151
|
Tian H, Huang JJ, Golzio C, Gao X, Hector-Greene M, Katsanis N, Blobe GC. Endoglin interacts with VEGFR2 to promote angiogenesis. FASEB J 2018; 32:2934-2949. [PMID: 29401587 DOI: 10.1096/fj.201700867rr] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Endoglin, a TGF-β coreceptor predominantly expressed in endothelial cells, plays an important role in vascular development and tumor-associated angiogenesis. However, the mechanism by which endoglin regulates angiogenesis, especially during tip cell formation, remains largely unknown. In this study, we report that endoglin promoted VEGF-induced tip cell formation. Mechanistically, endoglin interacted with VEGF receptor (VEGFR)-2 in a VEGF-dependent manner, which sustained VEGFR2 on the cell surface and prevented its degradation. Endoglin mutants deficient in the ability to interact with VEGFR2 failed to sustain VEGFR2 on the cell surface and to promote VEGF-induced tip cell formation. Further, an endoglin-targeting monoclonal antibody (mAb), TRC105, cooperated with a VEGF-A targeting mAb, bevacizumab, to inhibit VEGF signaling and tip cell formation in vitro and to inhibit tumor growth, metastasis, and tumor-associated angiogenesis in a murine tumor model. This study demonstrate a novel mechanism by which endoglin initiates and regulates VEGF-driven angiogenesis while providing a rationale for combining anti-VEGF and anti-endoglin therapy in patients with cancer.-Tian, H., Huang, J. J., Golzio, C., Gao, X., Hector-Greene, M., Katsanis, N., Blobe, G. C. Endoglin interacts with VEGFR2 to promote angiogenesis.
Collapse
Affiliation(s)
- Hongyu Tian
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Jennifer J Huang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Christelle Golzio
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | - Xia Gao
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Melissa Hector-Greene
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | - Gerard C Blobe
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
152
|
Souilhol C, Harmsen MC, Evans PC, Krenning G. Endothelial–mesenchymal transition in atherosclerosis. Cardiovasc Res 2018; 114:565-577. [DOI: 10.1093/cvr/cvx253] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/02/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Celine Souilhol
- Department of Infection, Immunity & Cardiovascular Disease (IICD), Faculty of Medicine, Dentistry & Health, Royal Hallamshire Hospital, University of Sheffield, Sheffield, UK
| | - Martin C Harmsen
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713GZ Groningen, The Netherlands
| | - Paul C Evans
- Department of Infection, Immunity & Cardiovascular Disease (IICD), Faculty of Medicine, Dentistry & Health, Royal Hallamshire Hospital, University of Sheffield, Sheffield, UK
| | - Guido Krenning
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713GZ Groningen, The Netherlands
| |
Collapse
|
153
|
Honda H, Fujimoto M, Serada S, Urushima H, Mishima T, Lee H, Ohkawara T, Kohno N, Hattori N, Yokoyama A, Naka T. Leucine-rich α-2 glycoprotein promotes lung fibrosis by modulating TGF- β signaling in fibroblasts. Physiol Rep 2017; 5:5/24/e13556. [PMID: 29279415 PMCID: PMC5742708 DOI: 10.14814/phy2.13556] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 11/24/2022] Open
Abstract
TGF‐β has an important role in fibrotic diseases, including idiopathic pulmonary fibrosis (IPF). Detailed analysis of TGF‐β signaling in pulmonary fibrosis at the molecular level is needed to identify novel therapeutic targets. Recently, leucine‐rich alpha‐2 glycoprotein (LRG) was reported to function as a modulator of TGF‐β signaling in angiogenesis and tumor progression. However, the involvement of LRG in fibrotic disorders, including IPF, has not yet been investigated. In this study, we investigated the role of LRG in fibrosis by analyzing LRG knockout (KO) mice with bleomycin‐induced lung fibrosis, an animal model of pulmonary fibrosis. The amount of LRG in the lungs of wild‐type (WT) mice was increased by bleomycin administration prior to fibrosis development. In LRG KO mice, lung fibrosis was significantly suppressed, as indicated by attenuated Masson's trichrome staining and lower collagen content than those in WT mice. Moreover, in the lungs of LRG KO mice, phosphorylation of Smad2 was reduced and expression of α‐SMA was decreased relative to those in WT mice. In vitro experiments indicated that LRG enhanced the TGF‐β‐induced phosphorylation of Smad2 and the expression of Serpine1 and Acta2, the downstream of Smad2, in fibroblasts. Although endoglin, an accessory TGF‐β receptor, is essential for LRG to promote TGF‐β signaling in endothelial cells during angiogenesis, we found that endoglin did not contribute to the ability of LRG to enhance Smad2 phosphorylation in fibroblasts. Taken together, our data suggest that LRG promotes lung fibrosis by modulating TGF‐β‐induced Smad2 phosphorylation and activating profibrotic responses in fibroblasts.
Collapse
Affiliation(s)
- Hiromi Honda
- Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Nankoku, Japan.,Laboratory of Immune Signal, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Minoru Fujimoto
- Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Satoshi Serada
- Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Hayato Urushima
- Department of Anatomy and Regenerative Biology, Osaka City University Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Takashi Mishima
- Laboratory of Immune Signal, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Hyun Lee
- Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Tomoharu Ohkawara
- Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Nankoku, Japan
| | | | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical Science, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Akihito Yokoyama
- Department of Haematology and Respiratory Medicine, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Tetsuji Naka
- Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Nankoku, Japan.,Laboratory of Immune Signal, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| |
Collapse
|
154
|
Lempereur A, Canto PY, Richard C, Martin S, Thalgott J, Raymond K, Lebrin F, Drevon C, Jaffredo T. The TGFβ pathway is a key player for the endothelial-to-hematopoietic transition in the embryonic aorta. Dev Biol 2017; 434:292-303. [PMID: 29253505 DOI: 10.1016/j.ydbio.2017.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/30/2022]
Abstract
The embryonic aorta produces hematopoietic stem and progenitor cells from a hemogenic endothelium localized in the aortic floor through an endothelial to hematopoietic transition. It has been long proposed that the Bone Morphogenetic Protein (BMP)/Transforming Growth Factor ß (TGFß) signaling pathway was implicated in aortic hematopoiesis but the very nature of the signal was unknown. Here, using thorough expression analysis of the BMP/TGFß signaling pathway members in the endothelial and hematopoietic compartments of the aorta at pre-hematopoietic and hematopoietic stages, we show that the TGFß pathway is preferentially balanced with a prominent role of Alk1/TgfßR2/Smad1 and 5 on both chicken and mouse species. Functional analysis using embryonic stem cells mutated for Acvrl1 revealed an enhanced propensity to produce hematopoietic cells. Collectively, we reveal that TGFß through the Alk1/TgfßR2 receptor axis is acting on endothelial cells to produce hematopoiesis.
Collapse
Affiliation(s)
- A Lempereur
- Sorbonne Universités, UPMC Univ Paris 06, IBPS, CNRS UMR7622, Inserm U 1156, Laboratoire de Biologie du Développement, 75005 Paris, France
| | - P Y Canto
- Sorbonne Universités, UPMC Univ Paris 06, IBPS, CNRS UMR7622, Inserm U 1156, Laboratoire de Biologie du Développement, 75005 Paris, France
| | - C Richard
- Sorbonne Universités, UPMC Univ Paris 06, IBPS, CNRS UMR7622, Inserm U 1156, Laboratoire de Biologie du Développement, 75005 Paris, France
| | - S Martin
- CNRS UMR 7241/INSERM U1050, Center for Interdisciplinary Research in Biology, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris CEDEX 05, France; MEMOLIFE Laboratory of Excellence and Paris Sciences et Lettres Research University, France
| | - J Thalgott
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands
| | - K Raymond
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands
| | - F Lebrin
- CNRS UMR 7241/INSERM U1050, Center for Interdisciplinary Research in Biology, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris CEDEX 05, France; Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands; MEMOLIFE Laboratory of Excellence and Paris Sciences et Lettres Research University, France
| | - C Drevon
- Sorbonne Universités, UPMC Univ Paris 06, IBPS, CNRS UMR7622, Inserm U 1156, Laboratoire de Biologie du Développement, 75005 Paris, France
| | - T Jaffredo
- Sorbonne Universités, UPMC Univ Paris 06, IBPS, CNRS UMR7622, Inserm U 1156, Laboratoire de Biologie du Développement, 75005 Paris, France.
| |
Collapse
|
155
|
Ruiz S, Chandakkar P, Zhao H, Papoin J, Chatterjee PK, Christen E, Metz CN, Blanc L, Campagne F, Marambaud P. Tacrolimus rescues the signaling and gene expression signature of endothelial ALK1 loss-of-function and improves HHT vascular pathology. Hum Mol Genet 2017; 26:4786-4798. [PMID: 28973643 PMCID: PMC5886173 DOI: 10.1093/hmg/ddx358] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/09/2017] [Accepted: 09/11/2017] [Indexed: 01/02/2023] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a highly debilitating and life-threatening genetic vascular disorder arising from endothelial cell (EC) proliferation and hypervascularization, for which no cure exists. Because HHT is caused by loss-of-function mutations in bone morphogenetic protein 9 (BMP9)-ALK1-Smad1/5/8 signaling, interventions aimed at activating this pathway are of therapeutic value. We interrogated the whole-transcriptome in human umbilical vein ECs (HUVECs) and found that ALK1 signaling inhibition was associated with a specific pro-angiogenic gene expression signature, which included a significant elevation of DLL4 expression. By screening the NIH clinical collections of FDA-approved drugs, we identified tacrolimus (FK-506) as the most potent activator of ALK1 signaling in BMP9-challenged C2C12 reporter cells. In HUVECs, tacrolimus activated Smad1/5/8 and opposed the pro-angiogenic gene expression signature associated with ALK1 loss-of-function, by notably reducing Dll4 expression. In these cells, tacrolimus also inhibited Akt and p38 stimulation by vascular endothelial growth factor, a major driver of angiogenesis. In the BMP9/10-immunodepleted postnatal retina-a mouse model of HHT vascular pathology-tacrolimus activated endothelial Smad1/5/8 and prevented the Dll4 overexpression and hypervascularization associated with this model. Finally, tacrolimus stimulated Smad1/5/8 signaling in C2C12 cells expressing BMP9-unresponsive ALK1 HHT mutants and in HHT patient blood outgrowth ECs. Tacrolimus repurposing has therefore therapeutic potential in HHT.
Collapse
Affiliation(s)
- Santiago Ruiz
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease
| | | | - Haitian Zhao
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease
| | | | - Prodyot K Chatterjee
- Center for Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Erica Christen
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease
| | - Christine N Metz
- Center for Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
- Hofstra Northwell School of Medicine, Hempstead, NY 11549, USA
| | - Lionel Blanc
- Center for Autoimmune and Musculoskeletal Disorders
- Hofstra Northwell School of Medicine, Hempstead, NY 11549, USA
| | - Fabien Campagne
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine
- Department of Physiology and Biophysics, The Weill Cornell Medical College, New York, NY 10021, USA
| | - Philippe Marambaud
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease
- Hofstra Northwell School of Medicine, Hempstead, NY 11549, USA
| |
Collapse
|
156
|
Roman BL, Hinck AP. ALK1 signaling in development and disease: new paradigms. Cell Mol Life Sci 2017; 74:4539-4560. [PMID: 28871312 PMCID: PMC5687069 DOI: 10.1007/s00018-017-2636-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 08/01/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022]
Abstract
Activin A receptor like type 1 (ALK1) is a transmembrane serine/threonine receptor kinase in the transforming growth factor-beta receptor family that is expressed on endothelial cells. Defects in ALK1 signaling cause the autosomal dominant vascular disorder, hereditary hemorrhagic telangiectasia (HHT), which is characterized by development of direct connections between arteries and veins, or arteriovenous malformations (AVMs). Although previous studies have implicated ALK1 in various aspects of sprouting angiogenesis, including tip/stalk cell selection, migration, and proliferation, recent work suggests an intriguing role for ALK1 in transducing a flow-based signal that governs directed endothelial cell migration within patent, perfused vessels. In this review, we present an updated view of the mechanism of ALK1 signaling, put forth a unified hypothesis to explain the cellular missteps that lead to AVMs associated with ALK1 deficiency, and discuss emerging roles for ALK1 signaling in diseases beyond HHT.
Collapse
Affiliation(s)
- Beth L Roman
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, 130 DeSoto St, Pittsburgh, PA, 15261, USA.
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
157
|
Modulation of TGF‑β activity by latent TGF‑β‑binding protein 1 in human osteoarthritis fibroblast‑like synoviocytes. Mol Med Rep 2017; 17:1893-1900. [PMID: 29257223 DOI: 10.3892/mmr.2017.8086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 10/20/2017] [Indexed: 11/05/2022] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease; however, its underlying pathogenesis remains to be elucidated. Previous studies have demonstrated that the transforming growth factor‑β (TGF‑β) signaling pathway has a role in the initiation and development of OA. Additionally, latent TGF‑β‑binding protein‑1 (LTBP‑1) modulates the activity of the TGF‑β‑mothers against decapentaplegic (Smad) signaling pathway in numerous diseases, including malignant glioma. The present study demonstrated that expression of LTBP‑1 is increased in OA synovial tissues compared with normal synovial tissues. The effect of TGF‑β was identified to be mediated by phosphorylated(p)‑(Smad)2/3, which may activate activin‑like kinase (ALK)5 receptor, and by p‑Smad1/5/8, which may induce ALK1, thereby stimulating expression of matrix metalloproteinase‑(MMP)‑13 in OA fibroblast‑like synoviocytes (FLS). Compared with normal FLS, OA FLS demonstrated an increased p‑Smad1/5/8:p‑Smad2 ratio, which led to elevated MMP‑13 expression and aggravation of OA. Furthermore, knockdown of the LTBP‑1 gene by siRNA transfection in OA FLS reduced p‑Smad1/5/8 expression without affecting TGF‑β mRNA levels, although p‑Smad2 expression increased. It was also demonstrated that OA FLS exhibited increased proliferation compared with normal FLS in vitro. Furthermore, siRNA‑mediated downregulation of LTBP‑1 reduced proliferation of OA FLS. In conclusion, the present study demonstrated that an alteration in the p‑Smad1/5/8:p‑Smad2 ratio as well as association between p‑Smad1/5/8 and MMP‑13 expression in human OA FLS, may contribute to the development of OA. The results of the present study suggested that LTBP‑1 is a modulator of the TGF‑β signaling pathway in human OA FLS, which may aid in elucidating the mechanism underlying the pathology of OA.
Collapse
|
158
|
Abstract
Correct organization of the vascular tree requires the balanced activities of several signaling pathways that regulate tubulogenesis and vascular branching, elongation, and pruning. When this balance is lost, the vessels can be malformed and fragile, and they can lose arteriovenous differentiation. In this review, we concentrate on the transforming growth factor (TGF)-β/bone morphogenetic protein (BMP) pathway, which is one of the most important and complex signaling systems in vascular development. Inactivation of these pathways can lead to altered vascular organization in the embryo. In addition, many vascular malformations are related to deregulation of TGF-β/BMP signaling. Here, we focus on two of the most studied vascular malformations that are induced by deregulation of TGF-β/BMP signaling: hereditary hemorrhagic telangiectasia (HHT) and cerebral cavernous malformation (CCM). The first of these is related to loss-of-function mutation of the TGF-β/BMP receptor complex and the second to increased signaling sensitivity to TGF-β/BMP. In this review, we discuss the potential therapeutic targets against these vascular malformations identified so far, as well as their basis in general mechanisms of vascular development and stability.
Collapse
Affiliation(s)
- Sara I Cunha
- From the Department of Immunology, Genetics, and Pathology, Uppsala University, Sweden (S.I.C., P.U.M., E.D.); FIRC Institute of Molecular Oncology, Milan, Italy (E.D., M.G.L.); and Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy (M.G.L.)
| | - Peetra U Magnusson
- From the Department of Immunology, Genetics, and Pathology, Uppsala University, Sweden (S.I.C., P.U.M., E.D.); FIRC Institute of Molecular Oncology, Milan, Italy (E.D., M.G.L.); and Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy (M.G.L.)
| | - Elisabetta Dejana
- From the Department of Immunology, Genetics, and Pathology, Uppsala University, Sweden (S.I.C., P.U.M., E.D.); FIRC Institute of Molecular Oncology, Milan, Italy (E.D., M.G.L.); and Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy (M.G.L.).
| | - Maria Grazia Lampugnani
- From the Department of Immunology, Genetics, and Pathology, Uppsala University, Sweden (S.I.C., P.U.M., E.D.); FIRC Institute of Molecular Oncology, Milan, Italy (E.D., M.G.L.); and Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy (M.G.L.)
| |
Collapse
|
159
|
Monsivais D, Matzuk MM, Pangas SA. The TGF-β Family in the Reproductive Tract. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022251. [PMID: 28193725 DOI: 10.1101/cshperspect.a022251] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The transforming growth factor β (TGF-β) family has a profound impact on the reproductive function of various organisms. In this review, we discuss how highly conserved members of the TGF-β family influence the reproductive function across several species. We briefly discuss how TGF-β-related proteins balance germ-cell proliferation and differentiation as well as dauer entry and exit in Caenorhabditis elegans. In Drosophila melanogaster, TGF-β-related proteins maintain germ stem-cell identity and eggshell patterning. We then provide an in-depth analysis of landmark studies performed using transgenic mouse models and discuss how these data have uncovered basic developmental aspects of male and female reproductive development. In particular, we discuss the roles of the various TGF-β family ligands and receptors in primordial germ-cell development, sexual differentiation, and gonadal cell development. We also discuss how mutant mouse studies showed the contribution of TGF-β family signaling to embryonic and postnatal testis and ovarian development. We conclude the review by describing data obtained from human studies, which highlight the importance of the TGF-β family in normal female reproductive function during pregnancy and in various gynecologic pathologies.
Collapse
Affiliation(s)
- Diana Monsivais
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030.,Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030
| | - Martin M Matzuk
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030.,Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030.,Department of Molecular and Cellular Biology, Baylor College of Medicine Houston, Texas 77030.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030.,Department of Pharmacology, Baylor College of Medicine, Houston, Texas 77030
| | - Stephanie A Pangas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030.,Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030.,Department of Molecular and Cellular Biology, Baylor College of Medicine Houston, Texas 77030
| |
Collapse
|
160
|
Ruiz-Llorente L, Gallardo-Vara E, Rossi E, Smadja DM, Botella LM, Bernabeu C. Endoglin and alk1 as therapeutic targets for hereditary hemorrhagic telangiectasia. Expert Opin Ther Targets 2017; 21:933-947. [PMID: 28796572 DOI: 10.1080/14728222.2017.1365839] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Hereditary Haemorrhagic Telangiectasia (HHT) is as an autosomal dominant trait characterized by frequent nose bleeds, mucocutaneous telangiectases, arteriovenous malformations (AVMs) of the lung, liver and brain, and gastrointestinal bleedings due to telangiectases. HHT is originated by mutations in genes whose encoded proteins are involved in the transforming growth factor β (TGF-β) family signalling of vascular endothelial cells. In spite of the great advances in the diagnosis as well as in the molecular, cellular and animal models of HHT, the current treatments remain just at the palliative level. Areas covered: Pathogenic mutations in genes coding for the TGF-β receptors endoglin (ENG) (HHT1) or the activin receptor-like kinase-1 (ACVRL1 or ALK1) (HHT2), are responsible for more than 80% of patients with HHT. Therefore, ENG and ALK1 are the main potential therapeutic targets for HHT and the focus of this review. The current status of the preclinical and clinical studies, including the anti-angiogenic strategy, have been addressed. Expert opinion: Endoglin and ALK1 are attractive therapeutic targets in HHT. Because haploinsufficiency is the pathogenic mechanism in HHT, several therapeutic approaches able to enhance protein expression and/or function of endoglin and ALK1 are keys to find novel and efficient treatments for the disease.
Collapse
Affiliation(s)
- Lidia Ruiz-Llorente
- a Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Madrid , Spain
| | - Eunate Gallardo-Vara
- a Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Madrid , Spain
| | - Elisa Rossi
- b Faculté de Pharmacie , Paris Descartes University, Sorbonne Paris Cité and Inserm UMR-S1140 , Paris , France
| | - David M Smadja
- b Faculté de Pharmacie , Paris Descartes University, Sorbonne Paris Cité and Inserm UMR-S1140 , Paris , France
| | - Luisa M Botella
- a Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Madrid , Spain
| | - Carmelo Bernabeu
- a Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Madrid , Spain
| |
Collapse
|
161
|
Morine KJ, Qiao X, Paruchuri V, Aronovitz MJ, Mackey EE, Buiten L, Levine J, Ughreja K, Nepali P, Blanton RM, Oh SP, Karas RH, Kapur NK. Reduced activin receptor-like kinase 1 activity promotes cardiac fibrosis in heart failure. Cardiovasc Pathol 2017; 31:26-33. [PMID: 28820968 DOI: 10.1016/j.carpath.2017.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/03/2017] [Accepted: 07/12/2017] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Activin receptor-like kinase 1 (ALK1) mediates signaling via the transforming growth factor beta-1 (TGFβ1), a pro-fibrogenic cytokine. No studies have defined a role for ALK1 in heart failure. HYPOTHESIS We tested the hypothesis that reduced ALK1 expression promotes maladaptive cardiac remodeling in heart failure. METHODS AND RESULTS In patients with advanced heart failure referred for left ventricular (LV) assist device implantation, LV Alk1 mRNA and protein levels were lower than control LV obtained from patients without heart failure. To investigate the role of ALK1 in heart failure, Alk1 haploinsufficient (Alk1+/-) and wild-type (WT) mice were studied 2 weeks after severe transverse aortic constriction (TAC). LV and lung weights were higher in Alk1+/- mice after TAC. Cardiomyocyte area and LV mRNA levels of brain natriuretic peptide and β-myosin heavy chain were increased similarly in Alk1+/- and WT mice after TAC. Alk-1 mice exhibited reduced Smad 1 phosphorylation and signaling compared to WT mice after TAC. Compared to WT, LV fibrosis and Type 1 collagen mRNA and protein levels were higher in Alk1+/- mice. LV fractional shortening was lower in Alk1+/- mice after TAC. CONCLUSIONS Reduced expression of ALK1 promotes cardiac fibrosis and impaired LV function in a murine model of heart failure. Further studies examining the role of ALK1 and ALK1 inhibitors on cardiac remodeling are required.
Collapse
Affiliation(s)
- Kevin J Morine
- Molecular Cardiology Research Institute and Division of Cardiology, Department of Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| | - Xiaoying Qiao
- Molecular Cardiology Research Institute and Division of Cardiology, Department of Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| | - Vikram Paruchuri
- Molecular Cardiology Research Institute and Division of Cardiology, Department of Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| | - Mark J Aronovitz
- Molecular Cardiology Research Institute and Division of Cardiology, Department of Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| | - Emily E Mackey
- Molecular Cardiology Research Institute and Division of Cardiology, Department of Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| | - Lyanne Buiten
- Molecular Cardiology Research Institute and Division of Cardiology, Department of Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| | - Jonathan Levine
- Molecular Cardiology Research Institute and Division of Cardiology, Department of Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| | - Keshan Ughreja
- Molecular Cardiology Research Institute and Division of Cardiology, Department of Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| | - Prerna Nepali
- Molecular Cardiology Research Institute and Division of Cardiology, Department of Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| | - Robert M Blanton
- Molecular Cardiology Research Institute and Division of Cardiology, Department of Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| | - S Paul Oh
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | - Richard H Karas
- Molecular Cardiology Research Institute and Division of Cardiology, Department of Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| | - Navin K Kapur
- Molecular Cardiology Research Institute and Division of Cardiology, Department of Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA.
| |
Collapse
|
162
|
Targeting tumour vasculature by inhibiting activin receptor-like kinase (ALK)1 function. Biochem Soc Trans 2017; 44:1142-9. [PMID: 27528762 DOI: 10.1042/bst20160093] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Indexed: 12/23/2022]
Abstract
Angiogenesis is a hallmark of cancer and is now a validated therapeutic target in the clinical setting. Despite the initial success, anti-angiogenic compounds impinging on the vascular endothelial growth factor (VEGF) pathway display limited survival benefits in patients and resistance often develops due to activation of alternative pathways. Thus, finding and validating new targets is highly warranted. Activin receptor-like kinase (ALK)1 is a transforming growth factor beta (TGF-β) type I receptor predominantly expressed in actively proliferating endothelial cells (ECs). ALK1 has been shown to play a pivotal role in regulating angiogenesis by binding to bone morphogenetic protein (BMP)9 and 10. Two main pharmacological inhibitors, an ALK1-Fc fusion protein (Dalantercept/ACE-041) and a fully human antibody against the extracellular domain of ALK1 (PF-03446962) are currently under clinical development. Herein, we briefly recapitulate the role of ALK1 in blood vessel formation and the current status of the preclinical and clinical studies on inhibition of ALK1 signalling as an anti-angiogenic strategy. Future directions in terms of new combination regimens will also be presented.
Collapse
|
163
|
Dichotomous roles of TGF-β in human cancer. Biochem Soc Trans 2017; 44:1441-1454. [PMID: 27911726 DOI: 10.1042/bst20160065] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/27/2016] [Accepted: 06/09/2016] [Indexed: 12/11/2022]
Abstract
Transforming growth factor-β (TGF-β) mediates numerous biological processes, including embryonic development and the maintenance of cellular homeostasis in a context-dependent manner. Consistent with its central role in maintaining cellular homeostasis, inhibition of TGF-β signaling results in disruption of normal homeostatic processes and subsequent carcinogenesis, defining the TGF-β signaling pathway as a tumor suppressor. However, once carcinogenesis is initiated, the TGF-β signaling pathway promotes cancer progression. This dichotomous function of the TGF-β signaling pathway is mediated through altering effects on both the cancer cells, by inducing apoptosis and inhibiting proliferation, and the tumor microenvironment, by promoting angiogenesis and inhibiting immunosurveillance. Current studies support inhibition of TGF-β signaling either alone, or in conjunction with anti-angiogenic therapy or immunotherapy as a promising strategy for the treatment of human cancers.
Collapse
|
164
|
Mullen AC, Wrana JL. TGF-β Family Signaling in Embryonic and Somatic Stem-Cell Renewal and Differentiation. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022186. [PMID: 28108485 DOI: 10.1101/cshperspect.a022186] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Soon after the discovery of transforming growth factor-β (TGF-β), seminal work in vertebrate and invertebrate models revealed the TGF-β family to be central regulators of tissue morphogenesis. Members of the TGF-β family direct some of the earliest cell-fate decisions in animal development, coordinate complex organogenesis, and contribute to tissue homeostasis in the adult. Here, we focus on the role of the TGF-β family in mammalian stem-cell biology and discuss its wide and varied activities both in the regulation of pluripotency and in cell-fate commitment.
Collapse
Affiliation(s)
- Alan C Mullen
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138
| | - Jeffrey L Wrana
- Lunenfeld-Tanenbam Research Institute, Mount Sinai Hospital and Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1X5, Canada
| |
Collapse
|
165
|
Zhang H, Du L, Zhong Y, Flanders KC, Roberts JD. Transforming growth factor-β stimulates Smad1/5 signaling in pulmonary artery smooth muscle cells and fibroblasts of the newborn mouse through ALK1. Am J Physiol Lung Cell Mol Physiol 2017. [PMID: 28642261 DOI: 10.1152/ajplung.00079.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The intracellular signaling mechanisms through which TGF-β regulates pulmonary development are incompletely understood. Canonical TGF-β signaling involves Smad2/3 phosphorylation, Smad2/3·Smad4 complex formation and nuclear localization, and gene regulation. Here, we show that physiologically relevant TGF-β1 levels also stimulate Smad1/5 phosphorylation, which is typically a mediator of bone morphogenetic protein (BMP) signaling, in mouse pup pulmonary artery smooth muscle cells (mPASMC) and lung fibroblasts and other interstitial lung cell lines. This cross-talk mechanism likely has in vivo relevance because mixed Smad1/5/8·Smad2/3 complexes, which are indicative of TGF-β-stimulated Smad1/5 activation, were detected in the developing mouse lung using a proximity ligation assay. Although mixed Smad complexes have been shown not to transduce nuclear signaling, we determined that TGF-β stimulates nuclear localization of phosphorylated Smad1/5 and induces the expression of prototypical BMP-regulated genes in the mPASMC. Small-molecule kinase inhibitor studies suggested that TGF-β-regulated Smad1/5 phosphorylation in these cells is mediated by TGF-β-type I receptors, not BMP-type I receptors, but possibly the accessory activin-like kinase (ALK1) receptor. Although work by others suggested that ALK1 is expressed exclusively in endothelial cells in the vasculature, we detected ALK1 mRNA and protein expression in mPASMC in vitro and in mouse pup lungs. Moreover, using an antimurine ALK1 antibody and mPASMC, we determined that ALK1 regulates Smad1/5 phosphorylation by TGF-β. Together, these studies characterize an accessory TGF-β-stimulated BMP R-Smad signaling mechanism in interstitial cells of the developing lung. They also indicate the importance of considering alternate Smad pathways in studies directed at determining how TGF-β regulates newborn lung development.
Collapse
Affiliation(s)
- Huili Zhang
- Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts
| | - Lili Du
- Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts
| | - Ying Zhong
- Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts
| | - Kathleen C Flanders
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; and
| | - Jesse D Roberts
- Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts; .,Department of Anesthesia and the Division of Newborn Medicine in the Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
166
|
Clancy RM, Markham AJ, Jackson T, Rasmussen SE, Blumenberg M, Buyon JP. Cardiac fibroblast transcriptome analyses support a role for interferogenic, profibrotic, and inflammatory genes in anti-SSA/Ro-associated congenital heart block. Am J Physiol Heart Circ Physiol 2017. [PMID: 28626076 DOI: 10.1152/ajpheart.00256.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The signature lesion of SSA/Ro autoantibody-associated congenital heart block (CHB) is fibrosis and a macrophage infiltrate, supporting an experimental focus on cues influencing the fibroblast component. The transcriptomes of human fetal cardiac fibroblasts were analyzed using two complementary approaches. Cardiac injury conditions were simulated in vitro by incubating human fetal cardiac fibroblasts with supernatants from macrophages transfected with the SSA/Ro-associated noncoding Y ssRNA. The top 10 upregulated transcripts in the stimulated fibroblasts reflected a type I interferon (IFN) response [e.g., IFN-induced protein 44-like (IFI44L), of MX dynamin-like GTPase (MX)1, MX2, and radical S-adenosyl methionine domain containing 2 (Rsad2)]. Within the fibrotic pathway, transcript levels of endothelin-1 (EDN1), phosphodiesterase (PDE)4D, chemokine (C-X-C motif) ligand (CXCL)2, and CXCL3 were upregulated, while others, including adenomedullin, RAP guanine nucleotide exchange factor 3 (RAPGEF3), tissue inhibitor of metalloproteinase (TIMP)1, TIMP3, and dual specificity phosphatase 1, were downregulated. Agnostic Database for Annotation, Visualization and Integrated Discovery analysis revealed a significant increase in inflammatory genes, including complement C3A receptor 1 (C3AR1), F2R-like thrombin/trypsin receptor 3, and neutrophil cytosolic factor 2. In addition, stimulated fibroblasts expressed high levels of phospho-MADS box transcription enhancer factor 2 [a substrate of MAPK5 (ERK5)], which was inhibited by BIX-02189, a specific inhibitor of ERK5. Translation to human disease leveraged an unprecedented opportunity to interrogate the transcriptome of fibroblasts freshly isolated and cell sorted without stimulation from a fetal heart with CHB and a matched healthy heart. Consistent with the in vitro data, five IFN response genes were among the top 10 most highly expressed transcripts in CHB fibroblasts. In addition, the expression of matrix-related genes reflected fibrosis. These data support the novel finding that cardiac injury in CHB may occur secondary to abnormal remodeling due in part to upregulation of type 1 IFN response genes.NEW & NOTEWORTHY Congenital heart block is a rare disease of the fetal heart associated with maternal anti-Ro autoantibodies which can result in death and for survivors, lifelong pacing. This study provides in vivo and in vitro transcriptome-support that injury may be mediated by an effect of Type I Interferon on fetal fibroblasts.
Collapse
Affiliation(s)
- Robert M Clancy
- Division of Rheumatology, Department of Medicine, New York University School of Medicine, New York, New York
| | - Androo J Markham
- Division of Rheumatology, Department of Medicine, New York University School of Medicine, New York, New York
| | - Tanisha Jackson
- Division of Rheumatology, Department of Medicine, New York University School of Medicine, New York, New York
| | - Sara E Rasmussen
- Division of Rheumatology, Department of Medicine, New York University School of Medicine, New York, New York
| | - Miroslav Blumenberg
- Division of Rheumatology, Department of Medicine, New York University School of Medicine, New York, New York
| | - Jill P Buyon
- Division of Rheumatology, Department of Medicine, New York University School of Medicine, New York, New York
| |
Collapse
|
167
|
Franco CA, Gerhardt H. Blood flow boosts BMP signaling to keep vessels in shape. J Cell Biol 2017; 214:793-5. [PMID: 27672213 PMCID: PMC5037414 DOI: 10.1083/jcb.201609038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 11/22/2022] Open
Abstract
Bone morphogenic proteins (BMPs) and blood flow regulate vascular remodeling and homeostasis. In this issue, Baeyens et al. (2016. J. Cell Biol http://dx.doi.org/10.1083/jcb.201603106) show that blood flow sensitizes endothelial cells to BMP9 signaling by triggering Alk1/ENG complexing to suppress cell proliferation and to recruit mural cells, thereby establishing endothelial quiescence.
Collapse
Affiliation(s)
- Claudio A Franco
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Holger Gerhardt
- Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany Department of Oncology, Vascular Patterning Laboratory, Vesalius Research Center, 3000 Leuven, Belgium German Center for Cardiovascular Research, 13347 Berlin, Germany Berlin Institute of Health, 10117 Berlin, Germany
| |
Collapse
|
168
|
Siqueira M, Francis D, Gisbert D, Gomes FCA, Stipursky J. Radial Glia Cells Control Angiogenesis in the Developing Cerebral Cortex Through TGF-β1 Signaling. Mol Neurobiol 2017; 55:3660-3675. [PMID: 28523566 DOI: 10.1007/s12035-017-0557-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
Abstract
Neuroangiogenesis in the developing central nervous system is controlled by interactions between endothelial cells (ECs) and radial glia (RG) neural stem cells, although RG-derived molecules implicated in these events are not fully known. Here, we investigated the role of RG-secreted TGF-β1, in angiogenesis in the developing cerebral cortex. By isolation of murine microcapillary brain endothelial cells (MBECs), we demonstrate that conditioned medium from RG cultures (RG-CM) promoted MBEC migration and formation of vessel-like structures in vitro, in a TGF-β1-dependent manner. These events were followed by endothelial regulation of GPR124 and BAI-1 gene expression by RG-CM. Proteome profile of RG-CM identified angiogenesis-related molecules IGFBP2/3, osteopontin, endostatin, SDF1, fractalkine, TIMP1/4, Ang-1, pentraxin3, and Cyr61, some of them modulated by TGF-β1 induction. In vivo gain and loss of function assays targeting RG cells demonstrates a specific TGF-β1-dependent control of blood vessels branching in the cerebral cortex. Together, our results point to TGF-β1 signaling pathway as a potential mediator of the RG-EC interactions and shed light to the key role of RG in paving the brain vascular network.
Collapse
Affiliation(s)
- Michele Siqueira
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Daniel Francis
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Diego Gisbert
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Joice Stipursky
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. .,Laboratório de Neurobiologia Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro - Centro de Ciências da Saúde, Bloco F, Sala F15, Ilha do Fundão, Rio de Janeiro, RJ, 21949-902, Brazil.
| |
Collapse
|
169
|
Tian H, Ketova T, Hardy D, Xu X, Gao X, Zijlstra A, Blobe GC. Endoglin Mediates Vascular Maturation by Promoting Vascular Smooth Muscle Cell Migration and Spreading. Arterioscler Thromb Vasc Biol 2017; 37:1115-1126. [PMID: 28450296 PMCID: PMC5444426 DOI: 10.1161/atvbaha.116.308859] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 04/19/2017] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Objective— Endoglin, a transforming growth factor-β superfamily coreceptor, is predominantly expressed in endothelial cells and has essential roles in vascular development. However, whether endoglin is also expressed in vascular smooth muscle cells (VSMCs), especially in vivo, remains controversial. Furthermore, the roles of endoglin in VSMC biology remain largely unknown. Our objective was to examine the expression and determine the function of endoglin in VSMCs during angiogenesis. Approach and Results— Here, we determine that endoglin is robustly expressed in VSMCs. Using CRISPR/CAS9 knockout and short hairpin RNA knockdown in the VSMC/endothelial coculture model system, we determine that endoglin in VSMCs, but not in endothelial cells, promotes VSMCs recruitment by the endothelial cells both in vitro and in vivo. Using an unbiased bioinformatics analysis of RNA sequencing data and further study, we determine that, mechanistically, endoglin mediates VSMC recruitment by promoting VSMC migration and spreading on endothelial cells via increasing integrin/FAK pathway signaling, whereas endoglin has minimal effects on VSMC adhesion to endothelial cells. In addition, we further determine that loss of endoglin in VSMCs inhibits VSMC recruitment in vivo. Conclusions— These studies demonstrate that endoglin has an important role in VSMC recruitment and blood vessel maturation during angiogenesis and also provide novel insights into how discordant endoglin function in endothelial and VSMCs may regulate vascular maturation and angiogenesis.
Collapse
Affiliation(s)
- Hongyu Tian
- From the Division of Medical Oncology, Department of Medicine (H.T., D.H., G.C.B.) and Department of Pharmacology and Cancer Biology (G.C.B.), Duke University Medical Center, Durham, NC; Department of Pathology, Microbiology, and Immunology (T.K., A.Z.) and Department of Cancer Biology (A.Z.), Vanderbilt University, Nashville, TN; Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC (X.X.); Department of Cell Biology, Duke University School of Medicine, Durham, NC (X.G.); and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN (A.Z.);
| | - Tatiana Ketova
- From the Division of Medical Oncology, Department of Medicine (H.T., D.H., G.C.B.) and Department of Pharmacology and Cancer Biology (G.C.B.), Duke University Medical Center, Durham, NC; Department of Pathology, Microbiology, and Immunology (T.K., A.Z.) and Department of Cancer Biology (A.Z.), Vanderbilt University, Nashville, TN; Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC (X.X.); Department of Cell Biology, Duke University School of Medicine, Durham, NC (X.G.); and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN (A.Z.)
| | - Duriel Hardy
- From the Division of Medical Oncology, Department of Medicine (H.T., D.H., G.C.B.) and Department of Pharmacology and Cancer Biology (G.C.B.), Duke University Medical Center, Durham, NC; Department of Pathology, Microbiology, and Immunology (T.K., A.Z.) and Department of Cancer Biology (A.Z.), Vanderbilt University, Nashville, TN; Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC (X.X.); Department of Cell Biology, Duke University School of Medicine, Durham, NC (X.G.); and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN (A.Z.)
| | - Xiaojiang Xu
- From the Division of Medical Oncology, Department of Medicine (H.T., D.H., G.C.B.) and Department of Pharmacology and Cancer Biology (G.C.B.), Duke University Medical Center, Durham, NC; Department of Pathology, Microbiology, and Immunology (T.K., A.Z.) and Department of Cancer Biology (A.Z.), Vanderbilt University, Nashville, TN; Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC (X.X.); Department of Cell Biology, Duke University School of Medicine, Durham, NC (X.G.); and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN (A.Z.)
| | - Xia Gao
- From the Division of Medical Oncology, Department of Medicine (H.T., D.H., G.C.B.) and Department of Pharmacology and Cancer Biology (G.C.B.), Duke University Medical Center, Durham, NC; Department of Pathology, Microbiology, and Immunology (T.K., A.Z.) and Department of Cancer Biology (A.Z.), Vanderbilt University, Nashville, TN; Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC (X.X.); Department of Cell Biology, Duke University School of Medicine, Durham, NC (X.G.); and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN (A.Z.)
| | - Andries Zijlstra
- From the Division of Medical Oncology, Department of Medicine (H.T., D.H., G.C.B.) and Department of Pharmacology and Cancer Biology (G.C.B.), Duke University Medical Center, Durham, NC; Department of Pathology, Microbiology, and Immunology (T.K., A.Z.) and Department of Cancer Biology (A.Z.), Vanderbilt University, Nashville, TN; Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC (X.X.); Department of Cell Biology, Duke University School of Medicine, Durham, NC (X.G.); and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN (A.Z.)
| | - Gerard C Blobe
- From the Division of Medical Oncology, Department of Medicine (H.T., D.H., G.C.B.) and Department of Pharmacology and Cancer Biology (G.C.B.), Duke University Medical Center, Durham, NC; Department of Pathology, Microbiology, and Immunology (T.K., A.Z.) and Department of Cancer Biology (A.Z.), Vanderbilt University, Nashville, TN; Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC (X.X.); Department of Cell Biology, Duke University School of Medicine, Durham, NC (X.G.); and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN (A.Z.);
| |
Collapse
|
170
|
Abdullahi W, Davis TP, Ronaldson PT. Functional Expression of P-glycoprotein and Organic Anion Transporting Polypeptides at the Blood-Brain Barrier: Understanding Transport Mechanisms for Improved CNS Drug Delivery? AAPS JOURNAL 2017; 19:931-939. [PMID: 28447295 DOI: 10.1208/s12248-017-0081-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/29/2017] [Indexed: 12/28/2022]
Abstract
Drug delivery to the central nervous system (CNS) is greatly limited by the blood-brain barrier (BBB). Physical and biochemical properties of the BBB have rendered treatment of CNS diseases, including those with a hypoxia/reoxygenation (H/R) component, extremely difficult. Targeting endogenous BBB transporters from the ATP-binding cassette (ABC) superfamily (i.e., P-glycoprotein (P-gp)) or from the solute carrier (SLC) family (i.e., organic anion transporting polypeptides (OATPs in humans; Oatps in rodents)) has been suggested as a strategy that can improve delivery of drugs to the brain. With respect to P-gp, direct pharmacological inhibition using small molecules or selective regulation by targeting intracellular signaling pathways has been explored. These approaches have been largely unsuccessful due to toxicity issues and unpredictable pharmacokinetics. Therefore, our laboratory has proposed that optimization of CNS drug delivery, particularly for treatment of diseases with an H/R component, can be achieved by targeting Oatp isoforms at the BBB. As the major drug transporting Oatp isoform, Oatp1a4 has demonstrated blood-to-brain transport of substrate drugs with neuroprotective properties. Furthermore, our laboratory has shown that targeting Oatp1a4 regulation (i.e., TGF-β signaling mediated via the ALK-1 and ALK-5 transmembrane receptors) represents an opportunity to control Oatp1a4 functional expression for the purpose of delivering therapeutics to the CNS. In this review, we will discuss limitations of targeting P-gp-mediated transport activity and the advantages of targeting Oatp-mediated transport. Through this discussion, we will also provide critical information on novel approaches to improve CNS drug delivery by targeting endogenous uptake transporters expressed at the BBB.
Collapse
Affiliation(s)
- Wazir Abdullahi
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 N. Campbell Avenue, P.O. Box 245050, Tucson, Arizona, 85724-5050, USA
| | - Thomas P Davis
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 N. Campbell Avenue, P.O. Box 245050, Tucson, Arizona, 85724-5050, USA
| | - Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 N. Campbell Avenue, P.O. Box 245050, Tucson, Arizona, 85724-5050, USA.
| |
Collapse
|
171
|
Yang J, Wang Y, Zeng Z, Qiao L, Zhuang L, Gao Q, Ma D, Huang X. Smad4 deletion in blood vessel endothelial cells promotes ovarian cancer metastasis. Int J Oncol 2017; 50:1693-1700. [PMID: 28393199 DOI: 10.3892/ijo.2017.3957] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 02/23/2017] [Indexed: 11/06/2022] Open
Abstract
SMAD4 is a critical co-smad in signal transduction pathways activated in response to transforming growth factor-β (TGF-β)-related ligands, regulating cell growth and differentiation. The roles played by SMAD4 inactivation in tumors highlighted it as a tumor-suppressor gene. Herein, we report that loss of SMAD4 expression in vascular endothelial cells promotes ovarian cancer invasion. SiRNA transfer of this gene in the HUVEC reduced SMAD4 protein expression and function. Although it reduced the vessel endothelial cell tubule formation in vitro and in vivo, it did not affect the tumor growth significantly in vivo. However, it weakened the barrier integrity in endothelial cells and increased vessel permeability and the ovarian cancer liver metastasis. We documented reduced angiogenesis and increased invasion histologically and by intravital microscopy, and gained mechanistic insight at the messenger and gene level. Finally, we found a negative reciprocal regulation between SMAD4 and FYN. FYN is one of the Src family kinases (SFK), activation of which can cause dissociation of cell-cell junctions and adhesion, resulting in paracellular hypermeability. Upon SMAD4 deletion, we detected high expression levels of FYN in vessel endothelial cells, suggesting the mechanism of the ovarian tumor cells cross the endothelial barrier and transform to an invasive phenotype.
Collapse
Affiliation(s)
- Jie Yang
- Cancer Biology Research Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ya Wang
- Cancer Biology Research Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhen Zeng
- Cancer Biology Research Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Long Qiao
- Cancer Biology Research Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Liang Zhuang
- Cancer Biology Research Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qinglei Gao
- Cancer Biology Research Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ding Ma
- Cancer Biology Research Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiaoyuan Huang
- Cancer Biology Research Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
172
|
TGF-β Family Signaling in the Control of Cell Proliferation and Survival. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022145. [PMID: 27920038 DOI: 10.1101/cshperspect.a022145] [Citation(s) in RCA: 455] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The transforming growth factor β (TGF-β) family controls many fundamental aspects of cellular behavior. With advances in the molecular details of the TGF-β signaling cascade and its cross talk with other signaling pathways, we now have a more coherent understanding of the cytostatic program induced by TGF-β. However, the molecular mechanisms are still largely elusive for other cellular processes that are regulated by TGF-β and determine a cell's proliferation and survival, apoptosis, dormancy, autophagy, and senescence. The difficulty in defining TGF-β's roles partly stems from the context-dependent nature of TGF-β signaling. Here, we review our current understanding and recent progress on the biological effects of TGF-β at the cellular level, with the hope of providing a framework for understanding how cells respond to TGF-β signals in specific contexts, and why disruption of such mechanisms may result in different human diseases including cancer.
Collapse
|
173
|
Dhahri W, Dussault S, Haddad P, Turgeon J, Tremblay S, Rolland K, Desjarlais M, Cáceres-Gorriti KY, Mathieu R, Rivard A. Reduced expression of let-7f activates TGF-β/ALK5 pathway and leads to impaired ischaemia-induced neovascularization after cigarette smoke exposure. J Cell Mol Med 2017; 21:2211-2222. [PMID: 28345812 PMCID: PMC5571564 DOI: 10.1111/jcmm.13144] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 01/30/2017] [Indexed: 12/20/2022] Open
Abstract
This study sought to determine the potential role of microRNAs (miRNAs) in the detrimental effects of cigarette smoke on angiogenesis and neovascularization. Using large-scale miRNA profiling and qRT-PCR analyses, we identified let-7f as a pro-angiogenic miRNA which expression is significantly reduced in HUVECs treated with cigarette smoke extracts (CSE), and in the ischemic muscles of mice that are exposed to cigarette smoke (MES). In a mouse model of hindlimb ischaemia, intramuscular injection of let-7f mimic restored ischaemia-induced neovascularization in MES. Doppler flow ratios and capillary density in ischemic muscles were significantly improved in MES treated with let-7f mimic. Clinically, this was associated with reduced ambulatory impairment and hindlimb ischaemic damage. Treatment with let-7f mimic could also rescue pro-angiogenic cell (PAC) number and function (attachment, proliferation, migration) in MES. ALK5 (TGF-βR1), an important modulator of angiogenesis, is a target of let-7f. Here we show that ALK5 is increased in HUVECs exposed to CSE and in the ischaemic muscles of MES. This is associated with a downstream activation of the anti-angiogenic factors SMAD2/3 and PAI-1. Importantly, treatment with let-7f mimic reduces the expression of ALK5, SMAD2/3 and PAI-1 both in vitro and in vivo. Moreover, let-7f overexpression or ALK5 inhibition can rescue angiogenesis in HUVECs exposed to CSE. Cigarette smoke exposure is associated with reduced expression of let-7f and activation of the anti-angiogenic TGF-β/ALK5 pathway. Overexpression of let-7f using a miRNA mimic could constitute a novel therapeutic strategy to improve ischaemia-induced neovascularization in pathological conditions.
Collapse
Affiliation(s)
- Wahiba Dhahri
- Department of Cardiovascular Research, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Sylvie Dussault
- Department of Cardiovascular Research, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Paola Haddad
- Department of Cardiovascular Research, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Julie Turgeon
- Department of Cardiovascular Research, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Sophie Tremblay
- Department of Cardiovascular Research, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Kevin Rolland
- Department of Cardiovascular Research, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Michel Desjarlais
- Department of Cardiovascular Research, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Katia Y Cáceres-Gorriti
- Department of Cardiovascular Research, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Raphael Mathieu
- Department of Cardiovascular Research, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Alain Rivard
- Department of Cardiovascular Research, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
174
|
Conditional knockout of activin like kinase-1 (ALK-1) leads to heart failure without maladaptive remodeling. Heart Vessels 2017; 32:628-636. [PMID: 28213819 DOI: 10.1007/s00380-017-0955-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/16/2016] [Indexed: 12/30/2022]
Abstract
Activin like kinase-1 (AlK-1) mediates signaling via the transforming growth factor beta (TGFβ) family of ligands. AlK-1 activity promotes endothelial proliferation and migration. Reduced AlK-1 activity is associated with arteriovenous malformations. No studies have examined the effect of global AlK-1 deletion on indices of cardiac remodeling. We hypothesized that reduced levels of AlK-1 promote maladaptive cardiac remodeling. To test this hypothesis, we employed AlK-1 conditional knockout mice (cKO) harboring the ROSA26-CreER knock-in allele, whereby a single dose of intraperitoneal tamoxifen triggered ubiquitous Cre recombinase-mediated excision of floxed AlK-1 alleles. Tamoxifen treated wild-type (WT-TAM; n = 5) and vehicle treated AlK-1-cKO mice (cKO-CON; n = 5) served as controls for tamoxifen treated AlK-1-cKO mice (cKO-TAM; n = 15). AlK-1 cKO-TAM mice demonstrated reduced 14-day survival compared to cKO-CON controls (13 vs 100%, respectively, p < 0.01). Seven days after treatment, cKO-TAM mice exhibited reduced left ventricular (LV) fractional shortening, progressive LV dilation, and gastrointestinal bleeding. After 14 days total body mass was reduced, but LV and lung mass increased in cKO-TAM not cKO-CON mice. Peak LV systolic pressure, contractility, and arterial elastance were reduced, but LV end-diastolic pressure and stroke volume were increased in cKO-TAM, not cKO-CON mice. LV AlK-1 mRNA levels were reduced in cKO-TAM, not cKO-CON mice. LV levels of other TGFβ-family ligands and receptors (AlK5, TBRII, BMPRII, Endoglin, BMP7, BMP9, and TGFβ1) were unchanged between groups. Cardiomyocyte area and LV levels of BNP were increased in cKO-TAM mice, but LV levels of β-MHC and SERCA were unchanged. No increase in markers of cardiac fibrosis, Type I collagen, CTGF, or PAI-1, were observed between groups. No differences were observed for any variable studied between cKO-CON and WT-TAM mice. Global deletion of AlK-1 is associated with the development of high output heart failure without maladaptive remodeling. Future studies exploring the functional role of AlK-1 in cardiac remodeling independent of systemic AVMs are required.
Collapse
|
175
|
Shi S, Gupta R, Moore JM, Griessenauer CJ, Adeeb N, Motiei-Langroudi R, Thomas AJ, Ogilvy CS. De novo AVM formation following venous sinus thrombosis and prior AVM resection in adults: report of 2 cases. J Neurosurg 2017; 128:506-510. [PMID: 28186446 DOI: 10.3171/2016.9.jns161710] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Brain arteriovenous malformations (AVMs) are traditionally considered congenital lesions, arising from aberrant vascular development during the intrauterine period. Rarely, however, AVMs develop in the postnatal period. Individual case reports of de novo AVM formation in both pediatric and adult patients have challenged the traditional dogma of a congenital origin. Instead, for these cases, a dynamic picture is emerging of AVM growth and development, initially triggered by ischemic and/or traumatic events, coupled with genetic predispositions. A number of pathophysiological descriptions involving aberrant angiogenic responses following trauma, hemorrhage, or inflammation have been proposed, although the exact etiology of these lesions remains to be elucidated. Here, the authors present 2 cases of de novo AVM formation in adult patients. The first case involves the development of an AVM following a venous sinus thrombosis and to the authors' knowledge is the first of its kind to be reported in the literature. They also present a case in which an elderly patient with a previously ruptured AVM developed a second AVM in the contralateral hemisphere 11 years later. In addition to presenting these cases, the authors propose a possible mechanism for de novo AVM development in adult patients following ischemic injury.
Collapse
|
176
|
Pericytes: The Role of Multipotent Stem Cells in Vascular Maintenance and Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1079:69-86. [PMID: 29282647 DOI: 10.1007/5584_2017_138] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Blood vessels consist of an inner endothelial cell layer lining the vessel wall and perivascular pericytes, also known as mural cells, which envelop the vascular tube surface. Pericytes have recently been recognized for their central role in blood vessel formation. Pericytes are multipotent cells that are heterogeneous in their origin, function, morphology and surface markers. Similar to other types of stem cells, pericytes act as a repair system in response to injury by maintaining the structural integrity of blood vessels. Several studies have shown that blood vessels lacking pericytes become hyperdilated and haemorrhagic, leading to vascular complications ranging from diabetic retinopathy to embryonic death. The role of pericytes is not restricted to the formation and development of the vasculature: they have been shown to possess stem cell-like characteristics and may differentiate into cell types from different lineages. Recent discoveries regarding the contribution of pericytes to tumour metastasis and the maintenance of tumour vascular supply and angiogenesis have led researchers to propose targeting pericytes with anti-angiogenic therapies. In this review, we will examine the different physiological roles of pericytes, their differentiation potential, and how they interact with surrounding cells to ensure the integrity of blood vessel formation and maintenance.
Collapse
|
177
|
Voss MH, Bhatt RS, Plimack ER, Rini BI, Alter RS, Beck JT, Wilson D, Zhang X, Mutyaba M, Glasser C, Attie KM, Sherman ML, Pandya SS, Atkins MB. The DART Study: Results from the Dose-Escalation and Expansion Cohorts Evaluating the Combination of Dalantercept plus Axitinib in Advanced Renal Cell Carcinoma. Clin Cancer Res 2016; 23:3557-3565. [PMID: 28031424 DOI: 10.1158/1078-0432.ccr-16-2395] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/30/2016] [Accepted: 12/15/2016] [Indexed: 11/16/2022]
Abstract
Purpose: Activin receptor-like kinase 1 (ALK1) is a novel target in angiogenesis. Concurrent targeting of ALK1 and VEGF signaling results in augmented inhibition of tumor growth in renal cell carcinoma (RCC) xenograft models. Dalantercept is an ALK1-receptor fusion protein that acts as a ligand trap for bone morphogenetic proteins 9 and 10. The DART Study evaluated the safety, tolerability, pharmacokinetics, pharmacodynamics, and antitumor activity of dalantercept plus axitinib in patients with advanced RCC and determined the optimal dose for further testing.Experimental Design: Patients received dalantercept 0.6, 0.9, or 1.2 mg/kg subcutaneously every 3 weeks plus axitinib 5 mg by mouth twice daily until disease progression or intolerance.Results: Twenty-nine patients were enrolled in the dose escalation (n = 15) and expansion (n = 14) cohorts. There were no dose-limiting toxicities or grade 4/5 treatment-related adverse events. In addition to common VEGFR tyrosine kinase inhibitor effects, such as fatigue and diarrhea, commonly seen treatment-related adverse events were peripheral edema, epistaxis, pericardial effusion, and telangiectasia. The objective response rate by RECIST v1.1 was 25% with responses seen at all dose levels. The overall median progression-free survival was 8.3 months.Conclusions: The combination of dalantercept plus axitinib is well tolerated and associated with clinical activity. On the basis of safety and efficacy results, the 0.9 mg/kg dose level was chosen for further study in a randomized phase II trial of dalantercept plus axitinib versus placebo plus axitinib. Clin Cancer Res; 23(14); 3557-65. ©2016 AACR.
Collapse
Affiliation(s)
- Martin H Voss
- Memorial Sloan Kettering Cancer Center, New York, New York.
- Department of Medicine, Weill Medical College of Cornell University, New York, New York
| | - Rupal S Bhatt
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | - Brian I Rini
- Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio
| | - Robert S Alter
- John Theurer Cancer Center Hackensack UMC, Hackensack, New Jersey
| | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
The expanding role of neuropilin: regulation of transforming growth factor-β and platelet-derived growth factor signaling in the vasculature. Curr Opin Hematol 2016; 23:260-7. [PMID: 26849476 DOI: 10.1097/moh.0000000000000233] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Long recognized for its role in regulation of vascular endothelial growth factor signaling, neuropilin (Nrp)1 has emerged as a modulator of additional signaling pathways critical for vascular development and function. Here we review two novel functions of Nrp1 in blood vessels: regulation of transforming growth factor-β (TGFβ) signaling in endothelial cells and regulation of platelet-derived growth factor (PDGF) signaling in vascular smooth muscle cells. RECENT FINDINGS Novel mouse models demonstrate that Nrp1 fulfills vascular functions independent of vascular endothelial growth factor signaling. These include modulation of TGFβ-dependent inhibition of endothelial sprouting during developmental angiogenesis and PDGF signaling in vascular smooth muscle cells during development and disease. SUMMARY Broadening our understanding of how and where Nrp1 functions in the vasculature is critical for the development of targeted therapeutics for cancer and vascular diseases such as atherosclerosis and retinopathies.
Collapse
|
179
|
Núñez-Gómez E, Pericacho M, Ollauri-Ibáñez C, Bernabéu C, López-Novoa JM. The role of endoglin in post-ischemic revascularization. Angiogenesis 2016; 20:1-24. [PMID: 27943030 DOI: 10.1007/s10456-016-9535-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022]
Abstract
Following arterial occlusion, blood vessels respond by forming a new network of functional capillaries (angiogenesis), by reorganizing preexisting capillaries through the recruitment of smooth muscle cells to generate new arteries (arteriogenesis) and by growing and remodeling preexisting collateral arterioles into physiologically relevant arteries (collateral development). All these processes result in the recovery of organ perfusion. The importance of endoglin in post-occlusion reperfusion is sustained by several observations: (1) endoglin expression is increased in vessels showing active angiogenesis/remodeling; (2) genetic endoglin haploinsufficiency in humans causes deficient angiogenesis; and (3) the reduction of endoglin expression by gene disruption or the administration of endoglin-neutralizing antibodies reduces angiogenesis and revascularization. However, the precise role of endoglin in the several processes associated with revascularization has not been completely elucidated and, in some cases, the function ascribed to endoglin by different authors is controversial. The purpose of this review is to organize in a critical way the information available for the role of endoglin in several phenomena (angiogenesis, arteriogenesis and collateral development) associated with post-ischemic revascularization.
Collapse
Affiliation(s)
- Elena Núñez-Gómez
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - Miguel Pericacho
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - Claudia Ollauri-Ibáñez
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - Carmelo Bernabéu
- Centro de Investigaciones Biológicas, Spanish National Research Council (CIB, CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - José M López-Novoa
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain. .,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain.
| |
Collapse
|
180
|
Wetzel-Strong SE, Detter MR, Marchuk DA. The pathobiology of vascular malformations: insights from human and model organism genetics. J Pathol 2016; 241:281-293. [PMID: 27859310 DOI: 10.1002/path.4844] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 10/31/2016] [Accepted: 11/03/2016] [Indexed: 12/12/2022]
Abstract
Vascular malformations may arise in any of the vascular beds present in the human body. These lesions vary in location, type, and clinical severity of the phenotype. In recent years, the genetic basis of several vascular malformations has been elucidated. This review will consider how the identification of the genetic factors contributing to different vascular malformations, with subsequent functional studies in animal models, has provided a better understanding of these factors that maintain vascular integrity in vascular beds, as well as their role in the pathogenesis of vascular malformations. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sarah E Wetzel-Strong
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Matthew R Detter
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.,Medical Scientist Training Program, Duke University School of Medicine, Durham, NC 27710, USA
| | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
181
|
Ola R, Dubrac A, Han J, Zhang F, Fang JS, Larrivée B, Lee M, Urarte AA, Kraehling JR, Genet G, Hirschi KK, Sessa WC, Canals FV, Graupera M, Yan M, Young LH, Oh PS, Eichmann A. PI3 kinase inhibition improves vascular malformations in mouse models of hereditary haemorrhagic telangiectasia. Nat Commun 2016; 7:13650. [PMID: 27897192 PMCID: PMC5141347 DOI: 10.1038/ncomms13650] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/20/2016] [Indexed: 12/26/2022] Open
Abstract
Activin receptor-like kinase 1 (ALK1) is an endothelial serine-threonine kinase receptor for bone morphogenetic proteins (BMPs) 9 and 10. Inactivating mutations in the ALK1 gene cause hereditary haemorrhagic telangiectasia type 2 (HHT2), a disabling disease characterized by excessive angiogenesis with arteriovenous malformations (AVMs). Here we show that inducible, endothelial-specific homozygous Alk1 inactivation and BMP9/10 ligand blockade both lead to AVM formation in postnatal retinal vessels and internal organs including the gastrointestinal (GI) tract in mice. VEGF and PI3K/AKT signalling are increased on Alk1 deletion and BMP9/10 ligand blockade. Genetic deletion of the signal-transducing Vegfr2 receptor prevents excessive angiogenesis but does not fully revert AVM formation. In contrast, pharmacological PI3K inhibition efficiently prevents AVM formation and reverts established AVMs. Thus, Alk1 deletion leads to increased endothelial PI3K pathway activation that may be a novel target for the treatment of vascular lesions in HHT2.
Collapse
Affiliation(s)
- Roxana Ola
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Alexandre Dubrac
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Jinah Han
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Feng Zhang
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Jennifer S. Fang
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Bruno Larrivée
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Monica Lee
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Ana A. Urarte
- Vascular Signalling Laboratory, Institut d'Investigació Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Jan R. Kraehling
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Gael Genet
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Karen K. Hirschi
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - William C. Sessa
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Francesc V. Canals
- Translation Research Laboratory, Catalan Institute of Oncology, Idibell, Barcelona 08908, Spain
| | - Mariona Graupera
- Vascular Signalling Laboratory, Institut d'Investigació Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Minhong Yan
- Molecular Oncology, Genentech, Inc., South San Francisco, California 94080-4990, USA
| | - Lawrence H. Young
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Paul S. Oh
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, PO Box 100274, Gainesville, Florida 32610, USA
| | - Anne Eichmann
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
- Inserm U970, Paris Cardiovascular Research Center, Paris 75015, France
| |
Collapse
|
182
|
A mouse model of hereditary hemorrhagic telangiectasia generated by transmammary-delivered immunoblocking of BMP9 and BMP10. Sci Rep 2016; 5:37366. [PMID: 27874028 PMCID: PMC5118799 DOI: 10.1038/srep37366] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 10/27/2016] [Indexed: 01/03/2023] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a potentially life-threatening genetic vascular disorder caused by loss-of-function mutations in the genes encoding activin receptor-like kinase 1 (ALK1), endoglin, Smad4, and bone morphogenetic protein 9 (BMP9). Injections of mouse neonates with BMP9/10 blocking antibodies lead to HHT-like vascular defects in the postnatal retinal angiogenesis model. Mothers and their newborns share the same immunity through the transfer of maternal antibodies during lactation. Here, we investigated whether the transmammary delivery route could improve the ease and consistency of administering anti-BMP9/10 antibodies in the postnatal retinal angiogenesis model. We found that anti-BMP9/10 antibodies, when intraperitoneally injected into lactating dams, are efficiently transferred into the blood circulation of lactationally-exposed neonatal pups. Strikingly, pups receiving anti-BMP9/10 antibodies via lactation displayed consistent and robust vascular pathology in the retina, which included hypervascularization and defects in arteriovenous specification, as well as the presence of multiple and massive arteriovenous malformations. Furthermore, RNA-Seq analyses of neonatal retinas identified an increase in the key pro-angiogenic factor, angiopoietin-2, as the most significant change in gene expression triggered by the transmammary delivery of anti-BMP9/10 antibodies. Transmammary-delivered BMP9/10 immunoblocking in the mouse neonatal retina is therefore a practical, noninvasive, reliable, and robust model of HHT vascular pathology.
Collapse
|
183
|
Kraehling JR, Chidlow JH, Rajagopal C, Sugiyama MG, Fowler JW, Lee MY, Zhang X, Ramírez CM, Park EJ, Tao B, Chen K, Kuruvilla L, Larriveé B, Folta-Stogniew E, Ola R, Rotllan N, Zhou W, Nagle MW, Herz J, Williams KJ, Eichmann A, Lee WL, Fernández-Hernando C, Sessa WC. Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells. Nat Commun 2016; 7:13516. [PMID: 27869117 PMCID: PMC5121336 DOI: 10.1038/ncomms13516] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 10/11/2016] [Indexed: 12/31/2022] Open
Abstract
In humans and animals lacking functional LDL receptor (LDLR), LDL from plasma still readily traverses the endothelium. To identify the pathways of LDL uptake, a genome-wide RNAi screen was performed in endothelial cells and cross-referenced with GWAS-data sets. Here we show that the activin-like kinase 1 (ALK1) mediates LDL uptake into endothelial cells. ALK1 binds LDL with lower affinity than LDLR and saturates only at hypercholesterolemic concentrations. ALK1 mediates uptake of LDL into endothelial cells via an unusual endocytic pathway that diverts the ligand from lysosomal degradation and promotes LDL transcytosis. The endothelium-specific genetic ablation of Alk1 in Ldlr-KO animals leads to less LDL uptake into the aortic endothelium, showing its physiological role in endothelial lipoprotein metabolism. In summary, identification of pathways mediating LDLR-independent uptake of LDL may provide unique opportunities to block the initiation of LDL accumulation in the vessel wall or augment hepatic LDLR-dependent clearance of LDL. Atherosclerosis is caused by low-density lipoprotein (LDL) buildup in the vessel wall, a process thought to be mediated by LDL receptor alone. Here, the authors show that the endothelium can uptake LDL via ALK1, a TGFβ signalling receptor, suggesting new therapies for blocking LDL accumulation in the vessel wall.
Collapse
Affiliation(s)
- Jan R Kraehling
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - John H Chidlow
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Chitra Rajagopal
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Michael G Sugiyama
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Joseph W Fowler
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Monica Y Lee
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Xinbo Zhang
- Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Cristina M Ramírez
- Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Eon Joo Park
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Bo Tao
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Keyang Chen
- Division of Endocrinology, Department of Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | - Leena Kuruvilla
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Bruno Larriveé
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Ewa Folta-Stogniew
- W.M. Keck Biotechnology Resource Laboratory, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Roxana Ola
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Noemi Rotllan
- Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Wenping Zhou
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Michael W Nagle
- Human Genetics &Computational Biomedicine, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, USA
| | - Joachim Herz
- Departments of Molecular Genetics, Neuroscience, Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kevin Jon Williams
- Division of Endocrinology, Department of Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.,Department of Molecular and Clinical Medicine, Sahlgrenska Academy of the University of Gothenburg, Göteborg 41345, Sweden
| | - Anne Eichmann
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Warren L Lee
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8.,Departments of Biochemistry and Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - William C Sessa
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
184
|
Vorstenbosch J, Nguyen CM, Zhou S, Seo YJ, Siblini A, Finnson KW, Bizet AA, Tran SD, Philip A. Overexpression of CD109 in the Epidermis Differentially Regulates ALK1 Versus ALK5 Signaling and Modulates Extracellular Matrix Synthesis in the Skin. J Invest Dermatol 2016; 137:641-649. [PMID: 27866969 DOI: 10.1016/j.jid.2016.09.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 09/25/2016] [Indexed: 12/16/2022]
Abstract
Transforming growth factor-β (TGF-β) is a multifunctional growth factor involved in many physiological processes including wound healing and inflammation. Excessive TGF-β signaling in the skin has been implicated in fibrotic skin disorders such as keloids and scleroderma. We previously identified CD109 as a TGF-β co-receptor and inhibitor of TGF-β signaling and have shown that transgenic mice overexpressing CD109 in the epidermis display decreased scarring. In certain cell types, in addition to the canonical type I receptor, ALK5, which activates Smad2/3, TGF-β can signal through another type I receptor, ALK1, which activates Smad1/5. Here we demonstrate that ALK1 is expressed and co-localizes with CD109 in mouse keratinocytes and that mice overexpressing CD109 in the epidermis display enhanced ALK1-Smad1/5 signaling but decreased ALK5-Smad2/3 signaling, TGF-β expression, and extracellular matrix production in the skin when compared with wild-type littermates. Furthermore, treatment with conditioned media from isolated keratinocytes or epidermal explants from CD109 transgenic mouse skin leads to a decrease in extracellular matrix production in mouse skin fibroblasts. Taken together, our findings suggest that CD109 differentially regulates TGF-β-induced ALK1-Smad1/5 versus ALK5-Smad2/3 pathways, leading to decreased extracellular matrix production in the skin and that epidermal CD109 expression regulates dermal function through a paracrine mechanism.
Collapse
Affiliation(s)
- Joshua Vorstenbosch
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Christopher M Nguyen
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Shufeng Zhou
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - You Jung Seo
- Faculty of Dentistry, McGill University, McGill University, Montreal, Canada
| | - Aya Siblini
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Kenneth W Finnson
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Albane A Bizet
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Simon D Tran
- Faculty of Dentistry, McGill University, McGill University, Montreal, Canada
| | - Anie Philip
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
185
|
Meng H, Song Y, Zhu J, Liu Q, Lu P, Ye N, Zhang Z, Pang Y, Qi J, Wu H. LRG1 promotes angiogenesis through upregulating the TGF‑β1 pathway in ischemic rat brain. Mol Med Rep 2016; 14:5535-5543. [PMID: 27840991 PMCID: PMC5355675 DOI: 10.3892/mmr.2016.5925] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 10/05/2016] [Indexed: 11/25/2022] Open
Abstract
Stroke is a life-threatening disease that results in significant disability in the human population. Despite the advances in current stroke therapies, a host of patients do not benefit from the conventional treatments. Thus, more effective therapies are required. It has been previously reported that leucine-rich-α2-glycoprotein 1 (LRG1) is crucial during the formation of new blood vessels in retinal diseases. However, the function of LRG1 in the brain during the neovessel growth process following ischemic stroke has not been fully elucidated and the mechanism underlying its effect on angiogenesis remains unclear. The purpose of the current study was to demonstrate whether LRG1 may promote angiogenesis through the transforming growth factor (TGF)-β1 signaling pathway in ischemic rat brain following middle cerebral artery occlusion (MCAO). In the present study, the spatial and temporal expression of LRG1, TGF-β1, vascular endothelial growth factor (VEGF) and angiopoietin-2 (Ang-2) were detected in ischemic rat brain following MCAO using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot analysis and immunohistochemistry. CD34 immunohistochemistry staining was used as an indicator of microvessel density (MVD). The RT-qPCR and western blotting results revealed that the levels of LRG1 and TGF-β1 mRNA and protein expression were significantly increased as early as 6 and 12 h after MCAO (P<0.05), respectively, peaked at 3 days and persisted at significantly higher level until 14 days, in comparison with the control group. Additionally, VEGF and Ang-2 were also increased following MCAO. Furthermore, the immunohistochemistry results suggested that the MVD was increased following MCAO. In addition, the results also revealed that the percentage of LRG1-positive cells was positively correlated with the percentage of TGF-β1-positive cells, and the percentage of LRG1-positive and TGF-β1-positive cells had a positively correlation with the MVD. Taken together, the present study indicated that LRG1 may promote angiogenesis through upregulating the TGF-β1 signaling pathway in ischemic rat brain following MCAO. This may provide a potential therapeutic target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Hongmei Meng
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yuejia Song
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jiyuan Zhu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Qi Liu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Pengtian Lu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Na Ye
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhen Zhang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yuxin Pang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jiping Qi
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - He Wu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
186
|
Stremitzer S, Zhang W, Yang D, Ning Y, Sunakawa Y, Matsusaka S, Parekh A, Okazaki S, Hanna D, Astrow SH, Moran M, Hernandez J, Stephens C, Scherer SJ, Stift J, Wrba F, Gruenberger T, Lenz HJ. Expression of Genes Involved in Vascular Morphogenesis and Maturation Predicts Efficacy of Bevacizumab-Based Chemotherapy in Patients Undergoing Liver Resection. Mol Cancer Ther 2016; 15:2814-2821. [PMID: 27535973 PMCID: PMC8547597 DOI: 10.1158/1535-7163.mct-16-0275] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/02/2016] [Indexed: 11/16/2022]
Abstract
Angiogenesis-related gene expression is associated with the efficacy of anti-VEGF therapy. We tested whether intratumoral mRNA expression levels of genes involved in vascular morphogenesis and early vessel maturation predict response, recurrence-free survival (RFS), and overall survival (OS) in a unique cohort of patients with colorectal liver metastases (CLM) treated with bevacizumab-based chemotherapy followed by curative liver resection. Intratumoral mRNA was isolated from resected bevacizumab-pretreated CLM from 125 patients. In 42 patients, a matching primary tumor sample collected before bevacizumab treatment was available. Relative mRNA levels of 9 genes (ACVRL1, EGFL7, EPHB4, HIF1A, VEGFA, VEGFB, VEGFC, FLT1, and KDR) were analyzed by RT-PCR and evaluated for associations with response, RFS, and OS. P values for the associations between the individual dichotomized expression level and RFS were adjusted for choosing the optimal cut-off value. In CLM, high expression of VEGFB, VEGFC, HIF1A, and KDR and low expression of EGFL7 were associated with favorable RFS in multivariable analysis (P < 0.05). High ACVRL1 levels predicted favorable 3-year OS (P = 0.041) and radiologic response (PR = 1.093, SD = 0.539, P = 0.002). In primary tumors, low VEGFA and high EGFL7 were associated with radiologic and histologic response (P < 0.05). High VEGFA expression predicted shorter RFS (10.1 vs. 22.6 months; HR = 2.83, P = 0.038). High VEGFB (46% vs. 85%; HR = 5.75, P = 0.009) and low FLT1 (55% vs. 100%; P = 0.031) predicted lower 3-year OS rates. Our data suggest that intratumoral mRNA expression of genes involved in vascular morphogenesis and early vessel maturation may be promising predictive and/or prognostic biomarkers. Mol Cancer Ther; 15(11); 2814-21. ©2016 AACR.
Collapse
Affiliation(s)
- Stefan Stremitzer
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
- Department of Surgery, Medical University Vienna, Vienna, Austria
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Dongyun Yang
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Yan Ning
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Yu Sunakawa
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Satoshi Matsusaka
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Anish Parekh
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Satoshi Okazaki
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Diana Hanna
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | | | | | | | | | | | - Judith Stift
- Clinical Institute of Pathology, Medical University Vienna, Vienna, Austria
| | - Friedrich Wrba
- Clinical Institute of Pathology, Medical University Vienna, Vienna, Austria
| | | | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California.
| |
Collapse
|
187
|
Otake S, Park MK. Expressional changes of AMH signaling system in the quail testis induced by photoperiod. Reproduction 2016; 152:575-589. [DOI: 10.1530/rep-16-0175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/31/2016] [Indexed: 12/29/2022]
Abstract
Gonadal sex differentiation proceeds by the interplay of various genes including the transcription factors and secretory factors in a complex network. The sex-differentiating genes are expressed not only during early sex differentiation but also throughout the gonadal development and even in the adult gonads. In addition, the evidence that they actually function in the adult gonads have been accumulated from the studies using the conditional knockout mice. However, many previous studies were focused on one single gene though those genes function in a network. In this study, the expressions of various sex-differentiating genes were analyzed simultaneously in the adult testis of the Japanese quail (Coturnix japonica), whose testicular functions are dramatically changed by altering the photoperiod, to elucidate the roles of them in the adult gonad. Anti-Müllerian hormone (AMH) was significantly upregulated in the regressed testis induced by the short-day condition. The expressions of the transcription factors that promoteAMHexpression in mammals (SF1,SOX9,WT1andGATA4) were also increased in the regressed testis. Moreover, AMH receptor (AMHR2) showed similar expression pattern to its ligand. We also analyzed the expressions of other transforming growth factor beta (TGFB) superfamily members and their receptors. The expressions of the ligands and receptors of TGFB family, and follistatin and betaglycan in addition to inhibin subunits were increased in the regressed testis. These results suggest that AMH is involved in the adult testicular functions of the Japanese quail together with other TGFB superfamily members.
Collapse
|
188
|
Beets K, Staring MW, Criem N, Maas E, Schellinx N, de Sousa Lopes SMC, Umans L, Zwijsen A. BMP-SMAD signalling output is highly regionalized in cardiovascular and lymphatic endothelial networks. BMC DEVELOPMENTAL BIOLOGY 2016; 16:34. [PMID: 27724845 PMCID: PMC5057272 DOI: 10.1186/s12861-016-0133-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 09/12/2016] [Indexed: 11/13/2022]
Abstract
BACKGROUND Bone morphogenetic protein (BMP) signalling has emerged as a fundamental pathway in endothelial cell biology and deregulation of this pathway is implicated in several vascular disorders. BMP signalling output in endothelial cells is highly context- and dose-dependent. Phosphorylation of the BMP intracellular effectors, SMAD1/5/9, is routinely used to monitor BMP signalling activity. To better understand the in vivo context-dependency of BMP-SMAD signalling, we investigated differences in BMP-SMAD transcriptional activity in different vascular beds during mouse embryonic and postnatal stages. For this, we used the BRE::gfp BMP signalling reporter mouse in which the BMP response element (BRE) from the ID1-promotor, a SMAD1/5/9 target gene, drives the expression of GFP. RESULTS A mosaic pattern of GFP was present in various angiogenic sprouting plexuses and in endocardium of cardiac cushions and trabeculae in the heart. High calibre veins seemed to be more BRE::gfp transcriptionally active than arteries, and ubiquitous activity was present in embryonic lymphatic vasculature. Postnatal lymphatic vessels showed however only discrete micro-domains of transcriptional activity. Dynamic shifts in transcriptional activity were also observed in the endocardium of the developing heart, with a general decrease in activity over time. Surprisingly, proliferative endothelial cells were almost never GFP-positive. Patches of transcriptional activity seemed to correlate with vasculature undergoing hemodynamic alterations. CONCLUSION The BRE::gfp mouse allows to investigate selective context-dependent aspects of BMP-SMAD signalling. Our data reveals the highly dynamic nature of BMP-SMAD mediated transcriptional regulation in time and space throughout the vascular tree, supporting that BMP-SMAD signalling can be a source of phenotypic diversity in some, but not all, healthy endothelium. This knowledge can provide insight in vascular bed or organ-specific diseases and phenotypic heterogeneity within an endothelial cell population.
Collapse
Affiliation(s)
- Karen Beets
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Michael W. Staring
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Nathan Criem
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Elke Maas
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Niels Schellinx
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Lieve Umans
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - An Zwijsen
- VIB Center for the Biology of Disease, VIB, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
189
|
Baeyens N, Larrivée B, Ola R, Hayward-Piatkowskyi B, Dubrac A, Huang B, Ross TD, Coon BG, Min E, Tsarfati M, Tong H, Eichmann A, Schwartz MA. Defective fluid shear stress mechanotransduction mediates hereditary hemorrhagic telangiectasia. J Cell Biol 2016; 214:807-16. [PMID: 27646277 PMCID: PMC5037412 DOI: 10.1083/jcb.201603106] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/30/2016] [Indexed: 11/27/2022] Open
Abstract
Morphogenesis of the vascular system is strongly modulated by mechanical forces from blood flow. Hereditary hemorrhagic telangiectasia (HHT) is an inherited autosomal-dominant disease in which arteriovenous malformations and telangiectasias accumulate with age. Most cases are linked to heterozygous mutations in Alk1 or Endoglin, receptors for bone morphogenetic proteins (BMPs) 9 and 10. Evidence suggests that a second hit results in clonal expansion of endothelial cells to form lesions with poor mural cell coverage that spontaneously rupture and bleed. We now report that fluid shear stress potentiates BMPs to activate Alk1 signaling, which correlates with enhanced association of Alk1 and endoglin. Alk1 is required for BMP9 and flow responses, whereas endoglin is only required for enhancement by flow. This pathway mediates both inhibition of endothelial proliferation and recruitment of mural cells; thus, its loss blocks flow-induced vascular stabilization. Identification of Alk1 signaling as a convergence point for flow and soluble ligands provides a molecular mechanism for development of HHT lesions.
Collapse
Affiliation(s)
- Nicolas Baeyens
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Bruno Larrivée
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511 Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Roxana Ola
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Brielle Hayward-Piatkowskyi
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Alexandre Dubrac
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Billy Huang
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Tyler D Ross
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Brian G Coon
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Elizabeth Min
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Maya Tsarfati
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Haibin Tong
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511 Jilin Provincial Key Laboratory of Molecular Geriatric Medicine, Life Science Research Center, Beihua University, Jilin 132013, China
| | - Anne Eichmann
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Institut National de la Santé et de la Recherche Médicale U970, Paris Center for Cardiovascular Research, 75015 Paris, France
| | - Martin A Schwartz
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Department of Cell Biology, Yale University, New Haven, CT 06510 Department of Biomedical Engineering, Yale University, New Haven, CT 06510
| |
Collapse
|
190
|
Jin M, Lee J, Lee KY, Jin Z, Pak JH, Kim HS. Alteration of TGF-β-ALK-Smad signaling in hyperoxia-induced bronchopulmonary dysplasia model of newborn rats. Exp Lung Res 2016; 42:354-364. [PMID: 27618520 DOI: 10.1080/01902148.2016.1226448] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is a main chronic lung disease commonly occurs in preterm infants. BPD is characterized by impaired alveolarization and vascularization of the developing lung. Transforming growth factor-β (TGF-β) signaling pathway is known to play an important role during lung vascular development. In the present study, we examined whether the regulation of TGF-β-ALK-Smad signaling pathway influence on the disruption of pulmonary vascular development in newborn rats as hyperoxia-induced BPD model. MATERIALS AND METHODS Newborn rats were continuously exposed to 21% or 85% O2 for 7 days, and subsequently kept in normoxic condition for another 14 days. Lung tissues harvested at each time point were evaluated for the expression of TGF-β1, ALK1, ALK5, phosphorylated Smad1/5, phosphorylated Smad2/3, VEGF, and endoglin, as accessed by both biochemical and immunohistological analyses. RESULTS Double-fluorescence immunohistochemical staining indicated these molecules were mainly expressed in pulmonary endothelial cells. The expression of TGF-β1 and ALK5 mRNA and protein were significantly increased in D5 hyperoxia group, while that of ALK1 mRNA and protein were significantly decreased. The level of phosphorylated Smad1/5 was significantly decreased in D7 hyperoxia group, whereas that of phosphorylated Smad2/3 was oppositely increased. In addition, the expression of vascular endothelial growth factor (VEGF) mRNA was increased at D1 with subsequent decrease in D7 hyperoxia group. There was no significantly difference in endoglin expression in entire experimental period. CONCLUSION These results indicate that exposure to hyperoxia altered the balance between TGF-β-ALK1-Smad1/5 and TGF-β-ALK5-Smad2/3 pathways in pulmonary endothelial cells, which may ultimately lead to the development of BPD.
Collapse
Affiliation(s)
- Meihua Jin
- a Department of Pediatrics , Yanbian University Hospital , Yanji , Jilin Province , China
| | - Juyoung Lee
- b Department of Pediatrics , Inha University College of Medicine , Incheon , Korea
| | - Kyung-Yup Lee
- c Department of Pediatrics , Seoul National University College of Medicine , Seoul , Korea
| | - Zhengyong Jin
- a Department of Pediatrics , Yanbian University Hospital , Yanji , Jilin Province , China
| | - Jhang Ho Pak
- d Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine , Seoul , Korea
| | - Han-Suk Kim
- c Department of Pediatrics , Seoul National University College of Medicine , Seoul , Korea
| |
Collapse
|
191
|
Falke LL, Kinashi H, Dendooven A, Broekhuizen R, Stoop R, Joles JA, Nguyen TQ, Goldschmeding R. Age-dependent shifts in renal response to injury relate to altered BMP6/CTGF expression and signaling. Am J Physiol Renal Physiol 2016; 311:F926-F934. [PMID: 27558559 DOI: 10.1152/ajprenal.00324.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/17/2016] [Indexed: 02/07/2023] Open
Abstract
Age is associated with an increased prevalence of chronic kidney disease (CKD), which, through progressive tissue damage and fibrosis, ultimately leads to loss of kidney function. Although much effort is put into studying CKD development experimentally, age has rarely been taken into account. Therefore, we investigated the effect of age on the development of renal tissue damage and fibrosis in a mouse model of obstructive nephropathy (i.e., unilateral ureter obstruction; UUO). We observed that after 14 days, obstructed kidneys of old mice had more tubulointerstitial atrophic damage but less fibrosis than those of young mice. This was associated with reduced connective tissue growth factor (CTGF), and higher bone morphogenetic protein 6 (BMP6) expression and pSMAD1/5/8 signaling, while transforming growth factor-β expression and transcriptional activity were no different in obstructed kidneys of old and young mice. In vitro, CTGF bound to and inhibited BMP6 activity. In summary, our data suggest that in obstructive nephropathy atrophy increases and fibrosis decreases with age and that this relates to increased BMP signaling, most likely due to higher BMP6 and lower CTGF expression.
Collapse
Affiliation(s)
- Lucas L Falke
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hiroshi Kinashi
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Nephrology and Renal Replacement Therapy, Nagoya University, Nagoya, Japan
| | - Amelie Dendooven
- Department of Pathology, University Medical Center, Antwerp, Belgium
| | - Roel Broekhuizen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Reinout Stoop
- Department of Metabolic Health Research, TNO, Leiden, The Netherlands; and
| | - Jaap A Joles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tri Q Nguyen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands;
| |
Collapse
|
192
|
Verma R, Jaiswal H, Chauhan KS, Kaushik M, Tailor P. Cutting Edge: ACVRL1 Signaling Augments CD8α+ Dendritic Cell Development. THE JOURNAL OF IMMUNOLOGY 2016; 197:1029-34. [PMID: 27421479 DOI: 10.4049/jimmunol.1501849] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 06/16/2016] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DCs) are a collection of different subtypes, each of which is characterized by specific surface markers, gene-expression patterns, and distinct functions. Members of the IFN regulatory factor family play critical roles in DC development and functions. Recently, Irf8 was shown to activate TGF-β signaling, which led to exacerbated neuroinflammation in the experimental autoimmune encephalomyelitis mouse model. We analyzed the effect of Irf8 on TGF-β/bone morphogenetic protein pathway-specific genes in DCs and identified Acvrl1, a type I TGF-β superfamily receptor, as a gene strongly induced by Irf8 expression. Among various DC subtypes, Acvrl1 is differentially expressed in CD8α(+) DCs. ACVRL1 signaling augmented Irf8-directed classical CD8α(+) DC development. Irf8 expression is essential for plasmacytoid DC and CD8α(+) DC development, and this study demonstrates that ACVRL1 signaling plays a pivotal role whereby it suppresses plasmacytoid DC development while enhancing that of CD8α(+) DCs, thus contributing to DC diversity development.
Collapse
Affiliation(s)
- Rohit Verma
- Laboratory of Innate Immunity, National Institute of Immunology, New Delhi, Delhi 110067, India
| | - Hemant Jaiswal
- Laboratory of Innate Immunity, National Institute of Immunology, New Delhi, Delhi 110067, India
| | - Kuldeep Singh Chauhan
- Laboratory of Innate Immunity, National Institute of Immunology, New Delhi, Delhi 110067, India
| | - Monika Kaushik
- Laboratory of Innate Immunity, National Institute of Immunology, New Delhi, Delhi 110067, India
| | - Prafullakumar Tailor
- Laboratory of Innate Immunity, National Institute of Immunology, New Delhi, Delhi 110067, India
| |
Collapse
|
193
|
Monteiro R, Pinheiro P, Joseph N, Peterkin T, Koth J, Repapi E, Bonkhofer F, Kirmizitas A, Patient R. Transforming Growth Factor β Drives Hemogenic Endothelium Programming and the Transition to Hematopoietic Stem Cells. Dev Cell 2016; 38:358-70. [PMID: 27499523 PMCID: PMC4998007 DOI: 10.1016/j.devcel.2016.06.024] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 05/19/2016] [Accepted: 06/21/2016] [Indexed: 01/15/2023]
Abstract
Hematopoietic stem cells (HSCs) are self-renewing multipotent stem cells that generate mature blood lineages throughout life. They, together with hematopoietic progenitor cells (collectively known as HSPCs), emerge from hemogenic endothelium in the floor of the embryonic dorsal aorta by an endothelial-to-hematopoietic transition (EHT). Here we demonstrate that transforming growth factor β (TGFβ) is required for HSPC specification and that it regulates the expression of the Notch ligand Jagged1a in endothelial cells prior to EHT, in a striking parallel with the epithelial-to-mesenchymal transition (EMT). The requirement for TGFβ is two fold and sequential: autocrine via Tgfβ1a and Tgfβ1b produced in the endothelial cells themselves, followed by a paracrine input of Tgfβ3 from the notochord, suggesting that the former programs the hemogenic endothelium and the latter drives EHT. Our findings have important implications for the generation of HSPCs from pluripotent cells in vitro. TGFβ signaling is required for hematopoietic stem cell (HSC) emergence in embryos TGFβ regulates jag1a expression and programs endothelium to become hemogenic endothelium (HE) Tgfb1a/Tgfb1b and Tgfb3 act sequentially to program HE and give rise to HSCs
Collapse
Affiliation(s)
- Rui Monteiro
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; BHF Centre of Research Excellence, Oxford, UK.
| | - Philip Pinheiro
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Nicola Joseph
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Tessa Peterkin
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Jana Koth
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Emmanouela Repapi
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Florian Bonkhofer
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Arif Kirmizitas
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Roger Patient
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; BHF Centre of Research Excellence, Oxford, UK.
| |
Collapse
|
194
|
Arthur H, Geisthoff U, Gossage JR, Hughes CCW, Lacombe P, Meek ME, Oh P, Roman BL, Trerotola SO, Velthuis S, Wooderchak-Donahue W. Executive summary of the 11th HHT international scientific conference. Angiogenesis 2016; 18:511-24. [PMID: 26391603 DOI: 10.1007/s10456-015-9482-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a hereditary condition that results in vascular malformations throughout the body, which have a proclivity to rupture and bleed. HHT has a worldwide incidence of about 1:5000 and approximately 80 % of cases are due to mutations in ENG, ALK1 (aka activin receptor-like kinase 1 or ACVRL1) and SMAD4. Over 200 international clinicians and scientists met at Captiva Island, Florida from June 11-June 14, 2015 to present and discuss the latest research on HHT. 156 abstracts were accepted to the meeting and 60 were selected for oral presentations. The first two sections of this article present summaries of the basic science and clinical talks. Here we have summarized talks covering key themes, focusing on areas of agreement, disagreement, and unanswered questions. The final four sections summarize discussions in the Workshops, which were theme-based topical discussions led by two moderators. We hope this overview will educate as well as inspire those within the field and from outside, who have an interest in the science and treatment of HHT.
Collapse
MESH Headings
- Activin Receptors, Type II/genetics
- Activin Receptors, Type II/metabolism
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Congresses as Topic
- Endoglin
- Humans
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Smad4 Protein/genetics
- Smad4 Protein/metabolism
- Telangiectasia, Hereditary Hemorrhagic/genetics
- Telangiectasia, Hereditary Hemorrhagic/metabolism
- Telangiectasia, Hereditary Hemorrhagic/pathology
- Telangiectasia, Hereditary Hemorrhagic/therapy
Collapse
Affiliation(s)
- Helen Arthur
- Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle upon Tyne, UK
| | - Urban Geisthoff
- Department of Otorhinolaryngology, Essen University Hospital, Essen, Germany
| | - James R Gossage
- Department of Medicine, Georgia Regents University, Augusta, GA, USA.
| | - Christopher C W Hughes
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Pascal Lacombe
- Department of Diagnostic and Interventional Radiology, Hôpital Ambroise Paré, Université de Versailles, Assistance Publique-Hôpitaux de Paris, Boulogne-Billancourt, France
| | - Mary E Meek
- Department of Interventional Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Paul Oh
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, USA
| | - Beth L Roman
- Department of Human Genetics and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Scott O Trerotola
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sebastiaan Velthuis
- Department of Cardiology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Whitney Wooderchak-Donahue
- ARUP Institute for Clinical and Experimental Pathology, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
195
|
Shivanna B, Maity S, Zhang S, Patel A, Jiang W, Wang L, Welty SE, Belmont J, Coarfa C, Moorthy B. Gene Expression Profiling Identifies Cell Proliferation and Inflammation as the Predominant Pathways Regulated by Aryl Hydrocarbon Receptor in Primary Human Fetal Lung Cells Exposed to Hyperoxia. Toxicol Sci 2016; 152:155-68. [PMID: 27103661 PMCID: PMC4922543 DOI: 10.1093/toxsci/kfw071] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Exposure to hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. We observed that aryl hydrocarbon receptor (AhR) signaling protects newborn mice and primary fetal human pulmonary microvascular endothelial cells (HPMECs) against hyperoxic injury. Additionally, a recent genome-wide transcriptome study in a newborn mouse model of BPD identified AhR as a key regulator of hyperoxia-induced gene dysregulation. Whether the AhR similarly deregulates genes in HPMEC is unknown. Therefore, the objective of this study was to characterize transcriptome level gene expression profile in AhR-sufficient and -deficient HPMEC exposed to normoxic and hyperoxic conditions. Global gene expression profiling was performed using Illumina microarray platform and selected genes were validated by real-time RT-PCR. AhR gene expression and hyperoxia independently affected the expression of 540 and 593 genes, respectively. Two-way ANOVA further identified 85 genes that were affected by an interaction between AhR expression and exposure to hyperoxia. Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology, and Reactome pathway analysis identified cell proliferation, immune function, cytokine signaling, and organ development as the major pathways affected in AhR-deficient cells. The biological processes that were significantly enriched by hyperoxia included metabolic process, stress response, signal transduction, cell cycle, and immune regulation. Cell cycle was the predominant pathway affected by the combined effect of AhR knockdown and hyperoxia. Functional analysis of cell cycle showed that AhR-deficient cells had decreased proliferation compared with AhR-sufficient cells. These findings suggest that AhR modulates hyperoxic lung injury by regulating the genes that are necessary for cell proliferation and inflammation.
Collapse
Affiliation(s)
- Binoy Shivanna
- *Department of Pediatrics, Section of Neonatal-Perinatal Medicine; *Department of Pediatrics, Section of Neonatal-Perinatal Medicine;
| | | | - Shaojie Zhang
- *Department of Pediatrics, Section of Neonatal-Perinatal Medicine
| | - Ananddeep Patel
- *Department of Pediatrics, Section of Neonatal-Perinatal Medicine
| | - Weiwu Jiang
- *Department of Pediatrics, Section of Neonatal-Perinatal Medicine
| | - Lihua Wang
- *Department of Pediatrics, Section of Neonatal-Perinatal Medicine
| | - Stephen E Welty
- *Department of Pediatrics, Section of Neonatal-Perinatal Medicine
| | - John Belmont
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | | | | |
Collapse
|
196
|
Doi T, Lee K, Kim T, Ohtsu A, Kim TY, Ikeda M, Yoh K, Gallo Stampino C, Hirohashi T, Suzuki A, Fujii Y, Andrew Williams J, Bang Y. A phase I study of the human anti-activin receptor-like kinase 1 antibody PF-03446962 in Asian patients with advanced solid tumors. Cancer Med 2016; 5:1454-1463. [PMID: 27075560 PMCID: PMC4944871 DOI: 10.1002/cam4.724] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 03/09/2016] [Accepted: 03/12/2016] [Indexed: 12/15/2022] Open
Abstract
Preclinical studies suggest that ALK-1 signaling mediates a complementary angiogenesis pathway activated upon development of resistance to vascular endothelial growth factor (VEGF)-targeted therapies. Inhibition of ALK-1 signaling may lead to disruption of tumor angiogenesis and growth. We report findings from a multicenter, open-label, phase I study of the fully human anti-ALK-1 mAb PF-03446962 conducted in Japan and South Korea, in Asian patients with advanced solid tumors. The dose escalation Part 1 of the study was based on a standard 3 + 3 design (n = 16). In Part 2, patients were treated with PF-03446962 at 7 and 10 mg/kg (10/cohort), including patients with disease progression following prior VEGF receptor (R)-targeted therapy. Primary objectives were determination of the maximum tolerated dose (MTD) and recommended phase II dose (RP2D). Secondary objectives included safety, pharmacokinetics, pharmacodynamics, and antitumor activity of PF-03446962. No dose-limiting toxicity (DLT) was noted in the 12 DLT-evaluable patients. Treatment was well tolerated. The MTD for biweekly intravenous administration was estimated to be 10 mg/kg and the RP2D 7 mg/kg. Treatment-related grades 1-3 thrombocytopenia was experienced by 27.8% patients. The most frequent nonhematologic treatment-related AEs were grades 1-2 pyrexia and epistaxis. Four patients (3/4 with hepatocellular carcinoma) developed telangiectasia suggesting vascular targeting and in vivo ALK-1 inhibition by PF-03446962. Stable disease for 12 weeks or more was observed in 25.7% of patients and in 44.4% of those with hepatocellular carcinoma. ALK-1 inhibition by PF-03446962 may represent a novel antiangiogenic strategy for patients with advanced solid malignancies complementary to current treatment with VEGF(R)-targeted inhibitors or chemotherapy.
Collapse
Affiliation(s)
- Toshihiko Doi
- National Cancer Center Hospital East6‐5‐1 KashiwanohaKashiwaChibaJapan
| | - Kyung‐Hun Lee
- Seoul National University College of Medicine and Hospital101 Daehak‐roJongno‐guSeoul110‐744South Korea
| | - Tae‐Min Kim
- Seoul National University College of Medicine and Hospital101 Daehak‐roJongno‐guSeoul110‐744South Korea
| | - Atsushi Ohtsu
- National Cancer Center Hospital East6‐5‐1 KashiwanohaKashiwaChibaJapan
| | - Tae Yong Kim
- Seoul National University College of Medicine and Hospital101 Daehak‐roJongno‐guSeoul110‐744South Korea
| | - Masafumi Ikeda
- National Cancer Center Hospital East6‐5‐1 KashiwanohaKashiwaChibaJapan
| | - Kiyotaka Yoh
- National Cancer Center Hospital East6‐5‐1 KashiwanohaKashiwaChibaJapan
| | - Corrado Gallo Stampino
- Pfizer Global Oncology Research and DevelopmentVia Anna Maria Mozzoni, 12Milan20152Italy
| | | | | | - Yosuke Fujii
- Pfizer Japan3‐22‐7 YoyogiShibuya‐kuTokyo151‐8589Japan
| | | | - Yung‐Jue Bang
- Seoul National University College of Medicine and Hospital101 Daehak‐roJongno‐guSeoul110‐744South Korea
| |
Collapse
|
197
|
Abstract
Pulmonary hypertension is an uncommon, yet devastating, syndrome with a complex underlying pathobiology. Hypoxia, inflammation, and increased shear stress appear to be the primary pathogenic events; however, mechanisms by which these processes lead to pulmonary hypertension remain incompletely understood. The ultimate increase in pulmonary vascular resistance is attributed to remodelling of the walls of resistance vessels, which can lead to encroachment on and reduction of the vascular lumen. The number of blood vessels per unit of cross-sectional area in the hypertensive lung is also reduced, which can contribute to increased vascular resistance. Regardless of its etiology, endothelial dysfunction underlies pulmonary hypertension, one manifestation of which is the attenuated production of bioactive nitric oxide. Nitric oxide administration can exert beneficial effects at various stages of the disease. Here we review the known pathobiology of pulmonary hypertension, with a principal focus on endothelial nitric oxide, and also summarize the data on nitric oxide replacement therapy and other novel therapies that relate to nitric oxide as one approach to treatment.
Collapse
Affiliation(s)
- Claudio Napoli
- Department of Medicine, University of Naples, Naples, Italy
| | | |
Collapse
|
198
|
Chadchan SB, Kumar V, Maurya VK, Soni UK, Jha RK. Endoglin (CD105) coordinates the process of endometrial receptivity for embryo implantation. Mol Cell Endocrinol 2016; 425:69-83. [PMID: 26802878 DOI: 10.1016/j.mce.2016.01.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 01/16/2016] [Accepted: 01/18/2016] [Indexed: 10/22/2022]
Abstract
Endoglin is a TGF-β receptor that is expressed in uterine endothelial and stromal cells in addition to trophoblast expression. However, the functional importance of endoglin in the embryo implantation process is not clear. We observed endoglin expression in the endometrium throughout the stages of its receptivity; however, its expression was enhanced during the receptive stage. Endoglin expression was predominant in epithelial cells of the lumen and glands, but showed a milder expression in stromal cells. Endoglin expression was initially observed in the primary decidual zone and later extended to the secondary decidua zone. Knockdown of endoglin via siRNA reduced the implantation sites along with the blastocyst numbers. Mouse blastocyst with endoglin-silenced endometrial epithelial cells (human and mouse origin) showed poor trophoblast outgrowth, which suggests an essential role for endoglin during endometrial receptivity. In conclusion, our findings reveal the association of endoglin with endometrial receptivity, which is important for embryo attachment.
Collapse
Affiliation(s)
- Sangappa Basanna Chadchan
- Female Reproductive Biology Laboratory, Division of Endocrinology, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Vijay Kumar
- Female Reproductive Biology Laboratory, Division of Endocrinology, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Vineet Kumar Maurya
- Female Reproductive Biology Laboratory, Division of Endocrinology, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Upendra Kumar Soni
- Female Reproductive Biology Laboratory, Division of Endocrinology, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Rajesh Kumar Jha
- Female Reproductive Biology Laboratory, Division of Endocrinology, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.
| |
Collapse
|
199
|
Abstract
Brain arteriovenous malformations (bAVMs) represent a high risk of intracranial hemorrhages, which are substantial causes of morbidity and mortality of bAVMs, especially in children and young adults. Although a variety of factors leading to hemorrhages of bAVMs are investigated extensively, their pathogenesis is still not well elucidated. The author has reviewed the updated data of genetic aspects of bAVMs, especially focusing on clinical and experimental knowledge from hereditary hemorrhagic telangiectasia, which is the representative genetic disease presenting with bAVMs caused by loss-of-function in one of the two genes: endoglin and activin receptor-like kinase 1. This knowledge may allow us to infer the pathogensis of sporadic bAVMs and in the development of new medical therapies for them.
Collapse
Affiliation(s)
- Masaki Komiyama
- Department of Neuro-Intervention, Osaka City General Hospital
| |
Collapse
|
200
|
Investigation of TGFβ1-Induced Long Noncoding RNAs in Endothelial Cells. Int J Vasc Med 2016; 2016:2459687. [PMID: 27144026 PMCID: PMC4842052 DOI: 10.1155/2016/2459687] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/29/2016] [Accepted: 03/14/2016] [Indexed: 12/21/2022] Open
Abstract
Objective. To evaluate the relationship between TGFβ signaling and endothelial lncRNA expression. Methods. Human umbilical vein endothelial cell (HUVECs) lncRNAs and mRNAs were profiled with the Arraystar Human lncRNA Expression Microarray V3.0 after 24 hours of exposure to TGFβ1 (10 ng/mL). Results. Of the 30,584 lncRNAs screened, 2,051 were significantly upregulated and 2,393 were appreciably downregulated (P < 0.05) in response to TGFβ. In the same HUVEC samples, 2,148 of the 26,106 mRNAs screened were upregulated and 1,290 were downregulated. Of these 2,051 differentially expressed upregulated lncRNAs, MALAT1, which is known to be induced by TGFβ in endothelial cells, was the most (~220-fold) upregulated lncRNA. Bioinformatics analyses indicated that the differentially expressed upregulated mRNAs are primarily enriched in hippo signaling, Wnt signaling, focal adhesion, neuroactive ligand-receptor interaction, and pathways in cancer. The most downregulated are notably involved in olfactory transduction, PI3-Akt signaling, Ras signaling, neuroactive ligand-receptor interaction, and apoptosis. Conclusions. This is the first lncRNA and mRNA transcriptome profile of TGFβ-mediated changes in human endothelial cells. These observations may reveal potential new targets of TGFβ in endothelial cells and novel therapeutic avenues for cardiovascular disease-associated endothelial dysfunction.
Collapse
|