151
|
Gkolfinopoulos S, Tsapakidis K, Papadimitriou K, Papamichael D, Kountourakis P. Chromogranin A as a valid marker in oncology: Clinical application or false hopes? World J Methodol 2017; 7:9-15. [PMID: 28396845 PMCID: PMC5366937 DOI: 10.5662/wjm.v7.i1.9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/15/2016] [Accepted: 01/03/2017] [Indexed: 02/06/2023] Open
Abstract
Chromogranin A, due to its primary expression throughout the neuroendocrine system, is a widely accepted biomarker for the assessment of neuro-endocrine tumors. It has been traditionally used in the management of patients with tumors of gastro-enteropancreatic origin. Lately, it has also been implicated in various conditions and diseases, both benign and malignant. However, the paucity of data of adequate strength, as well as its relation with common physiologic conditions and its interaction with commonly prescribed medications, limit its clinical use in only a narrow spectrum. Herein, we present a thorough review to the most frequent conditions where its levels are affected, focusing specifically on its potential use as a prognostic and predictive biomarker in oncology.
Collapse
|
152
|
LeBlanc ME, Wang W, Chen X, Caberoy NB, Guo F, Shen C, Ji Y, Tian H, Wang H, Chen R, Li W. Secretogranin III as a disease-associated ligand for antiangiogenic therapy of diabetic retinopathy. J Exp Med 2017; 214:1029-1047. [PMID: 28330905 PMCID: PMC5379984 DOI: 10.1084/jem.20161802] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/23/2016] [Accepted: 02/15/2017] [Indexed: 12/20/2022] Open
Abstract
LeBlanc et al. uncover secretogranin III (Scg3) as a unique disease-associated vascular permeability and angiogenic factor using comparative ligandomics. Scg3-neutralizing antibodies alleviate vascular leakage in diabetic retinopathy mice and retinal neovascularization in oxygen-induced retinopathy mice with high efficacy. Diabetic retinopathy (DR) is a leading cause of vision loss with retinal vascular leakage and/or neovascularization. Current antiangiogenic therapy against vascular endothelial growth factor (VEGF) has limited efficacy. In this study, we applied a new technology of comparative ligandomics to diabetic and control mice for the differential mapping of disease-related endothelial ligands. Secretogranin III (Scg3) was discovered as a novel disease-associated ligand with selective binding and angiogenic activity in diabetic but not healthy vessels. In contrast, VEGF bound to and induced angiogenesis in both diabetic and normal vasculature. Scg3 and VEGF signal through distinct receptor pathways. Importantly, Scg3-neutralizing antibodies alleviated retinal vascular leakage in diabetic mice with high efficacy. Furthermore, anti-Scg3 prevented retinal neovascularization in oxygen-induced retinopathy mice, a surrogate model for retinopathy of prematurity (ROP). ROP is the most common cause of vision impairment in children, with no approved drug therapy. These results suggest that Scg3 is a promising target for novel antiangiogenic therapy of DR and ROP.
Collapse
Affiliation(s)
- Michelle E LeBlanc
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136
| | - Weiwen Wang
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136
| | - Xiuping Chen
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136.,Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Nora B Caberoy
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154
| | - Feiye Guo
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136
| | - Chen Shen
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136
| | - Yanli Ji
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136.,Department of Ophthalmology, Zhengzhou Eye Hospital, Zhengzhou 450000, Henan, China
| | - Hong Tian
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136.,School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China.,Everglades Biopharma, Miami, FL 33156
| | - Hui Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Wei Li
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136 .,Vascular Biology Institute, University of Miami School of Medicine, Miami, FL 33136
| |
Collapse
|
153
|
Mazzawi T, El-Salhy M. Changes in duodenal enteroendocrine cells in patients with irritable bowel syndrome following dietary guidance. Exp Biol Med (Maywood) 2017; 242:1355-1362. [PMID: 28737477 PMCID: PMC5528200 DOI: 10.1177/1535370217699537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The densities of enteroendocrine cells are abnormal in patients with irritable bowel syndrome (IBS); however, they tend to change toward normal levels in stomach, ileum, and colon following dietary guidance. The aim was to identify the types of duodenal enteroendocrine cells affected after receiving dietary guidance in the same group of patients with IBS. Fourteen patients with IBS and 14 control subjects were included. The patients received three sessions of dietary guidance. Both groups underwent gastroscopies at baseline, and again for the patients after 3–9 months (median, four months) from receiving dietary guidance. Tissue biopsies were collected from the descending part of the duodenum and were immunostained for all the types of enteroendocrine cells and were then quantified by using computerized image analysis. Using the Kruskal–Wallis non-parametric test with Dunn’s test as a post-test, the results showed a significant difference in the secretin cell densities between control subjects and patients with IBS prior to and following dietary guidance (P = 0.0001 and 0.011, respectively). The corresponding P values for cholecystokinin (CCK) cell densities were 0.03 and 0.42, respectively; gastric inhibitory peptide (GIP) cell densities were 0.06 and 0.43, respectively; serotonin cell densities were <0.0001 and 0.002, respectively; and for somatostatin cell densities were <0.0001 and 0.052, respectively. The Paired t-test showed a significant difference only in the serotonin (P = 0.03) and somatostatin (P < 0.0001) cell densities between IBS patients prior to and following dietary guidance. The changes in the cell densities of secretin, CCK, and GIP were not significant between IBS patients prior to and following dietary guidance. In conclusion, the densities of several duodenal enteroendocrine cells in IBS patients changed toward the values measured in control subjects following dietary guidance. The changes in serotonin and somatostatin cell densities may have contributed to the improvements in IBS symptoms, particularly pain and diarrhea.
Collapse
Affiliation(s)
- Tarek Mazzawi
- 1 Division of Gastroenterology, Department of Clinical Medicine, University of Bergen, Bergen 5021, Norway.,2 National Centre for Functional Gastrointestinal Disorders, Division of Gastroenterology, Department of Medicine, Haukeland University Hospital-Helse Bergen, Bergen 5021, Norway
| | - Magdy El-Salhy
- 1 Division of Gastroenterology, Department of Clinical Medicine, University of Bergen, Bergen 5021, Norway.,2 National Centre for Functional Gastrointestinal Disorders, Division of Gastroenterology, Department of Medicine, Haukeland University Hospital-Helse Bergen, Bergen 5021, Norway.,3 Division of Gastroenterology, Department of Medicine, Stord Hospital-Helse Fonna, Stord 5416, Norway
| |
Collapse
|
154
|
Trebak F, Dubuc I, Arabo A, Alaoui A, Boukhzar L, Maucotel J, Picot M, Cherifi S, Duparc C, Leprince J, Prévost G, Anouar Y, Magoul R, Chartrel N. A potential role for the secretogranin II-derived peptide EM66 in the hypothalamic regulation of feeding behaviour. J Neuroendocrinol 2017; 29. [PMID: 28166374 DOI: 10.1111/jne.12459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 01/06/2023]
Abstract
EM66 is a conserved 66-amino acid peptide derived from secretogranin II (SgII), a member of the granin protein family. EM66 is widely distributed in secretory granules of endocrine and neuroendocrine cells, as well as in hypothalamic neurones. Although EM66 is abundant in the hypothalamus, its physiological function remains to be determined. The present study aimed to investigate a possible involvement of EM66 in the hypothalamic regulation of feeding behaviour. We show that i.c.v. administration of EM66 induces a drastic dose-dependent inhibition of food intake in mice deprived of food for 18 hours, which is associated with an increase of hypothalamic pro-opiomelanocortin (POMC) and melanocortin-3 receptor mRNA levels and c-Fos immunoreactivity in the POMC neurones of the arcuate nucleus. By contrast, i.c.v. injection of EM66 does not alter the hypothalamic expression of neuropeptide Y (NPY), or that of its Y1 and Y5 receptors. A 3-month high-fat diet (HFD) leads to an important decrease of POMC and SgII mRNA levels in the hypothalamus, whereas NPY gene expression is not affected. Finally, we show that a 48 hours of fasting in HFD mice decreases the expression of POMC and SgII mRNA, which is not observed in mice fed a standard chow. Taken together, the present findings support the view that EM66 is a novel anorexigenic neuropeptide regulating hypothalamic feeding behaviour, at least in part, by activating the POMC neurones of the arcuate nucleus.
Collapse
Affiliation(s)
- F Trebak
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine (IRIB), Mont-Saint-Aignan, France
- Laboratory of Neuroendocrinology & Nutritional and Climatic Environment, Faculty of Sciences DM, University Sidi Mohamed Ben Abdellah, Fez, Morocco
- University of Rouen Normandy, Rouen, France
| | - I Dubuc
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine (IRIB), Mont-Saint-Aignan, France
- University of Rouen Normandy, Rouen, France
| | - A Arabo
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine (IRIB), Mont-Saint-Aignan, France
- University of Rouen Normandy, Rouen, France
| | - A Alaoui
- Laboratory of Neuroendocrinology & Nutritional and Climatic Environment, Faculty of Sciences DM, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - L Boukhzar
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine (IRIB), Mont-Saint-Aignan, France
- University of Rouen Normandy, Rouen, France
| | - J Maucotel
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine (IRIB), Mont-Saint-Aignan, France
- University of Rouen Normandy, Rouen, France
| | - M Picot
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine (IRIB), Mont-Saint-Aignan, France
- University of Rouen Normandy, Rouen, France
| | - S Cherifi
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine (IRIB), Mont-Saint-Aignan, France
- University of Rouen Normandy, Rouen, France
| | - C Duparc
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine (IRIB), Mont-Saint-Aignan, France
- University of Rouen Normandy, Rouen, France
| | - J Leprince
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine (IRIB), Mont-Saint-Aignan, France
- University of Rouen Normandy, Rouen, France
| | - G Prévost
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine (IRIB), Mont-Saint-Aignan, France
- University of Rouen Normandy, Rouen, France
| | - Y Anouar
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine (IRIB), Mont-Saint-Aignan, France
- University of Rouen Normandy, Rouen, France
| | - R Magoul
- Laboratory of Neuroendocrinology & Nutritional and Climatic Environment, Faculty of Sciences DM, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - N Chartrel
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine (IRIB), Mont-Saint-Aignan, France
- University of Rouen Normandy, Rouen, France
| |
Collapse
|
155
|
Zhao Y, Zhong X, Ou X, Cai H, Wu X, Huang R. Cotransfecting norepinephrine transporter and vesicular monoamine transporter 2 genes for increased retention of metaiodobenzylguanidine labeled with iodine 131 in malignant hepatocarcinoma cells. Front Med 2017; 11:120-128. [PMID: 28213878 DOI: 10.1007/s11684-017-0501-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 11/24/2016] [Indexed: 02/05/2023]
Abstract
Norepinephrine transporter (NET) transfection leads to significant uptake of iodine-131-labeled metaiodobenzylguanidine (131I-MIBG) in non-neuroendocrine tumors. However, the use of 131I-MIBG is limited by its short retention time in target cells. To prolong the retention of 131I-MIBG in target cells, we infected hepatocarcinoma (HepG2) cells with Lentivirus-encoding human NET and vesicular monoamine transporter 2 (VMAT2) genes to obtain NET-expressing, NET-VMAT2-coexpressing, and negative-control cell lines. We evaluated the uptake and efflux of 131I-MIBG both in vitro and in vivo in mice bearing transfected tumors. NET-expressing and NET-VMAT2-coexpressing cells respectively showed 2.24 and 2.22 times higher 131I-MIBG uptake than controls. Two hours after removal of 131I-MIBG-containing medium, 25.4% efflux was observed in NET-VMAT2-coexpressing cells and 38.6% in NET-expressing cells. In vivo experiments were performed in nude mice bearing transfected tumors; results revealed that NET-VMAT2-coexpressing tumors had longer 131I-MIBG retention time than NET-expressing tumors. Meanwhile, NET-VMAT2-coexpressing and NET-expressing tumors displayed 0.54% and 0.19%, respectively, of the injected dose per gram of tissue 24 h after 131I-MIBG administration. Cotransfection of HepG2 cells with NET and VMAT2 resulted in increased 131I-MIBG uptake and retention. However, the degree of increase was insufficient to be therapeutically effective in target cells.
Collapse
Affiliation(s)
- Yanlin Zhao
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiao Zhong
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaohong Ou
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Huawei Cai
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Huang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
156
|
Bachetti T, Ferrari Bardile A, Aloi TL, Colombo B, Assi E, Savino G, Vercelli A, Colombo R, Corti A. Plasma levels of vasostatin-1, a chromogranin A fragment, are associated with carotid artery maximum stenosis: A pilot study. Int J Cardiol 2017; 236:438-443. [PMID: 28190616 DOI: 10.1016/j.ijcard.2017.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/24/2017] [Accepted: 02/03/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Chromogranin A (CgA), a circulating protein released by the neuroendocrine system, can regulate vascular physiology and angiogenesis. Full-length CgA (CgA1-439) and its fragment CgA1-76 (called vasostatin-1, VS-1) preserve the physiological integrity of the endothelial barrier function and are antiangiogenic, whereas CgA1-373 is proangiogenic. We investigated whether these polypeptides are altered in patients with various degrees of carotid artery atherosclerosis. METHODS We studied 81 patients with carotid artery atherosclerosis, asymptomatic for cerebrovascular diseases. Carotid arteries were examined by Doppler ultrasound and plaque characteristics were recorded. Plasma levels of CgA1-439, VS-1, CgA1-373, and total-CgA (CgA1-439 plus truncated fragments lacking part or the entire C-terminal region) were assessed by specific ELISAs. RESULTS Plasma levels of VS-1 and total-CgA correlated with carotid artery maximum stenosis (r=0.349, p=0.001 and r=0.256, p=0.021, respectively). Stepwise multiple regression analysis indicated that VS-1 was a significant predictor of maximum stenosis after adjustment for age, gender, and conventional risk factors for atherosclerosis (regression coefficient=12.42, SE=4.84, p=0.012). In addition, logistic regression analysis indicated that relatively high levels of full-length CgA, but not total-CgA, predict the presence of hypoechoic, lipid-rich plaques (OR=1.47; 95% CI: 1.19-1.81, p=0.0003). CONCLUSION VS-1 is independently associated with carotid artery maximum stenosis. Furthermore, full-length CgA is an independent indicator of hypoechoic plaques, likely reflecting initial stages of atherosclerosis. Given the known capability of CgA and VS-1 to regulate vascular function and angiogenesis these polypeptides might play a role in the regulation of atherosclerosis pathophysiology.
Collapse
Affiliation(s)
- Tiziana Bachetti
- Istituti Clinici Scientifici Maugeri, IRCCS Pavia, Clinical Trials Centre, Pavia, Italy.
| | - Alberto Ferrari Bardile
- Istituti Clinici Scientifici Maugeri, IRCCS Pavia and IRCCS Montescano, Angiology Unit, Pavia and Montescano, Italy
| | - Teresa Lucia Aloi
- Istituti Clinici Scientifici Maugeri, IRCCS Pavia and IRCCS Montescano, Angiology Unit, Pavia and Montescano, Italy
| | - Barbara Colombo
- IRCCS San Raffaele Scientific Institute, Tumour Biology and Vascular Targeting Unit, Milan, Italy
| | - Emma Assi
- IRCCS San Raffaele Scientific Institute, Tumour Biology and Vascular Targeting Unit, Milan, Italy
| | - Giuseppina Savino
- Istituti Clinici Scientifici Maugeri, IRCCS Pavia and IRCCS Montescano, Angiology Unit, Pavia and Montescano, Italy
| | - Andrea Vercelli
- Istituti Clinici Scientifici Maugeri, IRCCS Pavia and IRCCS Montescano, Angiology Unit, Pavia and Montescano, Italy
| | - Roberto Colombo
- Istituti Clinici Scientifici Maugeri, IRCCS Pavia, Bioengineering Service, Pavia, Italy
| | - Angelo Corti
- IRCCS San Raffaele Scientific Institute, Tumour Biology and Vascular Targeting Unit, Milan, Italy; San Raffaele Vita-Salute University, Milan, Italy
| |
Collapse
|
157
|
Bandyopadhyay GK, Mahata SK. Chromogranin A Regulation of Obesity and Peripheral Insulin Sensitivity. Front Endocrinol (Lausanne) 2017; 8:20. [PMID: 28228748 PMCID: PMC5296320 DOI: 10.3389/fendo.2017.00020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/23/2017] [Indexed: 01/15/2023] Open
Abstract
Chromogranin A (CgA) is a prohormone and granulogenic factor in endocrine and neuroendocrine tissues, as well as in neurons, and has a regulated secretory pathway. The intracellular functions of CgA include the initiation and regulation of dense-core granule biogenesis and sequestration of hormones in neuroendocrine cells. This protein is co-stored and co-released with secreted hormones. The extracellular functions of CgA include the generation of bioactive peptides, such as pancreastatin (PST), vasostatin, WE14, catestatin (CST), and serpinin. CgA knockout mice (Chga-KO) display: (i) hypertension with increased plasma catecholamines, (ii) obesity, (iii) improved hepatic insulin sensitivity, and (iv) muscle insulin resistance. These findings suggest that individual CgA-derived peptides may regulate different physiological functions. Indeed, additional studies have revealed that the pro-inflammatory PST influences insulin sensitivity and glucose tolerance, whereas CST alleviates adiposity and hypertension. This review will focus on the different metabolic roles of PST and CST peptides in insulin-sensitive and insulin-resistant models, and their potential use as therapeutic targets.
Collapse
Affiliation(s)
| | - Sushil K. Mahata
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, Metabolic Physiology and Ultrastructural Biology Laboratory, VA San Diego Healthcare System, San Diego, CA, USA
- *Correspondence: Sushil K. Mahata,
| |
Collapse
|
158
|
Saloustros E, Salpea P, Starost M, Liu S, Faucz FR, London E, Szarek E, Song WJ, Hussain M, Stratakis CA. Prkar1a gene knockout in the pancreas leads to neuroendocrine tumorigenesis. Endocr Relat Cancer 2017; 24:31-40. [PMID: 27803029 PMCID: PMC5123945 DOI: 10.1530/erc-16-0443] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/25/2016] [Indexed: 11/08/2022]
Abstract
Carney complex (CNC) is a rare disease associated with multiple neoplasias, including a predisposition to pancreatic tumors; it is caused most frequently by the inactivation of the PRKAR1A gene, a regulator of the cyclic AMP (cAMP)-dependent kinase (PKA). The method used was to create null alleles of prkar1a in mouse cells expressing pdx1 (Δ-Prkar1a). We found that these mice developed endocrine or mixed endocrine/acinar cell carcinomas with 100% penetrance by the age of 4-5 months. Malignant behavior of the tumors was seen as evidenced by stromal invasion and metastasis to locoregional lymph nodes. Histologically, most tumors exhibited an organoid pattern as seen in the islet-cell tumors. Biochemically, the lesions exhibited high PKA activity, as one would expect from deleting prkar1a The primary neuroendocrine nature of these tumor cells was confirmed by immunohistochemical staining and electron microscopy, the latter revealing the characteristic granules. Although the Δ-Prkar1a mice developed hypoglycemia after overnight fasting, insulin and glucagon levels in the plasma were normal. Negative immunohistochemical staining for the most commonly produced peptides (insulin, c-peptide, glucagon, gastrin and somatostatin) suggested that these tumors were non-functioning. We hypothesize that the recently identified multipotent pdx1+/insulin- cell in adult pancreas, gives rise to endocrine or mixed endocrine/acinar pancreatic malignancies with complete prkar1a deficiency. In conclusion, this mouse model supports the role of prkar1a as a tumor suppressor gene in the pancreas and points to the PKA pathway as a possible therapeutic target for these lesions.
Collapse
Affiliation(s)
- Emmanouil Saloustros
- Section on Endocrinology and GeneticsProgram on Developmental Endocrinology & Genetics (PDEGEN) & Pediatric Endocrinology Inter-institute Training Program, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Paraskevi Salpea
- Section on Endocrinology and GeneticsProgram on Developmental Endocrinology & Genetics (PDEGEN) & Pediatric Endocrinology Inter-institute Training Program, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Matthew Starost
- Diagnostic and Research Services BranchDivision of Veterinary Resources (DVR), Office of Research Services (ORS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Sissi Liu
- Section on Endocrinology and GeneticsProgram on Developmental Endocrinology & Genetics (PDEGEN) & Pediatric Endocrinology Inter-institute Training Program, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Fabio R Faucz
- Section on Endocrinology and GeneticsProgram on Developmental Endocrinology & Genetics (PDEGEN) & Pediatric Endocrinology Inter-institute Training Program, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Edra London
- Section on Endocrinology and GeneticsProgram on Developmental Endocrinology & Genetics (PDEGEN) & Pediatric Endocrinology Inter-institute Training Program, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Eva Szarek
- Section on Endocrinology and GeneticsProgram on Developmental Endocrinology & Genetics (PDEGEN) & Pediatric Endocrinology Inter-institute Training Program, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Woo-Jin Song
- Department of PediatricsMetabolism Division, John Hopkins University, Baltimore, Maryland, USA
| | - Mehboob Hussain
- Department of PediatricsMetabolism Division, John Hopkins University, Baltimore, Maryland, USA
| | - Constantine A Stratakis
- Section on Endocrinology and GeneticsProgram on Developmental Endocrinology & Genetics (PDEGEN) & Pediatric Endocrinology Inter-institute Training Program, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
159
|
Advances in the diagnosis and treatment of pancreatic neuroendocrine neoplasms in Japan. J Gastroenterol 2017; 52:9-18. [PMID: 27539256 DOI: 10.1007/s00535-016-1250-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 07/27/2016] [Indexed: 02/06/2023]
Abstract
Several new developments have occurred in the field of pancreatic neuroendocrine neoplasm (PNEN) recently in Japan. First, the utility of chromogranin A (CgA), useful for the diagnosis and monitoring of the treatment response of neuroendocrine neoplasm (NEN), has been demonstrated in Japan. For PNEN diagnosis and treatment, grading and correct histological diagnosis according to the WHO 2010 classification is important. Regarding the histological diagnosis, the advent of endoscopic ultrasonography-guided fine-needle aspiration (EUS-FNA) has enabled correct pathological diagnosis and suitable treatment for the affected tissue. Furthermore, EUS-FNA has also facilitates the assessment of the presence or absence of gene mutations. In addition, patients who have a well-differentiated neuroendocrine tumor (NET) showing a Ki-67 index of higher than 20 % according to the WHO 2010 classification, have also been identified, and their responses to treatment were found to be different from those of patients with poorly differentiated neuroendocrine carcinoma (NEC). Therefore, the concept of NET G3 was proposed. Additionally, somatostatin receptor type 2 is expressed in several cases of NET, and somatostatin receptor scintigraphy (111In-octreoscan) has also been approved in Japan. This advancement will undoubtedly contribute to the localization diagnosis, the identification of remote metastasis, and assessments of the treatment responses of PNEN. Finally, regarding the treatment strategy for PNEN, the management of liver metastasis is important. The advent of novel molecular-targeted agents has dramatically improved the prognosis of advanced PNEN. Multimodality therapy that accounts for the tumor stage, degree of tumor differentiation, tumor volume, and speed of tumor growth is required.
Collapse
|
160
|
Valdiglesias V, Maseda A, Lorenzo-López L, Pásaro E, Millán-Calenti JC, Laffon B. Is Salivary Chromogranin A a Valid Psychological Stress Biomarker During Sensory Stimulation in People with Advanced Dementia? J Alzheimers Dis 2016; 55:1509-1517. [DOI: 10.3233/jad-160893] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Vanessa Valdiglesias
- Universidade da Coruña, DICOMOSA Group, Department of Psychology, Area of Psychobiology, A Coruña, Spain
| | - Ana Maseda
- Universidade da Coruña, Gerontology Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, A Coruña, Spain
| | - Laura Lorenzo-López
- Universidade da Coruña, Gerontology Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, A Coruña, Spain
| | - Eduardo Pásaro
- Universidade da Coruña, DICOMOSA Group, Department of Psychology, Area of Psychobiology, A Coruña, Spain
| | - José C. Millán-Calenti
- Universidade da Coruña, Gerontology Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, A Coruña, Spain
| | - Blanca Laffon
- Universidade da Coruña, DICOMOSA Group, Department of Psychology, Area of Psychobiology, A Coruña, Spain
| |
Collapse
|
161
|
El-Salhy M, Hatlebakk JG, Gilja OH. Abnormalities in endocrine and immune cells are correlated in dextran‑sulfate‑sodium‑induced colitis in rats. Mol Med Rep 2016; 15:12-20. [PMID: 27959399 PMCID: PMC5355736 DOI: 10.3892/mmr.2016.6023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/25/2016] [Indexed: 12/13/2022] Open
Abstract
The interaction between the gut hormones and the immune system has been suggested to serve an important role in the pathophysiology of inflammatory bowel disease. The aims of the present study were to elucidate the possible abnormalities in the colonic endocrine cells in rats with dextran sodium sulfate (DSS)-induced colitis, and to determine whether they are correlated with alterations in the immune cells. A total of 24 male Wistar rats were divided into two groups: Control and DSS-induced colitis. Colonic tissues were harvested via postmortem laparotomy from all of the animals at the end of the experimental period, and fixed and sectioned for histology. The colonic endocrine and immune cells in those tissue samples were immunostained and their densities quantified by computerized image analysis. The densities of chromogranin A, serotonin, peptide YY and oxyntomodulin cells were significantly higher, and those of pancreatic peptide and somatostatin cells were lower in rats with DSS-induced colitis than in the controls. The densities of mucosal leukocytes, T and B lymphocytes, macrophages/monocytes, and mast cells were significantly higher than in the controls, and these changes were closely associated with the aforementioned changes in all endocrine cell types. These observations indicate an interaction between intestinal hormones and the immune system as represented by immune cells.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Division of Gastroenterology, Department of Medicine, Stord Hospital, 5416 Stord, Norway
| | - Jan Gunnar Hatlebakk
- Division of Gastroenterology, Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| | - Odd Helge Gilja
- Division of Gastroenterology, Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
162
|
Ware M, Hamdi-Rozé H, Le Friec J, David V, Dupé V. Regulation of downstream neuronal genes by proneural transcription factors during initial neurogenesis in the vertebrate brain. Neural Dev 2016; 11:22. [PMID: 27923395 PMCID: PMC5142277 DOI: 10.1186/s13064-016-0077-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/29/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Neurons arise in very specific regions of the neural tube, controlled by components of the Notch signalling pathway, proneural genes, and other bHLH transcription factors. How these specific neuronal areas in the brain are generated during development is just beginning to be elucidated. Notably, the critical role of proneural genes during differentiation of the neuronal populations that give rise to the early axon scaffold in the developing brain is not understood. The regulation of their downstream effectors remains poorly defined. RESULTS This study provides the first overview of the spatiotemporal expression of proneural genes in the neuronal populations of the early axon scaffold in both chick and mouse. Overexpression studies and mutant mice have identified a number of specific neuronal genes that are targets of proneural transcription factors in these neuronal populations. CONCLUSION Together, these results improve our understanding of the molecular mechanisms involved in differentiation of the first neuronal populations in the brain.
Collapse
Affiliation(s)
- Michelle Ware
- Institut de Génétique et Développement de Rennes, Faculté de Médecine, CNRS UMR6290, Université de Rennes 1, IFR140 GFAS, 2 Avenue du Pr. Léon Bernard, 35043, Rennes Cedex, France.,Present address: Department of Physiology, Development and Neuroscience, University of Cambridge, Anatomy Building, Downing Street, CB2 3DY, Cambridge, UK
| | - Houda Hamdi-Rozé
- Institut de Génétique et Développement de Rennes, Faculté de Médecine, CNRS UMR6290, Université de Rennes 1, IFR140 GFAS, 2 Avenue du Pr. Léon Bernard, 35043, Rennes Cedex, France.,Laboratoire de Génétique Moléculaire, CHU Pontchaillou, Rennes Cedex, France
| | - Julien Le Friec
- Institut de Génétique et Développement de Rennes, Faculté de Médecine, CNRS UMR6290, Université de Rennes 1, IFR140 GFAS, 2 Avenue du Pr. Léon Bernard, 35043, Rennes Cedex, France
| | - Véronique David
- Institut de Génétique et Développement de Rennes, Faculté de Médecine, CNRS UMR6290, Université de Rennes 1, IFR140 GFAS, 2 Avenue du Pr. Léon Bernard, 35043, Rennes Cedex, France.,Laboratoire de Génétique Moléculaire, CHU Pontchaillou, Rennes Cedex, France
| | - Valérie Dupé
- Institut de Génétique et Développement de Rennes, Faculté de Médecine, CNRS UMR6290, Université de Rennes 1, IFR140 GFAS, 2 Avenue du Pr. Léon Bernard, 35043, Rennes Cedex, France.
| |
Collapse
|
163
|
Zandee WT, Kamp K, van Adrichem RCS, Feelders RA, de Herder WW. Limited value for urinary 5-HIAA excretion as prognostic marker in gastrointestinal neuroendocrine tumours. Eur J Endocrinol 2016; 175:361-6. [PMID: 27491374 DOI: 10.1530/eje-16-0392] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/04/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To determine if urinary 5-hydroxyindoleacetic acid (5-HIAA) excretion is of prognostic value for overall survival (OS) in patients with a gastrointestinal neuroendocrine tumour (NET) and to compare the prognostic value with patient characteristics, ENETS/WHO grading, ENETS TNM staging and biomarkers. DESIGN AND METHODS Data was collected from patients with a gastrointestinal NET or a NET with gastrointestinal metastases and available 5-HIAA excretion in 24-h urine samples. Laboratory results were stratified for urinary 5-HIAA and chromogranin A (CgA): <2× upper limit of normal (ULN), 2-10× ULN, or >10× ULN. For neuron-specific enolase (NSE), this was the reference range or >1× ULN. OS was compared using Kaplan-Meier and log-rank tests, and hazard ratios were calculated using Cox regression for univariate and multivariate analyses. RESULTS A total of 371 patients were included, 46.6% female with a mean age of 59.9 years. OS was shortest in patients with urinary 5-HIAA excretion >10× ULN vs reference range (median 83 months vs 141 months, P = 0.002). In univariate analysis, urinary 5-HIAA excretion >10× ULN was a negative predictor (HR 1.62, 95% CI: 1.09-2.39). However, in multivariate analysis, only age (HR 1.04, 95% CI: 1.01-1.08), grade 3 disease (HR 5.09, 95% CI: 2.20-11.79), NSE >1× ULN (HR 2.36, 95% CI: 1.34-4.14) and CgA >10× ULN (HR 3.61, 95% CI: 1.56-8.34) remained as the predictors. CONCLUSION Urinary 5-HIAA excretion >10× ULN is a negative predictor for OS. However, when added to other biomarkers and grading, it is no longer a predictor for OS. Therefore, it should only be determined to assess carcinoid syndrome and not for prognostic value.
Collapse
Affiliation(s)
- Wouter T Zandee
- Department of Internal MedicineSector Endocrinology, ENETS Centre of Excellence, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Kimberly Kamp
- Department of Internal MedicineSector Endocrinology, ENETS Centre of Excellence, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Roxanne C S van Adrichem
- Department of Internal MedicineSector Endocrinology, ENETS Centre of Excellence, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Richard A Feelders
- Department of Internal MedicineSector Endocrinology, ENETS Centre of Excellence, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Wouter W de Herder
- Department of Internal MedicineSector Endocrinology, ENETS Centre of Excellence, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
164
|
El-Salhy M, Hatlebakk JG. Changes in enteroendocrine and immune cells following colitis induction by TNBS in rats. Mol Med Rep 2016; 14:4967-4974. [PMID: 27840918 PMCID: PMC5355731 DOI: 10.3892/mmr.2016.5902] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 08/04/2016] [Indexed: 12/11/2022] Open
Abstract
Approximately 3.6 million individuals suffer from inflammatory bowel disease (IBD) in the western world, with an annual global incidence rate of 3–20 cases/100,000 individuals. The etiology of IBD is unknown, and the currently available treatment options are not satifactory for long-term treatment. Patients with inflammatory bowel disease present with abnormalities in multiple intestinal endocrine cell types, and a number of studies have suggested that interactions between gut hormones and immune cells may serve a pivotal role in the pathophysiology of IBD. The aim of the present study was to investigate alterations in colonic endocrine cells in a rat model of IBD. A total of 30 male Wistar rats were divided into control and trinitrobenzene sulfonic acid (TNBS)-induced colitis groups. Colonoscopies were performed in the control and TNBS groups at day 3 following the induction of colitis, and colonic tissues were collected from all animals. Colonic endocrine and immune cells in the obtained tissue samples were immunostained and their densities were quantified. The densities of chromogranin A, peptide YY, and pancreatic polypeptide-producing cells were significantly lower in the TNBS group compared with the control group, whereas the densities of serotonin, oxyntomodulin, and somatostatin-producing cells were significantly higher in the TNBS group. The densities of mucosal leukocytes, B/T-lymphocytes, T-lymphocytes, B-lymphocytes, macrophages/monocytes and mast cells were significantly higher in the TNBS group compared with the controls, and these differences were strongly correlated with alterations in all endocrine cell types. In conclusion, the results suggest the presence of interactions between intestinal hormones and immune cells.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Division of Gastroenterology, Department of Medicine, Stord Hospital, 5416 Stord, Norway
| | - Jan Gunnar Hatlebakk
- Division of Gastroenterology, Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
| |
Collapse
|
165
|
Danda R, Ganapathy K, Sathe G, Madugundu AK, Ramachandran S, Krishnan UM, Khetan V, Rishi P, Keshava Prasad TS, Pandey A, Krishnakumar S, Gowda H, Elchuri SV. Proteomic profiling of retinoblastoma by high resolution mass spectrometry. Clin Proteomics 2016; 13:29. [PMID: 27799869 PMCID: PMC5080735 DOI: 10.1186/s12014-016-9128-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 09/23/2016] [Indexed: 02/07/2023] Open
Abstract
Background Retinoblastoma is an ocular neoplastic cancer caused primarily due to the mutation/deletion of RB1 gene. Due to the rarity of the disease very limited information is available on molecular changes in primary retinoblastoma. High throughput analysis of retinoblastoma transcriptome is available however the proteomic landscape of retinoblastoma remains unexplored. In the present study we used high resolution mass spectrometry-based quantitative proteomics to identify proteins associated with pathogenesis of retinoblastoma. Methods We used five pooled normal retina and five pooled retinoblastoma tissues to prepare tissue lysates. Equivalent amount of proteins from each group was trypsin digested and labeled with iTRAQ tags. The samples were analyzed on Orbitrap Velos mass spectrometer. We further validated few of the differentially expressed proteins by immunohistochemistry on primary tumors. Results We identified and quantified a total of 3587 proteins in retinoblastoma when compared with normal adult retina. In total, we identified 899 proteins that were differentially expressed in retinoblastoma with a fold change of ≥2 of which 402 proteins were upregulated and 497 were down regulated. Insulin growth factor 2 mRNA binding protein 1 (IGF2BP1), chromogranin A, fetuin A (ASHG), Rac GTPase-activating protein 1 and midkine that were found to be overexpressed in retinoblastoma were further confirmed by immunohistochemistry by staining 15 independent retinoblastoma tissue sections. We further verified the effect of IGF2BP1 on cell proliferation and migration capability of a retinoblastoma cell line using knockdown studies. Conclusions In the present study mass spectrometry-based quantitative proteomic approach was applied to identify proteins differentially expressed in retinoblastoma tumor. This study identified the mitochondrial dysfunction and lipid metabolism pathways as the major pathways to be deregulated in retinoblastoma. Further knockdown studies of IGF2BP1 in retinoblastoma cell lines revealed it as a prospective therapeutic target for retinoblastoma. Electronic supplementary material The online version of this article (doi:10.1186/s12014-016-9128-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ravikanth Danda
- Department of Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamilnadu 600006 India ; Centre for Nanotechnology and Advanced Biomaterials, Shanmugha Arts, Science, Technology and Research Academy University, Tanjore, Tamilnadu India
| | - Kalaivani Ganapathy
- Department of Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamilnadu 600006 India
| | - Gajanan Sathe
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka 560066 India
| | - Anil K Madugundu
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka 560066 India
| | - Sharavan Ramachandran
- Department of Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamilnadu 600006 India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology and Advanced Biomaterials, Shanmugha Arts, Science, Technology and Research Academy University, Tanjore, Tamilnadu India
| | - Vikas Khetan
- Shri Bhagwan Mahavir Vitreoretinal Services and Ocular Oncology Services, Medical Research Foundation, Sankara Nethralaya, Chennai, Tamilnadu 600006 India
| | - Pukhraj Rishi
- Shri Bhagwan Mahavir Vitreoretinal Services and Ocular Oncology Services, Medical Research Foundation, Sankara Nethralaya, Chennai, Tamilnadu 600006 India
| | - T S Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka 560066 India
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA ; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA ; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA ; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Subramanian Krishnakumar
- Department of Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamilnadu 600006 India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka 560066 India
| | - Sailaja V Elchuri
- Department of Nano-Biotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamilnadu 600006 India
| |
Collapse
|
166
|
Proteomic response of mouse pituitary gland under heat stress revealed active regulation of stress responsive proteins. J Therm Biol 2016; 61:82-90. [DOI: 10.1016/j.jtherbio.2016.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/27/2016] [Accepted: 08/29/2016] [Indexed: 11/22/2022]
|
167
|
Kaneko Y, Onda N, Watanabe Y, Shibutani M. Identification of 5-hydroxytryptamine-producing cells by detection of fluorescence in paraffin-embedded tissue sections. Eur J Histochem 2016; 60:2684. [PMID: 27734992 PMCID: PMC5062634 DOI: 10.4081/ejh.2016.2684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/09/2016] [Accepted: 08/18/2016] [Indexed: 01/25/2023] Open
Abstract
5-Hydroxytryptamine (5-HT) produced by enterochromaffin (EC) cells is an important enteric mucosal signaling ligand and has been implicated in several gastrointestinal diseases, including inflammatory bowel disease and functional disorders such as irritable bowel syndrome. The present study reports a new, simple and rapid visualization method of 5-HT-producing EC cells utilizing detection of fluorescence in paraffin-embedded tissue sections after formalin fixation. In human samples, there was a high incidence of fluorescence+ cells in the 5-HT+ cells in the pyloric, small intestinal and colonic glands, while co-localization was lacking between fluorescence+ and gastrin+ cells in the pyloric and small intestinal glands. Fluorescence+ EC cells were detected in the colon of mice and rats. Fluorescence+ cells were also observed in 5-HT+ β cells in the pancreatic islets of Langerhans in pregnant mice, while non-pregnant mouse pancreatic islet cells showed no 5-HT immunoreactivity or fluorescence. These results suggest that fluorescence+ cells are identical to 5-HT+ cells, and the source of fluorescence may be 5-HT itself or molecules related to its synthesis or degradation. This fluorescence signal detection method may be applicable for monitoring of inflammatory status of inflammatory bowel diseases in both the experimental and clinical settings.
Collapse
|
168
|
Abstract
Chromogranin A (CgA) is an established plasma marker of neuroendocrine tumors and has been suggested to also have a role as biomarker in other diseases. Whether CgA has any role as biomarker in diabetes is, however, unresolved, but its widespread distribution in the secretory granules in endocrine tissues including β cells and α cells in pancreas, and the metabolic effects of its peptide fragments suggest that CgA may play a pathophysiological role in diabetes, and thus also be a potential diabetes biomarker. In this review, we summarize the available information on CgA and some of its functional post-translational cleavage products in diabetes, followed by a discussion of its potential as a plasma marker in diabetes and the methodological concerns involved.
Collapse
Affiliation(s)
- Kasper Broedbaek
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, 9 Blegdamsvej, DK-2100 Copenhagen, Denmark
| | - Linda Hilsted
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, 9 Blegdamsvej, DK-2100 Copenhagen, Denmark
| |
Collapse
|
169
|
Martínez-Miró S, Tecles F, Ramón M, Escribano D, Hernández F, Madrid J, Orengo J, Martínez-Subiela S, Manteca X, Cerón JJ. Causes, consequences and biomarkers of stress in swine: an update. BMC Vet Res 2016; 12:171. [PMID: 27543093 PMCID: PMC4992232 DOI: 10.1186/s12917-016-0791-8] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/03/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND In recent decades there has been a growing concern about animal stress on intensive pig farms due to the undesirable consequences that stress produces in the normal physiology of pigs and its effects on their welfare and general productive performance. This review analyses the most important types of stress (social, environmental, metabolic, immunological and due to human handling), and their biological consequences for pigs. The physio-pathological changes associated with stress are described, as well as the negative effects of stress on pig production. In addition an update of the different biomarkers used for the evaluation of stress is provided. These biomarkers can be classified into four groups according to the physiological system or axis evaluated: sympathetic nervous system, hypothalamic-pituitary-adrenal axis, hypothalamic-pituitary-gonadal axis and immune system. CONCLUSIONS Stress it is a process with multifactorial causes and produces an organic response that generates negative effects on animal health and production. Ideally, a panel of various biomarkers should be used to assess and evaluate the stress resulting from diverse causes and the different physiological systems involved in the stress response. We hope that this review will increase the understanding of the stress process, contribute to a better control and reduction of potential stressful stimuli in pigs and, finally, encourage future studies and developments to better monitor, detect and manage stress on pig farms.
Collapse
Affiliation(s)
- Silvia Martínez-Miró
- Department of Animal Production, Campus of Excellence Mare Nostrum, Universidad de Murcia, 30100 Murcia, Spain
| | - Fernando Tecles
- Department of Animal Medicine and Surgery, Campus of Excellence Mare Nostrum, Universidad de Murcia, 30100 Murcia, Spain
| | - Marina Ramón
- Department of Animal Production, Campus of Excellence Mare Nostrum, Universidad de Murcia, 30100 Murcia, Spain
| | - Damián Escribano
- Department of Animal Medicine and Surgery, Campus of Excellence Mare Nostrum, Universidad de Murcia, 30100 Murcia, Spain
| | - Fuensanta Hernández
- Department of Animal Production, Campus of Excellence Mare Nostrum, Universidad de Murcia, 30100 Murcia, Spain
| | - Josefa Madrid
- Department of Animal Production, Campus of Excellence Mare Nostrum, Universidad de Murcia, 30100 Murcia, Spain
| | - Juan Orengo
- Department of Animal Production, Campus of Excellence Mare Nostrum, Universidad de Murcia, 30100 Murcia, Spain
| | - Silvia Martínez-Subiela
- Department of Animal Medicine and Surgery, Campus of Excellence Mare Nostrum, Universidad de Murcia, 30100 Murcia, Spain
| | - Xavier Manteca
- Department of Animal and Food Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - José Joaquín Cerón
- Department of Animal Medicine and Surgery, Campus of Excellence Mare Nostrum, Universidad de Murcia, 30100 Murcia, Spain
| |
Collapse
|
170
|
The pro-inflammatory cytokines IFNγ/TNFα increase chromogranin A-positive neuroendocrine cells in the colonic epithelium. Biochem J 2016; 473:3805-3818. [PMID: 27538402 DOI: 10.1042/bcj20160390] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/18/2016] [Indexed: 02/07/2023]
Abstract
The gastrointestinal tract is the largest hormone-producing organ in the body due to a specialized cell population called enteroendocrine cells (EECs). The number of EECs increases in the mucosa of inflammatory bowel disease patients; however, the mechanisms responsible for these changes remain unknown. Here, we show that the pro-inflammatory cytokines interferon γ (IFNγ) and tumor necrosis factor α (TNFα) or dextran sulfate sodium (DSS)-induced colitis increase the number of EECs producing chromogranin A (CgA) in the colonic mucosa of C57BL/6J mice. CgA-positive cells were non-proliferating cells enriched with inactive phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and autophagy markers. Moreover, inhibition of Akt and autophagy prevented the increase in CgA-positive cells after IFNγ/TNFα treatment. Similarly, we observed that CgA-positive cells in the colonic mucosa of patients with colitis expressed Akt and autophagy markers. These findings suggest that Akt signaling and autophagy control differentiation of the intestinal EEC lineage during inflammation.
Collapse
|
171
|
Abstract
Endogenous long-term timing is a key component of seasonality. Where and how are such rhythms generated? Recent findings pointed to the pituitary pars tuberalis, already implicated in photoperiod responsiveness. Now, a new study provides mechanistic insights which support this hypothesis.
Collapse
|
172
|
Elevated Serum Pancreastatin Is an Indicator of Hepatic Metastasis in Patients With Small Bowel Neuroendocrine Tumors. Pancreas 2016; 45:1032-5. [PMID: 26684860 DOI: 10.1097/mpa.0000000000000572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Serum pancreastatin is a sensitive and specific diagnostic biomarker in neuroendocrine tumors (NETs). Elevated pancreastatin levels are associated with worse progression-free survival and overall survival in small bowel and pancreatic NETs. In this study, we investigated the clinical significance of elevated serum pancreastatin in identifying metastatic disease to the liver. METHODS Retrospective chart review of patients with NET managed at a single institution was performed. The site of primary tumor, laboratory data, and presence of metastatic disease were reviewed. The sensitivity, specificity, and positive and negative predictive values for pancreastatin as indicator of liver metastasis were ascertained. RESULTS Data were abstracted from 77 patient records. Small bowel was the primary tumor site in 44 patients (57%), and 49 patients had metastasis to the liver (64%). Sensitivity and specificity of serum pancreastatin was 85.7% and 66.7%, respectively, which compared with 61.5% and 43.8% for chromogranin A, in identifying liver metastasis in patients with primary tumors of the small bowel. CONCLUSIONS Elevated serum pancreastatin is a sensitive and specific assay for detecting the incidence of liver metastasis in patients with small-bowel NET. Routine measurement of pancreastatin in patients with NET, especially in patients with small bowel primaries, is supported.
Collapse
|
173
|
Sulzer D, Cragg SJ, Rice ME. Striatal dopamine neurotransmission: regulation of release and uptake. ACTA ACUST UNITED AC 2016; 6:123-148. [PMID: 27141430 DOI: 10.1016/j.baga.2016.02.001] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dopamine (DA) transmission is governed by processes that regulate release from axonal boutons in the forebrain and the somatodendritic compartment in midbrain, and by clearance by the DA transporter, diffusion, and extracellular metabolism. We review how axonal DA release is regulated by neuronal activity and by autoreceptors and heteroreceptors, and address how quantal release events are regulated in size and frequency. In brain regions densely innervated by DA axons, DA clearance is due predominantly to uptake by the DA transporter, whereas in cortex, midbrain, and other regions with relatively sparse DA inputs, the norepinephrine transporter and diffusion are involved. We discuss the role of DA uptake in restricting the sphere of influence of DA and in temporal accumulation of extracellular DA levels upon successive action potentials. The tonic discharge activity of DA neurons may be translated into a tonic extracellular DA level, whereas their bursting activity can generate discrete extracellular DA transients.
Collapse
Affiliation(s)
- David Sulzer
- Depts of Psychiatry, Neurology, & Pharmacology, NY State Psychiatric Institute, Columbia University, New York, NY, USA
| | - Stephanie J Cragg
- Dept Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Margaret E Rice
- Depts of Neurosurgery & Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
174
|
Analysis and validation of traits associated with a single nucleotide polymorphism Gly364Ser in catestatin using humanized chromogranin A mouse models. J Hypertens 2016; 34:68-78. [PMID: 26556564 DOI: 10.1097/hjh.0000000000000760] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE The human prohormone chromogranin A (CHGA), an index member of the granin family is processed to generate catestatin, a peptide that is hypotensive in action and modulates catecholamine release within the sympathoadrenal system. Hypertensive patients with excess sympathetic activity have diminished catestatin. Often the study of physiological consequences of human genetic variation is confounded by elements such as other variations in obligatory linkage disequilibrium with the variant being studied. Also the phenotype of the variant may be influenced by genetic background that varies amongst individuals. This study addresses the effects of a human catestatin polymorphism (rs9658667) using humanized CHGA mouse models. METHODS We created pertinent humanized mouse models wherein the mouse Chga gene locus was replaced by the human ortholog wild-type and the variant versions. This allowed for probing of the effects of catestatin variation in vivo with controls for other variations and global genetic background. RESULTS Both the wild-type and variant human catestatin expressing mouse models were normotensive. The variant catestatin mouse model recapitulated physiological influence of the polymorphism on autonomic traits. These mice had diminished catecholamine, attenuated stress response and increased baroreceptor slopes that would suggest reduced risk of developing hypertension. Elevated plasma glucose, a trait observed in humans was not observed in mice expressing the variant catestatin. CONCLUSION This functional genomics approach of creating humanized mouse models to study rs9658667 polymorphism recapitulated and validated many of the human trait associations. This approach can also be applied in the study of other human gene polymorphisms.
Collapse
|
175
|
Kiranmayi M, Chirasani VR, Allu PKR, Subramanian L, Martelli EE, Sahu BS, Vishnuprabu D, Kumaragurubaran R, Sharma S, Bodhini D, Dixit M, Munirajan AK, Khullar M, Radha V, Mohan V, Mullasari AS, Naga Prasad SV, Senapati S, Mahapatra NR. Catestatin Gly364Ser Variant Alters Systemic Blood Pressure and the Risk for Hypertension in Human Populations via Endothelial Nitric Oxide Pathway. Hypertension 2016; 68:334-47. [PMID: 27324226 DOI: 10.1161/hypertensionaha.116.06568] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 05/17/2016] [Indexed: 12/13/2022]
Abstract
Catestatin (CST), an endogenous antihypertensive/antiadrenergic peptide, is a novel regulator of cardiovascular physiology. Here, we report case-control studies in 2 geographically/ethnically distinct Indian populations (n≈4000) that showed association of the naturally-occurring human CST-Gly364Ser variant with increased risk for hypertension (age-adjusted odds ratios: 1.483; P=0.009 and 2.951; P=0.005). Consistently, 364Ser allele carriers displayed elevated systolic (up to ≈8 mm Hg; P=0.004) and diastolic (up to ≈6 mm Hg; P=0.001) blood pressure. The variant allele was also found to be in linkage disequilibrium with other functional single-nucleotide polymorphisms in the CHGA promoter and nearby coding region. Functional characterization of the Gly364Ser variant was performed using cellular/molecular biological experiments (viz peptide-receptor binding assays, nitric oxide [NO], phosphorylated extracellular regulated kinase, and phosphorylated endothelial NO synthase estimations) and computational approaches (molecular dynamics simulations for structural analysis of wild-type [CST-WT] and variant [CST-364Ser] peptides and docking of peptide/ligand with β-adrenergic receptors [ADRB1/2]). CST-WT and CST-364Ser peptides differed profoundly in their secondary structures and showed differential interactions with ADRB2; although CST-WT displaced the ligand bound to ADRB2, CST-364Ser failed to do the same. Furthermore, CST-WT significantly inhibited ADRB2-stimulated extracellular regulated kinase activation, suggesting an antagonistic role towards ADRB2 unlike CST-364Ser. Consequently, CST-WT was more potent in NO production in human umbilical vein endothelial cells as compared with CST-364Ser. This NO-producing ability of CST-WT was abrogated by ADRB2 antagonist ICI 118551. In conclusion, CST-364Ser allele enhanced the risk for hypertension in human populations, possibly via diminished endothelial NO production because of altered interactions of CST-364Ser peptide with ADRB2 as compared with CST-WT.
Collapse
Affiliation(s)
- Malapaka Kiranmayi
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Venkat R Chirasani
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Prasanna K R Allu
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Lakshmi Subramanian
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Elizabeth E Martelli
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Bhavani S Sahu
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Durairajpandian Vishnuprabu
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Rathnakumar Kumaragurubaran
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Saurabh Sharma
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Dhanasekaran Bodhini
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Madhulika Dixit
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Arasambattu K Munirajan
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Madhu Khullar
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Venkatesan Radha
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Viswanathan Mohan
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Ajit S Mullasari
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Sathyamangla V Naga Prasad
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Sanjib Senapati
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.)
| | - Nitish R Mahapatra
- From the Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India (M.Kiranmayi, V.R.C., P.K.R.A., L.S., B.S.S., R.K., M.D., S.Senapati, N.R.M.); Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, OH (E.E.M., S.V.N.P.); Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India (D.V., A.K.M.); Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India (S.Sharma, M.Khullar); Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, Tamil Nadu, India (D.B., V.R., V.M.); Institute of Cardiovascular Diseases, Madras Medical Mission, Chennai, Tamil Nadu, India (A.S.M.); Department of Medicine, University of California San Francisco (P.K.R.A.); and Department of Clinical Biochemistry, University of Cambridge, Cambridge, United Kingdom (B.S.S.).
| |
Collapse
|
176
|
Abstract
The symptom-based diagnosis of irritable bowel syndrome (IBS) has not been established in everyday clinical practice, and the diagnosis of this disorder remains one of exclusion. It has been demonstrated that the densities of duodenal chromogranin A, rectal peptide YY and somatostatin cells are good biomarkers for the diagnosis of sporadic IBS, and low-grade mucosal inflammation is a promising biomarker for the diagnosis of postinfectious IBS. Genetic markers are not useful as biomarkers for IBS since the potential risk genes have yet to be validated, and the intestinal microbiota cannot be used because of the lack of an association between a specific bacterial species and IBS. Furthermore, gastrointestinal dysmotility and visceral hypersensitivity tests produce results that are too nonconsistent and noncharacteristic to be used in the diagnosis of IBS. A combination of symptom-based assessment, exclusion of overlapping gastrointestinal diseases and positive biomarkers appears to be the best way to diagnose IBS.
Collapse
Affiliation(s)
- Magdy El-Salhy
- a Department of Medicine, Section for Gastroenterology, Stord Hospital, Stord, Norway
| |
Collapse
|
177
|
Merino-Jiménez C, Aragón J, Ceja V, Rodríguez-Martínez G, Cázares-Raga FE, Chardonnet S, Pionneau C, Rendon A, Montañez C. Dp71Δ78-79 dystrophin mutant stimulates neurite outgrowth in PC12 cells via upregulation and phosphorylation of HspB1. Proteomics 2016; 16:1331-40. [PMID: 26936078 DOI: 10.1002/pmic.201500211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 01/24/2016] [Accepted: 02/29/2016] [Indexed: 11/05/2022]
Abstract
PC12 cells acquire a neuronal phenotype in response to nerve growth factor (NGF). However, this phenotype is more efficiently achieved when the Dp71Δ78-79 dystrophin mutant is stably expressed in PC12-C11 cells. To investigate the effect of Dp71Δ78-79 overexpression on the protein profile of PC12-C11 cells, we compared the expression profiles of undifferentiated and NGF-differentiated PC12-C11 and PC12 cells by 2DE. In undifferentiated cultures, one protein was downregulated, and five were upregulated. Dp71Δ78-79 overexpression had a greater effect on differentiated cultures, with ten proteins downregulated and seven upregulated. The protein with the highest upregulation was HspB1. Changes in HspB1 expression were validated by Western blot and immunofluorescence analyses. Interestingly, the neurite outgrowth in PC12-C11 cells was affected by a polyclonal antibody against HspB1, and the level of HspB1 and HspB1Ser86 decreased, suggesting an important role for this protein in this cellular process. Our results show that Dp71Δ78-79 affects the expression level of some proteins and that the stimulated neurite outgrowth produced by this mutant is mainly through upregulation and phosphorylation of HspB1.
Collapse
Affiliation(s)
- Candelaria Merino-Jiménez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México, D.F., México
| | - Jorge Aragón
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México, D.F., México
| | - Víctor Ceja
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México, D.F., México
| | - Griselda Rodríguez-Martínez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México, D.F., México
| | - Febe E Cázares-Raga
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México, D.F., México
| | - Solenne Chardonnet
- UPMC Univ Paris 06, UMS 2 Omique, Sorbonne Universités, Plateforme P3S, Paris, France.,UMS 29 Omique, INSERM, Plateforme P3S, Paris, France
| | - Cédric Pionneau
- UPMC Univ Paris 06, UMS 2 Omique, Sorbonne Universités, Plateforme P3S, Paris, France.,UMS 29 Omique, INSERM, Plateforme P3S, Paris, France
| | - Alvaro Rendon
- Institut de la Vision, INSERM UMR_S968, CNRS UMR_7210, Université Pierre et Marie Curie Paris 06, Paris, France
| | - Cecilia Montañez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México, D.F., México
| |
Collapse
|
178
|
Mikwar M, Navarro-Martin L, Xing L, Volkoff H, Hu W, Trudeau VL. Stimulatory effect of the secretogranin-ll derived peptide secretoneurin on food intake and locomotion in female goldfish (Carassius auratus). Peptides 2016; 78:42-50. [PMID: 26860475 DOI: 10.1016/j.peptides.2016.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 12/30/2015] [Accepted: 01/09/2016] [Indexed: 11/27/2022]
Abstract
Secretoneurin (SN) is a conserved peptide derived by proteolytic processing from the middle domain of the ∼600 amino acid precursor secretogranin-II (SgII). Secretoneurin is widely distributed in secretory granules of endocrine cells and neurons and has important roles in reproduction as it stimulates luteinizing hormone release from the pituitary. A potential new role of SN in goldfish feeding is the subject of this study. Firstly, we established that acute (26 h; p<0.0001) and short-term (72 h; p=0.016) fasting increased SgIIa precursor mRNA levels 1.25-fold in the telencephalon, implicating SN in the control of feeding. Secondly, we determined that intracerebroventricular injections of the type A SN (SNa; 0.2 and 1 ng/g BW) increased food intake and locomotor behavior by 60 min. Fish injected with the lower and higher doses of SNa (0.2 and 1 ng/g) respectively exhibited significant 1.77- and 2.58-fold higher food intake (p<0.0001) than the saline-injected control fish. Locomotor behavior was increased by 1.35- and 2.26-fold for 0.2 ng/g SNa (p=0.0001) and 1 ng/g SNa (p<0.0001), respectively. Injection of 1 ng/g SNa increased mRNA levels of hypothalamic neuropeptide Y 1.36-fold (p=0.038) and decreased hypothalamic cocaine-and amphetamine-regulated transcript by 33% (p=0.01) at 2h and 5h post-injection, respectively. These data suggest interactions of SNa with stimulatory and inhibitory pathways of food intake control in fish.
Collapse
Affiliation(s)
- M Mikwar
- Centre of Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, ON, Canada
| | - L Navarro-Martin
- Centre of Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, ON, Canada
| | - L Xing
- Centre of Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, ON, Canada
| | - H Volkoff
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada
| | - W Hu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - V L Trudeau
- Centre of Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, ON, Canada.
| |
Collapse
|
179
|
Nyberg C, Karlsson T, Hillered L, Stridsberg M, Ronne Engström E. The Early Endocrine Stress Response in Experimental Subarachnoid Hemorrhage. PLoS One 2016; 11:e0151457. [PMID: 27007694 PMCID: PMC4805209 DOI: 10.1371/journal.pone.0151457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/28/2016] [Indexed: 12/12/2022] Open
Abstract
Introduction In patients with severe illness, such as aneurysmal subarachnoid hemorrhage (SAH), a physiologic stress response is triggered. This includes activation of the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system. The aim of this study was to investigate the very early responses of these systems. Methods A porcine animal model of aneurysmal SAH was used. In this model, blood is injected slowly to the basal cisterns above the anterior skull base until the cerebral perfusion pressure is 0 mm Hg. Sampling was done from blood and urine at -10, +15, +75 and +135 minutes from time of induction of SAH. Analyses of adrenocorticotropic hormone (ACTH), cortisol, aldosterone, catecholamines and chromogranin-A were performed. Results Plasma ACTH, serum cortisol and plasma aldosterone increased in the samples following induction of SAH, and started to decline after 75 minutes. Urine cortisol also increased after SAH. Urine catecholamines and their metabolites were found to increase after SAH. Many samples were however below detection level, not allowing for statistical analysis. Plasma chromogranin-A peaked at 15 minutes after SAH, and thereafter decreased. Conclusions The endocrine stress response after aneurysmal SAH was found to start within 15 minutes in the HPA axis with early peak values of ACTH, cortisol and aldosterone. The fact that the concentrations of the HPA axis hormones decreased 135 minutes after SAH may suggest that a similar pattern exists in SAH patients, thus making it difficult to catch these early peak values. There were also indications of early activation of the sympathetic nervous system, but the small number of valid samples made interpretation difficult.
Collapse
Affiliation(s)
- Christoffer Nyberg
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Torbjörn Karlsson
- Department of Surgical Sciences, Section of Anesthesiology and Intensive care, Uppsala University, Uppsala, Sweden
| | - Lars Hillered
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Mats Stridsberg
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
180
|
Mazzawi T, El-Salhy M. Changes in small intestinal chromogranin A-immunoreactive cell densities in patients with irritable bowel syndrome after receiving dietary guidance. Int J Mol Med 2016; 37:1247-53. [PMID: 26987104 PMCID: PMC4829142 DOI: 10.3892/ijmm.2016.2523] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/17/2016] [Indexed: 12/12/2022] Open
Abstract
Chromogranin A (CgA) is a common marker for enteroendocrine cells in the gut, and CgA-immunoreactive cell densities are abnormal in patients with irritable bowel syndrome (IBS). The majority of patients with IBS report that their symptoms develop after consuming certain foodstuffs. In the present study, we investigated the effects of dietary guidance on the total enteroendocrine cell densities in the small intestine, as detected by CgA. A total of 14 patients with IBS underwent a gastroscopy with duodenal biopsies and 11 of them also underwent a colonoscopy, with biopsy samples obtained from the ileum. Fourteen control subjects were also included. Each patient received 3 sessions of dietary guidance. Gastroscopies and colonoscopies were performed on both the controls and patients with IBS (at baseline and at 3–9 months after receiving guidance). Biopsy samples obtained from the duodenum and ileum were immunostained for CgA using the avidin-biotin complex (ABC) method and were quantified using computerized image analysis. The density of CgA-immunoreactive cells in the duodenum (mean ± SEM values) in the control subjects was 235.9±31.9 cells/mm2; in the patients with IBS, the density was 36.9±9.8 and 103.7±16.9 cells/mm2 before and after they received dietary guidance, respectively (P=0.007). The density of CgA-immunoreactive cells in the ileum in the control subjects was 47.4±8.3 cells/mm2; in the patients with IBS, the density was 48.4±8.1 and 17.9±4.4 cells/mm2, before and after they received dietary guidance, respectively (P=0.0006). These data indicate that changes in CgA-immunoreactive cell densities in patients with IBS after receiving dietary guidance may reflect a change in the densities of the small intestinal enteroendocrine cells, which may contribute to an improvement in the IBS symptoms.
Collapse
Affiliation(s)
- Tarek Mazzawi
- Division of Gastroenterology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Magdy El-Salhy
- Division of Gastroenterology, Department of Medicine, Stord Hospital-Helse Fonna, Stord, Norway
| |
Collapse
|
181
|
Shanahan MA, Salem A, Fisher A, Cho CS, Leverson G, Winslow ER, Weber SM. Chromogranin A predicts survival for resected pancreatic neuroendocrine tumors. J Surg Res 2016; 201:38-43. [DOI: 10.1016/j.jss.2015.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/25/2015] [Accepted: 10/02/2015] [Indexed: 02/06/2023]
|
182
|
Salivary function impairment in type 2 Diabetes patients associated with concentration and genetic polymorphisms of chromogranin A. Clin Oral Investig 2016; 20:2083-2095. [PMID: 26750135 DOI: 10.1007/s00784-015-1705-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 12/29/2015] [Indexed: 01/17/2023]
Abstract
OBJECTIVES The purpose of this study was to evaluate the effect of type 2 diabetes mellitus (T2DM) on salivary function impairments according to glycemic control status and subsequently compare the concentration of chromogranin A (CHGA) with its genetic profile. MATERIALS AND METHODS Thirty-six patients with controlled T2DM, 36 with poorly controlled T2DM, and 38 nondiabetic subjects underwent salivary flow rate measurements by means of unstimulated labial (ULS), unstimulated whole (UWS), and stimulated whole saliva (SWS) collections. CHGA concentrations were determined in saliva and plasma with ELISA, and two CHGA polymorphisms (T-415C and Glu264Asp) were analyzed by polymerase chain reaction-restriction fragment length polymorphism. RESULTS T2DM patients presented significantly lower ULS and UWS flow rates regardless of glycemic control status compared to controls (P = 0.002 and P = 0.027, respectively). The SWS flow rate in the poorly controlled T2DM was the lowest among the groups (P = 0.026). Significantly higher plasma and salivary CHGA levels were found in T2DM groups (P = 0.019 and P < 0.001, respectively). CHGA gene variants (T-415C and Glu264Asp) revealed significant differences between diabetics and control subjects when associated with lower salivary flow and higher salivary CHGA production (P < 0.05). CONCLUSIONS T2DM causes abnormalities in the function of salivary glands. However, poorly controlled T2DM has the most influence on SWS flow rates. Our findings indicate an association between plasma and salivary CHGA levels and T2DM patients. Furthermore, the results suggest that CGHA polymorphisms might be associated with salivary gland hypofunction and higher salivary CHGA production in T2DM patients. Nevertheless, further epidemiological studies are required to elucidate this clinical implication. CLINICAL RELEVANCE Salivary impairments and high levels of CHGA are associated with T2DM patients. In addition, CGHA polymorphisms might be associated with salivary gland hypofunction and higher salivary CHGA production in T2DM patients. This could be a significant insight to establish a role for salivary CHGA as a potential clinical biomarker to T2DM.
Collapse
|
183
|
A chromogranin A ELISA absent of an apparent high-dose hook effect observed in other chromogranin A ELISAs. Clin Chim Acta 2016; 452:120-3. [DOI: 10.1016/j.cca.2015.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/06/2015] [Accepted: 11/06/2015] [Indexed: 02/03/2023]
|
184
|
Serfőző G, Horváth T, Földesi I, Rafael B, von Känel R, Keresztes M. The Monocyte-to-Lymphocyte Ratio Correlates with Psycho-Neuro-Inflammatory Factors in Patients with Stable Coronary Artery Disease. Neuroimmunomodulation 2016; 23:67-74. [PMID: 26926300 DOI: 10.1159/000443835] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/06/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Psychosocial stress and depression have been recognized as major risk factors of coronary artery disease (CAD). Although monocytes are known to be key players in atherosclerosis, monocyte-based associations with psychoneuroendocrino-immuno-inflammatory (PNI) markers have not been widely investigated in stable CAD. OBJECTIVE We examined associations between the monocyte-to-lymphocyte ratio (MLR) and key PNI markers in stable CAD. METHODS We studied 23 patients with stable CAD who completed the Beck Depression Inventory (BDI) and Rahe's Brief Stress and Coping Inventory. A white blood cell differential was performed, and levels of cortisol, chromogranin A (CgA), LL-37, interleukin-6 (IL-6) and C-reactive protein (CRP) were assayed in plasma. RESULTS Monocyte fraction, MLR and plasma CgA levels exceeded reference values, the social support score was low, and 7 patients had elevated BDI scores. In the multivariate-adjusted analysis, a higher MLR was associated with greater depressive symptom severity (r = 0.624, p < 0.01) as well as with higher concentrations of CgA (r = 0.660, p < 0.01), LL-37 (r = 0.643, p < 0.01), IL-6 (r = 0.532, p < 0.05) and CRP (r = 0.470, p < 0.05). BDI scores associated with CgA concentration (r = 0.618, p < 0.01) and CgA level correlated negatively with the social support score (r = -0.511, p < 0.05). CONCLUSIONS Our findings suggest that, in patients with stable CAD, elevated MLR may be associated with depressive symptoms, with increased neuroendocrine-sympathetic activity (marked by CgA) and inflammatory markers that are pertinent to atherosclerosis initiation and progression. The increased neuroendocrine-sympathetic activity correlated with low social support and depressive symptom severity. The MLR might serve as an easy-to-obtain and inexpensive proxy measure of an activated PNI network in stable CAD.
Collapse
Affiliation(s)
- Gyöngyi Serfőző
- Department of Biochemistry, Medical Faculty, University of Szeged, Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
185
|
Hou J, Xue X, Li J. Vasostatin-2 inhibits cell proliferation and adhesion in vascular smooth muscle cells, which are associated with the progression of atherosclerosis. Biochem Biophys Res Commun 2015; 469:948-53. [PMID: 26721428 DOI: 10.1016/j.bbrc.2015.12.097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 12/21/2015] [Indexed: 10/22/2022]
Abstract
Recently, the serum expression level of vasostatin-2 was found to be reduced and is being studied as an important indicator to assess the presence and severity of coronary artery disease; the functional properties of vasostatin-2 and its relationship with the development of atherosclerosis remains unclear. In this study, we attempted to detect the expression of vasostatin-2 and its impact on human vascular smooth muscle cells (VSMCs). Quantitative real-time PCR (qRT-PCR) and western blot were used to assess the expression level of vasostatin-2 in VSMCs between those from atherosclerosis and disease-free donors; we found that vasostatin-2 was significantly down-regulated in atherosclerosis patient tissues and cell lines. In addition, the over-expression of vasostatin-2 apparently inhibits cell proliferation and migration in VSMCs. Gain-of-function in vitro experiments further show that vasostatin-2 over-expression significantly inhibits inflammatory cytokines release in VSMCs. In addition, cell adhesion experimental analysis showed that soluble adhesion molecules (sICAM-1, sVCAM-1) had decreased expression when vasostatin-2 was over-expressed in VSMCs. Therefore, our results indicate that vasostatin-2 is an atherosclerosis-related factor that can inhibit cell proliferation, inflammatory response and cell adhesion in VSMCs. Taken together, our results indicate that vasostatin-2 could serve as a potential diagnostic biomarker and therapeutic option for human atherosclerosis in the near future.
Collapse
Affiliation(s)
- Jianghong Hou
- Department of Cardiovascular, Weinan Center Hospital, The Middle of Victory Avenue, Linwei District, Weinan City 714000, China.
| | - Xiaolin Xue
- Department of Cardiovascular, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Junnong Li
- Department of Cardiovascular, Weinan Center Hospital, The Middle of Victory Avenue, Linwei District, Weinan City 714000, China
| |
Collapse
|
186
|
Genetics meets epigenetics: Genetic variants that modulate noncoding RNA in cardiovascular diseases. J Mol Cell Cardiol 2015; 89:27-34. [DOI: 10.1016/j.yjmcc.2015.10.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 12/30/2022]
|
187
|
Impact of glycemic control on oral health status in type 2 diabetes individuals and its association with salivary and plasma levels of chromogranin A. Arch Oral Biol 2015; 62:10-9. [PMID: 26605682 DOI: 10.1016/j.archoralbio.2015.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 11/05/2015] [Accepted: 11/08/2015] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To evaluate the effect of glycemic control status in type 2 diabetes mellitus (T2DM) individuals on clinical oral health indicators and to compare the concentrations of plasma and salivary chromogranin A (CHGA) among nondiabetic subjects and T2DM patients, exploring their associations. DESIGN In this cross-sectional study, 32 patients with controlled T2DM, 31 with poorly controlled T2DM and 37 nondiabetic subjects underwent a clinical and periodontal examination. CHGA concentrations were determined in saliva and plasma with ELISA. RESULTS Poorly controlled T2DM group exhibited significantly higher mean buffering capacity, plaque index and bleeding on probing than other groups (P<0.05). No difference was found to DMFT (decayed, missed and filled teeth) index between groups. Sites with clinical attachment loss (CAL) of 4 and 5-6mm were significantly higher in both diabetic groups compared to control group (P<0.05). Poorly controlled T2DM group had significantly higher sites with CAL ≥ 7 mm than other groups (P=0.001). Significantly higher plasma and salivary CHGA levels were found in T2DM groups (P<0.05). In both diabetic groups, probing depths 5-6mm and CAL 5-6mm were associated with higher salivary CHGA concentration (P<0.05). CONCLUSIONS The findings revealed that T2DM patients were more prone to periodontal tissue damage than to caries risk. The results also provide some evidence that the degree of attachment loss deteriorates significantly with poor glycemic control in T2DM (CAL ≥ 7 mm). Moreover, the results suggest that high concentrations of salivary CHGA are associated with worse periodontal parameters and T2DM, and this could be related to the pathogenesis of both diseases.
Collapse
|
188
|
Abstract
Neuroendocrine tumors (NETs) are slow-growing neoplasms capable of storing and secreting different peptides and neuroamines. Some of these substances cause specific symptom complexes, whereas others are silent. They usually have episodic expression, and the diagnosis is often made at a late stage. Although considered rare, the incidence of NETs is increasing. For these reasons, a high index of suspicion is needed. In this article, the different clinical syndromes and the pathophysiology of each tumor as well as the new and emerging biochemical markers and imaging techniques that should be used to facilitate an early diagnosis, follow-up, and prognosis are reviewed.
Collapse
|
189
|
Teixeira-Gomes AP, Harichaux G, Gennetay D, Skipor J, Thiery JC, Labas V, Dufourny L. Photoperiod affects the cerebrospinal fluid proteome: a comparison between short day- and long day-treated ewes. Domest Anim Endocrinol 2015; 53:1-8. [PMID: 26046803 DOI: 10.1016/j.domaniend.2015.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/10/2015] [Accepted: 04/19/2015] [Indexed: 12/21/2022]
Abstract
Photoperiod is the main physical synchronizer of seasonal functions and a key factor in the modulation of molecule access to cerebrospinal fluid (CSF) in animals. Previous work has shown that photoperiod affects the transfer rate of steroids and protein hormones from blood to CSF and modulates choroid plexus tight junction protein content. We hypothesized that the CSF proteome would also be modified by photoperiod. We tested this hypothesis by comparing CSF obtained from the third ventricle of mature, ovariectomized, estradiol-replaced ewes exposed to long day length (LD) or short day length (SD). Variations in CSF protein expression between SD- or LD-treated ewes were studied in pools of CSF collected for 48 h. Proteins were precipitated, concentrated, and included in a polyacrylamide gel without protein fractionation. After in-gel tryptic digestion of total protein samples, we analyzed the resulting peptides by nanoliquid chromatography coupled with high-resolution tandem mass spectrometry (GeLC-MS/MS). Quantitative analysis was performed using 2 methods based on spectral counting and extracted ion chromatograms. Among 103 identified proteins, 41 were differentially expressed between LD and SD ewes (with P < 0.05 and at least a 1.5-fold difference). Of the 41 differentially expressed proteins, 22 were identified by both methods and 19 using extracted ion chromatograms only. Eighteen proteins were more abundant in LD ewes and 23 were more abundant in SD ewes. These proteins are involved in numerous functions including hormone transport, immune system activity, metabolism, and angiogenesis. To confirm proteomic results, 2 proteins, pigment epithelium-derived factor (PEDF) and gelsolin, for each individual sample of CSF collected under SD or LD were analyzed with Western blots. These results suggest an important photoperiod-dependent change in CSF proteome composition. Nevertheless, additional studies are required to assess the role of each protein in seasonal functions.
Collapse
Affiliation(s)
- A-P Teixeira-Gomes
- Laboratoire de Spectrométrie de Masse, Plate-forme d'Analyse Intégrative des Biomolécules, INRA, F-37380 Nouzilly, France; Unité Mixte de Recherches 1282, Infectiologie et Santé Publique, INRA, F-37380 Nouzilly, France; Université François Rabelais de Tours, F-37000 Tours, France
| | - G Harichaux
- Laboratoire de Spectrométrie de Masse, Plate-forme d'Analyse Intégrative des Biomolécules, INRA, F-37380 Nouzilly, France; Université François Rabelais de Tours, F-37000 Tours, France; Unité Mixte de Recherches 85, Physiologie de la Reproduction et des Comportements, INRA, 37380 Nouzilly, France; Unité Mixte de Recherches 7247, CNRS, 37380 Nouzilly, France; Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France
| | - D Gennetay
- Université François Rabelais de Tours, F-37000 Tours, France; Unité Mixte de Recherches 85, Physiologie de la Reproduction et des Comportements, INRA, 37380 Nouzilly, France; Unité Mixte de Recherches 7247, CNRS, 37380 Nouzilly, France; Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France
| | - J Skipor
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - J-C Thiery
- Université François Rabelais de Tours, F-37000 Tours, France; Unité Mixte de Recherches 85, Physiologie de la Reproduction et des Comportements, INRA, 37380 Nouzilly, France; Unité Mixte de Recherches 7247, CNRS, 37380 Nouzilly, France; Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France
| | - V Labas
- Laboratoire de Spectrométrie de Masse, Plate-forme d'Analyse Intégrative des Biomolécules, INRA, F-37380 Nouzilly, France; Université François Rabelais de Tours, F-37000 Tours, France; Unité Mixte de Recherches 85, Physiologie de la Reproduction et des Comportements, INRA, 37380 Nouzilly, France; Unité Mixte de Recherches 7247, CNRS, 37380 Nouzilly, France; Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France
| | - L Dufourny
- Université François Rabelais de Tours, F-37000 Tours, France; Unité Mixte de Recherches 85, Physiologie de la Reproduction et des Comportements, INRA, 37380 Nouzilly, France; Unité Mixte de Recherches 7247, CNRS, 37380 Nouzilly, France; Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France.
| |
Collapse
|
190
|
Yoo SH, Huh YH, Huh SK, Chu SY, Kim KD, Hur YS. Localization and projected role of phosphatidylinositol 4-kinases IIα and IIβ in inositol 1,4,5-trisphosphate-sensitive nucleoplasmic Ca²⁺ store vesicles. Nucleus 2015; 5:341-51. [PMID: 25482123 PMCID: PMC4152348 DOI: 10.4161/nucl.29776] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Phosphatidylinositol (PI) kinases are key molecules that participate in the phosphoinositide signaling in the cytoplasm. Despite the accumulating evidence that supports the existence and operation of independent PI signaling system in the nucleus, the exact location of the PI kinases inside the nucleus is not well defined. Here we show that PI4-kinases IIα and IIβ, which play central roles in PI(4,5)P2 synthesis and PI signaling, are localized in numerous small nucleoplasmic vesicles that function as inositol 1,4,5-trisphosphate (Ins(1,4,5)P3)-sensitive Ca(2+) stores. This is in accord with the past results that showed the localization of PI4(P)5-kinases that are essential in PI(4,5)P2 production and PI(4,5)P2 in nuclear matrix. Along with PI(4,5)P2 that also exists on the nucleoplasmic vesicle membranes, the localization of PI4-kinases IIα and IIβ in the nucleoplasmic vesicles strongly implicates the vesicles to the PI signaling as well as the Ins(1,4,5)P3-depenent Ca(2+) signaling in the nucleus. Accordingly, the nucleoplasmic vesicles indeed release Ca(2+) rapidly in response to Ins(1,4,5)P3. Further, the Ins(1,4,5)P3-induced Ca(2+) release studies suggest that PI4KIIα and IIβ are localized near the Ins(1,4,5)P3 receptor (Ins(1,4,5)P3R)/Ca(2+) channels on the Ca(2+) store vesicle membranes. In view of the widespread presence of the Ins(1,4,5)P3-dependent Ca(2+) store vesicles and the need to fine-control the nuclear Ca(2+) concentrations at multiple sites along the chromatin fibers in the nucleus, the existence of the key PI enzymes in the Ins(1,4,5)P3-dependent nucleoplasmic Ca(2+) store vesicles appears to be in perfect harmony with the physiological roles of the PI kinases in the nucleus.
Collapse
Affiliation(s)
- Seung Hyun Yoo
- a Department of Biochemistry; Inha University School of Medicine; Incheon, Korea
| | | | | | | | | | | |
Collapse
|
191
|
Kroksveen AC, Jaffe JD, Aasebø E, Barsnes H, Bjørlykke Y, Franciotta D, Keshishian H, Myhr KM, Opsahl JA, van Pesch V, Teunissen CE, Torkildsen Ø, Ulvik RJ, Vethe H, Carr SA, Berven FS. Quantitative proteomics suggests decrease in the secretogranin-1 cerebrospinal fluid levels during the disease course of multiple sclerosis. Proteomics 2015; 15:3361-9. [DOI: 10.1002/pmic.201400142] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 03/12/2015] [Accepted: 07/01/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Ann C. Kroksveen
- The KG Jebsen Centre for MS-research; Department of Clinical Medicine; University of Bergen; Bergen Norway
- Proteomics Unit (PROBE); Department of Biomedicine; University of Bergen; Bergen Norway
| | - Jacob D. Jaffe
- Broad Institute of MIT and Harvard; 7 Cambridge Center; Cambridge MA USA
| | - Elise Aasebø
- Proteomics Unit (PROBE); Department of Biomedicine; University of Bergen; Bergen Norway
| | - Harald Barsnes
- Proteomics Unit (PROBE); Department of Biomedicine; University of Bergen; Bergen Norway
- Computational Biology Unit, Department of Informatics; University of Bergen; Bergen Norway
| | - Yngvild Bjørlykke
- Proteomics Unit (PROBE); Department of Biomedicine; University of Bergen; Bergen Norway
- Department of Clinical Science; University of Bergen; Bergen Norway
| | - Diego Franciotta
- Laboratory of Neuroimmunology; “C. Mondino” National Neurological Institute; Pavia Italy
| | - Hasmik Keshishian
- Broad Institute of MIT and Harvard; 7 Cambridge Center; Cambridge MA USA
| | - Kjell-Morten Myhr
- The KG Jebsen Centre for MS-research; Department of Clinical Medicine; University of Bergen; Bergen Norway
- The Norwegian Multiple Sclerosis Competence Centre; Department of Neurology; Haukeland University Hospital; Bergen Norway
| | - Jill A. Opsahl
- The KG Jebsen Centre for MS-research; Department of Clinical Medicine; University of Bergen; Bergen Norway
- Proteomics Unit (PROBE); Department of Biomedicine; University of Bergen; Bergen Norway
| | - Vincent van Pesch
- Neurochemistry Unit; Institute of Neuroscience, Université Catholique de Louvain; Brussels Belgium
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory and Biobank; Department of Clinical Chemistry; VU University Medical Center; Amsterdam The Netherlands
| | - Øivind Torkildsen
- The KG Jebsen Centre for MS-research; Department of Clinical Medicine; University of Bergen; Bergen Norway
- The Norwegian Multiple Sclerosis Competence Centre; Department of Neurology; Haukeland University Hospital; Bergen Norway
| | - Rune J. Ulvik
- Department of Clinical Medicine; University of Bergen; Bergen Norway
- Laboratory of Clinical Biochemistry; Haukeland University Hospital; Bergen Norway
| | - Heidrun Vethe
- Proteomics Unit (PROBE); Department of Biomedicine; University of Bergen; Bergen Norway
- Department of Clinical Science; University of Bergen; Bergen Norway
| | - Steven A. Carr
- Broad Institute of MIT and Harvard; 7 Cambridge Center; Cambridge MA USA
| | - Frode S. Berven
- The KG Jebsen Centre for MS-research; Department of Clinical Medicine; University of Bergen; Bergen Norway
- Proteomics Unit (PROBE); Department of Biomedicine; University of Bergen; Bergen Norway
- The Norwegian Multiple Sclerosis Competence Centre; Department of Neurology; Haukeland University Hospital; Bergen Norway
| |
Collapse
|
192
|
Claudia R, Stefania B, Francesca A, Michele B, Claudia T, Fabio G, Massimo C, Christian L, Silvana P. Lack of relationship between the P413L chromogranin B variant and a SALS Italian cohort. Gene 2015; 568:186-9. [DOI: 10.1016/j.gene.2015.05.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/31/2015] [Accepted: 05/18/2015] [Indexed: 01/21/2023]
|
193
|
Basuroy R, Sarker D, Quaglia A, Srirajaskanthan R, Ramage J. Personalized medicine for gastroenteropancreatic neuroendocrine tumors: a distant dream? INTERNATIONAL JOURNAL OF ENDOCRINE ONCOLOGY 2015. [DOI: 10.2217/ije.15.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neuroendocrine tumors are heterogeneous cancers that can present with advanced disease. Treatment stratification is often based on limited characterization of tumor behavior from histological grade and imaging assessments. Personalized medicine strategies focus on tailoring therapy through characterization of cancer pathways and the development of biomarkers. This review article explores the current personalized medicine landscape in gastroenteropancreatic neuroendocrine tumors, from tissue and circulating biomarkers development through to tumor heterogeneity and reimbursement issues.
Collapse
Affiliation(s)
- Ron Basuroy
- ENETS Neuroendocrine Centre of Excellence, Institute of Liver studies, King's College Hospital, London, SE5 9RS, UK
| | - Debashis Sarker
- ENETS Neuroendocrine Centre of Excellence, Institute of Liver studies, King's College Hospital, London, SE5 9RS, UK
- Department of Research Oncology, Division of Cancer Studies, King's College London, Strand, WC2R 2LS, UK
| | - Alberto Quaglia
- ENETS Neuroendocrine Centre of Excellence, Institute of Liver studies, King's College Hospital, London, SE5 9RS, UK
- Histopathology Department, Institute of Liver Studies, King's College Hospital, London, SE5 9RS, UK
| | - Rajaventhan Srirajaskanthan
- ENETS Neuroendocrine Centre of Excellence, Institute of Liver studies, King's College Hospital, London, SE5 9RS, UK
- Gastroenterology Department, University Hospital Lewisham, London, SE13 6LH, UK
| | - John Ramage
- ENETS Neuroendocrine Centre of Excellence, Institute of Liver studies, King's College Hospital, London, SE5 9RS, UK
- Gastroenterology Department, Hampshire Hospitals NHS Trust, Hampshire, RG24 9NA, UK
| |
Collapse
|
194
|
Abstract
Neuroendocrine tumors (NETs) represent a heterogeneous group of diseases with varied natural history and prognosis depending upon the organ of origin and grade of aggressiveness. The most widely used biomarker to determine disease burden and monitor response to treatment is chromogranin A (CgA), but it is far from being the optimal predictive and prognostic biomarker in NETs. Biological understanding and derived treatment options for NETs have changed markedly in recent years. Over the last decade, the genomic landscape of these tumors has been extensively investigated. This has resulted in the discovery of mutations and expression anomalies in genes and pathways such as the PI3K/Akt/mTOR, DAXX/ATRX, and MEN1, which are promising predictive and prognostic biomarkers and future candidates for targeted therapies. Additionally, the study of tumor stroma and environment are one of the most promising fields for discovery of potential new targets and biomarkers.
Collapse
|
195
|
Aine M, Eriksson P, Liedberg F, Sjödahl G, Höglund M. Biological determinants of bladder cancer gene expression subtypes. Sci Rep 2015; 5:10957. [PMID: 26051783 PMCID: PMC4650643 DOI: 10.1038/srep10957] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/07/2015] [Indexed: 11/09/2022] Open
Abstract
Molecular stratification of tumors by gene expression profiling has been applied to a large number of human malignancies and holds great promise for personalized treatment. Comprehensive classification schemes for urothelial carcinoma have been proposed by three separate groups but have not previously been evaluated simultaneously in independent data. Here we map the interrelations between the proposed molecular subtypes onto the intrinsic structure of a rich independent dataset and show that subtype stratification within each scheme can be explained in terms of a set of common underlying biological processes. We highlight novel biological and genomic drivers of urothelial carcinoma molecular subtypes and show that tumors carrying genomic aberrations characteristic of distinct molecular pathways converge on a common top level phenotype corresponding to the two major molecular subtypes of non-muscle invasive disease.
Collapse
Affiliation(s)
- Mattias Aine
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Pontus Eriksson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Fredrik Liedberg
- Division of Urological Research, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Gottfrid Sjödahl
- Division of Urological Research, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Mattias Höglund
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
196
|
Öberg K. Neuroendocrine gastro-enteropancreatic tumors - from eminence based to evidence-based medicine - A Scandinavian view. Scand J Gastroenterol 2015; 50:727-39. [PMID: 25855088 DOI: 10.3109/00365521.2015.1033001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neuroendocrine tumors (NETs) comprise a heterogenous group of neoplasms with variable clinical expression and progression. The primary tumors most frequently occur in the lungs, intestine and the pancreas. The NET incidence is approximately 6.1/100,000 per year with a prevalence higher than 35/100,000 per year. A NET may be functioning with symptoms related to hormone overproduction or non-functioning, not presenting any hormone-related symptoms. From the early 1980s and onwards, Uppsala University Hospital has contributed significantly to diagnosis, just to mention immunohistochemistry, radio-immunoassays for hormones and peptides and molecular imaging. On the therapeutic side, treatments with cytotoxics as well as biologicals such as, somatostatin analogs and interferons have been evaluated. We have furthermore been involved in important phase III trials for registration of so called, new targeted agents such as, RADIANT-3 and RADIANT-2. Our group were also the first to localize the gene for MEN I on chromosome 11 locus q13. Most recent developments have been the establishments of new biomarkers such as, olfactory receptor E51E1 as well as micro-RNAs in carcinoid tumors of the intestine and lung. A new oncolytic virus, Ad-Vince, for treatment of most NETs has been developed and is ready for the clinic. Furthermore, we have been involved in establishing Nordic and international collaborations. Today, NETs is an area with rapid development and recognized by international organizations at conferences, with large attendance. The Nordic countries continue to be significant contributors to the field.
Collapse
Affiliation(s)
- Kjell Öberg
- Department of Endocrine Oncology, Uppsala University Hospital , Entrance 40, 5th floor, SE-751 85 Uppsala , Sweden
| |
Collapse
|
197
|
Non-hyperfunctioning pancreatic endocrine tumors: multimodality imaging features with histopathological correlation. ACTA ACUST UNITED AC 2015; 40:2398-410. [DOI: 10.1007/s00261-015-0458-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
198
|
Jiang W, Li X. Molecular Analysis of Inflammatory Bowel Disease: Clinically Useful Tools for Diagnosis, Response Prediction, and Monitoring of Targeted Therapy. Mol Diagn Ther 2015; 19:141-58. [DOI: 10.1007/s40291-015-0142-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
199
|
Laurens B, Constantinescu R, Freeman R, Gerhard A, Jellinger K, Jeromin A, Krismer F, Mollenhauer B, Schlossmacher MG, Shaw LM, Verbeek MM, Wenning GK, Winge K, Zhang J, Meissner WG. Fluid biomarkers in multiple system atrophy: A review of the MSA Biomarker Initiative. Neurobiol Dis 2015; 80:29-41. [PMID: 25982836 DOI: 10.1016/j.nbd.2015.05.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 04/29/2015] [Accepted: 05/08/2015] [Indexed: 01/10/2023] Open
Abstract
Despite growing research efforts, no reliable biomarker currently exists for the diagnosis and prognosis of multiple system atrophy (MSA). Such biomarkers are urgently needed to improve diagnostic accuracy, prognostic guidance and also to serve as efficacy measures or surrogates of target engagement for future clinical trials. We here review candidate fluid biomarkers for MSA and provide considerations for further developments and harmonization of standard operating procedures. A PubMed search was performed until April 24, 2015 to review the literature with regard to candidate blood and cerebrospinal fluid (CSF) biomarkers for MSA. Abstracts of 1760 studies were retrieved and screened for eligibility. The final list included 60 studies assessing fluid biomarkers in patients with MSA. Most studies have focused on alpha-synuclein, markers of axonal degeneration or catecholamines. Their results suggest that combining several CSF fluid biomarkers may be more successful than using single markers, at least for the diagnosis. Currently, the clinically most useful markers may comprise a combination of the light chain of neurofilament (which is consistently elevated in MSA compared to controls and Parkinson's disease), metabolites of the catecholamine pathway and proteins such as α-synuclein, DJ-1 and total-tau. Beyond future efforts in biomarker discovery, the harmonization of standard operating procedures will be crucial for future success.
Collapse
Affiliation(s)
- Brice Laurens
- Service de Neurologie, CHU de Bordeaux, F-33076 Bordeaux, France
| | - Radu Constantinescu
- Department of Neurology, Sahlgrenska University Hospital, 413 45 Göteborg, Sweden
| | - Roy Freeman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston
| | - Alexander Gerhard
- Institute of Brain Behaviour and Mental Heath, University of Manchester, UK
| | - Kurt Jellinger
- Institute of Clinical Neurobiology, Kenyongasse 18, A-1070 Vienna, Austria
| | | | - Florian Krismer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kassel, Germany and Department of Neuropathology, University Medical Center Goettingen, Germany
| | - Michael G Schlossmacher
- Program in Neuroscience, The Ottawa Hospital, University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| | - Leslie M Shaw
- Perelman School of Medicine, University of Pennsylvania
| | - Marcel M Verbeek
- Department of Neurology, Parkinson Center, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Laboratory Medicine, Parkinson Center, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Gregor K Wenning
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kristian Winge
- Department of Neurology, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Jing Zhang
- Department of Pathology, University of WA, Seattle, USA
| | - Wassilios G Meissner
- Service de Neurologie, CHU de Bordeaux, F-33076 Bordeaux, France; Centre de référence atrophie multisystématisée, CHU de Bordeaux, F-33076 Bordeaux, France; Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33076 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33076 Bordeaux, France.
| |
Collapse
|
200
|
Abstract
Risk prediction in patients admitted with acute decompensated heart failure (ADHF) remains a challenge. Biomarkers may improve risk prediction, which in turn may help to better inform patients regarding short-term and long-term prognosis, therapy and care. Most data on biomarkers have been derived from patient cohorts with chronic heart failure. In ADHF, currently, risk tools largely rely on common clinical and biochemical parameters. However, ADHF is not a single disease. It presents in various manners and different etiologies may underlie ADHF, which are reflected by different biomarkers. In the last decade, many studies have reported the prognostic value of these biomarkers. These studies have attempted to describe a value for statistical modeling, e.g., reclassification indices, in an effort to report incremental value over a clinical model or the "gold standard". However, the overall incremental predictive value of biomarkers has been modest compared to already existing clinical models. Natriuretic peptides, e.g., (NTpro-)BNP, are the benchmark, but head-to-head comparisons show that there are novel biomarkers with comparable prognostic value. Multimarker strategies may provide superior risk stratification. Future studies should elucidate cost-effectiveness of single or combined biomarker testing. The purpose of this review was to provide an update on current biomarkers and to identify new promising biomarkers than can be used in prognostication of acute heart failure.
Collapse
|