151
|
Abstract
Mathematically modelling changes in HCV RNA levels measured in patients who receive antiviral therapy has yielded many insights into the pathogenesis and effects of treatment on the virus. By determining how rapidly HCV is cleared when viral replication is interrupted by a therapy, one can deduce how rapidly the virus is produced in patients before treatment. This knowledge, coupled with estimates of the HCV mutation rate, enables one to estimate the frequency with which drug resistant variants arise. Modelling HCV also permits the deduction of the effectiveness of an antiviral agent at blocking HCV replication from the magnitude of the initial viral decline. One can also estimate the lifespan of an HCV-infected cell from the slope of the subsequent viral decline and determine the duration of therapy needed to cure infection. The original understanding of HCV RNA decline under interferon-based therapies obtained by modelling needed to be revised in order to interpret the HCV RNA decline kinetics seen when using direct-acting antiviral agents (DAAs). There also exist unresolved issues involving understanding therapies with combinations of DAAs, such as the presence of detectable HCV RNA at the end of therapy in patients who nonetheless have a sustained virologic response.
Collapse
Affiliation(s)
- Alan S Perelson
- Theoretical Biology and Biophysics, MS-K710, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Jeremie Guedj
- INSERM, IAME, UMR 1137, 16 Rue Henri Huchard, F-75018 Paris, France
| |
Collapse
|
152
|
McCormack PL. Daclatasvir: a review of its use in adult patients with chronic hepatitis C virus infection. Drugs 2015; 75:515-24. [PMID: 25721433 DOI: 10.1007/s40265-015-0362-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Daclatasvir (Daklinza®) is an inhibitor of hepatitis C virus (HCV) NS5A protein. It is a new, oral, direct-acting antiviral with potent pangenotypic activity. This article provides a narrative review of the efficacy and tolerability of daclatasvir in combination with other agents in the treatment of patients with chronic HCV infection and summarizes its pharmacological properties. Since daclatasvir has a different mechanism of action to other current direct-acting antivirals, it provides additive or synergistic antiviral activity when used in combination. It produces high sustained virological response rates when used in combination with peginterferon-α plus ribavirin in patients chronically infected with HCV genotypes 1-4, and provides even higher response rates when used in an interferon-free, all-oral combination with sofosbuvir, with or without ribavirin. Daclatasvir has a moderately high genetic barrier to resistance, is effective during short-term treatment over 12 weeks and has a tolerability profile similar to that of placebo. In conclusion, daclatasvir is a highly effective and well tolerated, oral, once-daily, direct-acting antiviral for use in combination therapy in adult patients chronically infected with HCV.
Collapse
Affiliation(s)
- Paul L McCormack
- Springer, Private Bag 65901, Mairangi Bay, 0754, Auckland, New Zealand,
| |
Collapse
|
153
|
Graw F, Martin DN, Perelson AS, Uprichard SL, Dahari H. Quantification of Hepatitis C Virus Cell-to-Cell Spread Using a Stochastic Modeling Approach. J Virol 2015; 89:6551-61. [PMID: 25833046 PMCID: PMC4468510 DOI: 10.1128/jvi.00016-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/24/2015] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED It has been proposed that viral cell-to-cell transmission plays a role in establishing and maintaining chronic infections. Thus, understanding the mechanisms and kinetics of cell-to-cell spread is fundamental to elucidating the dynamics of infection and may provide insight into factors that determine chronicity. Because hepatitis C virus (HCV) spreads from cell to cell and has a chronicity rate of up to 80% in exposed individuals, we examined the dynamics of HCV cell-to-cell spread in vitro and quantified the effect of inhibiting individual host factors. Using a multidisciplinary approach, we performed HCV spread assays and assessed the appropriateness of different stochastic models for describing HCV focus expansion. To evaluate the effect of blocking specific host cell factors on HCV cell-to-cell transmission, assays were performed in the presence of blocking antibodies and/or small-molecule inhibitors targeting different cellular HCV entry factors. In all experiments, HCV-positive cells were identified by immunohistochemical staining and the number of HCV-positive cells per focus was assessed to determine focus size. We found that HCV focus expansion can best be explained by mathematical models assuming focus size-dependent growth. Consistent with previous reports suggesting that some factors impact HCV cell-to-cell spread to different extents, modeling results estimate a hierarchy of efficacies for blocking HCV cell-to-cell spread when targeting different host factors (e.g., CLDN1 > NPC1L1 > TfR1). This approach can be adapted to describe focus expansion dynamics under a variety of experimental conditions as a means to quantify cell-to-cell transmission and assess the impact of cellular factors, viral factors, and antivirals. IMPORTANCE The ability of viruses to efficiently spread by direct cell-to-cell transmission is thought to play an important role in the establishment and maintenance of viral persistence. As such, elucidating the dynamics of cell-to-cell spread and quantifying the effect of blocking the factors involved has important implications for the design of potent antiviral strategies and controlling viral escape. Mathematical modeling has been widely used to understand HCV infection dynamics and treatment response; however, these models typically assume only cell-free virus infection mechanisms. Here, we used stochastic models describing focus expansion as a means to understand and quantify the dynamics of HCV cell-to-cell spread in vitro and determined the degree to which cell-to-cell spread is reduced when individual HCV entry factors are blocked. The results demonstrate the ability of this approach to recapitulate and quantify cell-to-cell transmission, as well as the impact of specific factors and potential antivirals.
Collapse
Affiliation(s)
- Frederik Graw
- Center for Modeling and Simulation in the Biosciences, BioQuant Center, Heidelberg University, Heidelberg, Germany
| | - Danyelle N Martin
- Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, Illinois, USA
| | - Alan S Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Susan L Uprichard
- Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, Illinois, USA Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, Illinois, USA
| | - Harel Dahari
- Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, Illinois, USA Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| |
Collapse
|
154
|
Ke R, Loverdo C, Qi H, Sun R, Lloyd-Smith JO. Rational Design and Adaptive Management of Combination Therapies for Hepatitis C Virus Infection. PLoS Comput Biol 2015; 11:e1004040. [PMID: 26125950 PMCID: PMC4488346 DOI: 10.1371/journal.pcbi.1004040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 11/13/2014] [Indexed: 12/17/2022] Open
Abstract
Recent discoveries of direct acting antivirals against Hepatitis C virus (HCV) have raised hopes of effective treatment via combination therapies. Yet rapid evolution and high diversity of HCV populations, combined with the reality of suboptimal treatment adherence, make drug resistance a clinical and public health concern. We develop a general model incorporating viral dynamics and pharmacokinetics/ pharmacodynamics to assess how suboptimal adherence affects resistance development and clinical outcomes. We derive design principles and adaptive treatment strategies, identifying a high-risk period when missing doses is particularly risky for de novo resistance, and quantifying the number of additional doses needed to compensate when doses are missed. Using data from large-scale resistance assays, we demonstrate that the risk of resistance can be reduced substantially by applying these principles to a combination therapy of daclatasvir and asunaprevir. By providing a mechanistic framework to link patient characteristics to the risk of resistance, these findings show the potential of rational treatment design.
Collapse
Affiliation(s)
- Ruian Ke
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail: (RK); (JOLS)
| | - Claude Loverdo
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, United States of America
- CNRS/UPMC Univ Paris 06, UMR 8237, Laboratoire Jean Perrin LJP, Paris, France
| | - Hangfei Qi
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California, United States of America
- The Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
- Zhejiang University, Hangzhou, China
| | - James O. Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, United States of America
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (RK); (JOLS)
| |
Collapse
|
155
|
Resistance analysis of baseline and treatment-emergent variants in hepatitis C virus genotype 1 in the AVIATOR study with paritaprevir-ritonavir, ombitasvir, and dasabuvir. Antimicrob Agents Chemother 2015; 59:5445-54. [PMID: 26100711 PMCID: PMC4538512 DOI: 10.1128/aac.00998-15] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 06/16/2015] [Indexed: 12/14/2022] Open
Abstract
AVIATOR, a phase 2 clinical trial, evaluated ritonavir-boosted paritaprevir (a protease inhibitor), ombitasvir (an NS5A inhibitor), and dasabuvir (a nonnucleoside polymerase inhibitor) (the three-drug [3D] regimen) with or without ribavirin (RBV) for 8, 12, or 24 weeks in 406 HCV genotype 1 (GT1)-infected patients. The rate of sustained virologic response 24 weeks after treatment ranged from 88% to 100% across the arms of the 3D regimen with or without RBV; 20 GT1a-infected patients and 1 GT1b-infected patient experienced virologic failure (5.2%). Baseline resistance-conferring variants in NS3 were rare. M28V in GT1a and Y93H in GT1b were the most prevalent preexisting variants in NS5A, and C316N in GT1b and S556G in both GT1a and GT1b were the most prevalent variants in NS5B. Interestingly, all the GT1a sequences encoding M28V in NS5A were from the United States, while GT1b sequences encoding C316N and S556G in NS5B were predominant in the European Union. Variants preexisting at baseline had no significant impact on treatment outcome. The most prevalent treatment-emergent resistance-associated variants (RAVs) in GT1a were R155K and D168V in NS3, M28T and Q30R in NS5A, and S556G in NS5B. The single GT1b-infected patient experiencing virologic failure had no RAVs in any target. A paritaprevir-ritonavir dose of 150/100 mg was more efficacious in suppressing R155K in NS3 than a 100/100-mg dose. In patients who failed after receiving 12 or more weeks of treatment, RAVs were selected in all 3 targets, while most patients who relapsed after 8 weeks of treatment did so without any detectable RAVs. Results from this study guided the selection of the optimal treatment regimen, treatment duration, and paritaprevir dose for further development of the 3D regimen. (This study has been registered at ClinicalTrials.gov under registration number NCT01464827.)
Collapse
|
156
|
Balagopal A, Thio CL. Editorial Commentary: Another Call to Cure Hepatitis B. Clin Infect Dis 2015; 61:1307-9. [PMID: 26082512 DOI: 10.1093/cid/civ475] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/07/2015] [Indexed: 01/15/2023] Open
Affiliation(s)
- Ashwin Balagopal
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Chloe L Thio
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
157
|
Guedj J, Canini L, Cotler S, Dahari H. Reply: To PMID 25098971. Hepatology 2015; 61:2118-9. [PMID: 25363327 PMCID: PMC4739520 DOI: 10.1002/hep.27594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Jeremie Guedj
- IAME, UMR 1137, INSERM, Paris, France
- IAME, UMR 1137, Université Paris 7 Diderot, Sorbonne Paris Cité, Paris, France
| | - Laetitia Canini
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, IL
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Scott Cotler
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, IL
| | - Harel Dahari
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, IL
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM
| |
Collapse
|
158
|
A SPECIAL MEETING REVIEW EDITION: Advances in the Treatment of Hepatitis C Virus Infection From EASL 2015: The 50th Annual Meeting of the European Association for the Study of the Liver • April 22-26, 2015 • Vienna, AustriaSpecial Reporting on:• Daclatasvir, Sofosbuvir, and Ribavirin Combination for HCV Patients With Advanced Cirrhosis or Posttransplant Recurrence: Phase 3 ALLY-1 Study• Efficacy and Safety of Grazoprevir and Elbasvir in Hepatitis C Genotype 1-Infected Patients With Child-Pugh Class B Cirrhosis (C-SALT Part A)• Ledipasvir/Sofosbuvir With Ribavirin Is Safe and Efficacious in Decompensated and Post Liver Transplantation Patients With HCV Infection: Preliminary Results of the Prospective SOLAR 2 Trial• Retreatment of Patients Who Failed 8 or 12 Weeks of Ledipasvir/Sofosbuvir-Based Regimens With Ledipasvir/Sofosbuvir for 24 Weeks• Sofosbuvir + Peginterferon/Ribavirin for 12 Weeks Vs Sofosbuvir + Ribavirin for 16 or 24 Weeks in Genotype 3 HCV Infected Patients and Treatment-Experienced Cirrhotic Patients With Genotype 2 HCV: The BOSON Study• Safety and Efficacy of the Combination Daclatasvir-Sofosbuvir in HCV Genotype 1-Mono-Infected Patients From the French Observational Cohort ANRS CO22 HEPATHER• C-SWIFT: Grazoprevir/Elbasvir + Sofosbuvir in Cirrhotic and Noncirrhotic, Treatment-Naive Patients With Hepatitis C Virus Genotype 1 Infection for Durations of 4, 6 or 8 Weeks and Genotype 3 Infection for Durations of 8 or 12 WeeksPLUS Meeting Abstract Summaries With Expert Commentary by: Steven L. Flamm, MD Chief, Liver Transplantation ProgramProfessor of Medicine and SurgeryNorthwestern University Feinberg School of MedicineChicago, Illinois. Gastroenterol Hepatol (N Y) 2015; 11:1-23. [PMID: 26504459 PMCID: PMC4617178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
|
159
|
Gamal N, Vitale G, Andreone P. Paritaprevir in patients with chronic hepatitis C genotype 1. Future Virol 2015. [DOI: 10.2217/fvl.15.34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Chronic hepatitis C is found worldwide. According to the WHO, it affects approximately 184 million patients around the globe. For the past decade, the standard-of-care treatment of chronic hepatitis C consisted of IFN-based regimens. However, IFN has its own limitations and is not always well tolerated in all patients. In addition, it yields unsatisfactory rates of virologic response especially in difficult-to-treat genotype 1 patients. Recent scientific advances led to the development of new IFN-free antiviral agents that are more effective, better tolerated and with shorter treatment duration. An all-oral regimen (paritaprevir/ritonavir and ombitasvir, copackaged with dasabuvir) has recently received the US FDA approval and the European Commission marketing authorizations for treatment of patients with chronic hepatitis C genotype 1 infection, including those with cirrhosis. In this article, we sought to review the pharmacokinetics, clinical efficacy and side-effect profile pertaining to paritaprevir-containing regimens with special emphasis on Phase III clinical trials.
Collapse
Affiliation(s)
- Nesrine Gamal
- Department of Medical & Surgical Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Giovanni Vitale
- Department of Medical & Surgical Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Pietro Andreone
- Department of Medical & Surgical Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| |
Collapse
|
160
|
Masaki T, Suzuki T. NS5A phosphorylation: its functional role in the life cycle of hepatitis C virus. Future Virol 2015. [DOI: 10.2217/fvl.15.33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
ABSTRACT Hepatitis C virus (HCV) is a major cause of liver disease. HCV RNA replicates in a membrane-associated replication complex. Nonstructural protein 5A (NS5A) is phosphorylated on multiple serine and threonine residues and exists in basally phosphorylated and hyperphosphorylated forms. To date, studies have identified several serine/threonine kinases responsible for NS5A phosphorylation. Although NS5A has no known enzymatic activity, it is a multifunctional protein required for HCV RNA replication and virion assembly. The phosphorylation status of NS5A is considered to have a significant impact on its function and the viral life cycle. Furthermore, NS5A inhibitors represent a new class of direct acting antivirals and have become a key component for effective combination therapies against HCV infection.
Collapse
Affiliation(s)
- Takahiro Masaki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Tetsuro Suzuki
- Department of Infectious Diseases, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan
| |
Collapse
|
161
|
Woot de Trixhe X, Krzyzanski W, De Ridder F, Vermeulen A. vRNA structured population model for Hepatitis C Virus dynamics. J Theor Biol 2015; 378:1-11. [PMID: 25912382 DOI: 10.1016/j.jtbi.2015.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 03/25/2015] [Accepted: 04/14/2015] [Indexed: 12/11/2022]
Abstract
Improvements in the understanding of the Hepatitis C Virus (HCV) life-cycle have led to the identification of targets and the development of drugs affecting the intracellular reproduction of the virus. These advancements have presented new modeling challenges as the classic models have focused on describing the macroscopic viral kinetics only. Our primary objective is to apply the existing theory of Physiologically Structured Population (PSP) modeling to describe dynamics of viral RNA (vRNA) in infected hepatocytes of patients receiving treatment with Direct-acting Antiviral Agents (DAA). Using vRNA as a physiological structure this work expands on previous structured population models allowing exploration of micro- and macroscopic implications of such treatments. The PSP model provides a description of vRNA distribution in the infected cells at steady state and its time evolution following treatment. The long term behavior of the model predicts viral load time courses in plasma and permits to quantify conditions for the virus eradication. Finally, we demonstrate that PSP models can account for additional structures, which are essential for the viral replication process with potentially far reaching implications in our understanding of HCV infections and treatment options.
Collapse
Affiliation(s)
- X Woot de Trixhe
- Janssen R&D, a division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | - W Krzyzanski
- University at Buffalo, Buffalo, NY 14214, United States.
| | - F De Ridder
- Janssen R&D, a division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | - A Vermeulen
- Janssen R&D, a division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium.
| |
Collapse
|
162
|
Host cell kinases and the hepatitis C virus life cycle. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1657-62. [PMID: 25896387 DOI: 10.1016/j.bbapap.2015.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) infection relies on virus-host interactions with human hepatocytes, a context in which host cell kinases play critical roles in every step of the HCV life cycle. During viral entry, cellular kinases, including EGFR, EphA2 and PKA, regulate the localization of host HCV entry factors and induce receptor complex assembly. Following virion internalization, viral genomes replicate on endoplasmic reticulum-derived membranous webs. The formation of membranous webs depends on interactions between the HCV NS5a protein and PI4KIIIα. The phosphorylation status of NS5a, regulated by PI4KIIIα, CKI and other kinases, also acts as a molecular switch to virion assembly, which takes place on lipid droplets. The formation of lipid droplets is enhanced by HCV activation of IKKα. In view of the multiple crucial steps in the viral life cycle that are mediated by host cell kinases, these enzymes also represent complementary targets for antiviral therapy. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases.
Collapse
|
163
|
Nguyen T, Guedj J. HCV Kinetic Models and Their Implications in Drug Development. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2015. [PMID: 26225247 PMCID: PMC4429577 DOI: 10.1002/psp4.28] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chronic infection with hepatitis C virus (HCV) affects about 170 million people worldwide and is a major cause of liver complications. Mathematical modeling of viral kinetics under treatment has provided insight into the viral life cycle, treatment effectiveness, and drugs' mechanisms of action. Here we review the implications of viral kinetic models at the different stages of development of anti-HCV agents.
Collapse
Affiliation(s)
- Tht Nguyen
- IAME, UMR 1137, INSERM Paris, France ; IAME, UMR 1137, Univ. Paris Diderot, Sorbonne Paris Cité Paris, France
| | - J Guedj
- IAME, UMR 1137, INSERM Paris, France ; IAME, UMR 1137, Univ. Paris Diderot, Sorbonne Paris Cité Paris, France
| |
Collapse
|
164
|
Janardhan SV, Reau NS. Should NS5A inhibitors serve as the scaffold for all-oral anti-HCV combination therapies? ACTA ACUST UNITED AC 2015; 7:11-20. [PMID: 25926761 PMCID: PMC4403691 DOI: 10.2147/hmer.s79584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chronic hepatitis C virus (HCV) infection represents a global health problem that affects up to 130–150 million people worldwide. The HCV treatment landscape has been transformed recently by the introduction of direct-acting antiviral (DAA) agents that target viral proteins, including the NS3 protease, the NS5B polymerase, and the NS5A protein. Treatment with multiple DAAs in combination has been shown to result in high rates of sustained virologic response, without the need for pegylated interferon, and a shorter duration of therapy compared with interferon-based regimens; however, the optimal combination of DAAs has yet to be determined. The class of NS5A inhibitors has picomolar potency with pangenotypic activity, and recent clinical studies have shown these inhibitors to be an important component of DAA combination regimens. This review discusses the rational design of an optimal anti-HCV DAA cocktail, with a focus on the role of NS5A in the HCV life cycle, the attributes of the NS5A class of inhibitors, and the potential for NS5A inhibitors to act as a scaffold for DAA-only treatment regimens.
Collapse
Affiliation(s)
- Sujit V Janardhan
- Center for Liver Diseases, Section of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Nancy S Reau
- Center for Liver Diseases, Section of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
165
|
Abstract
The carbamate group is a key structural motif in many approved drugs and prodrugs. There is an increasing use of carbamates in medicinal chemistry and many derivatives are specifically designed to make drug-target interactions through their carbamate moiety. In this Perspective, we present properties and stabilities of carbamates, reagents and chemical methodologies for the synthesis of carbamates, and recent applications of carbamates in drug design and medicinal chemistry.
Collapse
Affiliation(s)
- Arun K. Ghosh
- Department of Chemistry and
Department of Medicinal Chemistry, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Margherita Brindisi
- Department of Chemistry and
Department of Medicinal Chemistry, Purdue
University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
166
|
Nguyen VK, Binder SC, Boianelli A, Meyer-Hermann M, Hernandez-Vargas EA. Ebola virus infection modeling and identifiability problems. Front Microbiol 2015; 6:257. [PMID: 25914675 PMCID: PMC4391033 DOI: 10.3389/fmicb.2015.00257] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/16/2015] [Indexed: 12/11/2022] Open
Abstract
The recent outbreaks of Ebola virus (EBOV) infections have underlined the impact of the virus as a major threat for human health. Due to the high biosafety classification of EBOV (level 4), basic research is very limited. Therefore, the development of new avenues of thinking to advance quantitative comprehension of the virus and its interaction with the host cells is urgently needed to tackle this lethal disease. Mathematical modeling of the EBOV dynamics can be instrumental to interpret Ebola infection kinetics on quantitative grounds. To the best of our knowledge, a mathematical modeling approach to unravel the interaction between EBOV and the host cells is still missing. In this paper, a mathematical model based on differential equations is used to represent the basic interactions between EBOV and wild-type Vero cells in vitro. Parameter sets that represent infectivity of pathogens are estimated for EBOV infection and compared with influenza virus infection kinetics. The average infecting time of wild-type Vero cells by EBOV is slower than in influenza infection. Simulation results suggest that the slow infecting time of EBOV could be compensated by its efficient replication. This study reveals several identifiability problems and what kind of experiments are necessary to advance the quantification of EBOV infection. A first mathematical approach of EBOV dynamics and the estimation of standard parameters in viral infections kinetics is the key contribution of this work, paving the way for future modeling works on EBOV infection.
Collapse
Affiliation(s)
- Van Kinh Nguyen
- Systems Medicine of Infectious Diseases, Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research Braunschweig, Germany
| | - Sebastian C Binder
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research Braunschweig, Germany
| | - Alessandro Boianelli
- Systems Medicine of Infectious Diseases, Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research Braunschweig, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research Braunschweig, Germany ; Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig Braunschweig, Germany
| | - Esteban A Hernandez-Vargas
- Systems Medicine of Infectious Diseases, Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research Braunschweig, Germany
| |
Collapse
|
167
|
Kwon HJ, Xing W, Chan K, Niedziela-Majka A, Brendza KM, Kirschberg T, Kato D, Link JO, Cheng G, Liu X, Sakowicz R. Direct binding of ledipasvir to HCV NS5A: mechanism of resistance to an HCV antiviral agent. PLoS One 2015; 10:e0122844. [PMID: 25856426 PMCID: PMC4391872 DOI: 10.1371/journal.pone.0122844] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/19/2015] [Indexed: 01/01/2023] Open
Abstract
Ledipasvir, a direct acting antiviral agent (DAA) targeting the Hepatitis C Virus NS5A protein, exhibits picomolar activity in replicon cells. While its mechanism of action is unclear, mutations that confer resistance to ledipasvir in HCV replicon cells are located in NS5A, suggesting that NS5A is the direct target of ledipasvir. To date co-precipitation and cross-linking experiments in replicon or NS5A transfected cells have not conclusively shown a direct, specific interaction between NS5A and ledipasvir. Using recombinant, full length NS5A, we show that ledipasvir binds directly, with high affinity and specificity, to NS5A. Ledipasvir binding to recombinant NS5A is saturable with a dissociation constant in the low nanomolar range. A mutant form of NS5A (Y93H) that confers resistance to ledipasvir shows diminished binding to ledipasvir. The current study shows that ledipasvir inhibits NS5A through direct binding and that resistance to ledipasvir is the result of a reduction in binding affinity to NS5A mutants.
Collapse
Affiliation(s)
- Hyock Joo Kwon
- Gilead Sciences, Inc., Foster City, California, United States of America
- * E-mail:
| | - Weimei Xing
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Katie Chan
- Gilead Sciences, Inc., Foster City, California, United States of America
| | | | | | | | - Darryl Kato
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - John O. Link
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Guofeng Cheng
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Xiaohong Liu
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Roman Sakowicz
- Gilead Sciences, Inc., Foster City, California, United States of America
| |
Collapse
|
168
|
Fast hepatitis C virus RNA elimination and NS5A redistribution by NS5A inhibitors studied by a multiplex assay approach. Antimicrob Agents Chemother 2015; 59:3482-92. [PMID: 25845863 DOI: 10.1128/aac.00223-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/27/2015] [Indexed: 12/18/2022] Open
Abstract
While earlier therapeutic strategies for the treatment of hepatitis C virus (HCV) infection relied exclusively on interferon (IFN) and ribavirin (RBV), four direct-acting antiviral agents (DAAs) have now been approved, aiming for an interferon-free strategy with a short treatment duration and fewer side effects. To facilitate studies on the mechanism of action (MOA) and efficacy of DAAs, we established a multiplex assay approach, which employs flow cytometry, a Gaussia luciferase reporter system, Western blot analysis, reverse transcription-quantitative PCR (RT-qPCR), a limited dilution assay (50% tissue culture infectious dose [TCID50]), and an image profiling assay that follows the NS5A redistribution in response to drug treatment. We used this approach to compare the relative potency of various DAAs and the kinetics of their antiviral effects as a potential preclinical measure of their potential clinical utility. We evaluated the NS5A inhibitors ledipasvir (LDV) and daclatasvir (DCV), the NS3/4A inhibitor danoprevir (DNV), and the NS5B inhibitor sofosbuvir (SOF). In terms of kinetics, our data demonstrate that the NS5A inhibitor LDV, followed closely by DCV, has the fastest effect on suppression of viral proteins and RNA and on redistribution of NS5A. In terms of MOA, LDV has a more pronounced effect than DCV on the viral replication, assembly, and infectivity of released virus. Our approach can be used to facilitate the study of the biological processes involved in HCV replication and help identify optimal drug combinations.
Collapse
|
169
|
Cappuccio A, Tieri P, Castiglione F. Multiscale modelling in immunology: a review. Brief Bioinform 2015; 17:408-18. [PMID: 25810307 DOI: 10.1093/bib/bbv012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/30/2015] [Indexed: 01/26/2023] Open
Abstract
One of the greatest challenges in biomedicine is to get a unified view of observations made from the molecular up to the organism scale. Towards this goal, multiscale models have been highly instrumental in contexts such as the cardiovascular field, angiogenesis, neurosciences and tumour biology. More recently, such models are becoming an increasingly important resource to address immunological questions as well. Systematic mining of the literature in multiscale modelling led us to identify three main fields of immunological applications: host-virus interactions, inflammatory diseases and their treatment and development of multiscale simulation platforms for immunological research and for educational purposes. Here, we review the current developments in these directions, which illustrate that multiscale models can consistently integrate immunological data generated at several scales, and can be used to describe and optimize therapeutic treatments of complex immune diseases.
Collapse
Affiliation(s)
- Antonio Cappuccio
- Laboratory of Integrative biology of human dendritic cells and T cells, U932 Immunity and cancer, Institut Curie, 26 Rue d`Ulm, 75005 Paris, France
| | - Paolo Tieri
- Institute for Applied Mathematics (IAC), National Research Council of Italy (CNR), Via dei Taurini 19, 00185 Rome, Italy
| | - Filippo Castiglione
- Institute for Applied Mathematics (IAC), National Research Council of Italy (CNR), Via dei Taurini 19, 00185 Rome, Italy
| |
Collapse
|
170
|
Kohli A, Osinusi A, Sims Z, Nelson A, Meissner EG, Barrett LL, Bon D, Marti MM, Silk R, Kotb C, Gross C, Jolley TA, Sidharthan S, Petersen T, Townsend K, Egerson D, Kapoor R, Spurlin E, Sneller M, Proschan M, Herrmann E, Kwan R, Teferi G, Talwani R, Diaz G, Kleiner DE, Wood BJ, Chavez J, Abbott S, Symonds WT, Subramanian GM, Pang PS, McHutchison J, Polis MA, Fauci AS, Masur H, Kottilil S. Virological response after 6 week triple-drug regimens for hepatitis C: a proof-of-concept phase 2A cohort study. Lancet 2015; 385:1107-13. [PMID: 25591505 PMCID: PMC4427052 DOI: 10.1016/s0140-6736(14)61228-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Direct-acting antiviral drugs have a high cure rate and favourable tolerability for patients with hepatitis C virus (HCV). Shorter courses could improve affordability and adherence. Sofosbuvir and ledipasvir with ribavirin have high efficacy when taken for 8 weeks but not for 6 weeks. We assessed whether the addition of a third direct-acting antiviral drug to sofosbuvir and ledipasvir would allow a shorter treatment duration. METHODS In this single-centre, open-label, phase 2A trial, we sequentially enrolled treatment-naive patients with HCV genotype 1 infection into three treatment groups: 12 weeks of sofosbuvir and ledipasvir; 6 weeks of sofosbuvir, ledipasvir, and GS-9669; or 6 weeks of sofosbuvir, ledipasvir, and GS-9451. Patients and investigators were not masked to treatment assignment. The primary endpoint was the propotion of patients with sustained viral response at 12 weeks after treatment completion (SVR12), assessed by serum HCV RNA concentrations lower than 43 IU/mL (the lower limit of quantification). We did an intention-to-treat analysis for the primary endpoint and adverse events. This study is registered with ClinicalTrials.gov, number NCT01805882. FINDINGS Between Jan 11, 2013, and Dec 17, 2013, we enrolled 60 patients, and sequentially assigned them into three groups of 20. We noted an SVR12 in all 20 patients (100%, 95% CI 83-100) allocated to sofosbuvir and ledipasvir for 12 weeks; in 19 (95%, 75-100) of the 20 patients allocated to sofosbuvir, ledipasvir, and GS-9669 for 6 weeks (one patient relapsed 2 weeks after completion of treatment); and in 19 (95%, 75-100%) of the 20 patients allocated to sofosbuvir, ledipasvir, and GS-9451 for 6 weeks (one patient was lost to follow-up after reaching sustained viral response at 4 weeks). Most adverse events were mild and no patients discontinued treatment. Two serious adverse events occurred (pain after a post-treatment liver biopsy and vertigo), both unrelated to study drugs. INTERPRETATION In this small proof-of-concept study, two different three-drug regimens that were given for 6 weeks resulted in high cure rates for HCV infection with excellent tolerability. Addition of a third potent direct-acting antiviral drug can reduce the duration of treatment required to achieve sustained viral response in patients with chronic HCV genotype 1 infection without cirrhosis. FUNDING National Institute of Allergy and Infectious Diseases (NIAID), National Cancer Institute and Clinical Center Intramural Program, German Research Foundation, National Institutes of Health, Gilead Sciences.
Collapse
Affiliation(s)
- Anita Kohli
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA; Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Anuoluwapo Osinusi
- Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA; Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Zayani Sims
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Amy Nelson
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, MD, USA
| | - Eric G Meissner
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, MD, USA
| | - Lisa L Barrett
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, MD, USA; Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Dimitra Bon
- Institute of Biostatistics and Mathematical Modeling, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Miriam M Marti
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, MD, USA
| | - Rachel Silk
- Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Colleen Kotb
- Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Chloe Gross
- Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Tim A Jolley
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, MD, USA
| | - Sreetha Sidharthan
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Tess Petersen
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Kerry Townsend
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, MD, USA
| | - D'Andrea Egerson
- Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Rama Kapoor
- Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Emily Spurlin
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, MD, USA
| | - Michael Sneller
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, MD, USA
| | - Michael Proschan
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, MD, USA
| | - Eva Herrmann
- Institute of Biostatistics and Mathematical Modeling, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Richard Kwan
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, MD, USA
| | | | - Rohit Talwani
- Division of Infectious Diseases, Institute of Human Virology, University of Maryland, MD, USA
| | - Gabbie Diaz
- Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA; The National Cancer Institute, National Institutes of Health, MD, USA
| | | | - Brad J Wood
- Center for Interventional Oncology, Radiology and Imaging Sciences, NIH Clinical Center and National Cancer Institute, MD, USA
| | | | | | | | | | | | | | - Michael A Polis
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, MD, USA
| | - Anthony S Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, MD, USA
| | - Henry Masur
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Shyam Kottilil
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, MD, USA.
| |
Collapse
|
171
|
Protease Inhibitors Block Multiple Functions of the NS3/4A Protease-Helicase during the Hepatitis C Virus Life Cycle. J Virol 2015; 89:5362-70. [PMID: 25740995 DOI: 10.1128/jvi.03188-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/23/2015] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Hepatitis C virus (HCV) NS3 is a multifunctional protein composed of a protease domain and a helicase domain linked by a flexible linker. Protease activity is required to generate viral nonstructural (NS) proteins involved in RNA replication. Helicase activity is required for RNA replication, and genetic evidence implicates the helicase domain in virus assembly. Binding of protease inhibitors (PIs) to the protease active site blocks NS3-dependent polyprotein processing but might impact other steps of the virus life cycle. Kinetic analyses of antiviral suppression of cell culture-infectious genotype 1a strain H77S.3 were performed using assays that measure different readouts of the viral life cycle. In addition to the active-site PI telaprevir, we examined an allosteric protease-helicase inhibitor (APHI) that binds a site in the interdomain interface. By measuring nucleotide incorporation into HCV genomes, we found that telaprevir inhibits RNA synthesis as early as 12 h at high but clinically relevant concentrations. Immunoblot analyses showed that NS5B abundance was not reduced until after 12 h, suggesting that telaprevir exerts a direct effect on RNA synthesis. In contrast, the APHI could partially inhibit RNA synthesis, suggesting that the allosteric site is not always available during RNA synthesis. The APHI and active-site PI were both able to block virus assembly soon (<12 h) after drug treatment, suggesting that they rapidly engage with and block a pool of NS3 involved in assembly. In conclusion, PIs and APHIs can block NS3 functions in RNA synthesis and virus assembly, in addition to inhibiting polyprotein processing. IMPORTANCE The NS3/4A protease of hepatitis C virus (HCV) is an important antiviral target. Currently, three PIs have been approved for therapy of chronic hepatitis C, and several others are in development. NS3-dependent cleavage of the HCV polyprotein is required to generate the mature nonstructural proteins that form the viral replicase. Inhibition of protease activity can block RNA replication by preventing expression of mature replicase components. Like many viral proteins, NS3 is multifunctional, but how PIs affect stages of the HCV life cycle beyond polyprotein processing has not been well studied. Using cell-based assays, we show here that PIs can directly inhibit viral RNA synthesis and also block a late stage in virus assembly/maturation at clinically relevant concentrations.
Collapse
|
172
|
Jardim ACG, Igloi Z, Shimizu JF, Santos VAFFM, Felippe LG, Mazzeu BF, Amako Y, Furlan M, Harris M, Rahal P. Natural compounds isolated from Brazilian plants are potent inhibitors of hepatitis C virus replication in vitro. Antiviral Res 2015; 115:39-47. [PMID: 25557602 PMCID: PMC4329992 DOI: 10.1016/j.antiviral.2014.12.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/27/2014] [Accepted: 12/23/2014] [Indexed: 01/22/2023]
Abstract
Compounds extracted from plants can provide an alternative approach to new therapies. They present characteristics such as high chemical diversity, lower cost of production and milder or inexistent side effects compared with conventional treatment. The Brazilian flora represents a vast, largely untapped, resource of potential antiviral compounds. In this study, we investigate the antiviral effects of a panel of natural compounds isolated from Brazilian plants species on hepatitis C virus (HCV) genome replication. To do this we used firefly luciferase-based HCV sub-genomic replicons of genotypes 2a (JFH-1), 1b and 3a and the compounds were assessed for their effects on both HCV replication and cellular toxicity. Initial screening of compounds was performed using the maximum non-toxic concentration and 4 compounds that exhibited a useful therapeutic index (favourable ratio of cytotoxicity to antiviral potency) were selected for extra analysis. The compounds APS (EC50=2.3μM), a natural alkaloid isolated from Maytrenus ilicifolia, and the lignans 3(∗)43 (EC50=4.0μM), 3(∗)20 (EC50=8.2μM) and 5(∗)362 (EC50=38.9μM) from Peperomia blanda dramatically inhibited HCV replication as judged by reductions in luciferase activity and HCV protein expression in both the subgenomic and infectious systems. We further show that these compounds are active against a daclatasvir resistance mutant subgenomic replicon. Consistent with inhibition of genome replication, production of infectious JFH-1 virus was significantly reduced by all 4 compounds. These data are the first description of Brazilian natural compounds possessing anti-HCV activity and further analyses are being performed in order to investigate the mode of action of those compounds.
Collapse
Affiliation(s)
- A C G Jardim
- UFU - Federal University of Uberlândia, Institute of Biomedical Science - ICBIM, Uberlândia, MG, Brazil; UNESP - São Paulo State University, Institute of Bioscience, Language and Exact Science - IBILCE, Department of Biology, São José do Rio Preto, SP, Brazil.
| | - Z Igloi
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - J F Shimizu
- UNESP - São Paulo State University, Institute of Bioscience, Language and Exact Science - IBILCE, Department of Biology, São José do Rio Preto, SP, Brazil.
| | - V A F F M Santos
- UNESP - São Paulo State University, Institute of Chemistry, Department of Organic Chemistry, Araraquara, SP, Brazil.
| | - L G Felippe
- UNESP - São Paulo State University, Institute of Chemistry, Department of Organic Chemistry, Araraquara, SP, Brazil.
| | - B F Mazzeu
- UNESP - São Paulo State University, Institute of Bioscience, Language and Exact Science - IBILCE, Department of Biology, São José do Rio Preto, SP, Brazil.
| | - Y Amako
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | - M Furlan
- UNESP - São Paulo State University, Institute of Chemistry, Department of Organic Chemistry, Araraquara, SP, Brazil.
| | - M Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - P Rahal
- UNESP - São Paulo State University, Institute of Bioscience, Language and Exact Science - IBILCE, Department of Biology, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
173
|
Dissecting the roles of the 5' exoribonucleases Xrn1 and Xrn2 in restricting hepatitis C virus replication. J Virol 2015; 89:4857-65. [PMID: 25673723 DOI: 10.1128/jvi.03692-14] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/05/2015] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED The replication of hepatitis C virus (HCV) is uniquely dependent on a host microRNA, miR-122. Previous studies using genotype 1a H77S.3 virus demonstrated that miR-122 acts in part by protecting the RNA genome from 5' decay mediated by the cytoplasmic 5' exoribonuclease, Xrn1. However, this finding has been challenged by a recent report suggesting that a predominantly nuclear exoribonuclease, Xrn2, mediates the degradation of genotype 2a JFH1 RNA. Here, we dissect the roles of these two 5' exoribonucleases in restricting the replication of different HCV strains and mediating the decay of HCV RNA. Small interfering RNA (siRNA) depletion experiments indicated that Xrn1 restricts replication of all HCV strains tested: JFH1, H77S.3, H77D (a robustly replicating genotype 1a variant), and HJ3-5 (a genotype 1a/2a chimeric virus). In contrast, the antiviral effects of Xrn2 were limited to JFH1 and H77D viruses. Moreover, such effects were not apparent in cells infected with a JFH1 luciferase reporter virus. Whereas Xrn1 depletion significantly slowed decay of JFH1 and HJ3-5 RNAs, Xrn2 depletion marginally enhanced the JFH1 RNA half-life and had no effect on HJ3-5 RNA decay. The positive effects of Xrn1 depletion on JFH1 replication were largely redundant and nonadditive with those of exogenous miR-122 supplementation, whereas Xrn2 depletion acted additively and thus independently of miR-122. We conclude that Xrn1 is the dominant 5' exoribonuclease mediating decay of HCV RNA and that miR-122 provides protection against it. The restriction of JFH1 and H77D replication by Xrn2 is likely indirect in nature and possibly linked to cytopathic effects of these robustly replicating viruses. IMPORTANCE HCV is a common cause of liver disease both within and outside the United States. Its replication is dependent upon a small, liver-specific noncoding RNA, miR-122. Although this requirement has been exploited for the development of an anti-miR-122 antagomir as a host-targeting antiviral, the molecular mechanisms underpinning the host factor activity of miR-122 remain incompletely defined. Conflicting reports suggest miR-122 protects the viral RNA against decay mediated by distinct cellular 5' exoribonucleases, Xrn1 and Xrn2. Here, we compare the roles of these two exoribonucleases in HCV-infected cells and confirm that Xrn1, not Xrn2, is primarily responsible for decay of RNA in cells infected with multiple virus strains. Our results clarify previously published research and add to the current understanding of the host factor requirement for miR-122.
Collapse
|
174
|
Meissner EG. Continued value in understanding viral kinetic decline during interferon-free therapy for HCV. Liver Int 2015; 35:295-6. [PMID: 25424883 DOI: 10.1111/liv.12748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Eric G Meissner
- Division of Infectious Diseases, Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
175
|
Henderson JA, Bilimoria D, Bubenik M, Cadilhac C, Cottrell KM, Dietrich E, Denis F, Ewing N, Falardeau G, Giroux S, Grey R, L’Heureux L, Liu B, Mani N, Morris M, Nicolas O, Pereira OZ, Poisson C, Govinda Rao B, Reddy TJ, Selliah S, Shawgo RS, Vaillancourt L, Wang J, Yannopoulos CG, Chauret N, Berlioz-Seux F, Chan LC, Das SK, Grillot AL, Bennani YL, Maxwell JP. Benzimidazole-containing HCV NS5A inhibitors: Effect of 4-substituted pyrrolidines in balancing genotype 1a and 1b potency. Bioorg Med Chem Lett 2015; 25:944-7. [DOI: 10.1016/j.bmcl.2014.12.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 01/05/2023]
|
176
|
Dahari H, Shteingart S, Gafanovich I, Cotler SJ, D'Amato M, Pohl RT, Weiss G, Ashkenazi YJ, Tichler T, Goldin E, Lurie Y. Sustained virological response with intravenous silibinin: individualized IFN-free therapy via real-time modelling of HCV kinetics. Liver Int 2015; 35:289-94. [PMID: 25251042 PMCID: PMC4304917 DOI: 10.1111/liv.12692] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/15/2014] [Accepted: 09/18/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Intravenous silibinin (SIL) is a potent antiviral agent against hepatitis C virus (HCV) genotype-1. In this proof of concept case-study we tested: (i) whether interferon-alfa (IFN)-free treatment with SIL plus ribavirin (RBV) can achieve sustained virological response (SVR); (ii) whether SIL is safe and feasible for prolonged duration of treatment and (iii) whether mathematical modelling of early on-treatment HCV kinetics can guide duration of therapy to achieve SVR. METHODS A 44 year-old female HCV-(genotype-1)-infected patient who developed severe psychiatric adverse events to a previous course of pegIFN+RBV, initiated combination treatment with 1200 mg/day of SIL, 1200 mg/day of RBV and 6000 u/day vitamin D. Blood samples were collected frequently till week 4, thereafter every 1-12 weeks until the end of therapy. The standard biphasic mathematical model with time-varying SIL effectiveness was used to predict the duration of therapy to achieve SVR. RESULTS Based on modelling the observed viral kinetics during the first 3 weeks of treatment, SVR was predicted to be achieved within 34 weeks of therapy. Provided with this information, the patient agreed to complete 34 weeks of treatment. IFN-free treatment with SIL+RBV was feasible, safe and achieved SVR (week-33). CONCLUSIONS We report, for the first time, the use of real-time mathematical modelling of HCV kinetics to individualize duration of IFN-free therapy and to empower a patient to participate in shared decision making regarding length of treatment. SIL-based individualized therapy provides a treatment option for patients who do not respond to or cannot receive other HCV agents and should be further validated.
Collapse
Affiliation(s)
- Harel Dahari
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, IL, USA,Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA,To whom correspondence and questions regarding mathematical modeling should be addressed: Harel Dahari, Address: Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, IL, USA; Fax: +1-708-216-6299; Tel: +1-708-216-4682;
| | - Shimon Shteingart
- Digestive Disease Institute, Share'e Zedek Medical Center, Jerusalem, Israel
| | - Inna Gafanovich
- Liver Unit, Digestive Disease Institute, Share'e Zedek Medical Center, Jerusalem, Israel
| | - Scott J. Cotler
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | | | | | - Gali Weiss
- Nursing Division, Share'e Zedek Medical Center, Jerusalem, Israel
| | | | - Thomas Tichler
- Internal medicine, Share'e Zedek Medical Center, Jerusalem, Israel
| | - Eran Goldin
- Digestive Disease Institute, Share'e Zedek Medical Center, Jerusalem, Israel
| | - Yoav Lurie
- Liver Unit, Digestive Disease Institute, Share'e Zedek Medical Center, Jerusalem, Israel,To whom correspondence and questions regarding mathematical modeling should be addressed: Harel Dahari, Address: Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, IL, USA; Fax: +1-708-216-6299; Tel: +1-708-216-4682;
| |
Collapse
|
177
|
Le D, Miller JD, Ganusov VV. Mathematical modeling provides kinetic details of the human immune response to vaccination. Front Cell Infect Microbiol 2015; 4:177. [PMID: 25621280 PMCID: PMC4288384 DOI: 10.3389/fcimb.2014.00177] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 12/04/2014] [Indexed: 02/01/2023] Open
Abstract
With major advances in experimental techniques to track antigen-specific immune responses many basic questions on the kinetics of virus-specific immunity in humans remain unanswered. To gain insights into kinetics of T and B cell responses in human volunteers we combined mathematical models and experimental data from recent studies employing vaccines against yellow fever and smallpox. Yellow fever virus-specific CD8 T cell population expanded slowly with the average doubling time of 2 days peaking 2.5 weeks post immunization. Interestingly, we found that the peak of the yellow fever-specific CD8 T cell response was determined by the rate of T cell proliferation and not by the precursor frequency of antigen-specific cells as has been suggested in several studies in mice. We also found that while the frequency of virus-specific T cells increased slowly, the slow increase could still accurately explain clearance of yellow fever virus in the blood. Our additional mathematical model described well the kinetics of virus-specific antibody-secreting cell and antibody response to vaccinia virus in vaccinated individuals suggesting that most of antibodies in 3 months post immunization were derived from the population of circulating antibody-secreting cells. Taken together, our analysis provided novel insights into mechanisms by which live vaccines induce immunity to viral infections and highlighted challenges of applying methods of mathematical modeling to the current, state-of-the-art yet limited immunological data.
Collapse
Affiliation(s)
- Dustin Le
- Department of Microbiology, University of TennesseeKnoxville, TN, USA
| | - Joseph D. Miller
- Hope Clinic of the Emory Vaccine Center, Emory University School of MedicineAtlanta, GA, USA
| | - Vitaly V. Ganusov
- Department of Microbiology, University of TennesseeKnoxville, TN, USA
- Department of Mathematics, University of TennesseeKnoxville, TN, USA
| |
Collapse
|
178
|
Chukkapalli V, Berger KL, Kelly SM, Thomas M, Deiters A, Randall G. Daclatasvir inhibits hepatitis C virus NS5A motility and hyper-accumulation of phosphoinositides. Virology 2014; 476:168-179. [PMID: 25546252 DOI: 10.1016/j.virol.2014.12.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 12/09/2014] [Indexed: 12/18/2022]
Abstract
Combinations of direct-acting antivirals (DAAs) against the hepatitis C virus (HCV) have the potential to revolutionize the HCV therapeutic regime. An integral component of DAA combination therapies is HCV NS5A inhibitors. It has previously been proposed that NS5A DAAs inhibit two functions of NS5A: RNA replication and virion assembly. In this study, we characterize the impact of a prototype NS5A DAA, daclatasvir (DCV), on HCV replication compartment formation. DCV impaired HCV replicase localization and NS5A motility. In order to characterize the mechanism behind altered HCV replicase localization, we examined the impact of DCV on the interaction of NS5A with its essential cellular cofactor, phosphatidylinositol-4-kinase III α (PI4KA). We observed that DCV does not inhibit PI4KA directly, nor does it impair early events of the NS5A-PI4KA interaction that can occur when NS5A is expressed alone. NS5A functions that are unaffected by DCV include PI4KA binding, as determined by co-immunoprecipitation, and a basal accumulation of the PI4KA product, PI4P. However, DCV impairs late steps in PI4KA activation that requires NS5A expressed in the context of the HCV polyprotein. These NS5A functions include hyper-stimulation of PI4P levels and appropriate replication compartment formation. The data are most consistent with a model wherein DCV inhibits conformational changes in the NS5A protein or protein complex formations that occur in the context of HCV polyprotein expression and stimulate PI4P hyper-accumulation and replication compartment formation.
Collapse
Affiliation(s)
- Vineela Chukkapalli
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Kristi L Berger
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Sean M Kelly
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Meryl Thomas
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Glenn Randall
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
179
|
Synthesis and evaluation of NS5A inhibitors containing diverse heteroaromatic cores. Bioorg Med Chem Lett 2014; 25:948-51. [PMID: 25577039 DOI: 10.1016/j.bmcl.2014.12.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 12/19/2022]
Abstract
Inhibitors of the HCV NS5A nonstructural protein are showing promising clinical potential in the treatment of hepatitis C when used in combination with other direct-acting antiviral agents. Current NS5A clinical candidates such as daclatasvir, ledipasvir, and ombitasvir share a common pharmacophore that features a pair of (S)-methoxycarbonylvaline capped pyrrolidines linked to various cores by amides, imidazoles and/or benzimidazoles. In this Letter, we describe the evaluation of NS5A inhibitors which contain alternative heteroaromatic replacements for these amide mimetics. The SAR knowledge gleaned in the optimization of scaffolds containing benzoxazoles was parlayed toward the identification of potent NS5A inhibitors containing other heteroaromatic replacements such as indoles and imidazopyridines.
Collapse
|
180
|
In vitro and in vivo antiviral activity and resistance profile of ombitasvir, an inhibitor of hepatitis C virus NS5A. Antimicrob Agents Chemother 2014; 59:979-87. [PMID: 25451055 DOI: 10.1128/aac.04226-14] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ombitasvir (ABT-267) is a hepatitis C virus (HCV) NS5A inhibitor with picomolar potency, pan-genotypic activity, and 50% effective concentrations (EC50s) of 0.82 to 19.3 pM against HCV genotypes 1 to 5 and 366 pM against genotype 6a. Ombitasvir retained these levels of potency against a panel of 69 genotype 1 to 6 chimeric replicons containing the NS5A gene derived from HCV-infected patients, despite the existence of natural sequence diversity within NS5A. In vitro resistance selection identified variants that conferred resistance to ombitasvir in the HCV NS5A gene at amino acid positions 28, 30, 31, 58, and 93 in genotypes 1 to 6. Ombitasvir was evaluated in vivo in a 3-day monotherapy study in 12 HCV genotype 1-infected patients at 5, 25, 50, or 200 mg dosed once daily. All patients in the study were HCV genotype 1a infected and were without preexisting resistant variants at baseline as determined by clonal sequencing. Decreases in HCV RNA up to 3.1 log10 IU/ml were observed. Resistance-associated variants at position 28, 30, or 93 in NS5A were detected in patient samples 48 hours after the first dose. Clonal sequencing analysis indicated that wild-type virus was largely suppressed by ombitasvir during 3-day monotherapy, and at doses higher than 5 mg, resistant variant M28V was also suppressed. Ombitasvir was well tolerated at all doses, and there were no serious or severe adverse events. These data support clinical development of ombitasvir in combination with inhibitors targeting HCV NS3/4A protease (ABT-450 with ritonavir) and HCV NS5B polymerase (ABT-333, dasabuvir) for the treatment of chronic HCV genotype 1 infection. (Study M12-116 is registered at ClinicalTrials.gov under registration no. NCT01181427.).
Collapse
|
181
|
Meredith LW, Farquhar MJ, Tarr AW, McKeating JA. Type I interferon rapidly restricts infectious hepatitis C virus particle genesis. Hepatology 2014; 60:1891-901. [PMID: 25066844 PMCID: PMC4265257 DOI: 10.1002/hep.27333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/24/2014] [Indexed: 12/19/2022]
Abstract
UNLABELLED Interferon-alpha (IFNα) has been used to treat chronic hepatitis C virus (HCV) infection for over 20 years with varying efficacy, depending on the infecting viral genotype. The mechanism of action of IFNα is not fully understood, but is thought to target multiple stages of the HCV lifecycle, inhibiting viral transcription and translation leading to a degradation of viral RNA and protein expression in the infected cell. IFNα induces the expression of an array of interferon-stimulated genes within minutes of receptor engagement; however, the impact of these early responses on the viral lifecycle are unknown. We demonstrate that IFNα inhibits the genesis of infectious extracellular HCV particles within 2 hours of treating infected cells, with minimal effect on the intracellular viral burden. Importantly, this short duration of IFNα treatment of infected cells significantly reduced cell-free and cell-to-cell dissemination. The secreted viral particles showed no apparent change in protein content or density, demonstrating that IFNα inhibits particle infectivity but not secretion rates. To investigate whether particles released from IFNα-treated cells have a reduced capacity to establish infection we used HCV lentiviral pseudotypes (HCVpp) and demonstrated a defect in cell entry. Using a panel of monoclonal antibodies targeting the E2 glycoprotein, we demonstrate that IFNα alters glycoprotein conformation and receptor utilization. CONCLUSION These observations show a previously unreported and rapid effect of IFNα on HCV particle infectivity that inhibits de novo infection events. Evasion of this response may be a contributing factor in whether a patient achieves early or rapid virological response, a key indicator of progression to sustained virological response or clearance of viral infection.
Collapse
Affiliation(s)
- Luke W Meredith
- Viral Hepatitis Research Group, Centre for Human Virology, University of BirminghamBirmingham, UK
| | - Michelle J Farquhar
- Viral Hepatitis Research Group, Centre for Human Virology, University of BirminghamBirmingham, UK
| | - Alexander W Tarr
- School of Molecular Medical Sciences and the Nottingham Digestive Diseases Centre Biomedical Research Unit, University of Nottingham, Queen's Medical CentreNottingham, UK
| | - Jane A McKeating
- Viral Hepatitis Research Group, Centre for Human Virology, University of BirminghamBirmingham, UK,NIHR Liver Biomedical Research Unit, University of BirminghamBirmingham, UK
| |
Collapse
|
182
|
New era for management of chronic hepatitis C virus using direct antiviral agents: A review. J Adv Res 2014; 6:301-10. [PMID: 26257927 PMCID: PMC4522579 DOI: 10.1016/j.jare.2014.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/31/2014] [Accepted: 11/11/2014] [Indexed: 12/18/2022] Open
Abstract
The pegylated interferon regimen has long been the lone effective management of chronic hepatitis C with modest response. The first appearance of protease inhibitors included boceprevir and telaprevir. However, their efficacy was limited to genotype 1. Recently, direct antiviral agents opened the gate for a real effective management of HCV, certainly after FDA approval of some compounds that further paved the way for the appearance of enormous potent direct antiviral agents that may achieve successful eradication of HCV.
Collapse
|
183
|
Preciado MV, Valva P, Escobar-Gutierrez A, Rahal P, Ruiz-Tovar K, Yamasaki L, Vazquez-Chacon C, Martinez-Guarneros A, Carpio-Pedroza JC, Fonseca-Coronado S, Cruz-Rivera M. Hepatitis C virus molecular evolution: Transmission, disease progression and antiviral therapy. World J Gastroenterol 2014; 20:15992-16013. [PMID: 25473152 PMCID: PMC4239486 DOI: 10.3748/wjg.v20.i43.15992] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/22/2014] [Accepted: 08/28/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection represents an important public health problem worldwide. Reduction of HCV morbidity and mortality is a current challenge owned to several viral and host factors. Virus molecular evolution plays an important role in HCV transmission, disease progression and therapy outcome. The high degree of genetic heterogeneity characteristic of HCV is a key element for the rapid adaptation of the intrahost viral population to different selection pressures (e.g., host immune responses and antiviral therapy). HCV molecular evolution is shaped by different mechanisms including a high mutation rate, genetic bottlenecks, genetic drift, recombination, temporal variations and compartmentalization. These evolutionary processes constantly rearrange the composition of the HCV intrahost population in a staging manner. Remarkable advances in the understanding of the molecular mechanism controlling HCV replication have facilitated the development of a plethora of direct-acting antiviral agents against HCV. As a result, superior sustained viral responses have been attained. The rapidly evolving field of anti-HCV therapy is expected to broad its landscape even further with newer, more potent antivirals, bringing us one step closer to the interferon-free era.
Collapse
|
184
|
Inferring viral dynamics in chronically HCV infected patients from the spatial distribution of infected hepatocytes. PLoS Comput Biol 2014; 10:e1003934. [PMID: 25393308 PMCID: PMC4230741 DOI: 10.1371/journal.pcbi.1003934] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 09/24/2014] [Indexed: 12/25/2022] Open
Abstract
Chronic liver infection by hepatitis C virus (HCV) is a major public health concern. Despite partly successful treatment options, several aspects of intrahepatic HCV infection dynamics are still poorly understood, including the preferred mode of viral propagation, as well as the proportion of infected hepatocytes. Answers to these questions have important implications for the development of therapeutic interventions. In this study, we present methods to analyze the spatial distribution of infected hepatocytes obtained by single cell laser capture microdissection from liver biopsy samples of patients chronically infected with HCV. By characterizing the internal structure of clusters of infected cells, we are able to evaluate hypotheses about intrahepatic infection dynamics. We found that individual clusters on biopsy samples range in size from infected cells. In addition, the HCV RNA content in a cluster declines from the cell that presumably founded the cluster to cells at the maximal cluster extension. These observations support the idea that HCV infection in the liver is seeded randomly (e.g. from the blood) and then spreads locally. Assuming that the amount of intracellular HCV RNA is a proxy for how long a cell has been infected, we estimate based on models of intracellular HCV RNA replication and accumulation that cells in clusters have been infected on average for less than a week. Further, we do not find a relationship between the cluster size and the estimated cluster expansion time. Our method represents a novel approach to make inferences about infection dynamics in solid tissues from static spatial data. Around 170 million people worldwide are chronically infected with the hepatitis C virus (HCV). Although partly successful treatment options are available, several aspects of HCV infection dynamics within the liver are still poorly understood. How many hepatocytes are infected during chronic HCV infection? How does the virus propagate, and how do innate immune responses interfere with the spread of the virus? We developed mathematical and computational methods to study liver biopsy samples of patients chronically infected with HCV that were analyzed by single cell laser capture microdissection, to infer the spatial distribution of infected cells. With these methods, we find that infected cells on biopsy sections tend to occur in clusters comprising 4–50 hepatocytes, and, based on their amount of intracellular viral RNA, that these cells have been infected for less than a week. The observed HCV RNA profile within clusters of infected cells suggests that factors such as local immune responses could have shaped cluster expansion and intracellular viral replication. Our methods can be applied to various types of infections in order to infer infection dynamics from spatial data.
Collapse
|
185
|
Issur M, Götte M. Resistance patterns associated with HCV NS5A inhibitors provide limited insight into drug binding. Viruses 2014; 6:4227-41. [PMID: 25384189 PMCID: PMC4246218 DOI: 10.3390/v6114227] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 12/13/2022] Open
Abstract
Direct-acting antivirals (DAAs) have significantly improved the treatment of infection with the hepatitis C virus. A promising class of novel antiviral agents targets the HCV NS5A protein. The high potency and broad genotypic coverage are favorable properties. NS5A inhibitors are currently assessed in advanced clinical trials in combination with viral polymerase inhibitors and/or viral protease inhibitors. However, the clinical use of NS5A inhibitors is also associated with new challenges. HCV variants with decreased susceptibility to these drugs can emerge and compromise therapy. In this review, we discuss resistance patterns in NS5A with focus prevalence and implications for inhibitor binding.
Collapse
Affiliation(s)
- Moheshwarnath Issur
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada.
| | - Matthias Götte
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
186
|
Nettles JH, Stanton RA, Broyde J, Amblard F, Zhang H, Zhou L, Shi J, McBrayer TR, Whitaker T, Coats SJ, Kohler JJ, Schinazi RF. Asymmetric binding to NS5A by daclatasvir (BMS-790052) and analogs suggests two novel modes of HCV inhibition. J Med Chem 2014; 57:10031-43. [PMID: 25365735 PMCID: PMC4266333 DOI: 10.1021/jm501291c] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Symmetric, dimeric daclatasvir (BMS-790052) is the clinical lead for a class of picomolar inhibitors of HCV replication. While specific, resistance-bearing mutations at positions 31 and 93 of domain I strongly suggest the viral NS5A as target, structural mechanism(s) for the drugs' activities and resistance remains unclear. Several previous models suggested symmetric binding modes relative to the homodimeric target; however, none can fully explain SAR details for this class. We present semiautomated workflows to model potential receptor conformations for docking. Surprisingly, ranking docked hits with our library-derived 3D-pharmacophore revealed two distinct asymmetric binding modes, at a conserved poly-proline region between 31 and 93, consistent with SAR. Interfering with protein-protein interactions at this membrane interface can explain potent inhibition of replication-complex formation, resistance, effects on lipid droplet distribution, and virion release. These detailed interaction models and proposed mechanisms of action will allow structure-based design of new NS5A directed compounds with higher barriers to HCV resistance.
Collapse
Affiliation(s)
- James H Nettles
- Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine , Atlanta, Georgia 30322, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Kumar S, Jacobson IM. Antiviral therapy with nucleotide polymerase inhibitors for chronic hepatitis C. J Hepatol 2014; 61:S91-7. [PMID: 25443349 DOI: 10.1016/j.jhep.2014.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 01/01/2023]
Abstract
The treatment of hepatitis C virus (HCV) has made significant advances with the development of new direct-acting antivirals. Nucleotide polymerase inhibitors are one class of these new medications that have been shown to be highly effective, safe and well tolerated as part of an antiviral regimen. Sofosbuvir has become the first drug in this class to be approved for clinical use, supported by results from extensive phase II and phase III clinical trials. This review will further discuss nucleotide polymerase inhibitors, including the data supporting their use as part of interferon-free HCV treatment regimens.
Collapse
Affiliation(s)
- Sonal Kumar
- Division of Gastroenterology and Hepatology, Center for the Study of Hepatitis C, Weill Cornell Medical College, New York, NY, USA.
| | - Ira M Jacobson
- Division of Gastroenterology and Hepatology, Center for the Study of Hepatitis C, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
188
|
Affiliation(s)
- Ed Gane
- New Zealand Liver Transplant Unit, Auckland City Hospital, Grafton, Auckland 1142, New Zealand; Faculty of Medicine, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
189
|
Sulkowski MS. Management of acute and chronic HCV infection in persons with HIV coinfection. J Hepatol 2014; 61:S108-19. [PMID: 25443339 DOI: 10.1016/j.jhep.2014.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/10/2014] [Accepted: 08/12/2014] [Indexed: 01/13/2023]
Abstract
Due to shared routes of transmission, acute and chronic infection with hepatitis C virus is common among persons living with HIV infection in many regions of the world. In the era of effective antiretroviral therapy, acute HCV infection has been increasingly recognized in HIV-infected persons, particularly men who have sex with men, and liver disease, including hepatocellular carcinoma, has emerged as a leading cause of morbidity and mortality in those with chronic HCV infection, particularly older adults with long-standing coinfection. Over the past decade, the foundation for the management of acute and chronic HCV infection has been interferon alfa. However, due the high burden of treatment-related side effects and low likelihood of sustained virologic response, the impact of treatment with peginterferon/ribavirin on the burden of HCV disease in has been limited. However, the anticipated availability of safe, tolerable and highly efficacious interferon-free, oral HCV direct-acting antiviral combination therapies promise to dramatically change the management of acute and chronic HCV infection in HIV-infected persons. Preliminary data from studies of such oral DAA regimens in HIV/HCV coinfected patients suggest that coinfection with HIV will not impair HCV cure with these regimens. Indeed, in the coming era of high effective oral HCV DAA treatments, the only special feature concerning treatment of acute and chronic HCV infection in HIV-infected patients may be drug interactions between the antiretroviral drugs for HIV infection and direct-acting antiviral drugs for HCV infection.
Collapse
Affiliation(s)
- Mark S Sulkowski
- Johns Hopkins University, School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
190
|
Berger C, Romero-Brey I, Radujkovic D, Terreux R, Zayas M, Paul D, Harak C, Hoppe S, Gao M, Penin F, Lohmann V, Bartenschlager R. Daclatasvir-like inhibitors of NS5A block early biogenesis of hepatitis C virus-induced membranous replication factories, independent of RNA replication. Gastroenterology 2014; 147:1094-105.e25. [PMID: 25046163 DOI: 10.1053/j.gastro.2014.07.019] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 06/21/2014] [Accepted: 07/15/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Direct-acting antivirals that target nonstructural protein 5A (NS5A), such as daclatasvir, have high potency against the hepatitis C virus (HCV). They are promising clinical candidates, yet little is known about their antiviral mechanisms. We investigated the mechanisms of daclatasvir derivatives. METHODS We used a combination of biochemical assays, in silico docking models, and high-resolution imaging to investigate inhibitor-induced changes in properties of NS5A, including its interaction with phosphatidylinositol-4 kinase IIIα and induction of the membranous web, which is the site of HCV replication. Analyses were conducted with replicons, infectious virus, and human hepatoma cells that express a HCV polyprotein. Studies included a set of daclatasvir derivatives and HCV variants with the NS5A inhibitor class-defining resistance mutation Y93H. RESULTS NS5A inhibitors did not affect NS5A stability or dimerization. A daclatasvir derivative interacted with NS5A and molecular docking studies revealed a plausible mode by which the inhibitor bound to NS5A dimers. This interaction was impaired in mutant forms of NS5A that are resistant to daclatavir, providing a possible explanation for the reduced sensitivity of the HCV variants to this drug. Potent NS5A inhibitors were found to block HCV replication by preventing formation of the membranous web, which was not linked to an inhibition of phosphatidylinositol-4 kinase IIIα. Correlative light-electron microscopy revealed unequivocally that NS5A inhibitors had no overall effect on the subcellular distribution of NS5A, but completely prevented biogenesis of the membranous web. CONCLUSIONS Highly potent inhibitors of NS5A, such as daclatasvir, block replication of HCV RNA at the stage of membranous web biogenesis-a new paradigm in antiviral therapy.
Collapse
Affiliation(s)
- Carola Berger
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Inés Romero-Brey
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Danijela Radujkovic
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Raphael Terreux
- CNRS, UMR5086, Bases Moléculaires et Structurales des Systèmes Infectieux, Institut de Biologie et Chimie des Protéines, Lyon, France; Labex Ecofect (ANR-11-LABX-0042), University of Lyon, Lyon, France; Faculté de Pharmacie (ISPB), Lyon, France
| | - Margarita Zayas
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - David Paul
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Christian Harak
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Simone Hoppe
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Min Gao
- Bristol-Myers Squibb Research and Development, Wallingford, Connecticut
| | - Francois Penin
- CNRS, UMR5086, Bases Moléculaires et Structurales des Systèmes Infectieux, Institut de Biologie et Chimie des Protéines, Lyon, France; Labex Ecofect (ANR-11-LABX-0042), University of Lyon, Lyon, France
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; German Centre for Infection Research, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
191
|
Eyre NS, Helbig KJ, Beard MR. Current and future targets of antiviral therapy in the hepatitis C virus life cycle. Future Virol 2014. [DOI: 10.2217/fvl.14.83] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ABSTRACT Advances in our understanding of the hepatitis C virus (HCV) life cycle have enabled the development of numerous clinically advanced direct-acting antivirals. Indeed, the recent approval of first-generation direct-acting antivirals that target the viral NS3–4A protease and NS5B RNA-dependent RNA polymerase brings closer the possibility of universally efficacious and well-tolerated antiviral therapies for this insidious infection. However, the complexities of comorbidities, unforeseen side effects or drug–drug interactions, viral diversity, the high mutation rate of HCV RNA replication and the elegant and constantly evolving mechanisms employed by HCV to evade host and therapeutically implemented antiviral strategies remain as significant obstacles to this goal. Here, we review advances in our understanding of the HCV life cycle and associated opportunities for antiviral therapy.
Collapse
Affiliation(s)
- Nicholas S Eyre
- School of Molecular & Biomedical Science, The University of Adelaide & Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Karla J Helbig
- School of Molecular & Biomedical Science, The University of Adelaide & Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Michael R Beard
- School of Molecular & Biomedical Science, The University of Adelaide & Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| |
Collapse
|
192
|
Zhong M, Peng E, Huang N, Huang Q, Huq A, Lau M, Colonno R, Li L. Discovery of functionalized bisimidazoles bearing cyclic aliphatic-phenyl motifs as HCV NS5A inhibitors. Bioorg Med Chem Lett 2014; 24:5731-5737. [PMID: 25453810 DOI: 10.1016/j.bmcl.2014.10.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/11/2014] [Accepted: 10/17/2014] [Indexed: 02/06/2023]
Abstract
This Letter describes the discovery of a number of functionalized bisimidazoles bearing a cyclohexylphenyl, piperidylphenyl, or bicyclo[2,2,2]octylphenyl motif as HCV NS5A inhibitors. Compounds 2c, 4b and 6 have demonstrated low single-digit nM potency in gt-1a replicon and double-digit pM potency in gt-1b replicon, respectively. Moreover, both 4b and 6 have, respectively, exhibited good oral bioavailability in rats with a favorable liver/plasma ratio of the drug concentration.
Collapse
Affiliation(s)
- Min Zhong
- Presidio Pharmaceuticals, Inc., 1700 Owens Street, Suite 585, San Francisco, CA 94158, USA.
| | - Eric Peng
- Presidio Pharmaceuticals, Inc., 1700 Owens Street, Suite 585, San Francisco, CA 94158, USA
| | - Ningwu Huang
- Presidio Pharmaceuticals, Inc., 1700 Owens Street, Suite 585, San Francisco, CA 94158, USA
| | - Qi Huang
- Presidio Pharmaceuticals, Inc., 1700 Owens Street, Suite 585, San Francisco, CA 94158, USA
| | - Anja Huq
- Presidio Pharmaceuticals, Inc., 1700 Owens Street, Suite 585, San Francisco, CA 94158, USA
| | - Meiyen Lau
- Presidio Pharmaceuticals, Inc., 1700 Owens Street, Suite 585, San Francisco, CA 94158, USA
| | - Richard Colonno
- Presidio Pharmaceuticals, Inc., 1700 Owens Street, Suite 585, San Francisco, CA 94158, USA
| | - Leping Li
- Presidio Pharmaceuticals, Inc., 1700 Owens Street, Suite 585, San Francisco, CA 94158, USA.
| |
Collapse
|
193
|
Canini L, Chatterjee A, Guedj J, Lemenuel-Diot A, Brennan B, Smith PF, Perelson AS. A pharmacokinetic/viral kinetic model to evaluate the treatment effectiveness of danoprevir against chronic HCV. Antivir Ther 2014; 20:469-77. [PMID: 25321394 DOI: 10.3851/imp2879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Viral kinetic models have proven useful to characterize treatment effectiveness during HCV therapy with interferon (IFN) or with direct-acting antivirals. METHODS We use a pharmacokinetic/viral kinetic (PK/VK) model to describe HCV RNA kinetics during treatment with danoprevir, a protease inhibitor. In a Phase I study, danoprevir monotherapy was administered for 14 days in ascending doses ranging from 200 to 600 mg per day to 40 patients of whom 32 were treatment-naive and 8 were non-responders to prior pegylated IFN-α/ribavirin treatment. RESULTS In all patients, a biphasic decline of HCV RNA during therapy was observed. A two-compartment PK model and a VK model that considered treatment effectiveness to vary with the predicted danoprevir concentration inside the second compartment provided a good fit to the viral load data. A time-varying effectiveness model was also used to fit the viral load data. The antiviral effectiveness increased in a dose-dependent manner, with a 14-day time-averaged effectiveness of 0.95 at the lowest dose (100 mg twice daily) and 0.99 at the highest dose (200 mg three times daily). Prior IFN non-responders exhibited a 14-day time-averaged effectiveness of 0.98 (300 mg twice daily). The second phase decline showed two different behaviours, with 30% of patients exhibiting a rapid decline of HCV RNA, comparable to that seen with other protease inhibitors (>0.3 day(-1)), whereas the viral decline was slower in the other patients. CONCLUSIONS Our results are consistent with the modest SVR rates from the INFORM-SVR study where patients were treated with a combination of mericitabine and ritonavir-boosted danoprevir.
Collapse
Affiliation(s)
- Laetitia Canini
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | | | | | | | | | | |
Collapse
|
194
|
Lim PJ, Gallay PA. Hepatitis C NS5A protein: two drug targets within the same protein with different mechanisms of resistance. Curr Opin Virol 2014; 8:30-7. [PMID: 24879295 PMCID: PMC4195798 DOI: 10.1016/j.coviro.2014.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 12/18/2022]
Abstract
The era of interferon-free antiviral treatments for hepatitis C virus infection has arrived. With increasing numbers of approved antivirals, evaluating all parameters that may influence response is necessary to choose optimal combinations for treatment success. Targeting NS5A has become integral in antiviral combinations in clinical development. Daclatasvir and ledipasvir belong to the NS5A inhibitor class, which directly target the NS5A protein. Alisporivir, a host-targeting antiviral, is a cyclophilin inhibitor that indirectly targets NS5A by blocking NS5A/cyclophilin A interaction. Resistance to daclatasvir and ledipasvir differs from alisporivir, with mutations arising in NS5A domains I and II, respectively. Combining these two classes acting on distinct NS5A domains represents an attractive strategy for potentially effective interferon-free treatments for chronic hepatitis C infection.
Collapse
Affiliation(s)
- Precious J Lim
- Department of Immunology & Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Philippe A Gallay
- Department of Immunology & Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
195
|
Koizumi Y, Iwami S. Mathematical modeling of multi-drugs therapy: a challenge for determining the optimal combinations of antiviral drugs. Theor Biol Med Model 2014; 11:41. [PMID: 25252828 PMCID: PMC4247767 DOI: 10.1186/1742-4682-11-41] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 09/15/2014] [Indexed: 12/13/2022] Open
Abstract
In the current era of antiviral drug therapy, combining multiple drugs is a primary approach for improving antiviral effects, reducing the doses of individual drugs, relieving the side effects of strong antiviral drugs, and preventing the emergence of drug-resistant viruses. Although a variety of new drugs have been developed for HIV, HCV and influenza virus, the optimal combinations of multiple drugs are incompletely understood. To optimize the benefits of multi-drugs combinations, we must investigate the interactions between the combined drugs and their target viruses. Mathematical models of viral infection dynamics provide an ideal tool for this purpose. Additionally, whether drug combinations computed by these models are synergistic can be assessed by two prominent drug combination theories, Loewe additivity and Bliss independence. By combining the mathematical modeling of virus dynamics with drug combination theories, we could show the principles by which drug combinations yield a synergistic effect. Here, we describe the theoretical aspects of multi-drugs therapy and discuss their application to antiviral research.
Collapse
Affiliation(s)
| | - Shingo Iwami
- Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| |
Collapse
|
196
|
NS5A inhibitors impair NS5A-phosphatidylinositol 4-kinase IIIα complex formation and cause a decrease of phosphatidylinositol 4-phosphate and cholesterol levels in hepatitis C virus-associated membranes. Antimicrob Agents Chemother 2014; 58:7128-40. [PMID: 25224012 DOI: 10.1128/aac.03293-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The hepatitis C virus (HCV) nonstructural (NS) protein 5A is a multifunctional protein that plays a central role in viral replication and assembly. Antiviral agents directly targeting NS5A are currently in clinical development. Although the elucidation of the mechanism of action (MOA) of NS5A inhibitors has been the focus of intensive research, a detailed understanding of how these agents exert their antiviral effect is still lacking. In this study, we observed that the downregulation of NS5A hyperphosphorylation is associated with the actions of NS5A inhibitors belonging to different chemotypes. NS5A is known to recruit the lipid kinase phosphatidylinositol 4-kinase IIIα (PI4KIIIα) to the HCV-induced membranous web in order to generate phosphatidylinositol 4-phosphate (PI4P) at the sites of replication. We demonstrate that treatment with NS5A inhibitors leads to an impairment in the NS5A-PI4KIIIα complex formation that is paralleled by a significant reduction in PI4P and cholesterol levels within the endomembrane structures of HCV-replicating cells. A similar decrease in PI4P and cholesterol levels was also obtained upon treatment with a PI4KIIIα-targeting inhibitor. In addition, both the NS5A and PI4KIIIα classes of inhibitors induced similar subcellular relocalization of the NS5A protein, causing the formation of large cytoplasmic NS5A-containing clusters previously reported to be one of the hallmarks of inhibition of the action of PI4KIIIα. Because of the similarities between the effects induced by treatment with PI4KIIIα or NS5A inhibitors and the observation that agents targeting NS5A impair NS5A-PI4KIIIα complex formation, we speculate that NS5A inhibitors act by interfering with the function of the NS5A-PI4KIIIα complex.
Collapse
|
197
|
Abstract
Daclatasvir was pivotal to the trial that established proof-of-concept that an interferon-free regimen could induce a sustained virologic response in patients with chronic HCV infection. This NS5A inhibitor is not currently licensed for the treatment of HCV, but has shown promising efficacy and minimal side-effects in clinical trials to date, where it has been tested in combination with a variety of different HCV therapies. An all-oral, interferon-free curative combination therapy for HCV is now tantalizingly close to becoming part of routine clinical practice, with multiple highly-efficacious direct-acting antiviral agents emerging virtually simultaneously. In this article we will discuss daclatasvir's background and review the clinical trials published to date, concluding with our predictions regarding its future place in the treatment armamentarium against HCV.
Collapse
Affiliation(s)
- Hugh Adler
- Department of Infectious Diseases, Mater Misericordiae University Hospital, Dublin, Ireland
| | | |
Collapse
|
198
|
A pharmacokinetic-viral kinetic model describes the effect of alisporivir as monotherapy or in combination with peg-IFN on hepatitis C virologic response. Clin Pharmacol Ther 2014; 96:599-608. [PMID: 25166216 DOI: 10.1038/clpt.2014.173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/31/2014] [Indexed: 12/12/2022]
Abstract
Alisporivir is a cyclophilin inhibitor with demonstrated in vitro and in vivo activity against hepatitis C virus (HCV). We estimated the antiviral effectiveness of alisporivir alone or in combination with pegylated interferon (peg-IFN) in 88 patients infected with different HCV genotypes treated for 4 weeks. The pharmacokinetics of the two drugs were modeled and used as driving functions for the viral kinetic model. Genotype was found to significantly affect peg-IFN effectiveness (ɛ = 86.3 and 99.1% for genotypes 1/4 and genotypes 2/3, respectively, P < 10(-7)) and the loss rate of infected cells (δ = 0.22 vs. 0.39 per day in genotype 1/4 and genotype 2/3 patients, respectively, P < 10(-6)). Alisporivir effectiveness was not significantly different across genotypes and was high for doses ≥600 mg q.d. We simulated virologic responses with other alisporivir dosing regimens in HCV genotype 2/3 patients using the model. Our predictions consistently matched the observed responses, demonstrating that this model could be a useful tool for anticipating virologic response and optimizing alisporivir-based therapies.
Collapse
|
199
|
Conway JM, Perelson AS. A hepatitis C virus infection model with time-varying drug effectiveness: solution and analysis. PLoS Comput Biol 2014; 10:e1003769. [PMID: 25101902 PMCID: PMC4125050 DOI: 10.1371/journal.pcbi.1003769] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/24/2014] [Indexed: 12/15/2022] Open
Abstract
Simple models of therapy for viral diseases such as hepatitis C virus (HCV) or human immunodeficiency virus assume that, once therapy is started, the drug has a constant effectiveness. More realistic models have assumed either that the drug effectiveness depends on the drug concentration or that the effectiveness varies over time. Here a previously introduced varying-effectiveness (VE) model is studied mathematically in the context of HCV infection. We show that while the model is linear, it has no closed-form solution due to the time-varying nature of the effectiveness. We then show that the model can be transformed into a Bessel equation and derive an analytic solution in terms of modified Bessel functions, which are defined as infinite series, with time-varying arguments. Fitting the solution to data from HCV infected patients under therapy has yielded values for the parameters in the model. We show that for biologically realistic parameters, the predicted viral decay on therapy is generally biphasic and resembles that predicted by constant-effectiveness (CE) models. We introduce a general method for determining the time at which the transition between decay phases occurs based on calculating the point of maximum curvature of the viral decay curve. For the parameter regimes of interest, we also find approximate solutions for the VE model and establish the asymptotic behavior of the system. We show that the rate of second phase decay is determined by the death rate of infected cells multiplied by the maximum effectiveness of therapy, whereas the rate of first phase decline depends on multiple parameters including the rate of increase of drug effectiveness with time.
Collapse
Affiliation(s)
- Jessica M. Conway
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
200
|
Hepatitis C Virus (HCV) NS3 sequence diversity and antiviral resistance-associated variant frequency in HCV/HIV coinfection. Antimicrob Agents Chemother 2014; 58:6079-92. [PMID: 25092699 DOI: 10.1128/aac.03466-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
HIV coinfection accelerates disease progression in chronic hepatitis C and reduces sustained antiviral responses (SVR) to interferon-based therapy. New direct-acting antivirals (DAAs) promise higher SVR rates, but the selection of preexisting resistance-associated variants (RAVs) may lead to virologic breakthrough or relapse. Thus, pretreatment frequencies of RAVs are likely determinants of treatment outcome but typically are below levels at which the viral sequence can be accurately resolved. Moreover, it is not known how HIV coinfection influences RAV frequency. We adopted an accurate high-throughput sequencing strategy to compare nucleotide diversity in HCV NS3 protease-coding sequences in 20 monoinfected and 20 coinfected subjects with well-controlled HIV infection. Differences in mean pairwise nucleotide diversity (π), Tajima's D statistic, and Shannon entropy index suggested that the genetic diversity of HCV is reduced in coinfection. Among coinfected subjects, diversity correlated positively with increases in CD4(+) T cells on antiretroviral therapy, suggesting T cell responses are important determinants of diversity. At a median sequencing depth of 0.084%, preexisting RAVs were readily identified. Q80K, which negatively impacts clinical responses to simeprevir, was encoded by more than 99% of viral RNAs in 17 of the 40 subjects. RAVs other than Q80K were identified in 39 of 40 subjects, mostly at frequencies near 0.1%. RAV frequency did not differ significantly between monoinfected and coinfected subjects. We conclude that HCV genetic diversity is reduced in patients with well-controlled HIV infection, likely reflecting impaired T cell immunity. However, RAV frequency is not increased and should not adversely influence the outcome of DAA therapy.
Collapse
|