151
|
Teruyama R, Sakuraba M, Kurotaki H, Armstrong WE. Transient receptor potential channel m4 and m5 in magnocellular cells in rat supraoptic and paraventricular nuclei. J Neuroendocrinol 2011; 23:1204-13. [PMID: 21848647 PMCID: PMC5703211 DOI: 10.1111/j.1365-2826.2011.02211.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The neurohypophysial hormones, vasopressin (VP) and oxytocin (OT), are synthesised by magnocellular cells in the supraoptic nucleus (SON) and the paraventricular nucleus (PVN) of the hypothalamus. The release of VP into the general circulation from the neurohypophysis increases during hyperosmolality, hypotension and hypovolaemia. VP neurones increase hormone release by increasing their firing rate as a result of adopting a phasic bursting. Depolarising after potentials (DAPs) following a series of action potentials are considered to be involved in the generation of the phasic bursts by summating to plateau potentials. We recently discovered a fast DAP (fDAP) in addition to the slower DAP characterised previously. Almost all VP neurones expressed the fDAP, whereas only 16% of OT neurones had this property, which implicates the involvement of fDAP in the generation of the firing patterns in VP neurones. Our findings obtained from electrophysiological experiments suggested that the ionic current underlying the fDAP is mediated by those of two closely-related Ca(2+) -activated cation channels: the melastatin-related subfamily of transient receptor potential channels, TRPM4 and TRPM5. In the present study, double/triple immunofluorescence microscopy and reverse transcriptase-polymerase chain reaction techniques were employed to evaluate whether TRPM4 and TRPM5 are specifically located in VP neurones. Using specific antibodies against these channels, TRPM5 immunoreactivity was found almost exclusively in VP neurones, but not in OT neurones in both the SON and PVN. The most prominent TRPM5 immunoreactivity was in the dendrites of VP neurones. By contrast, most TRPM4 immunoreactivity occurred in cell bodies of both VP and OT neurones. TRPM4 and TRPM5 mRNA were both found in a cDNA library derived from SON punches. These results indictate the possible involvement of TRPM5 in the generation of the fDAP, and these channels may play an important role in determining the distinct firing properties of VP neurones in the SON.
Collapse
Affiliation(s)
- R Teruyama
- Department of Biological Sciences, Louisiana State University, LA 70803, USA.
| | | | | | | |
Collapse
|
152
|
The redox-sensitive cation channel TRPM2 modulates phagocyte ROS production and inflammation. Nat Immunol 2011; 13:29-34. [PMID: 22101731 PMCID: PMC3242890 DOI: 10.1038/ni.2171] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 10/24/2011] [Indexed: 01/25/2023]
Abstract
The NADPH oxidase activity of phagocytes and its generation of reactive oxygen species (ROS) is critical for host-defense, but ROS overproduction can also lead to inflammation and tissue injury. Here we report that TRPM2, a non-selective and redox-sensitive cation channel, inhibits ROS production in phagocytic cells and prevents endotoxin-induced lung inflammation in mice. TRPM2-deficient mice challenged with endotoxin (lipopolysaccharide) showed an increased inflammatory signature and decreased survival compared to controls. TRPM2 functions by dampening NADPH oxidase-mediated ROS production through depolarization of the plasma membrane in phagocytes. Since ROS also activates TRPM2, our findings establish a negative feedback mechanism inactivating ROS production through inhibition of the membrane potential-sensitive NADPH oxidase.
Collapse
|
153
|
Stallmeyer B, Zumhagen S, Denjoy I, Duthoit G, Hébert JL, Ferrer X, Maugenre S, Schmitz W, Kirchhefer U, Schulze-Bahr E, Guicheney P, Schulze-Bahr E. Mutational spectrum in the Ca2+-activated cation channel gene TRPM4 in patients with cardiac conductance disturbances. Hum Mutat 2011; 33:109-17. [DOI: 10.1002/humu.21599] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 08/17/2011] [Indexed: 11/10/2022]
|
154
|
Becerra A, Echeverría C, Varela D, Sarmiento D, Armisén R, Nuñez-Villena F, Montecinos M, Simon F. Transient receptor potential melastatin 4 inhibition prevents lipopolysaccharide-induced endothelial cell death. Cardiovasc Res 2011; 91:677-84. [PMID: 21565835 DOI: 10.1093/cvr/cvr135] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
AIMS Endothelial dysfunction is decisive in the progression of cardiovascular diseases. Lipopolysaccharide (LPS)-induced reactive oxygen species (ROS)-mediated endothelial cell death is a main feature observed in inflammation secondary to endotoxaemia, emerging as a leading cause of death among critically ill patients in intensive care units. However, the molecular mechanism underlying LPS-induced endothelial cell death is not well understood. Transient receptor protein melastatin 4 (TRPM4) is an ion channel associated with cell death that is expressed in endothelium and modulated by ROS. Here, we investigate the role of TRPM4 in LPS-induced endothelial cell death, testing whether suppression of the expression of TRPM4 confers endothelial cell resistance to LPS challenge. METHODS AND RESULTS Using primary cultures of human umbilical vein endothelial cells (HUVEC), we demonstrate that TRPM4 is critically involved in LPS-induced endothelial cell death. HUVEC exposed to LPS results in Na(+)-dependent cell death. Pharmacological inhibition of TRPM4 with 9-phenanthrol or glibenclamide protects endothelium against LPS exposure for 48 h. Furthermore, TRPM4-like currents increase in cells pre-treated with LPS and inhibited with glibenclamide. Of note, suppression of TRPM4 expression by siRNA or suppression of its activity in a dominant negative mutant is effective in decreasing LPS-induced endothelial cell death when cells are exposed to LPS for 24-30 h. CONCLUSION TRPM4 is critically involved in LPS-induced endothelial cell death. These results demonstrate that either pharmacological inhibition of TRPM4, suppression of TRPM4 expression, or inhibition of TRPM4 activity are able to protect endothelium against LPS injury. These results are useful in sepsis drug design and development of new strategies for sepsis therapy.
Collapse
Affiliation(s)
- Alvaro Becerra
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas & Facultad de Medicina, Universidad Andres Bello, Av. Republica 217, 8370146 Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
155
|
Garcia ZI, Bruhl A, Gonzales AL, Earley S. Basal protein kinase Cδ activity is required for membrane localization and activity of TRPM4 channels in cerebral artery smooth muscle cells. Channels (Austin) 2011; 5:210-4. [PMID: 21406958 DOI: 10.4161/chan.5.3.15111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The melastatin (M) transient receptor potential channel (TRP) channel TRPM4 is a critical regulator of vascular smooth muscle cell membrane potential and contractility. We recently reported that PKCδ activity influences smooth muscle cell excitability by promoting translocation of TRPM4 channel protein to the plasma membrane. Here we further investigate the relationship between membrane localization of TRPM4 protein and channel activity in native cerebral arterial myocytes. We find that TRPM4 immunolabeling is primarily located at or near the plasma membrane of freshly isolated cerebral artery smooth muscle cells. However, siRNA mediated downregulation of PKCδ or brief (15 min) inhibition of PKCδ activity with rottlerin causes TRPM4 protein to move away from the plasma membrane and into the cytosol. In addition, we find that PKCδ inhibition diminishes TRPM4-dependent currents in smooth muscle cells patch clamped in the amphotericin B perforated patch configuration. We conclude that TRPM4 channels are mobile in native cerebral myocytes and that basal PKCδ activity supports excitability of these cells by maintaining localization TRPM4 protein at the plasma membrane.
Collapse
Affiliation(s)
- Zarine I Garcia
- Vascular Physiology Research Group, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | | | | | | |
Collapse
|
156
|
Nelson PL, Zolochevska O, Figueiredo ML, Soliman A, Hsu WH, Feng JM, Zhang H, Cheng H. Regulation of Ca(2+)-entry in pancreatic α-cell line by transient receptor potential melastatin 4 plays a vital role in glucagon release. Mol Cell Endocrinol 2011; 335:126-34. [PMID: 21238535 DOI: 10.1016/j.mce.2011.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 01/04/2011] [Accepted: 01/06/2011] [Indexed: 10/18/2022]
Abstract
Elevation in the intracellular Ca(2+) concentration stimulates glucagon secretion from pancreatic α-cells. The Transient Receptor Potential Melastatin 4 channel (TRPM4) is critical for Ca(2+) signaling. However, its role in glucagon secreting α-cells has not been investigated. We identified TRPM4 gene expression and protein in the αTC1-6 cell line using RT-PCR and immunocytochemistry. Furthermore, we performed a detailed biophysical characterization of the channel using the patch-clamp technique to confirm that currents typical for TRPM4 were present in αTC1-6 cells. To investigate TRPM4 function, we generated a stable knockdown clone using shRNA and a lentiviral vector. Inhibition of TRPM4 significantly reduced the responses to different agonists during Ca(2+) imaging analysis with Fura-2AM. The reduction in the magnitude of Ca(2+) signals resulted in decreased glucagon secretion. These results suggested that depolarization by TRPM4 may play an important role in controlling glucagon secretion from α-cells and perhaps glucose homeostasis.
Collapse
Affiliation(s)
- P L Nelson
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA 70803, USA
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Abstract
The transient receptor potential (TRP) multigene superfamily encodes integral membrane proteins that function as ion channels. Members of this family are conserved in yeast, invertebrates and vertebrates. The TRP family is subdivided into seven subfamilies: TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin), TRPA (ankyrin) and TRPN (NOMPC-like); the latter is found only in invertebrates and fish. TRP ion channels are widely expressed in many different tissues and cell types, where they are involved in diverse physiological processes, such as sensation of different stimuli or ion homeostasis. Most TRPs are non-selective cation channels, only few are highly Ca2+ selective, some are even permeable for highly hydrated Mg2+ ions. This channel family shows a variety of gating mechanisms, with modes of activation ranging from ligand binding, voltage and changes in temperature to covalent modifications of nucleophilic residues. Activated TRP channels cause depolarization of the cellular membrane, which in turn activates voltage-dependent ion channels, resulting in a change of intracellular Ca2+ concentration; they serve as gatekeeper for transcellular transport of several cations (such as Ca2+ and Mg2+), and are required for the function of intracellular organelles (such as endosomes and lysosomes). Because of their function as intracellular Ca2+ release channels, they have an important regulatory role in cellular organelles. Mutations in several TRP genes have been implicated in diverse pathological states, including neurodegenerative disorders, skeletal dysplasia, kidney disorders and pain, and ongoing research may help find new therapies for treatments of related diseases.
Collapse
Affiliation(s)
- Bernd Nilius
- Department of Molecular Cell Biology, Laboratory of Ion Channel Research, Campus Gasthuisberg, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | | |
Collapse
|
158
|
Wenning AS, Neblung K, Strauß B, Wolfs MJ, Sappok A, Hoth M, Schwarz EC. TRP expression pattern and the functional importance of TRPC3 in primary human T-cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:412-23. [DOI: 10.1016/j.bbamcr.2010.12.022] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 12/22/2010] [Accepted: 12/23/2010] [Indexed: 11/16/2022]
|
159
|
Transient receptor proteins illuminated: Current views on TRPs and disease. Vet J 2011; 187:153-64. [DOI: 10.1016/j.tvjl.2010.01.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 01/21/2010] [Accepted: 01/25/2010] [Indexed: 11/23/2022]
|
160
|
Aneiros E, Cao L, Papakosta M, Stevens EB, Phillips S, Grimm C. The biophysical and molecular basis of TRPV1 proton gating. EMBO J 2011; 30:994-1002. [PMID: 21285946 DOI: 10.1038/emboj.2011.19] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 01/07/2011] [Indexed: 11/09/2022] Open
Abstract
The capsaicin receptor TRPV1, a member of the transient receptor potential family of non-selective cation channels is a polymodal nociceptor. Noxious thermal stimuli, protons, and the alkaloid irritant capsaicin open the channel. The mechanisms of heat and capsaicin activation have been linked to voltage-dependent gating in TRPV1. However, until now it was unclear whether proton activation or potentiation or both are linked to a similar voltage-dependent mechanism and which molecular determinants underlie the proton gating. Using the whole-cell patch-clamp technique, we show that protons activate and potentiate TRPV1 by shifting the voltage dependence of the activation curves towards more physiological membrane potentials. We further identified a key residue within the pore region of TRPV1, F660, to be critical for voltage-dependent proton activation and potentiation. We conclude that proton activation and potentiation of TRPV1 are both voltage dependent and that amino acid 660 is essential for proton-mediated gating of TRPV1.
Collapse
Affiliation(s)
- Eduardo Aneiros
- Department of Pain Biology, Pfizer Global Research and Development, Sandwich Laboratories, Kent, UK
| | | | | | | | | | | |
Collapse
|
161
|
Guinamard R, Sallé L, Simard C. The non-selective monovalent cationic channels TRPM4 and TRPM5. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:147-71. [PMID: 21290294 DOI: 10.1007/978-94-007-0265-3_8] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Transient Receptor Potential (TRP) proteins are non-selective cationic channels with a consistent Ca(2+)-permeability, except for TRPM4 and TRPM5 that are not permeable to this ion. However, Ca(2+) is a major regulator of their activity since both channels are activated by a rise in internal Ca(2+). Thus TRPM4 and TRPM5 are responsible for most of the Ca(2+)-activated non-selective cationic currents (NSC(Ca)) recorded in a large variety of tissues. Their activation induces cell-membrane depolarization that modifies the driving force for ions as well as activity of voltage gated channels and thereby strongly impacts cell physiology. In the last few years, the ubiquitously expressed TRPM4 channel has been implicated in insulin secretion, the immune response, constriction of cerebral arteries, the activity of inspiratory neurons and cardiac dysfunction. Conversely, TRPM5 whose expression is more restricted, has until now been mainly implicated in taste transduction.
Collapse
Affiliation(s)
- Romain Guinamard
- Groupe Cœur et Ischémie, EA 3212, Université de Caen, Sciences D, F-14032, Caen Cedex, France,
| | | | | |
Collapse
|
162
|
Miller BA, Zhang W. TRP Channels as Mediators of Oxidative Stress. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:531-44. [DOI: 10.1007/978-94-007-0265-3_29] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
163
|
Zholos A, Johnson C, Burdyga T, Melanaphy D. TRPM channels in the vasculature. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:707-29. [PMID: 21290323 DOI: 10.1007/978-94-007-0265-3_37] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent studies show that mammalian melastatin TRPM nonselective cation channels (TRPM1-8), members of the largest and most diverse TRP subfamily, are widely expressed in the endothelium and vascular smooth muscles. When activated, these channels similarly to other TRPs permit the entry of sodium, calcium and magnesium, thus causing membrane depolarisation. Although membrane depolarisation reduces the driving force for calcium entry via TRPMs as well as other pathways for calcium entry, in smooth muscle myocytes expressing voltage-gated Ca(2+) channels the predominant functional effect is an increase in intracellular Ca(2+) concentration and myocyte contraction. This review focuses on several best documented aspects of vascular functions of TRPMs, including the role of TRPM2 in oxidant stress, regulation of endothelial permeability and cell death, the connection between TRPM4 and myogenic response, significance of TRPM7 for magnesium homeostasis, vessel injury and hypertension, and emerging evidence that the cold and menthol receptor TRPM8 is involved in the regulation of vascular tone.
Collapse
Affiliation(s)
- Alexander Zholos
- Centre for Vision and Vascular Science, School of Medicine, Dentistry and Biomedical Sciences, Royal Victoria Hospital, Queen's University of Belfast, Belfast BT12 6BA, UK.
| | | | | | | |
Collapse
|
164
|
|
165
|
Vennekens R. Emerging concepts for the role of TRP channels in the cardiovascular system. J Physiol 2010; 589:1527-34. [PMID: 21173080 DOI: 10.1113/jphysiol.2010.202077] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The transient receptor potential (TRP) family of ion channels is a large family of cation selective ion channels, which are expressed and functional in a variety of tissues. In this review we focus on the most recent results detailing the role of TRP channels in the cardiovascular system. The presented results underscore the role of TRP channels in cardiomyocytes, smooth cells and endothelium, and in disease states such as hypertension, cardiac conduction block and cardiac hypertrophy.
Collapse
Affiliation(s)
- Rudi Vennekens
- Laboratory of Ion Channel Research, Katholieke Universiteit Leuven, Physiology, Campus Gasthuisberg O/N, Herestraat 49, bus 802, Leuven B-3000, Belgium.
| |
Collapse
|
166
|
Guinamard R, Demion M, Launay P. Physiological roles of the TRPM4 channel extracted from background currents. Physiology (Bethesda) 2010; 25:155-64. [PMID: 20551229 DOI: 10.1152/physiol.00004.2010] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Calcium-activated nonselective cationic currents have been known for 30 years, but their physiological implications have remained unresolved until the recent cloning of the TRPM4 ion channel. Since then, TRPM4 has been identified as a key modulator of numerous calcium-dependent mechanisms such as the immune response, insulin secretion, cerebral artery constriction, respiratory rhythm, and cardiac conduction.
Collapse
|
167
|
Simon F, Leiva-Salcedo E, Armisén R, Riveros A, Cerda O, Varela D, Eguiguren AL, Olivero P, Stutzin A. Hydrogen peroxide removes TRPM4 current desensitization conferring increased vulnerability to necrotic cell death. J Biol Chem 2010; 285:37150-8. [PMID: 20884614 DOI: 10.1074/jbc.m110.155390] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Necrosis is associated with an increase in plasma membrane permeability, cell swelling, and loss of membrane integrity with subsequent release of cytoplasmic constituents. Severe redox imbalance by overproduction of reactive oxygen species is one of the main causes of necrosis. Here we demonstrate that H(2)O(2) induces a sustained activity of TRPM4, a Ca(2+)-activated, Ca(2+)-impermeant nonselective cation channel resulting in an increased vulnerability to cell death. In HEK 293 cells overexpressing TRPM4, H(2)O(2) was found to eliminate in a dose-dependent manner TRPM4 desensitization. Site-directed mutagenesis experiments revealed that the Cys(1093) residue is crucial for the H(2)O(2)-mediated loss of desensitization. In HeLa cells, which endogenously express TRPM4, H(2)O(2) elicited necrosis as well as apoptosis. H(2)O(2)-mediated necrosis but not apoptosis was abolished by replacement of external Na(+) ions with sucrose or the non-permeant cation N-methyl-d-glucamine and by knocking down TRPM4 with a shRNA directed against TRPM4. Conversely, transient overexpression of TRPM4 in HeLa cells in which TRPM4 was previously silenced re-established vulnerability to H(2)O(2)-induced necrotic cell death. In addition, HeLa cells exposed to H(2)O(2) displayed an irreversible loss of membrane potential, which was prevented by TRPM4 knockdown.
Collapse
Affiliation(s)
- Felipe Simon
- Centro de Estudios Moleculares de la Célula and Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av Independencia 1027, Independencia 838-0543, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Crnich R, Amberg GC, Leo MD, Gonzales AL, Tamkun MM, Jaggar JH, Earley S. Vasoconstriction resulting from dynamic membrane trafficking of TRPM4 in vascular smooth muscle cells. Am J Physiol Cell Physiol 2010; 299:C682-94. [PMID: 20610768 PMCID: PMC2944317 DOI: 10.1152/ajpcell.00101.2010] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 07/04/2010] [Indexed: 11/22/2022]
Abstract
The melastatin (M) transient receptor potential (TRP) channel TRPM4 mediates pressure and protein kinase C (PKC)-induced smooth muscle cell depolarization and vasoconstriction of cerebral arteries. We hypothesized that PKC causes vasoconstriction by stimulating translocation of TRPM4 to the plasma membrane. Live-cell confocal imaging and fluorescence recovery after photobleaching (FRAP) analysis was performed using a green fluorescent protein (GFP)-tagged TRPM4 (TRPM4-GFP) construct expressed in A7r5 cells. The surface channel was mobile, demonstrating a FRAP time constant of 168 +/- 19 s. In addition, mobile intracellular trafficking vesicles were readily detected. Using a cell surface biotinylation assay, we showed that PKC activation with phorbol 12-myristate 13-acetate (PMA) increased (approximately 3-fold) cell surface levels of TRPM4-GFP protein in <10 min. Similarly, total internal reflection fluorescence microscopy demonstrated that stimulation of PKC activity increased (approximately 3-fold) the surface fluorescence of TRPM4-GFP in A7r5 cells and primary cerebral artery smooth muscle cells. PMA also caused an elevation of cell surface TRPM4 protein levels in intact arteries. PMA-induced translocation of TRPM4 to the plasma membrane was independent of PKCalpha and PKCbeta activity but was inhibited by blockade of PKCdelta with rottlerin. Pressure-myograph studies of intact, small interfering RNA (siRNA)-treated cerebral arteries demonstrate that PKC-induced constriction of cerebral arteries requires expression of both TRPM4 and PKCdelta. In addition, pressure-induced arterial myocyte depolarization and vasoconstriction was attenuated in arteries treated with siRNA against PKCdelta. We conclude that PKCdelta activity causes smooth muscle depolarization and vasoconstriction by increasing the number of TRPM4 channels in the sarcolemma.
Collapse
Affiliation(s)
- Rachael Crnich
- Vascular Physiology Research Group, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | | | | | | | | | | | | |
Collapse
|
169
|
Wu LJ, Sweet TB, Clapham DE. International Union of Basic and Clinical Pharmacology. LXXVI. Current progress in the mammalian TRP ion channel family. Pharmacol Rev 2010; 62:381-404. [PMID: 20716668 PMCID: PMC2964900 DOI: 10.1124/pr.110.002725] [Citation(s) in RCA: 440] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transient receptor potential (TRP) channels are a large family of ion channel proteins, surpassed in number in mammals only by voltage-gated potassium channels. TRP channels are activated and regulated through strikingly diverse mechanisms, making them suitable candidates for cellular sensors. They respond to environmental stimuli such as temperature, pH, osmolarity, pheromones, taste, and plant compounds, and intracellular stimuli such as Ca(2+) and phosphatidylinositol signal transduction pathways. However, it is still largely unknown how TRP channels are activated in vivo. Despite the uncertainties, emerging evidence using TRP channel knockout mice indicates that these channels have broad function in physiology. Here we review the recent progress on the physiology, pharmacology and pathophysiological function of mammalian TRP channels.
Collapse
Affiliation(s)
- Long-Jun Wu
- Howard Hughes Medical Institute, Department of Cardiology, Children's Hospital Boston, 320 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
170
|
Mathar I, Vennekens R, Meissner M, Kees F, Van der Mieren G, Camacho Londoño JE, Uhl S, Voets T, Hummel B, van den Bergh A, Herijgers P, Nilius B, Flockerzi V, Schweda F, Freichel M. Increased catecholamine secretion contributes to hypertension in TRPM4-deficient mice. J Clin Invest 2010; 120:3267-79. [PMID: 20679729 DOI: 10.1172/jci41348] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 06/23/2010] [Indexed: 11/17/2022] Open
Abstract
Hypertension is an underlying risk factor for cardiovascular disease. Despite this, its pathogenesis remains unknown in most cases. Recently, the transient receptor potential (TRP) channel family was associated with the development of several cardiovascular diseases linked to hypertension. The melastatin TRP channels TRPM4 and TRPM5 have distinct properties within the TRP channel family: they form nonselective cation channels activated by intracellular calcium ions. Here we report the identification of TRPM4 proteins in endothelial cells, heart, kidney, and chromaffin cells from the adrenal gland, suggesting that they have a role in the cardiovascular system. Consistent with this hypothesis, Trpm4 gene deletion in mice altered long-term regulation of blood pressure toward hypertensive levels. No changes in locomotor activity, renin-angiotensin system function, electrolyte and fluid balance, vascular contractility, and cardiac contractility under basal conditions were observed. By contrast, inhibition of ganglionic transmission with either hexamethonium or prazosin abolished the difference in blood pressure between Trpm4-/- and wild-type mice. Strikingly, plasma epinephrine concentration as well as urinary excretion of catecholamine metabolites were substantially elevated in Trpm4-/- mice. In freshly isolated chromaffin cells, lack of TRPM4 was shown to cause markedly more acetylcholine-induced exocytotic release events, while neither cytosolic calcium concentration, size, nor density of vesicles were different. We therefore conclude that TRPM4 proteins limit catecholamine release from chromaffin cells and that this contributes to increased sympathetic tone and hypertension.
Collapse
Affiliation(s)
- Ilka Mathar
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, Homburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Liu H, El Zein L, Kruse M, Guinamard R, Beckmann A, Bozio A, Kurtbay G, Mégarbané A, Ohmert I, Blaysat G, Villain E, Pongs O, Bouvagnet P. Gain-of-Function Mutations in
TRPM4
Cause Autosomal Dominant Isolated Cardiac Conduction Disease. ACTA ACUST UNITED AC 2010; 3:374-85. [DOI: 10.1161/circgenetics.109.930867] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Isolated cardiac conduction block is a relatively common condition in young and elderly populations. Genetic predisposing factors have long been suspected because of numerous familial case reports. Deciphering genetic predisposing factors of conduction blocks may give a hint at stratifying conduction block carriers in a more efficient way.
Methods and Results—
One Lebanese family and 2 French families with autosomal dominant isolated cardiac conduction blocks were used for linkage analysis. A maximum combined multipoint lod score of 10.5 was obtained on a genomic interval including more than 300 genes. After screening 12 genes of this interval for mutation, we found a heterozygous missense mutation of the
TRPM4
gene in each family (p.Arg164Trp, p.Ala432Thr, and p.Gly844Asp). This gene encodes the TRPM4 channel, a calcium-activated nonselective cation channel of the transient receptor potential melastatin (TRPM) ion channel family. All 3 mutations result in an increased current density. This gain of function is due to an elevated TRPM4 channel density at the cell surface secondary to impaired endocytosis and deregulation of Small Ubiquitin MOdifier conjugation (SUMOylation). Furthermore, we showed by immunohistochemistry that TRPM4 channel signal level is higher in atrial cardiomyocytes than in common ventricular cells, but is highest in Purkinje fibers. Small bundles of highly TRPM4-positive cells were found in the subendocardium and in rare intramural bundles.
Conclusions—
the
TRPM4
gene is a causative gene in isolated cardiac conduction disease with mutations resulting in a gain of function and TRPM4 channel being highly expressed in cardiac Purkinje fibers.
Collapse
Affiliation(s)
- Hui Liu
- From Université de Lyon (H.L., L.E.Z., P.B.), Laboratoire Cardiogénétique, Equipe d'Accueil 4171, Lyon, France; Hospices Civils de Lyon (H.L., L.E.Z., P.B.), Groupe Hospitalier Est, Laboratoire Cardiogénétique, Bron, France; Institut für Neurale Signalverarbeitung (M.K., A.B., G.K., I.O., O.P.), Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany; Université de Caen (R.G.), Laboratoire d'Anesthésiologie Expérimentale et Physiologie Cellulaire, Equipe d'Accueil 3212, Caen,
| | - Loubna El Zein
- From Université de Lyon (H.L., L.E.Z., P.B.), Laboratoire Cardiogénétique, Equipe d'Accueil 4171, Lyon, France; Hospices Civils de Lyon (H.L., L.E.Z., P.B.), Groupe Hospitalier Est, Laboratoire Cardiogénétique, Bron, France; Institut für Neurale Signalverarbeitung (M.K., A.B., G.K., I.O., O.P.), Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany; Université de Caen (R.G.), Laboratoire d'Anesthésiologie Expérimentale et Physiologie Cellulaire, Equipe d'Accueil 3212, Caen,
| | - Martin Kruse
- From Université de Lyon (H.L., L.E.Z., P.B.), Laboratoire Cardiogénétique, Equipe d'Accueil 4171, Lyon, France; Hospices Civils de Lyon (H.L., L.E.Z., P.B.), Groupe Hospitalier Est, Laboratoire Cardiogénétique, Bron, France; Institut für Neurale Signalverarbeitung (M.K., A.B., G.K., I.O., O.P.), Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany; Université de Caen (R.G.), Laboratoire d'Anesthésiologie Expérimentale et Physiologie Cellulaire, Equipe d'Accueil 3212, Caen,
| | - Romain Guinamard
- From Université de Lyon (H.L., L.E.Z., P.B.), Laboratoire Cardiogénétique, Equipe d'Accueil 4171, Lyon, France; Hospices Civils de Lyon (H.L., L.E.Z., P.B.), Groupe Hospitalier Est, Laboratoire Cardiogénétique, Bron, France; Institut für Neurale Signalverarbeitung (M.K., A.B., G.K., I.O., O.P.), Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany; Université de Caen (R.G.), Laboratoire d'Anesthésiologie Expérimentale et Physiologie Cellulaire, Equipe d'Accueil 3212, Caen,
| | - Alf Beckmann
- From Université de Lyon (H.L., L.E.Z., P.B.), Laboratoire Cardiogénétique, Equipe d'Accueil 4171, Lyon, France; Hospices Civils de Lyon (H.L., L.E.Z., P.B.), Groupe Hospitalier Est, Laboratoire Cardiogénétique, Bron, France; Institut für Neurale Signalverarbeitung (M.K., A.B., G.K., I.O., O.P.), Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany; Université de Caen (R.G.), Laboratoire d'Anesthésiologie Expérimentale et Physiologie Cellulaire, Equipe d'Accueil 3212, Caen,
| | - André Bozio
- From Université de Lyon (H.L., L.E.Z., P.B.), Laboratoire Cardiogénétique, Equipe d'Accueil 4171, Lyon, France; Hospices Civils de Lyon (H.L., L.E.Z., P.B.), Groupe Hospitalier Est, Laboratoire Cardiogénétique, Bron, France; Institut für Neurale Signalverarbeitung (M.K., A.B., G.K., I.O., O.P.), Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany; Université de Caen (R.G.), Laboratoire d'Anesthésiologie Expérimentale et Physiologie Cellulaire, Equipe d'Accueil 3212, Caen,
| | - Güven Kurtbay
- From Université de Lyon (H.L., L.E.Z., P.B.), Laboratoire Cardiogénétique, Equipe d'Accueil 4171, Lyon, France; Hospices Civils de Lyon (H.L., L.E.Z., P.B.), Groupe Hospitalier Est, Laboratoire Cardiogénétique, Bron, France; Institut für Neurale Signalverarbeitung (M.K., A.B., G.K., I.O., O.P.), Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany; Université de Caen (R.G.), Laboratoire d'Anesthésiologie Expérimentale et Physiologie Cellulaire, Equipe d'Accueil 3212, Caen,
| | - André Mégarbané
- From Université de Lyon (H.L., L.E.Z., P.B.), Laboratoire Cardiogénétique, Equipe d'Accueil 4171, Lyon, France; Hospices Civils de Lyon (H.L., L.E.Z., P.B.), Groupe Hospitalier Est, Laboratoire Cardiogénétique, Bron, France; Institut für Neurale Signalverarbeitung (M.K., A.B., G.K., I.O., O.P.), Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany; Université de Caen (R.G.), Laboratoire d'Anesthésiologie Expérimentale et Physiologie Cellulaire, Equipe d'Accueil 3212, Caen,
| | - Iris Ohmert
- From Université de Lyon (H.L., L.E.Z., P.B.), Laboratoire Cardiogénétique, Equipe d'Accueil 4171, Lyon, France; Hospices Civils de Lyon (H.L., L.E.Z., P.B.), Groupe Hospitalier Est, Laboratoire Cardiogénétique, Bron, France; Institut für Neurale Signalverarbeitung (M.K., A.B., G.K., I.O., O.P.), Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany; Université de Caen (R.G.), Laboratoire d'Anesthésiologie Expérimentale et Physiologie Cellulaire, Equipe d'Accueil 3212, Caen,
| | - Gérard Blaysat
- From Université de Lyon (H.L., L.E.Z., P.B.), Laboratoire Cardiogénétique, Equipe d'Accueil 4171, Lyon, France; Hospices Civils de Lyon (H.L., L.E.Z., P.B.), Groupe Hospitalier Est, Laboratoire Cardiogénétique, Bron, France; Institut für Neurale Signalverarbeitung (M.K., A.B., G.K., I.O., O.P.), Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany; Université de Caen (R.G.), Laboratoire d'Anesthésiologie Expérimentale et Physiologie Cellulaire, Equipe d'Accueil 3212, Caen,
| | - Elisabeth Villain
- From Université de Lyon (H.L., L.E.Z., P.B.), Laboratoire Cardiogénétique, Equipe d'Accueil 4171, Lyon, France; Hospices Civils de Lyon (H.L., L.E.Z., P.B.), Groupe Hospitalier Est, Laboratoire Cardiogénétique, Bron, France; Institut für Neurale Signalverarbeitung (M.K., A.B., G.K., I.O., O.P.), Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany; Université de Caen (R.G.), Laboratoire d'Anesthésiologie Expérimentale et Physiologie Cellulaire, Equipe d'Accueil 3212, Caen,
| | - Olaf Pongs
- From Université de Lyon (H.L., L.E.Z., P.B.), Laboratoire Cardiogénétique, Equipe d'Accueil 4171, Lyon, France; Hospices Civils de Lyon (H.L., L.E.Z., P.B.), Groupe Hospitalier Est, Laboratoire Cardiogénétique, Bron, France; Institut für Neurale Signalverarbeitung (M.K., A.B., G.K., I.O., O.P.), Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany; Université de Caen (R.G.), Laboratoire d'Anesthésiologie Expérimentale et Physiologie Cellulaire, Equipe d'Accueil 3212, Caen,
| | - Patrice Bouvagnet
- From Université de Lyon (H.L., L.E.Z., P.B.), Laboratoire Cardiogénétique, Equipe d'Accueil 4171, Lyon, France; Hospices Civils de Lyon (H.L., L.E.Z., P.B.), Groupe Hospitalier Est, Laboratoire Cardiogénétique, Bron, France; Institut für Neurale Signalverarbeitung (M.K., A.B., G.K., I.O., O.P.), Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany; Université de Caen (R.G.), Laboratoire d'Anesthésiologie Expérimentale et Physiologie Cellulaire, Equipe d'Accueil 3212, Caen,
| |
Collapse
|
172
|
Wiemuth D, Gründer S. A single amino acid tunes Ca2+ inhibition of brain liver intestine Na+ channel (BLINaC). J Biol Chem 2010; 285:30404-10. [PMID: 20656685 DOI: 10.1074/jbc.m110.153064] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ion channels of the degenerin/epithelial Na(+) channel gene family are Na(+) channels that are blocked by the diuretic amiloride and are implicated in several human diseases. The brain liver intestine Na(+) channel (BLINaC) is an ion channel of the degenerin/epithelial Na(+) channel gene family with unknown function. In rodents, it is expressed mainly in brain, liver, and intestine, and to a lesser extent in kidney and lung. Expression of rat BLINaC (rBLINaC) in Xenopus oocytes leads to small unselective currents that are only weakly sensitive to amiloride. Here, we show that rBLINaC is inhibited by micromolar concentrations of extracellular Ca(2+). Removal of Ca(2+) leads to robust currents and increases Na(+) selectivity of the ion pore. Strikingly, the species ortholog from mouse (mBLINaC) has an almost 250-fold lower Ca(2+) affinity than rBLINaC, rendering mBLINaC constitutively active at physiological concentrations of extracellular Ca(2+). In addition, mBLINaC is more selective for Na(+) and has a 700-fold higher amiloride affinity than rBLINaC. We show that a single amino acid in the extracellular domain determines these profound species differences. Collectively, our results suggest that rBLINaC is opened by an unknown ligand whereas mBLINaC is a constitutively open epithelial Na(+) channel.
Collapse
Affiliation(s)
- Dominik Wiemuth
- Department of Physiology, RWTH Aachen University, D-52074 Aachen, Germany
| | | |
Collapse
|
173
|
Vriens J, Nilius B, Vennekens R. Herbal compounds and toxins modulating TRP channels. Curr Neuropharmacol 2010; 6:79-96. [PMID: 19305789 PMCID: PMC2645550 DOI: 10.2174/157015908783769644] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 07/19/2007] [Accepted: 08/15/2007] [Indexed: 01/13/2023] Open
Abstract
Although the benefits are sometimes obvious, traditional or herbal medicine is regarded with skepticism, because the mechanism through which plant compounds exert their powers are largely elusive. Recent studies have shown however that many of these plant compounds interact with specific ion channels and thereby modulate the sensing mechanism of the human body. Especially members of the Transient Receptor Potential (TRP) channels have drawn large attention lately as the receptors for plant-derived compounds such as capsaicin and menthol. TRP channels constitute a large and diverse family of channel proteins that can serve as versatile sensors that allow individual cells and entire organisms to detect changes in their environment. For this family, a striking number of empirical views have turned into mechanism-based actions of natural compounds. In this review we will give an overview of herbal compounds and toxins, which modulate TRP channels.
Collapse
Affiliation(s)
- Joris Vriens
- Laboratory of Ion Channel Research, Department of Mol. Cell Biology, Division of Physiology, Campus Gasthuisberg, KU Leuven, Herestraat 49, B-3000 LEUVEN, Belgium
| | | | | |
Collapse
|
174
|
Abstract
The mammalian transient receptor potential (TRP) superfamily consists of six subfamilies that are defined by structural homology: TRPC (conventional or canonical), TRPV (vanilloid), TRPM (melastatin), TRPA (ankyrin), TRPP (polycystin), and TRPML (mucoliptin). This review focuses on channels belonging to the vanilloid (V) and melastatin (M) TRP subfamilies. The TRPV subfamily consists of six members (TRPV1-6) and the TRPM subfamily has eight (TRPM1-8). The basic biophysical properties of these channels are briefly described. All of these channels except TRPV5, TRPV6, and TRPM1 are reportedly present in arterial smooth muscle from various segments of the vasculature. Studies demonstrating involvement of TRPV1, TRPV2, TRPV4, TRPM4, TRPM7, and TRPM8 in regulation of arterial smooth muscle function are reviewed. The functions of TRPV3, TRPM2, TRPM3, and TRPM6 channels in arterial myocytes have not been reported.
Collapse
Affiliation(s)
- Scott Earley
- Vascular Physiology Research Group, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
175
|
Gonzales AL, Amberg GC, Earley S. Ca2+ release from the sarcoplasmic reticulum is required for sustained TRPM4 activity in cerebral artery smooth muscle cells. Am J Physiol Cell Physiol 2010; 299:C279-88. [PMID: 20427713 DOI: 10.1152/ajpcell.00550.2009] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The melastatin transient receptor potential (TRP) channel TRPM4 is a critical regulator of vascular smooth muscle cell membrane potential and contractility. Activation of the channel is Ca(2+)-dependent, but prolonged exposure to high (>1 microM) levels of intracellular Ca(2+) causes rapid (within approximately 2 min) desensitization of TRPM4 currents under conventional whole cell and inside-out patch-clamp conditions. The goal of the present study was to establish a novel method to record sustained TRPM4 currents in smooth muscle cells under near-physiological conditions. Using the amphotericin B-perforated patch-clamp technique, we recorded and characterized sustained (up to 30 min) transient inward cation currents (TICCs) in freshly isolated cerebral artery myocytes. In symmetrical cation solutions, TICCs reversed at 0 mV and had an apparent unitary conductance of 25 pS. Replacement of extracellular Na(+) with the nonpermeable cation N-methyl-d-glucamine abolished the current. TICC activity was attenuated by the TRPM4 blockers fluflenamic acid and 9-phenanthrol. Selective silencing of TRPM4 expression using small interfering RNA diminished TICC activity, suggesting that the molecular identity of the responsible ion channel is TRPM4. We used the perforated patch-clamp method to test the hypothesis that TRPM4 is activated by intracellular Ca(2+) signaling events. We found that TICC activity is independent of Ca(2+) influx and ryanodine receptor activity but is attenuated by sarco(endo)plasmic reticulum Ca(2+)-ATPase inhibition and blockade of inositol 1,4,5-trisphosphate receptor-mediated Ca(2+) release from the sarcoplasmic reticulum. Our findings suggest that TRPM4 channels in cerebral artery myocytes are regulated by Ca(2+) release from inositol 1,4,5-trisphosphate receptor on the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Albert L Gonzales
- Vascular Physiology Research Group, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523-1617, USA
| | | | | |
Collapse
|
176
|
Zholos A. Pharmacology of transient receptor potential melastatin channels in the vasculature. Br J Pharmacol 2010; 159:1559-71. [PMID: 20233227 DOI: 10.1111/j.1476-5381.2010.00649.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mammalian transient receptor potential melastatin (TRPM) non-selective cation channels, the largest TRP subfamily, are widely expressed in excitable and non-excitable cells where they perform diverse functions ranging from detection of cold, taste, osmolarity, redox state and pH to control of Mg(2+) homeostasis and cell proliferation or death. Recently, TRPM gene expression has been identified in vascular smooth muscles with dominance of the TRPM8 channel. There has been in parallel considerable progress in decoding the functional roles of several TRPMs in the vasculature. This research on native cells is aided by the knowledge of the activation mechanisms and pharmacological properties of heterologously expressed TRPM subtypes. This paper summarizes the present state of knowledge of vascular TRPM channels and outlines several anticipated directions of future research in this area.
Collapse
Affiliation(s)
- Alexander Zholos
- Centre for Vision and Vascular Science, Queen's University of Belfast, UK.
| |
Collapse
|
177
|
Loss of high-frequency glucose-induced Ca2+ oscillations in pancreatic islets correlates with impaired glucose tolerance in Trpm5-/- mice. Proc Natl Acad Sci U S A 2010; 107:5208-13. [PMID: 20194741 DOI: 10.1073/pnas.0913107107] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glucose homeostasis is critically dependent on insulin release from pancreatic beta-cells, which is strictly regulated by glucose-induced oscillations in membrane potential (V(m)) and the cytosolic calcium level ([Ca(2+)](cyt)). We propose that TRPM5, a Ca(2+)-activated monovalent cation channel, is a positive regulator of glucose-induced insulin release. Immunofluorescence revealed expression of TRPM5 in pancreatic islets. A Ca(2+)-activated nonselective cation current with TRPM5-like properties is significantly reduced in Trpm5(-/-) cells. Ca(2+)-imaging and electrophysiological analysis show that glucose-induced oscillations of V(m) and [Ca(2+)](cyt) have on average a reduced frequency in Trpm5(-/-) islets, specifically due to a lack of fast oscillations. As a consequence, glucose-induced insulin release from Trpm5(-/-) pancreatic islets is significantly reduced, resulting in an impaired glucose tolerance in Trpm5(-/-) mice.
Collapse
|
178
|
Kurata HT, Rapedius M, Kleinman MJ, Baukrowitz T., Nichols CG. Voltage-dependent gating in a "voltage sensor-less" ion channel. PLoS Biol 2010; 8:e1000315. [PMID: 20208975 PMCID: PMC2826373 DOI: 10.1371/journal.pbio.1000315] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 01/19/2010] [Indexed: 01/20/2023] Open
Abstract
The voltage sensitivity of voltage-gated cation channels is primarily attributed to conformational changes of a four transmembrane segment voltage-sensing domain, conserved across many levels of biological complexity. We have identified a remarkable point mutation that confers significant voltage dependence to Kir6.2, a ligand-gated channel that lacks any canonical voltage-sensing domain. Similar to voltage-dependent Kv channels, the Kir6.2[L157E] mutant exhibits time-dependent activation upon membrane depolarization, resulting in an outwardly rectifying current-voltage relationship. This voltage dependence is convergent with the intrinsic ligand-dependent gating mechanisms of Kir6.2, since increasing the membrane PIP2 content saturates Po and eliminates voltage dependence, whereas voltage activation is more dramatic when channel Po is reduced by application of ATP or poly-lysine. These experiments thus demonstrate an inherent voltage dependence of gating in a "ligand-gated" K+ channel, and thereby provide a new view of voltage-dependent gating mechanisms in ion channels. Most interestingly, the voltage- and ligand-dependent gating of Kir6.2[L157E] is highly sensitive to intracellular [K+], indicating an interaction between ion permeation and gating. While these two key features of channel function are classically dealt with separately, the results provide a framework for understanding their interaction, which is likely to be a general, if latent, feature of the superfamily of cation channels.
Collapse
Affiliation(s)
- Harley T. Kurata
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada
- * E-mail: (HTK); (CGN)
| | - Markus Rapedius
- Institute of Physiology II, Friedrich Schiller University, Jena, Germany
| | - Marc J. Kleinman
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Investigation of Membrane Excitability Disorders (CIMED), Washington University School of Medicine, St. Louis, Missouri, United States of America
| | | | - Colin G. Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Investigation of Membrane Excitability Disorders (CIMED), Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: (HTK); (CGN)
| |
Collapse
|
179
|
Malkia A, Pertusa M, Fernández-Ballester G, Ferrer-Montiel A, Viana F. Differential role of the menthol-binding residue Y745 in the antagonism of thermally gated TRPM8 channels. Mol Pain 2009; 5:62. [PMID: 19886999 PMCID: PMC2778643 DOI: 10.1186/1744-8069-5-62] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 11/03/2009] [Indexed: 11/10/2022] Open
Abstract
Background TRPM8 is a non-selective cation channel that belongs to the melastatin subfamily of the transient receptor potential (TRP) ion channels. TRPM8 is activated by voltage, cold and cooling compounds such as menthol. Despite its essential role for cold temperature sensing in mammals, the pharmacology of TRPM8 is still in its infancy. Recently, tyrosine 745 (Y745) was identified as a critical residue for menthol sensitivity of the channel. In this report, we study the effect of mutating this residue on the action of several known TRPM8 antagonists: BCTC, capsazepine, SKF96365, and clotrimazole as well as two new inhibitor candidates, econazole and imidazole. Results We show that Y745 at the menthol binding site is critical for inhibition mediated by SKF96365 of cold- and voltage-activated TRPM8 currents. In contrast, the inhibition by other antagonists was unaffected by the mutation (BCTC) or only partially reduced (capsazepine, clotrimazole, econazole), suggesting that additional binding sites exist on the TRPM8 channel from where the inhibitors exert their negative modulation. Indeed, a molecular docking model implies that menthol and SKF96365 interact readily with Y745, while BCTC is unable to bind to this residue. Conclusion In summary, we identify structural elements on the TRPM8 channel that are critical for the action of channel antagonists, providing valuable information for the future design of new, specific modulator compounds.
Collapse
Affiliation(s)
- Annika Malkia
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550 San Juan de Alicante, Spain.
| | | | | | | | | |
Collapse
|
180
|
|
181
|
Transient receptor potential (TRP) cation channels. Br J Pharmacol 2009. [DOI: 10.1111/j.1476-5381.2009.00503_16.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
182
|
Kruse M, Schulze-Bahr E, Corfield V, Beckmann A, Stallmeyer B, Kurtbay G, Ohmert I, Schulze-Bahr E, Brink P, Pongs O. Impaired endocytosis of the ion channel TRPM4 is associated with human progressive familial heart block type I. J Clin Invest 2009; 119:2737-44. [PMID: 19726882 DOI: 10.1172/jci38292] [Citation(s) in RCA: 241] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 06/10/2009] [Indexed: 01/20/2023] Open
Abstract
Progressive familial heart block type I (PFHBI) is a progressive cardiac bundle branch disease in the His-Purkinje system that exhibits autosomal-dominant inheritance. In 3 branches of a large South African Afrikaner pedigree with an autosomal-dominant form of PFHBI, we identified the mutation c.19G-->A in the transient receptor potential cation channel, subfamily M, member 4 gene (TRPM4) at chromosomal locus 19q13.3. This mutation predicted the amino acid substitution p.E7K in the TRPM4 amino terminus. TRPM4 encodes a Ca2+-activated nonselective cation (CAN) channel that belongs to the transient receptor potential melastatin ion channel family. Quantitative analysis of TRPM4 mRNA content in human cardiac tissue showed the highest expression level in Purkinje fibers. Cellular expression studies showed that the c.19G-->A missense mutation attenuated deSUMOylation of the TRPM4 channel. The resulting constitutive SUMOylation of the mutant TRPM4 channel impaired endocytosis and led to elevated TRPM4 channel density at the cell surface. Our data therefore revealed a gain-of-function mechanism underlying this type of familial heart block.
Collapse
Affiliation(s)
- Martin Kruse
- Institut für Neurale Signalverarbeitung, Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Shimizu T, Janssens A, Voets T, Nilius B. Regulation of the murine TRPP3 channel by voltage, pH, and changes in cell volume. Pflugers Arch 2008; 457:795-807. [PMID: 18663466 DOI: 10.1007/s00424-008-0558-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 07/08/2008] [Accepted: 07/10/2008] [Indexed: 01/10/2023]
Abstract
Transient receptor potential (TRP) polycystin 3 (TRPP3) is a member of the TRP superfamily of cation channels. Murine TRPP3 has been reported to form an acid-activated cation channel on the plasma membrane when coexpressed with the polycystin 1-like protein 3 (PKD1L3); however, the function and biophysical properties of TRPP3-dependent channels have not yet been characterized in detail. Here we show that overexpression of murine TRPP3 channel in HEK293 cells, without coexpression of PDK1-like proteins, leads to robust channel activity. These channels exhibit a high single-channel conductance of 184 pS at negative potentials, are Ca2+-permeable, and relatively nonselective between cations. Whole-cell experiments showed a characteristic form of voltage-dependent gating of TRPP3 channels, whereby repolarization after depolarization caused large transient inward TRPP3 tail currents. Moreover, we found that TRPP3 activity was increased upon cell swelling and by alkalization. Taken together, our results demonstrate that TRPP3, on its own, can act as a voltage-dependent, pH- and volume-sensitive plasma membrane cation channel.
Collapse
Affiliation(s)
- Takahiro Shimizu
- Department of Molecular Cell Biology, Laboratory of Ion Channel Research, Katholieke Universiteit Leuven, Campus Gasthuisberg, Herestraat 49, Bus 802, B-3000, Leuven, Belgium
| | | | | | | |
Collapse
|
184
|
Sharif-Naeini R, Ciura S, Bourque CW. TRPV1 gene required for thermosensory transduction and anticipatory secretion from vasopressin neurons during hyperthermia. Neuron 2008; 58:179-85. [PMID: 18439403 DOI: 10.1016/j.neuron.2008.02.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 12/22/2007] [Accepted: 02/13/2008] [Indexed: 11/27/2022]
Abstract
Increases in core body temperature promote thermoregulatory cooling by stimulating sweat production and preemptive renal water reabsorption through the release of vasopressin (VP, antidiuretic hormone). The mechanism by which the hypothalamus orchestrates this anticipatory VP release during hyperthermia is unknown but has been linked to a central thermosensory mechanism. Here, we report that thermal stimuli spanning core body temperatures activate a calcium-permeable, ruthenium red- and SB366791-sensitive nonselective cation conductance in hypothalamic VP neurons. This response is associated with a depolarizing receptor potential and an increase in action potential firing rate, indicating that these neurons are intrinsically thermosensitive. The thermosensitivity of VP neurons isolated from trpv1 knockout (Trpv1(-/-)) mice was significantly lower than that of wild-type counterparts. Moreover, Trpv1(-/-) mice showed an impaired VP response to hyperthermia in vivo. Channels encoded by the trpv1 gene thus confer thermosensitivity in central VP neurons and contribute to the thermal control of VP release in vivo.
Collapse
Affiliation(s)
- Reza Sharif-Naeini
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC, Canada
| | | | | |
Collapse
|
185
|
Pedersen SF, Owsianik G, Nilius B. TRP channels: an overview. Cell Calcium 2008; 38:233-52. [PMID: 16098585 DOI: 10.1016/j.ceca.2005.06.028] [Citation(s) in RCA: 559] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/28/2005] [Indexed: 12/12/2022]
Abstract
The TRP ("transient receptor potential") family of ion channels now comprises more than 30 cation channels, most of which are permeable for Ca2+, and some also for Mg2+. On the basis of sequence homology, the TRP family can be divided in seven main subfamilies: the TRPC ('Canonical') family, the TRPV ('Vanilloid') family, the TRPM ('Melastatin') family, the TRPP ('Polycystin') family, the TRPML ('Mucolipin') family, the TRPA ('Ankyrin') family, and the TRPN ('NOMPC') family. The cloning and characterization of members of this cation channel family has exploded during recent years, leading to a plethora of data on the roles of TRPs in a variety of tissues and species, including mammals, insects, and yeast. The present review summarizes the most pertinent recent evidence regarding the structural and functional properties of TRP channels, focusing on the regulation and physiology of mammalian TRPs.
Collapse
Affiliation(s)
- Stine Falsig Pedersen
- Department of Biochemistry, Institute for Molecular Biology and Physiology, University of Copenhagen, Denmark
| | | | | |
Collapse
|
186
|
Xiao R, Tang J, Wang C, Colton CK, Tian J, Zhu MX. Calcium plays a central role in the sensitization of TRPV3 channel to repetitive stimulations. J Biol Chem 2008; 283:6162-74. [PMID: 18178557 PMCID: PMC2287377 DOI: 10.1074/jbc.m706535200] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transient receptor potential channels are involved in sensing chemical and physical changes inside and outside of cells. TRPV3 is highly expressed in skin keratinocytes, where it forms a nonselective cation channel activated by hot temperatures in the innocuous and noxious range. The channel has also been implicated in flavor sensation in oral and nasal cavities as well as being a molecular target of some allergens and skin sensitizers. TRPV3 is unique in that its activity is sensitized upon repetitive stimulations. Here we investigated the role of calcium ions in the sensitization of TRPV3 to repetitive stimulations. We show that the sensitization is accompanied by a decrease of Ca(2+)-dependent channel inhibition mediated by calmodulin acting at an N-terminal site (amino acids 108-130) and by an acidic residue (Asp(641)) at the pore loop of TRPV3. These sites also contribute to the voltage dependence of TRPV3. During sensitization, the channel displayed a gradual shift of the voltage dependence to more negative potentials as well as uncoupling from voltage sensing. The initial response to ligand stimulation was increased and sensitization to repetitive stimulations was decreased by increasing the intracellular Ca(2+)-buffering strength, inhibiting calmodulin, or disrupting the calmodulin-binding site. Mutation of Asp(641) to Asn abolished the high affinity extracellular Ca(2+)-mediated inhibition and greatly facilitated the activation of TRPV3. We conclude that Ca(2+) inhibits TRPV3 from both the extracellular and intracellular sides. The inhibition is sequentially reduced, appearing as sensitization to repetitive stimulations.
Collapse
Affiliation(s)
- Rui Xiao
- Department of Neuroscience and Center for Molecular Neurobiology, The Ohio State University, Columbus, Ohio 43210
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210
| | - Jisen Tang
- Department of Neuroscience and Center for Molecular Neurobiology, The Ohio State University, Columbus, Ohio 43210
| | - Chunbo Wang
- Department of Neuroscience and Center for Molecular Neurobiology, The Ohio State University, Columbus, Ohio 43210
| | - Craig K. Colton
- Department of Neuroscience and Center for Molecular Neurobiology, The Ohio State University, Columbus, Ohio 43210
| | - Jinbin Tian
- Department of Neuroscience and Center for Molecular Neurobiology, The Ohio State University, Columbus, Ohio 43210
| | - Michael X. Zhu
- Department of Neuroscience and Center for Molecular Neurobiology, The Ohio State University, Columbus, Ohio 43210
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
187
|
Yarishkin OV, Hwang EM, Park JY, Kang D, Han J, Hong SG. Endogenous TRPM4-like channel in Chinese hamster ovary (CHO) cells. Biochem Biophys Res Commun 2008; 369:712-7. [PMID: 18307979 DOI: 10.1016/j.bbrc.2008.02.081] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 02/20/2008] [Indexed: 11/17/2022]
Abstract
Chinese hamster ovary (CHO) cells used in many transfection studies have been found to endogenously express channels permeable to monovalent cations, but not to divalent cations. In the presence of intracellular Ca(2+), 23-pS channel with a linear current-voltage (I-V) relationship could be frequently observed in inside-out patches but not in cell-attached patches. The open probability was voltage-dependent, which is higher at positive potentials. The channel was dose-dependently activated by relatively high level of Ca(2+) (EC(50)=1.04+/-0.08 mM), and sensitively inhibited by 100 microM ATP, ADP, AMP, and 1mM spermine. However, ruthenium red (2 microM) had no effect. Reverse transcript polymerase chain reaction (RT-PCR) supported the presence of mRNA encoding TRPM4b channel protein. Western blot assay finally confirmed the presence of this channel protein in membrane fraction of CHO cells. These results provide evidence that CHO cells express an endogenous TRPM4b-like channel, and thereby can be used as a tool to study de novo regulation/modulation of TRPM4 channel.
Collapse
Affiliation(s)
- Oleg V Yarishkin
- Department of Physiology, Institute of Health Sciences, and Medical Research Center for Neural Dysfunction, Gyeongsang National University School of Medicine, 90 Chilam, Jinju 660-751, Republic of Korea
| | | | | | | | | | | |
Collapse
|
188
|
Abstract
BACKGROUND AND PURPOSE TRPM4 and TRPM5 are calcium-activated non-selective cation channels with almost identical characteristics. TRPM4 is detected in several tissues including heart, kidney, brainstem, cerebral artery and immune system whereas TRPM5 expression is more restricted. Determination of their roles in physiological processes requires specific pharmacological tools. TRPM4 is inhibited by glibenclamide, a modulator of ATP binding cassette proteins (ABC transporters), such as the cystic fibrosis transmembrane conductance regulator (CFTR). We took advantage of this similarity to investigate the effect of hydroxytricyclic compounds shown to modulate ABC transporters, on TRPM4 and TRPM5. EXPERIMENTAL APPROACH Experiments were conducted using HEK-293 cells permanently transfected to express human TRPM4 or TRPM5. Currents were recorded using the whole-cell and inside-out variants of the patch-clamp technique. KEY RESULTS The CFTR channel activator benzo[c]quinolizinium MPB-104 inhibited TRPM4 current with an IC(50) in the range of 2 x 10(-5) M, with no effect on single-channel conductance. In addition, 9-phenanthrol, lacking the chemical groups necessary for CFTR activation, also reversibly inhibited TRPM4 with a similar IC(50). Channel inhibition was voltage independent. The IC(50) determined in the whole-cell and inside-out experiments were similar, suggesting a direct effect of the molecule. However, 9-phenanthrol was ineffective on TRPM5, the most closely related channel within the TRP protein family. CONCLUSIONS AND IMPLICATIONS We identify 9-phenanthrol as a TRPM4 inhibitor, without effects on TRPM5. It could be valuable in investigating the physiological functions of TRPM4, as distinct from those of TRPM5.
Collapse
|
189
|
Park JY, Hwang EM, Yarishkin O, Seo JH, Kim E, Yoo J, Yi GS, Kim DG, Park N, Ha CM, La JH, Kang D, Han J, Oh U, Hong SG. TRPM4b channel suppresses store-operated Ca2+ entry by a novel protein-protein interaction with the TRPC3 channel. Biochem Biophys Res Commun 2008; 368:677-83. [PMID: 18262493 DOI: 10.1016/j.bbrc.2008.01.153] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 01/26/2008] [Indexed: 11/18/2022]
Abstract
We identified human TRPC3 protein by yeast two-hybrid screening of a human brain cDNA library with human TRPM4b as a bait. Immunoprecipitation and confocal microscopic analyses confirmed the protein-protein interaction between TRPM4b and TRPC3, and these two TRPs were found to be highly colocalized at the plasma membrane of HEK293T cells. Overexpression of TRPM4b suppressed TRPC3-mediated whole cell currents by more than 90% compared to those in TRPC3-expressed HEK293T cells. Furthermore, HEK293T cells stably overexpressing red fluorescent protein (RFP)-TRPM4b exhibited an almost complete abolition of UTP-induced store-operated Ca(2+) entry, which is known to take place via endogenous TRPC channels in HEK293T cells. This study is believed to provide the first clear evidence that TRPM4b interacts physically with TRPC3, a member of a different TRP subfamily, and regulates negatively the channel activity, in turn suppressing store-operated Ca(2+) entry through the TRPC3 channel.
Collapse
Affiliation(s)
- Jae-Yong Park
- Department of Physiology, Institute of Health Science, and Medical Research Center for Neural Dysfunction, Gyeongsang National University School of Medicine, Jinju 660-751, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Affiliation(s)
- Michael X Zhu
- Department of Neuroscience and Center for Molecular Neurobiology, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
191
|
Ledoux J, Bonev AD, Nelson MT. Ca2+-activated K+ channels in murine endothelial cells: block by intracellular calcium and magnesium. ACTA ACUST UNITED AC 2008; 131:125-35. [PMID: 18195387 PMCID: PMC2213563 DOI: 10.1085/jgp.200709875] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The intermediate (IK(Ca)) and small (SK(Ca)) conductance Ca(2+)-sensitive K(+) channels in endothelial cells (ECs) modulate vascular diameter through regulation of EC membrane potential. However, contribution of IK(Ca) and SK(Ca) channels to membrane current and potential in native endothelial cells remains unclear. In freshly isolated endothelial cells from mouse aorta dialyzed with 3 microM free [Ca(2+)](i) and 1 mM free [Mg(2+)](i), membrane currents reversed at the potassium equilibrium potential and exhibited an inward rectification at positive membrane potentials. Blockers of large-conductance, Ca(2+)-sensitive potassium (BK(Ca)) and strong inward rectifier potassium (K(ir)) channels did not affect the membrane current. However, blockers of IK(Ca) channels, charybdotoxin (ChTX), and of SK(Ca) channels, apamin (Ap), significantly reduced the whole-cell current. Although IK(Ca) and SK(Ca) channels are intrinsically voltage independent, ChTX- and Ap-sensitive currents decreased steeply with membrane potential depolarization. Removal of intracellular Mg(2+) significantly increased these currents. Moreover, concomitant reduction of the [Ca(2+)](i) to 1 microM caused an additional increase in ChTX- and Ap-sensitive currents so that the currents exhibited theoretical outward rectification. Block of IK(Ca) and SK(Ca) channels caused a significant endothelial membrane potential depolarization (approximately 11 mV) and decrease in [Ca(2+)](i) in mesenteric arteries in the absence of an agonist. These results indicate that [Ca(2+)](i) can both activate and block IK(Ca) and SK(Ca) channels in endothelial cells, and that these channels regulate the resting membrane potential and intracellular calcium in native endothelium.
Collapse
Affiliation(s)
- Jonathan Ledoux
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington 05405, USA
| | | | | |
Collapse
|
192
|
TRP channels and mechanosensory transduction: insights into the arterial myogenic response. Pflugers Arch 2008; 456:529-40. [PMID: 18183414 DOI: 10.1007/s00424-007-0432-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 12/04/2007] [Accepted: 12/10/2007] [Indexed: 12/19/2022]
Abstract
Mechano-gated ion channels are implicated in a variety of key physiological functions ranging from touch sensitivity to arterial pressure regulation. Seminal work in prokaryotes and invertebrates provided strong evidence for the role of specific ion channels in volume regulation, touch sensitivity, or hearing, specifically the mechanosensitive channel subunits of large and small conductances (MscL and MscS), the mechanosensory channel subunits (MEC) and the transient receptor potential channel subunits (TRP). In mammals, recent studies further indicate that members of the TRP channel family may also be considered as possible candidate mechanosensors responding to either tension, flow, or changes in cell volume. However, contradictory results have challenged whether these TRP channels, including TRPC1 and TRPC6, are directly activated by mechanical stimulation. In the present review, we will focus on the mechanosensory function of TRP channels, discuss whether a direct or indirect mechanism is at play, and focus on the proposed role for these channels in the arterial myogenic response to changes in intraluminal pressure.
Collapse
|
193
|
|
194
|
|
195
|
|
196
|
Sasse P, Zhang J, Cleemann L, Morad M, Hescheler J, Fleischmann BK. Intracellular Ca2+ oscillations, a potential pacemaking mechanism in early embryonic heart cells. ACTA ACUST UNITED AC 2007; 130:133-44. [PMID: 17664344 PMCID: PMC2151640 DOI: 10.1085/jgp.200609575] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Early (E9.5-E11.5) embryonic heart cells beat spontaneously, even though the adult pacemaking mechanisms are not yet fully established. Here we show that in isolated murine early embryonic cardiomyocytes periodic oscillations of cytosolic Ca(2+) occur and that these induce contractions. The Ca(2+) oscillations originate from the sarcoplasmic reticulum and are dependent on the IP(3) and the ryanodine receptor. The Ca(2+) oscillations activate the Na(+)-Ca(2+) exchanger, giving rise to subthreshold depolarizations of the membrane potential and/or action potentials. Although early embryonic heart cells are voltage-independent Ca(2+) oscillators, the generation of action potentials provides synchronization of the electrical and mechanical signals. Thus, Ca(2+) oscillations pace early embryonic heart cells and the ensuing activation of the Na(+)-Ca(2+) exchanger evokes small membrane depolarizations or action potentials.
Collapse
Affiliation(s)
- Philipp Sasse
- Institute of Physiology l, Life and Brain Center, University of Bonn, Bonn 53105, Germany
| | | | | | | | | | | |
Collapse
|
197
|
Teruyama R, Armstrong WE. Calcium-dependent fast depolarizing afterpotentials in vasopressin neurons in the rat supraoptic nucleus. J Neurophysiol 2007; 98:2612-21. [PMID: 17715195 DOI: 10.1152/jn.00599.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oxytocin (OT) and vasopressin (VP) synthesizing magnocellular cells (MNCs) in the supraoptic nucleus (SON) display distinct firing patterns during the physiological demands for these hormones. Depolarizing afterpotentials (DAPs) in these neurons are involved in controlling phasic bursting in VP neurons. Our whole cell recordings demonstrated a Cs(+)-resistant fast DAP (fDAP; decay tau = approximately 200 ms), which has not been previously reported, in addition to the well-known Cs(+)-sensitive slower DAP (sDAP; decay tau = approximately 2 s). Immunoidentification of recorded neurons revealed that all VP neurons, but only 20% of OT neurons, expressed the fDAP. The activation of the fDAP required influx of Ca(2+) through voltage-gated Ca(2+) channels as it was strongly suppressed in Ca(2+)-free extracellular solution or by bath application of Cd(2+). Additionally, the current underlying the fDAP (I(fDAP)) is a Ca(2+)-activated current rather than a Ca(2+) current per se as it was abolished by strongly buffering intracellular Ca(2+) with BAPTA. The I-V relationship of the I(fDAP) was linear at potentials less than -60 mV but showed pronounced outward rectification near -50 mV. I(fDAP) is sensitive to changes in extracellular Na(+) and K(+) but not Cl(-). A blocker of Ca(2+)-activated nonselective cation (CAN) currents, flufenamic acid, blocked the fDAP, suggesting the involvement of a CAN current in the generation of fDAP in VP neurons. We speculate that the two DAPs have different roles in generating after burst discharges and could play important roles in determining the distinct firing properties of VP neurons in the SON neurons.
Collapse
Affiliation(s)
- Ryoichi Teruyama
- Department of Anatomy and Neurobiology, University of Tennessee, Health Science Center, TN 38163, USA.
| | | |
Collapse
|
198
|
Simard JM, Tarasov KV, Gerzanich V. Non-selective cation channels, transient receptor potential channels and ischemic stroke. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1772:947-57. [PMID: 17446049 PMCID: PMC1986778 DOI: 10.1016/j.bbadis.2007.03.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 03/13/2007] [Accepted: 03/13/2007] [Indexed: 02/02/2023]
Abstract
Several pathways to neural cell death are involved in ischemic stroke, and all require monovalent or divalent cation influx, implicating non-selective cation (NC) channels. NC channels are also likely to be involved in the dysfunction of vascular endothelial cells that leads to formation of edema following cerebral ischemia. Two newly described NC channels have emerged as potential participants in ischemic stroke, the acid sensing ion channel (ASIC), and the sulfonylurea receptor-1 (SUR1)-regulated NC(Ca-ATP) channel. Non-specific blockers of NC channels, including pinokalant (LOE 908 MS) and rimonabant (SR141716A), have beneficial effects in rodent models of ischemic stroke. Evidence is accumulating that NC channels formed by members of the transient receptor potential (TRP) family are also up-regulated in ischemic stroke and may play a direct role in calcium-mediated neuronal death. The nascent field of NC channels, including TRP channels, in ischemic stroke is poised to provide novel mechanistic insights and therapeutic strategies for this often devastating human condition.
Collapse
Affiliation(s)
- J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
199
|
Guinamard R, Bois P. Involvement of transient receptor potential proteins in cardiac hypertrophy. Biochim Biophys Acta Mol Basis Dis 2007; 1772:885-94. [PMID: 17382525 DOI: 10.1016/j.bbadis.2007.02.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 02/15/2007] [Accepted: 02/17/2007] [Indexed: 01/31/2023]
Abstract
Cardiac hypertrophy is an adaptive process that occurs in response to increased physical stress on the heart. Hypertrophy, which may be induced by hypertension among other factors, is characterized by an increase in left ventricular mass and an associated increase in force production capacity. However, as sustained cardiac hypertrophy may lead to heart failure and sudden death, an understanding of the molecular processes involved in both the onset and consequences of hypertrophy is of significant importance. Calcium is a key player in the process underlying the development of cardiac hypertrophy. Recently, several Transient Receptor Potential proteins (TRPs), including calcium-permeable and calcium-regulated ion channels, have been shown to be related to various aspects of cardiac hypertrophy. TRPs are implicated in the development of cardiac hypertrophy (TRPC1, TRPC3, TRPC6), the electrophysiological perturbations associated with hypertrophy (TRPM4) and the progression to heart failure (TRPC7). This review describes the major characteristics of cardiac hypertrophy and focuses on the roles of TRPs in the physiological processes underlying hypertrophy.
Collapse
Affiliation(s)
- Romain Guinamard
- Institut de Physiologie et Biologie Cellulaires, CNRS UMR 6187, Université de Poitiers, 40 av. du recteur Pineau, 86022 Poitiers Cedex, France.
| | | |
Collapse
|
200
|
Crowder EA, Saha MS, Pace RW, Zhang H, Prestwich GD, Del Negro CA. Phosphatidylinositol 4,5-bisphosphate regulates inspiratory burst activity in the neonatal mouse preBötzinger complex. J Physiol 2007; 582:1047-58. [PMID: 17599963 PMCID: PMC2075248 DOI: 10.1113/jphysiol.2007.134577] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neurons of the preBötzinger complex (preBötC) form local excitatory networks and synchronously discharge bursts of action potentials during the inspiratory phase of respiratory network activity. Synaptic input periodically evokes a Ca(2+)-activated non-specific cation current (I(CAN)) postsynaptically to generate 10-30 mV transient depolarizations, dubbed inspiratory drive potentials, which underlie inspiratory bursts. The molecular identity of I(CAN) and its regulation by intracellular signalling mechanisms during inspiratory drive potential generation remains unknown. Here we show that mRNAs coding for two members of the transient receptor potential (TRP) family of ion channels, namely TRPM4 and TRPM5, are expressed within the preBötC region of neonatal mice. Hypothesizing that the phosphoinositides maintaining TRPM4 and TRPM5 channel sensitivity to Ca(2+) may similarly influence I(CAN) and thus regulate inspiratory drive potentials, we manipulated intracellular phosphatidylinositol 4,5-bisphosphate (PIP(2)) and measured its effect on preBötC neurons in the context of ongoing respiratory-related rhythms in slice preparations. Consistent with the involvement of TRPM4 and TRPM5, excess PIP(2) augmented the inspiratory drive potential and diminution of PIP(2) reduced it; sensitivity to flufenamic acid (FFA) suggested that these effects of PIP(2) were I(CAN) mediated. Inositol 1,4,5-trisphosphate (IP(3)), the product of PIP(2) hydrolysis, ordinarily causes IP(3) receptor-mediated I(CAN) activation. Simultaneously increasing PIP(2) while blocking IP(3) receptors intracellularly counteracted the reduction in the inspiratory drive potential that normally resulted from IP(3) receptor blockade. We propose that PIP(2) protects I(CAN) from rundown by interacting directly with underlying ion channels and preventing desensitization, which may enhance the robustness of respiratory rhythm.
Collapse
Affiliation(s)
- Erin A Crowder
- Department of Applied Science, McGlothlin-Street Hall, The College of William and Mary, Williamsburg, VA 23187-8795, USA
| | | | | | | | | | | |
Collapse
|