151
|
Karam A, Delvallée C, Estrada-Cuzcano A, Geoffroy V, Lamouche JB, Leuvrey AS, Nourisson E, Tarabeux J, Stoetzel C, Scheidecker S, Porter LF, Génin E, Redon R, Sandron F, Boland A, Deleuze JF, Le May N, Dollfus H, Muller J. WGS Revealed Novel BBS5 Pathogenic Variants, Missed by WES, Causing Ciliary Structure and Function Defects. Int J Mol Sci 2023; 24:8729. [PMID: 37240074 PMCID: PMC10218572 DOI: 10.3390/ijms24108729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Bardet-Biedl syndrome (BBS) is an autosomal recessive ciliopathy that affects multiple organs, leading to retinitis pigmentosa, polydactyly, obesity, renal anomalies, cognitive impairment, and hypogonadism. Until now, biallelic pathogenic variants have been identified in at least 24 genes delineating the genetic heterogeneity of BBS. Among those, BBS5 is a minor contributor to the mutation load and is one of the eight subunits forming the BBSome, a protein complex implied in protein trafficking within the cilia. This study reports on a European BBS5 patient with a severe BBS phenotype. Genetic analysis was performed using multiple next-generation sequencing (NGS) tests (targeted exome, TES and whole exome, WES), and biallelic pathogenic variants could only be identified using whole-genome sequencing (WGS), including a previously missed large deletion of the first exons. Despite the absence of family samples, the biallelic status of the variants was confirmed. The BBS5 protein's impact was confirmed on the patient's cells (presence/absence and size of the cilium) and ciliary function (Sonic Hedgehog pathway). This study highlights the importance of WGS and the challenge of reliable structural variant detection in patients' genetic explorations as well as functional tests to assess a variant's pathogenicity.
Collapse
Affiliation(s)
- Adella Karam
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, Institut de Génétique Médicale d’Alsace (IGMA), Faculté de Médecine FMTS, Université de Strasbourg, 67000 Strasbourg, France
| | - Clarisse Delvallée
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, Institut de Génétique Médicale d’Alsace (IGMA), Faculté de Médecine FMTS, Université de Strasbourg, 67000 Strasbourg, France
| | - Alejandro Estrada-Cuzcano
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, Institut de Génétique Médicale d’Alsace (IGMA), Faculté de Médecine FMTS, Université de Strasbourg, 67000 Strasbourg, France
| | - Véronique Geoffroy
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, Institut de Génétique Médicale d’Alsace (IGMA), Faculté de Médecine FMTS, Université de Strasbourg, 67000 Strasbourg, France
| | - Jean-Baptiste Lamouche
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, Institut de Génétique Médicale d’Alsace (IGMA), Faculté de Médecine FMTS, Université de Strasbourg, 67000 Strasbourg, France
| | - Anne-Sophie Leuvrey
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France (E.N.)
| | - Elsa Nourisson
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France (E.N.)
| | - Julien Tarabeux
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France (E.N.)
| | - Corinne Stoetzel
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, Institut de Génétique Médicale d’Alsace (IGMA), Faculté de Médecine FMTS, Université de Strasbourg, 67000 Strasbourg, France
| | - Sophie Scheidecker
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, Institut de Génétique Médicale d’Alsace (IGMA), Faculté de Médecine FMTS, Université de Strasbourg, 67000 Strasbourg, France
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France (E.N.)
| | - Louise Frances Porter
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, Institut de Génétique Médicale d’Alsace (IGMA), Faculté de Médecine FMTS, Université de Strasbourg, 67000 Strasbourg, France
- Centre de Référence Pour les Affections Rares en Génétique Ophtalmologique (CARGO), Institut de Génétique Médicale d’Alsace (IGMA), Filière SENSGENE, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France
| | - Emmanuelle Génin
- Inserm, Université de Brest, EFS, UMR 1078, GGB, F-29200 Brest, France
| | - Richard Redon
- CHU Nantes, CNRS, INSERM, L’institut du Thorax, Nantes Université, 44000 Nantes, France
| | - Florian Sandron
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, 91057 Evry, France
| | - Anne Boland
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, 91057 Evry, France
| | - Jean-François Deleuze
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, 91057 Evry, France
| | - Nicolas Le May
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, Institut de Génétique Médicale d’Alsace (IGMA), Faculté de Médecine FMTS, Université de Strasbourg, 67000 Strasbourg, France
| | - Hélène Dollfus
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, Institut de Génétique Médicale d’Alsace (IGMA), Faculté de Médecine FMTS, Université de Strasbourg, 67000 Strasbourg, France
- Centre de Référence Pour les Affections Rares en Génétique Ophtalmologique (CARGO), Institut de Génétique Médicale d’Alsace (IGMA), Filière SENSGENE, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France
- Service de Génétique Médicale, Institut de Génétique Médicale d’Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - Jean Muller
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, Institut de Génétique Médicale d’Alsace (IGMA), Faculté de Médecine FMTS, Université de Strasbourg, 67000 Strasbourg, France
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France (E.N.)
- Unité Fonctionnelle de Bioinformatique Médicale Appliquée au Diagnostic (UF7363), Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
152
|
Bae JE, Jang S, Kim JB, Hyung H, Park NY, Kim YH, Kim SH, Kim SH, Ha JM, Oh GS, Park K, Jeong K, Jang JS, Jo DS, Kim P, Lee HS, Ryoo ZY, Cho DH. Enhanced primary ciliogenesis via mitochondrial oxidative stress activates AKT to prevent neurotoxicity in HSPA9/mortalin-depleted SH-SY5Y cells. Mol Brain 2023; 16:41. [PMID: 37170364 PMCID: PMC10176837 DOI: 10.1186/s13041-023-01029-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/23/2023] [Indexed: 05/13/2023] Open
Abstract
The primary cilium, an antenna-like structure on the cell surface, acts as a mechanical and chemical sensory organelle. Primary cilia play critical roles in sensing the extracellular environment to coordinate various developmental and homeostatic signaling pathways. Here, we showed that the depletion of heat shock protein family A member 9 (HSPA9)/mortalin stimulates primary ciliogenesis in SH-SY5Y cells. The downregulation of HSPA9 enhances mitochondrial stress by increasing mitochondrial fragmentation and mitochondrial reactive oxygen species (mtROS) generation. Notably, the inhibition of either mtROS production or mitochondrial fission significantly suppressed the increase in primary ciliogenesis in HSPA9-depleted cells. In addition, enhanced primary ciliogenesis contributed to cell survival by activating AKT in SH-SY5Y cells. The abrogation of ciliogenesis through the depletion of IFT88 potentiated neurotoxicity in HSPA9-knockdown cells. Furthermore, both caspase-3 activation and cell death were increased by MK-2206, an AKT inhibitor, in HSPA9-depleted cells. Taken together, our results suggest that enhanced primary ciliogenesis plays an important role in preventing neurotoxicity caused by the loss of HSPA9 in SH-SY5Y cells.
Collapse
Affiliation(s)
- Ji-Eun Bae
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Soyoung Jang
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Joon Bum Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hyejin Hyung
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Na Yeon Park
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Yong Hwan Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - So Hyun Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Seong Hyun Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jin Min Ha
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Gyeong Seok Oh
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kyuhee Park
- Bio-center, Gyeonggido Business & Science Accelerator, Suwon, Gyeonggido, 16229, Republic of Korea
| | - Kwiwan Jeong
- Bio-center, Gyeonggido Business & Science Accelerator, Suwon, Gyeonggido, 16229, Republic of Korea
| | - Jae Seon Jang
- Department of Bio-Medical Analysis, Bio Campus of Korea Polytechnic, Nonsan, Chungcheongnamdo, 32943, Republic of Korea
| | - Doo Sin Jo
- ORGASIS Corp., Suwon, Gyeonggido, 16229, Republic of Korea
| | - Pansoo Kim
- ORGASIS Corp., Suwon, Gyeonggido, 16229, Republic of Korea
| | - Hyun-Shik Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Zae Young Ryoo
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dong-Hyung Cho
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, Republic of Korea.
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
- ORGASIS Corp., Suwon, Gyeonggido, 16229, Republic of Korea.
| |
Collapse
|
153
|
Yan L, Yin H, Mi Y, Wu Y, Zheng Y. Deficiency of Wdr60 and Wdr34 cause distinct neural tube malformation phenotypes in early embryos. Front Cell Dev Biol 2023; 11:1084245. [PMID: 37228654 PMCID: PMC10203710 DOI: 10.3389/fcell.2023.1084245] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Cilia are specialized organelles that extend from plasma membrane, functioning as antennas for signal transduction and are involved in embryonic morphogenesis. Dysfunction of cilia lead to many developmental defects, including neural tube defects (NTDs). Heterodimer WDR60-WDR34 (WD repeat domain 60 and 34) are intermediate chains of motor protein dynein-2, which play important roles in ciliary retrograde transport. It has been reported that disruption of Wdr34 in mouse model results in NTDs and defects of Sonic Hedgehog (SHH) signaling. However, no Wdr60 deficiency mouse model has been reported yet. In this study, piggyBac (PB) transposon is used to interfere Wdr60 and Wdr34 expression respectively to establish Wdr60 PB/PB and Wdr34 PB/PB mouse models. We found that the expression of Wdr60 or Wdr34 is significantly decreased in the homozygote mice. Wdr60 homozygote mice die around E13.5 to E14.5, while Wdr34 homozygote mice die around E10.5 to E11.5. WDR60 is highly expressed in the head region at E10.5 and Wdr60 PB/PB embryos have head malformation. RNAseq and qRT-PCR experiments revealed that Sonic Hedgehog signaling is also downregulated in Wdr60 PB/PB head tissue, demonstrating that WDR60 is also required for promoting SHH signaling. Further experiments on mouse embryos also revealed that the expression levels of planar cell polarity (PCP) components such as CELSR1 and downstream signal molecule c-Jun were downregulated in WDR34 homozygotes compared to wildtype littermates. Coincidently, we observed much higher ratio of open cranial and caudal neural tube in Wdr34 PB/PB mice. CO-IP experiment showed that WDR60 and WDR34 both interact with IFT88, but only WDR34 interacts with IFT140. Taken together, WDR60 and WDR34 play overlapped and distinct functions in modulating neural tube development.
Collapse
Affiliation(s)
- Lu Yan
- Obstetrics and Gynecology Hospital, The Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
- Department of Cellular and Developmental Biology, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Hailing Yin
- Obstetrics and Gynecology Hospital, The Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
- Obstetrics Department of the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yiwei Mi
- Department of Cellular and Developmental Biology, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yu Wu
- Department of Cellular and Developmental Biology, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yufang Zheng
- Obstetrics and Gynecology Hospital, The Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
- Department of Cellular and Developmental Biology, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
154
|
Hart NR. A theoretical model of dietary lipid variance as the origin of primary ciliary dysfunction in preeclampsia. Front Mol Biosci 2023; 10:1173030. [PMID: 37251083 PMCID: PMC10210153 DOI: 10.3389/fmolb.2023.1173030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/14/2023] [Indexed: 05/31/2023] Open
Abstract
Serving as the cell's key interface in communicating with the outside world, primary cilia have emerged as an area of multidisciplinary research interest over the last 2 decades. Although the term "ciliopathy" was first used to describe abnormal cilia caused by gene mutations, recent studies focus on abnormalities of cilia that are found in diseases without clear genetic antecedents, such as obesity, diabetes, cancer, and cardiovascular disease. Preeclampsia, a hypertensive disease of pregnancy, is intensely studied as a model for cardiovascular disease partially due to many shared pathophysiologic elements, but also because changes that develop over decades in cardiovascular disease arise in days with preeclampsia yet resolve rapidly after delivery, thus providing a time-lapse view of the development of cardiovascular pathology. As with genetic primary ciliopathies, preeclampsia affects multiple organ systems. While aspirin delays the onset of preeclampsia, there is no cure other than delivery. The primary etiology of preeclampsia is unknown; however, recent reviews emphasize the fundamental role of abnormal placentation. During normal embryonic development, trophoblastic cells, which arise from the outer layer of the 4-day-old blastocyst, invade the maternal endometrium and establish extensive placental vascular connections between mother and fetus. In primary cilia of trophoblasts, Hedgehog and Wnt/catenin signaling operate upstream of vascular endothelial growth factor to advance placental angiogenesis in a process that is promoted by accessible membrane cholesterol. In preeclampsia, impaired proangiogenic signaling combined with an increase in apoptotic signaling results in shallow invasion and inadequate placental function. Recent studies show primary cilia in preeclampsia to be fewer in number and shortened with functional signaling abnormalities. Presented here is a model that integrates preeclampsia lipidomics and physiology with the molecular mechanisms of liquid-liquid phase separation in model membrane studies and the known changes in human dietary lipids over the last century to explain how changes in dietary lipids might reduce accessible membrane cholesterol and give rise to shortened cilia and defects in angiogenic signaling, which underlie placental dysfunction of preeclampsia. This model offers a possible mechanism for non-genetic dysfunction in cilia and proposes a proof-of-concept study to treat preeclampsia with dietary lipids.
Collapse
|
155
|
Atmakuru PS, Dhawan J. The cilium-centrosome axis in coupling cell cycle exit and cell fate. J Cell Sci 2023; 136:308872. [PMID: 37144419 DOI: 10.1242/jcs.260454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
The centrosome is an evolutionarily conserved, ancient organelle whose role in cell division was first described over a century ago. The structure and function of the centrosome as a microtubule-organizing center, and of its extracellular extension - the primary cilium - as a sensory antenna, have since been extensively studied, but the role of the cilium-centrosome axis in cell fate is still emerging. In this Opinion piece, we view cellular quiescence and tissue homeostasis from the vantage point of the cilium-centrosome axis. We focus on a less explored role in the choice between distinct forms of mitotic arrest - reversible quiescence and terminal differentiation, which play distinct roles in tissue homeostasis. We outline evidence implicating the centrosome-basal body switch in stem cell function, including how the cilium-centrosome complex regulates reversible versus irreversible arrest in adult skeletal muscle progenitors. We then highlight exciting new findings in other quiescent cell types that suggest signal-dependent coupling of nuclear and cytoplasmic events to the centrosome-basal body switch. Finally, we propose a framework for involvement of this axis in mitotically inactive cells and identify future avenues for understanding how the cilium-centrosome axis impacts central decisions in tissue homeostasis.
Collapse
Affiliation(s)
- Priti S Atmakuru
- CSIR Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | - Jyotsna Dhawan
- CSIR Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
156
|
Silva DF, Cavadas C. Primary cilia shape hallmarks of health and aging. Trends Mol Med 2023:S1471-4914(23)00071-0. [PMID: 37137787 DOI: 10.1016/j.molmed.2023.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/05/2023]
Abstract
Primary cilia are specialized organelles that sense changes in extracellular milieu, and their malfunction is responsible for several disorders (ciliopathies). Increasing evidence shows that primary cilia regulate tissue and cellular aging related features, which led us to review the evidence on their role in potentiating and/or accelerating the aging process. Primary cilia malfunction is associated with some age-related disorders, from cancer to neurodegenerative and metabolic disorders. However, there is limited understanding of molecular pathways underlying primary cilia dysfunction, resulting in scarce ciliary-targeted therapies available. Here, we discuss the findings on primary cilia dysfunction as modulators of the health and aging hallmarks, and the pertinence of ciliary pharmacological targeting to promote healthy aging or treat age-related diseases.
Collapse
Affiliation(s)
- Diana Filipa Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Cláudia Cavadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal.
| |
Collapse
|
157
|
Li S, Jia X, Niu T, Zhang X, Qi C, Xu W, Deng H, Sun F, Ji G. HOPE-SIM, a cryo-structured illumination fluorescence microscopy system for accurately targeted cryo-electron tomography. Commun Biol 2023; 6:474. [PMID: 37120442 PMCID: PMC10148829 DOI: 10.1038/s42003-023-04850-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/18/2023] [Indexed: 05/01/2023] Open
Abstract
Cryo-focused ion beam (cryo-FIB) milling technology has been developed for the fabrication of cryo-lamella of frozen native specimens for study by in situ cryo-electron tomography (cryo-ET). However, the precision of the target of interest is still one of the major bottlenecks limiting application. Here, we have developed a cryo-correlative light and electron microscopy (cryo-CLEM) system named HOPE-SIM by incorporating a 3D structured illumination fluorescence microscopy (SIM) system and an upgraded high-vacuum stage to achieve efficiently targeted cryo-FIB. With the 3D super resolution of cryo-SIM as well as our cryo-CLEM software, 3D-View, the correlation precision of targeting region of interest can reach to 110 nm enough for the subsequent cryo-lamella fabrication. We have successfully utilized the HOPE-SIM system to prepare cryo-lamellae targeting mitochondria, centrosomes of HeLa cells and herpesvirus assembly compartment of infected BHK-21 cells, which suggests the high potency of the HOPE-SIM system for future in situ cryo-ET workflows.
Collapse
Affiliation(s)
- Shuoguo Li
- Center for Biological Imaging, Core Facilities for Protein Science, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xing Jia
- Center for Biological Imaging, Core Facilities for Protein Science, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Tongxin Niu
- Center for Biological Imaging, Core Facilities for Protein Science, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Xiaoyun Zhang
- Center for Biological Imaging, Core Facilities for Protein Science, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Chen Qi
- Center for Biological Imaging, Core Facilities for Protein Science, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Wei Xu
- Center for Biological Imaging, Core Facilities for Protein Science, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Hongyu Deng
- University of Chinese Academy of Sciences, 100049, Beijing, China
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Fei Sun
- Center for Biological Imaging, Core Facilities for Protein Science, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Gang Ji
- Center for Biological Imaging, Core Facilities for Protein Science, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
158
|
Li J, Qi Y, Li B, Liu Y, Yang K, Zhang Z, Zhu J, Du E. STIL/AURKA axis promotes cell proliferation by influencing primary cilia formation in bladder cancer. J Transl Med 2023; 21:281. [PMID: 37101292 PMCID: PMC10131372 DOI: 10.1186/s12967-023-04118-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 04/09/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND The primary cilia (PC) is a microtubule-based and nonmotile organelle which protrudes from the surface of almost all mammalian cells. At present, PC has been found to be a deficiency or loss in multiple cancers. Restoring PC could be a novel targeting therapy strategy. Our research showed that PC was reduced in human bladder cancer (BLCA) cells, and PC deficiency promotes cell proliferation. However, the concrete mechanisms remain unknown. SCL/TAL1 interrupting locus (STIL), a PC-related protein, was screened in our previous study and could influence the cell cycle by regulating PC in tumor cells. In this study, we aimed to elucidate the function of STIL for PC to explore the underlying mechanism of PC in BLCA. METHODS Public database analysis, western blot, and enzyme-linked immunosorbent assay (ELISA) were used to screen genes and explore gene expression alteration. Immunofluorescence and western blot were utilized to investigate PC. Wound healing assay, clone formation assay, and CCK-8 assay were used to explore cell migration, growth, and proliferation. The co-immunoprecipitation and western blot were employed to reveal the interaction of STIL and AURKA. RESULTS We found that high STIL expression is correlated with poor outcomes of BLCA patients. Further analysis revealed that STIL overexpression could inhibit PC formation, activate SHH signaling pathways, and promote cell proliferation. In contrast, STIL-knockdown could promote PC formation, inactivate SHH signaling, and inhibit cell proliferation. Furthermore, we found that the regulatory functions of STIL for PC depend on AURKA. STIL could influence proteasome activity and maintain AURKA stabilization. AURKA-knockdown could reverse PC deficiency caused by STIL overexpression for PC in BLCA cells. We observed that co-knockdown in STIL and AURKA significantly enhanced PC assembly. CONCLUSION In summary, our result provides a potential therapy target for BLCA based on the restoration of PC.
Collapse
Affiliation(s)
- Jingxian Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yuanjiong Qi
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Bo Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yan Liu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Kuo Yang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhihong Zhang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Jianqiang Zhu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - E Du
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
159
|
Shinde SR, Mick DU, Aoki E, Rodrigues RB, Gygi SP, Nachury MV. The ancestral ESCRT protein TOM1L2 selects ubiquitinated cargoes for retrieval from cilia. Dev Cell 2023; 58:677-693.e9. [PMID: 37019113 PMCID: PMC10133032 DOI: 10.1016/j.devcel.2023.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/19/2022] [Accepted: 03/07/2023] [Indexed: 04/07/2023]
Abstract
Many G protein-coupled receptors (GPCRs) reside within cilia of mammalian cells and must undergo regulated exit from cilia for the appropriate transduction of signals such as hedgehog morphogens. Lysine 63-linked ubiquitin (UbK63) chains mark GPCRs for regulated removal from cilia, but the molecular basis of UbK63 recognition inside cilia remains elusive. Here, we show that the BBSome-the trafficking complex in charge of retrieving GPCRs from cilia-engages the ancestral endosomal sorting factor target of Myb1-like 2 (TOM1L2) to recognize UbK63 chains within cilia of human and mouse cells. TOM1L2 directly binds to UbK63 chains and the BBSome, and targeted disruption of the TOM1L2/BBSome interaction results in the accumulation of TOM1L2, ubiquitin, and the GPCRs SSTR3, Smoothened, and GPR161 inside cilia. Furthermore, the single-cell alga Chlamydomonas also requires its TOM1L2 ortholog in order to clear ubiquitinated proteins from cilia. We conclude that TOM1L2 broadly enables the retrieval of UbK63-tagged proteins by the ciliary trafficking machinery.
Collapse
Affiliation(s)
- Swapnil Rohidas Shinde
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David U Mick
- Center of Human and Molecular Biology and Center for Molecular Signaling, Department of Medical Biochemistry and Molecular Biology, Saarland University School of Medicine, Homburg, Germany
| | - Erika Aoki
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Rachel B Rodrigues
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Maxence V Nachury
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
160
|
Ewerling A, Maissl V, Wickstead B, May-Simera HL. Neofunctionalization of ciliary BBS proteins to nuclear roles is likely a frequent innovation across eukaryotes. iScience 2023; 26:106410. [PMID: 37034981 PMCID: PMC10074162 DOI: 10.1016/j.isci.2023.106410] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/20/2022] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
The eukaryotic BBSome is a transport complex within cilia and assembled by chaperonin-like BBS proteins. Recent work indicates nuclear functions for BBS proteins in mammals, but it is unclear how common these are in extant proteins or when they evolved. We screened for BBS orthologues across a diverse set of eukaryotes, consolidated nuclear association via signal sequence predictions and permutation analysis, and validated nuclear localization in mammalian cells via fractionation and immunocytochemistry. BBS proteins are-with exceptions-conserved as a set in ciliated species. Predictions highlight five most likely nuclear proteins and suggest that nuclear roles evolved independently of nuclear access during mitosis. Nuclear localization was confirmed in human cells. These findings suggest that nuclear BBS functions are potentially not restricted to mammals, but may be a common frequently co-opted eukaryotic feature. Understanding the functional spectrum of BBS proteins will help elucidating their role in gene regulation, development, and disease.
Collapse
Affiliation(s)
- Alexander Ewerling
- Institute of Molecular Physiology, Faculty of Biology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Vanessa Maissl
- Institute of Molecular Physiology, Faculty of Biology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Bill Wickstead
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Helen Louise May-Simera
- Institute of Molecular Physiology, Faculty of Biology, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
161
|
Streubel JMS, Pereira G. Control of centrosome distal appendages assembly and disassembly. Cells Dev 2023; 174:203839. [PMID: 37062431 DOI: 10.1016/j.cdev.2023.203839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/29/2023] [Accepted: 04/08/2023] [Indexed: 04/18/2023]
Abstract
Centrosomes are microtubule organizing centers involved in chromosome segregation, spindle orientation, cell motility and cilia formation. In recent years, they have also emerged as key modulators of asymmetric cell division. Centrosomes are composed of two centrioles that initiate duplication in S phase. The conservative nature of centriole duplication means that the two centrioles of a G1 cell are of different ages. They are also structurally different as only the older centriole carry appendages, an assembly of a subset of proteins primarily required for cilia formation. In a growing tissue, the non-motile, primary cilium acts as a mechano- and sensory organelle that influences cell behavior via modulation of signaling pathways. Here, we discuss the most recent findings about distal appendage composition and function, as well as cell cycle-specific regulation and their implications in various diseases.
Collapse
Affiliation(s)
- Johanna M S Streubel
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany; German Cancer Research Centre (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany; Centre for Molecular Biology (ZMBH), University of Heidelberg, Heidelberg, Germany
| | - Gislene Pereira
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany; German Cancer Research Centre (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany; Centre for Molecular Biology (ZMBH), University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
162
|
Lin T, Sun Y. Arl13b promotes the proliferation, migration, osteogenesis, and mechanosensation of osteoblasts. Tissue Cell 2023; 82:102088. [PMID: 37058812 DOI: 10.1016/j.tice.2023.102088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023]
Abstract
Primary cilia are microtubule-based organelles presenting on the surface of most postmitotic mammalian cells. As being signaling hubs and sensory organelles, primary cilia can respond to mechanical and chemical stimuli from the extracellular environment. Arl13b (ADP-ribosylation factor-like 13B), an atypical Arf/Arl family GTPase, was identified in genetic screening as a protein essential for maintaining the integrity of cilia and neural tubes. Previous studies on Arl13b have mostly focused on its role in the development of neural tubes, polycystic kidneys, and tumors, but no role in bone patterns was described. This study reported the essential roles of Arl13b in bone formation and osteogenic differentiation. Arl13b was highly expressed in bone tissues and osteoblasts, positively correlated with osteogenic activity during bone development. Furthermore, Arl13b was essential for primary cilium maintenance and Hedgehog signaling activation in osteoblasts. Arl13b knockdown in osteoblasts decreased the length of primary cilia and the upregulated levels of Gli1, Smo, and Ptch1 upon Smo agonist treatment. Additionally, Arl13b knockdown inhibited cell proliferation and migration. Moreover, Arl13b mediated osteogenesis and cell mechanosensation. Cyclic tension strain upregulated the Arl13b expression. Arl13b knockdown suppressed osteogenesis and mitigated cyclic tension strain-induced osteogenesis. These results suggest that Arl13b have important roles in bone formation and mechanosensation.
Collapse
Affiliation(s)
- Tingting Lin
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| | - Yao Sun
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China.
| |
Collapse
|
163
|
Langner E, Cheng T, Kefaloyianni E, Gluck C, Wang B, Mahjoub MR. Impaired centrosome biogenesis in kidney stromal progenitors reduces abundance of interstitial lineages and accelerates injury-induced fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.04.535583. [PMID: 37066241 PMCID: PMC10104024 DOI: 10.1101/2023.04.04.535583] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Defective centrosome function can disrupt embryonic kidney development, by causing changes to the renal interstitium that leads to fibrocystic disease pathologies. Yet, it remains unknown how mutations in centrosome genes impact kidney interstitial cells. Here, we examined the consequences of defective centrosome biogenesis on stromal progenitor cell growth, differentiation and fate. Conditional deletion of Cep120 , a ciliopathy gene essential for centrosome duplication, in the stromal mesenchyme resulted in reduced abundance of pericytes, interstitial fibroblasts and mesangial cells. This was due to delayed mitosis, increased apoptosis, and changes in Wnt and Hedgehog signaling essential for differentiation of stromal lineages. Cep120 ablation resulted in hypoplastic kidneys with medullary atrophy and delayed nephron maturation. Finally, centrosome loss in the interstitium sensitized kidneys of adult mice, causing rapid fibrosis via enhanced TGF-β/Smad3-Gli2 signaling after renal injury. Our study defines the cellular and developmental defects caused by centrosome dysfunction in embryonic kidney stroma. Highlights Defective centrosome biogenesis in kidney stroma causes:Reduced abundance of stromal progenitors, interstitial and mesangial cell populationsDefects in cell-autonomous and paracrine signalingAbnormal/delayed nephrogenesis and tubular dilationsAccelerates injury-induced fibrosis via defective TGF-β/Smad3-Gli2 signaling axis.
Collapse
|
164
|
Jiang M, Palicharla VR, Miller D, Hwang SH, Zhu H, Hixson P, Mukhopadhyay S, Sun J. Human IFT-A complex structures provide molecular insights into ciliary transport. Cell Res 2023; 33:288-298. [PMID: 36775821 PMCID: PMC10066299 DOI: 10.1038/s41422-023-00778-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/11/2023] [Indexed: 02/14/2023] Open
Abstract
Intraflagellar transport (IFT) complexes, IFT-A and IFT-B, form bidirectional trains that move along the axonemal microtubules and are essential for assembling and maintaining cilia. Mutations in IFT subunits lead to numerous ciliopathies involving multiple tissues. However, how IFT complexes assemble and mediate cargo transport lacks mechanistic understanding due to missing high-resolution structural information of the holo-complexes. Here we report cryo-EM structures of human IFT-A complexes in the presence and absence of TULP3 at overall resolutions of 3.0-3.9 Å. IFT-A adopts a "lariat" shape with interconnected core and peripheral subunits linked by structurally vital zinc-binding domains. TULP3, the cargo adapter, interacts with IFT-A through its N-terminal region, and interface mutations disrupt cargo transport. We also determine the molecular impacts of disease mutations on complex formation and ciliary transport. Our work reveals IFT-A architecture, sheds light on ciliary transport and IFT train formation, and enables the rationalization of disease mutations in ciliopathies.
Collapse
Affiliation(s)
- Meiqin Jiang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Vivek Reddy Palicharla
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Darcie Miller
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sun-Hee Hwang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hanwen Zhu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Patricia Hixson
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Ji Sun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
165
|
Gombos S, Miras M, Howe V, Xi L, Pottier M, Kazemein Jasemi NS, Schladt M, Ejike JO, Neumann U, Hänsch S, Kuttig F, Zhang Z, Dickmanns M, Xu P, Stefan T, Baumeister W, Frommer WB, Simon R, Schulze WX. A high-confidence Physcomitrium patens plasmodesmata proteome by iterative scoring and validation reveals diversification of cell wall proteins during evolution. THE NEW PHYTOLOGIST 2023; 238:637-653. [PMID: 36636779 DOI: 10.1111/nph.18730] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Plasmodesmata (PD) facilitate movement of molecules between plant cells. Regulation of this movement is still not understood. Plasmodesmata are hard to study, being deeply embedded within cell walls and incorporating several membrane types. Thus, structure and protein composition of PD remain enigmatic. Previous studies of PD protein composition identified protein lists with few validations, making functional conclusions difficult. We developed a PD scoring approach in iteration with large-scale systematic localization, defining a high-confidence PD proteome of Physcomitrium patens (HC300). HC300, together with bona fide PD proteins from literature, were placed in Pddb. About 65% of proteins in HC300 were not previously PD-localized. Callose-degrading glycolyl hydrolase family 17 (GHL17) is an abundant protein family with representatives across evolutionary scale. Among GHL17s, we exclusively found members of one phylogenetic clade with PD localization and orthologs occur only in species with developed PD. Phylogenetic comparison was expanded to xyloglucan endotransglucosylases/hydrolases and Exordium-like proteins, which also diversified into PD-localized and non-PD-localized members on distinct phylogenetic clades. Our high-confidence PD proteome HC300 provides insights into diversification of large protein families. Iterative and systematic large-scale localization across plant species strengthens the reliability of HC300 as basis for exploring structure, function, and evolution of this important organelle.
Collapse
Affiliation(s)
- Sven Gombos
- Department of Plant Systems Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Manuel Miras
- Department of Molecular Physiology, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Vicky Howe
- Department of Developmental Genetics, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Lin Xi
- Department of Plant Systems Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Mathieu Pottier
- Department of Molecular Physiology, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Neda S Kazemein Jasemi
- Department of Developmental Genetics, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Moritz Schladt
- Department of Molecular Physiology, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - J Obinna Ejike
- Department of Molecular Physiology, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Ulla Neumann
- Central Microscopy, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Sebastian Hänsch
- Center for Advanced Imaging, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Franziska Kuttig
- Department of Developmental Genetics, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Zhaoxia Zhang
- Department of Plant Systems Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Marcel Dickmanns
- Department of Molecular Physiology, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Peng Xu
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Thorsten Stefan
- Department of Plant Systems Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Wolf B Frommer
- Department of Molecular Physiology, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
- Institute for Transformative Biomolecules, Nagoya University, Nagoya, 464-0813, Japan
| | - Rüdiger Simon
- Department of Developmental Genetics, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, 70593, Stuttgart, Germany
| |
Collapse
|
166
|
Devlin L, Dhondurao Sudhindar P, Sayer JA. Renal ciliopathies: promising drug targets and prospects for clinical trials. Expert Opin Ther Targets 2023; 27:325-346. [PMID: 37243567 DOI: 10.1080/14728222.2023.2218616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
INTRODUCTION Renal ciliopathies represent a collection of genetic disorders characterized by deficiencies in the biogenesis, maintenance, or functioning of the ciliary complex. These disorders, which encompass autosomal dominant polycystic kidney disease (ADPKD), autosomal recessive polycystic kidney disease (ARPKD), and nephronophthisis (NPHP), typically result in cystic kidney disease, renal fibrosis, and a gradual deterioration of kidney function, culminating in kidney failure. AREAS COVERED Here we review the advances in basic science and clinical research into renal ciliopathies which have yielded promising small compounds and drug targets, within both preclinical studies and clinical trials. EXPERT OPINION Tolvaptan is currently the sole approved treatment option available for ADPKD patients, while no approved treatment alternatives exist for ARPKD or NPHP patients. Clinical trials are presently underway to evaluate additional medications in ADPKD and ARPKD patients. Based on preclinical models, other potential therapeutic targets for ADPKD, ARPKD, and NPHP look promising. These include molecules targeting fluid transport, cellular metabolism, ciliary signaling and cell-cycle regulation. There is a real and urgent clinical need for translational research to bring novel treatments to clinical use for all forms of renal ciliopathies to reduce kidney disease progression and prevent kidney failure.
Collapse
Affiliation(s)
- Laura Devlin
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Praveen Dhondurao Sudhindar
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- Renal Services, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle Upon Tyne, UK
| |
Collapse
|
167
|
Mytlis A, Levy K, Elkouby YM. The many faces of the bouquet centrosome MTOC in meiosis and germ cell development. Curr Opin Cell Biol 2023; 81:102158. [PMID: 36913831 DOI: 10.1016/j.ceb.2023.102158] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/28/2022] [Accepted: 02/12/2023] [Indexed: 03/13/2023]
Abstract
Meiotic chromosomal pairing is facilitated by a conserved cytoskeletal organization. Telomeres associate with perinuclear microtubules via Sun/KASH complexes on the nuclear envelope (NE) and dynein. Telomere sliding on perinuclear microtubules contributes to chromosome homology searches and is essential for meiosis. Telomeres ultimately cluster on the NE, facing the centrosome, in a configuration called the chromosomal bouquet. Here, we discuss novel components and functions of the bouquet microtubule organizing center (MTOC) in meiosis, but also broadly in gamete development. The cellular mechanics of chromosome movements and the bouquet MTOC dynamics are striking. The newly identified zygotene cilium mechanically anchors the bouquet centrosome and completes the bouquet MTOC machinery in zebrafish and mice. We hypothesize that various centrosome anchoring strategies evolved in different species. Evidence suggests that the bouquet MTOC machinery is a cellular organizer, linking meiotic mechanisms with gamete development and morphogenesis. We highlight this cytoskeletal organization as a new platform for creating a holistic understanding of early gametogenesis, with direct implications to fertility and reproduction.
Collapse
Affiliation(s)
- Avishag Mytlis
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem, 9112102, Israel; Institute for Medical Research - Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Karine Levy
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem, 9112102, Israel; Institute for Medical Research - Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Yaniv M Elkouby
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem, 9112102, Israel; Institute for Medical Research - Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel.
| |
Collapse
|
168
|
Liao X, Li X, Liu R. Extracellular-matrix mechanics regulate cellular metabolism: A ninja warrior behind mechano-chemo signaling crosstalk. Rev Endocr Metab Disord 2023; 24:207-220. [PMID: 36385696 DOI: 10.1007/s11154-022-09768-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/18/2022]
Abstract
Mechanical forces are the indispensable constituent of environmental cues, such as gravity, barometric pressure, vibration, and contact with bodies, which are involved in pattern and organogenesis, providing mechanical input to tissues and determining the ultimate fate of cells. Extracellular matrix (ECM) stiffness, the slow elastic force, carries the external physical force load onto the cell or outputs the internal force exerted by the cell and its neighbors into the environment. Accumulating evidence illustrates the pivotal role of ECM stiffness in the regulation of organogenesis, maintenance of tissue homeostasis, and the development of multiple diseases, which is largely fulfilled through its systematical impact on cellular metabolism. This review summarizes the establishment and regulation of ECM stiffness, the mechanisms underlying how ECM stiffness is sensed by cells and signals to modulate diverse cell metabolic pathways, and the physiological and pathological significance of the ECM stiffness-cell metabolism axis.
Collapse
Affiliation(s)
- Xiaoyu Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, 14, Section 3, Renminnan Road, Chengdu, 610041, Sichuan, China
| | - Xin Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, 14, Section 3, Renminnan Road, Chengdu, 610041, Sichuan, China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, 14, Section 3, Renminnan Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
169
|
Asouli A, Sadr S, Mohebalian H, Borji H. Anti-Tumor Effect of Protoscolex Hydatid Cyst Somatic Antigen on Inhibition Cell Growth of K562. Acta Parasitol 2023:10.1007/s11686-023-00680-3. [PMID: 36991291 DOI: 10.1007/s11686-023-00680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND AND OBJECTIVE Today, cancer is one of the most important causes of death in the world, and so far, many treatment methods have been used in this field. Immunotherapy is considered one of the newest developments in this science, and it is still being investigated in some forms in different cancers and with a variety of antigens as well. One of the subsets of cancer immunotherapy is its treatment using parasitic antigens. The present study evaluated the effect of using somatic antigens of protoscoleces of Echinococcus granulosus on K562 cancer cells. METHODS In this study, hydatid cysts' protoscolex antigens were extracted, purified, and added to K562 cancer cells at three concentrations (0.1, 1, and 2 mg/ml) and on three times (24, 48, and 72 h). The number of apoptotic cells was compared to the control flask. The antigen concentration of 2 mg/ml was used as a control sample to investigate its cytotoxic effect on the growth of healthy HFF3 cells. Annexin V and PI tests were also performed to differentiate apoptosis from necrosis. RESULTS In flasks treated with hydatid cyst protoscolex antigen, all three concentrations significantly reduced the growth of cancer cells compared with the control flask, and concentration 2 of crude antigen significantly caused the death of cancer cells. Furthermore, more cancer cells underwent apoptosis by increasing the time of exposure to the antigen. On the other hand, flow cytometry results also showed that the amount of apoptosis has increased compared to the control group. In fact, Protoscolex hydatid cyst somatic antigens induce programmed cell death in K562 cancer cells while not having a cytotoxic effect on normal cells. CONCLUSION Therefore, it is suggested to do more research on the anti-cancer and therapeutic properties of the antigens of this parasite.
Collapse
Affiliation(s)
- Atefe Asouli
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, P.O. Box: 9177948974, Mashhad, Iran
| | - Soheil Sadr
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hadi Mohebalian
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, P.O. Box: 9177948974, Mashhad, Iran
| | - Hassan Borji
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, P.O. Box: 9177948974, Mashhad, Iran.
| |
Collapse
|
170
|
Kim SE, Nechipurenko I, Christensen ST. Editorial: Signaling by primary cilia in development and disease. Front Cell Dev Biol 2023; 11:1186367. [PMID: 37025179 PMCID: PMC10070995 DOI: 10.3389/fcell.2023.1186367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/08/2023] Open
Affiliation(s)
- Sung-Eun Kim
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Inna Nechipurenko
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States
| | | |
Collapse
|
171
|
Structure of the N-terminal coiled-coil domains of the ciliary protein Rpgrip1l. iScience 2023; 26:106249. [PMID: 36915689 PMCID: PMC10006689 DOI: 10.1016/j.isci.2023.106249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/30/2022] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Rpgrip1l is one of the key ciliary proteins located at the transition zone of the primary cilium, an important organelle for cells to sense the outer environment. Mutations in the RPGRIP1L gene are associated with various ciliopathies. Here, we focused on the N-terminal coiled-coil of Rpgrip1l. By comprehensive biochemical and structural characterizations, we demonstrated that the two predicted coiled-coil regions (CC12) located at Rpgrip1l N-terminus each can form a stable parallel dimer. We further showed that overexpression of Rpgrip1l CC12 in NIH/3T3 cells significantly shortened the length of primary cilia, and this effect depended on the dimer formation. In addition, we found that CC12 of the homolog protein Rpgrip1 in mouse and human were significantly different from Rpgrip1l. Finally, we confirmed that some disease-related mutations can alter the dimeric states of CC12 of Rpgrip1l or Rpgrip1, which might explain the pathogenic mechanisms.
Collapse
|
172
|
Mahajan D, Madugula V, Lu L. Rab8 and TNPO1 are ciliary transport adaptors for GTPase Arl13b by interacting with its RVEP motif-containing ciliary targeting sequence. J Biol Chem 2023; 299:104604. [PMID: 36907439 PMCID: PMC10124946 DOI: 10.1016/j.jbc.2023.104604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Arl13b, an ARF/Arl-family GTPase, is highly enriched in the cilium. Recent studies have established Arl13b as one of the most crucial regulators for ciliary organization, trafficking, and signaling. The ciliary localization of Arl13b is known to require the RVEP motif. However, its cognitive ciliary transport adaptor has been elusive. Here, by imaging the ciliary localization of truncation and point mutations, we defined the ciliary targeting sequence (CTS) of Arl13b as a C-terminal stretch of 17 amino acids containing the RVEP motif. We found Rab8-GDP, but not Rab8-GTP, and TNPO1 simultaneously and directly bind to the CTS of Arl13b in pull-down assays using cell lysates or purified recombinant proteins. Furthermore, Rab8-GDP substantially enhances the interaction between TNPO1 and CTS. Additionally, we determined that the RVEP motif is an essential element as its mutation abolishes the interaction of the CTS with Rab8-GDP and TNPO1 in pull-down and TurboID-based proximity ligation assays. Finally, knockdown of endogenous Rab8 or TNPO1 decreases the ciliary localization of endogenous Arl13b. Therefore, our results suggest Rab8 and TNPO1 might function together as a ciliary transport adaptor for Arl13b by interacting with its RVEP-containing CTS.
Collapse
Affiliation(s)
- Divyanshu Mahajan
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Viswanadh Madugula
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Lei Lu
- School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
173
|
Palicharla VR, Hwang SH, Somatilaka BN, Legué E, Shimada IS, Familiari NE, Tran VM, Woodruff JB, Liem KF, Mukhopadhyay S. Interactions between TULP3 tubby domain and ARL13B amphipathic helix promote lipidated protein transport to cilia. Mol Biol Cell 2023; 34:ar18. [PMID: 36652335 PMCID: PMC10011728 DOI: 10.1091/mbc.e22-10-0473] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The primary cilium is a nexus for cell signaling and relies on specific protein trafficking for function. The tubby family protein TULP3 transports integral membrane proteins into cilia through interactions with the intraflagellar transport complex-A (IFT-A) and phosphoinositides. It was previously shown that short motifs called ciliary localization sequences (CLSs) are necessary and sufficient for TULP3-dependent ciliary trafficking of transmembrane cargoes. However, the mechanisms by which TULP3 regulates ciliary compartmentalization of nonintegral, membrane-associated proteins and whether such trafficking requires TULP3-dependent CLSs is unknown. Here we show that TULP3 is required for ciliary transport of the Joubert syndrome-linked palmitoylated GTPase ARL13B through a CLS. An N-terminal amphipathic helix, preceding the GTPase domain of ARL13B, couples with the TULP3 tubby domain for ciliary trafficking, irrespective of palmitoylation. ARL13B transport requires TULP3 binding to IFT-A but not to phosphoinositides, indicating strong membrane-proximate interactions, unlike transmembrane cargo transport requiring both properties of TULP3. TULP3-mediated trafficking of ARL13B also regulates ciliary enrichment of farnesylated and myristoylated downstream effectors of ARL13B. The lipidated cargoes show distinctive depletion kinetics from kidney epithelial cilia with relation to Tulp3 deletion-induced renal cystogenesis. Overall, these findings indicate an expanded role of the tubby domain in capturing analogous helical secondary structural motifs from diverse cargoes.
Collapse
Affiliation(s)
- Vivek Reddy Palicharla
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Sun-Hee Hwang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | | | - Emilie Legué
- Vertebrate Developmental Biology Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520
| | - Issei S Shimada
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Nicole E Familiari
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Vanna M Tran
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jeffrey B Woodruff
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Karel F Liem
- Vertebrate Developmental Biology Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
174
|
Cicolini I, Blasetti A, Chiarelli F. Ciliopathies in pediatric endocrinology. Ann Pediatr Endocrinol Metab 2023; 28:5-9. [PMID: 37015775 PMCID: PMC10073028 DOI: 10.6065/apem.2244288.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/28/2023] [Indexed: 04/06/2023] Open
Abstract
Ciliopathies are a group of disorders that involve many organs and systems. In this review, we consider the role of the cilium in multiorgan pathology with a focus on endocrinological aspects. Identification of new genes and mutations is the major challenge in development of a tailored and appropriate therapy. It is expected that new mutations will be identified to characterize ciliopathies and promote new therapies.
Collapse
Affiliation(s)
- Ilenia Cicolini
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | | | | |
Collapse
|
175
|
Steidl ME, Nigro EA, Nielsen AK, Pagliarini R, Cassina L, Lampis M, Podrini C, Chiaravalli M, Mannella V, Distefano G, Yang M, Aslanyan M, Musco G, Roepman R, Frezza C, Boletta A. Primary cilia sense glutamine availability and respond via asparagine synthetase. Nat Metab 2023; 5:385-397. [PMID: 36879119 PMCID: PMC10042734 DOI: 10.1038/s42255-023-00754-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/02/2023] [Indexed: 03/08/2023]
Abstract
Depriving cells of nutrients triggers an energetic crisis, which is resolved by metabolic rewiring and organelle reorganization. Primary cilia are microtubule-based organelles at the cell surface, capable of integrating multiple metabolic and signalling cues, but their precise sensory function is not fully understood. Here we show that primary cilia respond to nutrient availability and adjust their length via glutamine-mediated anaplerosis facilitated by asparagine synthetase (ASNS). Nutrient deprivation causes cilia elongation, mediated by reduced mitochondrial function, ATP availability and AMPK activation independently of mTORC1. Of note, glutamine removal and replenishment is necessary and sufficient to induce ciliary elongation or retraction, respectively, under nutrient stress conditions both in vivo and in vitro by restoring mitochondrial anaplerosis via ASNS-dependent glutamate generation. Ift88-mutant cells lacking cilia show reduced glutamine-dependent mitochondrial anaplerosis during metabolic stress, due to reduced expression and activity of ASNS at the base of cilia. Our data indicate a role for cilia in responding to, and possibly sensing, cellular glutamine levels via ASNS during metabolic stress.
Collapse
Affiliation(s)
- Maria Elena Steidl
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
- Ph.D Program in Molecular and Cellular Biology, Vita-Salute San Raffaele University, Milan, Italy
| | - Elisa A Nigro
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Anne Kallehauge Nielsen
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
- Ph.D Program in Molecular and Cellular Biology, Vita-Salute San Raffaele University, Milan, Italy
| | - Roberto Pagliarini
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Laura Cassina
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Lampis
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Christine Podrini
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Marco Chiaravalli
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Mannella
- Center for Omics Sciences, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Gianfranco Distefano
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Ming Yang
- MRC, Cancer Unit Cambridge, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
- CECAD Research Center, Cologne, Germany
| | - Mariam Aslanyan
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Giovanna Musco
- Biomolecular Nuclear Magnetic Resonance Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Ronald Roepman
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christian Frezza
- MRC, Cancer Unit Cambridge, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
- CECAD Research Center, Cologne, Germany
| | - Alessandra Boletta
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
176
|
Morleo M, Pezzella N, Franco B. Proteome balance in ciliopathies: the OFD1 protein example. Trends Mol Med 2023; 29:201-217. [PMID: 36494254 DOI: 10.1016/j.molmed.2022.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
The balance of protein synthesis and degradation is finely regulated and influences cellular homeostasis and biological processes (e.g., embryonic development and neuronal plasticity). Recent data demonstrated that centrosomal/ciliary proteins enable proteome control in response to spatial or microenvironmental stimuli. Here, we discuss recent discoveries regarding the role in the balance of the proteome of centrosomal/ciliary proteins associated with genetic disorders known as ciliopathies. In particular, OFD1 was the first example of a ciliopathy protein controlling both protein expression and autophagic/proteasomal degradation. Understanding the role of proteome balance in the pathogenesis of the clinical manifestations of ciliopathies may pave the way to the identification of a wide range of putative novel therapeutic targets for these conditions.
Collapse
Affiliation(s)
- Manuela Morleo
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Nunziana Pezzella
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine program, University of Naples Federico II, Naples, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine program, University of Naples Federico II, Naples, Italy; Medical Genetics, Department of Translational Medicine, University of Naples 'Federico II', Via Sergio Pansini, 80131, Naples, Italy.
| |
Collapse
|
177
|
Li B, Yan YP, He YY, Liang C, Li MY, Wang Y, Yang ZM. IHH, SHH, and primary cilia mediate epithelial-stromal cross-talk during decidualization in mice. Sci Signal 2023; 16:eadd0645. [PMID: 36853961 DOI: 10.1126/scisignal.add0645] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The establishment of pregnancy depends on interactions between the epithelial and stromal cells of the endometrium that drive the decidual reaction that remodels the stroma and enables embryo implantation. Decidualization in mice also depends on ovarian hormones and the presence of a blastocyst. Hedgehog signaling is transduced by primary cilia in many tissues and is involved in epithelial-stromal cross-talk during decidualization. We found that primary cilia on mouse uterine stromal cells increased in number and length during early pregnancy and were required for decidualization. In vitro and in vivo, progesterone promoted stromal ciliogenesis and the production of Indian hedgehog (IHH) in the epithelium and Sonic hedgehog (SHH) in the stroma. Blastocyst-derived TNF-α also induced epithelial IHH, which stimulated the production of SHH in the stroma through a mechanism that may involve the release of arachidonic acid from epithelial cells. In the stroma, SHH activated canonical Hedgehog signaling through primary cilia and promoted decidualization through a mechanism that depended on interleukin-11 (IL-11) and primary cilia. Our findings identify a primary cilia-dependent network that controls endometrial decidualization and suggest primary cilia as a candidate therapeutic target for endometrial diseases.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang 550025, China.,College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ya-Ping Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yu-Ying He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Chen Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Meng-Yuan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zeng-Ming Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang 550025, China.,College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
178
|
Weiss LE, Love JF, Yoon J, Comerci CJ, Milenkovic L, Kanie T, Jackson PK, Stearns T, Gustavsson AK. Single-molecule imaging in the primary cilium. Methods Cell Biol 2023; 176:59-83. [PMID: 37164543 PMCID: PMC10509820 DOI: 10.1016/bs.mcb.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
The primary cilium is an important signaling organelle critical for normal development and tissue homeostasis. Its small dimensions and complexity necessitate advanced imaging approaches to uncover the molecular mechanisms behind its function. Here, we outline how single-molecule fluorescence microscopy can be used for tracking molecular dynamics and interactions and for super-resolution imaging of nanoscale structures in the primary cilium. Specifically, we describe in detail how to capture and quantify the 2D dynamics of individual transmembrane proteins PTCH1 and SMO and how to map the 3D nanoscale distributions of the inversin compartment proteins INVS, ANKS6, and NPHP3. This protocol can, with minor modifications, be adapted for studies of other proteins and cell lines to further elucidate the structure and function of the primary cilium at the molecular level.
Collapse
Affiliation(s)
- Lucien E Weiss
- Department of Engineering Physics, Polytechnique Montréal, Montreal, QC, Canada.
| | - Julia F Love
- Department of Chemistry, Rice University, Houston, TX, United States
| | | | - Colin J Comerci
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| | | | - Tomoharu Kanie
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, United States; Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Tim Stearns
- Department of Biology, Stanford University, Stanford, CA, United States; Rockefeller University, New York City, NY, United States
| | - Anna-Karin Gustavsson
- Department of Chemistry, Rice University, Houston, TX, United States; Department of BioSciences, Rice University, Houston, TX, United States; Institute of Biosciences and Bioengineering, Rice University, Houston, TX, United States; Smalley-Curl Institute, Rice University, Houston, TX, United States.
| |
Collapse
|
179
|
Rabiasz A, Ziętkiewicz E. Schmidtea mediterranea as a Model Organism to Study the Molecular Background of Human Motile Ciliopathies. Int J Mol Sci 2023; 24:ijms24054472. [PMID: 36901899 PMCID: PMC10002865 DOI: 10.3390/ijms24054472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Cilia and flagella are evolutionarily conserved organelles that form protrusions on the surface of many growth-arrested or differentiated eukaryotic cells. Due to the structural and functional differences, cilia can be roughly classified as motile and non-motile (primary). Genetically determined dysfunction of motile cilia is the basis of primary ciliary dyskinesia (PCD), a heterogeneous ciliopathy affecting respiratory airways, fertility, and laterality. In the face of the still incomplete knowledge of PCD genetics and phenotype-genotype relations in PCD and the spectrum of PCD-like diseases, a continuous search for new causative genes is required. The use of model organisms has been a great part of the advances in understanding molecular mechanisms and the genetic basis of human diseases; the PCD spectrum is not different in this respect. The planarian model (Schmidtea mediterranea) has been intensely used to study regeneration processes, and-in the context of cilia-their evolution, assembly, and role in cell signaling. However, relatively little attention has been paid to the use of this simple and accessible model for studying the genetics of PCD and related diseases. The recent rapid development of the available planarian databases with detailed genomic and functional annotations prompted us to review the potential of the S. mediterranea model for studying human motile ciliopathies.
Collapse
|
180
|
Hofer AM. Defining the Specialized Functions of cAMP Signals in an Organelle Formerly Deemed to Have No Function: The Primary Cilium. FUNCTION 2023; 4:zqad007. [PMID: 36865065 PMCID: PMC9972343 DOI: 10.1093/function/zqad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Affiliation(s)
- Aldebaran M Hofer
- VA Boston Healthcare System and the Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, 1400 VFW PKW, West Roxbury, MA 02132, USA
| |
Collapse
|
181
|
Sacristán-Gómez P, Serrano-Somavilla A, Castro-Espadas L, Sánchez de la Blanca Carrero N, Sampedro-Núñez M, Muñoz-De-Nova JL, Molina-Jiménez F, Rosell A, Marazuela M, Martínez-Hernández R. Evaluation of Epithelial-Mesenchymal Transition Markers in Autoimmune Thyroid Diseases. Int J Mol Sci 2023; 24:3359. [PMID: 36834770 PMCID: PMC9965822 DOI: 10.3390/ijms24043359] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
A state of chronic inflammation is common in organs affected by autoimmune disorders, such as autoimmune thyroid diseases (AITD). Epithelial cells, such as thyroid follicular cells (TFCs), can experience a total or partial transition to a mesenchymal phenotype under these conditions. One of the major cytokines involved in this phenomenon is transforming growth factor beta (TGF-β), which, at the initial stages of autoimmune disorders, plays an immunosuppressive role. However, at chronic stages, TGF- β contributes to fibrosis and/or transition to mesenchymal phenotypes. The importance of primary cilia (PC) has grown in recent decades as they have been shown to play a key role in cell signaling and maintaining cell structure and function as mechanoreceptors. Deficiencies of PC can trigger epithelial-mesenchymal transition (EMT) and exacerbate autoimmune diseases. A set of EMT markers (E-cadherin, vimentin, α-SMA, and fibronectin) were evaluated in thyroid tissues from AITD patients and controls through RT-qPCR, immunohistochemistry (IHC), and western blot (WB). We established an in vitro TGF-β-stimulation assay in a human thyroid cell line to assess EMT and PC disruption. EMT markers were evaluated in this model using RT-qPCR and WB, and PC was evaluated with a time-course immunofluorescence assay. We found an increased expression of the mesenchymal markers α-SMA and fibronectin in TFCs in the thyroid glands of AITD patients. Furthermore, E-cadherin expression was maintained in these patients compared to the controls. The TGF-β-stimulation assay showed an increase in EMT markers, including vimentin, α-SMA, and fibronectin in thyroid cells, as well as a disruption of PC. The TFCs from the AITD patients experienced a partial transition to a mesenchymal phenotype, preserving epithelial characteristics associated with a disruption in PC, which might contribute to AITD pathogenesis.
Collapse
Affiliation(s)
- Pablo Sacristán-Gómez
- Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), 28029 Madrid, Spain
| | - Ana Serrano-Somavilla
- Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), 28029 Madrid, Spain
| | - Lía Castro-Espadas
- Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006 Madrid, Spain
| | - Nuria Sánchez de la Blanca Carrero
- Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), 28029 Madrid, Spain
| | - Miguel Sampedro-Núñez
- Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), 28029 Madrid, Spain
| | - José Luis Muñoz-De-Nova
- Department of General and Digestive Surgery, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006 Madrid, Spain
| | - Francisca Molina-Jiménez
- Gastroenterology Research Unit, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006 Madrid, Spain
| | - Alejandra Rosell
- Pathology Unit, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006 Madrid, Spain
| | - Mónica Marazuela
- Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), 28029 Madrid, Spain
| | - Rebeca Martínez-Hernández
- Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), 28029 Madrid, Spain
- Faculty of Medicine, Universidad San Pablo CEU, Urbanización Montepríncipe, Alcorcón, 28925 Madrid, Spain
| |
Collapse
|
182
|
Hoffman HK, Prekeris R. HOPS-dependent lysosomal fusion controls Rab19 availability for ciliogenesis in polarized epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527563. [PMID: 36798155 PMCID: PMC9934645 DOI: 10.1101/2023.02.07.527563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Primary cilia are sensory cellular organelles crucial for organ development and homeostasis. Ciliogenesis in polarized epithelial cells requires Rab19-mediated clearing of apical cortical actin to allow the cilium to grow from the apically-docked basal body into the extracellular space. Loss of the lysosomal membrane-tethering HOPS complex disrupts this actin-clearing and ciliogenesis, but it remains unclear how ciliary function of HOPS relates to its canonical function in regulating late endosome-lysosome fusion. Here, we show that disruption of HOPS-dependent lysosomal fusion indirectly impairs actin-clearing and ciliogenesis by disrupting the targeting of Rab19 to the basal body. We also find that Rab19 functions in endolysosomal cargo trafficking apart from its previously-identified role in ciliogenesis. In summary, we show that inhibition of lysosomal fusion abnormally accumulates Rab19 on late endosomes, thus depleting Rab19 from the basal body and thereby disrupting Rab19-mediated actin-clearing and ciliogenesis. Summary statement Loss of HOPS-mediated lysosomal fusion indirectly blocks apical actin clearing and ciliogenesis in polarized epithelia by trapping Rab19 on late endosomes and depleting Rab19 from the basal body.
Collapse
Affiliation(s)
- Huxley K. Hoffman
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
183
|
Iwano T, Sobajima T, Takeda S, Harada A, Yoshimura SI. The Rab GTPase-binding protein EHBP1L1 and its interactors CD2AP/CIN85 negatively regulate the length of primary cilia via actin remodeling. J Biol Chem 2023; 299:102985. [PMID: 36754282 PMCID: PMC9986712 DOI: 10.1016/j.jbc.2023.102985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Primary cilia are organelles consisting of axonemal microtubules and plasma membranes, and they protrude from the cell surface to the extracellular region and function in signal sensing and transduction. The integrity of cilia, including the length and structure, is associated with signaling functions; however, factors involved in regulating the integrity of cilia have not been fully elucidated. Here, we showed that the Rab GTPase-binding protein EHBP1L1 and its newly identified interactors CD2AP and CIN85, known as adaptor proteins of actin regulators, are involved in ciliary length control. Immunofluorescence microscopy showed that EHBP1L1 and CD2AP/CIN85 are localized to the ciliary sheath. EHBP1L1 depletion caused mislocalization of CD2AP/CIN85, suggesting that CD2AP/CIN85 localization to the ciliary sheath is dependent on EHBP1L1. Additionally, we determined that EHBP1L1- and CD2AP/CIN85-depleted cells had elongated cilia. The aberrantly elongated cilia phenotype and the ciliary localization defect of CD2AP/CIN85 in EHBP1L1-depleted cells were rescued by the expression of WT EHBP1L1, although this was not observed in the CD2AP/CIN85-binding-deficient mutant, indicating that the EHBP1L1-CD2AP/CIN85 interaction is crucial for controlling ciliary length. Furthermore, EHBP1L1- and CD2AP/CIN85-depleted cells exhibited actin nucleation and branching defects around the ciliary base. Taken together, our data demonstrate that the EHBP1L1-CD2AP/CIN85 axis negatively regulates ciliary length via actin network remodeling around the basal body.
Collapse
Affiliation(s)
- Tomohiko Iwano
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Tomoaki Sobajima
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Department of Biochemistry, University of Oxford, Oxford, UK
| | - Sén Takeda
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan; Department of Anatomy, Teikyo University School of Medicine, Itabashi, Tokyo, Japan
| | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shin-Ichiro Yoshimura
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
184
|
Liu P, Liu Y, Zhou J. Ciliary mechanosensation - roles of polycystins and mastigonemes. J Cell Sci 2023; 136:286945. [PMID: 36752106 DOI: 10.1242/jcs.260565] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Cilia are surface-exposed organelles that provide motility and sensory functions for cells, and it is widely believed that mechanosensation can be mediated through cilia. Polycystin-1 and -2 (PC-1 and PC-2, respectively) are transmembrane proteins that can localize to cilia; however, the molecular mechanisms by which polycystins contribute to mechanosensation are still controversial. Studies detail two prevailing models for the molecular roles of polycystins on cilia; one stresses the mechanosensation capabilities and the other unveils their ligand-receptor nature. The discovery that polycystins interact with mastigonemes, the 'hair-like' protrusions of flagella, is a novel finding in identifying the interactors of polycystins in cilia. While the functions of polycystins proposed by both models may coexist in cilia, it is hoped that a precise understanding of the mechanism of action of polycystins can be achieved by uncovering their distribution and interacting factors inside cilia. This will hopefully provide a satisfying answer to the pathogenesis of autosomal dominant polycystic kidney disease (ADPKD), which is caused by mutations in PC-1 and PC-2. In this Review, we discuss the characteristics of polycystins in the context of cilia and summarize the functions of mastigonemes in unicellular ciliates. Finally, we compare flagella and molecular features of PC-2 between unicellular and multicellular organisms, with the aim of providing new insights into the ciliary roles of polycystins in general.
Collapse
Affiliation(s)
- Peiwei Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology , College of Life Sciences in Shandong Normal University, Jinan 250358, China
| | - Ying Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology , College of Life Sciences in Shandong Normal University, Jinan 250358, China
| | - Jun Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology , College of Life Sciences in Shandong Normal University, Jinan 250358, China.,College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
185
|
Cellular and Molecular Mechanisms of Pathogenesis Underlying Inherited Retinal Dystrophies. Biomolecules 2023; 13:biom13020271. [PMID: 36830640 PMCID: PMC9953031 DOI: 10.3390/biom13020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) are congenital retinal degenerative diseases that have various inheritance patterns, including dominant, recessive, X-linked, and mitochondrial. These diseases are most often the result of defects in rod and/or cone photoreceptor and retinal pigment epithelium function, development, or both. The genes associated with these diseases, when mutated, produce altered protein products that have downstream effects in pathways critical to vision, including phototransduction, the visual cycle, photoreceptor development, cellular respiration, and retinal homeostasis. The aim of this manuscript is to provide a comprehensive review of the underlying molecular mechanisms of pathogenesis of IRDs by delving into many of the genes associated with IRD development, their protein products, and the pathways interrupted by genetic mutation.
Collapse
|
186
|
Li S, Wang Z, Jia X, Niu T, Zhang J, Yin G, Zhang X, Zhu Y, Ji G, Sun F. ELI trifocal microscope: a precise system to prepare target cryo-lamellae for in situ cryo-ET study. Nat Methods 2023; 20:276-283. [PMID: 36646897 PMCID: PMC9911351 DOI: 10.1038/s41592-022-01748-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/06/2022] [Indexed: 01/18/2023]
Abstract
Cryo-electron tomography (cryo-ET) has become a powerful approach to study the high-resolution structure of cellular macromolecular machines in situ. However, the current correlative cryo-fluorescence and electron microscopy lacks sufficient accuracy and efficiency to precisely prepare cryo-lamellae of target locations for subsequent cryo-ET. Here we describe a precise cryogenic fabrication system, ELI-TriScope, which sets electron (E), light (L) and ion (I) beams at the same focal point to achieve accurate and efficient preparation of a target cryo-lamella. ELI-TriScope uses a commercial dual-beam scanning electron microscope modified to incorporate a cryo-holder-based transfer system and embed an optical imaging system just underneath the vitrified specimen. Cryo-focused ion beam milling can be accurately navigated by monitoring the real-time fluorescence signal of the target molecule. Using ELI-TriScope, we prepared a batch of cryo-lamellae of HeLa cells targeting the centrosome with a success rate of ~91% and discovered new in situ structural features of the human centrosome by cryo-ET.
Collapse
Affiliation(s)
- Shuoguo Li
- Center for Biological Imaging, Core Facilities for Protein Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziyan Wang
- University of Chinese Academy of Sciences, Beijing, China
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xing Jia
- Center for Biological Imaging, Core Facilities for Protein Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tongxin Niu
- Center for Biological Imaging, Core Facilities for Protein Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jianguo Zhang
- Center for Biological Imaging, Core Facilities for Protein Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Guoliang Yin
- University of Chinese Academy of Sciences, Beijing, China
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyun Zhang
- Center for Biological Imaging, Core Facilities for Protein Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yun Zhu
- University of Chinese Academy of Sciences, Beijing, China.
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Gang Ji
- Center for Biological Imaging, Core Facilities for Protein Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Fei Sun
- Center for Biological Imaging, Core Facilities for Protein Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
187
|
Microtubules as a potential platform for energy transfer in biological systems: a target for implementing individualized, dynamic variability patterns to improve organ function. Mol Cell Biochem 2023; 478:375-392. [PMID: 35829870 DOI: 10.1007/s11010-022-04513-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/24/2022] [Indexed: 02/07/2023]
Abstract
Variability characterizes the complexity of biological systems and is essential for their function. Microtubules (MTs) play a role in structural integrity, cell motility, material transport, and force generation during mitosis, and dynamic instability exemplifies the variability in the proper function of MTs. MTs are a platform for energy transfer in cells. The dynamic instability of MTs manifests itself by the coexistence of growth and shortening, or polymerization and depolymerization. It results from a balance between attractive and repulsive forces between tubulin dimers. The paper reviews the current data on MTs and their potential roles as energy-transfer cellular structures and presents how variability can improve the function of biological systems in an individualized manner. The paper presents the option for targeting MTs to trigger dynamic improvement in cell plasticity, regulate energy transfer, and possibly control quantum effects in biological systems. The described system quantifies MT-dependent variability patterns combined with additional personalized signatures to improve organ function in a subject-tailored manner. The platform can regulate the use of MT-targeting drugs to improve the response to chronic therapies. Ongoing trials test the effects of this platform on various disorders.
Collapse
|
188
|
Li XW, Ran JH, Zhou H, He JZ, Qiu ZW, Wang SY, Wu MN, Zhu S, An YP, Ma A, Li M, Quan YZ, Li NN, Ren CQ, Yang BX. 1-Indanone retards cyst development in ADPKD mouse model by stabilizing tubulin and down-regulating anterograde transport of cilia. Acta Pharmacol Sin 2023; 44:406-420. [PMID: 35906293 PMCID: PMC9889777 DOI: 10.1038/s41401-022-00937-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease. Cyst development in ADPKD involves abnormal epithelial cell proliferation, which is affected by the primary cilia-mediated signal transduction in the epithelial cells. Thus, primary cilium has been considered as a therapeutic target for ADPKD. Since ADPKD exhibits many pathological features similar to solid tumors, we investigated whether targeting primary cilia using anti-tumor agents could alleviate the development of ADPKD. Twenty-four natural compounds with anti-tumor activity were screened in MDCK cyst model, and 1-Indanone displayed notable inhibition on renal cyst growth without cytotoxicity. This compound also inhibited cyst development in embryonic kidney cyst model. In neonatal kidney-specific Pkd1 knockout mice, 1-Indanone remarkably slowed down kidney enlargement and cyst expansion. Furthermore, we demonstrated that 1-Indanone inhibited the abnormal elongation of cystic epithelial cilia by promoting tubulin polymerization and significantly down-regulating expression of anterograde transport motor protein KIF3A and IFT88. Moreover, we found that 1-Indanone significantly down-regulated ciliary coordinated Wnt/β-catenin, Hedgehog signaling pathways. These results demonstrate that 1-Indanone inhibits cystic cell proliferation by reducing abnormally prolonged cilia length in cystic epithelial cells, suggesting that 1-Indanone may hold therapeutic potential to retard cyst development in ADPKD.
Collapse
Affiliation(s)
- Xiao-Wei Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Jian-Hua Ran
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Jin-Zhao He
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Zhi-Wei Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Shu-Yuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Meng-Na Wu
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Shuai Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yong-Pan An
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Ang Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Min Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Ya-Zhu Quan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Nan-Nan Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Chao-Qun Ren
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Bao-Xue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China.
| |
Collapse
|
189
|
Impact of 5-HT 6 Receptor Subcellular Localization on Its Signaling and Its Pathophysiological Roles. Cells 2023; 12:cells12030426. [PMID: 36766768 PMCID: PMC9913600 DOI: 10.3390/cells12030426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
The serotonin (5-HT)6 receptor still raises particular interest given its unique spatio-temporal pattern of expression among the serotonin receptor subtypes. It is the only serotonin receptor specifically expressed in the central nervous system, where it is detected very early in embryonic life and modulates key neurodevelopmental processes, from neuronal migration to brain circuit refinement. Its predominant localization in the primary cilium of neurons and astrocytes is also unique among the serotonin receptor subtypes. Consistent with the high expression levels of the 5-HT6 receptor in brain regions involved in the control of cognitive processes, it is now well-established that the pharmacological inhibition of the receptor induces pro-cognitive effects in several paradigms of cognitive impairment in rodents, including models of neurodevelopmental psychiatric disorders and neurodegenerative diseases. The 5-HT6 receptor can engage several signaling pathways in addition to the canonical Gs signaling, but there is still uncertainty surrounding the signaling pathways that underly its modulation of cognition, as well as how the receptor's coupling is dependent on its cellular compartmentation. Here, we describe recent findings showing how the proper subcellular localization of the receptor is achieved, how this peculiar localization determines signaling pathways engaged by the receptor, and their pathophysiological influence.
Collapse
|
190
|
Aslanyan MG, Doornbos C, Diwan GD, Anvarian Z, Beyer T, Junger K, van Beersum SEC, Russell RB, Ueffing M, Ludwig A, Boldt K, Pedersen LB, Roepman R. A targeted multi-proteomics approach generates a blueprint of the ciliary ubiquitinome. Front Cell Dev Biol 2023; 11:1113656. [PMID: 36776558 PMCID: PMC9908615 DOI: 10.3389/fcell.2023.1113656] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Establishment and maintenance of the primary cilium as a signaling-competent organelle requires a high degree of fine tuning, which is at least in part achieved by a variety of post-translational modifications. One such modification is ubiquitination. The small and highly conserved ubiquitin protein possesses a unique versatility in regulating protein function via its ability to build mono and polyubiquitin chains onto target proteins. We aimed to take an unbiased approach to generate a comprehensive blueprint of the ciliary ubiquitinome by deploying a multi-proteomics approach using both ciliary-targeted ubiquitin affinity proteomics, as well as ubiquitin-binding domain-based proximity labelling in two different mammalian cell lines. This resulted in the identification of several key proteins involved in signaling, cytoskeletal remodeling and membrane and protein trafficking. Interestingly, using two different approaches in IMCD3 and RPE1 cells, respectively, we uncovered several novel mechanisms that regulate cilia function. In our IMCD3 proximity labeling cell line model, we found a highly enriched group of ESCRT-dependent clathrin-mediated endocytosis-related proteins, suggesting an important and novel role for this pathway in the regulation of ciliary homeostasis and function. In contrast, in RPE1 cells we found that several structural components of caveolae (CAV1, CAVIN1, and EHD2) were highly enriched in our cilia affinity proteomics screen. Consistently, the presence of caveolae at the ciliary pocket and ubiquitination of CAV1 specifically, were found likely to play a role in the regulation of ciliary length in these cells. Cilia length measurements demonstrated increased ciliary length in RPE1 cells stably expressing a ubiquitination impaired CAV1 mutant protein. Furthermore, live cell imaging in the same cells revealed decreased CAV1 protein turnover at the cilium as the possible cause for this phenotype. In conclusion, we have generated a comprehensive list of cilia-specific proteins that are subject to regulation via ubiquitination which can serve to further our understanding of cilia biology in health and disease.
Collapse
Affiliation(s)
- Mariam G. Aslanyan
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Cenna Doornbos
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gaurav D. Diwan
- BioQuant, Heidelberg University, Heidelberg, Germany
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Zeinab Anvarian
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Tina Beyer
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Katrin Junger
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Sylvia E. C. van Beersum
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Robert B. Russell
- BioQuant, Heidelberg University, Heidelberg, Germany
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Marius Ueffing
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Alexander Ludwig
- School of Biological Sciences, NTU Institute of Structural Biology, Nanyang Technological University, Singapore City, Singapore
| | - Karsten Boldt
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Lotte B. Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ronald Roepman
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
191
|
Akula SK, Marciano JH, Lim Y, Exposito-Alonso D, Hylton NK, Hwang GH, Neil JE, Dominado N, Bunton-Stasyshyn RK, Song JHT, Talukdar M, Schmid A, Teboul L, Mo A, Shin T, Finander B, Beck SG, Yeh RC, Otani A, Qian X, DeGennaro EM, Alkuraya FS, Maddirevula S, Cascino GD, Giannini C, Burrage LC, Rosenfield JA, Ketkar S, Clark GD, Bacino C, Lewis RA, Segal RA, Bazan JF, Smith KA, Golden JA, Cho G, Walsh CA. TMEM161B regulates cerebral cortical gyration, Sonic Hedgehog signaling, and ciliary structure in the developing central nervous system. Proc Natl Acad Sci U S A 2023; 120:e2209964120. [PMID: 36669111 PMCID: PMC9942790 DOI: 10.1073/pnas.2209964120] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 12/14/2022] [Indexed: 01/22/2023] Open
Abstract
Sonic hedgehog signaling regulates processes of embryonic development across multiple tissues, yet factors regulating context-specific Shh signaling remain poorly understood. Exome sequencing of families with polymicrogyria (disordered cortical folding) revealed multiple individuals with biallelic deleterious variants in TMEM161B, which encodes a multi-pass transmembrane protein of unknown function. Tmem161b null mice demonstrated holoprosencephaly, craniofacial midline defects, eye defects, and spinal cord patterning changes consistent with impaired Shh signaling, but were without limb defects, suggesting a CNS-specific role of Tmem161b. Tmem161b depletion impaired the response to Smoothened activation in vitro and disrupted cortical histogenesis in vivo in both mouse and ferret models, including leading to abnormal gyration in the ferret model. Tmem161b localizes non-exclusively to the primary cilium, and scanning electron microscopy revealed shortened, dysmorphic, and ballooned ventricular zone cilia in the Tmem161b null mouse, suggesting that the Shh-related phenotypes may reflect ciliary dysfunction. Our data identify TMEM161B as a regulator of cerebral cortical gyration, as involved in primary ciliary structure, as a regulator of Shh signaling, and further implicate Shh signaling in human gyral development.
Collapse
Affiliation(s)
- Shyam K. Akula
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Harvard-Massachusetts Institute of Technology MD/PhD Program, Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Jack H. Marciano
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Youngshin Lim
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA90048
| | - David Exposito-Alonso
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Norma K. Hylton
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Harvard-Massachusetts Institute of Technology MD/PhD Program, Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Grace H. Hwang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA02115
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| | - Jennifer E. Neil
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
| | - Nicole Dominado
- Department of Anatomy & Physiology, The University of Melbourne, Melbourne, VIC3010, Australia
| | | | - Janet H. T. Song
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Maya Talukdar
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Harvard-Massachusetts Institute of Technology MD/PhD Program, Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Aloisia Schmid
- Department of Physics/Electron Microscopy Core, Northeastern University, Boston, MA02115
| | - Lydia Teboul
- Mary Lyon Centre, United Kingdom Medical Research Council Harwell, Didcot, Oxfordshire,OX11 0RD, UK
| | - Alisa Mo
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
| | - Taehwan Shin
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Benjamin Finander
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Samantha G. Beck
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
| | - Rebecca C. Yeh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
| | - Aoi Otani
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
| | - Xuyu Qian
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
| | - Ellen M. DeGennaro
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Fowzan S. Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, 11564 Riyadh, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, 11564 Riyadh, Saudi Arabia
| | | | - Caterina Giannini
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN55905
| | | | - Lindsay C. Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Departments of Pediatrics, Baylor College of Medicine, Houston, TX77030
- Neurology, Baylor College of Medicine, Houston, TX77030
- Neuroscience, Baylor College of Medicine, Houston, TX77030
| | - Jill A. Rosenfield
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
| | - Shamika Ketkar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
| | - Gary D. Clark
- Departments of Pediatrics, Baylor College of Medicine, Houston, TX77030
- Neurology, Baylor College of Medicine, Houston, TX77030
- Neuroscience, Baylor College of Medicine, Houston, TX77030
| | - Carlos Bacino
- Departments of Pediatrics, Baylor College of Medicine, Houston, TX77030
- Neurology, Baylor College of Medicine, Houston, TX77030
- Neuroscience, Baylor College of Medicine, Houston, TX77030
| | - Richard A. Lewis
- Departments of Pediatrics, Baylor College of Medicine, Houston, TX77030
- Neurology, Baylor College of Medicine, Houston, TX77030
- Neuroscience, Baylor College of Medicine, Houston, TX77030
| | - Rosalind A. Segal
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA02115
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| | - J. Fernando Bazan
- Unit for Structural Biology, Vlaams Instituut voor Biotechnologie-UGent Center for Inflammation Research, 9052Ghent, Belgium
| | - Kelly A. Smith
- Department of Anatomy & Physiology, The University of Melbourne, Melbourne, VIC3010, Australia
| | - Jeffrey A. Golden
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA90048
| | - Ginam Cho
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA90048
| | - Christopher A. Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Harvard-Massachusetts Institute of Technology MD/PhD Program, Program in Neuroscience, Harvard Medical School, Boston, MA02115
- Howard Hughes Medical Institute, Boston Children’s Hospital Boston, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- Department of Neurology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
192
|
Zhang K, Da Silva F, Seidl C, Wilsch-Bräuninger M, Herbst J, Huttner WB, Niehrs C. Primary cilia are WNT-transducing organelles whose biogenesis is controlled by a WNT-PP1 axis. Dev Cell 2023; 58:139-154.e8. [PMID: 36693320 DOI: 10.1016/j.devcel.2022.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/18/2022] [Accepted: 12/19/2022] [Indexed: 01/24/2023]
Abstract
WNT signaling is important in development, stem cell maintenance, and disease. WNT ligands typically signal via receptor activation across the plasma membrane to induce β-catenin-dependent gene activation. Here, we show that in mammalian primary cilia, WNT receptors relay a WNT/GSK3 signal that β-catenin-independently promotes ciliogenesis. Characterization of a LRP6 ciliary targeting sequence and monitoring of acute WNT co-receptor activation (phospho-LRP6) support this conclusion. Ciliary WNT signaling inhibits protein phosphatase 1 (PP1) activity, a negative regulator of ciliogenesis, by preventing GSK3-mediated phosphorylation of the PP1 regulatory inhibitor subunit PPP1R2. Concordantly, deficiency of WNT/GSK3 signaling by depletion of cyclin Y and cyclin-Y-like protein 1 induces primary cilia defects in mouse embryonic neuronal precursors, kidney proximal tubules, and adult mice preadipocytes.
Collapse
Affiliation(s)
- Kaiqing Zhang
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Fabio Da Silva
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Carina Seidl
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Michaela Wilsch-Bräuninger
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraβe 108, 01307 Dresden, Germany
| | - Jessica Herbst
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraβe 108, 01307 Dresden, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Institute of Molecular Biology (IMB), 55128 Mainz, Germany.
| |
Collapse
|
193
|
Zheng NX, Miao YT, Zhang X, Huang MZ, Jahangir M, Luo S, Lang B. Primary cilia-associated protein IFT172 in ciliopathies. Front Cell Dev Biol 2023; 11:1074880. [PMID: 36733456 PMCID: PMC9887189 DOI: 10.3389/fcell.2023.1074880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Cilium is a highly conserved antenna-like structure protruding from the surface of the cell membrane, which is widely distributed on most mammalian cells. Two types of cilia have been described so far which include motile cilia and immotile cilia and the latter are also known as primary cilia. Dysfunctional primary cilia are commonly associated with a variety of congenital diseases called ciliopathies with multifaceted presentations such as retinopathy, congenital kidney disease, intellectual disability, cancer, polycystic kidney, obesity, Bardet Biedl syndrome (BBS), etc. Intraflagellar transport (IFT) is a bi-directional transportation process that helps maintain a balanced flow of proteins or signaling molecules essential for the communication between cilia and cytoplasm. Disrupted IFT contributes to the abnormal structure or function of cilia and frequently promotes the occurrence of ciliopathies. Intraflagellar transport 172 (IFT172) is a newly identified member of IFT proteins closely involved in some rare ciliopathies such as Mainzer-Saldino syndrome (MZSDS) and BBS, though the underpinning causal mechanisms remain largely elusive. In this review, we summarize the key findings on the genetic and protein characteristic of IFT172, as well as its function in intraflagellar transport, to provide comprehensive insights to understand IFT172-related ciliopathies.
Collapse
Affiliation(s)
- Nan-Xi Zheng
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ya-Ting Miao
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xi Zhang
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mu-Zhi Huang
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Muhammad Jahangir
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shilin Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China,*Correspondence: Shilin Luo, ; Bing Lang,
| | - Bing Lang
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Shilin Luo, ; Bing Lang,
| |
Collapse
|
194
|
Munch TN, Hedley PL, Hagen CM, Bækvad-Hansen M, Geller F, Bybjerg-Grauholm J, Nordentoft M, Børglum AD, Werge TM, Melbye M, Hougaard DM, Larsen LA, Christensen ST, Christiansen M. The genetic background of hydrocephalus in a population-based cohort: implication of ciliary involvement. Brain Commun 2023; 5:fcad004. [PMID: 36694575 PMCID: PMC9866251 DOI: 10.1093/braincomms/fcad004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/04/2022] [Accepted: 01/08/2023] [Indexed: 01/11/2023] Open
Abstract
Hydrocephalus is one of the most common congenital disorders of the central nervous system and often displays psychiatric co-morbidities, in particular autism spectrum disorder. The disease mechanisms behind hydrocephalus are complex and not well understood, but some association with dysfunctional cilia in the brain ventricles and subarachnoid space has been indicated. A better understanding of the genetic aetiology of hydrocephalus, including the role of ciliopathies, may bring insights into a potentially shared genetic aetiology. In this population-based case-cohort study, we, for the first time, investigated variants of postulated hydrocephalus candidate genes. Using these data, we aimed to investigate potential involvement of the ciliome in hydrocephalus and describe genotype-phenotype associations with an autism spectrum disorder. One-hundred and twenty-one hydrocephalus candidate genes were screened in a whole-exome-sequenced sub-cohort of the Lundbeck Foundation Initiative for Integrative Psychiatric Research study, comprising 72 hydrocephalus patients and 4181 background population controls. Candidate genes containing high-impact variants of interest were systematically evaluated for their involvement in ciliary function and an autism spectrum disorder. The median age at diagnosis for the hydrocephalus patients was 0 years (range 0-27 years), the median age at analysis was 22 years (11-35 years), and 70.5% were males. The median age for controls was 18 years (range 11-26 years) and 53.3% were males. Fifty-two putative hydrocephalus-associated variants in 34 genes were identified in 42 patients (58.3%). In hydrocephalus cases, we found increased, but not significant, enrichment of high-impact protein altering variants (odds ratio 1.51, 95% confidence interval 0.92-2.51, P = 0.096), which was driven by a significant enrichment of rare protein truncating variants (odds ratio 2.71, 95% confidence interval 1.17-5.58, P = 0.011). Fourteen of the genes with high-impact variants are part of the ciliome, whereas another six genes affect cilia-dependent processes during neurogenesis. Furthermore, 15 of the 34 genes with high-impact variants and three of eight genes with protein truncating variants were associated with an autism spectrum disorder. Because symptoms of other diseases may be neglected or masked by the hydrocephalus-associated symptoms, we suggest that patients with congenital hydrocephalus undergo clinical genetic assessment with respect to ciliopathies and an autism spectrum disorder. Our results point to the significance of hydrocephalus as a ciliary disease in some cases. Future studies in brain ciliopathies may not only reveal new insights into hydrocephalus but also, brain disease in the broadest sense, given the essential role of cilia in neurodevelopment.
Collapse
Affiliation(s)
- Tina N Munch
- Correspondence to: Tina Nørgaard Munch, MD Associate Professor, Department of Neurosurgery 6031 Copenhagen University Hospital, Inge Lehmanns Vej 6 DK-2100 Copenhagen Ø, Denmark E-mail:
| | - Paula L Hedley
- Department for Congenital Disorders, Statens Serum Institut, DK-2300 Copenhagen, Denmark,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark,Brazen Bio, Los Angeles, 90502 CA, USA
| | - Christian M Hagen
- Department for Congenital Disorders, Statens Serum Institut, DK-2300 Copenhagen, Denmark,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark
| | - Marie Bækvad-Hansen
- Department for Congenital Disorders, Statens Serum Institut, DK-2300 Copenhagen, Denmark,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark
| | - Frank Geller
- Department of Epidemiology Research, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Jonas Bybjerg-Grauholm
- Department for Congenital Disorders, Statens Serum Institut, DK-2300 Copenhagen, Denmark,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark
| | - Merete Nordentoft
- Department of Clinical Medicine, University of Copenhagen, DK-2100 Copenhagen, Denmark,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark,Mental Health Centre, Capital Region of Denmark, 2900 Hellerup, Denmark
| | - Anders D Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark,Center for Genomics and Personalized Medicine, Aarhus University, DK-8000 Aarhus, Denmark,Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Thomas M Werge
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark,Mental Health Centre, Capital Region of Denmark, 2900 Hellerup, Denmark
| | - Mads Melbye
- Department of Clinical Medicine, University of Copenhagen, DK-2100 Copenhagen, Denmark,Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA,Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo 0473, Norway,K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - David M Hougaard
- Department for Congenital Disorders, Statens Serum Institut, DK-2300 Copenhagen, Denmark,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark
| | - Lars A Larsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Søren T Christensen
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Michael Christiansen
- Department for Congenital Disorders, Statens Serum Institut, DK-2300 Copenhagen, Denmark,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark,Department of Biomedical Science, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
195
|
Stubbs T, Bingman JI, Besse J, Mykytyn K. Ciliary signaling proteins are mislocalized in the brains of Bardet-Biedl syndrome 1-null mice. Front Cell Dev Biol 2023; 10:1092161. [PMID: 36699005 PMCID: PMC9868275 DOI: 10.3389/fcell.2022.1092161] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
In the brain, primary cilia are found on most, if not all, central neurons. The importance of neuronal cilia is underscored by the fact that human diseases caused by primary cilia dysfunction, which are known as ciliopathies, are associated with neuropathologies, including neuropsychiatric disorders and learning and memory deficits. Neuronal cilia are enriched for certain G protein-coupled receptors and their downstream effectors, suggesting they sense and respond to neuromodulators in the extracellular milieu. GPCR ciliary localization is disrupted in neurons from mouse models of the ciliopathy Bardet-Biedl syndrome, with GPCRs failing to localize to cilia, indicating the Bardet-Biedl syndrome proteins are required for trafficking of G protein-coupled receptors into neuronal cilia. Yet, dopamine receptor 1 accumulates in cilia in the absence of Bardet-Biedl syndrome proteins, suggesting Bardet-Biedl syndrome proteins are required for normal ciliary import and export. To further explore the roles of the Bardet-Biedl syndrome proteins in neuronal cilia, we examined localization of ciliary signaling proteins in a new constitutive Bbs1 knockout mouse model. Interestingly, we find that two additional ciliary G protein-coupled receptors (Gpr161 and Gpr19) abnormally accumulate in cilia on Bardet-Biedl syndrome neurons. In addition, we find that the GPCR signaling protein β-arrestin accumulates in a subset of cilia in the brain, suggesting the presence of additional unidentified ciliary G protein-coupled receptors. These results confirm the importance of the Bardet-Biedl syndrome proteins in establishing ciliary GPCR pathways and indicate that loss of Bbs1 leads to complex changes in the localization of signaling proteins in the brain.
Collapse
|
196
|
Jung HJ, Yeo S, Jang J, Pleasure S, Choe Y. Brain heterotopia formation by ciliopathic breakdown of neuroepithelial and blood-cerebrospinal fluid barriers. Brain Pathol 2023:e13148. [PMID: 36623505 DOI: 10.1111/bpa.13148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
The developmental functions of primary cilia and the downstream signaling pathways have been widely studied; however, the roles of primary cilia in the developing neurovascular system are not clearly understood. In this study, we found that ablation of genes encoding ciliary transport proteins such as intraflagellar transport homolog 88 (Ift88) and kinesin family member 3a (Kif3a) in cortical radial progenitors led to periventricular heterotopia during late mouse embryogenesis. Conditional mutation of primary cilia unexpectedly caused breakdown of both the neuroepithelial lining and the blood-choroid plexus barrier. Choroidal leakage was partially caused by enlargement of the choroid plexus in the cilia mutants. We found that the choroid plexus expressed platelet-derived growth factor A (Pdgf-A) and that Pdgf-A expression was ectopically increased in cilia-mutant embryos. Cortices obtained from embryos in utero electroporated with Pdgfa mimicked periventricular heterotopic nodules of the cilia mutant. These results suggest that defective ciliogenesis in both cortical progenitors and the choroid plexus leads to breakdown of cortical and choroidal barriers causing forebrain neuronal dysplasia, which may be related to developmental cortical malformation.
Collapse
Affiliation(s)
| | - Seungeun Yeo
- Korea Brain Research Institute, Daegu, South Korea
| | | | - Samuel Pleasure
- Department of Neurology, Program in Neuroscience, Developmental Stem Cell Biology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research and University of California, San Francisco, California, USA
| | | |
Collapse
|
197
|
Wu Y, Zhou J, Yang Y. Peripheral and central control of obesity by primary cilia. J Genet Genomics 2023; 50:295-304. [PMID: 36632916 DOI: 10.1016/j.jgg.2022.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/10/2023]
Abstract
Primary cilia are hair-like structures that protrude from the cell surface. They are capable of sensing external cues and conveying a vast array of signals into cells to regulate a variety of physiological activities. Mutations in cilium-associated genes are linked to a group of diseases with overlapping clinical manifestations, collectively known as ciliopathies. A significant proportion of human ciliopathy cases are accompanied by metabolic disorders such as obesity and type 2 diabetes. Nevertheless, the mechanisms through which dysfunction of primary cilia contributes to obesity are complex. In this article, we present an overview of primary cilia and highlight obesity-related ciliopathies. We also discuss the potential role of primary cilia in peripheral organs, with a focus on adipose tissues. In addition, we emphasize the significance of primary cilia in the central regulation of obesity, especially the involvement of ciliary signaling in the hypothalamic control of feeding behavior. This article therefore proposes a framework of both peripheral and central regulation of obesity by primary cilia, which may benefit further exploration of the ciliary role in metabolic regulation.
Collapse
Affiliation(s)
- Yue Wu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China; State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Yunfan Yang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
198
|
Lacey SE, Foster HE, Pigino G. The molecular structure of IFT-A and IFT-B in anterograde intraflagellar transport trains. Nat Struct Mol Biol 2023; 30:584-593. [PMID: 36593313 DOI: 10.1038/s41594-022-00905-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/01/2022] [Indexed: 01/03/2023]
Abstract
Anterograde intraflagellar transport (IFT) trains are essential for cilia assembly and maintenance. These trains are formed of 22 IFT-A and IFT-B proteins that link structural and signaling cargos to microtubule motors for import into cilia. It remains unknown how the IFT-A/-B proteins are arranged into complexes and how these complexes polymerize into functional trains. Here we use in situ cryo-electron tomography of Chlamydomonas reinhardtii cilia and AlphaFold2 protein structure predictions to generate a molecular model of the entire anterograde train. We show how the conformations of both IFT-A and IFT-B are dependent on lateral interactions with neighboring repeats, suggesting that polymerization is required to cooperatively stabilize the complexes. Following three-dimensional classification, we reveal how IFT-B extends two flexible tethers to maintain a connection with IFT-A that can withstand the mechanical stresses present in actively beating cilia. Overall, our findings provide a framework for understanding the fundamental processes that govern cilia assembly.
Collapse
|
199
|
Liu S, He Y, Li S, Gao X, Yang F. Kinesin family member 3A induces related diseases via wingless-related integration site/β-catenin signaling pathway. Sci Prog 2023; 106:368504221148340. [PMID: 36594221 PMCID: PMC10358705 DOI: 10.1177/00368504221148340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Kinesin family member 3A is an important motor protein that participates in various physiological and pathological processes, including normal tissue development, homeostasis maintenance, tumor infiltration, and migration. The wingless-related integration site/β-catenin signaling pathway is essential for critical molecular mechanisms such as embryonic development, organogenesis, tissue regeneration, and carcinogenesis. Recent studies have examined the molecular mechanisms of kinesin family member 3A, among which the wingless-related integration site/β-catenin signaling pathway has gained attention. The interaction between kinesin family member 3A and the wingless-related integration site/β-catenin signaling pathway is compact and complex but is fascinating and worthy of further study. The upregulation and downregulation of kinesin family member 3A influence many diseases and patient survival through the wingless-related integration site/β-catenin signaling pathway. Therefore, this review mainly focuses on describing the kinesin family member 3A and wingless-related integration site/β-catenin signaling pathways and their associated diseases.
Collapse
Affiliation(s)
- Shupeng Liu
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Yang He
- Clinical Medicine College, North China University of Science and Technology, Tangshan, Hebei province, China
| | - Shifeng Li
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Xuemin Gao
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, Shanxi Province, China
| | - Fang Yang
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
| |
Collapse
|
200
|
Tingey M, Ruba A, Yang W. High-SPEED super-resolution SPEED microscopy to study primary cilium signaling in vivo. Methods Cell Biol 2023; 176:181-197. [PMID: 37164537 DOI: 10.1016/bs.mcb.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The primary cilium is a surface exposed organelle found in eukaryotic cells that functions to decode a variety of intracellular signals with significant implications in human developmental disorders and diseases. It is therefore highly desirable to obtain in vivo information regarding the dynamic processes occurring within the primary cilium. However, current techniques are limited by either the physical limitations of light microscopy or the static nature of electron microscopy. To overcome these limitations, single-point edge-excitation sub-diffraction (SPEED) microscopy was developed to obtain dynamic in vivo information in subcellular organelles such as cilia and nuclear pore complexes using single-molecule super-resolution light microscopy with a spatiotemporal resolution of 10-20nm and 0.4-2ms. Three-dimensional (3D) structural and dynamic information in these organelles can be further obtained through a post-processing 2D-to-3D transformation algorithm. Here we present a modular step-by-step protocol for studying primary cilium signaling dynamics, including Intraflagellar transport (IFT) via IFT20 and somatostatin g-protein-coupled receptor activity via SSTR3.
Collapse
Affiliation(s)
- Mark Tingey
- Department of Biology, Temple University, Philadelphia, PA, United States
| | - Andrew Ruba
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, PA, United States.
| |
Collapse
|