coordination of cassette exon (CE) splicing and APA in Drosophila was investigated using a targeted long-read sequencing approach we call Pull-a-Long-Seq (PL-Seq). This cost-effective method uses cDNA pulldown and Nanopore sequencing combined with an analysis pipeline to quantify inclusion of alternative exons in connection with alternative 3' ends. Using PL-Seq, we identified genes that exhibit significant differences in CE splicing depending on connectivity to short versus long 3'UTRs. Genomic long 3'UTR deletion was found to alter upstream CE splicing in short 3'UTR isoforms and ELAV loss differentially affected CE splicing depending on connectivity to alternative 3'UTRs. This work highlights the importance of considering connectivity to alternative 3'UTRs when monitoring AS events.
Collapse
Affiliation(s)
- Zhiping Zhang
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | - Bongmin Bae
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | | | - Pedro Miura
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA.
- Department of Biology, University of Nevada, Reno, Reno, NV, USA.
- Institute for System Genomics, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
176
|
Liu L, Wang B, Duan G, Wang J, Pan Z, Ou M, Bai X, Wang P, Zhao D, Nan N, Li D, Sun W. Histone Deacetylase UvHST2 Is a Global Regulator of Secondary Metabolism in Ustilaginoidea virens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13124-13136. [PMID: 37615365 DOI: 10.1021/acs.jafc.3c01782] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Ustilaginoidea virens, the causal agent of rice false smut, produces a large amount of mycotoxins, including ustilaginoidins and sorbicillinoids. However, little is known about the regulatory mechanism of mycotoxin biosynthesis inU. virens. Here, we demonstrate that the NAD+-dependent histone deacetylase UvHST2 negatively regulates ustilaginoidin biosynthesis. UvHst2 knockout caused retarded hypha growth and reduced conidiation and pathogenicity inU. virens. Transcriptome analysis revealed that the transcription factor genes, transporter genes, and other tailoring genes in eight biosynthetic gene clusters (BGCs) including ustilaginoidin and sorbicillinoid BGCs were upregulated in ΔUvhst2. Interestingly, the UvHst2 deletion affects alternative splicing. Metabolomics revealed that UvHST2 negatively regulates the biosynthesis of various mycotoxins including ustilaginoidins, sorbicillin, ochratoxin B, zearalenone, and O-M-sterigmatocystin. Combined transcriptome and metabolome analyses uncover that UvHST2 positively regulates pathogenicity but negatively modulates the expression of BGCs involved in secondary metabolism. Collectively, UvHST2 functions as a global regulator of secondary metabolism inU. virens.
Collapse
Affiliation(s)
- Ling Liu
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Bo Wang
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Guohua Duan
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Jing Wang
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Zequn Pan
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Mingming Ou
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Xiaolong Bai
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Peiying Wang
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Dan Zhao
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Nan Nan
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Dayong Li
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Wenxian Sun
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| |
Collapse
|
177
|
Szatkownik A, Zea DJ, Richard H, Laine E. Building alternative splicing and evolution-aware sequence-structure maps for protein repeats. J Struct Biol 2023; 215:107997. [PMID: 37453591 DOI: 10.1016/j.jsb.2023.107997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/15/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Alternative splicing of repeats in proteins provides a mechanism for rewiring and fine-tuning protein interaction networks. In this work, we developed a robust and versatile method, ASPRING, to identify alternatively spliced protein repeats from gene annotations. ASPRING leverages evolutionary meaningful alternative splicing-aware hierarchical graphs to provide maps between protein repeats sequences and 3D structures. We re-think the definition of repeats by explicitly accounting for transcript diversity across several genes/species. Using a stringent sequence-based similarity criterion, we detected over 5,000 evolutionary conserved repeats by screening virtually all human protein-coding genes and their orthologs across a dozen species. Through a joint analysis of their sequences and structures, we extracted specificity-determining sequence signatures and assessed their implication in experimentally resolved and modelled protein interactions. Our findings demonstrate the widespread alternative usage of protein repeats in modulating protein interactions and open avenues for targeting repeat-mediated interactions.
Collapse
Affiliation(s)
- Antoine Szatkownik
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France; Bioinformatics Unit, Genome Competence Center (MF1), Robert Koch Institute, 13353 Berlin, Germany
| | - Diego Javier Zea
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Hugues Richard
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France; Bioinformatics Unit, Genome Competence Center (MF1), Robert Koch Institute, 13353 Berlin, Germany.
| | - Elodie Laine
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France.
| |
Collapse
|
178
|
Xue JY, Fan HY, Zeng Z, Zhou YH, Hu SY, Li SX, Cheng YJ, Meng XR, Chen F, Shao ZQ, Van de Peer Y. Comprehensive regulatory networks for tomato organ development based on the genome and RNAome of MicroTom tomato. HORTICULTURE RESEARCH 2023; 10:uhad147. [PMID: 37691964 PMCID: PMC10483172 DOI: 10.1093/hr/uhad147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/15/2023] [Indexed: 09/12/2023]
Abstract
MicroTom has a short growth cycle and high transformation efficiency, and is a prospective model plant for studying organ development, metabolism, and plant-microbe interactions. Here, with a newly assembled reference genome for this tomato cultivar and abundant RNA-seq data derived from tissues of different organs/developmental stages/treatments, we constructed multiple gene co-expression networks, which will provide valuable clues for the identification of important genes involved in diverse regulatory pathways during plant growth, e.g. arbuscular mycorrhizal symbiosis and fruit development. Additionally, non-coding RNAs, including miRNAs, lncRNAs, and circRNAs were also identified, together with their potential targets. Interacting networks between different types of non-coding RNAs (miRNA-lncRNA), and non-coding RNAs and genes (miRNA-mRNA and lncRNA-mRNA) were constructed as well. Our results and data will provide valuable information for the study of organ differentiation and development of this important fruit. Lastly, we established a database (http://eplant.njau.edu.cn/microTomBase/) with genomic and transcriptomic data, as well as details of gene co-expression and interacting networks on MicroTom, and this database should be of great value to those who want to adopt MicroTom as a model plant for research.
Collapse
Affiliation(s)
- Jia-Yu Xue
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Hai-Yun Fan
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen Zeng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yu-Han Zhou
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai-Ya Hu
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Sai-Xi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ying-Juan Cheng
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiang-Ru Meng
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Chen
- College of Tropical Crops, Sanya Nanfan Research Institute, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Zhu-Qing Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yves Van de Peer
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
- Department of Plant Biotechnology and Bioinformatics, VIB-UGent Center for Plant Systems Biology, Ghent University, B-9052 Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
179
|
田 学, 陈 婵, 王 雄. [Tau Protein Induces Aberrant Alternative Splicing Changes in PS19 Transgenic Mice]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:874-883. [PMID: 37866941 PMCID: PMC10579071 DOI: 10.12182/20230960501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Indexed: 10/24/2023]
Abstract
Objective To explore through big data analysis whether aberrant alternative splicing (AS) events precede tau P301S-induced neurodegenerative phenotype in 6-month-old PS19 mice. Methods The original sequencing files of the GSE182170 dataset was downloaded from the European Nucleotide Archive (ENA) database with axel, aligned to the reference genome of the ENSEMBL database by using STAR software, and common AS event analysis and visualization were performed with rMATS and rmats2sashimiplot R packages. RSEM software was utilized for gene transcript quantification, Deseq2, edgeR, and limma R packages were used for differential expression analysis, and clusterProfiler R package was applied for GO enrichment analysis. String and Cytoscape were used for protein-protein interaction (PPI) analysis. Gene expression correlation analysis was performed with ggcorrplot R package. AS events were validated using PCR followed by agarose electrophoresis. Results A total of 8 079 AS events were identified with rMATS and 117 significant AS events (ΔPSI>0.1, sequencing coverage >1) were selected eventually. The most frequent type of AS event was skipped exon (SE) (50.43%), followed by alternative 3' splice site (A3SS) and mutually exclusive exons (MXE). GO enrichment analysis revealed that synapse organization genes were aberrantly spliced in SE events and spliceosome genes were spliced in A3SS events. PPI and correlation analyses showed that the splicing factor Snrpn was significantly associated with the largest number of transcripts. Agarose electrophoresis confirmed the aberrant AS event of the Lrp8 gene in PS19 mice. Conclusion Dysregulated splicing factors may contribute to tau P301S-induced aberrant AS changes. The study also increases the understanding of the cycling of tau protein and splicing factors in tauopathies.
Collapse
Affiliation(s)
- 学文 田
- 华中科技大学同济医学院附属同济医院 检验科 (武汉 430030)Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - 婵 陈
- 华中科技大学同济医学院附属同济医院 检验科 (武汉 430030)Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - 雄 王
- 华中科技大学同济医学院附属同济医院 检验科 (武汉 430030)Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
180
|
Das S, Mallick D, Sarkar S, Billington N, Sellers JR, Jana SS. A brain specific alternatively spliced isoform of nonmuscle myosin IIA lacks its mechanoenzymatic activities. J Biol Chem 2023; 299:105143. [PMID: 37562567 PMCID: PMC10480317 DOI: 10.1016/j.jbc.2023.105143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023] Open
Abstract
Recent genomic studies reported that 90 to 95% of human genes can undergo alternative splicing, by which multiple isoforms of proteins are synthesized. However, the functional consequences of most of the isoforms are largely unknown. Here, we report a novel alternatively spliced isoform of nonmuscle myosin IIA (NM IIA), called NM IIA2, which is generated by the inclusion of 21 amino acids near the actin-binding region (loop 2) of the head domain of heavy chains. Expression of NM IIA2 is found exclusively in the brain tissue, where it reaches a maximum level at 24 h during the circadian rhythm. The actin-dependent Mg2+-ATPase activity and in vitro motility assays reveal that NM IIA2 lacks its motor activities but localizes with actin filaments in cells. Interestingly, NM IIA2 can also make heterofilaments with NM IIA0 (noninserted isoform of NM IIA) and can retard the in vitro motility of NM IIA, when the two are mixed. Altogether, our findings provide the functional importance of a previously unknown alternatively spliced isoform, NM IIA2, and its potential physiological role in regulating NM IIA activity in the brain.
Collapse
Affiliation(s)
- Samprita Das
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal, India
| | - Ditipriya Mallick
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal, India
| | - Sourav Sarkar
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal, India
| | - Neil Billington
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - James R Sellers
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | - Siddhartha S Jana
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal, India.
| |
Collapse
|
181
|
Khan AH, Bagley JR, LaPierre N, Gonzalez-Figueroa C, Spencer TC, Choudhury M, Xiao X, Eskin E, Jentsch JD, Smith DJ. Genetic pathways regulating the longitudinal acquisition of cocaine self-administration in a panel of inbred and recombinant inbred mice. Cell Rep 2023; 42:112856. [PMID: 37481717 PMCID: PMC10530068 DOI: 10.1016/j.celrep.2023.112856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/06/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023] Open
Abstract
To identify addiction genes, we evaluate intravenous self-administration of cocaine or saline in 84 inbred and recombinant inbred mouse strains over 10 days. We integrate the behavior data with brain RNA-seq data from 41 strains. The self-administration of cocaine and that of saline are genetically distinct. We maximize power to map loci for cocaine intake by using a linear mixed model to account for this longitudinal phenotype while correcting for population structure. A total of 15 unique significant loci are identified in the genome-wide association study. A transcriptome-wide association study highlights the Trpv2 ion channel as a key locus for cocaine self-administration as well as identifying 17 additional genes, including Arhgef26, Slc18b1, and Slco5a1. We find numerous instances where alternate splice site selection or RNA editing altered transcript abundance. Our work emphasizes the importance of Trpv2, an ionotropic cannabinoid receptor, for the response to cocaine.
Collapse
Affiliation(s)
- Arshad H Khan
- Department of Molecular and Medical Pharmacology, Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Jared R Bagley
- Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Nathan LaPierre
- Department of Computer Science, UCLA, Los Angeles, CA 90095, USA
| | | | - Tadeo C Spencer
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA 90095, USA
| | - Mudra Choudhury
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA 90095, USA
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA 90095, USA
| | - Eleazar Eskin
- Department of Computational Medicine, UCLA, Los Angeles, CA 90095, USA
| | - James D Jentsch
- Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Desmond J Smith
- Department of Molecular and Medical Pharmacology, Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
182
|
Han N, Liu Z. Targeting alternative splicing in cancer immunotherapy. Front Cell Dev Biol 2023; 11:1232146. [PMID: 37635865 PMCID: PMC10450511 DOI: 10.3389/fcell.2023.1232146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
Tumor immunotherapy has made great progress in cancer treatment but still faces several challenges, such as a limited number of targetable antigens and varying responses among patients. Alternative splicing (AS) is an essential process for the maturation of nearly all mammalian mRNAs. Recent studies show that AS contributes to expanding cancer-specific antigens and modulating immunogenicity, making it a promising solution to the above challenges. The organoid technology preserves the individual immune microenvironment and reduces the time/economic costs of the experiment model, facilitating the development of splicing-based immunotherapy. Here, we summarize three critical roles of AS in immunotherapy: resources for generating neoantigens, targets for immune-therapeutic modulation, and biomarkers to guide immunotherapy options. Subsequently, we highlight the benefits of adopting organoids to develop AS-based immunotherapies. Finally, we discuss the current challenges in studying AS-based immunotherapy in terms of existing bioinformatics algorithms and biological technologies.
Collapse
Affiliation(s)
- Nan Han
- Chinese Academy of Sciences Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoqi Liu
- Chinese Academy of Sciences Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
183
|
Kolapalli SP, Nielsen TM, Frankel LB. Post-transcriptional dynamics and RNA homeostasis in autophagy and cancer. Cell Death Differ 2023:10.1038/s41418-023-01201-5. [PMID: 37558732 DOI: 10.1038/s41418-023-01201-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023] Open
Abstract
Autophagy is an essential recycling and quality control pathway which preserves cellular and organismal homeostasis. As a catabolic process, autophagy degrades damaged and aged intracellular components in response to conditions of stress, including nutrient deprivation, oxidative and genotoxic stress. Autophagy is a highly adaptive and dynamic process which requires an intricately coordinated molecular control. Here we provide an overview of how autophagy is regulated post-transcriptionally, through RNA processing events, epitranscriptomic modifications and non-coding RNAs. We further discuss newly revealed RNA-binding properties of core autophagy machinery proteins and review recent indications of autophagy's ability to impact cellular RNA homeostasis. From a physiological perspective, we examine the biological implications of these emerging regulatory layers of autophagy, particularly in the context of nutrient deprivation and tumorigenesis.
Collapse
Affiliation(s)
| | | | - Lisa B Frankel
- Danish Cancer Institute, Copenhagen, Denmark.
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
184
|
Manabile MA, Hull R, Khanyile R, Molefi T, Damane BP, Mongan NP, Bates DO, Dlamini Z. Alternative Splicing Events and Their Clinical Significance in Colorectal Cancer: Targeted Therapeutic Opportunities. Cancers (Basel) 2023; 15:3999. [PMID: 37568815 PMCID: PMC10417810 DOI: 10.3390/cancers15153999] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Colorectal cancer (CRC) ranks as one of the top causes of cancer mortality worldwide and its incidence is on the rise, particularly in low-middle-income countries (LMICs). There are several factors that contribute to the development and progression of CRC. Alternative splicing (AS) was found to be one of the molecular mechanisms underlying the development and progression of CRC. With the advent of genome/transcriptome sequencing and large patient databases, the broad role of aberrant AS in cancer development and progression has become clear. AS affects cancer initiation, proliferation, invasion, and migration. These splicing changes activate oncogenes or deactivate tumor suppressor genes by producing altered amounts of normally functional or new proteins with different, even opposing, functions. Thus, identifying and characterizing CRC-specific alternative splicing events and variants might help in designing new therapeutic splicing disrupter drugs. CRC-specific splicing events can be used as diagnostic and prognostic biomarkers. In this review, alternatively spliced events and their role in CRC development will be discussed. The paper also reviews recent research on alternatively spliced events that might be exploited as prognostic, diagnostic, and targeted therapeutic indicators. Of particular interest is the targeting of protein arginine methyltransferase (PMRT) isoforms for the development of new treatments and diagnostic tools. The potential challenges and limitations in translating these discoveries into clinical practice will also be addressed.
Collapse
Affiliation(s)
- Mosebo Armstrong Manabile
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
- Department of Medical Oncology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0028, South Africa
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
| | - Richard Khanyile
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
- Department of Medical Oncology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0028, South Africa
| | - Thulo Molefi
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
- Department of Medical Oncology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0028, South Africa
| | - Botle Precious Damane
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0028, South Africa;
| | - Nigel Patrick Mongan
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham NG7 2QL, UK;
| | - David Owen Bates
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
- Centre for Cancer Sciences, Division of Cancer and Stem Cells, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
| |
Collapse
|
185
|
Feng Y, Zhu S, Liu T, Zhi G, Shao B, Liu J, Li B, Jiang C, Feng Q, Wu P, Wang D. Surmounting Cancer Drug Resistance: New Perspective on RNA-Binding Proteins. Pharmaceuticals (Basel) 2023; 16:1114. [PMID: 37631029 PMCID: PMC10458901 DOI: 10.3390/ph16081114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
RNA-binding proteins (RBPs), being pivotal elements in both physiological and pathological processes, possess the ability to directly impact RNA, thereby exerting a profound influence on cellular life. Furthermore, the dysregulation of RBPs not only induces alterations in the expression levels of genes associated with cancer but also impairs the occurrence of post-transcriptional regulatory mechanisms. Consequently, these circumstances can give rise to aberrations in cellular processes, ultimately resulting in alterations within the proteome. An aberrant proteome can disrupt the equilibrium between oncogenes and tumor suppressor genes, promoting cancer progression. Given their significant role in modulating gene expression and post-transcriptional regulation, directing therapeutic interventions towards RBPs represents a viable strategy for combating drug resistance in cancer treatment. RBPs possess significant potential as diagnostic and prognostic markers for diverse cancer types. Gaining comprehensive insights into the structure and functionality of RBPs, along with delving deeper into the molecular mechanisms underlying RBPs in tumor drug resistance, can enhance cancer treatment strategies and augment the prognostic outcomes for individuals afflicted with cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Peijie Wu
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.F.); (S.Z.); (T.L.); (G.Z.); (B.S.); (J.L.); (B.L.); (C.J.); (Q.F.)
| | - Dong Wang
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.F.); (S.Z.); (T.L.); (G.Z.); (B.S.); (J.L.); (B.L.); (C.J.); (Q.F.)
| |
Collapse
|
186
|
Huang H, Kuang X, Zou Y, Zeng J, Du H, Tang H, Long C, Mao Y, Yu X, Wen C, Yan J, Shen H. MAP4K4 is involved in the neuronal development of retinal photoreceptors. Exp Eye Res 2023; 233:109524. [PMID: 37290629 DOI: 10.1016/j.exer.2023.109524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
Mitogen-activated protein kinase kinase kinase kinase-4 (MAP4K4) is a potential regulator of photoreceptor development. To investigate the mechanisms underlying MAP4K4 during the neuronal development of retinal photoreceptors, we generated knockout models of C57BL/6j mice in vivo and 661 W cells in vitro. Our findings revealed homozygous lethality and neural tube malformation in mice subjected to Map4k4 DNA ablation, providing evidence for the involvement of MAP4K4 in early stage embryonic neural formation. Furthermore, our study demonstrated that the ablation of Map4k4 DNA led to the vulnerability of photoreceptor neurites during induced neuronal development. By monitoring transcriptional and protein variations in mitogen-activated protein kinase (MAPK) signaling pathway-related factors, we discovered an imbalance in neurogenesis-related factors in Map4k4 -/- cells. Specifically, MAP4K4 promotes jun proto-oncogene (c-JUN) phosphorylation and recruits other factors related to nerve growth, ultimately leading to the robust formation of photoreceptor neurites. These data suggest that MAP4K4 plays a decisive role in regulating the fate of retinal photoreceptors through molecular modulation and contributes to our understanding of vision formation.
Collapse
Affiliation(s)
- Hao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China; Department of Ophthalmology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, China
| | - Xielan Kuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China; Biobank of Eye, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yuxiu Zou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jingshu Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Han Du
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Han Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Chongde Long
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yan Mao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Xinyue Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Chaojuan Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jianhua Yan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| | - Huangxuan Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China; Biobank of Eye, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
187
|
Verdile V, Riccioni V, Guerra M, Ferrante G, Sette C, Valle C, Ferri A, Paronetto MP. An impaired splicing program underlies differentiation defects in hSOD1 G93A neural progenitor cells. Cell Mol Life Sci 2023; 80:236. [PMID: 37524863 PMCID: PMC11072603 DOI: 10.1007/s00018-023-04893-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult devastating neurodegenerative disease characterized by the loss of upper and lower motor neurons (MNs), resulting in progressive paralysis and death. Genetic animal models of ALS have highlighted dysregulation of synaptic structure and function as a pathogenic feature of ALS-onset and progression. Alternative pre-mRNA splicing (AS), which allows expansion of the coding power of genomes by generating multiple transcript isoforms from each gene, is widely associated with synapse formation and functional specification. Deciphering the link between aberrant splicing regulation and pathogenic features of ALS could pave the ground for novel therapeutic opportunities. Herein, we found that neural progenitor cells (NPCs) derived from the hSOD1G93A mouse model of ALS displayed increased proliferation and propensity to differentiate into neurons. In parallel, hSOD1G93A NPCs showed impaired splicing patterns in synaptic genes, which could contribute to the observed phenotype. Remarkably, master splicing regulators of the switch from stemness to neural differentiation are de-regulated in hSOD1G93A NPCs, thus impacting the differentiation program. Our data indicate that hSOD1G93A mutation impacts on neurogenesis by increasing the NPC pool in the developing mouse cortex and affecting their intrinsic properties, through the establishment of a specific splicing program.
Collapse
Affiliation(s)
- Veronica Verdile
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis 6, 00135, Rome, Italy
- Laboratory of Molecular and Cellular Neurobiology and of Neurochemistry, Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Veronica Riccioni
- Laboratory of Molecular and Cellular Neurobiology and of Neurochemistry, Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Marika Guerra
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Gabriele Ferrante
- Laboratory of Molecular and Cellular Neurobiology and of Neurochemistry, Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Claudio Sette
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Agostino Gemelli IRCCS, 00168, Rome, Italy
| | - Cristiana Valle
- Laboratory of Molecular and Cellular Neurobiology and of Neurochemistry, Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy
- Institute of Translational Pharmacology (IFT), Consiglio Nazionale delle Ricerche (CNR), 00133, Rome, Italy
| | - Alberto Ferri
- Laboratory of Molecular and Cellular Neurobiology and of Neurochemistry, Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy
- Institute of Translational Pharmacology (IFT), Consiglio Nazionale delle Ricerche (CNR), 00133, Rome, Italy
| | - Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis 6, 00135, Rome, Italy.
- Laboratory of Molecular and Cellular Neurobiology and of Neurochemistry, Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143, Rome, Italy.
| |
Collapse
|
188
|
Chao KH, Mao A, Salzberg SL, Pertea M. Splam: a deep-learning-based splice site predictor that improves spliced alignments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550754. [PMID: 37546880 PMCID: PMC10402160 DOI: 10.1101/2023.07.27.550754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The process of splicing messenger RNA to remove introns plays a central role in creating genes and gene variants. Here we describe Splam, a novel method for predicting splice junctions in DNA based on deep residual convolutional neural networks. Unlike some previous models, Splam looks at a relatively limited window of 400 base pairs flanking each splice site, motivated by the observation that the biological process of splicing relies primarily on signals within this window. Additionally, Splam introduces the idea of training the network on donor and acceptor pairs together, based on the principle that the splicing machinery recognizes both ends of each intron at once. We compare Splam's accuracy to recent state-of-the-art splice site prediction methods, particularly SpliceAI, another method that uses deep neural networks. Our results show that Splam is consistently more accurate than SpliceAI, with an overall accuracy of 96% at predicting human splice junctions. Splam generalizes even to non-human species, including distant ones like the flowering plant Arabidopsis thaliana. Finally, we demonstrate the use of Splam on a novel application: processing the spliced alignments of RNA-seq data to identify and eliminate errors. We show that when used in this manner, Splam yields substantial improvements in the accuracy of downstream transcriptome analysis of both poly(A) and ribo-depleted RNA-seq libraries. Overall, Splam offers a faster and more accurate approach to detecting splice junctions, while also providing a reliable and efficient solution for cleaning up erroneous spliced alignments.
Collapse
Affiliation(s)
- Kuan-Hao Chao
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Alan Mao
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Steven L Salzberg
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21211, USA
| | - Mihaela Pertea
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
189
|
Do HTT, Shanak S, Barghash A, Helms V. Differential exon usage of developmental genes is associated with deregulated epigenetic marks. Sci Rep 2023; 13:12256. [PMID: 37507411 PMCID: PMC10382575 DOI: 10.1038/s41598-023-38879-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Alternative exon usage is known to affect a large portion of genes in mammalian genomes. Importantly, different splice isoforms sometimes possess distinctly different protein functions. Here, we analyzed data from the Human Epigenome Atlas for 11 different human adult tissues and for 8 cultured cells that mimic early developmental stages. We found a significant enrichment of cases where differential usage of exons in various developmental stages of human cells and tissues is associated with differential epigenetic modifications in the flanking regions of individual exons. Many of the genes that were differentially regulated at the exon level and showed deregulated histone marks at the respective exon flanks are functionally associated with development and metabolism.
Collapse
Affiliation(s)
| | - Siba Shanak
- Department of Biology and Biotechnology, Arab American University, Jenin, Palestine
| | - Ahmad Barghash
- Department of Computer Science, German Jordanian University, Amman, Jordan
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
190
|
Jiang F, Wang L, Dong Y, Nie W, Zhou H, Gao J, Zheng P. DPPA5A suppresses the mutagenic TLS and MMEJ pathways by modulating the cryptic splicing of Rev1 and Polq in mouse embryonic stem cells. Proc Natl Acad Sci U S A 2023; 120:e2305187120. [PMID: 37459543 PMCID: PMC10372678 DOI: 10.1073/pnas.2305187120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
Genetic alterations are often acquired during prolonged propagation of pluripotent stem cells (PSCs). This ruins the stem cell quality and hampers their full applications. Understanding how PSCs maintain genomic integrity would provide the clues to overcome the hurdle. It has been known that embryonic stem cells (ESCs) utilize high-fidelity pathways to ensure genomic stability, but the underlying mechanisms remain largely elusive. Here, we show that many DNA damage response and repair genes display differential alternative splicing in mouse ESCs compared to differentiated cells. Particularly, Rev1 and Polq, two key genes for mutagenic translesion DNA synthesis (TLS) and microhomology-mediated end joining (MMEJ) repair pathways, respectively, display a significantly higher rate of cryptic exon (CE) inclusion in ESCs. The frequent CE inclusion disrupts the normal protein expressions of REV1 and POLθ, thereby suppressing the mutagenic TLS and MMEJ. Further, we identify an ESC-specific RNA binding protein DPPA5A which stimulates the CE inclusion in Rev1 and Polq. Depletion of DPPA5A in mouse ESCs decreased the CE inclusion of Rev1 and Polq, induced the protein expression, and stimulated the TLS and MMEJ activity. Enforced expression of DPPA5A in NIH3T3 cells displayed reverse effects. Mechanistically, we found that DPPA5A directly regulated CE splicing of Rev1. DPPA5A associates with U2 small nuclear ribonucleoprotein of the spliceosome and binds to the GA-rich motif in the CE of Rev1 to promote CE inclusion. Thus, our study uncovers a mechanism to suppress mutagenic TLS and MMEJ pathways in ESCs.
Collapse
Affiliation(s)
- Fangjie Jiang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan650223, China
- University of Chinese Academy of Sciences, Beijing101408, China
- Department of Reproductive Medicine, The Second Affiliated Hospital of Kunming Medical University,Kunming650101, China
| | - Lin Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan650223, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan650223, China
| | - Yuping Dong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan650223, China
- University of Chinese Academy of Sciences, Beijing101408, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan650223, China
| | - Wenhui Nie
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan650223, China
| | - Hu Zhou
- Department of Analytical Chemistry and Key Laboratory of Receptor Research of Chinese Academy of Sciences, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Jing Gao
- Department of Analytical Chemistry and Key Laboratory of Receptor Research of Chinese Academy of Sciences, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan650223, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan650223, China
- The Chinese University of Hong Kong and Kunming Institute of Zoology Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan650223, China
| |
Collapse
|
191
|
Wu Y, Li A, Chen C, Fang Z, Chen L, Zheng X. Biological function and research progress of N6-methyladenosine binding protein heterogeneous nuclear ribonucleoprotein A2B1 in human cancers. Front Oncol 2023; 13:1229168. [PMID: 37546413 PMCID: PMC10399595 DOI: 10.3389/fonc.2023.1229168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent internal modification found in both mRNA and lncRNA. It exerts reversible regulation over RNA function and affects RNA processing and metabolism in various diseases, especially tumors. The m6A binding protein, hnRNPA2B1, is extensively studied as a member of the heterogeneous nuclear ribonucleoprotein (hnRNP) protein family. It is frequently dysregulated and holds significant importance in multiple types of tumors. By recognizing m6A sites for variable splicing, maintaining RNA stability, and regulating translation and transport, hnRNPA2B1 plays a vital role in various aspects of tumor development, metabolism, and regulation of the immune microenvironment. In this review, we summarized the latest research on the functional roles and underlying molecular mechanisms of hnRNPA2B1. Moreover, we discussed its potential as a target for tumor therapy.
Collapse
Affiliation(s)
- Yue Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute for Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - An Li
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute for Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - Can Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute for Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - Zhang Fang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute for Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute for Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute for Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
192
|
Perozeni F, Baier T. Current Nuclear Engineering Strategies in the Green Microalga Chlamydomonas reinhardtii. Life (Basel) 2023; 13:1566. [PMID: 37511941 PMCID: PMC10381326 DOI: 10.3390/life13071566] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The green model microalga Chlamydomonas reinhardtii recently emerged as a sustainable production chassis for the efficient biosynthesis of recombinant proteins and high-value metabolites. Its capacity for scalable, rapid and light-driven growth in minimal salt solutions, its simplicity for genetic manipulation and its "Generally Recognized As Safe" (GRAS) status are key features for its application in industrial biotechnology. Although nuclear transformation has typically resulted in limited transgene expression levels, recent developments now allow the design of powerful and innovative bioproduction concepts. In this review, we summarize the main obstacles to genetic engineering in C. reinhardtii and describe all essential aspects in sequence adaption and vector design to enable sufficient transgene expression from the nuclear genome. Several biotechnological examples of successful engineering serve as blueprints for the future establishment of C. reinhardtii as a green cell factory.
Collapse
Affiliation(s)
- Federico Perozeni
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Thomas Baier
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
193
|
Liu C, Li G, Zheng S, She L, Lu S, Wang Y, Huang D, Zhang X, Sun L, Liu Y, Qiu Y. PHF5A regulates the expression of the DOCK5 variant to promote HNSCC progression through p38 MAPK activation. Biol Direct 2023; 18:39. [PMID: 37434235 PMCID: PMC10337101 DOI: 10.1186/s13062-023-00396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Previously, we identified an oncogenic splicing variant of DOCK5 in head and neck squamous cell carcinoma (HNSCC); however, the mechanism for the generation of this specific DOCK5 variant remains unknown. This study aims to explore the potential spliceosome genes involved in the production of the DOCK5 variant and validate its role in regulating the progression of HNSCC. METHODS The differentially expressed spliceosome genes involved in the DOCK5 variant were analysed in The Cancer Genome Atlas (TCGA), and the correlation between the DOCK5 variant and the potential spliceosome gene PHF5A was verified by qRT-PCR. The expression of PHF5A was detected in HNSCC cells, TCGA data and a separate primary tumour cohort. The functional role of PHF5A was examined using CCK-8, colony formation, cell scratch and Transwell invasion assays in vitro and validated in vivo in xenograft models of HNSCC. Western blot analysis was used to explore the potential mechanism of PHF5A in HNSCC. RESULTS PHF5A was one of the top upregulated spliceosome genes in TCGA HNSCC samples with highly expressed DOCK5 variants. Knockdown or overexpression of PHF5A in HNSCC cells correspondingly altered the level of the DOCK5 variant. PHF5A was highly expressed in tumour cells and tissues and correlated with a worse prognosis of HNSCC. Loss- and gain-of-function experiments demonstrated that PHF5A could promote the proliferation, migration and invasion of HNSCC cells in vitro and in vivo. Moreover, PHF5A inhibition reversed the oncogenic effect of the DOCK5 variant in HNSCC. Western blot analysis showed that PHF5A activated the p38 MAPK pathway, and inhibition of p38 MAPK further reversed the effect of PHF5A on the proliferation, migration and invasion of HNSCC cells. CONCLUSION PHF5A regulates the alternative splicing of DOCK5 to promote HNSCC progression through p38 MAPK activation, which provides potential therapeutic implications for HNSCC patients.
Collapse
Affiliation(s)
- Chao Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, 410008, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, 410008, China
| | - Guo Li
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, 410008, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, 410008, China
| | - Siyuan Zheng
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, 410008, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, 410008, China
| | - Li She
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, 410008, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, 410008, China
| | - Shanhong Lu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, 410008, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, 410008, China
| | - Yunyun Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, 410008, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, 410008, China
| | - Donghai Huang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, 410008, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, 410008, China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, 410008, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, China
| | - Lunquan Sun
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, Hunan, 410008, China
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, 410008, China.
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, China.
| | - Yuanzheng Qiu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, 410008, China.
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, China.
| |
Collapse
|
194
|
Wan L, Lin KT, Rahman MA, Ishigami Y, Wang Z, Jensen MA, Wilkinson JE, Park Y, Tuveson DA, Krainer AR. Splicing Factor SRSF1 Promotes Pancreatitis and KRASG12D-Mediated Pancreatic Cancer. Cancer Discov 2023; 13:1678-1695. [PMID: 37098965 PMCID: PMC10330071 DOI: 10.1158/2159-8290.cd-22-1013] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/14/2023] [Accepted: 03/22/2023] [Indexed: 04/27/2023]
Abstract
Inflammation is strongly associated with pancreatic ductal adenocarcinoma (PDAC), a highly lethal malignancy. Dysregulated RNA splicing factors have been widely reported in tumorigenesis, but their involvement in pancreatitis and PDAC is not well understood. Here, we report that the splicing factor SRSF1 is highly expressed in pancreatitis, PDAC precursor lesions, and tumors. Increased SRSF1 is sufficient to induce pancreatitis and accelerate KRASG12D-mediated PDAC. Mechanistically, SRSF1 activates MAPK signaling-partly by upregulating interleukin 1 receptor type 1 (IL1R1) through alternative-splicing-regulated mRNA stability. Additionally, SRSF1 protein is destabilized through a negative feedback mechanism in phenotypically normal epithelial cells expressing KRASG12D in mouse pancreas and in pancreas organoids acutely expressing KRASG12D, buffering MAPK signaling and maintaining pancreas cell homeostasis. This negative feedback regulation of SRSF1 is overcome by hyperactive MYC, facilitating PDAC tumorigenesis. Our findings implicate SRSF1 in the etiology of pancreatitis and PDAC, and point to SRSF1-misregulated alternative splicing as a potential therapeutic target. SIGNIFICANCE We describe the regulation of splicing factor SRSF1 expression in the context of pancreas cell identity, plasticity, and inflammation. SRSF1 protein downregulation is involved in a negative feedback cellular response to KRASG12D expression, contributing to pancreas cell homeostasis. Conversely, upregulated SRSF1 promotes pancreatitis and accelerates KRASG12D-mediated tumorigenesis through enhanced IL1 and MAPK signaling. This article is highlighted in the In This Issue feature, p. 1501.
Collapse
Affiliation(s)
- Ledong Wan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kuan-Ting Lin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Yuma Ishigami
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Zhikai Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Mads A. Jensen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - John E. Wilkinson
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Youngkyu Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David A. Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
195
|
Li X, Liu D, Wang Y, Chen Y, Wang C, Lin Z, Tian L. PHF5A as a new OncoTarget and therapeutic prospects. Heliyon 2023; 9:e18010. [PMID: 37483794 PMCID: PMC10362332 DOI: 10.1016/j.heliyon.2023.e18010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/24/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
PHF5A (PHD-finger domain protein 5A) is a highly conserved protein comprised of 110 amino acids that belong to PHD zinc finger proteins and is ubiquitously expressed in entire eukaryotic nuclei from yeast to man. PHF5A is an essential component of the SF3B splicing complex regulating protein-protein or protein-DNA interactions; particularly involved in pre-mRNA splicing. Besides its basic spliceosome-associated attributes encompassing the regulation of alternative splicing of specific genes, PHF5A also plays a pivotal role in cell cycle regulation and morphological development of cells along with their differentiation into particular tissues/organs, DNA damage repair, maintenance of pluripotent embryonic stem cells (CSCs) embryogenesis and regulation of chromatin-mediated transcription. Presently identification of spliceosome and non-spliceosome-associated attributes of PHF5A needs great attention based on its key involvement in the pathogenesis of cancer malignancies including the prognosis of lung adenocarcinoma, endometrial adenocarcinoma, breast, and colorectal cancer. PHF5A is an essential splicing factor or cofactor actively participating as an oncogenic protein in tumorigenesis via activation of downstream signaling pathway attributed to its regulation of dysregulated splicing or abnormal alternative splicing of targeted genes. Further, the participation of PHF5A in regulating the growth of cancer stem cells might not be ignored. The current review briefly overviews the structural and functional attributes of PHF5A along with its hitherto described role in the propagation of cancer malignancies and its future concern as a potential therapeutic target for cancer management/treatment.
Collapse
Affiliation(s)
- Xiaojiang Li
- Department of Orthopedics, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Dalong Liu
- Department of Orthopedics, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Yun Wang
- Department of Thoracic Surgery, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Yu Chen
- Department of Orthopedics, LiaoYuanCity TCM Hospital, LiaoYuan, 136200, China
| | - Chenyang Wang
- Department of Orthopedics, LiaoYuanCity TCM Hospital, LiaoYuan, 136200, China
| | - Zhicheng Lin
- Department of Internal Medicine, Baishan Hospital of Traditional Chinese Medicine, Baishan, 134300, China
| | - Lin Tian
- Department of Lung Oncology, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| |
Collapse
|
196
|
Borovsky D, Rougé P. Cloning and characterization of Aedes aegypti blood downregulated chymotrypsin II. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 113:e22018. [PMID: 37106507 DOI: 10.1002/arch.22018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 06/17/2023]
Abstract
Aedes aegypti adult and larval blood downregulated chymotrypsin II was cloned, sequenced and its 3D conformation modeled. Cloning of the enzymes from adult and larval guts indicated that both genes sit at the same location on Chromosome 2. Genomic analyses showed that larval and adult genes are the same and both have four exons and three introns that are located on an 8.32 Kb DNA in direction with the Ae. aegypti genome. The adult and larval transcript synthesis is controlled by alternative splicing explaining small difference in the amino acids sequences. Chymotrypsin II that was extracted from guts of sugar-fed and at 48 after blood feeding showed a pH optimum of 4-5 with a broad shoulder of activity from pH 6 to 10. Dot blot analyses show that the enzyme's transcript is downregulated after females take a blood meal and upregulated at 48 h after the blood meal. A Chymotrypsin II transcript was also detected in the larval gut during different times of larval developmental stages, indication that Ae. aegypti chymotrypsin II is synthesized by adults and larval guts. The possibility that JH III and 20HE play an active role in the regulation is discussed.
Collapse
Affiliation(s)
- Dov Borovsky
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
| | - Pierre Rougé
- UMR 152 Pharma-Dev, Faculté des Sciences Pharmaceutiques, Institut de Recherche et Développement, Université Toulouse 3, Toulouse, France
| |
Collapse
|
197
|
Derham JM, Kalsotra A. The discovery, function, and regulation of epithelial splicing regulatory proteins (ESRP) 1 and 2. Biochem Soc Trans 2023; 51:1097-1109. [PMID: 37314029 PMCID: PMC11298080 DOI: 10.1042/bst20221124] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
Alternative splicing is a broad and evolutionarily conserved mechanism to diversify gene expression and functionality. The process relies on RNA binding proteins (RBPs) to recognize and bind target sequences in pre-mRNAs, which allows for the inclusion or skipping of various alternative exons. One recently discovered family of RBPs is the epithelial splicing regulatory proteins (ESRP) 1 and 2. Here, we discuss the structure and physiological function of the ESRPs in a variety of contexts. We emphasize the current understanding of their splicing activities, using the classic example of fibroblast growth factor receptor 2 mutually exclusive splicing. We also describe the mechanistic roles of ESRPs in coordinating the splicing and functional output of key signaling pathways that support the maintenance of, or shift between, epithelial and mesenchymal cell states. In particular, we highlight their functions in the development of mammalian limbs, the inner ear, and craniofacial structure while discussing the genetic and biochemical evidence that showcases their conserved roles in tissue regeneration, disease, and cancer pathogenesis.
Collapse
Affiliation(s)
- Jessica M. Derham
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center @ Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
198
|
Li R, Gao S, Chen H, Zhang X, Yang X, Zhao J, Wang Z. Virus usurps alternative splicing to clear the decks for infection. Virol J 2023; 20:131. [PMID: 37340420 DOI: 10.1186/s12985-023-02098-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
Since invasion, there will be a tug-of-war between host and virus to scramble cellular resources, for either restraining or facilitating infection. Alternative splicing (AS) is a conserved and critical mechanism of processing pre-mRNA into mRNAs to increase protein diversity in eukaryotes. Notably, this kind of post-transcriptional regulatory mechanism has gained appreciation since it is widely involved in virus infection. Here, we highlight the important roles of AS in regulating viral protein expression and how virus in turn hijacks AS to antagonize host immune response. This review will widen the understandings of host-virus interactions, be meaningful to innovatively elucidate viral pathogenesis, and provide novel targets for developing antiviral drugs in the future.
Collapse
Affiliation(s)
- Ruixue Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Shenyan Gao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Huayuan Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Xiaozhan Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, People's Republic of China
| | - Xia Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Jun Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Zeng Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China.
| |
Collapse
|
199
|
Singh NP, Love MI, Patro R. TreeTerminus -creating transcript trees using inferential replicate counts. iScience 2023; 26:106961. [PMID: 37378336 PMCID: PMC10291472 DOI: 10.1016/j.isci.2023.106961] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
A certain degree of uncertainty is always associated with the transcript abundance estimates. The uncertainty may make many downstream analyses, such as differential testing, difficult for certain transcripts. Conversely, gene-level analysis, though less ambiguous, is often too coarse-grained. We introduce TreeTerminus, a data-driven approach for grouping transcripts into a tree structure where leaves represent individual transcripts and internal nodes represent an aggregation of a transcript set. TreeTerminus constructs trees such that, on average, the inferential uncertainty decreases as we ascend the tree topology. The tree provides the flexibility to analyze data at nodes that are at different levels of resolution in the tree and can be tuned depending on the analysis of interest. We evaluated TreeTerminus on two simulated and two experimental datasets and observed an improved performance compared to transcripts (leaves) and other methods under several different metrics.
Collapse
Affiliation(s)
- Noor Pratap Singh
- Department of Computer Science, University of Maryland, College Park, MD, USA
| | - Michael I. Love
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Rob Patro
- Department of Computer Science, University of Maryland, College Park, MD, USA
| |
Collapse
|
200
|
Fotouhi O, Nizamuddin S, Falk S, Schilling O, Knüchel-Clarke R, Biniossek ML, Timmers HTM. Alternative mRNA Splicing Controls the Functions of the Histone H3K27 Demethylase UTX/KDM6A. Cancers (Basel) 2023; 15:3117. [PMID: 37370727 DOI: 10.3390/cancers15123117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The UTX/KDM6A histone H3K27 demethylase plays an important role in development and is frequently mutated in cancers such as urothelial cancer. Despite many studies on UTX proteins, variations in mRNA splicing have been overlooked. Using Nanopore sequencing, we present a comprehensive analysis of UTX/KDM6A splicing events in human cell lines and in tissue samples from bladder cancer cases and normal epithelia. We found that the central region of UTX mRNAs encoded by exons 12 to 17 undergoes extensive alternative splicing. Up to half of all stable mRNAs (8-48% in bladder tissues and 18-58% in cell lines) are represented by the UTX canonical isoform lacking exon 14 encoding a nuclear localization sequence, and hence exon 14-containing UTX isoforms exclusively localize to the nucleus, unlike the cytonuclear localization of the canonical isoform. Chromatin association was also higher for exon-14-containing isoforms compared to the canonical UTX. Using quantitative mass spectrometry, we found that all UTX isoforms integrated into the MLL3 and MLL4, PR-DUB and MiDAC complexes. Interestingly, one of the novel UTX isoforms, which lacks exons 14 and 16, fails to interact with PR-DUB and MiDAC complex members. In conclusion, UTX mRNAs undergo extensive alternative splicing, which controls the subcellular localization of UTX and its interactions with other chromatin regulatory complexes.
Collapse
Affiliation(s)
- Omid Fotouhi
- Department of Urology, Medical Center-University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sheikh Nizamuddin
- Department of Urology, Medical Center-University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Stephanie Falk
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Oliver Schilling
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, 79106 Freiburg, Germany
| | - Ruth Knüchel-Clarke
- Institute of Pathology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Martin L Biniossek
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - H T Marc Timmers
- Department of Urology, Medical Center-University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|