151
|
Shagieva GS, Alieva IB, Chaponnier C, Dugina VB. Divergent Impact of Actin Isoforms on Division of Epithelial Cells. BIOCHEMISTRY (MOSCOW) 2021; 85:1072-1063. [PMID: 33050852 DOI: 10.1134/s0006297920090072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We investigated distribution and functions of beta- and gamma-cytoplasmic actins (CYAs) at different stages of non-neoplastic epithelial cell division using laser scanning microscopy (LSM). Here, we demonstrated that beta- and gamma-CYAs are spatially segregated in the early prophase, anaphase, telophase, and cytokinesis. Small interfering RNA (siRNA) experiments revealed that in both beta-CYA- and gamma-CYA-depleted cells, the number of cells was significantly reduced compared with the siRNA controls. Beta-CYA depletion resulted in an enlargement of the cell area in metaphase and high percentage of polynuclear cells compared with the siRNA control, indicating a potential failure of cytokinesis. Gamma-CYA depletion resulted in a reduced percentage of mitotic cells. We also observed the interdependence between the actin isoforms and the microtubule system in mitosis: (i) a decrease in the gamma-CYA led to impaired mitotic spindle organization; (ii) suppression of tubulin polymerization caused impaired beta-CYA reorganization, as incubation with colcemid blocked the transfer of short beta-actin polymers from the basal to the cortical compartment. We conclude that both actin isoforms are essential for proper cell division, but each isoform has its own specific functional role in this process.
Collapse
Affiliation(s)
- G S Shagieva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - I B Alieva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia. .,Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical Biological Agency, Moscow, 119435, Russia
| | - C Chaponnier
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, 1205, Switzerland
| | - V B Dugina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
152
|
Akinaga K, Azumi Y, Mogi K, Toyoizumi R. Stage-dependent sequential organization of nascent smooth muscle cells and its implications for the gut coiling morphogenesis in Xenopus larva. ZOOLOGY 2021; 146:125905. [PMID: 33631602 DOI: 10.1016/j.zool.2021.125905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/25/2021] [Accepted: 02/07/2021] [Indexed: 10/22/2022]
Abstract
In vertebrates, gut coiling proceeds left-right asymmetrically during expansion of the gastrointestinal tract with highly organized muscular structures facilitating peristalsis. In this report, we explored the mechanisms of larval gut coiling morphogenesis relevant to its nascent smooth muscle cells using highly transparent Xenopus early larvae. First, to visualize the dynamics of intestinal smooth muscle cells, whole-mount specimens were immunostained with anti-smooth muscle-specific actin (SM-actin) antibody. We found that the nascent gut of Xenopus early larvae gradually expands the SM-actin-positive region in a stage-dependent manner. Transverse orientation of smooth muscle cells was first established, and next, the cellular longitudinal orientation along the gut axis was followed to make a meshwork of the contractile cells. Finally, anisotropic torsion by the smooth muscle cells was generated in the center of gut coiling, suggesting that twisting force might be involved in the late phase of coiling morphogenesis of the gut. Administration of S-(-)-Blebbistatin to attenuate the actomyosin contraction in vivo resulted in cancellation of coiling of the gut. Development of decapitation embryos, trunk 'torso' explants, and gut-only explants revealed that initial coiling of the gut proceeds without interactions with the other parts of the body including the central nervous system. We newly developed an in vitro model to assess the gut coiling morphogenesis, indicating that coiling pattern of the nascent Xenopus gut is partially gut-autonomous. Using this gut explant culture technique, inhibition of actomyosin contraction was performed by administrating either actin polymerization inhibitor, myosin light chain kinase inhibitor, or calmodulin antagonist. All of these reagents decreased the extent of gut coiling morphogenesis in vitro. Taken together, these results suggest that the contraction force generated by actomyosin-rich intestinal smooth muscle cells during larval stages is essential for the normal coiling morphogenesis of this muscular tubular organ.
Collapse
Affiliation(s)
- Kaoru Akinaga
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Tsuchiya 2946, Hiratsuka City, Kanagawa, 259-1293, Japan
| | - Yoshitaka Azumi
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Tsuchiya 2946, Hiratsuka City, Kanagawa, 259-1293, Japan; Research Institute for Integrated Science, Kanagawa University, Japan
| | - Kazue Mogi
- Research Institute for Integrated Science, Kanagawa University, Japan
| | - Ryuji Toyoizumi
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Tsuchiya 2946, Hiratsuka City, Kanagawa, 259-1293, Japan; Research Institute for Integrated Science, Kanagawa University, Japan.
| |
Collapse
|
153
|
FITC-Dextran Release from Cell-Embedded Fibrin Hydrogels. Biomolecules 2021; 11:biom11020337. [PMID: 33672379 PMCID: PMC7926394 DOI: 10.3390/biom11020337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
Fibrin hydrogel is a central biological material in tissue engineering and drug delivery applications. As such, fibrin is typically combined with cells and biomolecules targeted to the regenerated tissue. Previous studies have analyzed the release of different molecules from fibrin hydrogels; however, the effect of embedded cells on the release profile has yet to be quantitatively explored. This study focused on the release of Fluorescein isothiocyanate (FITC)-dextran (FD) 250 kDa from fibrin hydrogels, populated with different concentrations of fibroblast or endothelial cells, during a 48-h observation period. The addition of cells to fibrin gels decreased the overall release by a small percentage (by 7-15% for fibroblasts and 6-8% for endothelial cells) relative to acellular gels. The release profile was shown to be modulated by various cellular activities, including gel degradation and physical obstruction to diffusion. Cell-generated forces and matrix deformation (i.e., densification and fiber alignment) were not found to significantly influence the release profiles. This knowledge is expected to improve fibrin integration in tissue engineering and drug delivery applications by enabling predictions and ways to modulate the release profiles of various biomolecules.
Collapse
|
154
|
Abstract
Since the discovery of muscle in the 19th century, myosins as molecular motors have been extensively studied. However, in the last decade, a new functional super-relaxed (SRX) state of myosin has been discovered, which has a 10-fold slower ATP turnover rate than the already-known non-actin-bound, disordered relaxed (DRX) state. These two states are in dynamic equilibrium under resting muscle conditions and are thought to be significant contributors to adaptive thermogenesis in skeletal muscle and can act as a reserve pool that may be recruited when there is a sustained demand for increased cardiac muscle power. This report provides an evolutionary perspective of how striated muscle contraction is regulated by modulating this myosin DRX↔SRX state equilibrium. We further discuss this equilibrium with respect to different physiological and pathophysiological perturbations, including insults causing hypertrophic cardiomyopathy, and small-molecule effectors that modulate muscle contractility in diseased pathology.
Collapse
Affiliation(s)
- Suman Nag
- Department of Biology, MyoKardia IncBrisbaneUnited States
| | - Darshan V Trivedi
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
155
|
Singh K, Kim AB, Morgan KG. Non-muscle myosin II regulates aortic stiffness through effects on specific focal adhesion proteins and the non-muscle cortical cytoskeleton. J Cell Mol Med 2021; 25:2471-2483. [PMID: 33547870 PMCID: PMC7933926 DOI: 10.1111/jcmm.16170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
Non‐muscle myosin II (NMII) plays a role in many fundamental cellular processes including cell adhesion, migration, and cytokinesis. However, its role in mammalian vascular function is not well understood. Here, we investigated the function of NMII in the biomechanical and signalling properties of mouse aorta. We found that blebbistatin, an inhibitor of NMII, decreases agonist‐induced aortic stress and stiffness in a dose‐dependent manner. We also specifically demonstrate that in freshly isolated, contractile, aortic smooth muscle cells, the non‐muscle myosin IIA (NMIIA) isoform is associated with contractile filaments in the core of the cell as well as those in the non‐muscle cell cortex. However, the non‐muscle myosin IIB (NMIIB) isoform is excluded from the cell cortex and colocalizes only with contractile filaments. Furthermore, both siRNA knockdown of NMIIA and NMIIB isoforms in the differentiated A7r5 smooth muscle cell line and blebbistatin‐mediated inhibition of NM myosin II suppress agonist‐activated increases in phosphorylation of the focal adhesion proteins FAK Y925 and paxillin Y118. Thus, we show in the present study, for the first time that NMII regulates aortic stiffness and stress and that this regulation is mediated through the tension‐dependent phosphorylation of the focal adhesion proteins FAK and paxillin.
Collapse
Affiliation(s)
- Kuldeep Singh
- Department of Health Sciences, Boston University, Boston, MA, USA.,CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Anne B Kim
- Department of Health Sciences, Boston University, Boston, MA, USA
| | | |
Collapse
|
156
|
Manipulation of Focal Adhesion Signaling by Pathogenic Microbes. Int J Mol Sci 2021; 22:ijms22031358. [PMID: 33572997 PMCID: PMC7866387 DOI: 10.3390/ijms22031358] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/22/2022] Open
Abstract
Focal adhesions (FAs) serve as dynamic signaling hubs within the cell. They connect intracellular actin to the extracellular matrix (ECM) and respond to environmental cues. In doing so, these structures facilitate important processes such as cell-ECM adhesion and migration. Pathogenic microbes often modify the host cell actin cytoskeleton in their pursuit of an ideal replicative niche or during invasion to facilitate uptake. As actin-interfacing structures, FA dynamics are also intimately tied to actin cytoskeletal organization. Indeed, exploitation of FAs is another avenue by which pathogenic microbes ensure their uptake, survival and dissemination. This is often achieved through the secretion of effector proteins which target specific protein components within the FA. Molecular mimicry of the leucine-aspartic acid (LD) motif or vinculin-binding domains (VBDs) commonly found within FA proteins is a common microbial strategy. Other effectors may induce post-translational modifications to FA proteins through the regulation of phosphorylation sites or proteolytic cleavage. In this review, we present an overview of the regulatory mechanisms governing host cell FAs, and provide examples of how pathogenic microbes have evolved to co-opt them to their own advantage. Recent technological advances pose exciting opportunities for delving deeper into the mechanistic details by which pathogenic microbes modify FAs.
Collapse
|
157
|
Lehtimäki JI, Rajakylä EK, Tojkander S, Lappalainen P. Generation of stress fibers through myosin-driven reorganization of the actin cortex. eLife 2021; 10:60710. [PMID: 33506761 PMCID: PMC7877910 DOI: 10.7554/elife.60710] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 01/27/2021] [Indexed: 12/26/2022] Open
Abstract
Contractile actomyosin bundles, stress fibers, govern key cellular processes including migration, adhesion, and mechanosensing. Stress fibers are thus critical for developmental morphogenesis. The most prominent actomyosin bundles, ventral stress fibers, are generated through coalescence of pre-existing stress fiber precursors. However, whether stress fibers can assemble through other mechanisms has remained elusive. We report that stress fibers can also form without requirement of pre-existing actomyosin bundles. These structures, which we named cortical stress fibers, are embedded in the cell cortex and assemble preferentially underneath the nucleus. In this process, non-muscle myosin II pulses orchestrate the reorganization of cortical actin meshwork into regular bundles, which promote reinforcement of nascent focal adhesions, and subsequent stabilization of the cortical stress fibers. These results identify a new mechanism by which stress fibers can be generated de novo from the actin cortex and establish role for stochastic myosin pulses in the assembly of functional actomyosin bundles.
Collapse
Affiliation(s)
- Jaakko I Lehtimäki
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Eeva Kaisa Rajakylä
- Section of Pathology, Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Sari Tojkander
- Section of Pathology, Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Pekka Lappalainen
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
158
|
Targeting the cytoskeleton against metastatic dissemination. Cancer Metastasis Rev 2021; 40:89-140. [PMID: 33471283 DOI: 10.1007/s10555-020-09936-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
Cancer is a pathology characterized by a loss or a perturbation of a number of typical features of normal cell behaviour. Indeed, the acquisition of an inappropriate migratory and invasive phenotype has been reported to be one of the hallmarks of cancer. The cytoskeleton is a complex dynamic network of highly ordered interlinking filaments playing a key role in the control of fundamental cellular processes, like cell shape maintenance, motility, division and intracellular transport. Moreover, deregulation of this complex machinery contributes to cancer progression and malignancy, enabling cells to acquire an invasive and metastatic phenotype. Metastasis accounts for 90% of death from patients affected by solid tumours, while an efficient prevention and suppression of metastatic disease still remains elusive. This results in the lack of effective therapeutic options currently available for patients with advanced disease. In this context, the cytoskeleton with its regulatory and structural proteins emerges as a novel and highly effective target to be exploited for a substantial therapeutic effort toward the development of specific anti-metastatic drugs. Here we provide an overview of the role of cytoskeleton components and interacting proteins in cancer metastasis with a special focus on small molecule compounds interfering with the actin cytoskeleton organization and function. The emerging involvement of microtubules and intermediate filaments in cancer metastasis is also reviewed.
Collapse
|
159
|
Gyimesi M, Rauscher AÁ, Suthar SK, Hamow KÁ, Oravecz K, Lőrincz I, Borhegyi Z, Déri MT, Kiss ÁF, Monostory K, Szabó PT, Nag S, Tomasic I, Krans J, Tierney PJ, Kovács M, Kornya L, Málnási-Csizmadia A. Improved Inhibitory and Absorption, Distribution, Metabolism, Excretion, and Toxicology (ADMET) Properties of Blebbistatin Derivatives Indicate That Blebbistatin Scaffold Is Ideal for drug Development Targeting Myosin-2. J Pharmacol Exp Ther 2021; 376:358-373. [PMID: 33468641 DOI: 10.1124/jpet.120.000167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/07/2020] [Indexed: 11/22/2022] Open
Abstract
Blebbistatin, para-nitroblebbistatin (NBleb), and para-aminoblebbistatin (AmBleb) are highly useful tool compounds as they selectively inhibit the ATPase activity of myosin-2 family proteins. Despite the medical importance of the myosin-2 family as drug targets, chemical optimization has not yet provided a promising lead for drug development because previous structure-activity-relationship studies were limited to a single myosin-2 isoform. Here we evaluated the potential of blebbistatin scaffold for drug development and found that D-ring substitutions can fine-tune isoform specificity, absorption-distribution-metabolism-excretion, and toxicological properties. We defined the inhibitory properties of NBleb and AmBleb on seven different myosin-2 isoforms, which revealed an unexpected potential for isoform specific inhibition. We also found that NBleb metabolizes six times slower than blebbistatin and AmBleb in rats, whereas AmBleb metabolizes two times slower than blebbistatin and NBleb in human, and that AmBleb accumulates in muscle tissues. Moreover, mutagenicity was also greatly reduced in case of AmBleb. These results demonstrate that small substitutions have beneficial functional and pharmacological consequences, which highlight the potential of the blebbistatin scaffold for drug development targeting myosin-2 family proteins and delineate a route for defining the chemical properties of further derivatives to be developed. SIGNIFICANCE STATEMENT: Small substitutions on the blebbistatin scaffold have beneficial functional and pharmacological consequences, highlighting their potential in drug development targeting myosin-2 family proteins.
Collapse
Affiliation(s)
- Máté Gyimesi
- Department of Biochemistry, Eötvös Loránd University, Budapest and Martonvásár, Hungary (M.G., K.O., I.L., Z.B., M.K., A.M.-C.); MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary (M.G., M.K., A.M.-C.); Motorharma Ltd., Budapest, Hungary (A.Á.R.); Printnet Ltd., Budapest, Hungary (S.K.S., I.L.); Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary (K.Á.H.); Metabolic Drug Interactions Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary (M.T.D., Á.F.K., K.M.); Research Centre for Natural Sciences, Instrumentation Center, MS Metabolomic Research Laboratory, Budapest, Hungary (P.T.S.); Department of Biology, MyoKardia Inc., Brisbane, California (S.N., I.T.); Department of Neuroscience, Western New England University, Springfield, Massachusetts (J.K., P.J.T.); and Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary (L.K.)
| | - Anna Á Rauscher
- Department of Biochemistry, Eötvös Loránd University, Budapest and Martonvásár, Hungary (M.G., K.O., I.L., Z.B., M.K., A.M.-C.); MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary (M.G., M.K., A.M.-C.); Motorharma Ltd., Budapest, Hungary (A.Á.R.); Printnet Ltd., Budapest, Hungary (S.K.S., I.L.); Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary (K.Á.H.); Metabolic Drug Interactions Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary (M.T.D., Á.F.K., K.M.); Research Centre for Natural Sciences, Instrumentation Center, MS Metabolomic Research Laboratory, Budapest, Hungary (P.T.S.); Department of Biology, MyoKardia Inc., Brisbane, California (S.N., I.T.); Department of Neuroscience, Western New England University, Springfield, Massachusetts (J.K., P.J.T.); and Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary (L.K.)
| | - Sharad Kumar Suthar
- Department of Biochemistry, Eötvös Loránd University, Budapest and Martonvásár, Hungary (M.G., K.O., I.L., Z.B., M.K., A.M.-C.); MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary (M.G., M.K., A.M.-C.); Motorharma Ltd., Budapest, Hungary (A.Á.R.); Printnet Ltd., Budapest, Hungary (S.K.S., I.L.); Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary (K.Á.H.); Metabolic Drug Interactions Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary (M.T.D., Á.F.K., K.M.); Research Centre for Natural Sciences, Instrumentation Center, MS Metabolomic Research Laboratory, Budapest, Hungary (P.T.S.); Department of Biology, MyoKardia Inc., Brisbane, California (S.N., I.T.); Department of Neuroscience, Western New England University, Springfield, Massachusetts (J.K., P.J.T.); and Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary (L.K.)
| | - Kamirán Á Hamow
- Department of Biochemistry, Eötvös Loránd University, Budapest and Martonvásár, Hungary (M.G., K.O., I.L., Z.B., M.K., A.M.-C.); MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary (M.G., M.K., A.M.-C.); Motorharma Ltd., Budapest, Hungary (A.Á.R.); Printnet Ltd., Budapest, Hungary (S.K.S., I.L.); Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary (K.Á.H.); Metabolic Drug Interactions Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary (M.T.D., Á.F.K., K.M.); Research Centre for Natural Sciences, Instrumentation Center, MS Metabolomic Research Laboratory, Budapest, Hungary (P.T.S.); Department of Biology, MyoKardia Inc., Brisbane, California (S.N., I.T.); Department of Neuroscience, Western New England University, Springfield, Massachusetts (J.K., P.J.T.); and Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary (L.K.)
| | - Kinga Oravecz
- Department of Biochemistry, Eötvös Loránd University, Budapest and Martonvásár, Hungary (M.G., K.O., I.L., Z.B., M.K., A.M.-C.); MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary (M.G., M.K., A.M.-C.); Motorharma Ltd., Budapest, Hungary (A.Á.R.); Printnet Ltd., Budapest, Hungary (S.K.S., I.L.); Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary (K.Á.H.); Metabolic Drug Interactions Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary (M.T.D., Á.F.K., K.M.); Research Centre for Natural Sciences, Instrumentation Center, MS Metabolomic Research Laboratory, Budapest, Hungary (P.T.S.); Department of Biology, MyoKardia Inc., Brisbane, California (S.N., I.T.); Department of Neuroscience, Western New England University, Springfield, Massachusetts (J.K., P.J.T.); and Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary (L.K.)
| | - István Lőrincz
- Department of Biochemistry, Eötvös Loránd University, Budapest and Martonvásár, Hungary (M.G., K.O., I.L., Z.B., M.K., A.M.-C.); MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary (M.G., M.K., A.M.-C.); Motorharma Ltd., Budapest, Hungary (A.Á.R.); Printnet Ltd., Budapest, Hungary (S.K.S., I.L.); Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary (K.Á.H.); Metabolic Drug Interactions Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary (M.T.D., Á.F.K., K.M.); Research Centre for Natural Sciences, Instrumentation Center, MS Metabolomic Research Laboratory, Budapest, Hungary (P.T.S.); Department of Biology, MyoKardia Inc., Brisbane, California (S.N., I.T.); Department of Neuroscience, Western New England University, Springfield, Massachusetts (J.K., P.J.T.); and Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary (L.K.)
| | - Zsolt Borhegyi
- Department of Biochemistry, Eötvös Loránd University, Budapest and Martonvásár, Hungary (M.G., K.O., I.L., Z.B., M.K., A.M.-C.); MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary (M.G., M.K., A.M.-C.); Motorharma Ltd., Budapest, Hungary (A.Á.R.); Printnet Ltd., Budapest, Hungary (S.K.S., I.L.); Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary (K.Á.H.); Metabolic Drug Interactions Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary (M.T.D., Á.F.K., K.M.); Research Centre for Natural Sciences, Instrumentation Center, MS Metabolomic Research Laboratory, Budapest, Hungary (P.T.S.); Department of Biology, MyoKardia Inc., Brisbane, California (S.N., I.T.); Department of Neuroscience, Western New England University, Springfield, Massachusetts (J.K., P.J.T.); and Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary (L.K.)
| | - Máté T Déri
- Department of Biochemistry, Eötvös Loránd University, Budapest and Martonvásár, Hungary (M.G., K.O., I.L., Z.B., M.K., A.M.-C.); MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary (M.G., M.K., A.M.-C.); Motorharma Ltd., Budapest, Hungary (A.Á.R.); Printnet Ltd., Budapest, Hungary (S.K.S., I.L.); Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary (K.Á.H.); Metabolic Drug Interactions Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary (M.T.D., Á.F.K., K.M.); Research Centre for Natural Sciences, Instrumentation Center, MS Metabolomic Research Laboratory, Budapest, Hungary (P.T.S.); Department of Biology, MyoKardia Inc., Brisbane, California (S.N., I.T.); Department of Neuroscience, Western New England University, Springfield, Massachusetts (J.K., P.J.T.); and Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary (L.K.)
| | - Ádám F Kiss
- Department of Biochemistry, Eötvös Loránd University, Budapest and Martonvásár, Hungary (M.G., K.O., I.L., Z.B., M.K., A.M.-C.); MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary (M.G., M.K., A.M.-C.); Motorharma Ltd., Budapest, Hungary (A.Á.R.); Printnet Ltd., Budapest, Hungary (S.K.S., I.L.); Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary (K.Á.H.); Metabolic Drug Interactions Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary (M.T.D., Á.F.K., K.M.); Research Centre for Natural Sciences, Instrumentation Center, MS Metabolomic Research Laboratory, Budapest, Hungary (P.T.S.); Department of Biology, MyoKardia Inc., Brisbane, California (S.N., I.T.); Department of Neuroscience, Western New England University, Springfield, Massachusetts (J.K., P.J.T.); and Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary (L.K.)
| | - Katalin Monostory
- Department of Biochemistry, Eötvös Loránd University, Budapest and Martonvásár, Hungary (M.G., K.O., I.L., Z.B., M.K., A.M.-C.); MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary (M.G., M.K., A.M.-C.); Motorharma Ltd., Budapest, Hungary (A.Á.R.); Printnet Ltd., Budapest, Hungary (S.K.S., I.L.); Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary (K.Á.H.); Metabolic Drug Interactions Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary (M.T.D., Á.F.K., K.M.); Research Centre for Natural Sciences, Instrumentation Center, MS Metabolomic Research Laboratory, Budapest, Hungary (P.T.S.); Department of Biology, MyoKardia Inc., Brisbane, California (S.N., I.T.); Department of Neuroscience, Western New England University, Springfield, Massachusetts (J.K., P.J.T.); and Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary (L.K.)
| | - Pál Tamás Szabó
- Department of Biochemistry, Eötvös Loránd University, Budapest and Martonvásár, Hungary (M.G., K.O., I.L., Z.B., M.K., A.M.-C.); MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary (M.G., M.K., A.M.-C.); Motorharma Ltd., Budapest, Hungary (A.Á.R.); Printnet Ltd., Budapest, Hungary (S.K.S., I.L.); Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary (K.Á.H.); Metabolic Drug Interactions Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary (M.T.D., Á.F.K., K.M.); Research Centre for Natural Sciences, Instrumentation Center, MS Metabolomic Research Laboratory, Budapest, Hungary (P.T.S.); Department of Biology, MyoKardia Inc., Brisbane, California (S.N., I.T.); Department of Neuroscience, Western New England University, Springfield, Massachusetts (J.K., P.J.T.); and Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary (L.K.)
| | - Suman Nag
- Department of Biochemistry, Eötvös Loránd University, Budapest and Martonvásár, Hungary (M.G., K.O., I.L., Z.B., M.K., A.M.-C.); MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary (M.G., M.K., A.M.-C.); Motorharma Ltd., Budapest, Hungary (A.Á.R.); Printnet Ltd., Budapest, Hungary (S.K.S., I.L.); Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary (K.Á.H.); Metabolic Drug Interactions Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary (M.T.D., Á.F.K., K.M.); Research Centre for Natural Sciences, Instrumentation Center, MS Metabolomic Research Laboratory, Budapest, Hungary (P.T.S.); Department of Biology, MyoKardia Inc., Brisbane, California (S.N., I.T.); Department of Neuroscience, Western New England University, Springfield, Massachusetts (J.K., P.J.T.); and Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary (L.K.)
| | - Ivan Tomasic
- Department of Biochemistry, Eötvös Loránd University, Budapest and Martonvásár, Hungary (M.G., K.O., I.L., Z.B., M.K., A.M.-C.); MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary (M.G., M.K., A.M.-C.); Motorharma Ltd., Budapest, Hungary (A.Á.R.); Printnet Ltd., Budapest, Hungary (S.K.S., I.L.); Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary (K.Á.H.); Metabolic Drug Interactions Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary (M.T.D., Á.F.K., K.M.); Research Centre for Natural Sciences, Instrumentation Center, MS Metabolomic Research Laboratory, Budapest, Hungary (P.T.S.); Department of Biology, MyoKardia Inc., Brisbane, California (S.N., I.T.); Department of Neuroscience, Western New England University, Springfield, Massachusetts (J.K., P.J.T.); and Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary (L.K.)
| | - Jacob Krans
- Department of Biochemistry, Eötvös Loránd University, Budapest and Martonvásár, Hungary (M.G., K.O., I.L., Z.B., M.K., A.M.-C.); MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary (M.G., M.K., A.M.-C.); Motorharma Ltd., Budapest, Hungary (A.Á.R.); Printnet Ltd., Budapest, Hungary (S.K.S., I.L.); Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary (K.Á.H.); Metabolic Drug Interactions Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary (M.T.D., Á.F.K., K.M.); Research Centre for Natural Sciences, Instrumentation Center, MS Metabolomic Research Laboratory, Budapest, Hungary (P.T.S.); Department of Biology, MyoKardia Inc., Brisbane, California (S.N., I.T.); Department of Neuroscience, Western New England University, Springfield, Massachusetts (J.K., P.J.T.); and Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary (L.K.)
| | - Patrick J Tierney
- Department of Biochemistry, Eötvös Loránd University, Budapest and Martonvásár, Hungary (M.G., K.O., I.L., Z.B., M.K., A.M.-C.); MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary (M.G., M.K., A.M.-C.); Motorharma Ltd., Budapest, Hungary (A.Á.R.); Printnet Ltd., Budapest, Hungary (S.K.S., I.L.); Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary (K.Á.H.); Metabolic Drug Interactions Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary (M.T.D., Á.F.K., K.M.); Research Centre for Natural Sciences, Instrumentation Center, MS Metabolomic Research Laboratory, Budapest, Hungary (P.T.S.); Department of Biology, MyoKardia Inc., Brisbane, California (S.N., I.T.); Department of Neuroscience, Western New England University, Springfield, Massachusetts (J.K., P.J.T.); and Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary (L.K.)
| | - Mihály Kovács
- Department of Biochemistry, Eötvös Loránd University, Budapest and Martonvásár, Hungary (M.G., K.O., I.L., Z.B., M.K., A.M.-C.); MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary (M.G., M.K., A.M.-C.); Motorharma Ltd., Budapest, Hungary (A.Á.R.); Printnet Ltd., Budapest, Hungary (S.K.S., I.L.); Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary (K.Á.H.); Metabolic Drug Interactions Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary (M.T.D., Á.F.K., K.M.); Research Centre for Natural Sciences, Instrumentation Center, MS Metabolomic Research Laboratory, Budapest, Hungary (P.T.S.); Department of Biology, MyoKardia Inc., Brisbane, California (S.N., I.T.); Department of Neuroscience, Western New England University, Springfield, Massachusetts (J.K., P.J.T.); and Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary (L.K.)
| | - László Kornya
- Department of Biochemistry, Eötvös Loránd University, Budapest and Martonvásár, Hungary (M.G., K.O., I.L., Z.B., M.K., A.M.-C.); MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary (M.G., M.K., A.M.-C.); Motorharma Ltd., Budapest, Hungary (A.Á.R.); Printnet Ltd., Budapest, Hungary (S.K.S., I.L.); Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary (K.Á.H.); Metabolic Drug Interactions Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary (M.T.D., Á.F.K., K.M.); Research Centre for Natural Sciences, Instrumentation Center, MS Metabolomic Research Laboratory, Budapest, Hungary (P.T.S.); Department of Biology, MyoKardia Inc., Brisbane, California (S.N., I.T.); Department of Neuroscience, Western New England University, Springfield, Massachusetts (J.K., P.J.T.); and Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary (L.K.)
| | - András Málnási-Csizmadia
- Department of Biochemistry, Eötvös Loránd University, Budapest and Martonvásár, Hungary (M.G., K.O., I.L., Z.B., M.K., A.M.-C.); MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary (M.G., M.K., A.M.-C.); Motorharma Ltd., Budapest, Hungary (A.Á.R.); Printnet Ltd., Budapest, Hungary (S.K.S., I.L.); Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary (K.Á.H.); Metabolic Drug Interactions Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary (M.T.D., Á.F.K., K.M.); Research Centre for Natural Sciences, Instrumentation Center, MS Metabolomic Research Laboratory, Budapest, Hungary (P.T.S.); Department of Biology, MyoKardia Inc., Brisbane, California (S.N., I.T.); Department of Neuroscience, Western New England University, Springfield, Massachusetts (J.K., P.J.T.); and Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary (L.K.)
| |
Collapse
|
160
|
Alers-Velazquez R, Jacques S, Muller C, Boldt J, Schoelz J, Leisner S. Cauliflower mosaic virus P6 inclusion body formation: A dynamic and intricate process. Virology 2021; 553:9-22. [PMID: 33197754 DOI: 10.1016/j.virol.2020.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/13/2020] [Accepted: 10/18/2020] [Indexed: 11/17/2022]
Abstract
During an infection, Cauliflower mosaic virus (CaMV) forms inclusion bodies (IBs) mainly composed of viral protein P6, where viral activities occur. Because viral processes occur in IBs, understanding the mechanisms by which they are formed is crucial. FL-P6 expressed in N. benthamiana leaves formed IBs of a variety of shapes and sizes. Small IBs were dynamic, undergoing fusion/dissociation events. Co-expression of actin-binding polypeptides with FL-P6 altered IB size distribution and inhibited movement. This suggests that IB movement is required for fusion and growth. A P6 deletion mutant was discovered that formed a single large IB per cell, which suggests it exhibited altered fusion/dissociation dynamics. Myosin-inhibiting drugs did not affect small IB movement, while those inhibiting actin polymerization did. Large IBs colocalized with components of the aggresome pathway, while small ones generally did not. This suggests a possible involvement of the aggresome pathway in large IB formation.
Collapse
Affiliation(s)
- Roberto Alers-Velazquez
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Mail Stop 601, Toledo, OH, 43606, USA
| | - Sarah Jacques
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Mail Stop 601, Toledo, OH, 43606, USA
| | - Clare Muller
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Mail Stop 601, Toledo, OH, 43606, USA
| | - Jennifer Boldt
- USDA-Agricultural Research Service, Application Technology Research Unit, 2801 West Bancroft Street, Mail Stop 604, Toledo, OH, 43606, USA
| | - James Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Scott Leisner
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Mail Stop 601, Toledo, OH, 43606, USA.
| |
Collapse
|
161
|
Richter S, Martin R, Gutzeit HO, Knölker HJ. In vitro and in vivo effects of inhibitors on actin and myosin. Bioorg Med Chem 2021; 30:115928. [PMID: 33341499 DOI: 10.1016/j.bmc.2020.115928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 11/18/2022]
Abstract
The interaction of actin and myosin is essential for cell migration. We have identified kaempferol and pentahalogenated pseudilins as efficient inhibitors of migration of MDA-MB-231 breast adenocarcinoma cells. The compounds were studied with respect to possible effects on myosin-2-ATPase activity. The pentahalogenated pseudilins inhibited the enzyme activity in vitro. Flavonoids showed no effect on enzyme activity. The polymerization dynamics of actin was measured to test whether the integrity of F-actin is essential for the migration of MDA-MB-231 cells. Quercetin and kaempferol depolymerized F-actin with similar efficiencies as found for the pentahalogenated pseudilins, whereas epigallocatechin showed the weakest effect. As the inhibitory effect on cell migration may be caused by a toxic effect, we have performed a cytotoxicity test and, furthermore, investigated the influence of the test compounds on cardiac function in eleutheroembryos of medaka (Oryzias latipes). Compared with the pentahalogenated pseudilins, the cytotoxic and cardiotoxic effects of flavonoids on medaka embryos were found to be moderate.
Collapse
Affiliation(s)
- Sabine Richter
- Faculty of Biology, TU Dresden, Zellescher Weg 20b, 01217 Dresden, Germany
| | - René Martin
- Faculty of Chemistry, TU Dresden, Bergstrasse 66, 01069 Dresden, Germany
| | - Herwig O Gutzeit
- Faculty of Biology, TU Dresden, Zellescher Weg 20b, 01217 Dresden, Germany.
| | | |
Collapse
|
162
|
Ušaj M, Moretto L, Vemula V, Salhotra A, Månsson A. Single molecule turnover of fluorescent ATP by myosin and actomyosin unveil elusive enzymatic mechanisms. Commun Biol 2021; 4:64. [PMID: 33441912 PMCID: PMC7806905 DOI: 10.1038/s42003-020-01574-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 12/04/2020] [Indexed: 01/10/2023] Open
Abstract
Benefits of single molecule studies of biomolecules include the need for minimal amounts of material and the potential to reveal phenomena hidden in ensembles. However, results from recent single molecule studies of fluorescent ATP turnover by myosin are difficult to reconcile with ensemble studies. We found that key reasons are complexities due to dye photophysics and fluorescent contaminants. After eliminating these, through surface cleaning and use of triple state quenchers and redox agents, the distributions of ATP binding dwell times on myosin are best described by 2 to 3 exponential processes, with and without actin, and with and without the inhibitor para-aminoblebbistatin. Two processes are attributable to ATP turnover by myosin and actomyosin respectively, whereas the remaining process (rate constant 0.2–0.5 s−1) is consistent with non-specific ATP binding to myosin, possibly accelerating ATP transport to the active site. Finally, our study of actin-activated myosin ATP turnover without sliding between actin and myosin reveals heterogeneity in the ATP turnover kinetics consistent with models of isometric contraction. With fluorescence based-TIRF microspectroscopy, Ušaj et al. unveil mechanistic details about the ATP turnover rates by myosin and actomyosin with enzymatic reaction pathways that were not possible to obtain from ensemble studies. This study could be important to the field of molecular motors.
Collapse
Affiliation(s)
- Marko Ušaj
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE391 82, Kalmar, Sweden.
| | - Luisa Moretto
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE391 82, Kalmar, Sweden
| | - Venukumar Vemula
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE391 82, Kalmar, Sweden
| | - Aseem Salhotra
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE391 82, Kalmar, Sweden
| | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE391 82, Kalmar, Sweden.
| |
Collapse
|
163
|
Sun X, Zhu M, Chen X, Jiang X. MYH9 Inhibition Suppresses TGF-β1-Stimulated Lung Fibroblast-to-Myofibroblast Differentiation. Front Pharmacol 2021; 11:573524. [PMID: 33519439 PMCID: PMC7838063 DOI: 10.3389/fphar.2020.573524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/05/2020] [Indexed: 12/04/2022] Open
Abstract
Previous cDNA microarray results showed that MYH9 gene expression levels are increased in TGF-β1-stimulated lung fibroblast. Recently, our proteomic results revealed that the expression levels of MYH9 protein are notably upregulated in lung tissues of bleomycin-treated rats. However, whether MYH9 plays a critical role in the differentiation of fibroblast remains unclear. Herein, we demonstrated that TGF-β1 increased MYH9 expression, and siRNA-mediated knockdown of MYH9 and pharmacological inhibition of MYH9 ATPase activity remarkably repressed TGF-β1-induced lung fibroblast-to-myofibroblast differentiation. TGF-β1-stimulated MYH9 induction might be via ALK5/Smad2/3 pathway but not through noncanonical pathways, including p38 mitogen-activated kinase, and Akt pathways in lung fibroblasts. Our results showed that MYH9 inhibition suppressed TGF-β1-induced lung fibroblast-to-myofibroblast differentiation, which provides valuable information for illuminating the pathological mechanisms of lung fibroblast differentiation, and gives clues for finding new potential target for pulmonary fibrosis treatment.
Collapse
Affiliation(s)
- Xionghua Sun
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Mei Zhu
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xihua Chen
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xiaogang Jiang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
164
|
Physiological Basis of Smut Infectivity in the Early Stages of Sugar Cane Colonization. J Fungi (Basel) 2021; 7:jof7010044. [PMID: 33445484 PMCID: PMC7827540 DOI: 10.3390/jof7010044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 12/11/2022] Open
Abstract
Sugar cane smut (Sporisorium scitamineum) interactions have been traditionally considered from the plant’s point of view: How can resistant sugar cane plants defend themselves against smut disease? Resistant plants induce several defensive mechanisms that oppose fungal attacks. Herein, an overall view of Sporisorium scitamineum’s mechanisms of infection and the defense mechanisms of plants are presented. Quorum sensing effects and a continuous reorganization of cytoskeletal components, where actin, myosin, and microtubules are required to work together, seem to be some of the keys to a successful attack.
Collapse
|
165
|
Schneider F, Colin-York H, Fritzsche M. Quantitative Bio-Imaging Tools to Dissect the Interplay of Membrane and Cytoskeletal Actin Dynamics in Immune Cells. Front Immunol 2021; 11:612542. [PMID: 33505401 PMCID: PMC7829180 DOI: 10.3389/fimmu.2020.612542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Cellular function is reliant on the dynamic interplay between the plasma membrane and the actin cytoskeleton. This critical relationship is of particular importance in immune cells, where both the cytoskeleton and the plasma membrane work in concert to organize and potentiate immune signaling events. Despite their importance, there remains a critical gap in understanding how these respective dynamics are coupled, and how this coupling in turn may influence immune cell function from the bottom up. In this review, we highlight recent optical technologies that could provide strategies to investigate the simultaneous dynamics of both the cytoskeleton and membrane as well as their interplay, focusing on current and future applications in immune cells. We provide a guide of the spatio-temporal scale of each technique as well as highlighting novel probes and labels that have the potential to provide insights into membrane and cytoskeletal dynamics. The quantitative biophysical tools presented here provide a new and exciting route to uncover the relationship between plasma membrane and cytoskeletal dynamics that underlies immune cell function.
Collapse
Affiliation(s)
- Falk Schneider
- Medical Research Council (MRC) Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Huw Colin-York
- Medical Research Council (MRC) Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Marco Fritzsche
- Medical Research Council (MRC) Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, United Kingdom
- Rosalind Franklin Institute, Harwell Campus, Didcot, United Kingdom
| |
Collapse
|
166
|
Habicht J, Mooneyham A, Hoshino A, Shetty M, Zhang X, Emmings E, Yang Q, Coombes C, Gardner MK, Bazzaro M. UNC-45A breaks the microtubule lattice independently of its effects on non-muscle myosin II. J Cell Sci 2021; 134:jcs.248815. [PMID: 33262310 DOI: 10.1242/jcs.248815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
In invertebrates, UNC-45 regulates myosin stability and functions. Vertebrates have two distinct isoforms of the protein: UNC-45B, expressed in muscle cells only, and UNC-45A, expressed in all cells and implicated in regulating both non-muscle myosin II (NMII)- and microtubule (MT)-associated functions. Here, we show that, in vitro and in human and rat cells, UNC-45A binds to the MT lattice, leading to MT bending, breakage and depolymerization. Furthermore, we show that UNC-45A destabilizes MTs independent of its C-terminal NMII-binding domain and even in the presence of the NMII inhibitor blebbistatin. These findings identified UNC-45A as a novel type of MT-severing protein with a dual non-mutually exclusive role in regulating NMII activity and MT stability. Because many human diseases, from cancer to neurodegenerative diseases, are caused by or associated with deregulation of MT stability, our findings have profound implications in the biology of MTs, as well as the biology of human diseases and possible therapeutic implications for their treatment.This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Juri Habicht
- Bradenburg Medical School - Theodor Fontane, Neuruppin 16816, Germany.,Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ashley Mooneyham
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Asumi Hoshino
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mihir Shetty
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xiaonan Zhang
- Bradenburg Medical School - Theodor Fontane, Neuruppin 16816, Germany.,Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Edith Emmings
- Bradenburg Medical School - Theodor Fontane, Neuruppin 16816, Germany
| | - Qing Yang
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Courtney Coombes
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Melissa K Gardner
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
167
|
Grewe J, Schwarz US. Mechanosensitive self-assembly of myosin II minifilaments. Phys Rev E 2021; 101:022402. [PMID: 32168598 DOI: 10.1103/physreve.101.022402] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/15/2020] [Indexed: 01/23/2023]
Abstract
Self-assembly and force generation are two central processes in biological systems that usually are considered in separation. However, the signals that activate nonmuscle myosin II molecular motors simultaneously lead to self-assembly into myosin II minifilaments as well as progression of the motor heads through the cross-bridge cycle. Here we investigate theoretically the possible effects of coupling these two processes. Our assembly model, which builds on a consensus architecture of the minifilament, predicts a critical aggregation concentration at which the assembly kinetics slows down dramatically. The combined model predicts that increasing actin filament concentration and force both lead to a decrease in the critical aggregation concentration. We suggest that due to these effects, myosin II minifilaments in a filamentous context might be in a critical state that reacts faster to varying conditions than in solution. We finally compare our model to experiments by simulating fluorescence recovery after photobleaching.
Collapse
Affiliation(s)
- Justin Grewe
- Institute for Theoretical Physics and Bioquant, Heidelberg University, Heidelberg, Germany
| | - Ulrich S Schwarz
- Institute for Theoretical Physics and Bioquant, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
168
|
Zhang Y, Zegers MMP, Nagelkerke A, Rowan AE, Span PN, Kouwer PHJ. Tunable Hybrid Matrices Drive Epithelial Morphogenesis and YAP Translocation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003380. [PMID: 33511022 PMCID: PMC7816720 DOI: 10.1002/advs.202003380] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/27/2020] [Indexed: 06/10/2023]
Abstract
Morphogenesis is a tightly-regulated developmental process by which tissues acquire the morphology that is critical to their function. For example, epithelial cells exhibit different 2D and 3D morphologies, induced by distinct biochemical and biophysical cues from their environment. In this work, novel hybrid matrices composed of a Matrigel and synthetic oligo(ethylene glycol)-grafted polyisocyanides (PICs) hydrogels are used to form a highly tailorable environment. Through precise control of the stiffness and cell-matrix interactions, while keeping other properties constant, a broad range of morphologies induced in Madin-Darby Canine Kidney (MDCK) cells is observed. At relatively low matrix stiffness, a large morphological shift from round hollow cysts to 2D monolayers is observed, without concomitant translocation of the mechanotransduction protein Yes-associated protein (YAP). At higher stiffness levels and enhanced cell-matrix interactions, tuned by controlling the adhesive peptide density on PIC, the hybrid hydrogels induce a flattened cell morphology with simultaneous YAP translocation, suggesting activation. In 3D cultures, the latter matrices lead to the formation of tubular structures. Thus, mixed synthetic and natural gels, such as the hybrids presented here, are ideal platforms to dissect how external physical factors can be used to regulate morphogenesis in MDCK model system, and in the future, in more complex environments.
Collapse
Affiliation(s)
- Ying Zhang
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation OncologyRadboud University Medical CenterGeert Grooteplein 32Nijmegen6525 GAThe Netherlands
| | - Mirjam M. P. Zegers
- Department of Cell Biology, Radboud Institute for Molecular SciencesRadboud University Medical CenterGeert Grooteplein 28Nijmegen6525 GAThe Netherlands
| | - Anika Nagelkerke
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation OncologyRadboud University Medical CenterGeert Grooteplein 32Nijmegen6525 GAThe Netherlands
- Present address:
Pharmaceutical Analysis, Groningen Research Institute of PharmacyUniversity of GroningenP.O. Box 196, XB20Groningen9700 ADThe Netherlands
| | - Alan E. Rowan
- Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQLD4072Australia
| | - Paul N. Span
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation OncologyRadboud University Medical CenterGeert Grooteplein 32Nijmegen6525 GAThe Netherlands
| | - Paul H. J. Kouwer
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| |
Collapse
|
169
|
Rindom E, Herskind J, Blaauw B, Overgaard K, Vissing K, Paoli FV. Concomitant excitation and tension development are required for myocellular gene expression and protein synthesis in rat skeletal muscle. Acta Physiol (Oxf) 2021; 231:e13540. [PMID: 32687678 DOI: 10.1111/apha.13540] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023]
Abstract
AIM Loading-induced tension development is often assumed to constitute an independent cue to initiate muscle protein synthesis following resistance exercise. However, with traditional physiological models of resistance exercise, changes in loading-induced tension development also reflect changes in neural activation patterns, and direct evidence for a mechanosensitive mechanism is therefore limited. Here, we sought to examine the importance of excitation and tension development per se on initiation of signalling, gene transcription and protein synthesis in rat skeletal muscle. METHODS Isolated rat extensor digitorum longus muscles were allocated to the following interventions: (a) Excitation-induced eccentric contractions (ECC); (b) Passive stretching without excitation (PAS); (c) Excitation with inhibition of contractions (STIM + IMA ) and; (d) Excitation in combination with both inhibition of contractions and PAS (STIM + IMA + PAS). Assessment of transcriptional and translational signalling, gene transcription and acute muscle protein synthesis was compared in stimulated vs contra-lateral non-stimulated control muscle. RESULTS Protein synthesis increased solely in muscles subjected to a combination of excitation and tension development (ECC and STIM + IMA + PAS). The same pattern was true for p38 mitogen-activated protein kinase signalling for gene transcription as well as for gene transcription of immediate early genes FOS and JUN. In contrast, mechanistic target of rapamycin Complex 1 signalling for translation initiation increased in all muscles subjected to increased tension development (ECC and STIM + IMA + PAS as well as PAS). CONCLUSIONS The current study suggests that exercise-induced increases in protein synthesis as well as transcriptional signalling is dependent on the concomitant effect of excitation and tension development, whereas signalling for translation initiation is only dependent of tension development per se.
Collapse
Affiliation(s)
- Emil Rindom
- Department of Biomedicine Aarhus University Aarhus Denmark
| | - Jon Herskind
- Section for Sport Science Department of Public Health Aarhus University Aarhus Denmark
| | - Bert Blaauw
- Department of Biomedical Sciences University of Padova Padova Italy
| | - Kristian Overgaard
- Section for Sport Science Department of Public Health Aarhus University Aarhus Denmark
| | - Kristian Vissing
- Section for Sport Science Department of Public Health Aarhus University Aarhus Denmark
| | - Frank V. Paoli
- Department of Biomedicine Aarhus University Aarhus Denmark
| |
Collapse
|
170
|
dos Santos Á, Cook AW, Gough RE, Schilling M, Olszok N, Brown I, Wang L, Aaron J, Martin-Fernandez ML, Rehfeldt F, Toseland CP. DNA damage alters nuclear mechanics through chromatin reorganization. Nucleic Acids Res 2020; 49:340-353. [PMID: 33330932 PMCID: PMC7797048 DOI: 10.1093/nar/gkaa1202] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 12/30/2022] Open
Abstract
DNA double-strand breaks drive genomic instability. However, it remains unknown how these processes may affect the biomechanical properties of the nucleus and what role nuclear mechanics play in DNA damage and repair efficiency. Here, we have used Atomic Force Microscopy to investigate nuclear mechanical changes, arising from externally induced DNA damage. We found that nuclear stiffness is significantly reduced after cisplatin treatment, as a consequence of DNA damage signalling. This softening was linked to global chromatin decondensation, which improves molecular diffusion within the organelle. We propose that this can increase recruitment for repair factors. Interestingly, we also found that reduction of nuclear tension, through cytoskeletal relaxation, has a protective role to the cell and reduces accumulation of DNA damage. Overall, these changes protect against further genomic instability and promote DNA repair. We propose that these processes may underpin the development of drug resistance.
Collapse
Affiliation(s)
- Ália dos Santos
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| | - Alexander W Cook
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| | - Rosemarie E Gough
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| | - Martin Schilling
- University of Göttingen, 3rd Institute of Physics—Biophysics, Göttingen 37077, Germany
| | - Nora A Olszok
- University of Göttingen, 3rd Institute of Physics—Biophysics, Göttingen 37077, Germany
| | - Ian Brown
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Lin Wang
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford OX11 0QX, UK
| | - Jesse Aaron
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, VA 20147, USA
| | - Marisa L Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford OX11 0QX, UK
| | - Florian Rehfeldt
- Correspondence may also be addressed to Florian Rehfeldt. Tel: +49 921 55 2504;
| | | |
Collapse
|
171
|
Differentiated Daughter Cells Regulate Stem Cell Proliferation and Fate through Intra-tissue Tension. Cell Stem Cell 2020; 28:436-452.e5. [PMID: 33264636 DOI: 10.1016/j.stem.2020.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/30/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023]
Abstract
Basal stem cells fuel development, homeostasis, and regeneration of the epidermis. The proliferation and fate decisions of these cells are highly regulated by their microenvironment, including the basement membrane and underlying mesenchymal cells. Basal progenitors give rise to differentiated progeny that generate the epidermal barrier. Here, we present data that differentiated progeny also regulate the proliferation, differentiation, and migration of basal progenitor cells. Using two distinct mouse lines, we found that increasing contractility of differentiated cells resulted in non-cell-autonomous hyperproliferation of stem cells and prevented their commitment to a hair follicle lineage. This increased contractility also impaired movement of basal progenitors during hair placode morphogenesis and diminished migration of melanoblasts. These data suggest that intra-tissue tension regulates stem cell proliferation, fate decisions, and migration and that differentiated epidermal keratinocytes are a component of the stem cell niche that regulates development and homeostasis of the skin.
Collapse
|
172
|
Chinowsky CR, Pinette JA, Meenderink LM, Lau KS, Tyska MJ. Nonmuscle myosin-2 contractility-dependent actin turnover limits the length of epithelial microvilli. Mol Biol Cell 2020; 31:2803-2815. [PMID: 33026933 PMCID: PMC7851865 DOI: 10.1091/mbc.e20-09-0582] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Brush border microvilli enable functions that are critical for epithelial homeostasis, including solute uptake and host defense. However, the mechanisms that regulate the assembly and morphology of these protrusions are poorly understood. The parallel actin bundles that support microvilli have their pointed-end rootlets anchored in a filamentous meshwork referred to as the "terminal web." Although classic electron microscopy studies revealed complex ultrastructure, the composition and function of the terminal web remain unclear. Here we identify nonmuscle myosin-2C (NM2C) as a component of the terminal web. NM2C is found in a dense, isotropic layer of puncta across the subapical domain, which transects the rootlets of microvillar actin bundles. Puncta are separated by ∼210 nm, the expected size of filaments formed by NM2C. In intestinal organoid cultures, the terminal web NM2C network is highly dynamic and exhibits continuous remodeling. Using pharmacological and genetic perturbations in cultured intestinal epithelial cells, we found that NM2C controls the length of growing microvilli by regulating actin turnover in a manner that requires a fully active motor domain. Our findings answer a decades-old question on the function of terminal web myosin and hold broad implications for understanding apical morphogenesis in diverse epithelial systems.
Collapse
Affiliation(s)
- Colbie R Chinowsky
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Julia A Pinette
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Leslie M Meenderink
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Ken S Lau
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
173
|
Rico P, Rodrigo-Navarro A, Sánchez Pérez L, Salmeron-Sanchez M. Borax induces osteogenesis by stimulating NaBC1 transporter via activation of BMP pathway. Commun Biol 2020; 3:717. [PMID: 33247189 PMCID: PMC7695834 DOI: 10.1038/s42003-020-01449-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/03/2020] [Indexed: 12/16/2022] Open
Abstract
The intrinsic properties of mesenchymal stem cells (MSCs) make them ideal candidates for tissue engineering applications. Efforts have been made to control MSC behavior by using material systems to engineer synthetic extracellular matrices and/or include soluble factors in the media. This work proposes a simple approach based on ion transporter stimulation to determine stem cell fate that avoids the use of growth factors. Addition of borax alone, transported by the NaBC1-transporter, enhanced MSC adhesion and contractility, promoted osteogenesis and inhibited adipogenesis. Stimulated-NaBC1 promoted osteogenesis via the BMP canonical pathway (comprising Smad1/YAP nucleus translocation and osteopontin expression) through a mechanism that involves simultaneous NaBC1/BMPR1A and NaBC1/α5β1/αvβ3 co-localization. We describe an original function for NaBC1 transporter, besides controlling borate homeostasis, capable of stimulating growth factor receptors and fibronectin-binding integrins. Our results open up new biomaterial engineering approaches for biomedical applications by a cost-effective strategy that avoids the use of soluble growth factors. Rico et al. propose a simple approach based on borax stimulation of NaBC1 transporter, which enhances FN-binding integrin-dependent mesenchymal stem cell adhesion and contractility, promotes osteogenesis and inhibits adipogenesis. Osteogenic differentiation depends on activation of the BMP pathway through a mechanism that involves simultaneous co-localization of NaBC1 with FN-binding integrins and BMPR1A.
Collapse
Affiliation(s)
- Patricia Rico
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain. .,Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
| | | | - Laura Sánchez Pérez
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Manuel Salmeron-Sanchez
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain. .,Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain. .,Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, G12 8LT, UK.
| |
Collapse
|
174
|
Tarnoki-Zach J, Stockhammer P, Isai DG, Mehes E, Szeder B, Kovacs I, Bugyik E, Paku S, Berger W, Thomas SM, Neufeld Z, Dome B, Hegedus B, Czirok A. Multicellular contractility contributes to the emergence of mesothelioma nodules. Sci Rep 2020; 10:20114. [PMID: 33208866 PMCID: PMC7675981 DOI: 10.1038/s41598-020-76641-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/29/2020] [Indexed: 11/09/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) has an overall poor prognosis and unsatisfactory treatment options. MPM nodules, protruding into the pleural cavity may have growth and spreading dynamics distinct that of other solid tumors. We demonstrate that multicellular aggregates can develop spontaneously in the majority of tested MPM cell lines when cultured at high cell density. Surprisingly, the nodule-like aggregates do not arise by excessive local cell proliferation, but by myosin II-driven cell contractility. Prominent actin cables, spanning several cells, are abundant both in cultured aggregates and in MPM surgical specimens. We propose a computational model for in vitro MPM nodule development. Such a self-tensioned Maxwell fluid exhibits a pattern-forming instability that was studied by analytical tools and computer simulations. Altogether, our findings may underline a rational for targeting the actomyosin system in MPM.
Collapse
Affiliation(s)
| | - Paul Stockhammer
- Department of Thoracic Surgery, Ruhrlandklinik, University Duisburg-Essen, Essen, Germany
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Dona Greta Isai
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Elod Mehes
- Department of Biological Physics, Eotvos University, Budapest, Hungary
| | - Balint Szeder
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Ildiko Kovacs
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Edina Bugyik
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Sandor Paku
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Walter Berger
- Department of Medicine, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Sufi Mary Thomas
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Zoltan Neufeld
- School of Mathematics and Physics, University of Queensland, Brisbane, Australia
| | - Balazs Dome
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
- Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Balazs Hegedus
- Department of Thoracic Surgery, Ruhrlandklinik, University Duisburg-Essen, Essen, Germany
| | - Andras Czirok
- Department of Biological Physics, Eotvos University, Budapest, Hungary.
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
175
|
Wei Z, Schnellmann R, Pruitt HC, Gerecht S. Hydrogel Network Dynamics Regulate Vascular Morphogenesis. Cell Stem Cell 2020; 27:798-812.e6. [PMID: 32931729 PMCID: PMC7655724 DOI: 10.1016/j.stem.2020.08.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 06/08/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022]
Abstract
Matrix dynamics influence how individual cells develop into complex multicellular tissues. Here, we develop hydrogels with identical polymer components but different crosslinking capacities to enable the investigation of mechanisms underlying vascular morphogenesis. We show that dynamic (D) hydrogels increase the contractility of human endothelial colony-forming cells (hECFCs), promote the clustering of integrin β1, and promote the recruitment of vinculin, leading to the activation of focal adhesion kinase (FAK) and metalloproteinase expression. This leads to the robust assembly of vasculature and the deposition of new basement membrane. We also show that non-dynamic (N) hydrogels do not promote FAK signaling and that stiff D- and N-hydrogels are constrained for vascular morphogenesis. Furthermore, D-hydrogels promote hECFC microvessel formation and angiogenesis in vivo. Our results indicate that cell contractility mediates integrin signaling via inside-out signaling and emphasizes the importance of matrix dynamics in vascular tissue formation, thus informing future studies of vascularization and tissue engineering applications.
Collapse
Affiliation(s)
- Zhao Wei
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology, Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rahel Schnellmann
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology, Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hawley C Pruitt
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology, Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology, Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
176
|
Lopez Davila AJ, Zhu L, Fritz L, Kraft T, Chalovich JM. The Positively Charged C-Terminal Region of Human Skeletal Troponin T Retards Activation and Decreases Calcium Sensitivity. Biochemistry 2020; 59:4189-4201. [PMID: 33074652 DOI: 10.1021/acs.biochem.0c00499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Calcium binding to troponin C (TnC) activates striated muscle contraction by removing TnI (troponin I) from its inhibitory site on actin. Troponin T (TnT) links TnI with tropomyosin, causing tropomyosin to move from an inhibitory position on actin to an activating position. Positive charges within the C-terminal region of human cardiac TnT limit Ca2+ activation. We now show that the positively charged region of TnT has an even larger impact on skeletal muscle regulation. We prepared one variant of human skeletal TnT that had the C-terminal 16 residues truncated (Δ16) and another with an added C-terminal Cys residue and Ala substituted for the last 6 basic residues (251C-HAHA). Both mutants reduced (based on S1 binding kinetics) or eliminated (based on acrylodan-tropomyosin fluorescence) the first inactive state of actin at <10 nM free Ca2+. 251C-HAHA-TnT and Δ16-TnT mutants greatly increased ATPase activation at 0.2 mM Ca2+, even without high-affinity cross-bridge binding. They also shifted the force-pCa curve of muscle fibers to lower Ca2+ by 0.8-1.2 pCa units (the larger shift for 251C-HAHA-TnT). Shifts in force-pCa were maintained in the presence of para-aminoblebbistatin. The effects of modification of the C-terminal region of TnT on the kinetics of S1 binding to actin were somewhat different from those observed earlier with the cardiac analogue. In general, the C-terminal region of human skeletal TnT is critical to regulation, just as it is in the cardiac system, and is a potential target for modulating activity.
Collapse
Affiliation(s)
- Alfredo Jesus Lopez Davila
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Street 1, 103-Block 1-Ebene 03-1010, Hannover 30625, Germany
| | - Li Zhu
- Department of Biochemistry & Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina 27834, United States
| | - Leon Fritz
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Street 1, 103-Block 1-Ebene 03-1010, Hannover 30625, Germany
| | - Theresia Kraft
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Street 1, 103-Block 1-Ebene 03-1010, Hannover 30625, Germany
| | - Joseph M Chalovich
- Department of Biochemistry & Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina 27834, United States
| |
Collapse
|
177
|
Abstract
Actin is a conserved cytoskeletal protein with essential functions. Here, we review the state-of-the-art reagents, tools and methods used to probe actin biology and functions in zebrafish embryo and larvae. We also discuss specific cell types and tissues where the study of actin in zebrafish has provided new insights into its functions.
Collapse
|
178
|
Yubero ML, Kosaka PM, San Paulo Á, Malumbres M, Calleja M, Tamayo J. Effects of energy metabolism on the mechanical properties of breast cancer cells. Commun Biol 2020; 3:590. [PMID: 33082491 PMCID: PMC7576174 DOI: 10.1038/s42003-020-01330-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 09/26/2020] [Indexed: 12/29/2022] Open
Abstract
Tumorigenesis induces actin cortex remodeling, which makes cancerous cells softer. Cell deformability is largely determined by myosin-driven cortical tension and actin fiber architecture at the cell cortex. However, it is still unclear what the weight of each contribution is, and how these contributions change during cancer development. Moreover, little attention has been paid to the effect of energy metabolism on this phenomenon and its reprogramming in cancer. Here, we perform precise two-dimensional mechanical phenotyping based on power-law rheology to unveil the contributions of myosin II, actin fiber architecture and energy metabolism to the deformability of healthy (MCF-10A), noninvasive cancerous (MCF-7), and metastatic (MDA-MB-231) human breast epithelial cells. Contrary to the perception that the actin cortex is a passive structure that provides mechanical resistance to the cell, we find that this is only true when the actin cortex is activated by metabolic processes. The results show marked differences in the nature of the active processes that build up cell stiffness, namely that healthy cells use ATP-driven actin polymerization whereas metastatic cells use myosin II activity. Noninvasive cancerous cells exhibit an anomalous behavior, as their stiffness is not as affected by the lack of nutrients and ATP, suggesting that energy metabolism reprogramming is used to sustain active processes at the actin cortex.
Collapse
Affiliation(s)
- Marina L Yubero
- Bionanomechanics Lab, Instituto de Micro y Nanotecnología, IMN-CNM (CSIC), Isaac Newton 8 (PTM), E-28760, Tres Cantos, Madrid, Spain
| | - Priscila M Kosaka
- Bionanomechanics Lab, Instituto de Micro y Nanotecnología, IMN-CNM (CSIC), Isaac Newton 8 (PTM), E-28760, Tres Cantos, Madrid, Spain
| | - Álvaro San Paulo
- Bionanomechanics Lab, Instituto de Micro y Nanotecnología, IMN-CNM (CSIC), Isaac Newton 8 (PTM), E-28760, Tres Cantos, Madrid, Spain
| | - Marcos Malumbres
- Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas (CNIO), C/ Melchor Fernández Almagro, 3, E-28029, Madrid, Spain
| | - Montserrat Calleja
- Bionanomechanics Lab, Instituto de Micro y Nanotecnología, IMN-CNM (CSIC), Isaac Newton 8 (PTM), E-28760, Tres Cantos, Madrid, Spain
| | - Javier Tamayo
- Bionanomechanics Lab, Instituto de Micro y Nanotecnología, IMN-CNM (CSIC), Isaac Newton 8 (PTM), E-28760, Tres Cantos, Madrid, Spain.
| |
Collapse
|
179
|
Gyimesi M, Horváth ÁI, Túrós D, Suthar SK, Pénzes M, Kurdi C, Canon L, Kikuti C, Ruppel KM, Trivedi DV, Spudich JA, Lőrincz I, Rauscher AÁ, Kovács M, Pál E, Komoly S, Houdusse A, Málnási-Csizmadia A. Single Residue Variation in Skeletal Muscle Myosin Enables Direct and Selective Drug Targeting for Spasticity and Muscle Stiffness. Cell 2020; 183:335-346.e13. [PMID: 33035452 DOI: 10.1016/j.cell.2020.08.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/24/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022]
Abstract
Muscle spasticity after nervous system injuries and painful low back spasm affect more than 10% of global population. Current medications are of limited efficacy and cause neurological and cardiovascular side effects because they target upstream regulators of muscle contraction. Direct myosin inhibition could provide optimal muscle relaxation; however, targeting skeletal myosin is particularly challenging because of its similarity to the cardiac isoform. We identified a key residue difference between these myosin isoforms, located in the communication center of the functional regions, which allowed us to design a selective inhibitor, MPH-220. Mutagenic analysis and the atomic structure of MPH-220-bound skeletal muscle myosin confirmed the mechanism of specificity. Targeting skeletal muscle myosin by MPH-220 enabled muscle relaxation, in human and model systems, without cardiovascular side effects and improved spastic gait disorders after brain injury in a disease model. MPH-220 provides a potential nervous-system-independent option to treat spasticity and muscle stiffness.
Collapse
Affiliation(s)
- Máté Gyimesi
- MTA-ELTE Motor Pharmacology Research Group, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary; Motorpharma, Ltd., Szilágyi Erzsébet fasor 27, 1026 Budapest, Hungary.
| | - Ádám I Horváth
- MTA-ELTE Motor Pharmacology Research Group, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary
| | - Demeter Túrós
- MTA-ELTE Motor Pharmacology Research Group, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary
| | - Sharad Kumar Suthar
- MTA-ELTE Motor Pharmacology Research Group, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary; Printnet, Ltd., Kisgömb utca 25-27, 1135 Budapest, Hungary
| | - Máté Pénzes
- MTA-ELTE Motor Pharmacology Research Group, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary
| | - Csilla Kurdi
- MTA-ELTE Motor Pharmacology Research Group, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary
| | - Louise Canon
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, 75005 Paris, France
| | - Carlos Kikuti
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, 75005 Paris, France
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Beckman Center B400, 279 W. Campus Drive, Stanford, CA 94305, USA
| | - Darshan V Trivedi
- Department of Biochemistry, Stanford University School of Medicine, Beckman Center B400, 279 W. Campus Drive, Stanford, CA 94305, USA
| | - James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Beckman Center B400, 279 W. Campus Drive, Stanford, CA 94305, USA
| | - István Lőrincz
- Printnet, Ltd., Kisgömb utca 25-27, 1135 Budapest, Hungary
| | - Anna Á Rauscher
- MTA-ELTE Motor Pharmacology Research Group, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary; Motorpharma, Ltd., Szilágyi Erzsébet fasor 27, 1026 Budapest, Hungary
| | - Mihály Kovács
- MTA-ELTE Motor Pharmacology Research Group, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary; Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary and Brunszvik u. 2, 2462 Martonvásár, Hungary
| | - Endre Pál
- Department of Neurology, University of Pécs, Rét utca 2, 7623 Pécs, Hungary
| | - Sámuel Komoly
- Department of Neurology, University of Pécs, Rét utca 2, 7623 Pécs, Hungary
| | - Anne Houdusse
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, 75005 Paris, France
| | - András Málnási-Csizmadia
- MTA-ELTE Motor Pharmacology Research Group, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary; Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary and Brunszvik u. 2, 2462 Martonvásár, Hungary.
| |
Collapse
|
180
|
Brawley J, Etter E, Heredia D, Intasiri A, Nennecker K, Smith J, Welcome BM, Brizendine RK, Gould TW, Bell TW, Cremo C. Synthesis and Evaluation of 4-Hydroxycoumarin Imines as Inhibitors of Class II Myosins. J Med Chem 2020; 63:11131-11148. [PMID: 32894018 PMCID: PMC8244571 DOI: 10.1021/acs.jmedchem.0c01062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inhibitors of muscle myosin ATPases are needed to treat conditions that could be improved by promoting muscle relaxation. The lead compound for this study ((3-(N-butylethanimidoyl)ethyl)-4-hydroxy-2H-chromen-2-one; BHC) was previously discovered to inhibit skeletal myosin II. BHC and 34 analogues were synthesized to explore structure-activity relationships. The properties of analogues, including solubility, stability, and toxicity, suggest that the BHC scaffold may be useful for developing therapeutics. Inhibition of actin-activated ATPase activity of fast skeletal and cardiac muscle myosin II, inhibition of skeletal muscle contractility ex vivo, and slowing of in vitro actin-sliding velocity were measured. Several analogues with aromatic side arms showed improved potency (half-maximal inhibitory concentration (IC50) <1 μM) and selectivity (≥12-fold) for skeletal myosin versus cardiac myosin compared to BHC. Several analogues blocked neurotransmission, suggesting that they are selective for nonmuscle myosin II over skeletal myosin. Competition and molecular docking studies suggest that BHC and blebbistatin bind to the same site on myosin.
Collapse
Affiliation(s)
- Jhonnathan Brawley
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, United States
| | - Emily Etter
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557-0318, United States
| | - Dante Heredia
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557-0352, United States
| | - Amarawan Intasiri
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, United States
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kyle Nennecker
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557-0318, United States
| | - Joshua Smith
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557-0318, United States
| | - Brandon M Welcome
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557-0318, United States
| | - Richard K Brizendine
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557-0318, United States
| | - Thomas W Gould
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557-0352, United States
| | - Thomas W Bell
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, United States
| | - Christine Cremo
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557-0318, United States
| |
Collapse
|
181
|
Ewert W, Franz P, Tsiavaliaris G, Preller M. Structural and Computational Insights into a Blebbistatin-Bound Myosin•ADP Complex with Characteristics of an ADP-Release Conformation along the Two-Step Myosin Power Stoke. Int J Mol Sci 2020; 21:ijms21197417. [PMID: 33049993 PMCID: PMC7582316 DOI: 10.3390/ijms21197417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 01/13/2023] Open
Abstract
The motor protein myosin drives a wide range of cellular and muscular functions by generating directed movement and force, fueled through adenosine triphosphate (ATP) hydrolysis. Release of the hydrolysis product adenosine diphosphate (ADP) is a fundamental and regulatory process during force production. However, details about the molecular mechanism accompanying ADP release are scarce due to the lack of representative structures. Here we solved a novel blebbistatin-bound myosin conformation with critical structural elements in positions between the myosin pre-power stroke and rigor states. ADP in this structure is repositioned towards the surface by the phosphate-sensing P-loop, and stabilized in a partially unbound conformation via a salt-bridge between Arg131 and Glu187. A 5 Å rotation separates the mechanical converter in this conformation from the rigor position. The crystallized myosin structure thus resembles a conformation towards the end of the two-step power stroke, associated with ADP release. Computationally reconstructing ADP release from myosin by means of molecular dynamics simulations further supported the existence of an equivalent conformation along the power stroke that shows the same major characteristics in the myosin motor domain as the resolved blebbistatin-bound myosin-II·ADP crystal structure, and identified a communication hub centered on Arg232 that mediates chemomechanical energy transduction.
Collapse
Affiliation(s)
- Wiebke Ewert
- Institute for Biophysical Chemistry, Structural Bioinformatics and Chemical Biology, Hannover Medical School, 30625 Hannover, Germany;
| | - Peter Franz
- Institute for Biophysical Chemistry, Cellular Biophysics, Hannover Medical School, 30625 Hannover, Germany; (P.F.); (G.T.)
| | - Georgios Tsiavaliaris
- Institute for Biophysical Chemistry, Cellular Biophysics, Hannover Medical School, 30625 Hannover, Germany; (P.F.); (G.T.)
| | - Matthias Preller
- Institute for Biophysical Chemistry, Structural Bioinformatics and Chemical Biology, Hannover Medical School, 30625 Hannover, Germany;
- Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, 53359 Rheinbach, Germany
- Correspondence: ; Tel.: +49-511-532-2804
| |
Collapse
|
182
|
Subramanian BC, Melis N, Chen D, Wang W, Gallardo D, Weigert R, Parent CA. The LTB4-BLT1 axis regulates actomyosin and β2-integrin dynamics during neutrophil extravasation. J Cell Biol 2020; 219:e201910215. [PMID: 32854115 PMCID: PMC7659729 DOI: 10.1083/jcb.201910215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/17/2020] [Accepted: 07/23/2020] [Indexed: 12/13/2022] Open
Abstract
The eicosanoid leukotriene B4 (LTB4) relays chemotactic signals to direct neutrophil migration to inflamed sites through its receptor BLT1. However, the mechanisms by which the LTB4-BLT1 axis relays chemotactic signals during intravascular neutrophil response to inflammation remain unclear. Here, we report that LTB4 produced by neutrophils acts as an autocrine/paracrine signal to direct the vascular recruitment, arrest, and extravasation of neutrophils in a sterile inflammation model in the mouse footpad. Using intravital subcellular microscopy, we reveal that LTB4 elicits sustained cell polarization and adhesion responses during neutrophil arrest in vivo. Specifically, LTB4 signaling coordinates the dynamic redistribution of non-muscle myosin IIA and β2-integrin, which facilitate neutrophil arrest and extravasation. Notably, we also found that neutrophils shed extracellular vesicles in the vascular lumen and that inhibition of extracellular vesicle release blocks LTB4-mediated autocrine/paracrine signaling required for neutrophil arrest and extravasation. Overall, we uncover a novel complementary mechanism by which LTB4 relays extravasation signals in neutrophils during early inflammation response.
Collapse
Affiliation(s)
- Bhagawat C. Subramanian
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Nicolas Melis
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Desu Chen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Weiye Wang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Devorah Gallardo
- Laboratory Animal Sciences Program, Leidos Biomedical Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Carole A. Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
183
|
Whittle J, Antunes L, Harris M, Upshaw Z, Sepich DS, Johnson AN, Mokalled M, Solnica-Krezel L, Dobbs MB, Gurnett CA. MYH3-associated distal arthrogryposis zebrafish model is normalized with para-aminoblebbistatin. EMBO Mol Med 2020; 12:e12356. [PMID: 33016623 PMCID: PMC7645368 DOI: 10.15252/emmm.202012356] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/03/2023] Open
Abstract
Distal arthrogryposis (DA) is group of syndromes characterized by congenital joint contractures. Treatment development is hindered by the lack of vertebrate models. Here, we describe a zebrafish model in which a common MYH3 missense mutation (R672H) was introduced into the orthologous zebrafish gene smyhc1 (slow myosin heavy chain 1) (R673H). We simultaneously created a smyhc1 null allele (smyhc1−), which allowed us to compare the effects of both mutant alleles on muscle and bone development, and model the closely related disorder, spondylocarpotarsal synostosis syndrome. Heterozygous smyhc1R673H/+ embryos developed notochord kinks that progressed to scoliosis with vertebral fusions; motor deficits accompanied the disorganized and shortened slow‐twitch skeletal muscle myofibers. Increased dosage of the mutant allele in both homozygous smyhc1R673H/R673H and transheterozygous smyhc1R673H/− embryos exacerbated the notochord and muscle abnormalities, causing early lethality. Treatment of smyhc1R673H/R673H embryos with the myosin ATPase inhibitor, para‐aminoblebbistatin, which decreases actin–myosin affinity, normalized the notochord phenotype. Our zebrafish model of MYH3‐associated DA2A provides insight into pathogenic mechanisms and suggests a beneficial therapeutic role for myosin inhibitors in treating disabling contractures.
Collapse
Affiliation(s)
- Julia Whittle
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Lilian Antunes
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Mya Harris
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Zachary Upshaw
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Diane S Sepich
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Aaron N Johnson
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Mayssa Mokalled
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - Christina A Gurnett
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA.,Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, MO, USA.,Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
184
|
Reynolds NH, McEvoy E, Panadero Pérez JA, Coleman RJ, McGarry JP. Influence of multi-axial dynamic constraint on cell alignment and contractility in engineered tissues. J Mech Behav Biomed Mater 2020; 112:104024. [PMID: 33007624 DOI: 10.1016/j.jmbbm.2020.104024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 10/23/2022]
Abstract
In this study an experimental rig is developed to investigate the influence of tissue constraint and cyclic loading on cell alignment and active cell force generation in uniaxial and biaxial engineered tissues constructs. Addition of contractile cells to collagen hydrogels dramatically increases the measured forces in uniaxial and biaxial constructs under dynamic loading. This increase in measured force is due to active cell contractility, as is evident from the decreased force after treatment with cytochalasin D. Prior to dynamic loading, cells are highly aligned in uniaxially constrained tissues but are uniformly distributed in biaxially constrained tissues, demonstrating the importance of tissue constraints on cell alignment. Dynamic uniaxial stretching resulted in a slight increase in cell alignment in the centre of the tissue, whereas dynamic biaxial stretching had no significant effect on cell alignment. Our active modelling framework accurately predicts our experimental trends and suggests that a slightly higher (3%) total SF formation occurs at the centre of a biaxial tissue compared to the uniaxial tissue. However, high alignment of SFs and lateral compaction in the case of the uniaxially constrained tissue results in a significantly higher (75%) actively generated cell contractile stress, compared to the biaxially constrained tissue. These findings have significant implications for engineering of contractile tissue constructs.
Collapse
Affiliation(s)
- Noel H Reynolds
- Department of Biomedical Engineering, National University of Ireland, Galway, Ireland
| | - Eoin McEvoy
- Department of Biomedical Engineering, National University of Ireland, Galway, Ireland
| | | | - Ryan J Coleman
- Department of Biomedical Engineering, National University of Ireland, Galway, Ireland
| | - J Patrick McGarry
- Department of Biomedical Engineering, National University of Ireland, Galway, Ireland.
| |
Collapse
|
185
|
Park S, Shi Y, Kim BC, Jo MH, Cruz LO, Gou Z, Ha T, Lu LF, Reich DH, Chen Y. Force-dependent trans-endocytosis by breast cancer cells depletes costimulatory receptor CD80 and attenuates T cell activation. Biosens Bioelectron 2020; 165:112389. [PMID: 32729511 DOI: 10.1016/j.bios.2020.112389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022]
Abstract
In this study, we investigated the biophysical interaction between cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and CD80. CTLA-4 is a key molecule in immunosuppression, and CD80 is a costimulatory receptor promoting T cell activation. We observed that after cell-cell contact was established between breast cancer cells and antigen presenting cells (APCs), CTLA-4 expressed on the breast cancer cells bind to CD80 expressed on the APCs, and underwent trans-endocytosis to deplete CD80. Force measurement and live cell imaging revealed that upon binding to CD80, forces generated by breast cancer cells and transmitted via CTLA-4 were sufficiently strong to displace CD80 from the surface of APCs to be internalized by breast cancer cells. We further demonstrated that because of the force-dependent trans-endocytosis of CD80, the capacity of APCs to activate T cells was significantly attenuated. Furthermore, inhibiting force generation in cancer cells would increase the T cell activating capacity of APCs. Our results provide a possible mechanism behind the immunosuppression commonly seen in breast cancer patients, and may lead to a new strategy to restore anti-tumor immunity by inhibiting pathways of force-generation.
Collapse
Affiliation(s)
- Seungman Park
- Department of Mechanical Engineering, Johns Hopkins University, MD, 21218, USA; Center for Cell Dynamics, Johns Hopkins University, MD, 21218, USA; Institute for NanoBioTechnology, Johns Hopkins University, MD, 21218, USA
| | - Yu Shi
- Department of Physics & Astronomy, Johns Hopkins University, MD, 21218, USA
| | - Byoung Choul Kim
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA; Howard Hughes Medical Institute, Baltimore, MD, 21205, USA; Division of Nano-Bioengineering, Incheon National University, Incheon, 22012, South Korea
| | - Myung Hyun Jo
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Leilani O Cruz
- Division of Biological Science, University of California, San Diego, CA, 92093, USA
| | - Zheming Gou
- Department of Mechanical Engineering, Johns Hopkins University, MD, 21218, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA; Howard Hughes Medical Institute, Baltimore, MD, 21205, USA
| | - Li-Fan Lu
- Division of Biological Science, University of California, San Diego, CA, 92093, USA
| | - Daniel H Reich
- Department of Physics & Astronomy, Johns Hopkins University, MD, 21218, USA
| | - Yun Chen
- Department of Mechanical Engineering, Johns Hopkins University, MD, 21218, USA; Center for Cell Dynamics, Johns Hopkins University, MD, 21218, USA; Institute for NanoBioTechnology, Johns Hopkins University, MD, 21218, USA.
| |
Collapse
|
186
|
Kothapalli C, Mahajan G, Farrell K. Substrate stiffness induced mechanotransduction regulates temporal evolution of human fetal neural progenitor cell phenotype, differentiation, and biomechanics. Biomater Sci 2020; 8:5452-5464. [PMID: 32996962 PMCID: PMC8500671 DOI: 10.1039/d0bm01349h] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
While the mechanotransduction-induced fate of adult neural stem/progenitor cells (NPCs) is relatively known, how substrate stiffness regulates the temporal evolution of the biomechanics and phenotype of developmentally relevant human fetal NPCs (hNPCs) and their mechanosensing pathways remain unknown. Here, we primed hNPCs on tissue-culture plastic (TCPS) for 3 days in non-differentiating medium before transferring to TCPS or Geltrex™ gels (<1 kPa) for 9-day cultures post-priming, and regularly assessed stemness, differentiation, and cell mechanics (Young's modulus, tether forces, apparent membrane tension, tether radius). hNPCs maintained stemness on TCPS while those on gels co-expressed stemness and neural/glial markers, 3-days post-priming. Biomechanical characteristics remained unchanged in cells on TCPS but were significantly altered in those on gels, 3-days post-priming. However, 9-days post-priming, hNPCs on gels differentiated, with significantly more neurons on softer gels and glia on stiffer gels, while those on TCPS maintained their native stemness. Withdrawal of bFGF and EGF in 9-day cultures induced hNPC differentiation and influenced cell mechanics. Cells on stiffer gels had higher biomechanical properties than those on softer gels throughout the culture period, with NPC-like > neural > glia subtypes. Higher stress fiber density in cells on stiffer gels explains their significantly different biomechanical properties on these gels. Blebbistatin treatment caused cell polarization, lowered elastic modulus, and enhanced tether forces, implicating the role of non-muscle myosin-II in hNPC mechanosensing, adaptability, and thereby mechanics. Such substrate-mediated temporal evolution of hNPCs guide design of smart scaffolds to investigate morphogenesis, disease modeling, stem cell biology, and biomaterials for tissue engineering.
Collapse
Affiliation(s)
- Chandrasekhar Kothapalli
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH 44115, USA.
| | - Gautam Mahajan
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH 44115, USA.
| | - Kurt Farrell
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
187
|
Rheinlaender J, Dimitracopoulos A, Wallmeyer B, Kronenberg NM, Chalut KJ, Gather MC, Betz T, Charras G, Franze K. Cortical cell stiffness is independent of substrate mechanics. NATURE MATERIALS 2020; 19:1019-1025. [PMID: 32451510 PMCID: PMC7610513 DOI: 10.1038/s41563-020-0684-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/15/2020] [Indexed: 05/18/2023]
Abstract
Cortical stiffness is an important cellular property that changes during migration, adhesion and growth. Previous atomic force microscopy (AFM) indentation measurements of cells cultured on deformable substrates have suggested that cells adapt their stiffness to that of their surroundings. Here we show that the force applied by AFM to a cell results in a significant deformation of the underlying substrate if this substrate is softer than the cell. This 'soft substrate effect' leads to an underestimation of a cell's elastic modulus when analysing data using a standard Hertz model, as confirmed by finite element modelling and AFM measurements of calibrated polyacrylamide beads, microglial cells and fibroblasts. To account for this substrate deformation, we developed a 'composite cell-substrate model'. Correcting for the substrate indentation revealed that cortical cell stiffness is largely independent of substrate mechanics, which has major implications for our interpretation of many physiological and pathological processes.
Collapse
Affiliation(s)
- Johannes Rheinlaender
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Institute of Applied Physics, University of Tübingen, Tübingen, Germany.
| | - Andrea Dimitracopoulos
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Bernhard Wallmeyer
- Centre for Molecular Biology of Inflammation, Institute of Cell Biology, Excellence Cluster Cells in Motion, University of Münster, Münster, Germany
| | - Nils M Kronenberg
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
- Centre for Nanobiophotonics, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Kevin J Chalut
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Malte C Gather
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
- Centre for Nanobiophotonics, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Timo Betz
- Centre for Molecular Biology of Inflammation, Institute of Cell Biology, Excellence Cluster Cells in Motion, University of Münster, Münster, Germany
| | - Guillaume Charras
- London Centre for Nanotechnology, University College London, London, UK
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
188
|
Ni T, Yuan M, Ji HH, Tang G, Chen Y, Ma Z, Li XD. Effects of Mutations in the Phenamacril-Binding Site of Fusarium Myosin-1 on Its Motor Function and Phenamacril Sensitivity. ACS OMEGA 2020; 5:21815-21823. [PMID: 32905433 PMCID: PMC7469408 DOI: 10.1021/acsomega.0c02886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Phenamacril is a Fusarium-specific fungicide used for Fusarium head blight management. The target of phenamacril is FgMyo1, the sole class I myosin in Fusarium graminearum. The point mutation S217L in FgMyo1 is responsible for the high resistance of F. graminearum to phenamacril. Recent structural studies have shown that phenamacril binds to the 50 kDa cleft of the FgMyo1 motor domain, forming extensive interactions, including a hydrogen bond between the cyano group of phenamacril and the hydroxyl group of S217. Here, we produced FgMyo1IQ2, a truncated FgMyo1 composed of the motor domain and two IQ motifs complexed with the F. graminearum calmodulin in insect Sf9 cells. Phenamacril potently inhibited both the basal and the actin-activated ATPase activities of FgMyo1IQ2, with an IC50 in a micromolar range. S217 mutations of FgMyo1IQ2 substantially increased the IC50 of phenamacril. S217T or S217L each increased the IC50 of phenamacril for ∼60-fold, while S217A only increased the IC50 for ∼4-fold. These results indicate that the hydroxyl group of S217 plays an important, but nonessential role in phenamacril binding and that the bulky side chain at the position 217 sterically hinders phenamacril binding. On the other hand, S217P, which might alter the local conformation of the phenamacril-binding site, completely abolished the phenamacril inhibition. Because the cyano group of phenamacril does not form discernible interactions with FgMyo1 other than the nonessential hydrogen bond with the S217 hydroxyl group, we propose the cyano group of phenamacril as a key modification site for the development of novel fungicides.
Collapse
Affiliation(s)
- Tong Ni
- Group
of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated
Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Yuan
- Institute
of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Huan-Hong Ji
- Group
of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated
Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guangfei Tang
- Institute
of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yun Chen
- Institute
of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhonghua Ma
- Institute
of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiang-dong Li
- Group
of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated
Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
189
|
Conventional and Non-Conventional Roles of Non-Muscle Myosin II-Actin in Neuronal Development and Degeneration. Cells 2020; 9:cells9091926. [PMID: 32825197 PMCID: PMC7566000 DOI: 10.3390/cells9091926] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022] Open
Abstract
Myosins are motor proteins that use chemical energy to produce mechanical forces driving actin cytoskeletal dynamics. In the brain, the conventional non-muscle myosin II (NMII) regulates actin filament cytoskeletal assembly and contractile forces during structural remodeling of axons and dendrites, contributing to morphology, polarization, and migration of neurons during brain development. NMII isoforms also participate in neurotransmission and synaptic plasticity by driving actin cytoskeletal dynamics during synaptic vesicle release and retrieval, and formation, maturation, and remodeling of dendritic spines. NMIIs are expressed differentially in cerebral non-neuronal cells, such as microglia, astrocytes, and endothelial cells, wherein they play key functions in inflammation, myelination, and repair. Besides major efforts to understand the physiological functions and regulatory mechanisms of NMIIs in the nervous system, their contributions to brain pathologies are still largely unclear. Nonetheless, genetic mutations or deregulation of NMII and its regulatory effectors are linked to autism, schizophrenia, intellectual disability, and neurodegeneration, indicating non-conventional roles of NMIIs in cellular mechanisms underlying neurodevelopmental and neurodegenerative disorders. Here, we summarize the emerging biological roles of NMIIs in the brain, and discuss how actomyosin signaling contributes to dysfunction of neurons and glial cells in the context of neurological disorders. This knowledge is relevant for a deep understanding of NMIIs on the pathogenesis and therapeutics of neuropsychiatric and neurodegenerative diseases.
Collapse
|
190
|
Horváth ÁI, Gyimesi M, Várkuti BH, Képiró M, Szegvári G, Lőrincz I, Hegyi G, Kovács M, Málnási-Csizmadia A. Effect of allosteric inhibition of non-muscle myosin 2 on its intracellular diffusion. Sci Rep 2020; 10:13341. [PMID: 32769996 PMCID: PMC7415145 DOI: 10.1038/s41598-020-69853-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
Subcellular dynamics of non-muscle myosin 2 (NM2) is crucial for a broad-array of cellular functions. To unveil mechanisms of NM2 pharmacological control, we determined how the dynamics of NM2 diffusion is affected by NM2′s allosteric inhibitors, i.e. blebbistatin derivatives, as compared to Y-27632 inhibiting ROCK, NM2′s upstream regulator. We found that NM2 diffusion is markedly faster in central fibers than in peripheral stress fibers. Y-27632 accelerated NM2 diffusion in both peripheral and central fibers, whereas in peripheral fibers blebbistatin derivatives slightly accelerated NM2 diffusion at low, but markedly slowed it at high inhibitor concentrations. In contrast, rapid NM2 diffusion in central fibers was unaffected by direct NM2 inhibition. Using our optopharmacological tool, Molecular Tattoo, sub-effective concentrations of a photo-crosslinkable blebbistatin derivative were increased to effective levels in a small, irradiated area of peripheral fibers. These findings suggest that direct allosteric inhibition affects the diffusion profile of NM2 in a markedly different manner compared to the disruption of the upstream control of NM2. The pharmacological action of myosin inhibitors is channeled through autonomous molecular processes and might be affected by the load acting on the NM2 proteins.
Collapse
Affiliation(s)
- Ádám I Horváth
- MTA-ELTE Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/c, 1117, Budapest, Hungary
| | - Máté Gyimesi
- MTA-ELTE Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/c, 1117, Budapest, Hungary
| | - Boglárka H Várkuti
- MTA-ELTE Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/c, 1117, Budapest, Hungary
| | - Miklós Képiró
- MTA-ELTE Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/c, 1117, Budapest, Hungary
| | - Gábor Szegvári
- MTA-ELTE Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/c, 1117, Budapest, Hungary
| | - István Lőrincz
- MTA-ELTE Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/c, 1117, Budapest, Hungary
| | - György Hegyi
- MTA-ELTE Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/c, 1117, Budapest, Hungary
| | - Mihály Kovács
- MTA-ELTE Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/c, 1117, Budapest, Hungary.
| | - András Málnási-Csizmadia
- MTA-ELTE Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/c, 1117, Budapest, Hungary.
| |
Collapse
|
191
|
Zonderland J, Gomes DB, Pallada Y, Moldero IL, Camarero‐Espinosa S, Moroni L. Mechanosensitive regulation of stanniocalcin-1 by zyxin and actin-myosin in human mesenchymal stromal cells. Stem Cells 2020; 38:948-959. [PMID: 32379914 PMCID: PMC7497098 DOI: 10.1002/stem.3198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/29/2020] [Accepted: 04/16/2020] [Indexed: 12/16/2022]
Abstract
Stanniocalcin-1 (STC1) secreted by mesenchymal stromal cells (MSCs) has anti-inflammatory functions, reduces apoptosis, and aids in angiogenesis, both in vitro and in vivo. However, little is known about the molecular mechanisms of its regulation. Here, we show that STC1 secretion is increased only under specific cell-stress conditions. We find that this is due to a change in actin stress fibers and actin-myosin tension. Abolishment of stress fibers by blebbistatin and knockdown of the focal adhesion protein zyxin leads to an increase in STC1 secretion. To also study this connection in 3D, where few focal adhesions and actin stress fibers are present, STC1 expression was analyzed in 3D alginate hydrogels and 3D electrospun scaffolds. Indeed, STC1 secretion was increased in these low cellular tension 3D environments. Together, our data show that STC1 does not directly respond to cell stress, but that it is regulated through mechanotransduction. This research takes a step forward in the fundamental understanding of STC1 regulation and can have implications for cell-based regenerative medicine, where cell survival, anti-inflammatory factors, and angiogenesis are critical.
Collapse
Affiliation(s)
- Jip Zonderland
- Complex Tissue Regeneration Department, MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastrichtThe Netherlands
| | - David B. Gomes
- Complex Tissue Regeneration Department, MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastrichtThe Netherlands
| | - Yves Pallada
- Complex Tissue Regeneration Department, MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastrichtThe Netherlands
| | - Ivan L. Moldero
- Complex Tissue Regeneration Department, MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastrichtThe Netherlands
| | - Sandra Camarero‐Espinosa
- Complex Tissue Regeneration Department, MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastrichtThe Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration Department, MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
192
|
Sanz-Gómez N, de Pedro I, Ortigosa B, Santamaría D, Malumbres M, de Cárcer G, Gandarillas A. Squamous differentiation requires G2/mitosis slippage to avoid apoptosis. Cell Death Differ 2020; 27:2451-2467. [PMID: 32080348 PMCID: PMC7370216 DOI: 10.1038/s41418-020-0515-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/21/2022] Open
Abstract
The cellular mechanisms controlling cell fate in self-renewal tissues remain unclear. Cell cycle failure often leads to an apoptosis anti-oncogenic response. We have inactivated Cdk1 or Polo-like-1 kinases, essential targets of the mitotic checkpoints, in the epithelia of skin and oral mucosa. Here, we show that inactivation of the mitotic kinases leading to polyploidy in vivo, produces a fully differentiated epithelium. Cells within the basal layer aberrantly differentiate and contain large or various nuclei. Freshly isolated KO cells were also differentiated and polyploid. However, sustained metaphase arrest downstream of the spindle anaphase checkpoint (SAC) due to abrogation of CDC20 (essential cofactor of anaphase-promoting complex), impaired squamous differentiation and resulted in apoptosis. Therefore, upon prolonged arrest keratinocytes need to slip beyond G2 or mitosis in order to initiate differentiation. The results altogether demonstrate that mitotic checkpoints drive squamous cell fate towards differentiation or apoptosis in response to genetic damage.
Collapse
Affiliation(s)
- Natalia Sanz-Gómez
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Isabel de Pedro
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Beatriz Ortigosa
- Cell Cycle & Cancer Biomarkers Group, Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBm) CSIC-UAM, 28029, Madrid, Spain
| | - David Santamaría
- CNIO, Experimental Oncology Group, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
- INSERM U1218, ACTION Laboratory, IECB, University of Bordeaux, Pessac, France
| | - Marcos Malumbres
- CNIO, Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Guillermo de Cárcer
- Cell Cycle & Cancer Biomarkers Group, Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBm) CSIC-UAM, 28029, Madrid, Spain
- CNIO, Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Alberto Gandarillas
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain.
- INSERM, Languedoc-Roussillon, 34394, Montpellier, France.
| |
Collapse
|
193
|
Zhang S, Lee JM, Ashok AA, Jung HS. Action of Actomyosin Contraction With Shh Modulation Drive Epithelial Folding in the Circumvallate Papilla. Front Physiol 2020; 11:936. [PMID: 32848868 PMCID: PMC7411262 DOI: 10.3389/fphys.2020.00936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/13/2020] [Indexed: 11/13/2022] Open
Abstract
The mouse tongue possesses three types of gustatory papillae: large circumvallate papillae (CVP), foliate papillae (FOP) and fungiform papillae (FFP). Although CVP is the largest papilla and contain a high density of taste buds, little is known about CVP development. Their transition from placode to dome-shape is particularly ambiguous. Understanding this phase is crucial since dome-shaped morphology is essential for proper localization of the imminent nerve fibers and taste buds. Here, we report actomyosin-dependent apical and basal constriction of epithelial cells during dynamic epithelial folding. Furthermore, actomyosin-dependent basal constriction requires focal adhesion kinase to guide dome-shape formation. Sonic hedgehog (Shh) is closely associated with the differentiation or survival of the neurons in CVP ganglion and cytoskeletal alteration in trench epithelial cells which regulate CVP morphogenesis. Our results demonstrate the CVP morphogenesis mechanism from placode to dome-shape by actomyosin-dependent cell shape change and suggest roles that Shh may play in trench and stromal core formation during CVP development.
Collapse
Affiliation(s)
- Sushan Zhang
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Brain Korea 21 PLUS Project, Taste Research Center, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Jong-Min Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Brain Korea 21 PLUS Project, Taste Research Center, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Adpaikar Anish Ashok
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Brain Korea 21 PLUS Project, Taste Research Center, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Brain Korea 21 PLUS Project, Taste Research Center, College of Dentistry, Yonsei University, Seoul, South Korea
| |
Collapse
|
194
|
Chaubet L, Chaudhary AR, Heris HK, Ehrlicher AJ, Hendricks AG. Dynamic actin cross-linking governs the cytoplasm's transition to fluid-like behavior. Mol Biol Cell 2020; 31:1744-1752. [PMID: 32579489 PMCID: PMC7521843 DOI: 10.1091/mbc.e19-09-0504] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 06/05/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
Cells precisely control their mechanical properties to organize and differentiate into tissues. The architecture and connectivity of cytoskeletal filaments change in response to mechanical and biochemical cues, allowing the cell to rapidly tune its mechanics from highly cross-linked, elastic networks to weakly cross-linked viscous networks. While the role of actin cross-linking in controlling actin network mechanics is well-characterized in purified actin networks, its mechanical role in the cytoplasm of living cells remains unknown. Here, we probe the frequency-dependent intracellular viscoelastic properties of living cells using multifrequency excitation and in situ optical trap calibration. At long timescales in the intracellular environment, we observe that the cytoskeleton becomes fluid-like. The mechanics are well-captured by a model in which actin filaments are dynamically connected by a single dominant cross-linker. A disease-causing point mutation (K255E) of the actin cross-linker α-actinin 4 (ACTN4) causes its binding kinetics to be insensitive to tension. Under normal conditions, the viscoelastic properties of wild-type (WT) and K255E+/- cells are similar. However, when tension is reduced through myosin II inhibition, WT cells relax 3× faster to the fluid-like regime while K255E+/- cells are not affected. These results indicate that dynamic actin cross-linking enables the cytoplasm to flow at long timescales.
Collapse
Affiliation(s)
- Loïc Chaubet
- Department of Bioengineering, McGill University, Montreal, QC H3A 0C3, Canada
| | | | - Hossein K. Heris
- Department of Bioengineering, McGill University, Montreal, QC H3A 0C3, Canada
| | - Allen J. Ehrlicher
- Department of Bioengineering, McGill University, Montreal, QC H3A 0C3, Canada
| | - Adam G. Hendricks
- Department of Bioengineering, McGill University, Montreal, QC H3A 0C3, Canada
| |
Collapse
|
195
|
Sulgin AA, Sidorova TN, Sidorov VY. GROWTH AND CHARACTERIZATION OF A TISSUE-ENGINEERED CONSTRUCT FROM HUMAN CORONARY ARTERY SMOOTH MUSCLE CELLS. ACTA ACUST UNITED AC 2020; 19:85-95. [PMID: 32863830 DOI: 10.20538/1682-0363-2020-2-85-95] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Objective To optimize a bioengineered «I-Wire» platform to grow tissue-engineered constructs (TCs) derived from coronary artery smooth muscle cells and characterize the mechano-elastic properties of the grown TCs. Materials and Methods A fibrinogen-based cell mixture was pipetted in a casting mold having two parallel titanium anchoring wires inserted in the grooves on opposite ends of the mold to support the TC. The casting mold was 3 mm in depth, 2 mm in width and 12 mm in length. To measure TC deformation, a flexible probe with a diameter of 365 mk and a length of 42 mm was utilized. The deflection of the probe tip at various tensile forces applied to the TC was recorded using an inverted microscope optical recording system. The elasticity modulus was calculated based on a stretch-stress diagram reconstructed for each TC. The mechano-elastic properties of control TCs and TCs under the influence of isoproterenol (Iso), acetylcholine (ACh), blebbistatin (Bb) and cytochalasin D (Cyto-D) were evaluated. Immunohistochemical staining of smooth muscle α-actin, desmin and the cell nucleus was implemented for the structural characterization of the TCs. Results The TCs formed on day 5-6 of incubation. Subsequent measurements during the following 7 days did not reveal significant changes in elasticity. Values of the elastic modulus were 7.4 ± 1.5 kPa at the first day, 7.9 ± 1.4 kPa on the third day, and 7.8 ± 1.9 kPa on the seventh day of culturing after TC formation. Changes in the mechano-elastic properties of the TCs in response to the subsequent application of Bb and Cyto-D had a two-phase pattern, indicating a possible separation of active and passive elements of the TC elasticity. The application of 1 μM of Iso led to an increase in the value of the elastic modulus from 7.9 ± 1.5 kPa to 10.2 ± 2.1 kPa (p<0.05, n = 6). ACh did not cause a significant change in elasticity. Conclusion The system allows quantification of the mechano-elastic properties of TCs in response to pharmacological stimuli and can be useful to model pathological changes in vascular smooth muscle cells.
Collapse
Affiliation(s)
- A A Sulgin
- Siberian State Medical University, Moskovsky tract, Tomsk, 634050, Russia
| | - T N Sidorova
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, 37232, TN, USA
| | - V Y Sidorov
- Department of Biomedical Engineering, Vanderbilt University, 1221 Stevenson Center Ln., Nashville, 37240, TN, USA
| |
Collapse
|
196
|
Sorrentino G, Rezakhani S, Yildiz E, Nuciforo S, Heim MH, Lutolf MP, Schoonjans K. Mechano-modulatory synthetic niches for liver organoid derivation. Nat Commun 2020; 11:3416. [PMID: 32651372 PMCID: PMC7351772 DOI: 10.1038/s41467-020-17161-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 06/11/2020] [Indexed: 12/27/2022] Open
Abstract
The recent demonstration that primary cells from the liver can be expanded in vitro as organoids holds enormous promise for regenerative medicine and disease modelling. The use of three-dimensional (3D) cultures based on ill-defined and potentially immunogenic matrices, however, hampers the translation of liver organoid technology into real-life applications. We here use chemically defined hydrogels for the efficient derivation of both mouse and human hepatic organoids. Organoid growth is found to be highly stiffness-sensitive, a mechanism independent of acto-myosin contractility and requiring instead activation of the Src family of kinases (SFKs) and yes-associated protein 1 (YAP). Aberrant matrix stiffness, on the other hand, results in compromised proliferative capacity. Finally, we demonstrate the establishment of biopsy-derived human liver organoids without the use of animal components at any step of the process. Our approach thus opens up exciting perspectives for the establishment of protocols for liver organoid-based regenerative medicine. 3D liver organoids hold great promise for regenerative medicine but the use of ill-defined matrices limits their potential. Here, the authors generate human and mouse liver organoids using a chemically defined matrix, and reveal a link between matrix stiffness and organoid growth that does not require acto-myosin contraction.
Collapse
Affiliation(s)
- Giovanni Sorrentino
- Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Saba Rezakhani
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Ece Yildiz
- Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Sandro Nuciforo
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| | - Markus H Heim
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031, Basel, Switzerland.,Clinic of Gastroenterology and Hepatology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
197
|
Alternative pathways control actomyosin contractility in epitheliomuscle cells during morphogenesis and body contraction. Dev Biol 2020; 463:88-98. [PMID: 32361004 DOI: 10.1016/j.ydbio.2020.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/10/2020] [Accepted: 04/14/2020] [Indexed: 11/23/2022]
Abstract
In adult Hydra, epitheliomuscle cells form the monolayered ecto- and endodermal epithelia. Their basal myonemes function as a longitudinal and circular muscle, respectively. Based on the observation that a Rho/Rock pathway, controlling the cell shape changes during detachment of Hydra buds, is not involved in body movement, at least two actomyosin compartments must exist in these cells: a basal one for body movement and a cortical one for cell shape changes. We therefore analyzed the regional and subcellular localization of the Ser19-phosphorylated myosin regulatory light chain (pMLC20). Along the body column, pMLC20 was detected strongly in the basal myonemes and weakly in the apical cell compartments of ectodermal epitheliomuscle cells. In cells of the bud base undergoing morphogenesis, pMLC20 was localized to intracellular stress fibers as well as to the apical and additionally to the lateral cortical compartment. Pharmacological inhibition revealed that pMLC20 is induced in these compartments by at least two independent pathways. In myonemes, MLC is phosphorylated mainly by myosin light chain kinase (MLCK). In contrast, the cortical apical and lateral MLC phosphorylation in constricting ectodermal cells of the bud base is stimulated via the Rho/ROCK pathway.
Collapse
|
198
|
Positional Isomers of a Non-Nucleoside Substrate Differentially Affect Myosin Function. Biophys J 2020; 119:567-580. [PMID: 32652059 DOI: 10.1016/j.bpj.2020.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/29/2020] [Accepted: 06/17/2020] [Indexed: 11/22/2022] Open
Abstract
Molecular motors have evolved to transduce chemical energy from ATP into mechanical work to drive essential cellular processes, from muscle contraction to vesicular transport. Dysfunction of these motors is a root cause of many pathologies necessitating the need for intrinsic control over molecular motor function. Herein, we demonstrate that positional isomerism can be used as a simple and powerful tool to control the molecular motor of muscle, myosin. Using three isomers of a synthetic non-nucleoside triphosphate, we demonstrate that myosin's force- and motion-generating capacity can be dramatically altered at both the ensemble and single-molecule levels. By correlating our experimental results with computation, we show that each isomer exerts intrinsic control by affecting distinct steps in myosin's mechanochemical cycle. Our studies demonstrate that subtle variations in the structure of an abiotic energy source can be used to control the force and motility of myosin without altering myosin's structure.
Collapse
|
199
|
Vaeyens MM, Jorge-Peñas A, Barrasa-Fano J, Shapeti A, Roeffaers M, Van Oosterwyck H. Actomyosin-dependent invasion of endothelial sprouts in collagen. Cytoskeleton (Hoboken) 2020; 77:261-276. [PMID: 32588525 DOI: 10.1002/cm.21624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/11/2020] [Accepted: 06/22/2020] [Indexed: 12/30/2022]
Abstract
During sprouting angiogenesis-the growth of blood vessels from the existing vasculature-endothelial cells (ECs) adopt an elongated invasive form and exert forces at cell-cell and cell-matrix interaction sites. These cell shape changes and cellular tractions require extensive reorganizations of the actomyosin network. However, the respective roles of actin and myosin for endothelial sprouting are not fully elucidated. In this study, we further investigate these roles by treating 2D-migrating and 3D-sprouting ECs with chemical compounds targeting either myosin or actin. These treatments affected the endothelial cytoskeleton drastically and reduced the invasive response in a compound-specific manner; pointing toward a tight control of the actin and myosin activity during sprouting. Clusters in the data further illustrate that endothelial sprout morphology is sensitive to the in vitro model mechanical microenvironment and directs future research toward mechanical substrate guidance as a strategy for promoting engineered tissue vascularization. In summary, our results add to a growing corpus of research highlighting a key role of the cytoskeleton for sprouting angiogenesis.
Collapse
Affiliation(s)
- Marie-Mo Vaeyens
- Biomechanics Section (BMe), Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Alvaro Jorge-Peñas
- Biomechanics Section (BMe), Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Jorge Barrasa-Fano
- Biomechanics Section (BMe), Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Apeksha Shapeti
- Biomechanics Section (BMe), Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Maarten Roeffaers
- Department of Microbial and Molecular Systems (M2S), Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Leuven, Belgium
| | - Hans Van Oosterwyck
- Biomechanics Section (BMe), Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
200
|
Lange J, Bernitt E, Döbereiner HG. Biomechanical Aspects of Actin Bundle Dynamics. Front Cell Dev Biol 2020; 8:422. [PMID: 32582705 PMCID: PMC7296148 DOI: 10.3389/fcell.2020.00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 05/06/2020] [Indexed: 12/03/2022] Open
Abstract
Lamellipodial and filopodial protrusions are two of the main aggregate types of filamentous actin in living cells. Even though filopodia are essential to a range of vital cell functions, the mechanisms leading to their formation are still debated. Filopodia are relatively stiff and rod-like structures that are embedded in the highly dynamic framework of the backward flowing meshwork of the lamellipodium. Phenomena such as lateral filopodia drift and collision events suggest that mechanical aspects play a significant role in filopodia dynamics. In this paper, we systematically analyze the interplay between the backward flow of actin in the lamellipodium and the drift velocity of actin bundles, that we identify to be filopodia, in a quantitative manner in cells of given morphology and controlled myosin activity. Moreover, we study mechanical aspects of fusion of actin bundles drifting laterally in the lamellipodium. We find that the dynamics of actin bundles drift and fusion can be captured in a mechanical framework, which leads to a model of actin bundles orientation.
Collapse
Affiliation(s)
- Julia Lange
- Institute of Biophysics, University of Bremen, Bremen, Germany
| | - Erik Bernitt
- Institute of Biophysics, University of Bremen, Bremen, Germany
| | | |
Collapse
|