151
|
Kingsbury L, Huang S, Wang J, Gu K, Golshani P, Wu YE, Hong W. Correlated Neural Activity and Encoding of Behavior across Brains of Socially Interacting Animals. Cell 2019; 178:429-446.e16. [PMID: 31230711 PMCID: PMC6625832 DOI: 10.1016/j.cell.2019.05.022] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/11/2019] [Accepted: 05/09/2019] [Indexed: 12/29/2022]
Abstract
Social interactions involve complex decision-making tasks that are shaped by dynamic, mutual feedback between participants. An open question is whether and how emergent properties may arise across brains of socially interacting individuals to influence social decisions. By simultaneously performing microendoscopic calcium imaging in pairs of socially interacting mice, we find that animals exhibit interbrain correlations of neural activity in the prefrontal cortex that are dependent on ongoing social interaction. Activity synchrony arises from two neuronal populations that separately encode one's own behaviors and those of the social partner. Strikingly, interbrain correlations predict future social interactions as well as dominance relationships in a competitive context. Together, our study provides conclusive evidence for interbrain synchrony in rodents, uncovers how synchronization arises from activity at the single-cell level, and presents a role for interbrain neural activity coupling as a property of multi-animal systems in coordinating and sustaining social interactions between individuals.
Collapse
Affiliation(s)
- Lyle Kingsbury
- Department of Biological Chemistry and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shan Huang
- Department of Biological Chemistry and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jun Wang
- Department of Biological Chemistry and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ken Gu
- Department of Biological Chemistry and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peyman Golshani
- Department of Neurology and Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ye Emily Wu
- Department of Biological Chemistry and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Weizhe Hong
- Department of Biological Chemistry and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
152
|
Capozzi F, Beyan C, Pierro A, Koul A, Murino V, Livi S, Bayliss AP, Ristic J, Becchio C. Tracking the Leader: Gaze Behavior in Group Interactions. iScience 2019; 16:242-249. [PMID: 31200114 PMCID: PMC6562365 DOI: 10.1016/j.isci.2019.05.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 02/19/2019] [Accepted: 05/23/2019] [Indexed: 11/16/2022] Open
Abstract
Can social gaze behavior reveal the leader during real-world group interactions? To answer this question, we developed a novel tripartite approach combining (1) computer vision methods for remote gaze estimation, (2) a detailed taxonomy to encode the implicit semantics of multi-party gaze features, and (3) machine learning methods to establish dependencies between leadership and visual behaviors. We found that social gaze behavior distinctively identified group leaders. Crucially, the relationship between leadership and gaze behavior generalized across democratic and autocratic leadership styles under conditions of low and high time-pressure, suggesting that gaze can serve as a general marker of leadership. These findings provide the first direct evidence that group visual patterns can reveal leadership across different social behaviors and validate a new promising method for monitoring natural group interactions. Leadership shapes gaze dynamics during real-world human group interactions Social gaze behavior distinctively identifies group leaders Identification generalizes across leadership styles and situational conditions Gaze can serve as a general marker of leadership
Collapse
Affiliation(s)
- Francesca Capozzi
- Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Cigdem Beyan
- Pattern Analysis and Computer Vision, (PAVIS), Istituto Italiano di Tecnologia, Genova 16152, Italy
| | - Antonio Pierro
- Department of Social and Developmental Psychology, University of Rome "La Sapienza", Rome 00185, Italy
| | - Atesh Koul
- Cognition, Motion and Neuroscience Unit, (C'MoN), Istituto Italiano di Tecnologia, Center for Human Technologies, Via Enrico Melen 83, 16152 Genova, Italy
| | - Vittorio Murino
- Pattern Analysis and Computer Vision, (PAVIS), Istituto Italiano di Tecnologia, Genova 16152, Italy; Department of Computer Science, University of Verona, Verona 37134, Italy
| | - Stefano Livi
- Department of Social and Developmental Psychology, University of Rome "La Sapienza", Rome 00185, Italy
| | - Andrew P Bayliss
- School of Psychology, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK
| | - Jelena Ristic
- Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Cristina Becchio
- Cognition, Motion and Neuroscience Unit, (C'MoN), Istituto Italiano di Tecnologia, Center for Human Technologies, Via Enrico Melen 83, 16152 Genova, Italy; Department of Psychology, University of Torino, Torino 10123, Italy.
| |
Collapse
|
153
|
Liu W, Branigan HP, Zheng L, Long Y, Bai X, Li K, Zhao H, Zhou S, Pickering MJ, Lu C. Shared neural representations of syntax during online dyadic communication. Neuroimage 2019; 198:63-72. [PMID: 31102737 DOI: 10.1016/j.neuroimage.2019.05.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/26/2019] [Accepted: 05/13/2019] [Indexed: 01/19/2023] Open
Abstract
When people communicate, they come to see the world in a similar way to each other by aligning their mental representations at such levels as syntax. Syntax is an essential feature of human language that distinguishes humans from other non-human animals. However, whether and how communicators share neural representations of syntax is not well understood. Here we addressed this issue by measuring the brain activity of both communicators in a series of dyadic communication contexts, by using functional near-infrared spectroscopy (fNIRS)-based hyperscanning. Two communicators alternatively spoke sentences either with the same or with different syntactic structures. Results showed a significantly higher-level increase of interpersonal neural synchronization (INS) at right posterior superior temporal cortex when communicators produced the same syntactic structures as each other compared to when they produced different syntactic structures. These increases of INS correlated significantly with communication quality. Our findings provide initial evidence for shared neural representations of syntax between communicators.
Collapse
Affiliation(s)
- Wenda Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Holly P Branigan
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom
| | - Lifen Zheng
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Yuhang Long
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Xialu Bai
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Kanyu Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Hui Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Siyuan Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Martin J Pickering
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom.
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
154
|
Rojiani R, Zhang X, Noah A, Hirsch J. Communication of emotion via drumming: dual-brain imaging with functional near-infrared spectroscopy. Soc Cogn Affect Neurosci 2019; 13:1047-1057. [PMID: 30215809 PMCID: PMC6204489 DOI: 10.1093/scan/nsy076] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 09/04/2018] [Indexed: 11/13/2022] Open
Abstract
Nonverbal communication of emotion is essential to human interaction and relevant to many clinical applications, yet it is an understudied topic in social neuroscience. Drumming is an ancient nonverbal communication modality for expression of emotion that has not been previously investigated in this context. We investigate the neural response to live, natural communication of emotion via drumming using a novel dual-brain neuroimaging paradigm. Hemodynamic signals were acquired using whole-head functional near-infrared spectroscopy (fNIRS). Dyads of 36 subjects participated in two conditions, drumming and talking, alternating between 'sending' (drumming or talking to partner) and 'receiving' (listening to partner) in response to emotionally salient images from the International Affective Picture System. Increased frequency and amplitude of drum strikes was behaviorally correlated with higher arousal and lower valence measures and neurally correlated with temporoparietal junction (TPJ) activation in the listener. Contrast comparisons of drumming greater than talking also revealed neural activity in right TPJ. Together, findings suggest that emotional content communicated by drumming engages right TPJ mechanisms in an emotionally and behaviorally sensitive fashion. Drumming may provide novel, effective clinical approaches for treating social-emotional psychopathology.
Collapse
Affiliation(s)
| | | | | | - Joy Hirsch
- Department of Psychiatry.,Department of Neuroscience.,Department of Comparative Medicine, Yale School of Medicine, New Haven, CT.,Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
155
|
Liu J, Zhang R, Geng B, Zhang T, Yuan D, Otani S, Li X. Interplay between prior knowledge and communication mode on teaching effectiveness: Interpersonal neural synchronization as a neural marker. Neuroimage 2019; 193:93-102. [PMID: 30851445 DOI: 10.1016/j.neuroimage.2019.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/29/2018] [Accepted: 03/03/2019] [Indexed: 12/18/2022] Open
Abstract
Teacher-student interaction allows students to combine prior knowledge with new information to develop new knowledge. It is widely understood that both communication mode and students' knowledge state contribute to the teaching effectiveness (i.e., higher students' scores), but the nature of the interplay of these factors and the underlying neural mechanism remain unknown. In the current study, we manipulated the communication modes (face-to-face [FTF] communication mode/computer-mediated communication [CMC] mode) and prior knowledge states (with vs. without) when teacher-student dyads participated in a teaching task. Using functional near-infrared spectroscopy, the brain activities of both the teacher and student in the dyads were recorded simultaneously. After teaching, perceived teacher-student interaction and teaching effectiveness were assessed. The behavioral results demonstrated that, during teaching with prior knowledge, FTF communication improved students' academic performance, as compared with CMC. Conversely, no such effect was found for teaching without prior knowledge. Accordingly, higher task-related interpersonal neural synchronization (INS) in the left prefrontal cortex (PFC) was found in the FTF teaching condition with prior knowledge. Such INS mediated the relationship between perceived interaction and students' test scores. Furthermore, the cumulative INS in the left PFC could predict the teaching effectiveness early in the teaching process (around 25-35 s into the teaching task) only in FTF teaching with prior knowledge. These findings provide insight into how the interplay between the communication mode and students' knowledge state affects teaching effectiveness. Moreover, our findings suggest that INS could be a possible neuromarker for dynamic evaluation of teacher-student interaction and teaching effectiveness.
Collapse
Affiliation(s)
- Jieqiong Liu
- School of Psychology and Cognitive Science, Shanghai Changning-ECNU Mental Health Center, East China Normal University, Shanghai, 200062, China
| | - Ruqian Zhang
- School of Psychology and Cognitive Science, Shanghai Changning-ECNU Mental Health Center, East China Normal University, Shanghai, 200062, China
| | - Binbin Geng
- School of Psychology and Cognitive Science, Shanghai Changning-ECNU Mental Health Center, East China Normal University, Shanghai, 200062, China
| | - Tingyu Zhang
- School of Psychology and Cognitive Science, Shanghai Changning-ECNU Mental Health Center, East China Normal University, Shanghai, 200062, China
| | - Di Yuan
- School of Psychology and Cognitive Science, Shanghai Changning-ECNU Mental Health Center, East China Normal University, Shanghai, 200062, China
| | - Satoru Otani
- Aging in Vision and Action Lab, Institute of Vision, CNRS-INSERM-Sorbonne University, Paris, 75012, France
| | - Xianchun Li
- School of Psychology and Cognitive Science, Shanghai Changning-ECNU Mental Health Center, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
156
|
Abstract
Real-world environments are typically dynamic, complex, and multisensory in nature and require the support of top-down attention and memory mechanisms for us to be able to drive a car, make a shopping list, or pour a cup of coffee. Fundamental principles of perception and functional brain organization have been established by research utilizing well-controlled but simplified paradigms with basic stimuli. The last 30 years ushered a revolution in computational power, brain mapping, and signal processing techniques. Drawing on those theoretical and methodological advances, over the years, research has departed more and more from traditional, rigorous, and well-understood paradigms to directly investigate cognitive functions and their underlying brain mechanisms in real-world environments. These investigations typically address the role of one or, more recently, multiple attributes of real-world environments. Fundamental assumptions about perception, attention, or brain functional organization have been challenged-by studies adapting the traditional paradigms to emulate, for example, the multisensory nature or varying relevance of stimulation or dynamically changing task demands. Here, we present the state of the field within the emerging heterogeneous domain of real-world neuroscience. To be precise, the aim of this Special Focus is to bring together a variety of the emerging "real-world neuroscientific" approaches. These approaches differ in their principal aims, assumptions, or even definitions of "real-world neuroscience" research. Here, we showcase the commonalities and distinctive features of the different "real-world neuroscience" approaches. To do so, four early-career researchers and the speakers of the Cognitive Neuroscience Society 2017 Meeting symposium under the same title answer questions pertaining to the added value of such approaches in bringing us closer to accurate models of functional brain organization and cognitive functions.
Collapse
Affiliation(s)
- Pawel J Matusz
- University Hospital Center and University of Lausanne
- University of Applied Sciences Western Switzerland (HES SO Valais)
| | | | | | | |
Collapse
|
157
|
Acton BP, Foti RJ, Lord RG, Gladfelter JA. Putting emergence back in leadership emergence: A dynamic, multilevel, process-oriented framework. LEADERSHIP QUARTERLY 2019. [DOI: 10.1016/j.leaqua.2018.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
158
|
Interpersonal synchronization of inferior frontal cortices tracks social interactive learning of a song. Neuroimage 2018; 183:280-290. [DOI: 10.1016/j.neuroimage.2018.08.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 07/19/2018] [Accepted: 08/03/2018] [Indexed: 01/17/2023] Open
|
159
|
Cho PS, Escoffier N, Mao Y, Ching A, Green C, Jong J, Whitehouse H. Groups and Emotional Arousal Mediate Neural Synchrony and Perceived Ritual Efficacy. Front Psychol 2018; 9:2071. [PMID: 30416477 PMCID: PMC6212580 DOI: 10.3389/fpsyg.2018.02071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/08/2018] [Indexed: 01/21/2023] Open
Abstract
We present the first neurophysiological signatures showing distinctive effects of group social context and emotional arousal on cultural perceptions, such as the efficacy of religious rituals. Using a novel protocol, EEG data were simultaneously recorded from ethnic Chinese religious believers in group and individual settings as they rated the perceived efficacy of low, medium, and high arousal spirit-medium rituals presented as video clips. Neural oscillatory patterns were then analyzed for these perceptual judgements, categorized as low, medium, and high efficacy. The results revealed distinct neural signatures and behavioral patterns between the experimental conditions. Arousal levels predicted ratings of ritual efficacy. Increased efficacy was marked by suppressed alpha and beta power, regardless of group or individual setting. In groups, efficacy ratings converged. Individual setting showed increased within-participant phase synchronization in alpha and beta bands, while group setting enhanced between-participant theta phase synchronization. This reflected group participants' orientation toward a common perspective and social coordination. These findings suggest that co-presence in groups leads to a social-tuning effect supported by between-participant theta phase synchrony. Together these neural synchrony patterns reveal how collective rituals have both individual and communal dimensions. The emotionality of spirit-medium rituals drives individual perceptions of efficacy, while co-presence in groups signals the significance of an event and socially tunes enhanced agreement in perceptual ratings. In other words, mass gatherings may foster social cohesion without necessarily requiring group-size scaling limitations of direct face-to-face interaction. This could have implications for the scaling computability of synchrony in large groups as well as for humanistic studies in areas such as symbolic interactionism.
Collapse
Affiliation(s)
- Philip S Cho
- Yonsei University, Underwood International College, Songdo, South Korea.,Yonsei University, Institute of Convergence Science, Center for Science and Engineering Applications in Social Science, Seoul, South Korea
| | - Nicolas Escoffier
- Department of Psychology, National University of Singapore, Singapore, Singapore.,Life Sciences Institute Programme in Neurobiology and Aging, National University of Singapore, Singapore, Singapore
| | - Yinan Mao
- Department of Statistics, National University of Singapore, Singapore, Singapore
| | - April Ching
- MARCS Institute, Western Sydney University, Penrith, NSW, Australia
| | - Christopher Green
- Wayne State School of Medicine, Diagnostic Radiology and Psychiatry, Detroit, MI, United States
| | - Jonathan Jong
- Center for Psychology, Behavior and Achievement, Coventry University, Coventry, United Kingdom
| | - Harvey Whitehouse
- Institute of Cognitive and Evolutionary Anthropology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
160
|
Mu Y, Cerritos C, Khan F. Neural mechanisms underlying interpersonal coordination: A review of hyperscanning research. SOCIAL AND PERSONALITY PSYCHOLOGY COMPASS 2018. [DOI: 10.1111/spc3.12421] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
161
|
Li Y, Chen R, Zhang S, Turel O, Bechara A, Feng T, Chen H, He Q. Hemispheric mPFC asymmetry in decision making under ambiguity and risk: An fNIRS study. Behav Brain Res 2018; 359:657-663. [PMID: 30287272 DOI: 10.1016/j.bbr.2018.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/29/2018] [Accepted: 09/30/2018] [Indexed: 10/28/2022]
Abstract
The Iowa Gambling Task (IGT) is a commonly used task for testing decision-making under ambiguity (the early stage) and risk (the late stage). However, differences between the temporal dynamic signals underlying these two types of decision-making as well as the hemispheric specificity of decision making during the IGT remain unknown. The present study sought to address this gap by focusing on the medial prefrontal cortex (mPFC), which plays an important role in decision-making across life domains. We used functional near-infrared spectroscopy (fNIRS) with high spatial and temporal resolution and measured oxy-hemoglobin concentration within the mPFC in 25 healthy participants who performed the IGT. Results showed that there are different activations of the right and left hemispheres of the mPFC during the different stages of IGT and types of decisions. This implies that the left and right mPFC can have different patterns of involvement in decision making, at least in IGT decisions, including making good (low risk) and bad (high risk) choices, under ambiguity and under risk conditions.
Collapse
Affiliation(s)
- Yuhua Li
- Faculty of Psychology, Southwest University, Chongqing, China; Faculty of Education, Guangxi Normal University, Guangxi Colleges and Universities Key Laboratory of Cognitive Neuroscience and Applied Psychology, Guilin, Guangxi, China
| | - Rui Chen
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Shuyue Zhang
- Faculty of Education, Guangxi Normal University, Guangxi Colleges and Universities Key Laboratory of Cognitive Neuroscience and Applied Psychology, Guilin, Guangxi, China.
| | - Ofir Turel
- Brain and Creativity Institute and Department of Psychology, University of Southern California, Los Angeles, CA, United States; Information Systems and Decision Sciences, California State University, Fullerton, CA, United States
| | - Antoine Bechara
- Brain and Creativity Institute and Department of Psychology, University of Southern California, Los Angeles, CA, United States
| | - Tingyong Feng
- Faculty of Psychology, Southwest University, Chongqing, China; Chongqing Collaborative Innovation Center for Brain Science, Chongqing, China
| | - Hong Chen
- Faculty of Psychology, Southwest University, Chongqing, China; Chongqing Collaborative Innovation Center for Brain Science, Chongqing, China.
| | - Qinghua He
- Faculty of Psychology, Southwest University, Chongqing, China; Chongqing Collaborative Innovation Center for Brain Science, Chongqing, China; Southwest University Branch, Collaborative Innovation Center of Assessment toward Basic Education Quality, Chongqing, China.
| |
Collapse
|
162
|
Mukherjee S, Badino L, Hilt PM, Tomassini A, Inuggi A, Fadiga L, Nguyen N, D'Ausilio A. The neural oscillatory markers of phonetic convergence during verbal interaction. Hum Brain Mapp 2018; 40:187-201. [PMID: 30240542 DOI: 10.1002/hbm.24364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/19/2018] [Accepted: 08/05/2018] [Indexed: 12/12/2022] Open
Abstract
During a conversation, the neural processes supporting speech production and perception overlap in time and, based on context, expectations and the dynamics of interaction, they are also continuously modulated in real time. Recently, the growing interest in the neural dynamics underlying interactive tasks, in particular in the language domain, has mainly tackled the temporal aspects of turn-taking in dialogs. Besides temporal coordination, an under-investigated phenomenon is the implicit convergence of the speakers toward a shared phonetic space. Here, we used dual electroencephalography (dual-EEG) to record brain signals from subjects involved in a relatively constrained interactive task where they were asked to take turns in chaining words according to a phonetic rhyming rule. We quantified participants' initial phonetic fingerprints and tracked their phonetic convergence during the interaction via a robust and automatic speaker verification technique. Results show that phonetic convergence is associated to left frontal alpha/low-beta desynchronization during speech preparation and by high-beta suppression before and during listening to speech in right centro-parietal and left frontal sectors, respectively. By this work, we provide evidence that mutual adaptation of speech phonetic targets, correlates with specific alpha and beta oscillatory dynamics. Alpha and beta oscillatory dynamics may index the coordination of the "when" as well as the "how" speech interaction takes place, reinforcing the suggestion that perception and production processes are highly interdependent and co-constructed during a conversation.
Collapse
Affiliation(s)
- Sankar Mukherjee
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Leonardo Badino
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Pauline M Hilt
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Alice Tomassini
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Alberto Inuggi
- Center for Human Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy.,Section of Human Physiology, University of Ferrara, Ferrara, Italy
| | - Noël Nguyen
- CNRS, LPL, Aix Marseille University, Aix-en-Provence, France
| | - Alessandro D'Ausilio
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy.,Section of Human Physiology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
163
|
Edelson MG, Polania R, Ruff CC, Fehr E, Hare TA. Computational and neurobiological foundations of leadership decisions. Science 2018; 361:361/6401/eaat0036. [PMID: 30072510 DOI: 10.1126/science.aat0036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 07/06/2018] [Indexed: 12/31/2022]
Abstract
Leaders must take responsibility for others and thus affect the well-being of individuals, organizations, and nations. We identify the effects of responsibility on leaders' choices at the behavioral and neurobiological levels and document the widespread existence of responsibility aversion, that is, a reduced willingness to make decisions if the welfare of others is at stake. In mechanistic terms, basic preferences toward risk, loss, and ambiguity do not explain responsibility aversion, which, instead, is driven by a second-order cognitive process reflecting an increased demand for certainty about the best choice when others' welfare is affected. Finally, models estimating levels of information flow between brain regions that process separate choice components provide the first step in understanding the neurobiological basis of individual variability in responsibility aversion and leadership scores.
Collapse
Affiliation(s)
- Micah G Edelson
- Zürich Center for Neuroeconomics, Department of Economics, University of Zürich, 8006 Zürich, Switzerland.
| | - Rafael Polania
- Zürich Center for Neuroeconomics, Department of Economics, University of Zürich, 8006 Zürich, Switzerland.,Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zürich, 8057 Zürich, Switzerland
| | - Christian C Ruff
- Zürich Center for Neuroeconomics, Department of Economics, University of Zürich, 8006 Zürich, Switzerland
| | - Ernst Fehr
- Zürich Center for Neuroeconomics, Department of Economics, University of Zürich, 8006 Zürich, Switzerland.
| | - Todd A Hare
- Zürich Center for Neuroeconomics, Department of Economics, University of Zürich, 8006 Zürich, Switzerland.
| |
Collapse
|
164
|
Hirsch J, Adam Noah J, Zhang X, Dravida S, Ono Y. A cross-brain neural mechanism for human-to-human verbal communication. Soc Cogn Affect Neurosci 2018; 13:907-920. [PMID: 30137601 PMCID: PMC6137318 DOI: 10.1093/scan/nsy070] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/26/2018] [Accepted: 08/08/2018] [Indexed: 02/05/2023] Open
Abstract
Neural mechanisms that mediate dynamic social interactions remain understudied despite their evolutionary significance. The interactive brain hypothesis proposes that interactive social cues are processed by dedicated brain substrates and provides a general theoretical framework for investigating the underlying neural mechanisms of social interaction. We test the specific case of this hypothesis proposing that canonical language areas are upregulated and dynamically coupled across brains during social interactions based on talking and listening. Functional near-infrared spectroscopy (fNIRS) was employed to acquire simultaneous deoxyhemoglobin (deOxyHb) signals of the brain on partners who alternated between speaking and listening while doing an Object Naming & Description task with and without interaction in a natural setting. Comparison of interactive and non-interactive conditions confirmed an increase in neural activity associated with Wernicke's area including the superior temporal gyrus (STG) during interaction (P = 0.04). However, the hypothesis was not supported for Broca's area. Cross-brain coherence determined by wavelet analyses of signals originating from the STG and the subcentral area was greater during interaction than non-interaction (P < 0.01). In support of the interactive brain hypothesis these findings suggest a dynamically coupled cross-brain neural mechanism dedicated to pathways that share interpersonal information.
Collapse
Affiliation(s)
- Joy Hirsch
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - J Adam Noah
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Xian Zhang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Swethasri Dravida
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
- Medical Student Training Program, Yale School of Medicine, New Haven, CT, USA
| | - Yumie Ono
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kawasaki, Kanagawa, Japan
| |
Collapse
|
165
|
Fishburn FA, Murty VP, Hlutkowsky CO, MacGillivray CE, Bemis LM, Murphy ME, Huppert TJ, Perlman SB. Putting our heads together: interpersonal neural synchronization as a biological mechanism for shared intentionality. Soc Cogn Affect Neurosci 2018; 13:841-849. [PMID: 30060130 PMCID: PMC6123517 DOI: 10.1093/scan/nsy060] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/11/2018] [Accepted: 07/16/2018] [Indexed: 01/13/2023] Open
Abstract
Shared intentionality, or collaborative interactions in which individuals have a shared goal and must coordinate their efforts, is a core component of human interaction. However, the biological bases of shared intentionality and, specifically, the processes by which the brain adjusts to the sharing of common goals, remain largely unknown. Using functional near infrared spectroscopy (fNIRS), coordination of cerebral hemodynamic activation was found in subject pairs when completing a puzzle together in contrast to a condition in which subjects completed identical but individual puzzles (same intention without shared intentionality). Interpersonal neural coordination was also greater when completing a puzzle together compared to two control conditions including the observation of another pair completing the same puzzle task or watching a movie with a partner (shared experience). Further, permutation testing revealed that the time course of neural activation of one subject predicted that of their partner, but not that of others completing the identical puzzle in different partner sets. Results indicate unique brain-to-brain coupling specific to shared intentionality beyond what has been previously found by investigating the fundamentals of social exchange.
Collapse
Affiliation(s)
- Frank A Fishburn
- Department of Psychiatry, University of Pittsburgh, The Loaffler Bldg. 121 Meyran Ave. Pittsburgh 15213, PA
| | - Vishnu P Murty
- Department of Psychology, Temple University, Weiss Hall 1701 N 13th St. Philadelphia 19122, PA
| | - Christina O Hlutkowsky
- Department of Psychiatry, University of Pittsburgh, The Loaffler Bldg. 121 Meyran Ave. Pittsburgh 15213, PA
| | - Caroline E MacGillivray
- Department of Psychiatry, University of Pittsburgh, The Loaffler Bldg. 121 Meyran Ave. Pittsburgh 15213, PA
| | - Lisa M Bemis
- Department of Psychiatry, University of Pittsburgh, The Loaffler Bldg. 121 Meyran Ave. Pittsburgh 15213, PA
| | - Meghan E Murphy
- Department of Psychiatry, University of Pittsburgh, The Loaffler Bldg. 121 Meyran Ave. Pittsburgh 15213, PA
| | - Theodore J Huppert
- Department of Radiology, University of Pittsburgh, Presbyterian University Hospital 200, Lothrop St. Pittsburgh 15213, PA
| | - Susan B Perlman
- Department of Psychiatry, University of Pittsburgh, The Loaffler Bldg. 121 Meyran Ave. Pittsburgh 15213, PA
| |
Collapse
|
166
|
Wang MY, Luan P, Zhang J, Xiang YT, Niu H, Yuan Z. Concurrent mapping of brain activation from multiple subjects during social interaction by hyperscanning: a mini-review. Quant Imaging Med Surg 2018; 8:819-837. [PMID: 30306062 DOI: 10.21037/qims.2018.09.07] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Social interaction plays an essential role in acquiring knowledge and developing our own personalities in our daily life. Meanwhile, functional magnetic resonance imaging (fMRI)-, electroencephalograph (EEG)-, and functional near inferred spectroscopy (fNIRS)-hyperscanning, enables us to concurrently map brain activation from two or more participants who are engaged in social interaction simultaneously. In this review, we first highlight the recent technologies advances and the most significant findings towards social interaction by using the hyperscanning method. In addition, we also illustrate several well-designed hyperscanning tasks that have been extensively adopted for the study of social interaction. Basically, hyperscanning contains six categories of experimental paradigms that can track the interactive neural process of interest. Furthermore, it contains two main elucidated neural systems which are involved in social interaction, including the mirror neuron system (MNS) and mentalizing system (MS). Finally, future research directions and clinical implications that are associated with hyperscanning are also highlighted and discussed.
Collapse
Affiliation(s)
- Meng-Yun Wang
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Ping Luan
- Medical Center, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Juan Zhang
- Faculty of Education, University of Macau, Taipa, Macau SAR, China
| | - Yu-Tao Xiang
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Haijing Niu
- State Key Lab of Cognitive Neuroscience & Learning, Beijing Normal University, Beijing 100875, China
| | - Zhen Yuan
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| |
Collapse
|
167
|
Duan L, Zhao Z, Lin Y, Wu X, Luo Y, Xu P. Wavelet-based method for removing global physiological noise in functional near-infrared spectroscopy. BIOMEDICAL OPTICS EXPRESS 2018; 9:3805-3820. [PMID: 30338157 PMCID: PMC6191612 DOI: 10.1364/boe.9.003805] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/26/2018] [Accepted: 07/02/2018] [Indexed: 05/20/2023]
Abstract
Functional near-infrared spectroscopy (fNIRS) is a fast-developing non-invasive functional brain imaging technology widely used in cognitive neuroscience, clinical research and neural engineering. However, it is a challenge to effectively remove the global physiological noise in the fNIRS signal. The global physiological noise in fNIRS arises from multiple physiological origins in both superficial tissues and the brain. It has complex temporal, spatial and frequency characteristics, casting significant influence on the results. In the present study, we developed a novel wavelet-based method for fNIRS global physiological noise removal. The method is data-driven and does not rely on any additional hardware or subjective noise component selection procedure. It consists of two steps. Firstly, we use wavelet transform coherence to automatically detect the time-frequency points contaminated by the global physiological noise. Secondly, we decompose the fNIRS signal by using the wavelet transform, and then suppress the wavelet energy of the contaminated time-frequency points. Finally, we transform the signal back to a time series. We validated the method by using simulation and real data at both task- and resting-state. The results showed that our method can effectively remove the global physiological noise from the fNIRS signal and improve the spatial specificity of the task activation and the resting-state functional connectivity pattern.
Collapse
Affiliation(s)
- Lian Duan
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Shenzhen University, Shenzhen, China
- Center for Neuroimaging, Shenzhen Institute of Neuroscience, Shenzhen, China
- These authors have contributed equally to this work
| | - Ziping Zhao
- College of Computer and Information Engineering, Tianjin Normal University, Tianjin, China
- These authors have contributed equally to this work
| | - Yongling Lin
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Shenzhen University, Shenzhen, China
| | - Xiaoyan Wu
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Shenzhen University, Shenzhen, China
| | - Yuejia Luo
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Shenzhen University, Shenzhen, China
- Center for Neuroimaging, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Pengfei Xu
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Shenzhen University, Shenzhen, China
- Center for Neuroimaging, Shenzhen Institute of Neuroscience, Shenzhen, China
| |
Collapse
|
168
|
Minagawa Y, Xu M, Morimoto S. Toward Interactive Social Neuroscience: Neuroimaging Real-World Interactions in Various Populations. JAPANESE PSYCHOLOGICAL RESEARCH 2018. [DOI: 10.1111/jpr.12207] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
169
|
Hu Y, Hu Y, Li X, Pan Y, Cheng X. Brain-to-brain synchronization across two persons predicts mutual prosociality. Soc Cogn Affect Neurosci 2018; 12:1835-1844. [PMID: 29040766 PMCID: PMC5716073 DOI: 10.1093/scan/nsx118] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/10/2017] [Indexed: 12/19/2022] Open
Abstract
People tend to be more prosocial after synchronizing behaviors with others, yet the underlying neural mechanisms are rarely known. In this study, participant dyads performed either a coordination task or an independence task, with their brain activations recorded via the functional near-infrared spectroscopy hyperscanning technique. Participant dyads in the coordination group showed higher synchronized behaviors and greater subsequent inclination to help each other than those in the independence group, indicating the prosocial effect of interpersonal synchrony. Importantly, the coordination group demonstrated the significant task-related brain coherence, namely the interbrain synchronization, at the left middle frontal area. The detected interbrain synchronization was sensitive to shared intentionality between participants and was correlated with the mutual prosocial inclination. Further, the task-related brain coherence played a mediation role in the prosocial effect of interpersonal synchrony. This study reveals the relevance of brain-to-brain synchronization among individuals with subsequent mutual prosocial inclination and suggests the neural mechanism associating with shared cognition for the facilitation of interpersonal synchrony on prosociality.
Collapse
Affiliation(s)
- Yi Hu
- Faculty of Education, East China Normal University, Shanghai, China.,The Key Lab of Brain Functional Genomics, MOE & STCSM, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yinying Hu
- The Key Lab of Brain Functional Genomics, MOE & STCSM, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Xianchun Li
- The Key Lab of Brain Functional Genomics, MOE & STCSM, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yafeng Pan
- The Key Lab of Brain Functional Genomics, MOE & STCSM, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Xiaojun Cheng
- The Key Lab of Brain Functional Genomics, MOE & STCSM, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| |
Collapse
|
170
|
Dai B, Chen C, Long Y, Zheng L, Zhao H, Bai X, Liu W, Zhang Y, Liu L, Guo T, Ding G, Lu C. Neural mechanisms for selectively tuning in to the target speaker in a naturalistic noisy situation. Nat Commun 2018; 9:2405. [PMID: 29921937 PMCID: PMC6008393 DOI: 10.1038/s41467-018-04819-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 05/29/2018] [Indexed: 11/23/2022] Open
Abstract
The neural mechanism for selectively tuning in to a target speaker while tuning out the others in a multi-speaker situation (i.e., the cocktail-party effect) remains elusive. Here we addressed this issue by measuring brain activity simultaneously from a listener and from multiple speakers while they were involved in naturalistic conversations. Results consistently show selectively enhanced interpersonal neural synchronization (INS) between the listener and the attended speaker at left temporal–parietal junction, compared with that between the listener and the unattended speaker across different multi-speaker situations. Moreover, INS increases significantly prior to the occurrence of verbal responses, and even when the listener’s brain activity precedes that of the speaker. The INS increase is independent of brain-to-speech synchronization in both the anatomical location and frequency range. These findings suggest that INS underlies the selective process in a multi-speaker situation through neural predictions at the content level but not the sensory level of speech. When many people are speaking, e.g. at a party, we can selectively attend to just one speaker. Here, using ‘hyperscanning’, the authors show that interpersonal neural synchronization is selectively increased between a listener and the attended speaker, compared to between the listener and an unattended speaker.
Collapse
Affiliation(s)
- Bohan Dai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.,Max Planck Institute for Psycholinguistics, Nijmegen, 6525 XD, The Netherlands.,Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, 6525 EN, The Netherlands
| | - Chuansheng Chen
- Department of Psychology and Social Behavior, University of California, Irvine, 92697-7085, CA, USA
| | - Yuhang Long
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Lifen Zheng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Hui Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Xialu Bai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Wenda Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yuxuan Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Li Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Taomei Guo
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Guosheng Ding
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
171
|
Strandburg-Peshkin A, Papageorgiou D, Crofoot MC, Farine DR. Inferring influence and leadership in moving animal groups. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170006. [PMID: 29581391 PMCID: PMC5882976 DOI: 10.1098/rstb.2017.0006] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2017] [Indexed: 11/12/2022] Open
Abstract
Collective decision-making is a daily occurrence in the lives of many group-living animals, and can have critical consequences for the fitness of individuals. Understanding how decisions are reached, including who has influence and the mechanisms by which information and preferences are integrated, has posed a fundamental challenge. Here, we provide a methodological framework for studying influence and leadership in groups. We propose that individuals have influence if their actions result in some behavioural change among their group-mates, and are leaders if they consistently influence others. We highlight three components of influence (influence instances, total influence and consistency of influence), which can be assessed at two levels (individual-to-individual and individual-to-group). We then review different methods, ranging from individual positioning within groups to information-theoretic approaches, by which influence has been operationally defined in empirical studies, as well as how such observations can be aggregated to give insight into the underlying decision-making process. We focus on the domain of collective movement, with a particular emphasis on methods that have recently been, or are being, developed to take advantage of simultaneous tracking data. We aim to provide a resource bringing together methodological tools currently available for studying leadership in moving animal groups, as well as to discuss the limitations of current methodologies and suggest productive avenues for future research.This article is part of the theme issue 'Collective movement ecology'.
Collapse
Affiliation(s)
- Ariana Strandburg-Peshkin
- Department of Migration and Immuno-ecology, Max Planck Institute for Ornithology, Am Obstberg 1, 78315 Radolfzell, Germany
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurstrasse 190, 8057 Zurich, Switzerland
| | - Danai Papageorgiou
- Department of Collective Behaviour, Max Planck Institute for Ornithology, Universitätsstrasse 10, 78464 Konstanz, Germany
- Chair of Biodiversity and Collective Behaviour, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Margaret C Crofoot
- Department of Anthropology, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA
- Smithsonian Tropical Research Institute, Luis Clement Avenue, Building 401 Tupper, Balboa Ancon, Panama
| | - Damien R Farine
- Department of Collective Behaviour, Max Planck Institute for Ornithology, Universitätsstrasse 10, 78464 Konstanz, Germany
- Chair of Biodiversity and Collective Behaviour, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
- Edward Grey Institute of Field Ornithology, Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| |
Collapse
|
172
|
Wang MY, Lu FM, Hu Z, Zhang J, Yuan Z. Optical mapping of prefrontal brain connectivity and activation during emotion anticipation. Behav Brain Res 2018; 350:122-128. [PMID: 29752969 DOI: 10.1016/j.bbr.2018.04.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/23/2018] [Accepted: 04/27/2018] [Indexed: 01/17/2023]
Abstract
Accumulated neuroimaging evidence shows that the dorsal lateral prefrontal cortex (dlPFC) is activated during emotion anticipation. The aim of this work is to examine the brain connectivity and activation differences in dlPFC between the positive, neutral and negative emotion anticipation by using functional near-infrared spectroscopy (fNIRS). The hemodynamic responses were first assessed for all subjects during the performance of various emotion anticipation tasks. And then small-world analysis was performed, in which the small-world network indicators including the clustering coefficient, average path length, average node degree, and measure of small-world index were calculated for the functional brain networks associated with the positive, neutral and negative emotion anticipation, respectively. We discovered that compared to negative and neutral emotion anticipation, the positive one exhibited enhanced brain activation in the left dlPFC. Although the functional brain networks for the three emotion anticipation cases manifested the small-world properties regarding the clustering coefficient, average path length, average node degree, and measure of small-world index, the positive one showed significantly higher clustering coefficient and shorter average path length than those from the neutral and negative cases. Consequently, the small-world network indicators and brain activation in dlPPC were able to distinguish well between the positive, neutral and negative emotion anticipation.
Collapse
Affiliation(s)
- Meng-Yun Wang
- Bioimaging Core, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Feng-Mei Lu
- Bioimaging Core, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Zhishan Hu
- Bioimaging Core, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Juan Zhang
- Faculty of Education, University of Macau, Taipa, Macau SAR, China
| | - Zhen Yuan
- Bioimaging Core, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
173
|
Bevilacqua D, Davidesco I, Wan L, Chaloner K, Rowland J, Ding M, Poeppel D, Dikker S. Brain-to-Brain Synchrony and Learning Outcomes Vary by Student-Teacher Dynamics: Evidence from a Real-world Classroom Electroencephalography Study. J Cogn Neurosci 2018; 31:401-411. [PMID: 29708820 DOI: 10.1162/jocn_a_01274] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
How does the human brain support real-world learning? We used wireless electroencephalography to collect neurophysiological data from a group of 12 senior high school students and their teacher during regular biology lessons. Six scheduled classes over the course of the semester were organized such that class materials were presented using different teaching styles (videos and lectures), and students completed a multiple-choice quiz after each class to measure their retention of that lesson's content. Both students' brain-to-brain synchrony and their content retention were higher for videos than lectures across the six classes. Brain-to-brain synchrony between the teacher and students varied as a function of student engagement as well as teacher likeability: Students who reported greater social closeness to the teacher showed higher brain-to-brain synchrony with the teacher, but this was only the case for lectures-that is, when the teacher is an integral part of the content presentation. Furthermore, students' retention of the class content correlated with student-teacher closeness, but not with brain-to-brain synchrony. These findings expand on existing social neuroscience research by showing that social factors such as perceived closeness are reflected in brain-to-brain synchrony in real-world group settings and can predict cognitive outcomes such as students' academic performance.
Collapse
Affiliation(s)
| | | | | | | | - Jess Rowland
- New York University.,School of Visual Arts, New York, NY
| | | | - David Poeppel
- New York University.,Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
| | | |
Collapse
|
174
|
Zheng L, Chen C, Liu W, Long Y, Zhao H, Bai X, Zhang Z, Han Z, Liu L, Guo T, Chen B, Ding G, Lu C. Enhancement of teaching outcome through neural prediction of the students' knowledge state. Hum Brain Mapp 2018; 39:3046-3057. [PMID: 29575392 DOI: 10.1002/hbm.24059] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 11/07/2022] Open
Abstract
The neural mechanism for the dyadic process of teaching is poorly understood. Although theories about teaching have proposed that before any teaching takes place, the teacher will predict the knowledge state of the student(s) to enhance the teaching outcome, this theoretical Prediction-Transmission hypothesis has not been tested with any neuroimaging studies. Using functional near-infrared spectroscopy-based hyperscanning, this study measured brain activities of the teacher-student pairs simultaneously. Results showed that better teaching outcome was associated with higher time-lagged interpersonal neural synchronization (INS) between right temporal-parietal junction (TPJ) of the teacher and anterior superior temporal cortex (aSTC) of the student, when the teacher's brain activity preceded that of the student. Moreover, time course analyses suggested that such INS could mark the quality of the teaching outcome at an early stage of the teaching process. These results provided key neural evidence for the Prediction-Transmission hypothesis about teaching, and suggested that the INS plays an important role in the successful teaching.
Collapse
Affiliation(s)
- Lifen Zheng
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Chuansheng Chen
- Department of Psychology and Social Behavior, University of California, Irvine, California, 92697
| | - Wenda Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Yuhang Long
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Hui Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Xialu Bai
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Zaizhu Han
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Li Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Taomei Guo
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Baoguo Chen
- Beijing Key Laboratory of Applied Experimental Psychology, School of Psychology, Beijing Normal University, Beijing, 100875, China
| | - Guosheng Ding
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
175
|
Sun PP, Tan FL, Zhang Z, Jiang YH, Zhao Y, Zhu CZ. Feasibility of Functional Near-Infrared Spectroscopy (fNIRS) to Investigate the Mirror Neuron System: An Experimental Study in a Real-Life Situation. Front Hum Neurosci 2018; 12:86. [PMID: 29556185 PMCID: PMC5845015 DOI: 10.3389/fnhum.2018.00086] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/19/2018] [Indexed: 01/01/2023] Open
Abstract
The mirror neuron system (MNS), mainly including the premotor cortex (PMC), inferior frontal gyrus (IFG), superior parietal lobule (SPL), and rostral inferior parietal lobule (IPL), has attracted extensive attention as a possible neural mechanism of social interaction. Owing to high ecological validity, functional near-infrared spectroscopy (fNIRS) has become an ideal approach for exploring the MNS. Unfortunately, for the feasibility of fNIRS to detect the MNS, none of the four dominant regions were found in previous studies, implying a very limited capacity of fNIRS to investigate the MNS. Here, we adopted an experimental paradigm in a real-life situation to evaluate whether the MNS activity, including four dominant regions, can be detected by using fNIRS. Specifically, 30 right-handed subjects were asked to complete a table-setting task that included action execution and action observation. A double density probe configuration covered the four regions of the MNS in the left hemisphere. We used a traditional channel-based group analysis and also a ROI-based group analysis to find which regions are activated during both action execution and action observation. The results showed that the IFG, adjacent PMC, SPL, and IPL were involved in both conditions, indicating the feasibility of fNIRS to detect the MNS. Our findings provide a foundation for future research to explore the functional role of the MNS in social interaction and various disorders using fNIRS.
Collapse
Affiliation(s)
- Pei-Pei Sun
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Fu-Lun Tan
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Zong Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yi-Han Jiang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yang Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Chao-Zhe Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
176
|
The infant brain in the social world: Moving toward interactive social neuroscience with functional near-infrared spectroscopy. Neurosci Biobehav Rev 2018; 87:38-49. [PMID: 29371139 DOI: 10.1016/j.neubiorev.2018.01.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 12/04/2017] [Accepted: 01/19/2018] [Indexed: 11/20/2022]
Abstract
Typically developing infants rapidly acquire a sophisticated array of social skills within the first year of life. These social skills are largely learned within the context of day-to-day interactions with caregivers. While social neuroscience has made great gains in our knowledge of the underlying neural circuitry of social cognition and behavior, much of this work has focused on experiments that sacrifice ecological validity for experimental control. Functional near-infrared spectroscopy (fNIRS) is a promising methodology for measuring brain activity in the context of naturalistic social interactions. Here, we review what we have learned from fNIRS studies that have used traditional experimental stimuli to study social development during infancy. We then discuss recent infant fNIRS studies that have utilized more naturalistic social stimuli, followed by a discussion of applications of this methodology to the study of atypical social development, with a focus on infants at risk for autism spectrum disorder. We end with recommendations for applying fNIRS to studies of typically developing and at-risk infants in naturalistic social situations.
Collapse
|
177
|
Piva M, Zhang X, Noah JA, Chang SWC, Hirsch J. Distributed Neural Activity Patterns during Human-to-Human Competition. Front Hum Neurosci 2017; 11:571. [PMID: 29218005 PMCID: PMC5703701 DOI: 10.3389/fnhum.2017.00571] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/10/2017] [Indexed: 11/19/2022] Open
Abstract
Interpersonal interaction is the essence of human social behavior. However, conventional neuroimaging techniques have tended to focus on social cognition in single individuals rather than on dyads or groups. As a result, relatively little is understood about the neural events that underlie face-to-face interaction. We resolved some of the technical obstacles inherent in studying interaction using a novel imaging modality and aimed to identify neural mechanisms engaged both within and across brains in an ecologically valid instance of interpersonal competition. Functional near-infrared spectroscopy was utilized to simultaneously measure hemodynamic signals representing neural activity in pairs of subjects playing poker against each other (human–human condition) or against computer opponents (human–computer condition). Previous fMRI findings concerning single subjects confirm that neural areas recruited during social cognition paradigms are individually sensitive to human–human and human–computer conditions. However, it is not known whether face-to-face interactions between opponents can extend these findings. We hypothesize distributed effects due to live processing and specific variations in across-brain coherence not observable in single-subject paradigms. Angular gyrus (AG), a component of the temporal-parietal junction (TPJ) previously found to be sensitive to socially relevant cues, was selected as a seed to measure within-brain functional connectivity. Increased connectivity was confirmed between AG and bilateral dorsolateral prefrontal cortex (dlPFC) as well as a complex including the left subcentral area (SCA) and somatosensory cortex (SS) during interaction with a human opponent. These distributed findings were supported by contrast measures that indicated increased activity at the left dlPFC and frontopolar area that partially overlapped with the region showing increased functional connectivity with AG. Across-brain analyses of neural coherence between the players revealed synchrony between dlPFC and supramarginal gyrus (SMG) and SS in addition to synchrony between AG and the fusiform gyrus (FG) and SMG. These findings present the first evidence of a frontal-parietal neural complex including the TPJ, dlPFC, SCA, SS, and FG that is more active during human-to-human social cognition both within brains (functional connectivity) and across brains (across-brain coherence), supporting a model of functional integration of socially and strategically relevant information during live face-to-face competitive behaviors.
Collapse
Affiliation(s)
- Matthew Piva
- Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Xian Zhang
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - J Adam Noah
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Steve W C Chang
- Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT, United States.,Department of Psychology, Yale University, New Haven, CT, United States.,Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Joy Hirsch
- Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT, United States.,Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT, United States.,Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, United States.,Department of Comparative Medicine, Yale School of Medicine, Yale University, New Haven, CT, United States.,Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
178
|
Jiang J, Borowiak K, Tudge L, Otto C, von Kriegstein K. Neural mechanisms of eye contact when listening to another person talking. Soc Cogn Affect Neurosci 2017; 12:319-328. [PMID: 27576745 PMCID: PMC5390711 DOI: 10.1093/scan/nsw127] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/24/2016] [Indexed: 11/14/2022] Open
Abstract
Eye contact occurs frequently and voluntarily during face-to-face verbal communication. However, the neural mechanisms underlying eye contact when it is accompanied by spoken language remain unexplored to date. Here we used a novel approach, fixation-based event-related functional magnetic resonance imaging (fMRI), to simulate the listener making eye contact with a speaker during verbal communication. Participants’ eye movements and fMRI data were recorded simultaneously while they were freely viewing a pre-recorded speaker talking. The eye tracking data were then used to define events for the fMRI analyses. The results showed that eye contact in contrast to mouth fixation involved visual cortical areas (cuneus, calcarine sulcus), brain regions related to theory of mind/intentionality processing (temporoparietal junction, posterior superior temporal sulcus, medial prefrontal cortex) and the dorsolateral prefrontal cortex. In addition, increased effective connectivity was found between these regions for eye contact in contrast to mouth fixations. The results provide first evidence for neural mechanisms underlying eye contact when watching and listening to another person talking. The network we found might be well suited for processing the intentions of communication partners during eye contact in verbal communication.
Collapse
Affiliation(s)
- Jing Jiang
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin 10117, Germany.,Institute of Psychology, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| | - Kamila Borowiak
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Luke Tudge
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Carolin Otto
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Katharina von Kriegstein
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany.,Institute of Psychology, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| |
Collapse
|
179
|
Szymanski C, Müller V, Brick TR, von Oertzen T, Lindenberger U. Hyper-Transcranial Alternating Current Stimulation: Experimental Manipulation of Inter-Brain Synchrony. Front Hum Neurosci 2017; 11:539. [PMID: 29167638 PMCID: PMC5682643 DOI: 10.3389/fnhum.2017.00539] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 10/24/2017] [Indexed: 01/29/2023] Open
Abstract
We walk together, we watch together, we win together: Interpersonally coordinated actions are omnipresent in everyday life, yet the associated neural mechanisms are not well understood. Available evidence suggests that the synchronization of oscillatory activity across brains may provide a mechanism for the temporal alignment of actions between two or more individuals. In an attempt to provide a direct test of this hypothesis, we applied transcranial alternating current stimulation simultaneously to two individuals (hyper-tACS) who were asked to drum in synchrony at a set pace. Thirty-eight female-female dyads performed the dyadic drumming in the course of 3 weeks under three different hyper-tACS stimulation conditions: same-phase-same-frequency; different-phase-different-frequency; sham. Based on available evidence and theoretical considerations, stimulation was applied over right frontal and parietal sites in the theta frequency range. We predicted that same-phase-same-frequency stimulation would improve interpersonal action coordination, expressed as the degree of synchrony in dyadic drumming, relative to the other two conditions. Contrary to expectations, both the same-phase-same-frequency and the different-phase-different-frequency conditions were associated with greater dyadic drumming asynchrony relative to the sham condition. No influence of hyper-tACS on behavioral performance was seen when participants were asked to drum separately in synchrony to a metronome. Individual and dyad preferred drumming tempo was also unaffected by hyper-tACS. We discuss limitations of the present version of the hyper-tACS paradigm, and suggest avenues for future research.
Collapse
Affiliation(s)
- Caroline Szymanski
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt University of Berlin, Berlin, Germany
| | - Viktor Müller
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Timothy R Brick
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,Department of Human Development and Family Studies, Pennsylvania State University, State College, PA, United States
| | - Timo von Oertzen
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,Department of Humanities, Universität der Bundeswehr München, München, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,European University Institute, Fiesole, Italy
| |
Collapse
|
180
|
Ahn S, Cho H, Kwon M, Kim K, Kwon H, Kim BS, Chang WS, Chang JW, Jun SC. Interbrain phase synchronization during turn-taking verbal interaction-a hyperscanning study using simultaneous EEG/MEG. Hum Brain Mapp 2017; 39:171-188. [PMID: 29024193 DOI: 10.1002/hbm.23834] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 09/04/2017] [Accepted: 09/22/2017] [Indexed: 01/25/2023] Open
Abstract
Recently, neurophysiological findings about social interaction have been investigated widely, and hardware has been developed that can measure multiple subjects' brain activities simultaneously. These hyperscanning studies have enabled us to discover new and important evidences of interbrain interactions. Yet, very little is known about verbal interaction without any visual input. Therefore, we conducted a new hyperscanning study based on verbal, interbrain turn-taking interaction using simultaneous EEG/MEG, which measures rapidly changing brain activities. To establish turn-taking verbal interactions between a pair of subjects, we set up two EEG/MEG systems (19 and 146 channels of EEG and MEG, respectively) located ∼100 miles apart. Subjects engaged in verbal communication via condenser microphones and magnetic-compatible earphones, and a network time protocol synchronized the two systems. Ten subjects participated in this experiment and performed verbal interaction and noninteraction tasks separately. We found significant oscillations in EEG alpha and MEG alpha/gamma bands in several brain regions for all subjects. Furthermore, we estimated phase synchronization between two brains using the weighted phase lag index and found statistically significant synchronization in EEG and MEG data. Our novel paradigm and neurophysiological findings may foster a basic understanding of the functional mechanisms involved in human social interactions. Hum Brain Mapp 39:171-188, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sangtae Ahn
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hohyun Cho
- New York State Department of Health, Wadsworth Center, Albany, New York
| | - Moonyoung Kwon
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Kiwoong Kim
- Center for Biosignals, Korea Research Institute of Standards and Science, Daejeon, South Korea.,Department of Medical Physics, University of Science and Technology, Daejeon, South Korea
| | - Hyukchan Kwon
- Center for Biosignals, Korea Research Institute of Standards and Science, Daejeon, South Korea
| | - Bong Soo Kim
- EIT/LOFUS R&D Center, Institute for Integrative Medicine, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, South Korea.,Catholic Kwandong University International St. Mary's Hospital, Incheon, South Korea
| | - Won Seok Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Woo Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Chan Jun
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, South Korea
| |
Collapse
|
181
|
Hirsch J, Zhang X, Noah JA, Ono Y. Frontal temporal and parietal systems synchronize within and across brains during live eye-to-eye contact. Neuroimage 2017; 157:314-330. [PMID: 28619652 PMCID: PMC5863547 DOI: 10.1016/j.neuroimage.2017.06.018] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 06/02/2017] [Accepted: 06/07/2017] [Indexed: 02/03/2023] Open
Abstract
Human eye-to-eye contact is a primary source of social cues and communication. In spite of the biological significance of this interpersonal interaction, the underlying neural processes are not well-understood. This knowledge gap, in part, reflects limitations of conventional neuroimaging methods, including solitary confinement in the bore of a scanner and minimal tolerance of head movement that constrain investigations of natural, two-person interactions. However, these limitations are substantially resolved by recent technical developments in functional near-infrared spectroscopy (fNIRS), a non-invasive spectral absorbance technique that detects changes in blood oxygen levels in the brain by using surface-mounted optical sensors. Functional NIRS is tolerant of limited head motion and enables simultaneous acquisitions of neural signals from two interacting partners in natural conditions. We employ fNIRS to advance a data-driven theoretical framework for two-person neuroscience motivated by the Interactive Brain Hypothesis which proposes that interpersonal interaction between individuals evokes neural mechanisms not engaged during solo, non-interactive, behaviors. Within this context, two specific hypotheses related to eye-to-eye contact, functional specificity and functional synchrony, were tested. The functional specificity hypothesis proposes that eye-to-eye contact engages specialized, within-brain, neural systems; and the functional synchrony hypothesis proposes that eye-to-eye contact engages specialized, across-brain, neural processors that are synchronized between dyads. Signals acquired during eye-to-eye contact between partners (interactive condition) were compared to signals acquired during mutual gaze at the eyes of a picture-face (non-interactive condition). In accordance with the specificity hypothesis, responses during eye-to-eye contact were greater than eye-to-picture gaze for a left frontal cluster that included pars opercularis (associated with canonical language production functions known as Broca's region), pre- and supplementary motor cortices (associated with articulatory systems), as well as the subcentral area. This frontal cluster was also functionally connected to a cluster located in the left superior temporal gyrus (associated with canonical language receptive functions known as Wernicke's region), primary somatosensory cortex, and the subcentral area. In accordance with the functional synchrony hypothesis, cross-brain coherence during eye-to-eye contact relative to eye-to-picture gaze increased for signals originating within left superior temporal, middle temporal, and supramarginal gyri as well as the pre- and supplementary motor cortices of both interacting brains. These synchronous cross-brain regions are also associated with known language functions, and were partner-specific (i.e., disappeared with randomly assigned partners). Together, both within and across-brain neural correlates of eye-to-eye contact included components of previously established productive and receptive language systems. These findings reveal a left frontal, temporal, and parietal long-range network that mediates neural responses during eye-to-eye contact between dyads, and advance insight into elemental mechanisms of social and interpersonal interactions.
Collapse
Affiliation(s)
- Joy Hirsch
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06511, USA; Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06511, USA; Department of Medical Physics and Biomedical Engineering, University College London, UK.
| | - Xian Zhang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - J Adam Noah
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Yumie Ono
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kawasaki, Kanagawa, Japan
| |
Collapse
|
182
|
Zhang M, Liu T, Pelowski M, Yu D. Gender difference in spontaneous deception: A hyperscanning study using functional near-infrared spectroscopy. Sci Rep 2017; 7:7508. [PMID: 28790399 PMCID: PMC5548786 DOI: 10.1038/s41598-017-06764-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 06/19/2017] [Indexed: 12/21/2022] Open
Abstract
Previous studies have demonstrated that the neural basis of deception involves a network of regions including the medial frontal cortex (MFC), superior temporal sulcus (STS), temporo-parietal junction (TPJ), etc. However, to test the actual activity of the brain in the act of deceptive practice itself, existing studies have mainly adopted paradigms of passive deception, where participants are told to lie in certain conditions, and have focused on intra-brain mechanisms in single participants. In order to examine the neural substrates underlying more natural, spontaneous deception in real social interactions, the present study employed a functional near-infrared spectroscopy (fNIRS) hyperscanning technique to simultaneously measure pairs of participants' fronto-temporal activations in a two-person gambling card-game. We demonstrated higher TPJ activation in deceptive compared to honest acts. Analysis of participants' inter-brain correlation further revealed that the STS is uniquely involved in deception but not in honesty, especially in females. These results suggest that the STS may play a critical role in spontaneous deception due to mentalizing requirements relating to modulating opponents' thoughts. To our knowledge, this study was the first to investigate such inter-brain correlates of deception in real face-to-face interactions, and thus is hoped to provide a new path for future complex social behavior research.
Collapse
Affiliation(s)
- Mingming Zhang
- Key Laboratory of Child Development and Learning Science, Ministry of Education, Southeast University, Nanjing, 210096, China.,Research Center For Learning Science, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Tao Liu
- Department of Marketing, School of Management, Zhejiang University, Hangzhou, 310058, China.
| | - Matthew Pelowski
- Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of Vienna, Vienna, Liebiggasse 5, 1010, Austria
| | - Dongchuan Yu
- Key Laboratory of Child Development and Learning Science, Ministry of Education, Southeast University, Nanjing, 210096, China. .,Research Center For Learning Science, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
183
|
Teams on the same wavelength perform better: Inter-brain phase synchronization constitutes a neural substrate for social facilitation. Neuroimage 2017; 152:425-436. [DOI: 10.1016/j.neuroimage.2017.03.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/25/2017] [Accepted: 03/07/2017] [Indexed: 11/18/2022] Open
|
184
|
Santosa H, Aarabi A, Perlman SB, Huppert TJ. Characterization and correction of the false-discovery rates in resting state connectivity using functional near-infrared spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:55002. [PMID: 28492852 PMCID: PMC5424771 DOI: 10.1117/1.jbo.22.5.055002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/11/2017] [Indexed: 05/18/2023]
Abstract
Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique that uses low levels of red to near-infrared light to measure changes in cerebral blood oxygenation. Spontaneous (resting state) functional connectivity (sFC) has become a critical tool for cognitive neuroscience for understanding task-independent neural networks, revealing pertinent details differentiating healthy from disordered brain function, and discovering fluctuations in the synchronization of interacting individuals during hyperscanning paradigms. Two of the main challenges to sFC-NIRS analysis are (i) the slow temporal structure of both systemic physiology and the response of blood vessels, which introduces false spurious correlations, and (ii) motion-related artifacts that result from movement of the fNIRS sensors on the participants’ head and can introduce non-normal and heavy-tailed noise structures. In this work, we systematically examine the false-discovery rates of several time- and frequency-domain metrics of functional connectivity for characterizing sFC-NIRS. Specifically, we detail the modifications to the statistical models of these methods needed to avoid high levels of false-discovery related to these two sources of noise in fNIRS. We compare these analysis procedures using both simulated and experimental resting-state fNIRS data. Our proposed robust correlation method has better performance in terms of being more reliable to the noise outliers due to the motion artifacts.
Collapse
Affiliation(s)
- Hendrik Santosa
- University of Pittsburgh, Department of Radiology, Pittsburgh, Pennsylvania, United States
| | - Ardalan Aarabi
- Universite de Picardie Jules Verne, Department of Medicine, Amiens, France
| | - Susan B. Perlman
- University of Pittsburgh, Department of Psychiatry, Pittsburgh, Pennsylvania, United States
| | - Theodore J. Huppert
- University of Pittsburgh, Departments of Radiology and Bioengineering, Clinical Science Translational Institute, and Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, United States
- Address all correspondence to: Theodore J. Huppert, E-mail:
| |
Collapse
|
185
|
Dikker S, Wan L, Davidesco I, Kaggen L, Oostrik M, McClintock J, Rowland J, Michalareas G, Van Bavel JJ, Ding M, Poeppel D. Brain-to-Brain Synchrony Tracks Real-World Dynamic Group Interactions in the Classroom. Curr Biol 2017; 27:1375-1380. [PMID: 28457867 DOI: 10.1016/j.cub.2017.04.002] [Citation(s) in RCA: 307] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/27/2017] [Accepted: 04/04/2017] [Indexed: 10/19/2022]
Abstract
The human brain has evolved for group living [1]. Yet we know so little about how it supports dynamic group interactions that the study of real-world social exchanges has been dubbed the "dark matter of social neuroscience" [2]. Recently, various studies have begun to approach this question by comparing brain responses of multiple individuals during a variety of (semi-naturalistic) tasks [3-15]. These experiments reveal how stimulus properties [13], individual differences [14], and contextual factors [15] may underpin similarities and differences in neural activity across people. However, most studies to date suffer from various limitations: they often lack direct face-to-face interaction between participants, are typically limited to dyads, do not investigate social dynamics across time, and, crucially, they rarely study social behavior under naturalistic circumstances. Here we extend such experimentation drastically, beyond dyads and beyond laboratory walls, to identify neural markers of group engagement during dynamic real-world group interactions. We used portable electroencephalogram (EEG) to simultaneously record brain activity from a class of 12 high school students over the course of a semester (11 classes) during regular classroom activities (Figures 1A-1C; Supplemental Experimental Procedures, section S1). A novel analysis technique to assess group-based neural coherence demonstrates that the extent to which brain activity is synchronized across students predicts both student class engagement and social dynamics. This suggests that brain-to-brain synchrony is a possible neural marker for dynamic social interactions, likely driven by shared attention mechanisms. This study validates a promising new method to investigate the neuroscience of group interactions in ecologically natural settings.
Collapse
Affiliation(s)
- Suzanne Dikker
- Department of Psychology, New York University, 6 Washington Place, New York, NY 10003, USA; Department of Language and Communication, Utrecht Institute of Linguistics OTS, Utrecht University, Trans 10, 3512 JK Utrecht, the Netherlands.
| | - Lu Wan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL 32611, USA
| | - Ido Davidesco
- Department of Psychology, New York University, 6 Washington Place, New York, NY 10003, USA
| | - Lisa Kaggen
- Department of Psychology, New York University, 6 Washington Place, New York, NY 10003, USA
| | | | | | - Jess Rowland
- Department of Psychology, New York University, 6 Washington Place, New York, NY 10003, USA
| | - Georgios Michalareas
- Max Planck Institute for Empirical Aesthetics, Grüneburgweg 14, 60322 Frankfurt am Main, Germany
| | - Jay J Van Bavel
- Department of Psychology, New York University, 6 Washington Place, New York, NY 10003, USA
| | - Mingzhou Ding
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL 32611, USA
| | - David Poeppel
- Department of Psychology, New York University, 6 Washington Place, New York, NY 10003, USA; Max Planck Institute for Empirical Aesthetics, Grüneburgweg 14, 60322 Frankfurt am Main, Germany.
| |
Collapse
|
186
|
Ikeda S, Nozawa T, Yokoyama R, Miyazaki A, Sasaki Y, Sakaki K, Kawashima R. Steady Beat Sound Facilitates both Coordinated Group Walking and Inter-Subject Neural Synchrony. Front Hum Neurosci 2017; 11:147. [PMID: 28396632 PMCID: PMC5366316 DOI: 10.3389/fnhum.2017.00147] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 03/13/2017] [Indexed: 11/15/2022] Open
Abstract
Group walking is a collective social interaction task as pedestrians are required to determine their own pace of walking on the basis of surrounding others’ states. The steady beat sound is known to be a controllable factor that contributes to relative success/failure of coordinated group walking since the beat improves pedestrian flow in congested situation. According to some reports, inter-personal interaction synchronizes inter-personal brain activity in the prefrontal region, which supports social cognitive processes required for successful inter-individual coordination, such as predicting each other’s state; success/failure of a coordinated task is associated with increase/decrease in inter-subject neural synchrony (INS). Combining these previous findings, we hypothesized that INS during group walking in congested situations would also differ depending on the existence of the steady beat, corresponding to the modulated coordination-related cognitive processes. Subjects’ frontopolar activities were measured using ultra-small near infrared spectroscopy, which can simultaneously measure the brain activities of multiple subjects without constraints on their motions. To exclude the possibility that increased INS may be spuriously induced by the shared stimuli (i.e., steady beat) or by the resultant behavioral synchronization, as control we used stepping on a same spot, which is similar in movement to walking but does not require the subjects to consider others’ states, either with or without the steady beat. In a two by two repeated measures factorial experimental design, the subjects were instructed to walk or keep stepping on a same spot with or without a steady beat sound of 70 beats per minute. As previously reported, the walking flow during group walking with the beat significantly increased compared with that without the beat. Synchronization of stepping between the subjects was also significantly increased by the steady beat sound. For INS, we observed a significant interaction effect between walking/stepping and sound/no-sound, supporting our hypothesis. INS while walking with the beat was higher than that without the beat, whereas the beat induced no significant differences in INS during stepping. Furthermore, the effect of the beat on INS while walking was spatially extended beyond the adjacent pedestrians, reflecting the diffuse nature of the collective coordination in group walking. The increase of INS for walking suggested that the steady beat sound led to more harmonized inter-personal cognitive processes, which resulted in the more coordinated group motion.
Collapse
Affiliation(s)
- Shigeyuki Ikeda
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University Sendai, Japan
| | - Takayuki Nozawa
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University Sendai, Japan
| | - Ryoichi Yokoyama
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku UniversitySendai, Japan; Japan Society for the Promotion of ScienceTokyo, Japan
| | - Atsuko Miyazaki
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University Sendai, Japan
| | - Yukako Sasaki
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University Sendai, Japan
| | - Kohei Sakaki
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University Sendai, Japan
| | - Ryuta Kawashima
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku UniversitySendai, Japan; Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku UniversitySendai, Japan; Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku UniversitySendai, Japan
| |
Collapse
|
187
|
Zhao Y, Dai RN, Xiao X, Zhang Z, Duan L, Li Z, Zhu CZ. Independent component analysis-based source-level hyperlink analysis for two-person neuroscience studies. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:27004. [PMID: 28301653 DOI: 10.1117/1.jbo.22.2.027004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/13/2017] [Indexed: 05/12/2023]
Abstract
Two-person neuroscience, a perspective in understanding human social cognition and interaction, involves designing immersive social interaction experiments as well as simultaneously recording brain activity of two or more subjects, a process termed “hyperscanning.” Using newly developed imaging techniques, the interbrain connectivity or hyperlink of various types of social interaction has been revealed. Functional near-infrared spectroscopy (fNIRS)-hyperscanning provides a more naturalistic environment for experimental paradigms of social interaction and has recently drawn much attention. However, most fNIRS-hyperscanning studies have computed hyperlinks using sensor data directly while ignoring the fact that the sensor-level signals contain confounding noises, which may lead to a loss of sensitivity and specificity in hyperlink analysis. In this study, on the basis of independent component analysis (ICA), a source-level analysis framework is proposed to investigate the hyperlinks in a fNIRS two-person neuroscience study. The performance of five widely used ICA algorithms in extracting sources of interaction was compared in simulative datasets, and increased sensitivity and specificity of hyperlink analysis by our proposed method were demonstrated in both simulative and real two-person experiments.
Collapse
Affiliation(s)
- Yang Zhao
- Beijing Normal University, State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing, China
| | - Rui-Na Dai
- Beijing Normal University, State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing, China
| | - Xiang Xiao
- Beijing Normal University, State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing, China
| | - Zong Zhang
- Beijing Normal University, State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing, China
| | - Lian Duan
- Beijing Normal University, State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing, China
| | - Zheng Li
- Beijing Normal University, State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing, ChinabBeijing Normal University, Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing, China
| | - Chao-Zhe Zhu
- Beijing Normal University, State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing, ChinabBeijing Normal University, Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing, China
| |
Collapse
|
188
|
Takeuchi N, Mori T, Suzukamo Y, Izumi SI. Integration of Teaching Processes and Learning Assessment in the Prefrontal Cortex during a Video Game Teaching-learning Task. Front Psychol 2017; 7:2052. [PMID: 28119650 PMCID: PMC5220187 DOI: 10.3389/fpsyg.2016.02052] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/19/2016] [Indexed: 01/26/2023] Open
Abstract
Human teaching is a social interaction that supports reciprocal and dynamical feedback between the teacher and the student. The prefrontal cortex (PFC) is a region of particular interest due to its demonstrated role in social interaction. In the present study, we evaluated the PFC activity simultaneously in two individuals playing the role of a teacher and student in a video game teaching-learning task. For that, we used two wearable near-infrared spectroscopy (NIRS) devices in order to elucidate the neural mechanisms underlying cognitive interactions between teachers and students. Fifteen teacher-student pairs in total (N = 30) participated in this study. Each teacher was instructed to teach the video game to their student partner, without speaking. The PFC activity was simultaneously evaluated in both participants using a wearable 16-channel NIRS system during the video game teaching-learning task. Two sessions, each including a triplet of a 30-s teaching-learning task, were performed in order to evaluate changes in PFC activity after advancement of teaching-learning state. Changes in the teachers' left PFC activity between the first and second session positively correlated with those observed in students (r = 0.694, p = 0.004). Moreover, among teachers, multiple regression analysis revealed a correlation between the left PFC activity and the assessment gap between one's own teaching and the student's understanding (β = 0.649, p = 0.009). Activity in the left PFC changed synchronously in both teachers and students after advancement of the teaching-learning state. The left PFC of teachers may be involved in integrating information regarding one's own teaching process and the student's learning state. The present observations indicate that simultaneous recording and analysis of brain activity data during teacher-student interactions may be useful in the field of educational neuroscience.
Collapse
Affiliation(s)
- Naoyuki Takeuchi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine Sendai, Japan
| | - Takayuki Mori
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine Sendai, Japan
| | - Yoshimi Suzukamo
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine Sendai, Japan
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine Sendai, Japan
| |
Collapse
|
189
|
Tadić B, Andjelković M, Boshkoska BM, Levnajić Z. Algebraic Topology of Multi-Brain Connectivity Networks Reveals Dissimilarity in Functional Patterns during Spoken Communications. PLoS One 2016; 11:e0166787. [PMID: 27880802 PMCID: PMC5120797 DOI: 10.1371/journal.pone.0166787] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/03/2016] [Indexed: 12/03/2022] Open
Abstract
Human behaviour in various circumstances mirrors the corresponding brain connectivity patterns, which are suitably represented by functional brain networks. While the objective analysis of these networks by graph theory tools deepened our understanding of brain functions, the multi-brain structures and connections underlying human social behaviour remain largely unexplored. In this study, we analyse the aggregate graph that maps coordination of EEG signals previously recorded during spoken communications in two groups of six listeners and two speakers. Applying an innovative approach based on the algebraic topology of graphs, we analyse higher-order topological complexes consisting of mutually interwoven cliques of a high order to which the identified functional connections organise. Our results reveal that the topological quantifiers provide new suitable measures for differences in the brain activity patterns and inter-brain synchronisation between speakers and listeners. Moreover, the higher topological complexity correlates with the listener's concentration to the story, confirmed by self-rating, and closeness to the speaker's brain activity pattern, which is measured by network-to-network distance. The connectivity structures of the frontal and parietal lobe consistently constitute distinct clusters, which extend across the listener's group. Formally, the topology quantifiers of the multi-brain communities exceed the sum of those of the participating individuals and also reflect the listener's rated attributes of the speaker and the narrated subject. In the broader context, the presented study exposes the relevance of higher topological structures (besides standard graph measures) for characterising functional brain networks under different stimuli.
Collapse
Affiliation(s)
- Bosiljka Tadić
- Department of Theoretical Physics, Jožef Stefan Institute, 1001 Ljubljana, Slovenia
| | - Miroslav Andjelković
- Department of Theoretical Physics, Jožef Stefan Institute, 1001 Ljubljana, Slovenia
- Institute for Nuclear Sciences Vinča, University of Belgrade, Belgrade, Serbia
| | - Biljana Mileva Boshkoska
- Faculty of Information Studies, Ulica Talcev 3, 8000 Novo Mesto, Slovenia
- Department of Knowledge Technologies, Jožef Stefan Institute, 1001 Ljubljana, Slovenia
| | - Zoran Levnajić
- Faculty of Information Studies, Ulica Talcev 3, 8000 Novo Mesto, Slovenia
| |
Collapse
|
190
|
Pan Y, Cheng X, Zhang Z, Li X, Hu Y. Cooperation in lovers: An fNIRS-based hyperscanning study. Hum Brain Mapp 2016; 38:831-841. [PMID: 27699945 DOI: 10.1002/hbm.23421] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/30/2016] [Accepted: 09/23/2016] [Indexed: 01/25/2023] Open
Abstract
This study investigated interactive exchange in lovers and the associated interpersonal brain synchronization (IBS) using functional near-infrared spectroscopy (fNIRS)-based hyperscanning. Three types of female-male dyads, lovers, friends, and strangers, performed a cooperation task during which brain activity was recorded in right frontoparietal regions. We measured better cooperative behavior in lover dyads compared with friend and stranger dyads. Lover dyads demonstrated increased IBS in right superior frontal cortex, which also covaried with their task performance. Granger causality analyses in lover dyads revealed stronger directional synchronization from females to males than from males to females, suggesting different roles for females and males during cooperation. Our study refines the theoretical explanation of romantic interaction between lovers. Hum Brain Mapp 38:831-841, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yafeng Pan
- School of Psychology and Cognitive Science, Faculty of Education, East China Normal University, Shanghai, People's Republic of China
| | - Xiaojun Cheng
- School of Psychology and Cognitive Science, Faculty of Education, East China Normal University, Shanghai, People's Republic of China
| | - Zhenxin Zhang
- Department of Psychology, Zhejiang Normal University, Jinhua, People's Republic of China
| | - Xianchun Li
- School of Psychology and Cognitive Science, Faculty of Education, East China Normal University, Shanghai, People's Republic of China
| | - Yi Hu
- School of Psychology and Cognitive Science, Faculty of Education, East China Normal University, Shanghai, People's Republic of China
| |
Collapse
|
191
|
Mu Y, Guo C, Han S. Oxytocin enhances inter-brain synchrony during social coordination in male adults. Soc Cogn Affect Neurosci 2016; 11:1882-1893. [PMID: 27510498 DOI: 10.1093/scan/nsw106] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 07/13/2016] [Accepted: 08/03/2016] [Indexed: 11/14/2022] Open
Abstract
Recent brain imaging research has revealed oxytocin (OT) effects on an individual's brain activity during social interaction but tells little about whether and how OT modulates the coherence of inter-brain activity related to two individuals' coordination behavior. We developed a new real-time coordination game that required two individuals of a dyad to synchronize with a partner (coordination task) or with a computer (control task) by counting in mind rhythmically. Electroencephalography (EEG) was recorded simultaneously from a dyad to examine OT effects on inter-brain synchrony of neural activity during interpersonal coordination. Experiment 1 found that dyads showed smaller interpersonal time lags of counting and greater inter-brain synchrony of alpha-band neural oscillations during the coordination (vs control) task and these effects were reliably observed in female but not male dyads. Moreover, the increased alpha-band inter-brain synchrony predicted better interpersonal behavioral synchrony across all participants. Experiment 2, using a double blind, placebo-controlled between-subjects design, revealed that intranasal OT vs placebo administration in male dyads improved interpersonal behavioral synchrony in both the coordination and control tasks but specifically enhanced alpha-band inter-brain neural oscillations during the coordination task. Our findings provide first evidence that OT enhances inter-brain synchrony in male adults to facilitate social coordination.
Collapse
Affiliation(s)
- Yan Mu
- School of Psychological and Cognitive Sciences, PKU-IDG/McGovern Institute for Brain Research, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Chunyan Guo
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, Capital Normal University, Beijing, China
| | - Shihui Han
- School of Psychological and Cognitive Sciences, PKU-IDG/McGovern Institute for Brain Research, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| |
Collapse
|
192
|
Quaresima V, Ferrari M. Functional Near-Infrared Spectroscopy (fNIRS) for Assessing Cerebral Cortex Function During Human Behavior in Natural/Social Situations: A Concise Review. ORGANIZATIONAL RESEARCH METHODS 2016. [DOI: 10.1177/1094428116658959] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Upon adequate stimulation, real-time maps of cortical hemodynamic responses can be obtained by functional near-infrared spectroscopy (fNIRS), which noninvasively measures changes in oxygenated and deoxygenated hemoglobin after positioning multiple sources and detectors over the human scalp. This review is aimed at giving a concise and simple overview of the basic principles of fNIRS including features, strengths, advantages, limitations, and utility for evaluating human behavior. The transportable/wireless commercially available fNIRS systems have a time resolution of 1 to 10 Hz, a depth sensitivity of about 1.5 cm, and a spatial resolution up to 1 cm. fNIRS has been found suitable for many applications on human beings, either adults or infants/children, in the field of social sciences, neuroimaging basic research, and medicine. Some examples of present and future prospects of fNIRS for assessing cerebral cortex function during human behavior in different situations (in natural and social situations) will be provided. Moreover, the most recent fNIRS studies for investigating interpersonal interactions by adopting the hyperscanning approach, which consists of the measurement of brain activity simultaneously on two or more people, will be reported.
Collapse
Affiliation(s)
- Valentina Quaresima
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Italy
| | - Marco Ferrari
- Department of Physical and Chemical Sciences, University of L’Aquila, Italy
| |
Collapse
|
193
|
Liu C, Yuan L, Chen C, Yu G. Authentic and Hubristic Pride as Assessed by Self, Friends, and Strangers. SOCIAL PSYCHOLOGICAL AND PERSONALITY SCIENCE 2016. [DOI: 10.1177/1948550616649240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Previous research has distinguished authentic and hubristic facets of pride, which can be assessed by the Authentic and Hubristic Pride Scales (AHPS). To examine the relations between self-ratings and others’ ratings of pride, this study recruited 110 participants and obtained their self-ratings on the AHPS and ratings by two friends and three strangers in a round-robin design. In addition, participants’ social status was self-reported and their leadership style (dominance vs. prestige) was evaluated by friends and strangers. Results revealed higher self-friend agreement than self-stranger agreement on authentic pride and higher friend–stranger agreement than self-other (friend and stranger) agreement on hubristic pride, suggesting that authentic pride is noticed by close friends as well as oneself, but hubristic pride is obvious only to others. Consistent with this, there was also some evidence that other-rated hubristic pride was significantly associated with social status and dominant leadership style.
Collapse
Affiliation(s)
- Conghui Liu
- Department of Psychology, Renmin University of China, Beijing, China
| | - Li Yuan
- Department of Psychology, Renmin University of China, Beijing, China
| | - Chuansheng Chen
- Department of Psychology and Social Behavior, University of California, Irvine, CA, USA
| | - Guoliang Yu
- School of Education, Renmin University of China, Beijing, China
| |
Collapse
|
194
|
Koole SL, Tschacher W. Synchrony in Psychotherapy: A Review and an Integrative Framework for the Therapeutic Alliance. Front Psychol 2016; 7:862. [PMID: 27378968 PMCID: PMC4907088 DOI: 10.3389/fpsyg.2016.00862] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 05/24/2016] [Indexed: 12/30/2022] Open
Abstract
During psychotherapy, patient and therapist tend to spontaneously synchronize their vocal pitch, bodily movements, and even their physiological processes. In the present article, we consider how this pervasive phenomenon may shed new light on the therapeutic relationship- or alliance- and its role within psychotherapy. We first review clinical research on the alliance and the multidisciplinary area of interpersonal synchrony. We then integrate both literatures in the Interpersonal Synchrony (In-Sync) model of psychotherapy. According to the model, the alliance is grounded in the coupling of patient and therapist's brains. Because brains do not interact directly, movement synchrony may help to establish inter-brain coupling. Inter-brain coupling may provide patient and therapist with access to another's internal states, which facilitates common understanding and emotional sharing. Over time, these interpersonal exchanges may improve patients' emotion-regulatory capacities and related therapeutic outcomes. We discuss the empirical assessment of interpersonal synchrony and review preliminary research on synchrony in psychotherapy. Finally, we summarize our main conclusions and consider the broader implications of viewing psychotherapy as the product of two interacting brains.
Collapse
|
195
|
Nozawa T, Sasaki Y, Sakaki K, Yokoyama R, Kawashima R. Interpersonal frontopolar neural synchronization in group communication: An exploration toward fNIRS hyperscanning of natural interactions. Neuroimage 2016; 133:484-497. [PMID: 27039144 DOI: 10.1016/j.neuroimage.2016.03.059] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/22/2016] [Accepted: 03/22/2016] [Indexed: 12/22/2022] Open
Abstract
Research of interpersonal neural synchronization (INS) using functional near-infrared spectroscopy (fNIRS) hyperscanning is an expanding nascent field. This field still requires the accumulation of findings and establishment of analytic standards. In this study, we therefore intend to extend fNIRS-based INS research in three directions: (1) verifying the enhancement of frontopolar INS by natural and unstructured verbal communication involving more than two individuals; (2) examining timescale dependence of the INS modulation; and (3) evaluating the effects of artifact reduction methods in capturing INS. We conducted an fNIRS hyperscanning study while 12 groups of four subjects were engaged in cooperative verbal communication. Corresponding to the three objectives, our analyses of the data (1) confirmed communication-enhanced frontopolar INS, as expected from the region's roles in social communication; (2) revealed the timescale dependency in the INS modulation, suggesting the merit of evaluating INS in fine timescale bins; and (3) determined that removal of the skin blood flow component engenders substantial improvement in sensitivity to communication-enhanced INS and segregation from artifactual synchronization, and that caution for artifact reduction preprocessing is needed to avoid excessive removal of the neural fluctuation component. Accordingly, this study provides a prospective technical basis for future hyperscanning studies during daily communicative activities.
Collapse
Affiliation(s)
- Takayuki Nozawa
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan.
| | - Yukako Sasaki
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Kohei Sakaki
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Ryoichi Yokoyama
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan; School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Ryuta Kawashima
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan; Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
196
|
Liu N, Mok C, Witt EE, Pradhan AH, Chen JE, Reiss AL. NIRS-Based Hyperscanning Reveals Inter-brain Neural Synchronization during Cooperative Jenga Game with Face-to-Face Communication. Front Hum Neurosci 2016; 10:82. [PMID: 27014019 PMCID: PMC4782164 DOI: 10.3389/fnhum.2016.00082] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/18/2016] [Indexed: 11/13/2022] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) is an increasingly popular technology for studying social cognition. In particular, fNIRS permits simultaneous measurement of hemodynamic activity in two or more individuals interacting in a naturalistic setting. Here, we used fNIRS hyperscanning to study social cognition and communication in human dyads engaged in cooperative and obstructive interaction while they played the game of Jenga™. Novel methods were developed to identify synchronized channels for each dyad and a structural node-based spatial registration approach was utilized for inter-dyad analyses. Strong inter-brain neural synchrony (INS) was observed in the posterior region of the right middle and superior frontal gyrus, in particular Brodmann area 8 (BA8), during cooperative and obstructive interaction. This synchrony was not observed during the parallel game play condition and the dialog section, suggesting that BA8 was involved in goal-oriented social interaction such as complex interactive movements and social decision-making. INS was also observed in the dorsomedial prefrontal cortex (dmPFC), in particular Brodmann 9, during cooperative interaction only. These additional findings suggest that BA9 may be particularly engaged when theory-of-mind (ToM) is required for cooperative social interaction. The new methods described here have the potential to significantly extend fNIRS applications to social cognitive research.
Collapse
Affiliation(s)
- Ning Liu
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University Stanford, CA, USA
| | - Charis Mok
- Program in Human Biology, Stanford University Stanford, CA, USA
| | - Emily E Witt
- Program in Human Biology, Stanford University Stanford, CA, USA
| | - Anjali H Pradhan
- Department of Molecular and Cell Biology, University of California Berkeley, CA, USA
| | - Jingyuan E Chen
- Department of Radiology, Stanford UniversityStanford, CA, USA; Department of Electrical Engineering, Stanford UniversityStanford, CA, USA
| | - Allan L Reiss
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford UniversityStanford, CA, USA; Department of Radiology, Stanford UniversityStanford, CA, USA
| |
Collapse
|
197
|
Guazzini A, Vilone D, Donati C, Nardi A, Levnajić Z. Modeling crowdsourcing as collective problem solving. Sci Rep 2015; 5:16557. [PMID: 26552943 PMCID: PMC4639727 DOI: 10.1038/srep16557] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/12/2015] [Indexed: 12/11/2022] Open
Abstract
Crowdsourcing is a process of accumulating the ideas, thoughts or information from many independent participants, with aim to find the best solution for a given challenge. Modern information technologies allow for massive number of subjects to be involved in a more or less spontaneous way. Still, the full potentials of crowdsourcing are yet to be reached. We introduce a modeling framework through which we study the effectiveness of crowdsourcing in relation to the level of collectivism in facing the problem. Our findings reveal an intricate relationship between the number of participants and the difficulty of the problem, indicating the optimal size of the crowdsourced group. We discuss our results in the context of modern utilization of crowdsourcing.
Collapse
Affiliation(s)
- Andrea Guazzini
- Department of Science of Education and Psychology, University of Florence, Florence, Italy
- Center for the Study of Complex Dynamics, University of Florence, Florence, Italy
| | - Daniele Vilone
- Laboratory of Agent Based Social Simulation, Institute of Cognitive Science and Technology, National Research Council, Rome, Italy
| | - Camillo Donati
- Department of Science of Education and Psychology, University of Florence, Florence, Italy
| | - Annalisa Nardi
- Department of Science of Education and Psychology, University of Florence, Florence, Italy
| | - Zoran Levnajić
- Faculty of Information Studies in Novo mesto, Novo mesto, Slovenia
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
198
|
|