151
|
Hirano M, Yoshii K, Sakai M, Hasebe R, Ichii O, Kariwa H. Tick-borne flaviviruses alter membrane structure and replicate in dendrites of primary mouse neuronal cultures. J Gen Virol 2014; 95:849-861. [PMID: 24394700 DOI: 10.1099/vir.0.061432-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neurological diseases caused by encephalitic flaviviruses are severe and associated with high levels of mortality. However, detailed mechanisms of viral replication in the brain and features of viral pathogenesis remain poorly understood. We carried out a comparative analysis of replication of neurotropic flaviviruses: West Nile virus, Japanese encephalitis virus and tick-borne encephalitis virus (TBEV), in primary cultures of mouse brain neurons. All the flaviviruses multiplied well in primary neuronal cultures from the hippocampus, cerebral cortex and cerebellum. The distribution of viral-specific antigen in the neurons varied: TBEV infection induced accumulation of viral antigen in the neuronal dendrites to a greater extent than infection with other viruses. Viral structural proteins, non-structural proteins and dsRNA were detected in regions in which viral antigens accumulated in dendrites after TBEV replication. Replication of a TBEV replicon after infection with virus-like particles of TBEV also induced antigen accumulation, indicating that accumulated viral antigen was the result of viral RNA replication. Furthermore, electron microscopy confirmed that TBEV replication induced characteristic ultrastructural membrane alterations in the neurites: newly formed laminal membrane structures containing virion-like structures. This is the first report describing viral replication in and ultrastructural alterations of neuronal dendrites, which may cause neuronal dysfunction. These findings encourage further work aimed at understanding the molecular mechanisms of viral replication in the brain and the pathogenicity of neurotropic flaviviruses.
Collapse
Affiliation(s)
- Minato Hirano
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kentaro Yoshii
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Mizuki Sakai
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Rie Hasebe
- Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Osamu Ichii
- Laboratory of Anatomy, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroaki Kariwa
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
152
|
Carbonetto S. A blueprint for research on Shankopathies: a view from research on autism spectrum disorder. Dev Neurobiol 2013; 74:85-112. [PMID: 24218108 DOI: 10.1002/dneu.22150] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/06/2013] [Indexed: 01/21/2023]
Abstract
Autism spectrum disorders (ASD) are associated with mutations in a host of genes including a number that function in synaptic transmission. Phelan McDermid syndrome involves mutations in SHANK3 which encodes a protein that forms a scaffold for glutamate receptors at the synapse. SHANK3 is one of the genes that underpins the synaptic hypothesis for ASD. We discuss this hypothesis with a view to the broader context of ASD and with special emphasis on highly penetrant genetic disorders including Shankopathies. We propose a blueprint for near and longer-term goals for fundamental and translational research on Shankopathies.
Collapse
Affiliation(s)
- Salvatore Carbonetto
- Centre for Research in Neuroscience, Department of Neurology, McGill University Health Centre, Montreal, Quebec, H3G1A4, Canada
| |
Collapse
|
153
|
FMRP and Ataxin-2 function together in long-term olfactory habituation and neuronal translational control. Proc Natl Acad Sci U S A 2013; 111:E99-E108. [PMID: 24344294 DOI: 10.1073/pnas.1309543111] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Fragile X mental retardation protein (FMRP) and Ataxin-2 (Atx2) are triplet expansion disease- and stress granule-associated proteins implicated in neuronal translational control and microRNA function. We show that Drosophila FMRP (dFMR1) is required for long-term olfactory habituation (LTH), a phenomenon dependent on Atx2-dependent potentiation of inhibitory transmission from local interneurons (LNs) to projection neurons (PNs) in the antennal lobe. dFMR1 is also required for LTH-associated depression of odor-evoked calcium transients in PNs. Strong transdominant genetic interactions among dFMR1, atx2, the deadbox helicase me31B, and argonaute1 (ago1) mutants, as well as coimmunoprecitation of dFMR1 with Atx2, indicate that dFMR1 and Atx2 function together in a microRNA-dependent process necessary for LTH. Consistently, PN or LN knockdown of dFMR1, Atx2, Me31B, or the miRNA-pathway protein GW182 increases expression of a Ca2+/calmodulin-dependent protein kinase II (CaMKII) translational reporter. Moreover, brain immunoprecipitates of dFMR1 and Atx2 proteins include CaMKII mRNA, indicating respective physical interactions with this mRNA. Because CaMKII is necessary for LTH, these data indicate that fragile X mental retardation protein and Atx2 act via at least one common target RNA for memory-associated long-term synaptic plasticity. The observed requirement in LNs and PNs supports an emerging view that both presynaptic and postsynaptic translation are necessary for long-term synaptic plasticity. However, whereas Atx2 is necessary for the integrity of dendritic and somatic Me31B-containing particles, dFmr1 is not. Together, these data indicate that dFmr1 and Atx2 function in long-term but not short-term memory, regulating translation of at least some common presynaptic and postsynaptic target mRNAs in the same cells.
Collapse
|
154
|
Picker JD, Walsh CA. New innovations: therapeutic opportunities for intellectual disabilities. Ann Neurol 2013; 74:382-90. [PMID: 24038210 DOI: 10.1002/ana.24002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/01/2013] [Accepted: 07/29/2013] [Indexed: 12/25/2022]
Abstract
Intellectual disability is common and is associated with significant morbidity. Until the latter half of the 20th century, there were no efficacious treatments. Following initial breakthroughs associated with newborn screening and metabolic corrections, little progress was made until recently. With improved understanding of genetic and cellular mechanisms, novel treatment options are beginning to appear for a number of specific conditions. Fragile X and tuberous sclerosis offer paradigms for the development of targeted therapeutics, but advances in understanding of other disorders such as Down syndrome and Rett syndrome, for example, are also resulting in promising treatment directions. In addition, better understanding of the underlying neurobiology is leading to novel developments in enzyme replacement for storage disorders and adjunctive therapies for metabolic disorders, as well as potentially more generalizable approaches that target dysfunctional cell regulation via RNA and chromatin. Physiologic therapies, including deep brain stimulation and transcranial magnetic stimulation, offer yet another direction to enhance cognitive functioning. Current options and evolving opportunities for the intellectually disabled are reviewed and exemplified.
Collapse
Affiliation(s)
- Jonathan D Picker
- Division of Genetics, Boston Children's Hospital, and Howard Hughes Medical Institute, Boston, MA; Departments of Pediatrics and Neurology,, Harvard Medical School, Boston, MA
| | | |
Collapse
|
155
|
Dennis M, Spiegler BJ, Juranek JJ, Bigler ED, Snead OC, Fletcher JM. Age, plasticity, and homeostasis in childhood brain disorders. Neurosci Biobehav Rev 2013; 37:2760-73. [PMID: 24096190 PMCID: PMC3859812 DOI: 10.1016/j.neubiorev.2013.09.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 07/29/2013] [Accepted: 09/19/2013] [Indexed: 12/26/2022]
Abstract
It has been widely accepted that the younger the age and/or immaturity of the organism, the greater the brain plasticity, the young age plasticity privilege. This paper examines the relation of a young age to plasticity, reviewing human pediatric brain disorders, as well as selected animal models, human developmental and adult brain disorder studies. As well, we review developmental and childhood acquired disorders that involve a failure of regulatory homeostasis. Our core arguments are as follows:
Collapse
Affiliation(s)
- Maureen Dennis
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
| | | | | | | | | | | |
Collapse
|
156
|
Wondolowski J, Dickman D. Emerging links between homeostatic synaptic plasticity and neurological disease. Front Cell Neurosci 2013; 7:223. [PMID: 24312013 PMCID: PMC3836049 DOI: 10.3389/fncel.2013.00223] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 11/03/2013] [Indexed: 01/22/2023] Open
Abstract
Homeostatic signaling systems are ubiquitous forms of biological regulation, having been studied for hundreds of years in the context of diverse physiological processes including body temperature and osmotic balance. However, only recently has this concept been brought to the study of excitatory and inhibitory electrical activity that the nervous system uses to establish and maintain stable communication. Synapses are a primary target of neuronal regulation with a variety of studies over the past 15 years demonstrating that these cellular junctions are under bidirectional homeostatic control. Recent work from an array of diverse systems and approaches has revealed exciting new links between homeostatic synaptic plasticity and a variety of seemingly disparate neurological and psychiatric diseases. These include autism spectrum disorders, intellectual disabilities, schizophrenia, and Fragile X Syndrome. Although the molecular mechanisms through which defective homeostatic signaling may lead to disease pathogenesis remain unclear, rapid progress is likely to be made in the coming years using a powerful combination of genetic, imaging, electrophysiological, and next generation sequencing approaches. Importantly, understanding homeostatic synaptic plasticity at a cellular and molecular level may lead to developments in new therapeutic innovations to treat these diseases. In this review we will examine recent studies that demonstrate homeostatic control of postsynaptic protein translation, retrograde signaling, and presynaptic function that may contribute to the etiology of complex neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Joyce Wondolowski
- Department of Biology, University of Southern California Los Angeles, CA, USA
| | | |
Collapse
|
157
|
Kroon T, Sierksma MC, Meredith RM. Investigating mechanisms underlying neurodevelopmental phenotypes of autistic and intellectual disability disorders: a perspective. Front Syst Neurosci 2013; 7:75. [PMID: 24198768 PMCID: PMC3814085 DOI: 10.3389/fnsys.2013.00075] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 10/15/2013] [Indexed: 12/24/2022] Open
Abstract
Brain function and behavior undergo significant plasticity and refinement, particularly during specific critical and sensitive periods. In autistic and intellectual disability (ID) neurodevelopmental disorders (NDDs) and their corresponding genetic mouse models, impairments in many neuronal and behavioral phenotypes are temporally regulated and in some cases, transient. However, the links between neurobiological mechanisms governing typically normal brain and behavioral development (referred to also as "neurotypical" development) and timing of NDD impairments are not fully investigated. This perspective highlights temporal patterns of synaptic and neuronal impairment, with a restricted focus on autism and ID types of NDDs. Given the varying known genetic and environmental causes for NDDs, this perspective proposes two strategies for investigation: (1) a focus on neurobiological mechanisms underlying known critical periods in the (typically) normal-developing brain; (2) investigation of spatio-temporal expression profiles of genes implicated in monogenic syndromes throughout affected brain regions. This approach may help explain why many NDDs with differing genetic causes can result in overlapping phenotypes at similar developmental stages and better predict vulnerable periods within these disorders, with implications for both therapeutic rescue and ultimately, prevention.
Collapse
Affiliation(s)
- Tim Kroon
- Department of Integrative Neurophysiology, Centre for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU University Amsterdam, Netherlands
| | | | | |
Collapse
|
158
|
Chang KT, Ro H, Wang W, Min KT. Meeting at the crossroads: common mechanisms in Fragile X and Down syndrome. Trends Neurosci 2013; 36:685-94. [PMID: 24075449 DOI: 10.1016/j.tins.2013.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/27/2013] [Accepted: 08/29/2013] [Indexed: 10/26/2022]
Abstract
Intellectual disability is characterized by significantly impaired cognitive abilities and is due to various etiological factors, including both genetic and non-genetic causes. Two of the most common genetic forms of intellectual disability are Fragile X syndrome (FXS) and Down syndrome (DS). Recent studies have shown that proteins altered in FXS and DS can physically interact and participate in common signaling pathways regulating dendritic spine development and local protein synthesis, thus supporting the notion that spine dysmorphogenesis and abnormal local protein synthesis may be molecular underpinnings of intellectual disability. Here we review the molecular constituents regulating local protein synthesis and spine morphology and their alterations in FXS and DS. We argue that these changes might ultimately affect synaptic homeostasis and alter cognitive performance.
Collapse
Affiliation(s)
- Karen T Chang
- Zilkha Neurogenetic Institute and Department of Cell and Neurobiology, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | |
Collapse
|
159
|
Lucá R, Averna M, Zalfa F, Vecchi M, Bianchi F, La Fata G, Del Nonno F, Nardacci R, Bianchi M, Nuciforo P, Munck S, Parrella P, Moura R, Signori E, Alston R, Kuchnio A, Farace MG, Fazio VM, Piacentini M, De Strooper B, Achsel T, Neri G, Neven P, Evans DG, Carmeliet P, Mazzone M, Bagni C. The fragile X protein binds mRNAs involved in cancer progression and modulates metastasis formation. EMBO Mol Med 2013; 5:1523-36. [PMID: 24092663 PMCID: PMC3799577 DOI: 10.1002/emmm.201302847] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 08/01/2013] [Accepted: 08/06/2013] [Indexed: 01/30/2023] Open
Abstract
The role of the fragile X mental retardation protein (FMRP) is well established in brain, where its absence leads to the fragile X syndrome (FXS). FMRP is almost ubiquitously expressed, suggesting that, in addition to its effects in brain, it may have fundamental roles in other organs. There is evidence that FMRP expression can be linked to cancer. FMR1 mRNA, encoding FMRP, is overexpressed in hepatocellular carcinoma cells. A decreased risk of cancer has been reported in patients with FXS while a patient-case with FXS showed an unusual decrease of tumour brain invasiveness. However, a role for FMRP in regulating cancer biology, if any, remains unknown. We show here that FMRP and FMR1 mRNA levels correlate with prognostic indicators of aggressive breast cancer, lung metastases probability and triple negative breast cancer (TNBC). We establish that FMRP overexpression in murine breast primary tumours enhances lung metastasis while its reduction has the opposite effect regulating cell spreading and invasion. FMRP binds mRNAs involved in epithelial mesenchymal transition (EMT) and invasion including E-cadherin and Vimentin mRNAs, hallmarks of EMT and cancer progression.
Collapse
Affiliation(s)
- Rossella Lucá
- VIB Center for the Biology of Disease, Leuven, Belgium; Center for Human Genetics, KU Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Gong X, Zhang K, Wang Y, Wang J, Cui Y, Li S, Luo Y. MicroRNA-130b targets Fmr1 and regulates embryonic neural progenitor cell proliferation and differentiation. Biochem Biophys Res Commun 2013; 439:493-500. [PMID: 24021279 DOI: 10.1016/j.bbrc.2013.08.096] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 08/30/2013] [Indexed: 11/17/2022]
Abstract
Fragile X syndrome, one of the most common forms of inherited mental retardation, is caused by expansion of the CGG repeat in the 5'-untranslated region of the X-linked Fmr1 gene, which results in transcriptional silencing and loss of expression of its encoded protein FMRP. The loss of FMRP increases proliferation and alters fate specification in adult neural progenitor cells (aNPCs). However, little is known about Fmr1 mRNA regulation at the transcriptional and post-transcriptional levels. In the present study, we report that miR-130b regulated Fmr1 expression by directly targeting its 3'-untranslated region (3' UTR). Up-regulation of miR-130b in mouse embryonic neural progenitor cells (eNPCs) decreased Fmr1 expression, markedly increased eNPC proliferation and altered the differentiation tendency of eNPCs, suggesting that antagonizing miR-130b may be a new therapeutic entry point for treating Fragile X syndrome.
Collapse
Affiliation(s)
- Xi Gong
- State Key Laboratory of Food Science and Technology, College of Life Sciences and Food Engineering, Nanchang University, Nanchang 330047, China
| | | | | | | | | | | | | |
Collapse
|
161
|
Thomsen R, Pallesen J, Daugaard TF, Børglum AD, Nielsen AL. Genome wide assessment of mRNA in astrocyte protrusions by direct RNA sequencing reveals mRNA localization for the intermediate filament protein nestin. Glia 2013; 61:1922-37. [DOI: 10.1002/glia.22569] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 07/31/2013] [Accepted: 08/05/2013] [Indexed: 12/26/2022]
Affiliation(s)
- Rune Thomsen
- Department of Biomedicine; Aarhus University; Aarhus Denmark
| | - Jonatan Pallesen
- Department of Biomedicine; Aarhus University; Aarhus Denmark
- Center for Integrative Sequencing, iSEQ, Department of Biomedicine; Aarhus University; Aarhus Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Department of Biomedicine; Aarhus University; Aarhus Denmark
| | | | - Anders D. Børglum
- Department of Biomedicine; Aarhus University; Aarhus Denmark
- Center for Integrative Sequencing, iSEQ, Department of Biomedicine; Aarhus University; Aarhus Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Department of Biomedicine; Aarhus University; Aarhus Denmark
- Center for Psychiatric Research; Aarhus University Hospital; Aarhus Denmark
| | - Anders L. Nielsen
- Department of Biomedicine; Aarhus University; Aarhus Denmark
- Center for Integrative Sequencing, iSEQ, Department of Biomedicine; Aarhus University; Aarhus Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Department of Biomedicine; Aarhus University; Aarhus Denmark
| |
Collapse
|
162
|
Bostrom CA, Majaess NM, Morch K, White E, Eadie BD, Christie BR. Rescue of NMDAR-dependent synaptic plasticity in Fmr1 knock-out mice. Cereb Cortex 2013; 25:271-9. [PMID: 23968838 DOI: 10.1093/cercor/bht237] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Fragile X Syndrome (FXS) is the most common form of inherited intellectual disability and results from a loss of Fragile X mental retardation protein (FMRP). FMRP is important for mRNA shuttling and translational control and binds to proteins important for synaptic plasticity. Like many developmental disorders, FXS is associated with alterations in synaptic plasticity that may impair learning and memory processes in the brain. However, it remains unclear whether FMRP plays a ubiquitous role in synaptic plasticity in all brain regions. We report that a loss of FMRP leads to impairments in N-methyl-D-aspartate receptor (NMDAR)-dependent synaptic plasticity in the dentate gyrus (DG), but not in the cornu ammonis area 1 (CA1) subregion of the hippocampus of adult mice. DG-specific deficits are accompanied by a significant reduction in NMDAR GluN1, GluN2A, and GluN2B subunit levels and reduced serine 831 GluA1 phosphorylation specifically in this region. Importantly, we demonstrate that treatment with NMDAR co-agonists (glycine or D-serine) independently rescue impairments in NMDAR-dependent synaptic plasticity in the DG of the Fragile X mental retardation 1 (Fmr1) knockout mouse. These findings implicate the NMDAR in the pathophysiology of FXS and suggest that indirect agonists of the NMDAR may be a successful therapeutic intervention in FXS.
Collapse
Affiliation(s)
- C A Bostrom
- Division of Medical Sciences Department of Biology and
| | - N-M Majaess
- Division of Medical Sciences Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8P 5C2
| | - K Morch
- Division of Medical Sciences Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8P 5C2
| | - E White
- Division of Medical Sciences Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8P 5C2
| | - B D Eadie
- Division of Medical Sciences Department of Biology and
| | | |
Collapse
|
163
|
Verpelli C, Galimberti I, Gomez-Mancilla B, Sala C. Molecular basis for prospective pharmacological treatment strategies in intellectual disability syndromes. Dev Neurobiol 2013; 74:197-206. [PMID: 23695997 DOI: 10.1002/dneu.22093] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 03/27/2013] [Accepted: 05/13/2013] [Indexed: 11/07/2022]
Abstract
A number of mutated genes that code for proteins concerned with brain synapse function and circuit formation have been identified in patients affected by intellectual disability (ID) syndromes over the past 15 years. These genes are involved in synapse formation and plasticity, the regulation of dendritic spine morphology, the regulation of the synaptic cytoskeleton, the synthesis and degradation of specific synapse proteins, and the control of correct balance between excitatory and inhibitory synapses. In most of the cases, even mild alterations in synapse morphology, function, and balance give rise to mild or severe IDs. These studies provided a rationale for the development of pharmacological agents that are able to counteract functional synaptic anomalies and potentially improve the symptoms of some of these conditions. This review summarizes recent findings on the functions of some of the genes responsible for ID syndromes and some of the new potential pharmacological treatments for these diseases.
Collapse
Affiliation(s)
- Chiara Verpelli
- CNR Institute of Neuroscience, Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | | | | | | |
Collapse
|
164
|
Sourial M, Cheng C, Doering LC. Progress toward therapeutic potential for AFQ056 in Fragile X syndrome. J Exp Pharmacol 2013; 5:45-54. [PMID: 27186135 PMCID: PMC4863540 DOI: 10.2147/jep.s27044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and the leading single-gene cause of autism. It is caused by the lack of production of the Fragile X mental retardation protein (FMRP), resulting in cognitive deficits, hyperactivity, and autistic behaviors. Breakthrough advances in potential therapy for FXS followed the discovery that aberrant group 1 metabotropic glutamate receptor (mGluR) signaling is an important constituent of the pathophysiology of the syndrome. Research has indicated that upon neuronal stimulation, FMRP acts downstream of group 1 mGluRs (mGluRs1/5) to inhibit protein synthesis, long-term depression, and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor internalization. To offset the deficits caused by the lack of FMRP, many pharmaceutical companies have designed medicinal drugs to target the unrestrained stimulation of mGluR5 signaling in FXS. Indeed, promising results from animal and clinical studies suggest that mGluR5 antagonists such as AFQ056 can successfully correct many of the deficits in FXS. In this review, we cover the animal studies performed to date that test the role of AFQ056 as a selective mGluR5 antagonist to alleviate the phenotypes of FXS.
Collapse
Affiliation(s)
- Mary Sourial
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Connie Cheng
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Laurie C Doering
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
165
|
Lahiri DK, Sokol DK, Erickson C, Ray B, Ho CY, Maloney B. Autism as early neurodevelopmental disorder: evidence for an sAPPα-mediated anabolic pathway. Front Cell Neurosci 2013; 7:94. [PMID: 23801940 PMCID: PMC3689023 DOI: 10.3389/fncel.2013.00094] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 05/27/2013] [Indexed: 12/27/2022] Open
Abstract
Autism is a neurodevelopmental disorder marked by social skills and communication deficits and interfering repetitive behavior. Intellectual disability often accompanies autism. In addition to behavioral deficits, autism is characterized by neuropathology and brain overgrowth. Increased intracranial volume often accompanies this brain growth. We have found that the Alzheimer's disease (AD) associated amyloid-β precursor protein (APP), especially its neuroprotective processing product, secreted APP α, is elevated in persons with autism. This has led to the "anabolic hypothesis" of autism etiology, in which neuronal overgrowth in the brain results in interneuronal misconnections that may underlie multiple autism symptoms. We review the contribution of research in brain volume and of APP to the anabolic hypothesis, and relate APP to other proteins and pathways that have already been directly associated with autism, such as fragile X mental retardation protein, Ras small GTPase/extracellular signal-regulated kinase, and phosphoinositide 3 kinase/protein kinase B/mammalian target of rapamycin. We also present additional evidence of magnetic resonance imaging intracranial measurements in favor of the anabolic hypothesis. Finally, since it appears that APP's involvement in autism is part of a multi-partner network, we extend this concept into the inherently interactive realm of epigenetics. We speculate that the underlying molecular abnormalities that influence APP's contribution to autism are epigenetic markers overlaid onto potentially vulnerable gene sequences due to environmental influence.
Collapse
Affiliation(s)
- Debomoy K. Lahiri
- Department of Psychiatry, Indiana University School of MedicineIndianapolis, IN USA
- Laboratory of Medical and Molecular Genetics, Indiana University School of MedicineIndianapolis, IN, USA
- Institute of Psychiatric Research, Indiana University School of MedicineIndianapolis, IN, USA
| | - Deborah K. Sokol
- Department of Neurology, Indiana University School of MedicineIndianapolis, IN, USA
| | - Craig Erickson
- Cincinnati Children’s Hospital Medical CenterCincinnati, OH, USA
| | - Balmiki Ray
- Department of Psychiatry, Indiana University School of MedicineIndianapolis, IN USA
- Institute of Psychiatric Research, Indiana University School of MedicineIndianapolis, IN, USA
| | - Chang Y. Ho
- Department of Radiology and Imaging Sciences, Indiana University School of MedicineIndianapolis, IN, USA
| | - Bryan Maloney
- Department of Psychiatry, Indiana University School of MedicineIndianapolis, IN USA
- Institute of Psychiatric Research, Indiana University School of MedicineIndianapolis, IN, USA
| |
Collapse
|
166
|
Persico AM, Napolioni V. Autism genetics. Behav Brain Res 2013; 251:95-112. [PMID: 23769996 DOI: 10.1016/j.bbr.2013.06.012] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 06/03/2013] [Accepted: 06/04/2013] [Indexed: 12/22/2022]
Abstract
Autism spectrum disorder (ASD) is a severe neuropsychiatric disease with strong genetic underpinnings. However, genetic contributions to autism are extremely heterogeneous, with many different loci underlying the disease to a different extent in different individuals. Moreover, the phenotypic expression (i.e., "penetrance") of these genetic components is also highly variable, ranging from fully penetrant point mutations to polygenic forms with multiple gene-gene and gene-environment interactions. Furthermore, many genes involved in ASD are also involved in intellectual disability, further underscoring their lack of specificity in phenotypic expression. We shall hereby review current knowledge on the genetic basis of ASD, spanning genetic/genomic syndromes associated with autism, monogenic forms due to copy number variants (CNVs) or rare point mutations, mitochondrial forms, and polygenic autisms. Finally, the recent contributions of genome-wide association and whole exome sequencing studies will be highlighted.
Collapse
Affiliation(s)
- Antonio M Persico
- Child and Adolescent Neuropsychiatry Unit, University Campus Bio-Medico, Rome, Italy.
| | | |
Collapse
|
167
|
Castrén ML, Castrén E. BDNF in fragile X syndrome. Neuropharmacology 2013; 76 Pt C:729-36. [PMID: 23727436 DOI: 10.1016/j.neuropharm.2013.05.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/07/2013] [Accepted: 05/08/2013] [Indexed: 12/12/2022]
Abstract
Fragile X syndrome (FXS) is a monogenic disorder that is caused by the absence of FMR1 protein (FMRP). FXS serves as an excellent model disorder for studies investigating disturbed molecular mechanisms and synapse function underlying cognitive impairment, autism, and behavioral disturbance. Abnormalities in dendritic spines and synaptic transmission in the brain of FXS individuals and mouse models for FXS indicate perturbations in the development, maintenance, and plasticity of neuronal network connectivity. However, numerous alterations are found during the early development in FXS, including abnormal differentiation of neural progenitors and impaired migration of newly born neurons. Several aspects of FMRP function are modulated by brain-derived neurotrophic factor (BDNF) signaling. Here, we review the evidence of the role for BDNF in the developing and adult FXS brain. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.
Collapse
Affiliation(s)
- Maija L Castrén
- Institute of Biomedicine/Physiology, University of Helsinki, P.O. Box 63, FIN-00014 Helsinki, Finland; Rinnekoti Foundation, Rinnekodintie 10, FIN-02980 Espoo, Finland.
| | | |
Collapse
|
168
|
Vanmarsenille L, Verbeeck J, Belet S, Roebroek AJ, Van de Putte T, Nevelsteen J, Callaerts-Vegh Z, D’Hooge R, Marynen P, Froyen G. Generation and characterization of an Nxf7 knockout mouse to study NXF5 deficiency in a patient with intellectual disability. PLoS One 2013; 8:e64144. [PMID: 23675524 PMCID: PMC3652825 DOI: 10.1371/journal.pone.0064144] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/09/2013] [Indexed: 12/11/2022] Open
Abstract
Members of the Nuclear eXport Factor (NXF) family are involved in the export of mRNA from the nucleus to the cytoplasm, or hypothesized to play a role in transport of cytoplasmic mRNA. We previously reported on the loss of NXF5 in a male patient with a syndromic form of intellectual disability. To study the functional role of NXF5 we identified the mouse counterpart. Based on synteny, mouse Nxf2 is the ortholog of human NXF5. However, we provide several lines of evidence that mouse Nxf7 is the actual functional equivalent of NXF5. Both Nxf7 and NXF5 are predominantly expressed in the brain, show cytoplasmic localization, and present as granules in neuronal dendrites suggesting a role in cytoplasmic mRNA metabolism in neurons. Nxf7 was primarily detected in the pyramidal cells of the hippocampus and in layer V of the cortex. Similar to human NXF2, mouse Nxf2 is highly expressed in testis and shows a nuclear localization. Interestingly, these findings point to a different evolutionary path for both NXF genes in human and mouse. We thus generated and validated Nxf7 knockout mice, which were fertile and did not present any gross anatomical or morphological abnormalities. Expression profiling in the hippocampus and the cortex did not reveal significant changes between wild-type and Nxf7 knockout mice. However, impaired spatial memory was observed in these KO mice when evaluated in the Morris water maze test. In conclusion, our findings provide strong evidence that mouse Nxf7 is the functional counterpart of human NXF5, which might play a critical role in mRNA metabolism in the brain.
Collapse
Affiliation(s)
- Lieselot Vanmarsenille
- Human Genome Laboratory, VIB Center for the Biology of Disease, Leuven, Belgium
- Human Genome Laboratory, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Jelle Verbeeck
- Human Genome Laboratory, VIB Center for the Biology of Disease, Leuven, Belgium
- Human Genome Laboratory, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Stefanie Belet
- Human Genome Laboratory, VIB Center for the Biology of Disease, Leuven, Belgium
- Human Genome Laboratory, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Anton J. Roebroek
- Experimental Mouse Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Tom Van de Putte
- Laboratory of Molecular Biology (Celgen), Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Joke Nevelsteen
- Human Genome Laboratory, VIB Center for the Biology of Disease, Leuven, Belgium
- Human Genome Laboratory, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Rudi D’Hooge
- Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium
- Leuven Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium
| | - Peter Marynen
- Human Genome Laboratory, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Guy Froyen
- Human Genome Laboratory, VIB Center for the Biology of Disease, Leuven, Belgium
- Human Genome Laboratory, Department of Human Genetics, KU Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
169
|
Cvetkovska V, Hibbert AD, Emran F, Chen BE. Overexpression of Down syndrome cell adhesion molecule impairs precise synaptic targeting. Nat Neurosci 2013; 16:677-82. [PMID: 23666178 PMCID: PMC3954815 DOI: 10.1038/nn.3396] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 04/10/2013] [Indexed: 12/17/2022]
Abstract
Fragile X syndrome is caused by loss of Fragile X Mental Retardation Protein (FMRP), an RNA binding protein that suppresses protein translation. Here, we identified Down Syndrome Cell Adhesion Molecule (Dscam) RNA, a molecule involved in neural development and implicated in Down syndrome, bound to FMRP. Elevated Dscam protein levels in Drosophila FMRP null animals and in animals with three copies of the Dscam gene both produced specific and similar synaptic targeting errors in a hard-wired neural circuit which impaired the animal’s sensory perception. Reducing Dscam levels in FMRP null animals reduced synaptic targeting errors and rescued behavioral responses. Our results demonstrate that excess Dscam protein may be a common molecular mechanism underlying altered neural wiring in major causes of intellectual disability.
Collapse
Affiliation(s)
- Vedrana Cvetkovska
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
170
|
Lin HT, Otsu M, Nakauchi H. Stem cell therapy: an exercise in patience and prudence. Philos Trans R Soc Lond B Biol Sci 2013; 368:20110334. [PMID: 23166396 DOI: 10.1098/rstb.2011.0334] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In recent times, the epigenetic study of pluripotency based on cellular reprogramming techniques led to the creation of induced pluripotent stem cells. It has come to represent the forefront of a new wave of alternative therapeutic approaches in the field of stem cell therapy. Progress in drug development has saved countless lives, but there are numerous intractable diseases where curative treatment cannot be achieved through pharmacological intervention alone. Consequently, there has been an unfortunate rise in incidences of organ failures, degenerative disorders and cancers, hence novel therapeutic interventions are required. Stem cells have unique self-renewal and multilineage differentiation capabilities that could be harnessed for therapeutic purposes. Although a number of mature differentiated cells have been characterized in vitro, few have been demonstrated to function in a physiologically relevant context. Despite fervent levels of enthusiasm in the field, the reality is that other than the employment of haematopoietic stem cells, many other therapies have yet to be thoroughly proven for their therapeutic benefit and safety in application. This review shall focus on a discussion regarding the current status of stem cell therapy, the issues surrounding it and its future prospects with a general background on the regulatory networks underlying pluripotency.
Collapse
Affiliation(s)
- Huan-Ting Lin
- Center for Stem Cell Biology and Regenerative Medicine, IMSUT, 4-6-1 Shirokanedai Minato-ku, Tokyo, 108-8639, Japan
| | | | | |
Collapse
|
171
|
Sidorov MS, Auerbach BD, Bear MF. Fragile X mental retardation protein and synaptic plasticity. Mol Brain 2013; 6:15. [PMID: 23566911 PMCID: PMC3636002 DOI: 10.1186/1756-6606-6-15] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/25/2013] [Indexed: 12/20/2022] Open
Abstract
Loss of the translational repressor FMRP causes Fragile X syndrome. In healthy neurons, FMRP modulates the local translation of numerous synaptic proteins. Synthesis of these proteins is required for the maintenance and regulation of long-lasting changes in synaptic strength. In this role as a translational inhibitor, FMRP exerts profound effects on synaptic plasticity.
Collapse
Affiliation(s)
- Michael S Sidorov
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 46-3301, USA
| | | | | |
Collapse
|
172
|
Di Marino D, Achsel T, Lacoux C, Falconi M, Bagni C. Molecular dynamics simulations show how the FMRP Ile304Asn mutation destabilizes the KH2 domain structure and affects its function. J Biomol Struct Dyn 2013; 32:337-50. [PMID: 23527791 DOI: 10.1080/07391102.2013.768552] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mutations or deletions of FMRP, involved in the regulation of mRNA metabolism in brain, lead to the Fragile X syndrome (FXS), the most frequent form of inherited intellectual disability. A severe manifestation of the disease has been associated with the Ile304Asn mutation, located on the KH2 domain of the protein. Several hypotheses have been proposed to explain the possible molecular mechanism responsible for the drastic effect of this mutation in humans. Here, we performed a molecular dynamics simulation and show that the Ile304Asn mutation destabilizes the hydrophobic core producing a partial unfolding of two α-helices and a displacement of a third one. The affected regions show increased residue flexibility and motion. Molecular docking analysis revealed strongly reduced binding to a model single-stranded nucleic acid in agreement with known data that the two partially unfolded helices form the RNA-binding surface. The third helix, which we show here to be also affected, is involved in the PAK1 protein interaction. These two functional binding sites on the KH2 domain do not overlap spatially, and therefore, they can simultaneously bind their targets. Since the Ile304Asn mutation affects both binding sites, this may justify the severe clinical manifestation observed in the patient in which both mRNA metabolism activity and cytoskeleton remodeling would be affected.
Collapse
Affiliation(s)
- Daniele Di Marino
- a VIB Center for the Biology of Disease, Catholic University of Leuven , Herestraat 49, 3000 Leuven , Belgium
| | | | | | | | | |
Collapse
|
173
|
Zang T, Maksimova MA, Cowan CW, Bassel-Duby R, Olson EN, Huber KM. Postsynaptic FMRP bidirectionally regulates excitatory synapses as a function of developmental age and MEF2 activity. Mol Cell Neurosci 2013; 56:39-49. [PMID: 23511190 DOI: 10.1016/j.mcn.2013.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/28/2013] [Accepted: 03/06/2013] [Indexed: 01/20/2023] Open
Abstract
Rates of synapse formation and elimination change over the course of postnatal development, but little is known of molecular mechanisms that mediate this developmental switch. Here, we report that the dendritic RNA-binding protein fragile X mental retardation protein (FMRP) bidirectionally and cell autonomously regulates excitatory synaptic function, which depends on developmental age as well as function of the activity-dependent transcription factor myocyte enhancer factor 2 (MEF2). The acute postsynaptic expression of FMRP in CA1 neurons of hippocampal slice cultures (during the first postnatal week, P6-P7) promotes synapse function and maturation. In contrast, the acute expression of FMRP or endogenous FMRP in more mature neurons (during the second postnatal week; P13-P16) suppresses synapse number. The ability of neuronal depolarization to stimulate MEF2 transcriptional activity increases over this same developmental period. Knockout of endogenous MEF2 isoforms causes acute postsynaptic FMRP expression to promote, instead of eliminate, synapses onto 2-week-old neurons. Conversely, the expression of active MEF2 in neonatal neurons results in a precocious FMRP-dependent synapse elimination. Our findings suggest that FMRP and MEF2 function together to fine tune synapse formation and elimination rates in response to neuronal activity levels over the course of postnatal development.
Collapse
Affiliation(s)
- Tong Zang
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | | | | |
Collapse
|
174
|
Nelson DL, Orr HT, Warren ST. The unstable repeats--three evolving faces of neurological disease. Neuron 2013; 77:825-43. [PMID: 23473314 PMCID: PMC3608403 DOI: 10.1016/j.neuron.2013.02.022] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2013] [Indexed: 01/08/2023]
Abstract
Disorders characterized by expansion of an unstable nucleotide repeat account for a number of inherited neurological diseases. Here, we review examples of unstable repeat disorders that nicely illustrate three of the major pathogenic mechanisms associated with these diseases: loss of function typically by disrupting transcription of the mutated gene, RNA toxic gain of function, and protein toxic gain of function. In addition to providing insight into the mechanisms underlying these devastating neurological disorders, the study of these unstable microsatellite repeat disorders has provided insight into very basic aspects of neuroscience.
Collapse
Affiliation(s)
- David L. Nelson
- Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, TX 77030
| | - Harry T. Orr
- Department of Laboratory Medicine and Pathology, University
of Minnesota, Minneapolis, MN 55455
| | - Stephen T. Warren
- Department of Human Genetics, Emory University School of
Medicine, Atlanta, GA 30322
| |
Collapse
|
175
|
Multiple autism-linked genes mediate synapse elimination via proteasomal degradation of a synaptic scaffold PSD-95. Cell 2013; 151:1581-94. [PMID: 23260144 DOI: 10.1016/j.cell.2012.11.040] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 08/29/2012] [Accepted: 11/20/2012] [Indexed: 01/19/2023]
Abstract
The activity-dependent transcription factor myocyte enhancer factor 2 (MEF2) induces excitatory synapse elimination in mouse neurons, which requires fragile X mental retardation protein (FMRP), an RNA-binding protein implicated in human cognitive dysfunction and autism. We report here that protocadherin 10 (Pcdh10), an autism-spectrum disorders gene, is necessary for this process. MEF2 and FMRP cooperatively regulate the expression of Pcdh10. Upon MEF2 activation, PSD-95 is ubiquitinated by the ubiquitin E3 ligase murine double minute 2 (Mdm2) and then binds to Pcdh10, which links it to the proteasome for degradation. Blockade of the Pcdh10-proteasome interaction inhibits MEF2-induced PSD-95 degradation and synapse elimination. In FMRP-lacking neurons, elevated protein levels of eukaryotic translation elongation factor 1 α (EF1α), an Mdm2-interacting protein and FMRP target mRNA, sequester Mdm2 and prevent MEF2-induced PSD-95 ubiquitination and synapse elimination. Together, our findings reveal roles for multiple autism-linked genes in activity-dependent synapse elimination.
Collapse
|
176
|
Uncoupling of the endocannabinoid signalling complex in a mouse model of fragile X syndrome. Nat Commun 2013; 3:1080. [PMID: 23011134 PMCID: PMC3657999 DOI: 10.1038/ncomms2045] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 08/01/2012] [Indexed: 11/25/2022] Open
Abstract
Fragile X syndrome, the most commonly known genetic cause of autism, is due to loss of the fragile X mental retardation protein, which regulates signal transduction at metabotropic glutamate receptor-5 in the brain. Fragile X mental retardation protein deletion in mice enhances metabotropic glutamate receptor-5-dependent long-term depression in the hippocampus and cerebellum. Here we show that a distinct type of metabotropic glutamate receptor-5-dependent long-term depression at excitatory synapses of the ventral striatum and prefrontal cortex, which is mediated by the endocannabinoid 2-arachidonoyl-sn-glycerol, is absent in fragile X mental retardation protein-null mice. In these mutants, the macromolecular complex that links metabotropic glutamate receptor-5 to the 2-arachidonoyl-sn-glycerol-producing enzyme, diacylglycerol lipase-α (endocannabinoid signalosome), is disrupted and metabotropic glutamate receptor-5-dependent 2-arachidonoyl-sn-glycerol formation is compromised. These changes are accompanied by impaired endocannabinoid-dependent long-term depression. Pharmacological enhancement of 2-arachidonoyl-sn-glycerol signalling normalizes this synaptic defect and corrects behavioural abnormalities in fragile X mental retardation protein-deficient mice. The results identify the endocannabinoid signalosome as a molecular substrate for fragile X syndrome, which might be targeted by therapy. Fragile X syndrome is a major genetic cause of autism and is caused by loss of the fragile X mental retardation protein. In a mouse model of fragile X syndrome, Jung et al. show that an absence of neuronal endocannabinoid signalling is responsible for the neurophysiological and behavioural defects.
Collapse
|
177
|
Regulation of neuronal excitability by interaction of fragile X mental retardation protein with slack potassium channels. J Neurosci 2013; 32:15318-27. [PMID: 23115170 DOI: 10.1523/jneurosci.2162-12.2012] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Loss of the RNA-binding protein fragile X mental retardation protein (FMRP) represents the most common form of inherited intellectual disability. Studies with heterologous expression systems indicate that FMRP interacts directly with Slack Na(+)-activated K(+) channels (K(Na)), producing an enhancement of channel activity. We have now used Aplysia bag cell (BC) neurons, which regulate reproductive behaviors, to examine the effects of Slack and FMRP on excitability. FMRP and Slack immunoreactivity were colocalized at the periphery of isolated BC neurons, and the two proteins could be reciprocally coimmunoprecipitated. Intracellular injection of FMRP lacking its mRNA binding domain rapidly induced a biphasic outward current, with an early transient tetrodotoxin-sensitive component followed by a slowly activating sustained component. The properties of this current matched that of the native Slack potassium current, which was identified using an siRNA approach. Addition of FMRP to inside-out patches containing native Aplysia Slack channels increased channel opening and, in current-clamp recordings, produced narrowing of action potentials. Suppression of Slack expression did not alter the ability of BC neurons to undergo a characteristic prolonged discharge in response to synaptic stimulation, but prevented recovery from a prolonged inhibitory period that normally follows the discharge. Recovery from the inhibited period was also inhibited by the protein synthesis inhibitor anisomycin. Our studies indicate that, in BC neurons, Slack channels are required for prolonged changes in neuronal excitability that require new protein synthesis, and raise the possibility that channel-FMRP interactions may link changes in neuronal firing to changes in protein translation.
Collapse
|
178
|
Yang Q, Feng B, Zhang K, Guo YY, Liu SB, Wu YM, Li XQ, Zhao MG. Excessive astrocyte-derived neurotrophin-3 contributes to the abnormal neuronal dendritic development in a mouse model of fragile X syndrome. PLoS Genet 2012; 8:e1003172. [PMID: 23300470 PMCID: PMC3531466 DOI: 10.1371/journal.pgen.1003172] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 10/31/2012] [Indexed: 11/25/2022] Open
Abstract
Fragile X syndrome (FXS) is a form of inherited mental retardation in humans that results from expansion of a CGG repeat in the Fmr1 gene. Recent studies suggest a role of astrocytes in neuronal development. However, the mechanisms involved in the regulation process of astrocytes from FXS remain unclear. In this study, we found that astrocytes derived from a Fragile X model, the Fmr1 knockout (KO) mouse which lacks FMRP expression, inhibited the proper elaboration of dendritic processes of neurons in vitro. Furthermore, astrocytic conditioned medium (ACM) from KO astrocytes inhibited proper dendritic growth of both wild-type (WT) and KO neurons. Inducing expression of FMRP by transfection of FMRP vectors in KO astrocytes restored dendritic morphology and levels of synaptic proteins. Further experiments revealed elevated levels of the neurotrophin-3 (NT-3) in KO ACM and the prefrontal cortex of Fmr1 KO mice. However, the levels of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), and ciliary neurotrophic factor (CNTF) were normal. FMRP has multiple RNA–binding motifs and is involved in translational regulation. RNA–binding protein immunoprecipitation (RIP) showed the NT-3 mRNA interacted with FMRP in WT astrocytes. Addition of high concentrations of exogenous NT-3 to culture medium reduced the dendrites of neurons and synaptic protein levels, whereas these measures were ameliorated by neutralizing antibody to NT-3 or knockdown of NT-3 expression in KO astrocytes through short hairpin RNAs (shRNAs). Prefrontal cortex microinjection of WT astrocytes or NT-3 shRNA infected KO astrocytes rescued the deficit of trace fear memory in KO mice, concomitantly decreased the NT-3 levels in the prefrontal cortex. This study indicates that excessive NT-3 from astrocytes contributes to the abnormal neuronal dendritic development and that astrocytes could be a potential therapeutic target for FXS. Fragile X syndrome is a form of inherited mental retardation in humans that results from expansion of a CGG repeat in the Fmr1 gene. Recent studies suggest that astrocytes play a role in neuronal growth. In this study, we find that astrocytes derived from a Fragile X model, the Fmr1 knockout (KO) mouse, inhibit the proper elaboration of dendritic processes of neurons in vitro. Excessive neurotrophin-3 (NT-3) is released in the astrocytes from Fmr1 KO mice. Blockage of NT-3 by neutralizing antibodies and knockdown of NT-3 by using short hairpin RNAs (shRNAs) in Fmr1 KO astrocytes can rescue the neuronal dendritic development. In vivo experiments show that prefrontal cortex microinjection of WT astrocytes or NT-3 shRNA–infected KO astrocytes rescues the deficit of trace fear memory in KO mice. This study provides the evidence that a lack of FMRP leads to an overexpression of NT-3, which reduces dendritic growth in neurons.
Collapse
Affiliation(s)
- Qi Yang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Bin Feng
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yan-yan Guo
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Shui-bing Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yu-mei Wu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Xiao-qiang Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Ming-gao Zhao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
- * E-mail:
| |
Collapse
|
179
|
Bagni C, Tassone F, Neri G, Hagerman R. Fragile X syndrome: causes, diagnosis, mechanisms, and therapeutics. J Clin Invest 2012. [PMID: 23202739 DOI: 10.1172/jci63141] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Fragile X syndrome (FXS) is the most frequent form of inherited intellectual disability and is also linked to other neurologic and psychiatric disorders. FXS is caused by a triplet expansion that inhibits expression of the FMR1 gene; the gene product, FMRP, regulates mRNA metabolism in the brain and thus controls the expression of key molecules involved in receptor signaling and spine morphology. While there is no definitive cure for FXS, the understanding of FMRP function has paved the way for rational treatment designs that could potentially reverse many of the neurobiological changes observed in FXS. Additionally, behavioral, pharmacological, and cognitive interventions can raise the quality of life for both patients and their families.
Collapse
Affiliation(s)
- Claudia Bagni
- Katholieke Universiteit Leuven, Center for Human Genetics, Leuven, Belgium.
| | | | | | | |
Collapse
|
180
|
Learning and memory deficits consequent to reduction of the fragile X mental retardation protein result from metabotropic glutamate receptor-mediated inhibition of cAMP signaling in Drosophila. J Neurosci 2012; 32:13111-24. [PMID: 22993428 DOI: 10.1523/jneurosci.1347-12.2012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Loss of the RNA-binding fragile X protein [fragile X mental retardation protein (FMRP)] results in a spectrum of cognitive deficits, the fragile X syndrome (FXS), while aging individuals with decreased protein levels present with a subset of these symptoms and tremor. The broad range of behavioral deficits likely reflects the ubiquitous distribution and multiple functions of the protein. FMRP loss is expected to affect multiple neuronal proteins and intracellular signaling pathways, whose identity and interactions are essential in understanding and ameliorating FXS symptoms. We used heterozygous mutants and targeted RNA interference-mediated abrogation in Drosophila to uncover molecular pathways affected by FMRP reduction. We present evidence that FMRP loss results in excess metabotropic glutamate receptor (mGluR) activity, attributable at least in part to elevation of the protein in affected neurons. Using high-resolution behavioral, genetic, and biochemical analyses, we present evidence that excess mGluR upon FMRP attenuation is linked to the cAMP decrement reported in patients and models, and underlies olfactory associative learning and memory deficits. Furthermore, our data indicate positive transcriptional regulation of the fly fmr1 gene by cAMP, via protein kinase A, likely through the transcription factor CREB. Because the human Fmr1 gene also contains CREB binding sites, the interaction of mGluR excess and cAMP signaling defects we present suggests novel combinatorial pharmaceutical approaches to symptom amelioration upon FMRP attenuation.
Collapse
|
181
|
Paul K, Venkitaramani DV, Cox CL. Dampened dopamine-mediated neuromodulation in prefrontal cortex of fragile X mice. J Physiol 2012; 591:1133-43. [PMID: 23148316 DOI: 10.1113/jphysiol.2012.241067] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common form of inheritable mental retardation caused by transcriptional silencing of the Fmr1 gene resulting in the absence of fragile X mental retardation protein (FMRP). The role of this protein in neurons is complex and its absence gives rise to diverse alterations in neuronal function leading to neurological disorders including mental retardation, hyperactivity, cognitive impairment, obsessive-compulsive behaviour, seizure activity and autism. FMRP regulates mRNA translation at dendritic spines where synapses are formed, and thus the lack of FMRP can lead to disruptions in synaptic transmission and plasticity. Many of these neurological deficits in FXS probably involve the prefrontal cortex, and in this study, we have focused on modulatory actions of dopamine in the medial prefrontal cortex. Our data indicate that dopamine produces a long-lasting enhancement of evoked inhibitory postsynaptic currents (IPSCs) mediated by D1-type receptors seen in wild-type mice; however, such enhancement is absent in the Fmr1 knock-out (Fmr1 KO) mice. The facilitation of IPSCs produced by direct cAMP stimulation was unaffected in Fmr1 KO, but D1 receptor levels were reduced in these animals. Our results show significant disruption of dopaminergic modulation of synaptic transmission in the Fmr1 KO mice and this alteration in inhibitory activity may provide insight into potential targets for the rescue of deficits associated with FXS.
Collapse
Affiliation(s)
- Kush Paul
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana, IL 61801, USA.
| | | | | |
Collapse
|
182
|
Kim SY, Burris J, Bassal F, Koldewyn K, Chattarji S, Tassone F, Hessl D, Rivera SM. Fear-specific amygdala function in children and adolescents on the fragile x spectrum: a dosage response of the FMR1 gene. Cereb Cortex 2012; 24:600-13. [PMID: 23146966 DOI: 10.1093/cercor/bhs341] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations of the fragile X mental retardation 1 (FMR1) gene are the genetic cause of fragile X syndrome (FXS). The presence of significant socioemotional problems has been well documented in FXS although the brain basis of those deficits remains unspecified. Here, we investigated amygdala dysfunction and its relation to socioemotional deficits and FMR1 gene expression in children and adolescents on the FX spectrum (i.e., individuals whose trinucleotide CGG repeat expansion from 55 to over 200 places them somewhere within the fragile X diagnostic range from premutation to full mutation). Participants performed an fMRI task in which they viewed fearful, happy, and scrambled faces. Neuroimaging results demonstrated that FX participants revealed significantly attenuated amygdala activation in Fearful > Scrambled and Fearful > Happy contrasts compared with their neurotypical counterparts, while showing no differences in amygdala volume. Furthermore, we found significant relationships between FMR1 gene expression, anxiety/social dysfunction scores, and reduced amygdala activation in the FX group. In conclusion, we report novel evidence regarding a dosage response of the FMR1 gene on fear-specific functions of the amygdala, which is associated with socioemotional deficits in FXS.
Collapse
Affiliation(s)
- So-Yeon Kim
- Center for Mind and Brain, University of California, Davis, CA 95618, USA
| | | | | | | | | | | | | | | |
Collapse
|
183
|
Kapeli K, Yeo GW. Genome-wide approaches to dissect the roles of RNA binding proteins in translational control: implications for neurological diseases. Front Neurosci 2012; 6:144. [PMID: 23060744 PMCID: PMC3462321 DOI: 10.3389/fnins.2012.00144] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 09/12/2012] [Indexed: 12/12/2022] Open
Abstract
Translational control of messenger RNAs (mRNAs) is a key aspect of neurobiology, defects of which can lead to neurological diseases. In response to stimuli, local translation of mRNAs is activated at synapses to facilitate long-lasting forms of synaptic plasticity, the cellular basis for learning, and memory formation. Translation, as well as all other aspects of RNA metabolism, is controlled in part by RNA binding proteins (RBPs) that directly interact with mRNAs to form mRNA-protein complexes. Disruption of RBP function is becoming widely recognized as a major cause of neurological diseases. Thus understanding the mechanisms that govern the interplay between translation control and RBP regulation in both normal and diseased neurons will provide new opportunities for novel diagnostics and therapeutic intervention. As a means of studying translational control, genome-wide methods are emerging as powerful tools that have already begun to unveil mechanisms that are missed by single-gene studies. Here, we describe the roles of RBPs in translational control, review genome-wide approaches to examine translational control, and discuss how the application of these approaches may provide mechanistic insight into the pathogenic underpinnings of RBPs in neurological diseases.
Collapse
Affiliation(s)
- Katannya Kapeli
- Department of Cellular and Molecular Medicine, University of California San Diego La Jolla, CA, USA
| | | |
Collapse
|
184
|
Lee HY, Jan LY. Fragile X syndrome: mechanistic insights and therapeutic avenues regarding the role of potassium channels. Curr Opin Neurobiol 2012; 22:887-94. [PMID: 22483378 PMCID: PMC3393774 DOI: 10.1016/j.conb.2012.03.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 03/15/2012] [Indexed: 12/31/2022]
Abstract
Fragile X syndrome (FXS) is a common form of mental disability and one of the known causes of autism. The mutation responsible for FXS is a large expansion of the trinucleotide CGG repeats that leads to DNA methylation of the fragile X mental retardation gene 1 (FMR1) and transcriptional silencing, resulting in the absence of fragile X mental retardation protein (FMRP), an mRNA binding protein. Although it is widely known that FMRP is critical for metabotropic glutamate receptor (mGluR)-dependent long-term depression (LTD), which has provided a general theme for developing pharmacological drugs for FXS, specific downstream targets of FMRP may also be of therapeutic value. Since alterations in potassium channel expression level or activity could underlie neuronal network defects in FXS, here we describe recent findings on how these channels might be altered in mouse models of FXS and the possible therapeutic avenues for treating FXS.
Collapse
Affiliation(s)
- Hye Young Lee
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | | |
Collapse
|
185
|
Gocel J, Larson J. Synaptic NMDA receptor-mediated currents in anterior piriform cortex are reduced in the adult fragile X mouse. Neuroscience 2012; 221:170-81. [PMID: 22750206 PMCID: PMC3424403 DOI: 10.1016/j.neuroscience.2012.06.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 06/05/2012] [Accepted: 06/21/2012] [Indexed: 01/16/2023]
Abstract
Fragile X syndrome is a neurodevelopmental condition caused by the transcriptional silencing of the fragile X mental retardation 1 (FMR1) gene. The Fmr1 knockout (KO) mouse exhibits age-dependent deficits in long term potentiation (LTP) at association (ASSN) synapses in anterior piriform cortex (APC). To investigate the mechanisms for this, whole-cell voltage-clamp recordings of ASSN stimulation-evoked synaptic currents were made in APC of slices from adult Fmr1-KO and wild-type (WT) mice, using the competitive N-methyl-D-aspartate (NMDA) receptor antagonist, CPP, to distinguish currents mediated by NMDA and AMPA receptors. NMDA/AMPA current ratios were lower in Fmr1-KO mice than in WT mice, at ages ranging from 3-18months. Since amplitude and frequency of miniature excitatory postsynaptic currents (mEPSCs) mediated by AMPA receptors were no different in Fmr1-KO and WT mice at these ages, the results suggest that NMDA receptor-mediated currents are selectively reduced in Fmr1-KO mice. Analyses of voltage-dependence and decay kinetics of NMDA receptor-mediated currents did not reveal differences between Fmr1-KO and WT mice, suggesting that reduced NMDA currents in Fmr1-KO mice are due to fewer synaptic receptors rather than differences in receptor subunit composition. Reduced NMDA receptor signaling may help to explain the LTP deficit seen at APC ASSN synapses in Fmr1-KO mice at 6-18months of age, but does not explain normal LTP at these synapses in mice 3-6months old. Evoked currents and mEPSCs were also examined in senescent Fmr1-KO and WT mice at 24-28months of age. NMDA/AMPA ratios were similar in senescent WT and Fmr1-KO mice, due to a decrease in the ratio in the WT mice, without significant change in AMPA receptor-mediated mEPSCs.
Collapse
Affiliation(s)
- James Gocel
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, Chicago, IL 60612, USA
| | | |
Collapse
|
186
|
Hovelsø N, Sotty F, Montezinho LP, Pinheiro PS, Herrik KF, Mørk A. Therapeutic potential of metabotropic glutamate receptor modulators. Curr Neuropharmacol 2012; 10:12-48. [PMID: 22942876 PMCID: PMC3286844 DOI: 10.2174/157015912799362805] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 01/10/2011] [Accepted: 03/04/2011] [Indexed: 12/21/2022] Open
Abstract
Glutamate is the main excitatory neurotransmitter in the central nervous system (CNS) and is a major player in complex brain functions. Glutamatergic transmission is primarily mediated by ionotropic glutamate receptors, which include NMDA, AMPA and kainate receptors. However, glutamate exerts modulatory actions through a family of metabotropic G-protein-coupled glutamate receptors (mGluRs). Dysfunctions of glutamatergic neurotransmission have been implicated in the etiology of several diseases. Therefore, pharmacological modulation of ionotropic glutamate receptors has been widely investigated as a potential therapeutic strategy for the treatment of several disorders associated with glutamatergic dysfunction. However, blockade of ionotropic glutamate receptors might be accompanied by severe side effects due to their vital role in many important physiological functions. A different strategy aimed at pharmacologically interfering with mGluR function has recently gained interest. Many subtype selective agonists and antagonists have been identified and widely used in preclinical studies as an attempt to elucidate the role of specific mGluRs subtypes in glutamatergic transmission. These studies have allowed linkage between specific subtypes and various physiological functions and more importantly to pathological states. This article reviews the currently available knowledge regarding the therapeutic potential of targeting mGluRs in the treatment of several CNS disorders, including schizophrenia, addiction, major depressive disorder and anxiety, Fragile X Syndrome, Parkinson’s disease, Alzheimer’s disease and pain.
Collapse
Affiliation(s)
- N Hovelsø
- Department of Neurophysiology, H. Lundbeck A/S, Ottiliavej 9, 2500 Copenhagen-Valby, Denmark
| | | | | | | | | | | |
Collapse
|
187
|
Westmark CJ, Malter JS. The regulation of AβPP expression by RNA-binding proteins. Ageing Res Rev 2012; 11:450-9. [PMID: 22504584 DOI: 10.1016/j.arr.2012.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 03/13/2012] [Accepted: 03/28/2012] [Indexed: 12/29/2022]
Abstract
Amyloid β-protein precursor (AβPP) is cleaved by β- and γ-secretases to liberate amyloid beta (Aβ), the predominant protein found in the senile plaques associated with Alzheimer's disease (AD) and Down syndrome (Masters et al., 1985). Intense investigation by the scientific community has centered on understanding the molecular pathways that underlie the production and accumulation of Aβ Therapeutics that reduce the levels of this tenacious, plaque-promoting peptide may reduce the ongoing neural dysfunction and neuronal degeneration that occurs so profoundly in AD. AβPP and Aβ production are highly complex and involve still to be elucidated combinations of transcriptional, post-transcriptional, translational and post-translational events that mediate the production, processing and clearance of these proteins. Research in our laboratory for the past two decades has focused on the role of RNA binding proteins (RBPs) in mediating the post-transcriptional as well as translational regulation of APP messenger RNA (mRNA). This review article summarizes our findings, as well as those from other laboratories, describing the identification of regulatory RBPs, where and under what conditions they interact with APP mRNA and how those interactions control AβPP and Aβ synthesis.
Collapse
Affiliation(s)
- Cara J Westmark
- University of Wisconsin, Waisman Center for Developmental Disabilities, 1500 Highland Avenue, Madison, WI 53705, USA.
| | | |
Collapse
|
188
|
Wang H, Morishita Y, Miura D, Naranjo JR, Kida S, Zhuo M. Roles of CREB in the regulation of FMRP by group I metabotropic glutamate receptors in cingulate cortex. Mol Brain 2012; 5:27. [PMID: 22867433 PMCID: PMC3478997 DOI: 10.1186/1756-6606-5-27] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/02/2012] [Indexed: 12/04/2022] Open
Abstract
Background Fragile X syndrome is caused by lack of fragile X mental retardation protein (FMRP) due to silencing of the FMR1 gene. The metabotropic glutamate receptors (mGluRs) in the central nervous system contribute to higher brain functions including learning/memory, mental disorders and persistent pain. The transcription factor cyclic AMP-responsive element binding protein (CREB) is involved in important neuronal functions, such as synaptic plasticity and neuronal survival. Our recent study has shown that stimulation of Group I mGluRs upregulated FMRP and activated CREB in anterior cingulate cortex (ACC), a key region for brain cognitive and executive functions, suggesting that activation of Group I mGluRs may upregulate FMRP through CREB signaling pathway. Results In this study, we demonstrate that CREB contributes to the regulation of FMRP by Group I mGluRs. In ACC neurons of adult mice overexpressing dominant active CREB mutant, the upregulation of FMRP by stimulating Group I mGluR is enhanced compared to wild-type mice. However, the regulation of FMRP by Group I mGluRs is not altered by overexpression of Ca2+-insensitive mutant form of downstream regulatory element antagonist modulator (DREAM), a transcriptional repressor involved in synaptic transmission and plasticity. Conclusion Our study has provided further evidence for CREB involvement in regulation of FMRP by Group I mGluRs in ACC neurons, and may help to elucidate the pathogenesis of fragile X syndrome.
Collapse
Affiliation(s)
- Hansen Wang
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | | | | | | | | | | |
Collapse
|
189
|
Wang W, Zhu JZ, Chang KT, Min KT. DSCR1 interacts with FMRP and is required for spine morphogenesis and local protein synthesis. EMBO J 2012; 31:3655-66. [PMID: 22863780 DOI: 10.1038/emboj.2012.190] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/18/2012] [Indexed: 12/25/2022] Open
Abstract
Most common genetic factors known to cause intellectual disability are Down syndrome and Fragile X syndrome. However, the underlying cellular and molecular mechanisms of intellectual disability remain unclear. Recently, dendritic spine dysmorphogenesis and impaired local protein synthesis are posited to contribute to the cellular mechanisms of intellectual disability. Here, we show that Down syndrome critical region1 (DSCR1) interacts with Fragile X mental retardation protein (FMRP) and regulates both dendritic spine morphogenesis and local protein synthesis. Interestingly, decreasing the level of FMRP restores the DSCR1-induced changes in dendritic spine morphology. Our results imply that DSCR1 is a novel regulator of FMRP and that Fragile X syndrome and Down syndrome may share disturbances in common pathways that regulate dendritic spine morphology and local protein synthesis.
Collapse
Affiliation(s)
- Wei Wang
- Department of Biology, Indiana University, Bloomington, USA
| | | | | | | |
Collapse
|
190
|
Omran A, Elimam D, Shalaby S, Peng J, Yin F. MicroRNAs: A Light into the “Black Box” of Neuropediatric Diseases? Neuromolecular Med 2012; 14:244-61. [DOI: 10.1007/s12017-012-8193-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 07/06/2012] [Indexed: 12/19/2022]
|
191
|
Kwan KY, Lam MMS, Johnson MB, Dube U, Shim S, Rašin MR, Sousa AMM, Fertuzinhos S, Chen JG, Arellano JI, Chan DW, Pletikos M, Vasung L, Rowitch DH, Huang EJ, Schwartz ML, Willemsen R, Oostra BA, Rakic P, Heffer M, Kostović I, Judaš M, Sestan N. Species-dependent posttranscriptional regulation of NOS1 by FMRP in the developing cerebral cortex. Cell 2012; 149:899-911. [PMID: 22579290 DOI: 10.1016/j.cell.2012.02.060] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/19/2011] [Accepted: 02/15/2012] [Indexed: 02/06/2023]
Abstract
Fragile X syndrome (FXS), the leading monogenic cause of intellectual disability and autism, results from loss of function of the RNA-binding protein FMRP. Here, we show that FMRP regulates translation of neuronal nitric oxide synthase 1 (NOS1) in the developing human neocortex. Whereas NOS1 mRNA is widely expressed, NOS1 protein is transiently coexpressed with FMRP during early synaptogenesis in layer- and region-specific pyramidal neurons. These include midfetal layer 5 subcortically projecting neurons arranged into alternating columns in the prospective Broca's area and orofacial motor cortex. Human NOS1 translation is activated by FMRP via interactions with coding region binding motifs absent from mouse Nos1 mRNA, which is expressed in mouse pyramidal neurons, but not efficiently translated. Correspondingly, neocortical NOS1 protein levels are severely reduced in developing human FXS cases, but not FMRP-deficient mice. Thus, alterations in FMRP posttranscriptional regulation of NOS1 in developing neocortical circuits may contribute to cognitive dysfunction in FXS.
Collapse
Affiliation(s)
- Kenneth Y Kwan
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Lazarov O, Demars MP, Zhao KDT, Ali HM, Grauzas V, Kney A, Larson J. Impaired survival of neural progenitor cells in dentate gyrus of adult mice lacking fMRP. Hippocampus 2012; 22:1220-4. [PMID: 22128095 PMCID: PMC3291746 DOI: 10.1002/hipo.20989] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2011] [Indexed: 11/06/2022]
Abstract
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability in humans. Individuals affected with the disorder exhibit a deficiency of the fragile X mental retardation protein (FMRP), due to transcriptional silencing of the Fmr1 gene. It is widely accepted that learning deficits in FXS result from impaired synaptic function and/or plasticity in the brain. Interestingly, recent evidence suggests that conditional knockout of Fmr1 in neural progenitor cells in mice impairs hippocampal neurogenesis, which in turn contributes to learning impairments. To examine the nature of the neurogenic impairments and determine whether they impact the morphology of the dentate gyrus, we assessed the extent of neural progenitor cell proliferation, survival, and differentiation in older adult Fmr1 knockout mice. Here, we show that the number of fast-proliferating cells in the subgranular layer of the dentate gyrus, as well as the subsequent survival of these cells, are dramatically reduced in Fmr1 knockout mice. In addition, the number of mature neurons in the granule layer of the dentate gyrus of these mice is significantly smaller than in wild type littermate controls, suggesting that impaired proliferation and survival of neural progenitor cells compromises the structure of the dentate gyrus. Impaired adult neurogenesis may underlie, at least in part, the learning deficits that characterize fragile X syndrome.
Collapse
Affiliation(s)
- Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | | | | | | | | | |
Collapse
|
193
|
Hoffman GE, Le WW, Entezam A, Otsuka N, Tong ZB, Nelson L, Flaws JA, McDonald JH, Jafar S, Usdin K. Ovarian abnormalities in a mouse model of fragile X primary ovarian insufficiency. J Histochem Cytochem 2012; 60:439-56. [PMID: 22470123 PMCID: PMC3393073 DOI: 10.1369/0022155412441002] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 02/04/2012] [Indexed: 11/22/2022] Open
Abstract
FMR1 premutation (PM) alleles have 55-200 CGG·CCG-repeats in their 5' UTR. PM carriers are at risk of fragile X-associated tremor and ataxia syndrome (FXTAS). Females are also at risk for FX primary ovarian insufficiency (FXPOI). PM pathology is generally attributed to deleterious properties of transcripts with long CGG-tracts. For FXPOI, hormone changes suggest a reduced residual follicle pool. Whether this is due to a smaller than normal original follicle pool or an increased rate of follicle depletion is unclear. A FX-PM mouse the authors generated with 130 CGG·CCG-repeats in the endogenous Fmr1 gene recapitulates features of FXTAS. Here the authors demonstrate that the gross development of the ovary and the establishment of the primordial follicle pool is normal in these mice. However, these animals show a faster loss of follicles of all follicle classes, suggesting that the problem is intrinsic to the ovary. In addition, many oocytes show aberrant nuclear accumulation of FMRP and elevated levels of ubiquitination. Furthermore, PM follicles are smaller and have fewer granulosa cells (GCs) than normal. Thus, these animals have ovarian abnormalities involving both the oocytes and GCs that may shed light on the molecular basis of FXPOI in humans.
Collapse
Affiliation(s)
- Gloria E Hoffman
- Department of Biology, Morgan State University, Baltimore, MD 21251, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Verpelli C, Sala C. Molecular and synaptic defects in intellectual disability syndromes. Curr Opin Neurobiol 2012; 22:530-6. [DOI: 10.1016/j.conb.2011.09.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 09/16/2011] [Accepted: 09/22/2011] [Indexed: 12/11/2022]
|
195
|
Nestor MW, Hoffman DA. Aberrant dendritic excitability: a common pathophysiology in CNS disorders affecting memory? Mol Neurobiol 2012; 45:478-87. [PMID: 22528602 PMCID: PMC3496255 DOI: 10.1007/s12035-012-8265-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 03/29/2012] [Indexed: 01/13/2023]
Abstract
Discovering the etiology of pathophysiologies and aberrant behavior in many central nervous system (CNS) disorders has proven elusive because susceptibility to these diseases can be a product of multiple factors such as genetics, epigenetics, and environment. Advances in molecular biology and wide-scale genomics have shown that a large heterogeneity of genetic mutations are potentially responsible for the neuronal pathologies and dysfunctional behaviors seen in CNS disorders. Despite this seemingly complex array of genetic and physiological factors, many disorders of the CNS converge on common dysfunctions in memory. In this review, we propose that mechanisms underlying the development of many CNS disorders may share an underlying cause involving abnormal dendritic integration of synaptic signals. Through understanding the relationship between molecular genetics and dendritic computation, future research may uncover important links between neuronal physiology at the cellular level and higher-order circuit and network abnormalities observed in CNS disorders, and their subsequent affect on memory.
Collapse
Affiliation(s)
- Michael W. Nestor
- Molecular Neurophysiology and Biophysics Unit, LCSN, NICHD, NIH, 35 Lincoln Drive Room 3C-905, Bethesda, Maryland, 20892
| | - Dax A. Hoffman
- Molecular Neurophysiology and Biophysics Unit, LCSN, NICHD, NIH, 35 Lincoln Drive Room 3C-905, Bethesda, Maryland, 20892
| |
Collapse
|
196
|
Peebles KA, Price TJ. Self-injurious behaviour in intellectual disability syndromes: evidence for aberrant pain signalling as a contributing factor. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2012; 56:441-52. [PMID: 21917053 PMCID: PMC3272540 DOI: 10.1111/j.1365-2788.2011.01484.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND In most individuals, injury results in activation of peripheral nociceptors (pain-sensing neurons of the peripheral nervous system) and amplification of central nervous system (CNS) pain pathways that serve as a disincentive to continue harmful behaviour; however, this may not be the case in some developmental disorders that cause intellectual disability (ID). Moreover, individuals affected by ID disorders may initiate self-injurious behaviour to address irritating or painful sensations. In normal individuals, a negative feedback loop decreases sensation of pain, which involves descending inhibitory neurons in the CNS that attenuate spinal nociceptive processing. If spinal nociceptive signalling is impaired in these developmental disorders, an exaggerated painful stimulus may be required in order to engage descending anti-nociceptive signals. METHODS Using electronic databases, we conducted a review of publications regarding the incidence of chronic pain or altered pain sensation in ID patients or corresponding preclinical models. RESULTS There is a body of evidence indicating that individuals with fragile X mental retardation and/or Rett syndrome have altered pain sensation. These findings in humans are supported by mechanistic studies using genetically modified mice harbouring mutations consistent with the human disease. Thus, once self-injurious behaviour is initiated, the signal to stop may be missing. Several developmental disorders that cause ID are associated with increased incidence of gastroesophageal reflux disease (GERD), which can cause severe visceral pain. Individuals affected by these disorders who also have GERD may self-injure as a mechanism to engage descending inhibitory circuits to quell visceral pain. In keeping with this hypothesis, pharmacological treatment of GERD has been shown to be effective for reducing self-injurious behaviour in some patients. Hence, multiple lines of evidence suggest aberrant nociceptive processing in developmental disorders that cause ID. CONCLUSIONS There is evidence that pain pathways and pain amplification mechanisms are altered in several preclinical models of developmental disorders that cause ID. We present hypotheses regarding how impaired pain pathways or chronic pain might contribute to self-injurious behaviour. Studies evaluating the relationship between pain and self-injurious behaviour will provide better understanding of the mechanisms underlying self-injurious behaviour in the ID population and may lead to more effective treatments.
Collapse
Affiliation(s)
- K A Peebles
- Department of Pharmacology, University of Arizona, Tucson, Arizona 85724, USA
| | | |
Collapse
|
197
|
Addington AM, Rapoport JL. Annual research review: impact of advances in genetics in understanding developmental psychopathology. J Child Psychol Psychiatry 2012; 53:510-8. [PMID: 22067053 DOI: 10.1111/j.1469-7610.2011.02478.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
It was hoped that diagnostic guidelines for, and treatment of, child psychiatric disorders in DSM-5 would be informed by the wealth of clinical genetic research related to neurodevelopmental disorders. In spite of remarkable advances in genetic technology, this has not been the case. Candidate gene, genome-wide association, and rare copy number variant (CNV) studies have been carried out for attention-deficit/hyperactivity disorder (ADHD), Autism, Tourette's Syndrome, and schizophrenia, with intriguing results, but environmental factors, incomplete penetrance, pleiotropy, and genetic heterogeneity, underlying any given phenotype have limited clinical translation. One promising approach may be the use of developmental brain imaging measures as more relevant phenotypes. This is particularly important, as subtle abnormalities in timing and expression of gene pathways underlying brain development may well link these disorders and be the ultimate target of treatments.
Collapse
Affiliation(s)
- Anjené M Addington
- Child Psychiatry Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
198
|
Sensitive time-windows for susceptibility in neurodevelopmental disorders. Trends Neurosci 2012; 35:335-44. [PMID: 22542246 DOI: 10.1016/j.tins.2012.03.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 02/22/2012] [Accepted: 03/09/2012] [Indexed: 11/20/2022]
Abstract
Many neurodevelopmental disorders (NDDs) are characterized by age-dependent symptom onset and regression, particularly during early postnatal periods of life. The neurobiological mechanisms preceding and underlying these developmental cognitive and behavioral impairments are, however, not clearly understood. Recent evidence using animal models for monogenic NDDs demonstrates the existence of time-regulated windows of neuronal and synaptic impairments. We propose that these developmentally-dependent impairments can be unified into a key concept: namely, time-restricted windows for impaired synaptic phenotypes exist in NDDs, akin to critical periods during normal sensory development in the brain. Existence of sensitive time-windows has significant implications for our understanding of early brain development underlying NDDs and may indicate vulnerable periods when the brain is more susceptible to current therapeutic treatments.
Collapse
|
199
|
Ishikawa T, Miyata S, Koyama Y, Yoshikawa K, Hattori T, Kumamoto N, Shingaki K, Katayama T, Tohyama M. Transient expression of Xpn, an XLMR protein related to neurite extension, during brain development and participation in neurite outgrowth. Neuroscience 2012; 214:181-91. [PMID: 22531377 DOI: 10.1016/j.neuroscience.2012.04.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 03/11/2012] [Accepted: 04/09/2012] [Indexed: 12/22/2022]
Abstract
KIAA2022 has been implicated as a gene responsible for expressing X-linked mental retardation (XLMR) proteins in humans. However, the functional role of KIAA2022 in the human brain remains unclear. Here, we revealed that depletion of Kiaa2022 inhibits neurite outgrowth of PC12 cells, indicating that the gene participates in neurite extension. Thus, we termed Kiaa2022 as an XLMR protein related to neurite extension (Xpn). Using the mouse brain as a model and ontogenetic analysis of Xpn by real-time PCR, we clearly demonstrated that Xpn is expressed transiently during the late embryonic and perinatal stages. In situ hybridization histochemistry further revealed that Xpn-expressing neurons could be categorized ontogenetically into three types. The first type showed transient expression of Xpn during development. The second type maximally expressed Xpn during the late embryonic or perinatal stage. Thereafter, Xpn expression in this type of neuron decreased gradually throughout development. Nevertheless, a significant level of Xpn expression was detected even into adulthood. The third type of neurons initiated expression of Xpn during the embryonic stage, and continued to express the gene throughout the remaining developmental stages. Subsequent immunohistochemical analysis revealed that Xpn was localized to the nucleus and cytoplasm throughout brain development. Our findings indicate that Xpn may participate in neural circuit formation during developmental stages via nuclear and cytoplasmic Xpn. Moreover, disturbances of this neuronal circuit formation may play a role in the pathogenesis of mental retardation.
Collapse
Affiliation(s)
- T Ishikawa
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
200
|
He CX, Portera-Cailliau C. The trouble with spines in fragile X syndrome: density, maturity and plasticity. Neuroscience 2012; 251:120-8. [PMID: 22522472 DOI: 10.1016/j.neuroscience.2012.03.049] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 02/14/2012] [Accepted: 03/04/2012] [Indexed: 01/15/2023]
Abstract
Dendritic spines are the principal recipients of excitatory synaptic inputs and the basic units of neural computation in the mammalian brain. Alterations in the density, size, shape, and turnover of mature spines, or defects in how spines are generated and establish synapses during brain development, could all result in neuronal dysfunction and lead to cognitive and/or behavioral impairments. That spines are abnormal in fragile X syndrome (FXS) and in the best-studied animal model of this disorder, the Fmr1 knockout mouse, is an undeniable fact. But the trouble with spines in FXS is that the exact nature of their defect is still controversial. Here, we argue that the most consistent abnormality of spines in FXS may be a subtle defect in activity-dependent spine plasticity and maturation. We also propose some future directions for research into spine plasticity in FXS at the cellular and ultrastructural levels that could help solve a two-decade-long riddle about the integrity of synapses in this prototypical neurodevelopmental disorder.
Collapse
Affiliation(s)
- C X He
- Department of Neurology, David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095, USA
| | | |
Collapse
|