151
|
Lee WH, Liu FH, Lee YL, Huang HM. Interferon- induces the growth inhibition of human T-cell leukaemia line Jurkat through p38 and p38. J Biochem 2010; 147:645-50. [DOI: 10.1093/jb/mvp213] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
152
|
Abstract
The p38 mitogen-activated protein kinase (MAPK) pathway plays an important role in cellular responses to inflammatory stimuli and environmental stresses. Extracellular stimuli activate kinases upstream of p38, such as MKK3 and MKK6, which subsequently phosphorylate p38. p38 then participates in numerous biological processes by phosphorylating its downstream substrates. Here, our methodology mainly highlights how endogenous or exogenous p38 can be activated and its upstream kinases and downstream substrates identified.
Collapse
Affiliation(s)
- Huamin Zhou
- School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | | | | |
Collapse
|
153
|
Behren A, Mühlen S, Acuna Sanhueza GA, Schwager C, Plinkert PK, Huber PE, Abdollahi A, Simon C. Phenotype-assisted transcriptome analysis identifies FOXM1 downstream from Ras-MKK3-p38 to regulate in vitro cellular invasion. Oncogene 2009; 29:1519-30. [PMID: 20023695 DOI: 10.1038/onc.2009.436] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Ras oncogene is known to activate three major MAPK pathways, ERK, JNK, p38 and exert distinct cellular phenotypes, that is, apoptosis and invasion through the Ras-MKK3-p38-signaling cascade. We attempted to identify the molecular targets of this pathway that selectively govern the invasive phenotype. Stable transfection of NIH3T3 fibroblasts with MKK3(act) cDNA construct revealed similar p38-dependent in vitro characteristics observed in Ha-Ras(EJ)-transformed NIH3T3 cells, including enhanced invasiveness and anchorage-independent growth correlating with p38 phosphorylation status. To identify the consensus downstream targets of the Ras-MKK3-p38 cascade involved in invasion, in vitro invasion assays were used to isolate highly invasive cells from both, MKK3 and Ha-Ras(EJ) transgenic cell lines. Subsequently a genome-wide transcriptome analysis was employed to investigate differentially regulated genes in invasive Ha-Ras(EJ)- and MKK3(act)-transfected NIH3T3 fibroblasts. Using this phenotype-assisted approach combined with system level protein-interaction network analysis, we identified FOXM1, PLK1 and CDK1 to be differentially regulated in invasive Ha-Ras(EJ)-NIH3T3 and MKK3(act)-NIH3T3 cells. Finally, a FOXM1 RNA-knockdown approach revealed its requirement for both invasion and anchorage-independent growth of Ha-Ras(EJ)- and MKK3(act)-NIH3T3 cells. Together, we identified FOXM1 as a key downstream target of Ras and MKK3-induced cellular in vitro invasion and anchorage-independent growth signaling.
Collapse
Affiliation(s)
- A Behren
- Cancer Vaccine, Ludwig Institute for Cancer Research Ltd, Melbourne Centre for Clinical Sciences, Heidelberg, VIC, Australia
| | | | | | | | | | | | | | | |
Collapse
|
154
|
Remy G, Risco AM, Iñesta-Vaquera FA, González-Terán B, Sabio G, Davis RJ, Cuenda A. Differential activation of p38MAPK isoforms by MKK6 and MKK3. Cell Signal 2009; 22:660-7. [PMID: 20004242 DOI: 10.1016/j.cellsig.2009.11.020] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 11/25/2009] [Accepted: 11/28/2009] [Indexed: 12/13/2022]
Abstract
All four members of the mammalian p38 mitogen-activated protein kinase (MAPK) family (p38alpha, p38beta, p38gamma and p38delta) are activated by dual phosphorylation in the TGY motif in the activation loop. This phosphorylation is mediated by three kinases, MKK3, MKK6 and MKK4, at least in vitro. The role of these MKK in the activation of p38alpha has been demonstrated in studies using fibroblasts that lack MKK3 and/or MKK6. Nonetheless, the physiological upstream activators of the other p38MAPK isoforms have not yet been reported using MKK knockout cells. In this study, we examined p38beta, gamma and delta activation by MKK3 and MKK6, in cells lacking MKK3, MKK6 or both. We show that MKK3 and MKK6 are both essential for the activation of p38gamma and p38beta induced by environmental stress, whereas MKK6 is the major p38gamma activator in response to TNFalpha. In contrast, p38delta activation by ultraviolet radiation, hyperosmotic shock, anisomycin or by TNFalpha is mediated by MKK3. Moreover, in response to osmotic stress, MKK3 and MKK6 are crucial in regulating the phosphorylation of the p38gamma substrate hDlg and its activity as scaffold protein. These data indicate that activation of distinct p38MAPK isoforms is regulated by the selective and synchronized action of two kinases, MKK3 and MKK6, in response to cell stress.
Collapse
Affiliation(s)
- Gaëlle Remy
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/CSIC, Darwin 3, UAM Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
155
|
McClung JM, Judge AR, Powers SK, Yan Z. p38 MAPK links oxidative stress to autophagy-related gene expression in cachectic muscle wasting. Am J Physiol Cell Physiol 2009; 298:C542-9. [PMID: 19955483 DOI: 10.1152/ajpcell.00192.2009] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Oxidative stress is a primary trigger of cachectic muscle wasting, but the signaling pathway(s) that links it to the muscle wasting processes remains to be defined. Here, we report that activation of p38 mitogen-activated protein kinase (MAPK) (phosphorylation) and increased oxidative stress (trans-4-hydroxy-2-nonenal protein modification) in skeletal muscle occur as early as 8 h after lipopolysaccharide (1 mg/kg) and 24 h after dexamethasone (25 mg/kg) injection (intraperitoneal) in mice, concurrent with upregulation of autophagy-related genes, Atg6, Atg7, and Atg12. Treating cultured C2C12 myotubes with oxidant hydrogen peroxide (4 h) resulted in increased p38 phosphorylation and reduced FoxO3 phosphorylation along with induced Atg7 mRNA expression without activation of NF-kappaB or FoxO3a transcriptional activities. Furthermore, inhibition of p38alpha/beta by SB202190 blocked hydrogen peroxide-induced atrophy with diminished upregulation of Atg7 and atrogenes [muscle atrophy F-box protein (MAFbx/Atrogin-1), muscle ring finger protein 1 (MuRF-1), and Nedd4]. These findings provide direct evidence for p38alpha/beta MAPK in mediating oxidative stress-induced autophagy-related genes, suggesting that p38alpha/beta MAPK regulates both the ubiquitin-proteasome and the autophagy-lysosome systems in muscle wasting.
Collapse
Affiliation(s)
- J M McClung
- Exercise Biochemistry Laboratory, University of Florida, Gainesville, Florida, USA.
| | | | | | | |
Collapse
|
156
|
Ramiro-Cortés Y, Morán J. Role of oxidative stress and JNK pathway in apoptotic death induced by potassium deprivation and staurosporine in cerebellar granule neurons. Neurochem Int 2009; 55:581-92. [DOI: 10.1016/j.neuint.2009.05.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 05/01/2009] [Accepted: 05/21/2009] [Indexed: 02/07/2023]
|
157
|
Chen L, Mayer JA, Krisko TI, Speers CW, Wang T, Hilsenbeck SG, Brown PH. Inhibition of the p38 kinase suppresses the proliferation of human ER-negative breast cancer cells. Cancer Res 2009; 69:8853-61. [PMID: 19920204 DOI: 10.1158/0008-5472.can-09-1636] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
p38 kinases are members of the mitogen-activated protein kinase family that transduce signals from various environmental stresses, growth factors, and steroid hormones. p38 is highly expressed in aggressive and invasive breast cancers. Increased levels of activated p38 are markers of poor prognosis. In this study, we tested the hypothesis that blockade of p38 signaling would inhibit breast cancer cell proliferation. We studied breast cancer cell proliferation and cell cycle regulation upon p38 blockade by using three independent approaches: dominant-negative (DN) constructs, small interfering RNA (siRNA), and small molecule inhibitors. p38alpha and p38delta are the most abundant isoforms expressed by all examined human breast tumors and breast cancer cell lines. Expression of a DN p38 inhibited both anchorage-dependent and -independent proliferation of MDA-MB-468 cells. Silencing of p38alpha, but not p38delta, using siRNA suppressed MDA-MB-468 cell proliferation. Pharmacologic inhibitors of p38 significantly inhibited the proliferation of p53 mutant and ER-negative breast cancer cells. Whereas p38 has previously been considered as a mediator of stress-induced apoptosis, we propose that p38 may have dual activities regulating survival and proliferation depending on the expression of p53. Our data suggest that p38 mediates the proliferation signal in breast cancer cells expressing mutant but not wild-type p53. Because most ER-negative breast tumors express mutant p53, our results provide the foundation for future development of p38 inhibitors to target p38 for the treatment of p53 mutant and ER-negative breast cancers.
Collapse
Affiliation(s)
- Lu Chen
- Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
158
|
Feng Y, Wen J, Chang CCJ. p38 Mitogen-activated protein kinase and hematologic malignancies. Arch Pathol Lab Med 2009; 133:1850-6. [PMID: 19886722 DOI: 10.5858/133.11.1850] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2009] [Indexed: 11/06/2022]
Abstract
CONTEXT p38 mitogen-activated protein kinase (MAPK) signaling has been implicated in responses ranging from apoptosis to cell cycle, induction of expression of cytokine genes, and differentiation. This plethora of activators conveys the complexity of the p38 pathway. This complexity is further complicated by the observation that the downstream effects of p38 MAPK activation may be different depending on types of stimuli, cell types, and various p38 MAPK isoforms involved. OBJECTIVE This review focuses on the recent advancement of the p38 MAPK isoforms as well as the roles of p38 MAPK in hematologic malignancies. DATA SOURCES Review of pertinent published literature and work in our laboratory. CONCLUSIONS In some hematologic malignancies, activation of p38 plays a key role in promoting or inhibiting proliferation and also in increasing resistance to chemotherapeutic agents. The importance of different p38 isoforms in various cellular functions has been acknowledged recently. Further understanding of these isoforms will allow the design of more specific inhibitors to target particular isoforms to maximize the treatment effect and minimize the side effects for treating hematopoietic malignancies.
Collapse
Affiliation(s)
- Yongdong Feng
- Department of Pathology, The Methodist Hospital and The Methodist Hospital Research Institute, Houston, Texas, USA
| | | | | |
Collapse
|
159
|
Ding H, Gabali AM, Jenson SD, Lim MS, Elenitoba-Johnson KSJ. P38 mitogen activated protein kinase expression and regulation by interleukin-4 in human B cell non-Hodgkin lymphomas. J Hematop 2009; 2:195-204. [PMID: 20309428 PMCID: PMC2798936 DOI: 10.1007/s12308-009-0049-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 09/30/2009] [Indexed: 01/09/2023] Open
Abstract
The prevalence and regulation of p38 mitogen activated protein kinase (MAPK) expression in human lymphomas have not been extensively studied. In order to elucidate the role of p38 MAPK in lymphomagenesis, we examined the expression of native and phosphorylated p38 (p-p38) MAPK in cell lines derived from human hematopoietic neoplasms including B cell lymphoma-derived cell lines using Western blot analysis. The p-p38 MAPK protein was also analyzed in 30 B cell non-Hodgkin lymphoma (NHL) tissue biopsies by immunohistochemistry. Our results show that the expression of p38 MAPK was up-regulated in most of the cell lines as compared with peripheral blood lymphocytes, while the expression of p-p38 MAPK was more variable. A subset of B cell NHL biopsies showed increased expression of p-p38 MAPK relative to reactive germinal center cells. Interleukin-4 (IL-4) induced a dose-dependent increase in the expression of p-p38 MAPK (1.6- to 2.8-fold) in cell lines derived from activated B cell-like diffuse large B cell lymphoma (DLBCL) but not those from germinal center-like DLBCL. No change was seen in native p38 MAPK. The in vitro kinase activity of p38 MAPK, however, was induced (1.6- to 3.2-fold) in all five cell lines by IL-4. Quantitative fluorescent RT-PCR demonstrated that all four isoforms of p38 MAPK gene were expressed in the lymphoma cell lines, with p38γ and p38β isoforms being predominant. IL-4 stimulation increased the expression of β, γ, and δ isoforms but not α isoform in two cell lines. In conclusion, there is constitutive expression and activation of p38 MAPK in a large number of B-lymphoma-derived cell lines and primary lymphoma tissues, supportive of its role in lymphomagenesis. The differential IL-4 regulation of p38 MAPK expression in cell lines derived from DLBCL may relate to the cellular origin of these neoplasms.
Collapse
|
160
|
Chen Q, Cui W, Ji M. Studies of chirality effect of 4-(phenylamino)-pyrrolo[2,1-f][1,2,4]triazine on p38alpha by molecular dynamics simulations and free energy calculations. J Comput Aided Mol Des 2009; 23:737-45. [PMID: 19672560 DOI: 10.1007/s10822-009-9298-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 07/28/2009] [Indexed: 11/30/2022]
Abstract
4-(Phenylamino)-pyrrolo[2,1-f][1,2,4]triazines have been discovered as inhibitors of p38alpha. Experimental assays have proven that the configuration of alpha-Me-benzyl connected with amide at C6 is essential for the binding affinity. The S-configured inhibitor (11j) displays 80 times more potency than the R-configured one (11k). Here we investigated the mechanism how different configurations influence the binding affinity using molecular dynamics simulations, free energy calculations and free energy decomposition analysis. We found that the van der Waals interactions play the most important role in differentiating the activities between 11j and 11k with p38alpha. The difference of the van der Waals interactions is primarily determined by two residues, LEU108 and LEU167. Consequently stabilization of pyrrolo[2,1-f][1,2,4]triazine ring is important for the activities of inhibitors. Meanwhile we observed that the different configuration of the alpha-Me-benzyl group leads to the difference of binding between 11j and 11k. In conclusion, our work shows that it is feasible to analyze the chirality effect of inhibitors with different configurations by molecular dynamics simulations and free energy calculations, and provides useful information for drug design.
Collapse
Affiliation(s)
- Quan Chen
- College of Chemistry and Chemical Engineering, Graduate University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | | | | |
Collapse
|
161
|
Farooq F, Balabanian S, Liu X, Holcik M, MacKenzie A. p38 Mitogen-activated protein kinase stabilizes SMN mRNA through RNA binding protein HuR. Hum Mol Genet 2009; 18:4035-45. [DOI: 10.1093/hmg/ddp352] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
162
|
Cao X, Rui L, Pennington PR, Chlan-Fourney J, Jiang Z, Wei Z, Li XM, Edmondson DE, Mousseau DD. Serine 209 resides within a putative p38(MAPK) consensus motif and regulates monoamine oxidase-A activity. J Neurochem 2009; 111:101-10. [PMID: 19650872 DOI: 10.1111/j.1471-4159.2009.06300.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The p38 mitogen-activated protein kinase (MAPK) cascade as well as the enzyme monoamine oxidase-A (MAO-A) have both been associated with oxidative stress. We observed that the specific inhibition of the p38(MAPK) protein [using either a chemical inhibitor or a dominant-negative p38(MAPK) clone] selectively induces MAO-A activity and MAO-A-sensitive toxicity in several neuronal cell lines, including primary cortical neurons. Over-expression of a constitutively active p38(MAPK) results in the phosphorylation of the MAO-A protein and inhibition of MAO-A activity. The MAO-A(Ser209Glu) phosphomimic - bearing a targeted substitution within a putative p38(MAPK) consensus motif - is neither active nor neurotoxic. In contrast, the MAO-A(Ser209Ala) variant (mimics dephosphorylation) does not associate with p38(MAPK), and is both very active and very toxic. Substitution of the homologous serine in the MAO-B isoform, i.e. Ser200, with either Glu or Ala does not affect the catalytic activity of the corresponding over-expressed proteins. These combined in vitro data strongly suggest a direct p38(MAPK)-dependent inhibition of MAO-A function. Based on published observations, this endogenous means of selectively regulating MAO-A function could provide for an adaptive response to oxidative stress associated with disorders as diverse as depression, reperfusion/ischemia, and the early stages of Alzheimer's disease.
Collapse
Affiliation(s)
- Xia Cao
- Cell Signalling Laboratory, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Geest CR, Coffer PJ. MAPK signaling pathways in the regulation of hematopoiesis. J Leukoc Biol 2009; 86:237-50. [PMID: 19498045 DOI: 10.1189/jlb.0209097] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The MAPKs are a family of serine/threonine kinases that play an essential role in connecting cell-surface receptors to changes in transcriptional programs. MAPKs are part of a three-component kinase module consisting of a MAPK, an upstream MEK, and a MEKK that couples the signals from cell-surface receptors to trigger downstream pathways. Three major groups of MAPKs have been characterized in mammals, including ERKs, JNKs, and p38MAPKs. Over the last decade, extensive work has established that these proteins play critical roles in the regulation of a wide variety of cellular processes including cell growth, migration, proliferation, differentiation, and survival. It has been demonstrated that ERK, JNK, and p38MAPK activity can be regulated in response to a plethora of hematopoietic cytokines and growth factors that play critical roles in hematopoiesis. In this review, we summarize the current understanding of MAPK function in the regulation of hematopoiesis in general and myelopoiesis in particular. In addition, the consequences of aberrant MAPK activation in the pathogenesis of various myeloid malignancies will be discussed.
Collapse
Affiliation(s)
- Christian R Geest
- Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
164
|
Karahashi H, Michelsen KS, Arditi M. Lipopolysaccharide-induced apoptosis in transformed bovine brain endothelial cells and human dermal microvessel endothelial cells: the role of JNK. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:7280-6. [PMID: 19454725 PMCID: PMC3057198 DOI: 10.4049/jimmunol.0801376] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Stimulation of transformed bovine brain endothelial cells (TBBEC) with LPS leads to apoptosis while human microvessel endothelial cells (HMEC) need the presence of cycloheximide (CHX) with LPS to induce apoptosis. To investigate the molecular mechanism of LPS-induced apoptosis in HMEC or TBBEC, we analyzed the involvement of MAPK and PI3K in TBBEC and HMEC. LPS-induced apoptosis in TBBEC was hallmarked by the activation of caspase 3, caspase 6, and caspase 8 after the stimulation of LPS, followed by poly(ADP-ribose) polymerase cleavage and lactate dehydrogenase release. We also observed DNA cleavage determined by TUNEL staining in TBBEC treated with LPS. Herbimycin A, a tyrosine kinase inhibitor, and SP600125, a JNK inhibitor, suppressed the activation of caspases and lactate dehydrogenase release. Moreover, a PI3K inhibitor (LY294002) suppressed activation of caspases and combined treatment with both SP600125 and LY294002 completely inhibited the activation of caspases. These results suggest that the JNK signaling pathway through the tyrosine kinase and PI3K pathways is involved in the induction of apoptosis in LPS-treated TBBEC. On the other hand, we observed sustained JNK activation in HMEC treated with LPS and CHX, and neither ERK1/2 nor AKT were activated. The addition of SP600125 suppressed phosphorylation of JNK and the activation of caspase 3 in HMEC treated with LPS and CHX. These results suggest that JNK plays an important role in the induction of apoptosis in endothelial cells.
Collapse
Affiliation(s)
- Hisae Karahashi
- Division of Pediatrics Infectious Diseases and Immunology and Immunobiology Research Institute, Cedars-Sinai Medical Center, David Geffen School of Medicine at the University of California Los Angeles, USA
| | - Kathrin S. Michelsen
- Division of Pediatrics Infectious Diseases and Immunology and Immunobiology Research Institute, Cedars-Sinai Medical Center, David Geffen School of Medicine at the University of California Los Angeles, USA
| | - Moshe Arditi
- Division of Pediatrics Infectious Diseases and Immunology and Immunobiology Research Institute, Cedars-Sinai Medical Center, David Geffen School of Medicine at the University of California Los Angeles, USA
| |
Collapse
|
165
|
Kwong J, Hong L, Liao R, Deng Q, Han J, Sun P. p38alpha and p38gamma mediate oncogenic ras-induced senescence through differential mechanisms. J Biol Chem 2009; 284:11237-46. [PMID: 19251701 DOI: 10.1074/jbc.m808327200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Oncogene-induced senescence is a tumor-suppressive defense mechanism triggered upon activation of certain oncogenes in normal cells. Recently, the senescence response to oncogene activation has been shown to act as a bona fide barrier to cancer development in vivo. Multiple previous studies have implicated the importance of the p38 MAPK pathway in oncogene-induced senescence. However, the contribution of each of the four p38 isoforms (encoded by different genes) to senescence induction is unclear. In the current study, we demonstrated that p38alpha and p38gamma, but not p38beta, play an essential role in oncogenic ras-induced senescence. Both p38alpha and p38gamma are expressed in primary human fibroblasts and are activated upon transduction of oncogenic ras. Small hairpin RNA-mediated silencing of p38alpha or p38gamma expression abrogated ras-induced senescence, whereas constitutive activation of p38alpha and p38gamma caused premature senescence. Furthermore, upon activation by oncogenic ras, p38gamma stimulated the transcriptional activity of p53 by phosphorylating p53 at Ser(33), suggesting that the ability of p38gamma to mediate senescence is at least partly achieved through p53. However, p38alpha contributed to ras-inducted senescence via a p53-indepdendent mechanism in cells by mediating ras-induced expression of p16(INK4A), another key senescence effector. These findings have identified p38alpha and p38gamma as essential components of the signaling pathway that regulates the tumor-suppressing senescence response, providing insights into the molecular mechanisms underlying the differential involvement of the p38 isoforms in senescence induction.
Collapse
Affiliation(s)
- Jinny Kwong
- Department of Molecular Biology and Kellogg School of Science and Technology, The Scripps Research Institute, La Jolla, California 91037, USA
| | | | | | | | | | | |
Collapse
|
166
|
Genetic disruption of p38alpha Tyr323 phosphorylation prevents T-cell receptor-mediated p38alpha activation and impairs interferon-gamma production. Blood 2008; 113:2229-37. [PMID: 19011223 DOI: 10.1182/blood-2008-04-153304] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T cells possess a p38 activation alternative pathway in which stimulation via the antigen receptor (T-cell receptor [TCR]) induces phosphorylation of p38alpha and beta on Tyr323. To assess the contribution of this pathway to normal T-cell function, we generated p38alpha knockin mice in which Tyr323 was replaced with Phe (p38alpha(Y323F)). TCR-mediated stimulation failed to activate p38alpha(Y323F) as measured by phosphorylation of the Thr-Glu-Tyr activation motif and p38alpha catalytic activity. Cell-cycle entry was delayed in TCR-stimulated p38alpha(Y323F) T cells, which also produced less interferon (IFN)-gamma than wild-type T cells in response to TCR-mediated but not TCR-independent stimuli. p38alpha(Y323F) mice immunized with T-helper 1 (Th1)-inducing antigens generated normal Th1 effector cells, but these cells produced less IFN-gamma than wild-type cells when stimulated through the TCR. Thus, the Tyr323-dependent pathway and not the classic mitogen-activated protein (MAP) kinase cascade is the physiologic means of p38alpha activation through the TCR and is necessary for normal Th1 function but not Th1 generation.
Collapse
|
167
|
Hirosawa M, Nakahara M, Otosaka R, Imoto A, Okazaki T, Takahashi S. The p38 pathway inhibitor SB202190 activates MEK/MAPK to stimulate the growth of leukemia cells. Leuk Res 2008; 33:693-9. [PMID: 18995898 DOI: 10.1016/j.leukres.2008.09.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 08/14/2008] [Accepted: 09/25/2008] [Indexed: 11/25/2022]
Abstract
In this study, the biological effects of signal transduction inhibitors on leukemia cells were examined. We found that the p38 inhibitor SB202190 enhanced the growth of THP-1 and MV4-11 cells. To determine the pathway affected by SB202190, we examined the 50% effective dose (ED(50)) values for THP-1 cell growth in combination with several inhibitors. In the presence of SB202190, the ED(50) values for the farnesyltransferase inhibitor FPT inhibitor II and MEK inhibitor U0126 were significantly decreased. Western blot analysis revealed that SB202190 increased the phosphorylation of C-Raf and extracellular regulated kinase (ERK), suggesting that Ras-Raf-MEK-mitogen-activated protein kinase (MAPK) pathway activation is involved in the leukemia cell growth induced by SB202190.
Collapse
Affiliation(s)
- Megumi Hirosawa
- Division of Molecular Hematology, Kitasato University Graduate School of Medical Sciences, Japan
| | | | | | | | | | | |
Collapse
|
168
|
Xie CX, Ren JL. Cumulating researches on the relationship between P38 MAPK signaling pathway and gastric carcinoma. Shijie Huaren Xiaohua Zazhi 2008; 16:3427-3432. [DOI: 10.11569/wcjd.v16.i30.3427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The cascade reaction of mitogen-activated protein kinases (MAPKs) is one of the vital intracellular signal transduction systems, participating in many physiological progressions, such as cell growth, proliferation, differentiation and apoptosis. P38 is a member of MAPKs, mediating many cell reactions induced by stress, inflammatory cytokines or bacterial products and playing a key role in the regulation of cell cycle. For different cell lines of gastric carcinoma, P38 has different functions. The same phenomenon can be seen when the cells are presented under different stimulus. P38 pathway may be one candidate target of cancer therapy.
Collapse
|
169
|
Abstract
Methylglyoxal (MG) is a reactive dicarbonyl intermediate of the glycolytic pathway. Increased oxidative stress is associated with conditions of increased MG, such as diabetes mellitus. Increased oxidative stress is due to an increase in highly reactive by-products of metabolic pathways, the so-called reactive oxygen species, such as superoxide anion, hydroxyl radical, hydrogen peroxide, nitric oxide and peroxynitrite. These reactive species react with a variety of proteins, enzymes, lipids, DNA and other molecules and disrupt their normal function. Oxidative stress causes many pathological changes that lead to vascular complications of diabetes mellitus, hypertension, neurodegenerative diseases and aging. In this review we summarize the correlation of elevated MG and various reactive oxygen species, and the enzymes that produce them or take part in their disposal, such as antioxidant enzymes and cofactors. The findings reported in various studies reviewed have started filling in gaps in our knowledge that will ultimately provide us with a clear picture of how the whole process that causes cellular dysfunction is initiated.
Collapse
Affiliation(s)
- Kaushik M Desai
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
170
|
Hansen TE, Puntervoll P, Seternes OM, Jørgensen JB. Atlantic salmon possess three mitogen activated protein kinase kinase 6 paralogs responding differently to stress. FEBS J 2008; 275:4887-902. [DOI: 10.1111/j.1742-4658.2008.06628.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
171
|
Abstract
Pharmaceutical companies are facing an increasing interest in new target identification and validation. In particular, extensive efforts are being made in the field of protein kinase inhibitors research and development, and the past ten years of effort in this field have altered our perception of the potential of kinases as drug targets. Therefore, in the drug discovery process, the selection of relevant, susceptible protein kinase targets combined with searches for leads and candidates have become a crucial approach. The success of recent launches of protein kinase inhibitors (Gleevec, Imatinib, Sutent, Iressa, Nexavar, Sprycel) gave another push to this field. Numerous other kinase inhibitors are currently undergoing clinical trials or clinical development. Some questions are nevertheless unanswered, mostly related to the great number of known kinases in the human genome, to their similarity with each other, to the existence of functionally redundant kinases for specific pathways, and also because the connection between particular pathways and diseases is not always clear. The review is leading the reader through a panoramic view of protein kinase inhibition with a major focus on MAPK, successful examples and clinical candidates.
Collapse
Affiliation(s)
- Simona Margutti
- Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry; Eberhard Karls University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | | |
Collapse
|
172
|
Okada Y. [Development and evaluation of a novel placenta-specific gene manipulation method using lentiviral vectors]. YAKUGAKU ZASSHI 2008; 128:1007-11. [PMID: 18591868 DOI: 10.1248/yakushi.128.1007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The placenta plays numerous important roles to support fetal development such as gas exchange, nutrient supply, and hormone production. Placental defects underlie many aspects of pregnancy losses and complications; thus understanding and regulating gene function during placentation is of high clinical relevance. However, the lack of a facile and efficient method for placenta-specific gene manipulation has hampered study of the placenta. We have previously shown that transduction of fertilized mouse eggs with lentiviral (LV) vectors efficiently generates transgenic animals; however, transgene expression occurred in both the fetus and the placenta. In the present study, we transduced zona-free blastocysts with LV vectors expecting placenta-specific gene expression, since most placental cells differentiate from trophoblast cells that form the outermost layer of the blastocyst. Transgene expression was observed in trophoblast cells from preimplantation stages and in the placenta throughout gestation. All the analyzed placentas carried the transgene, while none of the fetuses became transgenic. By applying this method, embryonic lethality caused by placental defects in several knockout animal models was substantially rescued. This technology provides a powerful system for gene manipulation exclusively in placental organogenesis with implications for the treatment of placental dysfunction.
Collapse
Affiliation(s)
- Yuka Okada
- Research Institute for Microbial Diseases, Osaka University, Suita City, Japan.
| |
Collapse
|
173
|
Schett G, Zwerina J, Firestein G. The p38 mitogen-activated protein kinase (MAPK) pathway in rheumatoid arthritis. Ann Rheum Dis 2008; 67:909-16. [PMID: 17827184 PMCID: PMC2754165 DOI: 10.1136/ard.2007.074278] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chronic inflammatory processes are based on a sustained and tightly regulated communication network among different cells types. This network comprises extracellular mediators such as cytokines, chemokines and matrix-degrading proteases, which orchestrate the participation of cells in the chronic inflammatory process. The mirrors of this outside communication world are intracellular transcription factor pathways, which shuttle information about inflammatory stimuli to the cell nucleus. This review examines the function of one key signal transduction pathway of inflammation--the p38 mitogen-activated protein kinases (p38MAPK). The signalling pathway is considered as crucial for the induction and maintenance of chronic inflammation, and its components thus emerge as interesting molecular targets of small molecule inhibitors for controlling inflammation. This review not only summarises the current knowledge of activation, regulation and function of the p38MAPK pathway but also examines the role of this pathway in clinical disease. It gives an overview of current evidence of p38MAPK activation in inflammatory arthritis and elaborates the key molecular determinants which contribute to p38MAPK activation in joint disease.
Collapse
Affiliation(s)
- G Schett
- Department of Internal Medicine III, University of Erlangen, D-91054 Erlangen, Germany.
| | | | | |
Collapse
|
174
|
Pham H, Vincenti R, Slice LW. COX-2 promoter activation by AT1R-Gq-PAK-p38β signaling in intestinal epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:408-13. [DOI: 10.1016/j.bbagrm.2008.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 04/04/2008] [Accepted: 05/06/2008] [Indexed: 11/16/2022]
|
175
|
Lipshtat A, Purushothaman SP, Iyengar R, Ma'ayan A. Functions of bifans in context of multiple regulatory motifs in signaling networks. Biophys J 2008; 94:2566-79. [PMID: 18178648 PMCID: PMC2267139 DOI: 10.1529/biophysj.107.116673] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 11/26/2007] [Indexed: 11/18/2022] Open
Abstract
Representation of intracellular signaling networks as directed graphs allows for the identification of regulatory motifs. Regulatory motifs are groups of nodes with the same connectivity structure, capable of processing information. The bifan motif, made of two source nodes directly crossregulating two target nodes, is an overrepresented motif in a mammalian cell signaling network and in transcriptional networks. One example of a bifan is the two MAP-kinases, p38, and JNK that phosphorylate and activate the two transcription factors ATF2 and Elk-1. We have used a system of coupled ordinary differential equations to analyze the regulatory capability of this bifan motif by itself, and when it interacts with other motifs such as positive and negative feedback loops. Our results indicate that bifans provide temporal regulation of signal propagation and act as signal sorters, filters, and synchronizers. Bifans that have OR gate configurations show rapid responses whereas AND gate bifans can introduce delays and allow prolongation of signal outputs. Bifans that have AND gates can filter noisy signal inputs. The p38/JNK-ATF2/Elk-1bifan synchronizes the output of activated transcription factors. Synchronization is a robust property of bifans and is exhibited even when the bifan is adjacent to a positive feedback loop. The presence of the bifan promotes the transcription and translation of the dual specificity protein phosphatase MKP-1 that inhibits p38 and JNK thus enabling a negative feedback loop. These results indicate that bifan motifs in cell signaling networks can contribute to signal processing capability both intrinsically and by enabling the functions of other regulatory motifs.
Collapse
Affiliation(s)
- Azi Lipshtat
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York 10029, USA. <>
| | | | | | | |
Collapse
|
176
|
Abstract
AU-rich elements (AREs) in the 3'-untranslated region (UTR) of unstable mRNA dictate their degradation or mediate translational repression. Cell signaling through p38alpha MAPK is necessary for post-transcriptional regulation of many pro-inflammatory cytokines. Here, the cis-acting elements of interleukin-6 (IL-6) 3'-UTR mRNA that required p38alpha signaling for mRNA stability and translation were identified. Using mouse embryonic fibroblasts (MEFs) derived from p38alpha(+/+) and p38alpha(-/-) mice, we observed that p38alpha is obligatory for the IL-1-induced IL-6 biosynthesis. IL-6 mRNA stability is promoted by p38alpha via 3'-UTR. To understand the mechanism of cis-elements regulated by p38alpha at post-transcriptional level, truncation of 3'-UTR and the full-length 3'-UTR with individual AUUUA motif mutation placed in gene reporter system was employed. Mutation-based screen performed in p38alpha(+/+) and p38alpha(-/-) mouse embryonic fibroblast cells revealed that ARE1, ARE2, and ARE5 in IL-6 3'-UTR were targeted by p38alpha, and truncation-based screen showed that IL-6 3'-UTR-(56-173) was targeted by p38alpha to stable mRNA. RNA secondary structure analysis indicated that modulated reporter gene expression was consistent with predicted secondary structure changes.
Collapse
Affiliation(s)
- Wenpu Zhao
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, Michigan 48109-1078
| | - Min Liu
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, Michigan 48109-1078
| | - Keith L. Kirkwood
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, Michigan 48109-1078
| |
Collapse
|
177
|
Chiou MJ, Wang YD, Kuo CM, Chen JC, Chen JY. Functional analysis of mitogen-activated protein kinase-3 (MAPK3) and its regulation of the promoter region in zebrafish. DNA Cell Biol 2008; 26:781-90. [PMID: 17999625 DOI: 10.1089/dna.2007.0613] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) plays a pivotal role in intracellular actions in response to a variety of extracellular stimuli. Real-time reverse-transcription polymerase chain reaction analysis of MAPK3 tissue distribution in zebrafish showed significant differences in the fin and liver compared with muscle. A 1.2-kilobase (kb) pair and a 2.3-kb fragment of the 5'-flanking region displayed minimal promoter activity in the zebrafish liver (ZFL) and HeLa cell lines after treatment with insulin-like growth factors (IGF-I and IGF-II). Targeted knockdown of the MAPK3 gene by two antisense morpholino oligonucleotides revealed that although the zebrafish MAPK3 MO 1-targeted sequence was located at 5' untranslated region and the zebrafish MAPK3 MO 2-targeted sequence was located in the mature peptide region, similar results were shown in zebrafish for disruption of notochord development, with the whole body exhibiting distortion. From a comparative point of view, this study of the MAPK3 gene in zebrafish might not correlate well with previously published studies on mice. These molecular results suggest that MAPK3 plays an important role in whole-body development and is required for general embryonic development. Finally, MAPK3 may play important roles in fish cell growth.
Collapse
Affiliation(s)
- Ming-Jyun Chiou
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Jiaushi, Taiwan
| | | | | | | | | |
Collapse
|
178
|
Koppelman B, Webb HK, Medicherla S, Almirez R, Feng Y, Chavez JC, Mao CP, Nguyen A, Liu YW, Kapoun AM, Muiru G, Huang YA, Dugar S, Mavunkel BJ, Lim DW, Chakravarty S, Luedtke G, Protter AA, Higgins LS. Pharmacological properties of SD-282 - an alpha-isoform selective inhibitor for p38 MAP kinase. Pharmacology 2008; 81:204-20. [PMID: 18176091 DOI: 10.1159/000112865] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 08/13/2007] [Indexed: 01/23/2023]
Abstract
The effects of small-molecule p38 inhibitors in numerous models of different disease states have been published, including those of SD-282, an indole-5-carboxamide inhibitor. The aim of the present study was to evaluate the pharmacological activity of SD-282 on cytokine production in vitro as well as in 2 in vivo models of inflammation in order to illuminate the role of this particular inhibitor in diverse disease states. The results presented here provide further characterization of SD-282 and provide a context in which to interpret the activity of this p38 inhibitor in models of arthritis, pain, myocardial injury, sepsis and asthma; all of which have an inflammatory component. SD-282 represents a valuable tool to elucidate the role of p38 MAP kinase in multiple models of inflammation.
Collapse
|
179
|
Giunti S, Tesch GH, Pinach S, Burt DJ, Cooper ME, Cavallo-Perin P, Camussi G, Gruden G. Monocyte chemoattractant protein-1 has prosclerotic effects both in a mouse model of experimental diabetes and in vitro in human mesangial cells. Diabetologia 2008; 51:198-207. [PMID: 17968528 DOI: 10.1007/s00125-007-0837-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 08/03/2007] [Indexed: 10/22/2022]
Abstract
AIMS/HYPOTHESIS Diabetic nephropathy is characterised by mesangial extracellular matrix accumulation. Monocyte chemoattractant protein-1 (MCP-1), a chemokine promoting monocyte infiltration, is upregulated in the diabetic glomerulus. We performed in vitro and in vivo studies to examine whether MCP-1 may have prosclerotic actions in the setting of diabetes, presumably via its receptor, chemokine (C-C motif) receptor 2 (CCR2), which has been described in mesangial cells. METHODS Human mesangial cells were exposed to recombinant human (rh)-MCP-1 (100 ng/ml) for 12, 24 and 48 h and to rh-MCP-1 (10, 100 and 200 ng/ml) for 24 h. Fibronectin, collagen IV and transforming growth factor, beta 1 (TGF-beta1) protein levels were measured by ELISA and pericellular polymeric fibronectin levels by western blotting. The intracellular mechanisms were investigated using specific inhibitors for CCR2, nuclear factor kappa B (NF-kappaB), p38 mitogen-activated protein kinase and protein kinase C, and an anti-TGF-beta1 blocking antibody. In both non-diabetic and streptozotocin-induced diabetic mice that were deficient or not in MCP-1, glomerular fibronectin accumulation was examined by immunohistochemistry, while cortical Tgf-beta1 (also known as Tgfb1) and fibronectin mRNA and protein levels were examined by real-time PCR and western blotting. RESULTS In mesangial cells, MCP-1 binding to CCR2 induced a 2.5-fold increase in fibronectin protein levels at 24 h followed by a rise in pericellular fibronectin, whereas no changes were seen in collagen IV production. MCP-1-induced fibronectin production was TGF-beta1- and NF-kappaB-dependent. In diabetic mice, loss of MCP-1 diminished glomerular fibronectin protein production and both renal cortical Tgf-beta1 and fibronectin mRNA and protein levels. CONCLUSIONS/INTERPRETATION Our in vitro and in vivo findings indicate a role for the MCP-1/CCR2 system in fibronectin deposition in the diabetic glomerulus, providing a new therapeutic target for diabetic nephropathy.
Collapse
Affiliation(s)
- S Giunti
- Department of Internal Medicine, University of Turin, C.so AM Dogliotti, 14, 10126, Turin, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
180
|
Henklová P, Vrzal R, Ulrichová J, Dvorák Z. Role of mitogen-activated protein kinases in aryl hydrocarbon receptor signaling. Chem Biol Interact 2007; 172:93-104. [PMID: 18282562 DOI: 10.1016/j.cbi.2007.12.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 12/14/2007] [Accepted: 12/19/2007] [Indexed: 10/22/2022]
Abstract
Human populations are increasingly exposed to a number of environmental pollutants such as polycyclic aromatic hydrocarbons, polychlorinated biphenyls and dioxins. These compounds are activators of the aryl hydrocarbon receptor (AhR) that controls the expression of many genes including those for detoxification enzymes. The regulatory mechanisms of AhR are multi-factorial and include phosphorylation by various protein kinases. Significant progress in the research of mitogen-activated protein kinases (MAPKs) has been achieved in the last decade. Isolated reports have been published on the role of MAPKs in AhR functions and vice versa, with activation of MAPKs by AhR ligands. This mini-review summarizes current knowledge on the mutual interactions between MAPKs and AhR. The majority of studies has been done on cancer-derived cell lines that have impaired cell cycle regulation and lacks the complete detoxification apparatus. We emphasize the importance of the future studies that should be done on non-transformed cells to distinguish the role of MAPKs in cancer and normal cells. Primary cultures of human or rodent hepatocytes that are equipped with a fully functional biotransformation battery or xenobiotics-metabolizing extra-hepatic tissues should be the models of choice, as the results in our experiments confirm.
Collapse
Affiliation(s)
- Pavla Henklová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotínská 3, 775 15 Olomouc, Czech Republic
| | | | | | | |
Collapse
|
181
|
Fragoso G, Haines JD, Roberston J, Pedraza L, Mushynski WE, Almazan G. p38 mitogen-activated protein kinase is required for central nervous system myelination. Glia 2007; 55:1531-41. [PMID: 17729284 DOI: 10.1002/glia.20567] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The p38 MAPKs are a family of kinases that regulate a number of cellular functions including cell migration, proliferation, and differentiation. Here, we report that p38 regulates oligodendrocyte differentiation. Inhibition of p38 with PD169316 and SB203580 prevented accumulation of protein and mRNA of cell-stage specific markers characteristic of differentiated oligodendrocytes, including myelin basic protein, myelin-associated glycoprotein, and the glycosphingolipids, galactosylceramide and sulfatide. In addition, the cell cycle regulator p27(kip1) and the transcription factor Sox10 were also significantly reduced. Most significantly, p38 inhibitors completely and irreversibly blocked myelination of dorsal root ganglion neurons by oligodendrocytes and prevented the axolemmal organization of the axo-glial adhesion molecule Caspr. Our results suggest a role(s) for this kinase in key regulatory steps in the maturation of OLGs and initiation of myelination.
Collapse
Affiliation(s)
- Gabriela Fragoso
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
182
|
Kanda N, Watanabe S. Histamine enhances the production of human beta-defensin-2 in human keratinocytes. Am J Physiol Cell Physiol 2007; 293:C1916-23. [PMID: 17928537 DOI: 10.1152/ajpcell.00293.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The anti-microbial peptide human beta-defensin-2 (hBD-2), produced by epidermal keratinocytes, plays pivotal roles in anti-microbial defense, inflammatory dermatoses, and wound repair. hBD-2 induces histamine release from mast cells. We examined the in vitro effects of histamine on hBD-2 production in normal human keratinocytes. Histamine enhanced TNF-alpha- or IFN-gamma-induced hBD-2 secretion and mRNA expression. Histamine alone enhanced transcriptional activities of NF-kappaB and activator protein-1 (AP-1) and potentiated TNF-alpha-induced NF-kappaB and AP-1 activities or IFN-gamma-induced NF-kappaB and STAT1 activities. Antisense oligonucleotides against NF-kappaB components p50 and p65, AP-1 components c-Jun and c-Fos, or H1 antagonist pyrilamine suppressed hBD-2 production induced by histamine plus TNF-alpha or IFN-gamma. Antisense oligonucleotide against STAT1 only suppressed hBD-2 production induced by histamine plus IFN-gamma. Histamine induced serine phosphorylation of inhibitory NF-kappaBalpha (IkappaBalpha) alone or together with TNF-alpha or IFN-gamma. Histamine induced c-Fos mRNA expression alone or together with TNF-alpha, whereas it did not further increase c-Jun mRNA levels enhanced by TNF-alpha. Histamine induced serine phosphorylation of STAT1 alone or together with IFN-gamma, whereas it did not further enhance IFN-gamma-induced tyrosine phosphorylation of STAT1. The histamine-induced serine phosphorylation of STAT1 was suppressed by MAPKK (MEK) inhibitor PD98059. These results suggest that histamine stimulates H1 receptor and potentiates TNF-alpha- or IFN-gamma-induced hBD-2 production dependent on NF-kappaB, AP-1, or STAT1 in human keratinocytes. Histamine may potentiate anti-microbial defense, skin inflammation, and wound repair via the induction of hBD-2.
Collapse
Affiliation(s)
- Naoko Kanda
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
183
|
Deng Y, Yang J, McCarty M, Su B. MEKK3 is required for endothelium function but is not essential for tumor growth and angiogenesis. Am J Physiol Cell Physiol 2007; 293:C1404-11. [PMID: 17687003 DOI: 10.1152/ajpcell.00058.2007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitogen-activated protein kinase kinase kinase 3 (MEKK3) plays an essential role in embryonic angiogenesis, but its role in tumor growth and angiogenesis is unknown. In this study, we further investigated the role of MEKK3 in embryonic angiogenesis, tumor angiogenesis, and angiogenic factor production. We found that endothelial cells from Mekk3-deficient embryos showed defects in cell proliferation, apoptosis, and interactions with myocardium in the heart. We also found that MEKK3 is required for angiopoietin-1 (Ang1)-induced p38 and ERK5 activation. To study the role of MEKK3 in tumor growth and angiogenesis, we established both wild-type and Mekk3-deficient tumor-like embryonic stem cell lines and transplanted them subcutaneously into nude mice to assess their ability to grow and induce tumor angiogenesis. Mekk3-deficient tumors developed and grew similarly as control Mekk3 wild-type tumors and were also capable of inducing tumor angiogenesis. In addition, we found no differences in the production of VEGF in Mekk3-deficient tumors or embryos. Taken together, our results suggest that MEKK3 plays a critical role in Ang1/Tie2 signaling to control endothelial cell proliferation and survival and is required for endothelial cells to interact with the myocardium during early embryonic development. However, MEKK3 is not essential for tumor growth and angiogenesis.
Collapse
MESH Headings
- Angiopoietin-1/pharmacology
- Animals
- Aorta/metabolism
- Aorta/pathology
- Apoptosis/genetics
- Apoptosis/physiology
- Cell Proliferation
- Embryo, Mammalian/metabolism
- Embryo, Mammalian/pathology
- Endocardium/metabolism
- Endocardium/pathology
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Endothelium, Vascular/physiology
- Female
- MAP Kinase Kinase Kinase 3/deficiency
- MAP Kinase Kinase Kinase 3/genetics
- MAP Kinase Kinase Kinase 3/physiology
- Mice
- Mice, Inbred Strains
- Mice, Knockout
- Mice, Nude
- Mitogen-Activated Protein Kinases/metabolism
- Myocardium/metabolism
- Myocardium/pathology
- Neoplasms, Experimental/blood supply
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Phosphorylation/drug effects
- Receptor, TIE-2/metabolism
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Yong Deng
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
184
|
Abstract
Cells in the renal inner medulla are normally exposed to extraordinarily high levels of NaCl and urea. The osmotic stress causes numerous perturbations because of the hypertonic effect of high NaCl and the direct denaturation of cellular macromolecules by high urea. High NaCl and urea elevate reactive oxygen species, cause cytoskeletal rearrangement, inhibit DNA replication and transcription, inhibit translation, depolarize mitochondria, and damage DNA and proteins. Nevertheless, cells can accommodate by changes that include accumulation of organic osmolytes and increased expression of heat shock proteins. Failure to accommodate results in cell death by apoptosis. Although the adapted cells survive and function, many of the original perturbations persist, and even contribute to signaling the adaptive responses. This review addresses both the perturbing effects of high NaCl and urea and the adaptive responses. We speculate on the sensors of osmolality and document the multiple pathways that signal activation of the transcription factor TonEBP/OREBP, which directs many aspects of adaptation. The facts that numerous cellular functions are altered by hyperosmolality and remain so, even after adaptation, indicate that both the effects of hyperosmolality and adaptation to it involve profound alterations of the state of the cells.
Collapse
|
185
|
Cuenda A, Rousseau S. p38 MAP-kinases pathway regulation, function and role in human diseases. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1773:1358-75. [PMID: 17481747 DOI: 10.1016/j.bbamcr.2007.03.010] [Citation(s) in RCA: 1037] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 03/13/2007] [Accepted: 03/19/2007] [Indexed: 11/28/2022]
Abstract
Mammalian p38 mitogen-activated protein kinases (MAPKs) are activated by a wide range of cellular stresses as well as in response to inflammatory cytokines. There are four members of the p38MAPK family (p38alpha, p38beta, p38gamma and p38delta) which are about 60% identical in their amino acid sequence but differ in their expression patterns, substrate specificities and sensitivities to chemical inhibitors such as SB203580. A large body of evidences indicates that p38MAPK activity is critical for normal immune and inflammatory response. The p38MAPK pathway is a key regulator of pro-inflammatory cytokines biosynthesis at the transcriptional and translational levels, which makes different components of this pathway potential targets for the treatment of autoimmune and inflammatory diseases. However, recent studies have shed light on the broad effect of p38MAPK activation in the control of many other aspects of the physiology of the cell, such as control of cell cycle or cytoskeleton remodelling. Here we focus on these emergent roles of p38MAPKs and their implication in different pathologies.
Collapse
Affiliation(s)
- Ana Cuenda
- MRC Protein Phosphorylation Unit, College of life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.
| | | |
Collapse
|
186
|
Hao F, Tan M, Xu X, Han J, Miller DD, Tigyi G, Cui MZ. Lysophosphatidic acid induces prostate cancer PC3 cell migration via activation of LPA(1), p42 and p38alpha. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1771:883-92. [PMID: 17531530 PMCID: PMC3446792 DOI: 10.1016/j.bbalip.2007.04.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 03/29/2007] [Accepted: 04/16/2007] [Indexed: 11/28/2022]
Abstract
Prostate cancer cell migration is an essential event both in the progression of prostate cancer and in the steps leading to metastasis. We report here that lysophosphatidic acid (LPA), a potent bioactive phospholipid, induces prostate cancer PC3 cell migration via the activation of the LPA(1) receptor, which is linked to a PTX-sensitive activation mechanism of the mitogen-activated protein kinases (MAPK). Our results demonstrate that parallel activation of ERK1/2 and p38, but not JNK, is responsible for LPA-stimulated PC3 cell migration. Furthermore, using small interfering RNA (siRNA) technology, and overexpressing dominant-negative mutants of p38 MAPK isotypes of alpha, beta, gamma and delta, we have identified that the activation of ERK2 (p42) and p38alpha, but not of ERK1 and the other isoforms of p38 MAPK, is required for LPA-induced migration. Our study provides the first evidence for a functional role of p42 and p38alpha in LPA-induced mammalian cell migration, and also demonstrates, for the first time, that the receptor LPA(1) mediates prostate cancer cell migration. The results of the present study suggest that LPA, the receptor LPA(1), ERK2 and p38alpha are important regulators for prostate cancer cell invasion and thus could play a significant role in the development of metastasis.
Collapse
Affiliation(s)
- Feng Hao
- Department of Pathobiology, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN 37996, USA
| | - Mingqi Tan
- Department of Pathobiology, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN 37996, USA
| | - Xuemin Xu
- Department of Pathobiology, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN 37996, USA
| | - Jiahuai Han
- Department of Immunology, The Scripps Research Institute, CA 92037, USA
| | - Duane D. Miller
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Gabor Tigyi
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mei-Zhen Cui
- Department of Pathobiology, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
187
|
Abstract
The mitogen-activated protein kinases (MAPKs) are a family of serine/threonine kinases that play an essential role in signal transduction by modulating gene transcription in the nucleus in response to changes in the cellular environment. They include the extracellular signal-regulated protein kinases (ERK1 and ERK2); c-Jun N-terminal kinases (JNK1, JNK2, JNK3); p38s (p38alpha, p38beta, p38gamma, p38delta) and ERK5. The molecular events in which MAPKs function can be separated in discrete and yet interrelated steps: activation of the MAPK by their upstream kinases, changes in the subcellular localization of MAPKs, and recognition, binding and phosphorylation of MAPK downstream targets. The resulting pattern of gene expression will ultimately depend on the integration of the combinatorial signals provided by the temporal activation of each group of MAPKs. This review will focus on how the specificity of signal transmission by MAPKs is achieved by scaffolding molecules and by the presence of structural motifs in MAPKs that are dynamically regulated by phosphorylation and protein-protein interactions. We discuss also how MAPKs recognize and phosphorylate their target nuclear proteins, including transcription factors, co-activators and repressors and chromatin-remodeling molecules, thereby affecting an intricate balance of nuclear regulatory molecules that ultimately control gene expression in response to environmental cues.
Collapse
Affiliation(s)
- A G Turjanski
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
188
|
Abstract
Mitogen-activated protein (MAP) kinase kinase 4 (MKK4) is a component of stress activated MAP kinase signaling modules. It directly phosphorylates and activates the c-Jun N-terminal kinase (JNK) and p38 families of MAP kinases in response to environmental stress, pro-inflammatory cytokines and developmental cues. MKK4 is ubiquitously expressed and the targeted deletion of the Mkk4 gene in mice results in early embryonic lethality. Further studies in mice have indicated a role for MKK4 in liver formation, the immune system and cardiac hypertrophy. In humans, it is reported that loss of function mutations in the MKK4 gene are found in approximately 5% of tumors from a variety of tissues, suggesting it may have a tumor suppression function. Furthermore, MKK4 has been identified as a suppressor of metastasis of prostate and ovarian cancers. However, the role of MKK4 in cancer development appears complex as other studies support a pro-oncogenic role for MKK4 and JNK. Here we review the biochemical and functional properties of MKK4 and discuss the likely mechanisms by which it may regulate the steps leading to the formation of cancers.
Collapse
Affiliation(s)
- A J Whitmarsh
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | |
Collapse
|
189
|
Lim MJ, Seo YH, Choi KJ, Cho CH, Kim BS, Kim YH, Lee J, Lee H, Jung CY, Ha J, Kang I, Kim SS. Suppression of c-Src activity stimulates muscle differentiation via p38 MAPK activation. Arch Biochem Biophys 2007; 465:197-208. [PMID: 17612500 DOI: 10.1016/j.abb.2007.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2007] [Revised: 05/25/2007] [Accepted: 06/03/2007] [Indexed: 11/28/2022]
Abstract
Role of c-Src in muscle differentiation has been controversial. Here, we investigated if c-Src positively or negatively regulates muscle differentiation, using H9c2 and C2C12 cell lines. Inhibition of c-Src by treatment with PP1 and SU6656, pharmacologic inhibitors of Src family kinases, or by expression of a dominant negative c-Src, all induced muscle differentiation in proliferation medium (PM). In differentiating cells in differentiation medium (DM), c-Src activity gradually decreased and reached basal level 3 days after induction of differentiation. Inhibition of c-Src suppressed Raf/MEK/ERK pathway but activated p38 MAPK. Inhibition of p38 MAPK did not affect c-Src activity in PM. However, it reactivated Raf/MEK/ERK pathway in c-Src-inhibited cells regardless of PM or DM. Concomitant inhibition of c-Src and p38 MAPK activities blocked muscle differentiation in both media. In conclusion, suppression of c-Src activity stimulates muscle differentiation by activating p38 MAPK uni-directionally.
Collapse
Affiliation(s)
- Min Jin Lim
- Department of Biochemistry and Molecular Biology (BK21 project), Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Hansen TE, Jørgensen JB. Cloning and characterisation of p38 MAP kinase from Atlantic salmon A kinase important for regulating salmon TNF-2 and IL-1beta expression. Mol Immunol 2007; 44:3137-46. [PMID: 17391766 DOI: 10.1016/j.molimm.2007.02.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 01/31/2007] [Accepted: 02/05/2007] [Indexed: 10/23/2022]
Abstract
p38 mitogen-activated protein kinase is activated by environmental stress and cytokines and plays a role in transcriptional regulation and inflammatory responses. In this study, three distinct Atlantic salmon p38 (As-p38) cDNAs were cloned, which all translated into 361 amino acid proteins. The As-p38 protein sequences possessed showed >85% identity to the mammalian homolog, p38alpha. All three contained the conserved phosphorylation motif TGY located in the activation loop of the kinase. Salmon p38 showed ubiquitous tissue distribution, including expression in the immune organs head kidney and spleen. A higher p38 mRNA expression was detected in the ovary compared to other organs suggesting that p38 may perform specific functions within this organ. Western blot analysis with an antibody specific for phosphorylated p38 showed that ectopically expressed As-p38 variants were activated in CHSE-214 cells in response to chemical stress. Furthermore, lipopolysaccharide, CpG oligonucleotides and recombinant trout IL-1beta induced endogenous phosphorylation of p38 in salmon head kidney macrophages in a dose-dependent manner. The importance of p38 for regulation of salmon innate immunity was further demonstrated by the ability of the p38 specific inhibitor SB203580 to completely abolish LPS-stimulated TNF-2 and IL-1beta mRNA expression in the macrophages.
Collapse
Affiliation(s)
- Tom E Hansen
- The Norwegian Structural Biology Centre and Department of Marine Biotechnology, Norwegian College of Fishery Science, University of Tromsø, N-9037 Tromsø, Norway
| | | |
Collapse
|
191
|
Avitzour M, Diskin R, Raboy B, Askari N, Engelberg D, Livnah O. Intrinsically active variants of all human p38 isoforms. FEBS J 2007; 274:963-75. [PMID: 17241234 DOI: 10.1111/j.1742-4658.2007.05644.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The p38 mitogen-activated protein kinases are activated in response to various extracellular signals in eukaryotic cells and play a critical role in the cellular responses to these signals. The four mammalian isoforms (p38alpha, p38beta, p38gamma, and p38delta) are coexpressed and coactivated in the same cells. The exact role of each p38 isoform has not been entirely identified, in part due to the inability to activate each member individually. This could be resolved by the use of intrinsically active mutants. Based on previous studies on yeast p38/Hog1 [Bell M, Capone R, Pashtan I, Levitzki A & Engelberg D (2001) J Biol Chem276, 25351-2538] and human p38alpha[Diskin R, Askari N, Capone R, Engelberg D & Livnah O (2004) J Biol Chem279, 47040-47049] we have generated intrinsically active p38beta, p38gamma and p38delta mutants. In addition, we have identified a new activating mutation site in p38alpha. Most of the activating mutations are located in the L16 loop, in which conformational changes were shown to induce activation. We show that these changes impose substantial autophosphorylation activity, providing a mechanistic explanation for the intrinsic activity of the mutants. The new active variants maintain specificity towards substrates and inhibitors similar to that of the parental wild-type proteins, and are phosphorylated by mitogen-activated protein kinase kinase 6, their upstream activator. Thus, we have completed the development of a series of intrinsically active mutants of all p38 isoforms. These active variants could now become powerful tools for the elucidating the activation mechanism and specific biological roles of each p38 isoform.
Collapse
Affiliation(s)
- Michal Avitzour
- Department of Biological Chemistry, The Wolfson Centre for Applied Structural Biology, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
192
|
Lin WN, Luo SF, Lee CW, Wang CC, Wang JS, Yang CM. Involvement of MAPKs and NF-kappaB in LPS-induced VCAM-1 expression in human tracheal smooth muscle cells. Cell Signal 2007; 19:1258-67. [PMID: 17303384 DOI: 10.1016/j.cellsig.2007.01.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 01/02/2007] [Indexed: 10/23/2022]
Abstract
Lipopolysaccharide (LPS) has been shown to induce the expression of adhesion molecules on airway epithelial and smooth cells and contributes to inflammatory responses. Here, the roles of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappaB (NF-kappaB) pathways for LPS-induced vascular cell adhesion molecule (VCAM)-1 expression were investigated in HTSMCs. LPS-induced expression of VCAM-1 protein and mRNA in a time-dependent manner, was significantly inhibited by inhibitors of MEK1/2 (U0126), p38 (SB202190), and c-Jun-N-terminal kinase (JNK; SP600125). The involvement of p42/p44 MAPK and p38 in these responses was further confirmed by that transfection with small interference RNAs (siRNA) direct against MEK, p42, and p38 significantly attenuated LPS-induced VCAM-1 expression. Consistently, LPS-stimulated phosphorylation of p42/p44 MAPK and p38 was attenuated by pretreatment with U0126 or SB202190, and transfection with these siRNAs, respectively. In addition, LPS-induced VCAM-1 expression was significantly blocked by a specific NF-kappaB inhibitor helenalin. LPS-stimulated translocation of NF-kappaB into the nucleus and degradation of IkappaB-alpha was blocked by helenalin, U0126, SB202190, or SP600125. Moreover, the resultant enhancement of VCAM-1 expression increased the adhesion of polymorphonuclear cells to monolayer of HTSMCs which was blocked by pretreatment with helenalin, U0126, or SP600125 prior to LPS exposure. Taken together, these results suggest that in HTSMCs, activation of p42/p44 MAPK, p38, and JNK pathways, at least in part, mediated through NF-kappaB, is essential for LPS-induced VCAM-1 gene expression. These results provide new insight into the mechanisms of LPS action that bacterial toxins may promote inflammatory responses in the airway disease.
Collapse
Affiliation(s)
- Wei-Ning Lin
- Department of Physiology and Pharmacology, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | | | | | | | | | | |
Collapse
|
193
|
Okada Y, Ueshin Y, Isotani A, Saito-Fujita T, Nakashima H, Kimura K, Mizoguchi A, Oh-Hora M, Mori Y, Ogata M, Oshima RG, Okabe M, Ikawa M. Complementation of placental defects and embryonic lethality by trophoblast-specific lentiviral gene transfer. Nat Biotechnol 2007; 25:233-7. [PMID: 17220877 DOI: 10.1038/nbt1280] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Accepted: 12/08/2006] [Indexed: 11/09/2022]
Abstract
Placental dysfunction underlies many complications during pregnancy, and better understanding of gene function during placentation could have considerable clinical relevance. However, the lack of a facile method for placenta-specific gene manipulation has hampered investigation of placental organogenesis and the treatment of placental dysfunction. We showed previously that transduction of fertilized mouse eggs with lentiviral vectors leads to transgene expression in both the fetus and the placenta. Here we report placenta-specific gene incorporation by lentiviral transduction of mouse blastocysts after removal of the zona pellucida. All of the placentas analyzed, but none of the fetuses, were transgenic. Application of this method substantially rescued mice deficient in Ets2, Mapk14 (also known as p38alpha) and Mapk1 (also known as Erk2) from embryonic lethality caused by placental defects. Ectopic expression of Mapk11 also complemented Mapk14 deficiency during placentation.
Collapse
Affiliation(s)
- Yuka Okada
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Mouse preimplantation embryo responses to culture medium osmolarity include increased expression of CCM2 and p38 MAPK activation. BMC DEVELOPMENTAL BIOLOGY 2007; 7:2. [PMID: 17214902 PMCID: PMC1781062 DOI: 10.1186/1471-213x-7-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 01/10/2007] [Indexed: 02/06/2023]
Abstract
Background Mechanisms that confer an ability to respond positively to environmental osmolarity are fundamental to ensuring embryo survival during the preimplantation period. Activation of p38 mitogen-activated protein kinase (MAPK) occurs following exposure to hyperosmotic treatment. Recently, a novel scaffolding protein called Osmosensing Scaffold for MEKK3 (OSM) was linked to p38 MAPK activation in response to sorbitol-induced hypertonicity. The human ortholog of OSM is cerebral cavernous malformation 2 (CCM2). The present study was conducted to investigate whether CCM2 is expressed during mouse preimplantation development and to determine whether this scaffolding protein is associated with p38 MAPK activation following exposure of preimplantation embryos to hyperosmotic environments. Results Our results indicate that Ccm2 along with upstream p38 MAPK pathway constituents (Map3k3, Map2k3, Map2k6, and Map2k4) are expressed throughout mouse preimplantation development. CCM2, MAP3K3 and the phosphorylated forms of MAP2K3/MAP2K6 and MAP2K4 were also detected throughout preimplantation development. Embryo culture in hyperosmotic media increased p38 MAPK activity in conjunction with elevated CCM2 levels. Conclusion These results define the expression of upstream activators of p38 MAPK during preimplantation development and indicate that embryo responses to hyperosmotic environments include elevation of CCM2 and activation of p38 MAPK.
Collapse
|
195
|
Kulkarni RG, Srivani P, Achaiah G, Sastry GN. Strategies to design pyrazolyl urea derivatives for p38 kinase inhibition: a molecular modeling study. J Comput Aided Mol Des 2007; 21:155-66. [PMID: 17203364 DOI: 10.1007/s10822-006-9092-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 10/29/2006] [Indexed: 01/21/2023]
Abstract
The p38 protein kinase is a serine-threonine mitogen activated protein kinase, which plays an important role in inflammation and arthritis. A combined study of 3D-QSAR and molecular docking has been undertaken to explore the structural insights of pyrazolyl urea p38 kinase inhibitors. The 3D-QSAR studies involved comparative molecular field analysis (CoMFA) and comparative molecular similarity indices (CoMSIA). The best CoMFA model was derived from the atom fit alignment with a cross-validated r (2 )(q (2)) value of 0.516 and conventional r (2) of 0.950, while the best CoMSIA model yielded a q (2) of 0.455 and r (2) of 0.979 (39 molecules in training set, 9 molecules in test set). The CoMFA and CoMSIA contour maps generated from these models provided inklings about the influence of interactive molecular fields in the space on the activity. GOLD, Sybyl (FlexX) and AutoDock docking protocols were exercised to explore the protein-inhibitor interactions. The integration of 3D-QSAR and molecular docking has proffered essential structural features of pyrazolyl urea inhibitors and also strategies to design new potent analogues with enhanced activity.
Collapse
Affiliation(s)
- Ravindra G Kulkarni
- University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Andhra Pradesh, India
| | | | | | | |
Collapse
|
196
|
Al-Soud YA, Al-Masoudi NA, De Clercq E, Paneccoque C. Nitroimidazoles, part 4: Synthesis and anti-HIV activity of new 5-alkylsulfanyl and 5-(4′-arylsulfonyl)piperazinyl-4-nitroimidazole derivatives. HETEROATOM CHEMISTRY 2007. [DOI: 10.1002/hc.20301] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
197
|
Bauer I, Al Sarraj J, Vinson C, Larsen R, Thiel G. Interleukin-1β and tetradecanoylphorbol acetate-induced biosynthesis of tumor necrosis factor α in human hepatoma cells involves the transcription factors ATF2 and c-Jun and stress-activated protein kinases. J Cell Biochem 2007; 100:242-55. [PMID: 16888805 DOI: 10.1002/jcb.21075] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The proinflammatory cytokine tumor necrosis factor (TNF) alpha is mainly produced in cells from the monocyte/macrophage lineage. TNFalpha is also a key signaling molecule in the liver functioning as an important physiological and pathogenic mediator. In hepatocytes or human hepatoma cells TNFalpha is expressed at extremely low levels but TNFalpha biosynthesis can be induced by interleukin (IL)-1beta or 12-O-tetradecanoylphorbol-13-acetate (TPA). Here, we show that IL-1beta and TPA stimulated TNFalpha gene transcription in hepatoma cells mediated by a composite TPA-responsive element/cAMP response element. Both IL-1beta and TPA triggered phosphorylation and activation of the basic region leucine zipper transcription factors c-Jun and ATF2 and expression of dominant-negative mutants of c-Jun and ATF2-reduced TNFalpha promoter activity and secretion of TNFalpha. Expression of the nuclear dual-specific MAP kinase phosphatase-1 (MKP-1) blocked TNFalpha promoter activity and TNFalpha secretion following IL-1beta or TPA stimulation, indicating that MKP-1 functions as a nuclear shut-of-device of IL-1beta and TPA-induced TNFalpha expression.
Collapse
Affiliation(s)
- Inge Bauer
- Department of Medical Biochemistry and Molecular Biology, University of Saarland Medical Center, D-66421 Homburg, Germany
| | | | | | | | | |
Collapse
|
198
|
Huang Q, Bu S, Yu Y, Guo Z, Ghatnekar G, Bu M, Yang L, Lu B, Feng Z, Liu S, Wang F. Diazoxide prevents diabetes through inhibiting pancreatic beta-cells from apoptosis via Bcl-2/Bax rate and p38-beta mitogen-activated protein kinase. Endocrinology 2007; 148:81-91. [PMID: 17053028 DOI: 10.1210/en.2006-0738] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Increased apoptosis of pancreatic beta-cells plays an important role in the occurrence and development of type 2 diabetes. We examined the effect of diazoxide on pancreatic beta-cell apoptosis and its potential mechanism in Otsuka Long Evans Tokushima Fatty (OLETF) rats, an established animal model of human type 2 diabetes, at the prediabetic and diabetic stages. We found a significant increase with age in the frequency of apoptosis, the sequential enlargement of islets, and the proliferation of the connective tissue surrounding islets, accompanied with defective insulin secretory capacity and increased blood glucose in untreated OLETF rats. In contrast, diazoxide treatment (25 mg.kg(-1).d(-1), administered ip) inhibited beta-cell apoptosis, ameliorated changes of islet morphology and insulin secretory function, and increased insulin stores significantly in islet beta-cells whether diazoxide was used at the prediabetic or diabetic stage. Linear regression showed the close correlation between the frequency of apoptosis and hyperglycemia (r = 0.913; P < 0.0001). Further study demonstrated that diazoxide up-regulated Bcl-2 expression and p38beta MAPK, which expressed at very low levels due to the high glucose, but not c-jun N-terminal kinase and ERK. Hence, diazoxide may play a critical role in protection from apoptosis. In this study, we demonstrate that diazoxide prevents the onset and development of diabetes in OLETF rats by inhibiting beta-cell apoptosis via increasing p38beta MAPK, elevating Bcl-2/Bax ratio, and ameliorating insulin secretory capacity and action.
Collapse
Affiliation(s)
- Qin Huang
- Department of Endocrinology, Changhai Hospital, Shanghai 200433, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Tristano AG, Fuller K. Immunomodulatory effects of statins and autoimmune rheumatic diseases: novel intracellular mechanism involved. Int Immunopharmacol 2006; 6:1833-1846. [PMID: 17052674 DOI: 10.1016/j.intimp.2006.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 07/25/2006] [Accepted: 08/03/2006] [Indexed: 01/26/2023]
Abstract
Inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, known as statins, are the most commonly prescribed agents for the treatment of hypercholesterolemia. However, the effects of statins may extend beyond their influences on serum cholesterol levels resulting in cholesterol-independent or pleiotropic effects. Clinical, animal and in vitro studies suggest that statins have additional clinical uses because of their anti-inflammatory and immunomodulatory effects, in part due to their capacity to interfere with the mevalonate pathway and inhibit prenylation of Rho family GTPases. This review focuses on the molecular mechanisms of the anti-inflammatory and immunomodulatory effects of statins. In base to all these information, we suggest that statins could have similar inhibitory effects on MAPKs pathways in cells from RA patients, including osteoclasts and fibroblasts.
Collapse
Affiliation(s)
- Antonio G Tristano
- Pharmaceutical and Administrative Sciences Department, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | | |
Collapse
|
200
|
Korb A, Tohidast-Akrad M, Cetin E, Axmann R, Smolen J, Schett G. Differential tissue expression and activation of p38 MAPK alpha, beta, gamma, and delta isoforms in rheumatoid arthritis. ACTA ACUST UNITED AC 2006; 54:2745-56. [PMID: 16947383 DOI: 10.1002/art.22080] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Activation of p38 MAPK is a key signaling step in chronic inflammation. Inhibition of p38 MAPK is considered to be a promising future strategy to control inflammatory diseases, but studies of compounds to inhibit this kinase have so far been limited to investigation of their side effects. We undertook the present study to investigate which specific molecule, among 4 different isoforms of p38 MAPK (alpha, beta, gamma, and delta), is predominantly expressed and activated in inflammation. Such knowledge could allow more specific targeting of p38 MAPK in inflammatory disease. METHODS Studies were performed on inflamed tissue from patients with rheumatoid arthritis, as a prototype of inflammatory disease. The expression and activation of the alpha, beta, gamma, and delta isoforms of p38 MAPK were examined by immunoblotting, immunoprecipitation, and immunohistochemistry. RESULTS Immunoblot analysis revealed that alpha and gamma were the predominantly expressed p38 MAPK isoforms, whereas the other 2 isoforms were less frequently present. By immunohistochemistry, the expression of all p38 MAPK isoforms was localized to the synovial lining layer as well as to blood vessels. Colabeling with cell-specific markers revealed that macrophages expressed the alpha and gamma isoforms, synovial fibroblasts the beta and gamma isoforms, and granulocytes the delta isoform, whereas T lymphocytes were rarely positive for any p38 MAPK isoform. Double-labeling with isoform-specific antibody and pan-p38 antibody against the phosphorylated form of p38 MAPK showed activation of the alpha and gamma isoforms. Occasional activation of the beta isoform was also noted in the synovial lining and the endothelium, whereas the delta isoform, although expressed in pericytes around blood vessels, was not phosphorylated. This phosphorylation pattern was confirmed in immunoprecipitation studies in which activated p38 MAPK from synovial tissue extracts was identified as p38 MAPKalpha and -gamma but not p38 MAPKbeta or -delta. CONCLUSION These data show that the alpha and gamma isoforms of p38 MAPK dominate in chronic inflammation. Effective strategies to inhibit p38 MAPK should therefore aim to specifically target either or both of these isoforms.
Collapse
|