151
|
Stoll-Keller F, Barth H, Fafi-Kremer S, Zeisel MB, Baumert TF. Development of hepatitis C virus vaccines: challenges and progress. Expert Rev Vaccines 2009; 8:333-45. [PMID: 19249975 DOI: 10.1586/14760584.8.3.333] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Development of an effective vaccine against the hepatitis C virus (HCV) has long been defined as a difficult challenge due to the considerable variability of this RNA virus and the observation that convalescent humans and chimpanzees could be re-infected after re-exposure. On the other hand, progress in the understanding of antiviral immune responses in patients with viral clearance has elucidated key mechanisms playing a role in the control of viral infection. Studies investigating prophylactic vaccine approaches in chimpanzees have confirmed that the induction and maintenance of strong helper and cytotoxic T-cell immune responses against multiple viral epitopes is necessary for protection against viral clearance and chronic infection. A multispecific B-cell response, resulting in rapid induction of cross-neutralizing antibodies may assist cellular responses. Therapeutic vaccine formulations currently being evaluated in clinical trials are facing the fact that the immune system of chronic carriers is impaired and needs the restoration of T-cell functions to enhance their efficacy.
Collapse
Affiliation(s)
- Françoise Stoll-Keller
- Inserm, U748 et Laboratoire de Virologie des Hôpitaux Universitaires de Strasbourg, 3 rue Koeberlé 67000 Strasbourg, France.
| | | | | | | | | |
Collapse
|
152
|
Zubkova I, Choi YH, Chang E, Pirollo K, Uren T, Watanabe H, Wells F, Kachko A, Krawczynski K, Major ME. T-cell vaccines that elicit effective immune responses against HCV in chimpanzees may create greater immune pressure for viral mutation. Vaccine 2009; 27:2594-602. [PMID: 19428866 DOI: 10.1016/j.vaccine.2009.02.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 12/18/2008] [Accepted: 02/12/2009] [Indexed: 12/16/2022]
Abstract
A prime/boost vaccine strategy that transfects antigen-presenting cells using ligand-modified immunoliposomes to efficiently deliver plasmid DNA, followed by boosting with non-replicating recombinant adenovirus was used in chimpanzees to generate HCV-specific memory T-cells. Three chimpanzees (two vaccines, one control) were immunized with immunoliposomes complexed with DNA expressing NS3-NS5B or complexed with empty vector. Animals were boosted with adenovirus expressing NS3-NS5B, or non-recombinant adenovirus (control). Using liposome delivery we were able to obtain specific HCV responses following DNA priming in the chimpanzees. This data and mouse immunization studies confirm this as a more efficient delivery system than direct intramuscular inoculations with naked DNA. Subsequent to the adenovirus boost significant increases in peripheral HCV-specific T-cell responses and intrahepatic IFN-gamma and CD3varepsilon mRNA were also observed in the two vaccinated animals. Following challenge (100 CID(50)) both vaccinated animals showed immediate and significant control of viral replication (peak titers 3.7x10(4) and 9x10(3)IU/mL at weeks 1 and 2), which coincided with increases in HCV-specific T-cell responses. Viral kinetics in the control animal were comparable to historical controls with exponential increases in titer during the first several weeks. One vaccinated animal developed a low-level persistent infection (2x10(3)IU/mL) which correlated with a decrease in HCV-specific T-cell responses. Circulating virus isolated from both vaccinated animals showed approximately 2-fold greater nonsynonymous mutation rates compared to controls and the nonsynonymous/synonymous mutation rate ratio was indicative of positive selection. These data suggest that although T-cell vaccines can induce immune responses capable of controlling HCV, they also induce high levels of immune pressure for the potential selection of escape mutants.
Collapse
Affiliation(s)
- I Zubkova
- Laboratory of Hepatitis Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Abstract
Despite reductions in the incidence of new hepatitis C virus infections, infections from previous decades continue to place a substantial burden on our health care system. Although the course of the disease is highly variable, approximately 20% to 30% of patients develop cirrhosis, end-stage liver disease, or hepatocellular carcinoma. Fortunately, treatment with our current standard of care, peginterferon a and ribavirin, can reduce the complications of chronic liver disease. However, these drugs are associated with significant adverse effects, many patients are ineligible for treatment, and only 50% are cured. Thus, there is a tremendous need to improve our current therapies and develop new compounds for this disease. This review highlights the transmission, pathophysiology, and course of illness; the pharmacokinetics, proposed mechanisms of action, adverse events, and potential drug interactions with peginterferon a and ribavirin; current treatment trends; the role of the pharmacist in the treatment of this disease; and investigational drugs in later stages of clinical development. Despite the initial hope that these new drugs would replace our current standard of care, it has become clear that ribavirin and peginterferon a will continue to play an important role in the treatment of chronic hepatitis C virus in the years to come.
Collapse
Affiliation(s)
- Jennifer J. Kiser
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado-Denver, Denver, Colorado,
| |
Collapse
|
154
|
Abstract
After nearly 6 years of intensive investigations between 1982 and 1988 in my laboratory at Chiron corporation, in which numerous molecular biological methods were used to investigate the viral aetiology of parenterally transmitted non-A, non-B viral hepatitis (NANBH), a single cDNA clone (5-1-1) was isolated that was shown to be derived from a new flavi-like virus, termed the hepatitis C virus (HCV). After screening hundreds of millions of bacterial cDNA clones derived from different liver and plasma samples obtained from experimentally infected chimpanzees, a single HCV clone was eventually isolated using a novel, blind immunoscreening method in which antibodies derived from a clinically diagnosed NANBH patient were used to identify a cDNA clone encoding an immunodominant epitope within HCV nonstructural protein 4. Its viral origin was demonstrated by its specific hybridization to a large single-stranded RNA molecule of approximately 10,000 nucleotides found only in NANBH-infected samples that shared distant sequence identity with flaviviruses. Further, HCV clone 5-1-1 was shown to be extrachromosomal and to encode an antigen eliciting antibody seroconversion only in NANBH-infected chimpanzees and humans. Subsequent work demonstrated that HCV was the principal cause of parenterally transmitted NANBH around the world, with an estimated 170 million global carriers and that blood screening tests detecting circulating HCV antibodies and viral RNA could effectively eradicate the transmission of transfusion-associated NANBH. Key viral-encoded enzymes essential to its life cycle are now the targets of vigorous, ongoing drug development activities, and the feasibility of successful vaccination strategies has been demonstrated using the valuable chimpanzee model, without which any progress on HCV would not have been possible. My colleagues and coworkers who made essential contributions to the discovery of HCV were George Kuo, who had his own laboratory at Chiron and who provided intellectual and practical input, Dan Bradley of the Centers for Disease Control and Prevention, who provided a large supply of well-characterized chimpanzee samples and knowledge of the NANBH field, and Qui-Lim Choo, in my own laboratory, who provided many years of outstandingly dedicated and precise molecular biology expertise.
Collapse
|
155
|
Abstract
With more than 170 million individuals currently infected, HCV is a global pandemic, effecting approximately 3% of the entire world's population. HCV infection is a growing infectious disease pandemic with approximately 3-4 million new cases reported each year. Due to the persistent nature of the virus, 70-90% of infected individuals will develop chronic infection, which can lead to progressive liver disease including cirrhosis and hepatocellular carcinoma. Current standard treatment with a combination of IFN-alpha and ribavirin has improved the prognosis for many HCV sufferers; however, infection is very difficult to treat successfully and the protocol for treatment is neither simple, well tolerated nor economically favorable. Standard treatment can cost an average of US$22,000, and depending on genotype, as few as 42% of treated individuals will clear the infection. This collection of treatment issues combined with new concepts in immune therapy serve to underscore an urgent need for the development of improved immunotherapies, such as novel interferons, and support the possible development of therapeutic vaccines for the treatment of chronic HCV infection.
Collapse
Affiliation(s)
- Krystle Lang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104-6100, USA.
| | | |
Collapse
|
156
|
Uebelhoer L, Han JH, Callendret B, Mateu G, Shoukry NH, Hanson HL, Rice CM, Walker CM, Grakoui A. Stable cytotoxic T cell escape mutation in hepatitis C virus is linked to maintenance of viral fitness. PLoS Pathog 2008; 4:e1000143. [PMID: 18773115 PMCID: PMC2518852 DOI: 10.1371/journal.ppat.1000143] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 08/07/2008] [Indexed: 01/07/2023] Open
Abstract
Mechanisms by which hepatitis C virus (HCV) evades cellular immunity to establish persistence in chronically infected individuals are not clear. Mutations in human leukocyte antigen (HLA) class I-restricted epitopes targeted by CD8(+) T cells are associated with persistence, but the extent to which these mutations affect viral fitness is not fully understood. Previous work showed that the HCV quasispecies in a persistently infected chimpanzee accumulated multiple mutations in numerous class I epitopes over a period of 7 years. During the acute phase of infection, one representative epitope in the C-terminal region of the NS3/4A helicase, NS3(1629-1637), displayed multiple serial amino acid substitutions in major histocompatibility complex (MHC) anchor and T cell receptor (TCR) contact residues. Only one of these amino acid substitutions at position 9 (P9) of the epitope was stable in the quasispecies. We therefore assessed the effect of each mutation observed during in vivo infection on viral fitness and T cell responses using an HCV subgenomic replicon system and a recently developed in vitro infectious virus cell culture model. Mutation of a position 7 (P7) TCR-contact residue, I1635T, expectedly ablated the T cell response without affecting viral RNA replication or virion production. In contrast, two mutations at the P9 MHC-anchor residue abrogated antigen-specific T cell responses, but additionally decreased viral RNA replication and virion production. The first escape mutation, L1637P, detected in vivo only transiently at 3 mo after infection, decreased viral production, and reverted to the parental sequence in vitro. The second P9 variant, L1637S, which was stable in vivo through 7 years of follow-up, evaded the antigen-specific T cell response and did not revert in vitro despite being less optimal in virion production compared to the parental virus. These studies suggest that HCV escape mutants emerging early in infection are not necessarily stable, but are eventually replaced with variants that achieve a balance between immune evasion and fitness for replication.
Collapse
Affiliation(s)
- Luke Uebelhoer
- Department of Medicine, Division of Infectious Diseases, Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jin-Hwan Han
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, New York, United States of America
| | - Benoit Callendret
- The Center for Vaccines and Immunity, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, United States of America
- Deparment of Pediatrics, The Ohio State University, Columbus Ohio, United States of America
| | - Guaniri Mateu
- Department of Medicine, Division of Infectious Diseases, Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Naglaa H. Shoukry
- Department of Medicine, University of Montreal and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM), Montréal, Québec, Canada
| | - Holly L. Hanson
- Department of Medicine, Division of Infectious Diseases, Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, New York, United States of America
| | - Christopher M. Walker
- The Center for Vaccines and Immunity, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, United States of America
- Deparment of Pediatrics, The Ohio State University, Columbus Ohio, United States of America
| | - Arash Grakoui
- Department of Medicine, Division of Infectious Diseases, Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
157
|
Evidence for protection against chronic hepatitis C virus infection in chimpanzees by immunization with replicating recombinant vaccinia virus. J Virol 2008; 82:10896-905. [PMID: 18753204 DOI: 10.1128/jvi.01179-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Given the failures of nonreplicating vaccines against chronic hepatitis C virus (HCV) infection, we hypothesized that a replicating viral vector may provide protective immunity. Four chimpanzees were immunized transdermally twice with recombinant vaccinia viruses (rVV) expressing HCV genes. After challenge with 24 50% chimpanzee infective doses of homologous HCV, the two control animals that had received only the parental VV developed chronic HCV infection. All four immunized animals resolved HCV infection. The difference in the rate of chronicity between the immunized and the control animals was close to statistical significance (P = 0.067). Immunized animals developed vigorous gamma interferon enzyme-linked immunospot responses and moderate proliferative responses. To investigate cross-genotype protection, the immunized recovered chimpanzees were challenged with a pool of six major HCV genotypes. During the acute phase after the multigenotype challenge, all animals had high-titer viremia in which genotype 4 dominated (87%), followed by genotype 5 (13%). However, after fluctuating low-level viremia, the viremia finally turned negative or persisted at very low levels. This study suggests the potential efficacy of replicating recombinant vaccinia virus-based immunization against chronic HCV infection.
Collapse
|
158
|
Abstract
The processes of hepatitis C virus (HCV) entry and antibody-mediated neutralization are intimately linked. The high frequency of neutralizing antibodies (nAbs) that inhibit E2-CD81 interaction(s) suggests that this is a major target for the humoral immune response. The observation that HCV can transmit to naive cells by means of CD81-dependent and -independent routes in vitro awaits further investigation to assess the significance in vivo but may offer new strategies for HCV to escape nAbs. The identification of claudins in the entry process highlights the importance of cell polarity in defining routes of HCV entry and release, with recent experiments suggesting a polarized route of viral entry into cells in vitro. In this review, the authors summarize the current understanding of the mechanism(s) defining HCV entry and the role of nAbs in controlling HCV replication.
Collapse
Affiliation(s)
- Zania Stamataki
- Division of Immunity and Infection, Institute for Biomedical Research, University of Birmingham, Edgbaston, UK
| | | | | | | |
Collapse
|
159
|
Zeisel MB, Cosset FL, Baumert TF. Host neutralizing responses and pathogenesis of hepatitis C virus infection. Hepatology 2008; 48:299-307. [PMID: 18508291 DOI: 10.1002/hep.22307] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
160
|
Induction of broad CD4+ and CD8+ T-cell responses and cross-neutralizing antibodies against hepatitis C virus by vaccination with Th1-adjuvanted polypeptides followed by defective alphaviral particles expressing envelope glycoproteins gpE1 and gpE2 and nonstructural proteins 3, 4, and 5. J Virol 2008; 82:7492-503. [PMID: 18508900 DOI: 10.1128/jvi.02743-07] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Broad, multispecific CD4(+) and CD8(+) T-cell responses to the hepatitis C virus (HCV), as well as virus-cross-neutralizing antibodies, are associated with recovery from acute infection and may also be associated in chronic HCV patients with a favorable response to antiviral treatment. In order to recapitulate all of these responses in an ideal vaccine regimen, we have explored the use of recombinant HCV polypeptides combined with various Th1-type adjuvants and replication-defective alphaviral particles encoding HCV proteins in various prime/boost modalities in BALB/c mice. Defective chimeric alphaviral particles derived from the Sindbis and Venezuelan equine encephalitis viruses encoding either the HCV envelope glycoprotein gpE1/gpE2 heterodimer (E1E2) or nonstructural proteins 3, 4, and 5 (NS345) elicited strong CD8(+) T-cell responses but low CD4(+) T helper responses to these HCV gene products. In contrast, recombinant E1E2 glycoproteins adjuvanted with MF59 containing a CpG oligonucleotide elicited strong CD4(+) T helper responses but no CD8(+) T-cell responses. A recombinant NS345 polyprotein also stimulated strong CD4(+) T helper responses but no CD8(+) T-cell responses when adjuvanted with Iscomatrix containing CpG. Optimal elicitation of broad CD4(+) and CD8(+) T-cell responses to E1E2 and NS345 was obtained by first priming with Th1-adjuvanted proteins and then boosting with chimeric, defective alphaviruses expressing these HCV genes. In addition, this prime/boost regimen resulted in the induction of anti-E1E2 antibodies capable of cross-neutralizing heterologous HCV isolates in vitro. This vaccine formulation and regimen may therefore be optimal in humans for protection against this highly heterogeneous global pathogen.
Collapse
|
161
|
Fafi-Kremer S, Zeisel MB, Schvoerer E, Soulier E, Habersetzer F, Wolf P, Doffoel M, Baumert TF, Stoll-Keller F. [Neutralizing antibodies in hepatitis C virus infection]. ACTA ACUST UNITED AC 2008; 32:491-8. [PMID: 18467058 DOI: 10.1016/j.gcb.2008.02.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 01/29/2008] [Accepted: 02/29/2008] [Indexed: 01/12/2023]
Abstract
Hepatitis C virus (HCV) results in persistent infection in more than 70% of infected individuals despite the development of humoral and cellular immune responses. Following infection, although antibodies targeting epitopes of both structural and non structural proteins are elicited, the virus evades antibody-mediated neutralization. Studies of host neutralizing responses against HCV have been limited by the lack of a convenient tissue culture system for HCV infection. In the past five years in vitro models have been developed to characterize interaction of HCV glycoproteins with host cell entry factors and detect antibodies interfering with HCV entry and infection. These models have been used to characterize targets of neutralizing responses and better understand their impact on the pathogenesis of infection.
Collapse
Affiliation(s)
- S Fafi-Kremer
- Laboratoire de virologie, Inserm U748, 3, rue Koeberlé, 67000 Strasbourg, France
| | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Harris HJ, Farquhar MJ, Mee CJ, Davis C, Reynolds GM, Jennings A, Hu K, Yuan F, Deng H, Hubscher SG, Han JH, Balfe P, McKeating JA. CD81 and claudin 1 coreceptor association: role in hepatitis C virus entry. J Virol 2008; 82:5007-20. [PMID: 18337570 PMCID: PMC2346731 DOI: 10.1128/jvi.02286-07] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 02/27/2008] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) is an enveloped positive-stranded RNA hepatotropic virus. HCV pseudoparticles infect liver-derived cells, supporting a model in which liver-specific molecules define HCV internalization. Three host cell molecules have been reported to be important entry factors or receptors for HCV internalization: scavenger receptor BI, the tetraspanin CD81, and the tight junction protein claudin-1 (CLDN1). None of the receptors are uniquely expressed within the liver, leading us to hypothesize that their organization within hepatocytes may explain receptor activity. Since CD81 and CLDN1 act as coreceptors during late stages in the entry process, we investigated their association in a variety of cell lines and human liver tissue. Imaging techniques that take advantage of fluorescence resonance energy transfer (FRET) to study protein-protein interactions have been developed. Aequorea coerulescens green fluorescent protein- and Discosoma sp. red-monomer fluorescent protein-tagged forms of CD81 and CLDN1 colocalized, and FRET occurred between the tagged coreceptors at comparable frequencies in permissive and nonpermissive cells, consistent with the formation of coreceptor complexes. FRET occurred between antibodies specific for CD81 and CLDN1 bound to human liver tissue, suggesting the presence of coreceptor complexes in liver tissue. HCV infection and treatment of Huh-7.5 cells with recombinant HCV E1-E2 glycoproteins and anti-CD81 monoclonal antibody modulated homotypic (CD81-CD81) and heterotypic (CD81-CLDN1) coreceptor protein association(s) at specific cellular locations, suggesting distinct roles in the viral entry process.
Collapse
Affiliation(s)
- Helen J Harris
- University of Birmingham, Division of Infection and Immunity, Institute for Biomedical Research, Vincent Dr., Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Blair CS, Haydon GH, Hayes PC. Section Review Anti-infectives: Current perspectives on the treatment and prevention of hepatitis C infection. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.5.12.1657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
164
|
Mee CJ, Grove J, Harris HJ, Hu K, Balfe P, McKeating JA. Effect of cell polarization on hepatitis C virus entry. J Virol 2008; 82:461-70. [PMID: 17959672 PMCID: PMC2224355 DOI: 10.1128/jvi.01894-07] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 10/12/2007] [Indexed: 12/12/2022] Open
Abstract
The primary reservoir for hepatitis C virus (HCV) replication in vivo is believed to be hepatocytes within the liver. Three host cell molecules have been reported to be important entry factors for receptors for HCV: the tetraspanin CD81, scavenger receptor BI (SR-BI), and the tight-junction (TJ) protein claudin 1 (CLDN1). The recent discovery of a TJ protein as a critical coreceptor highlighted the importance of studying the effect(s) of TJ formation and cell polarization on HCV entry. The colorectal adenocarcinoma Caco-2 cell line forms polarized monolayers containing functional TJs and was found to express the CD81, SR-BI, and CLDN1 proteins. Viral receptor expression levels increased upon polarization, and CLDN1 relocalized from the apical pole of the lateral cell membrane to the lateral cell-cell junction and basolateral domains. In contrast, expression and localization of the TJ proteins ZO-1 and occludin 1 were unchanged upon polarization. HCV infected polarized and nonpolarized Caco-2 cells to comparable levels, and entry was neutralized by anti-E2 monoclonal antibodies, demonstrating glycoprotein-dependent entry. HCV pseudoparticle infection and recombinant HCV E1E2 glycoprotein interaction with polarized Caco-2 cells occurred predominantly at the apical surface. Disruption of TJs significantly increased HCV entry. These data support a model where TJs provide a physical barrier for viral access to receptors expressed on lateral and basolateral cellular domains.
Collapse
Affiliation(s)
- Christopher J Mee
- Division of Immunity and Infection, Institute for Biomedical Research, University of Birmingham, Vincent Drive, Birmingham B15 2TT, United Kingdom.
| | | | | | | | | | | |
Collapse
|
165
|
Irshad M, Khushboo I, Singh S, Singh S. Hepatitis C virus (HCV): a review of immunological aspects. Int Rev Immunol 2008; 27:497-517. [PMID: 19065353 DOI: 10.1080/08830180802432178] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The present manuscript represents an updated review on different aspects of immunology involved during hepatitis C virus infection in human beings. This includes a brief mention of HCV structure, presentation of viral components to host immune system, and ensuing immune response and immunopathogenesis occurring during HCV infection. The present article also highlights immunodiagnosis of HCV infection and the current status of immunotherapy available for HCV eradication. Its envelope protein, E2, is the primary mediator of virus attachment and cell entry. CD81 molecule on cell surface acts as a major receptor for viral entry into the host cells. Mature dendritic cells play an important role in presenting viral antigen, activate T-cells, and initiate anti-viral immune response. Relative T-cell populations and release of different cytokines from activated T-cells ultimately determine the clearance or persistence of HCV viremia through cellular and humoral immune responses. Natural killer (NK) cells constitute the first line of host defense against invading viruses by recruiting virus-specific T-cells and inducing antiviral immunity in liver. Diagnosis of acute or chronic hepatitis C virus (HCV) infection is established by serological assays for presence of antibodies against different sets of viral proteins during varied periods post infection. An effective immunotherapy and vaccine against HCV is still awaited.
Collapse
MESH Headings
- Antibodies, Viral/blood
- Antigen Presentation
- Antigenic Variation/immunology
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Cytokines/metabolism
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Hepacivirus/chemistry
- Hepacivirus/immunology
- Hepacivirus/metabolism
- Hepatitis C, Chronic/diagnosis
- Hepatitis C, Chronic/immunology
- Hepatitis C, Chronic/physiopathology
- Hepatitis C, Chronic/therapy
- Hepatitis C, Chronic/virology
- Humans
- Immunity
- Immunotherapy
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/pathology
- Tetraspanin 28
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/metabolism
- Virus Attachment
Collapse
Affiliation(s)
- M Irshad
- Clinical Biochemistry Division, Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, India.
| | | | | | | |
Collapse
|
166
|
|
167
|
Keck ZY, Machida K, Lai MMC, Ball JK, Patel AH, Foung SKH. Therapeutic control of hepatitis C virus: the role of neutralizing monoclonal antibodies. Curr Top Microbiol Immunol 2008; 317:1-38. [PMID: 17990788 DOI: 10.1007/978-3-540-72146-8_1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Liver failure associated with hepatitis C virus (HCV) accounts for a substantial portion of liver transplantation. Although current therapy helps some patients with chronic HCV infection, adverse side effects and a high relapse rate are major problems. These problems are compounded in liver transplant recipients as reinfection occurs shortly after transplantation. One approach to control reinfection is the combined use of specific antivirals together with HCV-specific antibodies. Indeed, a number of human and mouse monoclonal antibodies to conformational and linear epitopes on HCV envelope proteins are potential candidates, since they have high virus neutralization potency and are directed to epitopes conserved across diverse HCV genotypes. However, a greater understanding of the factors contributing to virus escape and the role of lipoproteins in masking virion surface domains involved in virus entry will be required to help define those protective determinants most likely to give broad protection. An approach to immune escape is potentially caused by viral infection of immune cells leading to the induction hypermutation of the immunoglobulin gene in B cells. These effects may contribute to HCV persistence and B cell lymphoproliferative diseases.
Collapse
Affiliation(s)
- Z Y Keck
- Department of Pathology, Stanford Medical School Blood Center, Palo Alto, CA 94304, USA
| | | | | | | | | | | |
Collapse
|
168
|
Stamataki Z, Coates S, Evans MJ, Wininger M, Crawford K, Dong C, Fong YL, Chien D, Abrignani S, Balfe P, Rice CM, McKeating JA, Houghton M. Hepatitis C virus envelope glycoprotein immunization of rodents elicits cross-reactive neutralizing antibodies. Vaccine 2007; 25:7773-84. [PMID: 17919789 DOI: 10.1016/j.vaccine.2007.08.053] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 08/14/2007] [Accepted: 08/26/2007] [Indexed: 01/01/2023]
Abstract
Neutralizing antibody responses elicited during infection generally confer protection from infection. Hepatitis C virus (HCV) encodes two glycoproteins E1 and E2 that are essential for virus entry and are the major target for neutralizing antibodies. To assess whether both glycoproteins are required for the generation of a neutralizing antibody response, rodents were immunized with a series of glycoproteins comprising full length and truncated versions. Guinea pigs immunized with HCV-1 genotype 1a E1E2p7, E1E2 or E2 generated high titer anti-glycoprotein antibody responses that neutralized the infectivity of HCVpp and HCVcc expressing gps of the same genotype as the immunizing antigen. Less potent neutralization of viruses bearing the genotype 2 strain J6 gps was observed. In contrast, immunized mice demonstrated reduced anti-gp antibody responses, consistent with their minimal neutralizing activity. Immunization with E2 alone was sufficient to induce a high titer response that neutralized HCV pseudoparticles (HCVpp) bearing diverse glycoproteins and cell culture grown HCV (HCVcc). The neutralization titer was reduced 3-fold by the presence of lipoproteins in human sera. Cross-competition of the guinea pig anti-E1E2 immune sera with a panel of epitope mapped anti-E2 monoclonal antibodies for binding E2 identified a series of epitopes within the N-terminal domain that may be immunogenic in the immunized rodents. These data demonstrate that recombinant E2 and E1E2 can induce polyclonal antibody responses with cross-reactive neutralizing activity, supporting the future development of prophylactic and therapeutic vaccines.
Collapse
Affiliation(s)
- Zania Stamataki
- University of Birmingham, Division of Immunity and Infection, Birmingham, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Abstract
Both hepatitis B and hepatitis C viruses (HBV and HCV) cause chronic infections worldwide that are associated with development of liver diseases ranging from mild liver inflammation to hepatocellular carcinomas. While efficient preventive vaccines are available for HBV, efforts are ongoing to develop one in case of HCV. Yet, both infections share the fact that therapeutic agents available to treat already established infections are yet poorly efficient, toxic or associated with development of resistance. Thus, novel immune-based therapies are actively being developed to complement or replace standard antiviral treatments. Among those, development of therapeutic vaccines represents a major effort. Peptide-, recombinant protein- or viral vector-based vaccines have been engineered and tested at preclinical and clinical levels. Means to adjuvant these vaccines are being pursued, including approaches based on combining vaccines of different nature. This review will outline major advances in the field of both HBV and HCV therapeutic vaccine development with a particular focus on candidates presented at the 12th International Symposium on Viral Hepatitis and Liver Disease (July 2006, Paris, France).
Collapse
Affiliation(s)
- G Inchauspé
- Department of Infectious Diseases, Transgene SA, Site de l'AFSSA, Lyon, France
| | | |
Collapse
|
170
|
Isolation and characterization of broadly neutralizing human monoclonal antibodies to the e1 glycoprotein of hepatitis C virus. J Virol 2007; 82:966-73. [PMID: 17977972 DOI: 10.1128/jvi.01872-07] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The relative importance of humoral and cellular immunity in the prevention or clearance of hepatitis C virus (HCV) infection is poorly understood. However, there is considerable evidence that neutralizing antibodies are involved in disease control. Here we describe the detailed analysis of human monoclonal antibodies (MAbs) directed against HCV glycoprotein E1, which may have the potential to control HCV infection. We have identified two MAbs that can strongly neutralize HCV-pseudotyped particles (HCVpp) bearing the envelope glycoproteins of genotypes 1a, 1b, 4a, 5a, and 6a and less strongly neutralize HCVpp bearing the envelope glycoproteins of genotype 2a. Genotype 3a was not neutralized. The epitopes for both MAbs were mapped to the region encompassing amino acids 313 to 327. In addition, robust neutralization was also observed against cell culture-adapted viruses of genotypes 1a and 2a. Results from this study suggest that these MAbs may have the potential to prevent HCV infection.
Collapse
|
171
|
Saito S, Heller T, Yoneda M, Takahashi H, Nakajima A, Liang JT. Lifestyle-related diseases of the digestive system: a new in vitro model of hepatitis C virion production: application of basic research on hepatitis C virus to clinical medicine. J Pharmacol Sci 2007; 105:138-44. [PMID: 17928740 DOI: 10.1254/jphs.fm0070040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The hepatitis C virus (HCV) is an enveloped virus with a single positive-strand RNA genome of about 9.6 kb. It is a major cause of liver disease worldwide. Clear understanding of the viral life cycle has been hampered by the lack of a robust cell culture system. While the development of the HCV replicon system was a major breakthrough, infectious virions could not be produced with the replicon system. Recently, several groups have reported producing HCV virions using in vitro systems. One of these is a replicon system, but with the special genotype 2a strain JFH-1. Another is a DNA transfection system, with the construct containing the cDNA of the known infectious HCV genotype 1b flanked by two ribozymes. The development of these models further extends the repertoire of tools available for the study of HCV biology, and in particular, they may help to elucidate the molecular details of hepatitis C viral assembly and release. This review discusses the progression of experimental strategies related to HCV and how these strategies may be applied to clinical medicine.
Collapse
Affiliation(s)
- Satoru Saito
- Gastroenterology Division, Yokohama City University School of Medicine, Yokohama, Japan.
| | | | | | | | | | | |
Collapse
|
172
|
Zeisel MB, Fafi-Kremer S, Fofana I, Barth H, Stoll-Keller F, Doffoel M, Baumert TF. Neutralizing antibodies in hepatitis C virus infection. World J Gastroenterol 2007; 13:4824-30. [PMID: 17828813 PMCID: PMC4611760 DOI: 10.3748/wjg.v13.i36.4824] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of hepatitis world-wide. The majority of infected individuals develop chronic hepatitis which can then progress to liver cirrhosis and hepatocellular carcinoma. Spontaneous viral clearance occurs in about 20%-30% of acutely infected individuals and results in resolution of infection without sequaelae. Both viral and host factors appear to play an important role for resolution of acute infection. A large body of evidence suggests that a strong, multispecific and long-lasting cellular immune response appears to be important for control of viral infection in acute hepatitis C. Due too the lack of convenient neutralization assays, the impact of neutralizing responses for control of viral infection had been less defined. In recent years, the development of robust tissue culture model systems for HCV entry and infection has finally allowed study of antibody-mediated neutralization and to gain further insights into viral targets of host neutralizing responses. In addition, detailed analysis of antibody-mediated neutralization in individual patients as well as cohorts with well defined viral isolates has enabled the study of neutralizing responses in the course of HCV infection and characterization of the impact of neutralizing antibodies for control of viral infection. This review will summarize recent progress in the understanding of the molecular mechanisms of antibody-mediated neutralization and its impact for HCV pathogenesis.
Collapse
Affiliation(s)
- Mirjam-B Zeisel
- Inserm Unite 748, Universite Louis Pasteur, 3 Rue Koeberle, Strasbourg F-67000, France
| | | | | | | | | | | | | |
Collapse
|
173
|
Martínez-Donato G, Capdesuñer Y, Acosta-Rivero N, Rodríguez A, Morales-Grillo J, Martínez E, González M, Alvarez-Obregon JC, Dueñas-Carrera S. Multimeric HCV E2 protein obtained from Pichia pastoris cells induces a strong immune response in mice. Mol Biotechnol 2007; 35:225-35. [PMID: 17652786 DOI: 10.1007/bf02686008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/08/2023]
Abstract
Production of immunogenic hepatitis C virus (HCV) envelope proteins will assist in the future development of preventive or therapeutics applications. Only properly folded monomeric E2 protein is able to bind a putative cellular co-receptor CD81, but this interaction may modulate cell immune function. Recombinant E2 proteins, similar to the native form, but lacking undesirable immunoregulatory features, might be promising components of vaccine candidates against HCV. To obtain E2 suitable for structural as well as functional studies, a recombinant E2 variant (E2680) was produced in Pichia pastoris cells. E2680, comprising amino acids 384 to 680 of the HCV polyprotein, was secreted into the culture supernatant in the N-glycosilated form and was mainly composed of disulfide-linked multimers. Both monomeric and oligomeric forms of E2680 were recognized by conformational-sensitive MAb H53. In addition, antibodies in sera from 70% of HCVpositive patients were reactive against E2680. By immunizing E2680 in BALB/c mice, both a specific cellular immune response and anti-E2680 IgG antibody titers of 1:200,000 were induced. Our data suggest that recombinant E2680 could be useful to successfully induce strong anti-HCV immunity.
Collapse
Affiliation(s)
- Gillian Martínez-Donato
- Hepatitis C Department, Biomedical Research, Center for Genetic Engineering and Biotechnology, Ave. 31 e/ 158 y 190, Cubanacán, Playa, Apdo. 6162, Habana 10600, Cuba
| | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Abstract
UNLABELLED Hepatitis C is the most common chronic bloodborne infection in the United States. The diagnosis of vertical transmission is reliably established by a positive serum hepatitis C virus (HCV) RNA on 2 occasions 3 to 4 months apart after the infant is at least 2 months old and/or by the detection of anti-HCV antibodies after the infant is 18 months old. Vertical transmission in HCV RNA-negative pregnant women is approximately 1% to 3% versus approximately 4% to 6% in HCV RNA-positive women. From the standpoint of vertical transmission, no critical HCV RNA titer has been established. Coinfection with HIV has been shown to increase the risk of vertical transmission of HCV, but highly active antiretroviral therapy may decrease the risk significantly. In HIV-negative women, route of delivery does not influence vertical transmission. In HCV/HIV-coinfected women, decisions regarding mode of delivery should be based on HIV status. There is no association between vertical transmission of HCV and gestational age at delivery or the presence of chorioamnionitis. The use of a scalp electrode has been associated with vertical transmission and this practice is discouraged. Data are conflicting regarding duration of ruptured membranes and the risk of vertical transmission of hepatitis C. When the duration of membrane rupture exceeds 6 hours, the risk may be increased. There is no evidence demonstrating an increased risk of HCV transmission in HIV-negative women who breast feed. In HCV/HIV-coinfected women, breast feeding is discouraged in women who have consistent access to safe infant formula. TARGET AUDIENCE Obstetricians & Gynecologists, Family Physicians. LEARNING OBJECTIVES After completion of this article, the reader should be able to recall that vertical transmission of hepatitis C (HCV) does occur, state that coinfection with HIV increases the transmission rate, and summarize that there is no association between gestational age or presence of chorioamnionitis and no evidence that a cesarean delivery prevents transmission.
Collapse
MESH Headings
- Breast Feeding/adverse effects
- Chorioamnionitis
- Comorbidity
- Counseling
- Delivery, Obstetric
- Female
- Gestational Age
- HIV Infections/transmission
- Hepatitis C, Chronic/diagnosis
- Hepatitis C, Chronic/therapy
- Hepatitis C, Chronic/transmission
- Humans
- Infectious Disease Transmission, Vertical
- Pregnancy
- Pregnancy Complications, Infectious/diagnosis
- Pregnancy Complications, Infectious/epidemiology
- Pregnancy Complications, Infectious/therapy
- Pregnancy Complications, Infectious/virology
- Prenatal Diagnosis
- RNA, Viral/blood
- Risk Factors
- United States/epidemiology
- Viral Load
Collapse
Affiliation(s)
- James Airoldi
- Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | | |
Collapse
|
175
|
Wintermeyer P, Wands JR. Vaccines to prevent chronic hepatitis C virus infection: current experimental and preclinical developments. J Gastroenterol 2007; 42:424-32. [PMID: 17671756 DOI: 10.1007/s00535-007-2057-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 03/07/2007] [Indexed: 02/04/2023]
Affiliation(s)
- Philip Wintermeyer
- The Liver Research Center, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | | |
Collapse
|
176
|
Liu LU, Schiano TD. Hepatitis C immune globulin (human) for the prevention of viral recurrence after liver transplantation. Expert Rev Clin Immunol 2007; 3:125-30. [PMID: 20477101 DOI: 10.1586/1744666x.3.2.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Immunoglobulin therapy has been used extensively in the treatment of infectious diseases. Hepatitis B immunoglobulin (HBIg) reduces the onset of infection in post-percutaneous exposure to Hepatitis B virus (HBV) and in infants of hepatitis B surface antigen (HBsAg)-positive mothers; it also significantly reduces the risk of recurrent HBV infection in liver transplant recipients, thus increasing the survival rate of this population. Prior to 1990, when plasma donors were not screened for the hepatitis C virus (HCV) antibody, the prevalence of HCV viremia after a liver transplant was found to be lower in those patients receiving HBIg containing anti-HCV antibodies. Phase I trials with chimpanzees demonstrated the ability of hepatitis C immune globulin (human) to decrease hepatic inflammation and to neutralize the HCV antibody, but this effect was not sustained over time. Phase I/II human studies have currently been unable to replicate the animal studies, but further trials are planned.
Collapse
Affiliation(s)
- Lawrence U Liu
- The Mount Sinai Medical Center, Division of Liver Diseases, One Gustave L. Levy Place, Box 1104, New York, NY 10029, USA.
| | | |
Collapse
|
177
|
Capone S, Zampaglione I, Vitelli A, Pezzanera M, Kierstead L, Burns J, Ruggeri L, Arcuri M, Cappelletti M, Meola A, Ercole BB, Tafi R, Santini C, Luzzago A, Fu TM, Colloca S, Ciliberto G, Cortese R, Nicosia A, Fattori E, Folgori A. Modulation of the immune response induced by gene electrotransfer of a hepatitis C virus DNA vaccine in nonhuman primates. THE JOURNAL OF IMMUNOLOGY 2007; 177:7462-71. [PMID: 17082666 DOI: 10.4049/jimmunol.177.10.7462] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Induction of multispecific, functional CD4+ and CD8+ T cells is the immunological hallmark of acute self-limiting hepatitis C virus (HCV) infection in humans. In the present study, we showed that gene electrotransfer (GET) of a novel candidate DNA vaccine encoding an optimized version of the nonstructural region of HCV (from NS3 to NS5B) induced substantially more potent, broad, and long-lasting CD4+ and CD8+ cellular immunity than naked DNA injection in mice and in rhesus macaques as measured by a combination of assays, including IFN-gamma ELISPOT, intracellular cytokine staining, and cytotoxic T cell assays. A protocol based on three injections of DNA with GET induced a substantially higher CD4+ T cell response than an adenovirus 6-based viral vector encoding the same Ag. To better evaluate the immunological potency and probability of success of this vaccine, we have immunized two chimpanzees and have compared vaccine-induced cell-mediated immunity to that measured in acute self-limiting infection in humans. GET of the candidate HCV vaccine led to vigorous, multispecific IFN-gamma+CD8+ and CD4+ T lymphocyte responses in chimpanzees, which were comparable to those measured in five individuals that cleared spontaneously HCV infection. These data support the hypothesis that T cell responses elicited by the present strategy could be beneficial in prophylactic vaccine approaches against HCV.
Collapse
Affiliation(s)
- Stefania Capone
- Istituto di Ricerche di Biologia Molecolare, P. Angeletti, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Abstract
The hepatitis C virus (HCV) is a remarkably successful pathogen, establishing persistent infection in more than two-thirds of those who contract it. Its success is related to its abilities to blunt innate antiviral pathways and to evade adaptive immune responses. These two themes may be related. We propose that HCV takes advantage of the impaired innate response to delay the organization of an effective adaptive immune attack. The tolerogenic liver environment may provide cover, prolonging this delay. HCV's error-prone replication strategy permits rapid evolution under immune pressure. Persistent high levels of viral antigens may contribute to immune exhaustion. Finally, the virus may benefit from the efficient enlistment of memory T and B cells in the pursuit of a moving target.
Collapse
Affiliation(s)
- Lynn B Dustin
- The Rockefeller University, Center for the Study of Hepatitis C, New York, NY 10021, USA.
| | | |
Collapse
|
179
|
Brazzoli M, Crotta S, Bianchi A, Bagnoli F, Monaghan P, Wileman T, Abrignani S, Merola M. Intracellular accumulation of hepatitis C virus proteins in a human hepatoma cell line. J Hepatol 2007; 46:53-9. [PMID: 17107733 DOI: 10.1016/j.jhep.2006.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2006] [Revised: 09/06/2006] [Accepted: 09/12/2006] [Indexed: 01/18/2023]
Abstract
BACKGROUND/AIMS The establishment of HCV replicon systems strongly improved the research on the replication processes but poorly advanced our knowledge on the subcellular localization of the structural glycoproteins, mainly due to their low expression. We sought to verify whether reinforcing E1E2 expression in the context of both HCV genomic and subgenomic replicon from either homologous or heterologous strains leads to formation of supramolecular structures including structural and nonstructural proteins. METHODS Robust expression of HCV glycoproteins was achieved by stable expression of E1E2p7 from genotype 1a and 1b. RESULTS In these cells, E1 and E2 triggered the formation of dot-like structures in which they co-localized with core and the nonstructural proteins NS3 and NS5A. Confocal microscopy analyses suggested that accumulation of HCV proteins occurs in an ER-derived subcompartment. Moreover, by labeling de novo-synthesized HCV RNA, we showed that these structures constitute a site of viral RNA synthesis. CONCLUSIONS Expression in trans of HCV glycoproteins in the context of replicative viral genome or subgenome generates accumulation of structural and nonstructural viral proteins in peculiar cytoplasmic structures. The simultaneous presence of viral RNA, structural and nonstructural protein suggests that these complexes represent not only sites of HCV replication but also potential places of viral pre-budding.
Collapse
Affiliation(s)
- Michela Brazzoli
- Novartis Vaccines and Diagnostics, via Fiorentina 1, 53100 Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
180
|
Li YP, Kang HN, Babiuk LA, Liu Q. Elicitation of strong immune responses by a DNA vaccine expressing a secreted form of hepatitis C virus envelope protein E2 in murine and porcine animal models. World J Gastroenterol 2006; 12:7126-35. [PMID: 17131474 PMCID: PMC4087773 DOI: 10.3748/wjg.v12.i44.7126] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To characterize the immunogenicity of a hepatitis C virus (HCV) E2 DNA vaccine alone or with a protein vaccine boost in murine and porcine animal models.
METHODS: A DNA vaccine expressing a secreted form of HCV E2 protein was constructed and used to vaccinate mice and piglets with or without boosting with a recombinant E2 protein vaccine formulated with CpG ODN and 10% Emulsigen. The immunogenicity of HCV E2 vaccines was analyzed by ELISA for antibody responses, MTT assay for lymphocyte proliferation, ELISPOT for the number of interferon-γ secreting cells, and cytotoxic T lymphocyte assays.
RESULTS: Intradermal injection of E2 DNA vaccine induced strong Th1-like immune responses in mice. In piglets, E2 DNA vaccine elicited moderate and more balanced immune responses. A DNA vaccine prime and protein boost vaccination strategy induced significantly higher E2-specific antibody levels and shifted the immune response towards Th2-like ones in piglets.
CONCLUSION: A DNA vaccine expressing a secreted form of HCV E2 protein elicited E2-specific immune responses in mice and piglets. Recombinant E2 protein vaccination following DNA immunization significantly increased the antibody response in piglets. These HCV E2 vaccines may represent promising hepatitis C vaccine candidates for further investigations.
Collapse
Affiliation(s)
- Yi-Ping Li
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan, S7N 5E3, Canada
| | | | | | | |
Collapse
|
181
|
Haller AA, Lauer GM, King TH, Kemmler C, Fiolkoski V, Lu Y, Bellgrau D, Rodell TC, Apelian D, Franzusoff A, Duke RC. Whole recombinant yeast-based immunotherapy induces potent T cell responses targeting HCV NS3 and Core proteins. Vaccine 2006; 25:1452-63. [PMID: 17098335 DOI: 10.1016/j.vaccine.2006.10.035] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 10/13/2006] [Accepted: 10/20/2006] [Indexed: 01/23/2023]
Abstract
Control of primary infection with hepatitis C virus (HCV) is associated with robust and broad T cell immunity. In contrast, chronic infection is characterized by weak T cell responses suggesting that an approach that boosts these responses could be a therapeutic advance. Saccharomyces cerevisiae is an effective inducer of innate and adaptive cellular immunity and we have generated recombinant yeast cells (GI-5005) that produce an HCV NS3-Core fusion protein. Pre-clinical studies in mice showed that GI-5005 induced potent antigen-specific proliferative and cytotoxic T cell responses that were associated with Th1-type cytokine secretion. In studies in which GI-5005 was administered up to 13 times, no detectable vector neutralization or induction of tolerance was observed. Prophylactic as well as therapeutic administration of GI-5005 in mice led to eradication of tumor cells expressing HCV NS3 protein. Immunotherapy with GI-5005 is being evaluated in chronic HCV infected individuals in a Phase 1 clinical trial.
Collapse
Affiliation(s)
- Aurelia A Haller
- GlobeImmune, Inc., 1450 Infinite Drive, Louisville, CO 80027, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Abstract
Hepatitis C virus (HCV) exists in different forms in the circulation of infected people: lipoprotein bound and lipoprotein free, enveloped and nonenveloped. Viral particles with the highest infectivity are associated with lipoproteins, whereas lipoprotein-free virions are poorly infectious. The detection of HCV's envelope proteins E1 and E2 in lipoprotein-associated virions has been challenging. Because lipoproteins are readily endocytosed, some forms of HCV might utilize their association with lipoproteins rather than E1 and E2 for cell attachment and internalization. However, vaccination of chimpanzees with recombinant envelope proteins protected the animals from hepatitis C infection, suggesting an important role for E1 and E2 in cell entry. It seems possible that different forms of HCV use different receptors to attach to and enter cells. The putative receptors and the assays used for their validation are discussed in this review.
Collapse
|
183
|
Martyn JC, Dong X, Holmes-Brown S, Pribul P, Li S, Drummer HE, Gowans EJ. Transient and stable expression of the HCV envelope glycoproteins in cell lines and primary hepatocytes transduced with a recombinant baculovirus. Arch Virol 2006; 152:329-43. [PMID: 17019531 DOI: 10.1007/s00705-006-0845-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 08/07/2006] [Indexed: 11/29/2022]
Abstract
A recombinant baculovirus, RecBV-E, encoding the hepatitis C virus (HCV) envelope proteins, E1 and E2, controlled by the cytomegalovirus promoter was constructed. RecBVs can infect mammalian cells, but fail to express proteins or replicate because the viral DNA promoters are not recognised. The RecBV-E transduced 86% of Huh7 cells and 22% of primary marmoset hepatocytes compared with 35% and 0.4%, respectively, after DNA transfection. Several stable cell lines were generated that constitutively expressed E1/E2 in every cell. No evidence of E1/E2-related apoptosis was noted, and the doubling times of cells were similar to that of the parental cells. A proportion of the E1/E2 was expressed on the surface of the stable cells as determined by flow cytometry and was detected by a conformation-dependent monoclonal antibody. It is likely that the continued expression of E1/E2 in the stable cells resulted from integration of the RecBV DNA. Infection of Huh7 cells, in the absence of G418 selection, failed to result in expression of the foreign gene (in this case, eGFP) beyond 14-18 days. RecBVs that express HCV genes from a CMV promoter represent an effective means by which to transduce primary hepatocytes for expression and replication studies.
Collapse
Affiliation(s)
- J C Martyn
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Australia.
| | | | | | | | | | | | | |
Collapse
|
184
|
Vajdy M, Selby M, Medina-Selby A, Coit D, Hall J, Tandeske L, Chien D, Hu C, Rosa D, Singh M, Kazzaz J, Nguyen S, Coates S, Ng P, Abrignani S, Lin YL, Houghton M, O'Hagan DT. Hepatitis C virus polyprotein vaccine formulations capable of inducing broad antibody and cellular immune responses. J Gen Virol 2006; 87:2253-2262. [PMID: 16847121 DOI: 10.1099/vir.0.81849-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although approximately 3 % of the world's population is infected with Hepatitis C virus (HCV), there is no prophylactic vaccine available. This study reports the design, cloning and purification of a single polyprotein comprising the HCV core protein and non-structural proteins NS3, NS4a, NS4b, NS5a and NS5b. The immunogenicity of this polyprotein, which was formulated in alum, oil-in-water emulsion MF59 or poly(dl-lactide co-glycolide) in the presence or absence of CpG adjuvant, was then determined in a murine model for induction of B- and T-cell responses. The addition of adjuvants or a delivery system to the HCV polyprotein enhanced serum antibody and T-cell proliferative responses, as well as IFN-gamma responses, by CD4+ T cells. The antibody responses were mainly against the NS3 and NS5 components of the polyprotein and relatively poor responses were elicited against NS4 and the core components. IFN-gamma responses, however, were induced against all of the individual components of the polyprotein. These data suggest that the HCV polyprotein delivered with adjuvants induces broad B- and T-cell responses and could be a vaccine candidate against HCV.
Collapse
Affiliation(s)
- Michael Vajdy
- Chiron Vaccines, 4560 Horton Street, Emeryville, CA 94608, USA
| | - Mark Selby
- Chiron Vaccines, 4560 Horton Street, Emeryville, CA 94608, USA
| | | | - Doris Coit
- Chiron Vaccines, 4560 Horton Street, Emeryville, CA 94608, USA
| | - John Hall
- Chiron Vaccines, 4560 Horton Street, Emeryville, CA 94608, USA
| | - Laura Tandeske
- Chiron Vaccines, 4560 Horton Street, Emeryville, CA 94608, USA
| | - David Chien
- Chiron Vaccines, 4560 Horton Street, Emeryville, CA 94608, USA
| | - Celine Hu
- Chiron Vaccines, 4560 Horton Street, Emeryville, CA 94608, USA
| | - Domenico Rosa
- Chiron Vaccines, Via Fiorentina 1, 53100 Siena, Italy
| | - Manmohan Singh
- Chiron Vaccines, 4560 Horton Street, Emeryville, CA 94608, USA
| | - Jina Kazzaz
- Chiron Vaccines, 4560 Horton Street, Emeryville, CA 94608, USA
| | - Steve Nguyen
- Chiron Vaccines, 4560 Horton Street, Emeryville, CA 94608, USA
| | - Steve Coates
- Chiron Vaccines, 4560 Horton Street, Emeryville, CA 94608, USA
| | - Philip Ng
- Chiron Vaccines, 4560 Horton Street, Emeryville, CA 94608, USA
| | | | - Yin-Ling Lin
- Chiron Vaccines, 4560 Horton Street, Emeryville, CA 94608, USA
| | | | - Derek T O'Hagan
- Chiron Vaccines, 4560 Horton Street, Emeryville, CA 94608, USA
| |
Collapse
|
185
|
Puig M, Mihalik K, Tilton JC, Williams O, Merchlinsky M, Connors M, Feinstone SM, Major ME. CD4+ immune escape and subsequent T-cell failure following chimpanzee immunization against hepatitis C virus. Hepatology 2006; 44:736-45. [PMID: 16941702 DOI: 10.1002/hep.21319] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hepatitis C is a major cause of chronic liver disease, with 170 million individuals infected worldwide and no available vaccine. We analyzed the effects of an induced T-cell response in 3 chimpanzees, targeting nonstructural proteins in the absence of neutralizing antibodies. In all animals the specific T-cell response modified the outcome of infection, producing a 10- to 1,000-fold reduction in peak virus titers. The challenge of 2 immunized animals that had been previously exposed to hepatitis C virus resulted in subclinical infections. Immune responses in the third animal, naive prior to immunization, limited viral replication immediately, evidenced by a 30-fold reduction in virus titer by week 2, declining to a nonquantifiable level by week 6. After 10 weeks of immunological control, we observed a resurgence of virus, followed by progression to a persistent infection. Comparing virus evolution with T-cell recognition, we demonstrated that: (i) resurgence was concomitant with the emergence of new dominant viral populations bearing single amino acid changes in the NS3 and NS5A regions, (ii) these mutations resulted in a loss of CD4+ T-cell recognition, and (iii) subsequent to viral resurgence and immune escape a large fraction of NS3-specific T cells became impaired in their ability to secrete IFN-gamma and proliferate. In contrast, NS3-specific responses were sustained in the recovered/immunized animals presenting with subclinical infections. In conclusion, viral escape from CD4+ T cells can result in the eventual failure of an induced T-cell response that initially controls infection. Vaccines that can induce strong T-cell responses prior to challenge will not necessarily prevent persistent HCV infection.
Collapse
Affiliation(s)
- Montserrat Puig
- Laboratory of Hepatitis Viruses, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Xiang ZH, Cai WJ, Zhao P, Kong LB, Ye LB, Wu ZH. Purification and application of bacterially expressed chimeric protein E1E2 of hepatitis C virus. Protein Expr Purif 2006; 49:95-101. [PMID: 16600629 DOI: 10.1016/j.pep.2006.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2006] [Revised: 02/15/2006] [Accepted: 02/17/2006] [Indexed: 11/28/2022]
Abstract
E1 and E2 glycoproteins are structural components of hepatitis C virus (HCV) virion. They are involved in cellular receptors interaction, neutralising antibodies elicitation, and viral morphogenesis. They are considered as major candidates for anti-HCV vaccine. In this report, we first expressed tandem E1E2 as well as C-terminally truncated E1 fragment and C-terminally truncated E2 fragment, respectively, in Escherichia coli cells and the proteins were purified to homogenesis. All the purified proteins can react specifically with patient sera. Both purified chimeric protein E1E2 and protein E2 can interact with a putative cellular receptor CD81, while purified protein E1 cannot interact with CD81. The sera of rabbit immunized with the E1E2 inhibited the binding of E2 protein to the major extracellular loop of human CD81 and reacted with both proteins E1 and E2, respectively. Anti-E1 and E2 antibodies can be generated simultaneously in the rabbit immunized with the E1E2, and the titers of antibodies were 63 or 56% higher than the titers induced by E1 or E2 alone, respectively. The results suggest that E1 and E2 can enhance their immunogenicity each other in chimeric protein E1E2 and the E. coli-derived chimeric protein E1E2 and corresponding antisera can be used as an useful tools in anti-HCV vaccine research.
Collapse
Affiliation(s)
- Zhong-Hua Xiang
- State Key Laboratory of Virology, College of Life Science, Wuhan University, Wuhan, Hubei Province 430072, PR China
| | | | | | | | | | | |
Collapse
|
187
|
Majid AM, Ezelle H, Shah S, Barber GN. Evaluating replication-defective vesicular stomatitis virus as a vaccine vehicle. J Virol 2006; 80:6993-7008. [PMID: 16809305 PMCID: PMC1489030 DOI: 10.1128/jvi.00365-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We have generated replication-competent (VSV-C/E1/E2) and nonpropagating (VSVDeltaG-C/E1/E2) vesicular stomatitis virus (VSV) contiguously expressing the structural proteins of hepatitis C virus (HCV; core [C] and glycoproteins E1 and E2) and report on their immunogenicity in murine models. VSV-C/E1/E2 and VSVDeltaG-C/E1/E2 expressed high levels of HCV C, E1, and E2, which were authentically posttranslationally processed. Both VSV-expressed HCV E1-E2 glycoproteins were found to form noncovalently linked heterodimers and appeared to be correctly folded, as confirmed by coimmunoprecipitation analysis using conformationally sensitive anti-HCV-E2 monoclonal antibodies (MAbs). Intravenous or intraperitoneal immunization of BALB/c mice with VSV-C/E1/E2 or VSVDeltaG-C/E1/E2 resulted in significant and surprisingly comparable HCV core or E2 antibody responses compared to those of control mice. In addition, both virus types generated HCV C-, E1-, or E2-specific gamma interferon (IFN-gamma)-producing CD8(+) T cells, as determined by enzyme-linked immunospot (ELISPOT) analysis. Mice immunized with VSVDeltaG-C/E1/E2 were also protected against the formation of tumors expressing HCV E2 (CT26-hghE2t) and exhibited CT26-hghE2t-specific IFN-gamma-producing and E2-specific CD8(+) T-cell activity. Finally, recombinant vaccinia virus (vvHCV.S) expressing the HCV structural proteins replicated at significantly lower levels when inoculated into mice immunized with VSV-C/E1/E2 or VSVDeltaG-C/E1/E2, but not with control viruses. Our data therefore illustrate that potentially safer replication-defective VSV can be successfully engineered to express high levels of antigenically authentic HCV glycoproteins. In addition, this strategy may therefore serve in effective vaccine and immunotherapy-based approaches to the treatment of HCV-related disease.
Collapse
Affiliation(s)
- Ayaz M Majid
- Department of Microbiology and Immunology, University of Miami School of Medicine, FL 33136, USA
| | | | | | | |
Collapse
|
188
|
Ghorbani M, Nass T, Azizi A, Soare C, Aucoin S, Giulivi A, Anderson DE, Diaz-Mitoma F. Comparison of antibody- and cell-mediated immune responses after intramuscular hepatitis C immunizations of BALB/c mice. Viral Immunol 2006; 18:637-48. [PMID: 16359230 DOI: 10.1089/vim.2005.18.637] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Current treatments for hepatitis C infection have limited efficacy, and there is no vaccine available. The goal of this study was to compare the immune response to several immunization combinations against hepatitis C virus (HCV). Six groups of mice were immunized at weeks 0, 4, and 8 with different combinations of a candidate HCV vaccine consisting of 100 microg recombinant HCV core/E1/E2 (rHCV) DNA plasmid and/or 25 microg rHCV polyprotein and 50 microL Montanide ISA- 51. Four weeks after the last injection, all groups of mice were sacrificed and blood samples and spleens were collected for measuring the levels of specific HCV antibodies (total IgG, IgG1, and IgG2a). Cell proliferation and intracellular interferon-gamma were also measured. Among the groups of immunized mice, only the mice immunized with rHCV DNA plasmid, rHCV polyprotein, and montanide (group D) and mice immunized with rHCV polyprotein and montanide (group F) demonstrated a significant increase in the total IgG titer after immunization. IgG1 was the predominant antibody detected in both groups D and F. No IgG2a was detected in any of the groups. Proliferation assays demonstrated that splenocytes from group D and group C (rHCV DNA primed/rHCV polyprotein boost) developed significant anti-HCV proliferative responses. The combination of an rHCV DNA plasmid, rHCV polyprotein, and montanide induced a high antibody titer with a predominance of IgG1 antibodies and recognized the major neutralization epitopes in HVR1. In contrast, group C did not show an increase in anti-HCV antibodies, but did show a proliferative response.
Collapse
Affiliation(s)
- M Ghorbani
- Division of Virology, Children's Hospital of Eastern Ontario and University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Leroux-Roels G. Development of prophylactic and therapeutic vaccines against hepatitis C virus. Expert Rev Vaccines 2006; 4:351-71. [PMID: 16026249 DOI: 10.1586/14760584.4.3.351] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The hepatitis C virus was discovered 15 years ago as the agent responsible for most cases of transfusion-associated hepatitis non-A, non-B. At present, 180 million people worldwide are estimated to be infected with the virus, producing severe and progressive liver disease in millions and representing the most common reason for liver transplantation in adults. Although the spread of the virus can be halted by the application of primary prevention strategies, such as routine testing of blood donations, inactivation of blood products and systematic use of disposable needles and syringes, the development of a prophylactic vaccine could facilitate the control of this infection and protect those at high risk of being infected with hepatitis C virus. As the present therapy of chronic hepatitis C virus infections, consisting of a combined administration of pegylated interferon-alpha and ribavirin, is only successful in 50% of patients infected with genotype 1, and is costly and associated with serious side effects, there is an urgent need for better tolerated and more effective treatment modalities, and a therapeutic vaccine may be the solution. This review first provides an overview of the present knowledge regarding the interaction between the virus and immune system of the infected host, with special attention given to the possible mechanisms responsible for chronic evolution of the infection. The numerous candidate vaccines that have been developed in the past 10 years are discussed, including the studies in which their immunogenicity has been examined in rodents and chimpanzees. Finally, the only studies of therapeutic vaccines performed in humans to date are considered.
Collapse
Affiliation(s)
- Geert Leroux-Roels
- Centre for Vaccinology, Ghent University and Hospital, De Pintelaan 185, B-900 Ghent, Belgium.
| |
Collapse
|
190
|
Martin P, Inchauspé G. Hepatitis C vaccines. DRUG DISCOVERY TODAY: THERAPEUTIC STRATEGIES 2006; 3:203-209. [DOI: 10.1016/j.ddstr.2006.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
191
|
Tramontano A. The role of molecular modelling in biomedical research. FEBS Lett 2006; 580:2928-34. [PMID: 16647064 DOI: 10.1016/j.febslet.2006.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 04/03/2006] [Indexed: 11/28/2022]
Abstract
The synergy between experimental and computational biology has greatly benefited both fields, providing invaluable information in many different areas of the life sciences. This minireview will focus on one specific aspect of computational biology, molecular modelling, and describe a few examples highlighting the effectiveness of protein structural analysis and modelling in providing relevant information about systems of biomedical interest.
Collapse
Affiliation(s)
- Anna Tramontano
- Istituto Pasteur--Fondazione Cenci Bolognetti and Department of Biochemical Sciences Rossi Fanelli, University of Rome, La Sapienza, P.le Aldo Moro, 5, Rome 00185, Italy.
| |
Collapse
|
192
|
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. The major etiologies and risk factors for the development of HCC are well defined and some of the multiple steps involved in hepatocarcinogenesis have been elucidated in recent years. Despite these scientific advances and the implementation of measures for the early detection of HCC in patients at risk, patient survival has not improved during the last three decades. This is due to the advanced stage of the disease at the time of clinical presentation and limited therapeutic options. The therapeutic options fall into five main categories: surgical interventions including tumor resection and liver transplantation, percutaneous interventions including ethanol injection and radiofrequency thermal ablation, transarterial interventions including embolization and chemoembolization, radiation therapy and drugs as well as gene and immune therapies. These therapeutic strategies have been evaluated in part in randomized controlled clinical trials that are the basis for therapeutic recommendations. Though surgery, percutaneous and transarterial interventions are effective in patients with limited disease (1-3 lesions, <5 cm in diameter) and compensated underlying liver disease (cirrhosis Child A), at the time of diagnosis more than 80% patients present with multicentric HCC and advanced liver disease or comorbidities that restrict the therapeutic measures to best supportive care. In order to reduce the morbidity and mortality of HCC, early diagnosis and the development of novel systemic therapies for advanced disease, including drugs, gene and immune therapies as well as primary HCC prevention are of paramount importance. Furthermore, secondary HCC prevention after successful therapeutic interventions needs to be improved in order to make an impact on the survival of patients with HCC. New technologies, including gene expression profiling and proteomic analyses, should allow to further elucidate the molecular events underlying HCC development and to identify novel diagnostic markers as well as therapeutic and preventive targets.
Collapse
Affiliation(s)
- Hubert E Blum
- Department of Medicine II, University of Freiburg, Hugstetter Strasse 55, D-79106 Freiburg, Germany.
| |
Collapse
|
193
|
Dash S, Haque S, Joshi V, Prabhu R, Hazari S, Fermin C, Garry R. HCV-hepatocellular carcinoma: new findings and hope for effective treatment. Microsc Res Tech 2006; 68:130-48. [PMID: 16276514 DOI: 10.1002/jemt.20227] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We present here a comprehensive review of the current literature plus our own findings about in vivo and in vitro analysis of hepatitis C virus (HCV) infection, viral pathogenesis, mechanisms of interferon action, interferon resistance, and development of new therapeutics. Chronic HCV infection is a major risk factor for the development of human hepatocellular carcinoma. Standard therapy for chronic HCV infection is the combination of interferon alpha and ribavirin. A significant number of chronic HCV patients who cannot get rid of the virus infection by interferon therapy experience long-term inflammation of the liver and scarring of liver tissue. Patients who develop cirrhosis usually have increased risk of developing liver cancer. The molecular details of why some patients do not respond to standard interferon therapy are not known. Availability of HCV cell culture model has increased our understanding on the antiviral action of interferon alpha and mechanisms of interferon resistance. Interferons alpha, beta, and gamma each inhibit replication of HCV, and the antiviral action of interferon is targeted to the highly conserved 5'UTR used by the virus to translate protein by internal ribosome entry site mechanism. Studies from different laboratories including ours suggest that HCV replication in selected clones of cells can escape interferon action. Both viral and host factors appear to be involved in the mechanisms of interferon resistance against HCV. Since interferon therapy is not effective in all chronic hepatitis C patients, alternative therapeutic strategies are needed to treat chronic hepatitis C patients not responding to interferon therapy. We also reviewed the recent development of new alternative therapeutic strategies for chronic hepatitis C, which may be available in clinical use within the next decade. There is hope that these new agents along with interferon will prevent the occurrence of hepatocellular carcinoma due to chronic persistent hepatitis C virus infection. This review is not inclusive of all important scientific publications due to space limitation.
Collapse
Affiliation(s)
- Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA.
| | | | | | | | | | | | | |
Collapse
|
194
|
Folgori A, Capone S, Ruggeri L, Meola A, Sporeno E, Ercole BB, Pezzanera M, Tafi R, Arcuri M, Fattori E, Lahm A, Luzzago A, Vitelli A, Colloca S, Cortese R, Nicosia A. A T-cell HCV vaccine eliciting effective immunity against heterologous virus challenge in chimpanzees. Nat Med 2006; 12:190-7. [PMID: 16462801 DOI: 10.1038/nm1353] [Citation(s) in RCA: 238] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Accepted: 12/05/2005] [Indexed: 02/06/2023]
Abstract
Three percent of the world's population is chronically infected with the hepatitis C virus (HCV) and at risk of developing liver cancer. Effective cellular immune responses are deemed essential for spontaneous resolution of acute hepatitis C and long-term protection. Here we describe a new T-cell HCV genetic vaccine capable of protecting chimpanzees from acute hepatitis induced by challenge with heterologous virus. Suppression of acute viremia in vaccinated chimpanzees occurred as a result of massive expansion of peripheral and intrahepatic HCV-specific CD8(+) T lymphocytes that cross-reacted with vaccine and virus epitopes. These findings show that it is possible to elicit effective immunity against heterologous HCV strains by stimulating only the cellular arm of the immune system, and suggest a path for new immunotherapy against highly variable human pathogens like HCV, HIV or malaria, which can evade humoral responses.
Collapse
Affiliation(s)
- Antonella Folgori
- Istituto di Ricerche di Biologia Molecolare P. Angeletti, via Pontina km30,600, 00040 Pomezia, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Abstract
The development of new treatment strategies for the therapy of hepatitis C is an unmet need. There has already been an enormous improvement in the therapy of chronic hepatitis C since the early 1990s, but the sustained virologic response rates are still unsatisfactory for certain patient groups. Novel therapeutic strategies, especially for the difficult-to-treat patients, are currently being tested. This review discusses the latest achievements in the treatment of chronic heptatis C.
Collapse
Affiliation(s)
- Markus Cornberg
- Kompentenznetz Hepatitis, Medizinische Hochschule Hannover, Departments of Gastroenterology, Hepatology and Endocrinology, Carl-Neuberg Str. 1, D-30625 Hannover, Germany
| | - Michael P Manns
- Kompentenznetz Hepatitis, Medizinische Hochschule Hannover, Departments of Gastroenterology, Hepatology and Endocrinology, Carl-Neuberg Str. 1, D-30625 Hannover, Germany
| |
Collapse
|
196
|
Youn JW, Park SH, Lavillette D, Cosset FL, Yang SH, Lee CG, Jin HT, Kim CM, Shata MTM, Lee DH, Pfahler W, Prince AM, Sung YC. Sustained E2 antibody response correlates with reduced peak viremia after hepatitis C virus infection in the chimpanzee. Hepatology 2005; 42:1429-36. [PMID: 16317673 DOI: 10.1002/hep.20934] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Immune correlates of protection against hepatitis C virus (HCV) infection are not well understood. Here we investigated 2 naive and 6 immunized chimpanzees before and after intravenous challenge, 12 weeks after the last immunization, with 100 50% chimpanzee infectious doses (CID(50)) of heterologous genotype 1b HCV. Vaccination with recombinant DNA and adenovirus vaccines expressing HCV core, E1E2, and NS3-5 genes induced long-term HCV-specific antibody and T-cell responses and reduced peak viral load about 100 times compared with controls (5.91 +/- 0.38 vs. 3.81 +/- 0.71 logs, respectively). There was a statistically significant inverse correlation between peak viral loads and envelope glycoprotein 2 (E2)-specific antibody responses at the time of challenge. Interestingly, one vaccinee that had sterilizing immunity against slightly heterologous virus generated the highest level of E2-specific total and neutralizing antibody responses as well as strong NS3/NS5-specific T-cell proliferative responses. The other four vaccinees with low levels of E2-specific antibody had about 44-fold reduced peak viral loads but eventually developed persistent infections. In conclusion, vaccine-induced E2-specific antibody plays an important role in prevention from nonhomologous virus infection and may provide new insight into the development of an effective HCV vaccine.
Collapse
Affiliation(s)
- Jin-Won Youn
- National Research Laboratory of DNA Medicine, Division of Molecular and Life Science, POSTECH Biotech Center, Pohang University of Science and Technology, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Keck ZY, Li TK, Xia J, Bartosch B, Cosset FL, Dubuisson J, Foung SKH. Analysis of a highly flexible conformational immunogenic domain a in hepatitis C virus E2. J Virol 2005; 79:13199-208. [PMID: 16227243 PMCID: PMC1262592 DOI: 10.1128/jvi.79.21.13199-13208.2005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatitis C (HCV) E2 glycoprotein is involved in virus attachment and entry, and its structural organization is largely unknown. Characterization of a panel of human monoclonal antibodies (HMAbs) to HCV by competition studies has led to an immunogenic organization model of E2 with three domains designated A, B, and C and epitopes in each domain having similar structural and functional properties. Domain A contains nonneutralizing epitopes, and domains B and C contain neutralizing epitopes. The isolation and characterization of three new HMAbs within domain A for a total of six provide support for this model. All six domain A HMAbs do not neutralize HCV retroviral pseudotype particle (HCVpp) infection on Huh-7 cells, and all six HMAbs have similar binding affinity and maximum binding, B(max), a relative indicator of epitope density, as other neutralizing HMAbs, suggesting that neutralization is epitope specific and not by binding to any surface epitope. The dose-dependent neutralizing activity of CBH-7, an HMAb to a domain C epitope in spatial proximity to domain A, and of CBH-5, a domain B HMAb to a more distant epitope, were tested in the presence and absence of each domain A HMAb. No enhancement or reduction in CBH-7 or CBH-5 neutralizing activity was observed, indicating that the potential induction of nonneutralizing antibodies should not be a central issue for HCV vaccine design. To assess whether domain A is involved in the structural changes as part of a pH-dependent virus envelope fusion process, changes in antibody binding patterns to normal pH and acid pH-treated HCVpp were measured. Antibody binding affinity of HMAbs to HCVpp was not affected by low pH. However, the B(max) values for low-pH-treated HCVpp with antibodies to domain A increased 46%, for domain C (CBH-7) they increased 23%, and for domain B (CBH-5) there was a decrease of 12%. Collectively, the organization and function of HCV E2 antigenic domains are roughly analogous to the large envelope glycoprotein E organizational structure for other flaviviruses with three distinct structural and functional domains.
Collapse
Affiliation(s)
- Zhen-Yong Keck
- Stanford Medical School Blood Center, 3373 Hillview Ave., Palo Alto, CA 94304, USA
| | | | | | | | | | | | | |
Collapse
|
198
|
Abstract
Injection drug users represent the largest cohort of patients with established hepatitis C virus (HCV) infection as well as the group that is at highest risk for new infections. Most published studies have focused on the clinical consequences of established HCV infection and have not examined the consequences of new infection. The aim of the current study was to measure the virological consequences of HCV in patients with ongoing injection drug use that might pose a risk for new and/or for superinfection with additional strains of HCV. We examined the following groups: (a) those with resolved HCV infection with ongoing injection drug use, (b) those with chronic infection who continued to inject and (c) those with chronic infection who no longer injected. Our study demonstrated a spectrum of responses. The majority of patients appeared to be 'protected' from new infection. None of six patients with resolved infection had detectable HCV RNA by quantitative or qualitative PCR when followed for 1 year. Similarly, despite ongoing injection drug use, no patient with persistent infection had a 'switch' in HCV genotype indicative of possible superinfection. Virological analysis of HCV quasispecies to detect possible infection with new variants of HCV in patients with apparently 'stable' infection, indicated divergence of virus over time, divergence that was unrelated to injection drug behaviour. Thus, patients with ongoing or prior HCV infection appear to develop immunity that protects against further infection with HCV despite repeated exposure.
Collapse
Affiliation(s)
- L Dove
- Department of Veterans Affairs Medical Center and University of California, San Francisco, CA, USA.
| | | | | | | | | | | |
Collapse
|
199
|
Abstract
The recent discovery of natural immunity to the hepatitis C virus and vaccine efficacy in the chimpanzee challenge model has allowed optimism about the development of at least a partly effective vaccine against this heterogeneous pathogen that is responsible for much of the chronic liver disease around the world. The immune systems of some infected individuals can spontaneously clear the virus, whereas other people need treatment with antivirals that work partly by stimulating humoral and cellular immune responses. Therefore, therapeutic vaccine strategies are also being pursued to improve treatment outcome.
Collapse
Affiliation(s)
- Michael Houghton
- Chiron Corporation, 4560 Horton Street, Emeryville, California 94608, USA.
| | | |
Collapse
|
200
|
Lavillette D, Morice Y, Germanidis G, Donot P, Soulier A, Pagkalos E, Sakellariou G, Intrator L, Bartosch B, Pawlotsky JM, Cosset FL. Human serum facilitates hepatitis C virus infection, and neutralizing responses inversely correlate with viral replication kinetics at the acute phase of hepatitis C virus infection. J Virol 2005; 79:6023-34. [PMID: 15857988 PMCID: PMC1091689 DOI: 10.1128/jvi.79.10.6023-6034.2005] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The factors leading to spontaneous clearance of hepatitis C virus (HCV) or to viral persistence are elusive. Understanding virus-host interactions that enable acute HCV clearance is key to the development of more effective therapeutic and prophylactic strategies. Here, using a sensitive neutralization assay based on infectious HCV pseudoparticles (HCVpp), we have studied the kinetics of humoral responses in a cohort of acute-phase patients infected during a single nosocomial outbreak in a hemodialysis center. The 17 patients were monitored for the spontaneous outcome of HCV infection for 6 months before a treatment decision was made. Blood samples were taken frequently (15 +/- 4 per patient). Phylogenetic analysis of the predominant virus(es) revealed infection by only one of two genotype 1b strains. While all patients seroconverted, their sera induced two opposing effects in HCVpp infection assays: inhibition and facilitation. Furthermore, the ability of sera to facilitate or inhibit infection correlated with the presence of either infecting HCV strain and divided the patients into two groups. In group 1, the progressive emergence of a relatively strong neutralizing response correlated with a fluctuating decrease in high initial viremia, leading to control of viral replication. Patients in group 2 failed to reduce viremia within the acute phase, and no neutralizing responses were detected despite seroconversion. Strikingly, sera of group 2, as well as naive sera, facilitated infection by HCVpp displaying HCV glycoproteins from different genotypes and strains, including those retrieved from patients. These results provide new insights into the mechanisms of viral persistence and immune control of viremia.
Collapse
|