151
|
Deng H, Yan X, Yuan L. Human genetic basis of coronavirus disease 2019. Signal Transduct Target Ther 2021; 6:344. [PMID: 34545062 PMCID: PMC8450706 DOI: 10.1038/s41392-021-00736-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/28/2021] [Accepted: 08/08/2021] [Indexed: 02/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in considerable morbidity and mortality worldwide. COVID-19 incidence, severity, and mortality rates differ greatly between populations, genders, ABO blood groups, human leukocyte antigen (HLA) genotypes, ethnic groups, and geographic backgrounds. This highly heterogeneous SARS-CoV-2 infection is multifactorial. Host genetic factors such as variants in the angiotensin-converting enzyme gene (ACE), the angiotensin-converting enzyme 2 gene (ACE2), the transmembrane protease serine 2 gene (TMPRSS2), along with HLA genotype, and ABO blood group help to explain individual susceptibility, severity, and outcomes of COVID-19. This review is focused on COVID-19 clinical and viral characteristics, pathogenesis, and genetic findings, with particular attention on genetic diversity and variants. The human genetic basis could provide scientific bases for disease prediction and targeted therapy to address the COVID-19 scourge.
Collapse
Affiliation(s)
- Hao Deng
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China.
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China.
- Disease Genome Research Center, Central South University, Changsha, China.
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China.
| | - Xue Yan
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
- Disease Genome Research Center, Central South University, Changsha, China
| | - Lamei Yuan
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
- Disease Genome Research Center, Central South University, Changsha, China
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
152
|
Holmes EC, Goldstein SA, Rasmussen AL, Robertson DL, Crits-Christoph A, Wertheim JO, Anthony SJ, Barclay WS, Boni MF, Doherty PC, Farrar J, Geoghegan JL, Jiang X, Leibowitz JL, Neil SJD, Skern T, Weiss SR, Worobey M, Andersen KG, Garry RF, Rambaut A. The origins of SARS-CoV-2: A critical review. Cell 2021; 184:4848-4856. [PMID: 34480864 PMCID: PMC8373617 DOI: 10.1016/j.cell.2021.08.017] [Citation(s) in RCA: 308] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 01/11/2023]
Abstract
Since the first reports of a novel severe acute respiratory syndrome (SARS)-like coronavirus in December 2019 in Wuhan, China, there has been intense interest in understanding how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in the human population. Recent debate has coalesced around two competing ideas: a "laboratory escape" scenario and zoonotic emergence. Here, we critically review the current scientific evidence that may help clarify the origin of SARS-CoV-2.
Collapse
Affiliation(s)
- Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Stephen A Goldstein
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Angela L Rasmussen
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - David L Robertson
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Alexander Crits-Christoph
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA 94704, USA
| | - Joel O Wertheim
- Department of Medicine, University of California-San Diego, La Jolla, CA 92093, USA
| | - Simon J Anthony
- Department of Pathology, Microbiology, and Immunology, University of California-Davis School of Veterinary Medicine, Davis, CA 95616, USA
| | - Wendy S Barclay
- Department of Infectious Disease, Imperial College, London W2 1PG, UK
| | - Maciej F Boni
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Peter C Doherty
- Department of Microbiology and Immunology, The University of Melbourne at the Doherty Institute, 792 Elizabeth Street, Melbourne, VIC 3000, Australia
| | | | - Jemma L Geoghegan
- Department of Microbiology and Immunology, University of Otago, Dunedin 9010, New Zealand; Institute of Environmental Science and Research, Wellington 5022, New Zealand
| | - Xiaowei Jiang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China
| | - Julian L Leibowitz
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, TX 77807, USA
| | - Stuart J D Neil
- Department of Infectious Diseases, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Tim Skern
- Max Perutz Labs, Medical University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9/3, 1030 Vienna, Austria
| | - Susan R Weiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Kristian G Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robert F Garry
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Zalgen Labs, Germantown, MD 20876, USA
| | - Andrew Rambaut
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK.
| |
Collapse
|
153
|
Effect of COVID-19 on mental health among the young population in Lebanon. Encephale 2021; 48:371-382. [PMID: 34583829 PMCID: PMC8426189 DOI: 10.1016/j.encep.2021.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/11/2021] [Accepted: 06/03/2021] [Indexed: 12/28/2022]
Abstract
Background COVID-19 is a global pandemic that has raised worldwide public health concerns. The wide spread of the virus has led to unprecedented disturbance to regular life for people around the globe and impacted their mental health. Aims The aims of the current study were to investigate the prevalence of psychiatric symptoms related to insomnia, depression, and anxiety, and identify risk factors contributing to psychological stress in Lebanese young population during COVID-19 pandemic. Method A cross-sectional study was done on the Lebanese young population. Participants were 4397 males and females aged 18 to 35 years who filled a self-administered online questionnaire. Three validated scales were used to measure the mental health status of the participants during the COVID-19 pandemic: 7-item Insomnia Severity Index for insomnia, the Patient Health Questionnaire 9-item depression module for depression, and the 7-item Generalized Anxiety Disorder scale for anxiety. Results The median interquartile range scores for anxiety, insomnia, and depression, were 8 (4–13), 10 (5–14), and 9 (5–12) respectively. Higher anxiety scores were reported with female gender (P < 0.001) and alcohol usage (P = 0.04). Moderate to severe insomnia was associated with single (P = 0.02) and divorced marital status (P = 0.003), university education (P < 0.001), consumption of caffeinated beverages (P = 0.02) and energy drinks (P = 0.03). Higher depression scores were associated with status of being the only person working at home (P = 0.01), family income more than 500 USD (P = 0.008), multiple insurance plans (P = 0.01), and contact with a confirmed COVID-19 case (P = 0.01). Conclusions The findings of this study demonstrate the considerable impact of COVID-19 pandemic and lockdown on Lebanese young population's mental status such as anxiety, depression and insomnia. Further follow-up studies are warranted to assess the long-term mental effects that can be imposed by the pandemic.
Collapse
|
154
|
Luo Z, Zhu C, Ruan Z, Cui X, Shereen MA, Pan P, Huang J, Wang F, Su H, Xia Y, Wu J. Longitudinal Characterization of Cytokine Overproduction: A Case Report in Critically Ill COVID-19 Patients With Hyperinflammation in Bronchoalveolar Lavage. Front Med (Lausanne) 2021; 8:690523. [PMID: 34557500 PMCID: PMC8452914 DOI: 10.3389/fmed.2021.690523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022] Open
Abstract
Objectives: The longitudinal characterization and risk of poor outcomes related to cytokine overproduction in critical coronavirus disease 2019 (COVID-19) patients with hyperinflammation in bronchoalveolar lavage requires further investigation. Methods: We enrolled two critically ill patients with comorbidities diagnosed with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detected by RT-PCR during hospitalization. Clinical characteristics, longitudinal immunological, and biochemical parameters of each critical COVID-19 case were collected. Main Results: The clinical characteristics and laboratory results of each case demonstrated critical symptoms of COVID-19 with poor outcomes. Both nasopharyngeal swabs and bronchoalveolar lavage fluid (BALF) samples tested positive for SARS-CoV-2. Two patients received targeted treatments against pathogen infection and inflammation in addition to interventional therapies, except for Patient 2, who received an additional artificial liver system treatment. Hyperinflammation with a dominantly high level of IL-6 was observed in BALF samples from both critical cases with decreased T cell populations. High levels of cytokines and pathological parameters were successively maintained in Patient 1, but rapidly reduced at the late treatment stage in Patient 2. The outcome of Patient 1 is death, whereas the outcome of Patient 2 is recovery. Conclusions: This case report suggests that a high risk of poor outcomes was related to a heavily hyperinflammatory milieu in both the blood and lungs of critical COVID-19 patients. The artificial liver intervention on cytokines overproduction might be beneficial for the recovery of critical COVID-19 patients as a reliable therapy that can be coordinated with targeted treatments, which ought to be further tested in adequately designed and powered clinical trials.
Collapse
Affiliation(s)
- Zhen Luo
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihui Ruan
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Xianghua Cui
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Muhammad Adnan Shereen
- State Key Laboratory of Virology, College of Life Science, Wuhan University, Wuhan, China
| | - Pan Pan
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Jingtao Huang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hanwen Su
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuchen Xia
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- State Key Laboratory of Virology, College of Life Science, Wuhan University, Wuhan, China
| |
Collapse
|
155
|
Fields R, Humphrey L, Flynn-Primrose D, Mohammadi Z, Nahirniak M, Thommes E, Cojocaru M. Age-stratified transmission model of COVID-19 in Ontario with human mobility during pandemic's first wave. Heliyon 2021; 7:e07905. [PMID: 34514179 PMCID: PMC8419869 DOI: 10.1016/j.heliyon.2021.e07905] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/10/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
In this work, we employ a data-fitted compartmental model to visualize the progression and behavioral response to COVID-19 that match provincial case data in Ontario, Canada from February to June of 2020. This is a "rear-view mirror" glance at how this region has responded to the 1st wave of the pandemic, when testing was sparse and NPI measures were the only remedy to stave off the pandemic. We use an SEIR-type model with age-stratified subpopulations and their corresponding contact rates and asymptomatic rates in order to incorporate heterogeneity in our population and to calibrate the time-dependent reduction of Ontario-specific contact rates to reflect intervention measures in the province throughout lockdown and various stages of social-distancing measures. Cellphone mobility data taken from Google, combining several mobility categories, allows us to investigate the effects of mobility reduction and other NPI measures on the evolution of the pandemic. Of interest here is our quantification of the effectiveness of Ontario's response to COVID-19 before and after provincial measures and our conclusion that the sharp decrease in mobility has had a pronounced effect in the first few weeks of the lockdown, while its effect is harder to infer once other NPI measures took hold.
Collapse
Affiliation(s)
- R. Fields
- Department of Mathematics and Statistics, University of Guelph, Canada
| | - L. Humphrey
- Department of Mathematics and Statistics, University of Guelph, Canada
| | - D. Flynn-Primrose
- Department of Mathematics and Statistics, University of Guelph, Canada
| | - Z. Mohammadi
- Department of Mathematics and Statistics, University of Guelph, Canada
| | - M. Nahirniak
- Department of Mathematics and Statistics, University of Guelph, Canada
| | | | - M.G. Cojocaru
- Department of Mathematics and Statistics, University of Guelph, Canada
| |
Collapse
|
156
|
Yang Y, Cao M, Cheng L, Zhai K, Zhao X, De Vos J. Exploring the relationship between the COVID-19 pandemic and changes in travel behaviour: A qualitative study. TRANSPORTATION RESEARCH INTERDISCIPLINARY PERSPECTIVES 2021; 11:100450. [PMID: 34568810 PMCID: PMC8452907 DOI: 10.1016/j.trip.2021.100450] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/10/2021] [Accepted: 08/15/2021] [Indexed: 05/28/2023]
Abstract
During the COVID-19 crisis, a series of measures were taken to restrict travel and social activities outside the home in order to curb the pandemic and ameliorate its negative effects. These unprecedented measures have had a profound impact on the number and purposes of trips and modes of travel. In China, although the pandemic is now generally under control and transport availability has returned to nearly normal, the extent of the changes in travel behaviour wrought during and after the pandemic still remains unclear. Therefore, the aim of this paper is to investigate the differences in individual travel behaviours during and after the COVID-19 pandemic, using Huzhou as an example. Semi-structured interviews were used to examine the influence of COVID-19 on the travel behaviour and perceptions of different groups. The results indicate that, initially, travel demand was greatly reduced. Second, decreased travel reduced participation in activities, which can have adverse effects on people's health as well as their subjective well-being. Third, the degree and duration of such impacts varied from person to person. Students, lower income cohorts, groups living in small communities with insufficient green spaces, and those working in tourism, catering, informal businesses and transport-related sectors were more vulnerable than others. Policymakers, urban and transport planners should therefore pay attention to the social inequities that arise from unequal access to transport and heterogeneity between individuals. Additionally, public transport systems require further development to promote social cohesion.
Collapse
Affiliation(s)
- Yilin Yang
- Bartlett School of Planning, University College London, London WC1H 0NN, United Kingdom
| | - Mengqiu Cao
- School of Architecture and Cities, University of Westminster, London NW1 5LS, United Kingdom
- Department of Statistics, London School of Economics and Political Science, London WC2A 2AE, United Kingdom
| | - Long Cheng
- Geography Department, Ghent University, Ghent 9000, Belgium
| | - Keyu Zhai
- School of Foreign Studies, China University of Mining and Technology, Xuzhou 223800, PR China
| | - Xu Zhao
- Faculty of Business, University of Greenwich, London SE10 9LS, United Kingdom
- Beijing Transport Institute, Beijing 100053, PR China
| | - Jonas De Vos
- Bartlett School of Planning, University College London, London WC1H 0NN, United Kingdom
| |
Collapse
|
157
|
Trend and prediction of COVID-19 outbreak in Iran: SEIR and ANFIS model. POLISH JOURNAL OF MEDICAL PHYSICS AND ENGINEERING 2021. [DOI: 10.2478/pjmpe-2021-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Background: Mathematical and predictive modeling approaches can be used in COVID-19 crisis to forecast the trend of new cases for healthcare management purposes. Given the COVID-19 disease pandemic, the prediction of the epidemic trend of this disease is so important.
Methods: We constructed an SEIR (Susceptible-Exposed-Infected-Recovered) model on the COVID-19 outbreak in Iran. We estimated model parameters by the data on notified cases in Iran in the time window 1/22/2020 – 20/7/2021. Global sensitivity analysis is performed to determine the correlation between epidemiological variables and SEIR model parameters and to assess SEIR model robustness against perturbation to parameters. We Combined Adaptive Neuro-Fuzzy Inference System (ANFIS) as a rigorous time series prediction approach with the SEIR model to predict the trend of COVID-19 new cases under two different scenarios including social distance and non-social distance.
Results: The SEIR and ANFIS model predicted new cases of COVID-19 for the period February 7, 2021, till August 7, 2021. Model predictions in the non-social distancing scenario indicate that the corona epidemic in Iran may recur as an immortal oscillation and Iran may undergo a recurrence of the third peak.
Conclusion: Combining parametrized SEIR model and ANFIS is effective in predicting the trend of COVID-19 new cases in Iran.
Collapse
|
158
|
Zhang Z, Liu Q, Sun Y, Li J, Liu J, Pan R, Cao L, Chen X, Li Y, Zhang Y, Xu K, Guo D, Zhou L, Lan K, Chen Y. Live attenuated coronavirus vaccines deficient in N7-Methyltransferase activity induce both humoral and cellular immune responses in mice. Emerg Microbes Infect 2021; 10:1626-1637. [PMID: 34365904 PMCID: PMC8381960 DOI: 10.1080/22221751.2021.1964385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Coronaviruses (CoVs) can infect a variety of hosts, including humans, livestock and companion animals, and pose a serious threat to human health and the economy. The current COVID-19 pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has killed millions of people. Unfortunately, effective treatments for CoVs infection are still lacking, suggesting the importance of coronavirus vaccines. Our previous work showed that CoV nonstuctural protein 14 (nsp14) functions as (guanine-N7)-methyltransferase (N7-MTase), which is involved in RNA cap formation. Moreover, we found that N7-MTase is well conserved among different CoVs and is a universal target for developing antivirals against CoVs. Here, we show that N7-MTase of CoVs can be an ideal target for designing live attenuated vaccines. Using murine hepatitis virus strain A59 (MHV-A59), a representative and well-studied model of coronaviruses, we constructed N7-MTase-deficient recombinant MHV D330A and Y414A. These two mutants are highly attenuated in mice and exhibit similar replication efficiency to the wild-type (WT) virus in the cell culture. Furthermore, a single dose immunization of D330A or Y414A can induce long-term humoral immune responses and robust CD4+ and CD8+ T cell responses, which can provide full protection against the challenge of a lethal-dose of MHV-A59. Collectively, this study provides an ideal strategy to design live attenuated vaccines for coronavirus by abolishing viral RNA N7-MTase activity. This approach may apply to other RNA viruses that encode their own conservative viral N7-methyltransferase.
Collapse
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Qianyun Liu
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Ying Sun
- School of Chinese Medicine (Zhongjing School), Henan Univesity of Chinese Medicne, Zhengzhou, People's Republic of China
| | - Jiali Li
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Jiejie Liu
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Ruangang Pan
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Liu Cao
- Center for Infection & Immunity Study, School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xianying Chen
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yingjian Li
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yuzhen Zhang
- Animal Bio-Safety Level III Laboratory at Center for Animal Experiments, Wuhan University School of Medicine, Wuhan, People's Republic of China
| | - Ke Xu
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Deyin Guo
- Center for Infection & Immunity Study, School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Li Zhou
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China.,Animal Bio-Safety Level III Laboratory at Center for Animal Experiments, Wuhan University School of Medicine, Wuhan, People's Republic of China
| | - Ke Lan
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yu Chen
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
159
|
Zhang Y, Wang Y, Wang F, Xu X, Wu X. Numerical investigation on the transmission and dispersion of aerosols in a 7-stories building drainage system. BUILDING AND ENVIRONMENT 2021; 201:108009. [PMID: 34075270 PMCID: PMC8161830 DOI: 10.1016/j.buildenv.2021.108009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 05/08/2023]
Abstract
In previous reports, the positive SARS-CoV-2 nucleic acid was detected in the fecal samples from confirmed pneumonia patients, suggesting a high probability of the fecal-oral transmission. To date, however, the role played by the drainage system of a high-rise building in the virus transmission is not clear and especially studies on the dynamics mechanism behind is scarce. From this point of view, the present work carries out a computational fluid dynamics (CFD) modeling to investigate the effects of the water seal effectiveness of the floor drain, the negative/positive pressures (P 1 , P 2 ) in the bathroom, temperature differential (ΔT), outside wind velocity (v), the piping fittings and the negative pressure at the cowl (P 3 ) on the transmission of the virus-laden aerosol particles in a drainage system of a typical 7-storeys residential building. The CFD models are first validated by the previous experiments in literature. Numerical results imply that the drainage system might play an essential role to the virus transmission. Then, results indicate that, the leakage risk of the aerosol particles via the floor drain with inefficient water-seal (UFD) mainly exists at the upper floors above the neutral pressure level (NPL). Besides, the negative and positive pressures at the bathroom can enhance and reduce the exposure risk of aerosol particles from the corresponding UFD, respectively. The ΔT increasing does not modify the location of the NPL. Moreover, the exposure risk of aerosol particles can be effectively avoided by the well water-sealed floor drains and/or the presence of a proper negative pressure at the cowl on the top floor. Finally, based on the CFD results, several protection suggestions on the drainage system and human activities are provided.
Collapse
Affiliation(s)
- Yuan Zhang
- School of Environment Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yikang Wang
- School of Environment Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Feifei Wang
- School of Environment Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xinhua Xu
- School of Environment Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaohui Wu
- School of Environment Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
160
|
Speranta A, Manoliu L, Sogor C, Mernea M, Seiman CD, Seiman DD, Chifiriuc C. Structural bioinformatics used to predict the protein targets of remdesivir and flavones in SARS-CoV-2 infection. Med Chem 2021; 18:382-393. [PMID: 34365955 DOI: 10.2174/1573406417666210806154129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/30/2020] [Accepted: 03/21/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND During the current SARS-CoV-2 pandemic, the identification of effective antiviral drugs is crucial. Unfortunately, no specific treatment or vaccine is available to date. OBJECTIVE Here, we aimed to predict the interactions between SARS-CoV-2 proteins and protein targets from the human body for some flavone molecules (kaempferol, morin, pectolinarin, myricitrin, and herbacetin) in comparison to synthetic compounds (hydroxychloroquine, remdesivir, ribavirin, ritonavir, AMD-070, favipiravir). METHODS Using MOE software and advanced bioinformatics and cheminformatics portals, we conducted an extensive analysis based on various structural and functional features of compounds, such as their amphiphilic field, flexibility, and steric features. The structural similarity analysis of natural and synthetic compounds was performed using Tanimoto coefficients. The interactions of some compounds with SARS-CoV-2 3CLprotease or RNA-dependent RNA polymerase were described using 2D protein-ligand interaction diagrams based on known crystal structures. The potential targets of considered compounds were identified using the SwissTargetPrediction web tool. RESULTS Our results showed that remdesivir, pectolinarin, and ritonavir present a strong structural similarity which may be correlated to their similar biological activity. As common molecular targets of compounds in the human body, ritonavir, kaempferol, morin, and herbacetin can activate multidrug resistance-associated proteins, while remdesivir, ribavirin, and pectolinarin appear as ligands for adenosine receptors. CONCLUSION Our evaluation recommends remdesivir, pectolinarin, and ritonavir as promising anti-SARS-CoV-2 agents.
Collapse
Affiliation(s)
- Avram Speranta
- University of Bucharest, Faculty of Biology, Department of Anatomy, Animal Physiology and Biophysics, 36-46 Bd. M. Kogalniceanu, 050107, Bucharest. Romania
| | - Laura Manoliu
- University of Bucharest, Faculty of Biology, Department of Anatomy, Animal Physiology and Biophysics, 36-46 Bd. M. Kogalniceanu, 050107, Bucharest. Romania
| | - Catalina Sogor
- University of Bucharest, Faculty of Biology, Department of Anatomy, Animal Physiology and Biophysics, 36-46 Bd. M. Kogalniceanu, 050107, Bucharest. Romania
| | - Maria Mernea
- University of Bucharest, Faculty of Biology, Department of Anatomy, Animal Physiology and Biophysics, 36-46 Bd. M. Kogalniceanu, 050107, Bucharest. Romania
| | - Corina Duda Seiman
- West University of Timisoara, Faculty of Chemistry, Biology, Geography, Department of Chemistry and Biology, 16 Pestalozzi, 300115, Timisoara. Romania
| | - Daniel Duda Seiman
- Victor Babes University of Medicine and Pharmacy Timisoara, 2 Piata Eftimie Murgu, 300041, Timisoara. Romania
| | - Carmen Chifiriuc
- University of Bucharest, Faculty of Biology, Department of Botanics and Microbiology, 1-3 Aleea Portocalelor Str, 60101 Bucharest. Romania
| |
Collapse
|
161
|
Chatterjee S, Mishra S, Chowdhury KD, Ghosh CK, Saha KD. Various theranostics and immunization strategies based on nanotechnology against Covid-19 pandemic: An interdisciplinary view. Life Sci 2021; 278:119580. [PMID: 33991549 PMCID: PMC8114615 DOI: 10.1016/j.lfs.2021.119580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/12/2021] [Accepted: 04/25/2021] [Indexed: 02/07/2023]
Abstract
COVID-19 pandemic is still a major risk to human civilization. Besides the global immunization policy, more than five lac new cases are documented everyday. Some countries newly implement partial/complete nationwid lockdown to mitigate recurrent community spreading. To avoid the new modified stain of SARS-CoV-2 spreading, some countries imposed any restriction on the movement of the citizens within or outside the country. Effective economical point of care diagnostic and therapeutic strategy is vigorously required to mitigate viral spread. Besides struggling with repurposed medicines, new engineered materials with multiple unique efficacies and specific antiviral potency against SARS-CoV-2 infection may be fruitful to save more lives. Nanotechnology-based engineering strategy sophisticated medicine with specific, effective and nonhazardous delivery mechanism for available repurposed antivirals as well as remedial for associated diseases due to malfeasance in immuno-system e.g. hypercytokinaemia, acute respiratory distress syndrome. This review will talk about gloomy but critical areas for nanoscientists to intervene and will showcase about the different laboratory diagnostic, prognostic strategies and their mode of actions. In addition, we speak about SARS-CoV-2 pathophysiology, pathogenicity and host specific interation with special emphasis on altered immuno-system and also perceptualized, copious ways to design prophylactic nanomedicines and next-generation vaccines based on recent findings.
Collapse
Affiliation(s)
- Sujan Chatterjee
- Molecular Biology and Tissue Culture Laboratory, Post Graduate Department of Zoology, Vidyasagar College, Kolkata-700006, India
| | - Snehasis Mishra
- Cancer and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata-700032, India
| | - Kaustav Dutta Chowdhury
- Cyto-genetics Laboratory, Department of Zoology, Rammohan College, 102/1, Raja Rammohan Sarani, Kolkata-700009, India
| | - Chandan Kumar Ghosh
- School of Material Science and Nanotechnology, Jadavpur University, Kolkata-700032, India.
| | - Krishna Das Saha
- Cancer and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata-700032, India.
| |
Collapse
|
162
|
Chen Z, Xu W, Ma W, Shi X, Li S, Hao M, Fang Y, Zhang L. Clinical laboratory evaluation of COVID-19. Clin Chim Acta 2021; 519:172-182. [PMID: 33939954 PMCID: PMC8086377 DOI: 10.1016/j.cca.2021.04.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 01/08/2023]
Abstract
COVID-19, caused by SARS-CoV-2, is a highly infectious disease, and clinical laboratory detection has played important roles in its diagnosis and in evaluating progression of the disease. Nucleic acid amplification testing or gene sequencing can serve as pathogenic evidence of COVID-19 diagnosing for clinically suspected cases, and dynamic monitoring of specific antibodies (IgM, IgA, and IgG) is an effective complement for false-negative detection of SARS-CoV-2 nucleic acid. Antigen tests to identify SARS-CoV-2 are recommended in the first week of infection, which is associated with high viral loads. Additionally, many clinical laboratory indicators are abnormal as the disease evolves. For example, from moderate to severe and critical cases, leukocytes, neutrophils, and the neutrophil-lymphocyte ratio increase; conversely, lymphocytes decrease progressively but are over activated. LDH, AST, ALT, CK, high-sensitivity troponin I, and urea also increase progressively, and increased D-dimer is an indicator of severe disease and an independent risk factor for death. Severe infection leads to aggravation of inflammation. Inflammatory biomarkers and cytokines, such as CRP, SAA, ferritin, IL-6, and TNF-α, increase gradually. High-risk COVID-19 patients with severe disease, such as the elderly and those with underlying diseases (cardiovascular disease, diabetes, chronic respiratory disease, hypertension, obesity, and cancer), should be monitored dynamically, which will be helpful as an early warning of serious diseases.
Collapse
Affiliation(s)
- Zhufeng Chen
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, PR China
| | - Wanju Xu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, PR China
| | - Wanshan Ma
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, PR China
| | - Xiaohong Shi
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, PR China
| | - Shuomin Li
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, PR China
| | - Mingju Hao
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, PR China
| | - Yuanxun Fang
- Rural Vitalization Research Institute of Qilu, Shandong Agriculture and Engineering University, Jinan, PR China
| | - Li Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, PR China.
| |
Collapse
|
163
|
RBM15-mediated N6-methyladenosine modification affects COVID-19 severity by regulating the expression of multitarget genes. Cell Death Dis 2021; 12:732. [PMID: 34301919 PMCID: PMC8298984 DOI: 10.1038/s41419-021-04012-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/08/2023]
Abstract
Severe coronavirus disease 2019 (COVID-19) is characterized by symptoms of lymphopenia and multiorgan damage, but the underlying mechanisms remain unclear. To explore the function of N6-methyladenosine (m6A) modifications in COVID-19, we performed microarray analyses to comprehensively characterize the m6A epitranscriptome. The results revealed distinct global m6A profiles in severe and mild COVID-19 patients. Programmed cell death and inflammatory response were the major biological processes modulated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Further, RBM15, a major m6A methyltransferase, was significantly elevated and positively correlated with disease severity. Silencing RBM15 drastically reduced lymphocyte death in vitro. Knockdown of RBM15 remarkably suppressed the expression levels of multitarget genes related to programmed cell death and inflammatory response. This study shows that SARS-CoV-2 infection alters the m6A epitranscriptome of lymphocytes, particularly in the case of severe patients. RBM15 regulated host immune response to SARS-CoV-2 by elevating m6A modifications of multitarget genes. These findings indicate that RBM15 can serve as a target for the treatment of COVID-19.
Collapse
|
164
|
Qasem A, Shaw AM, Elkamel E, Naser SA. Coronavirus Disease 2019 (COVID-19) Diagnostic Tools: A Focus on Detection Technologies and Limitations. Curr Issues Mol Biol 2021; 43:728-748. [PMID: 34287238 PMCID: PMC8929116 DOI: 10.3390/cimb43020053] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/24/2022] Open
Abstract
The ongoing coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a severe threat to human health and the global economy and has resulted in overwhelming stress on health care systems worldwide. Despite the global health catastrophe, especially in the number of infections and fatalities, the COVID-19 pandemic has also revolutionized research and discovery with remarkable success in diagnostics, treatments, and vaccine development. The use of many diagnostic methods has helped establish public health guidelines to mitigate the spread of COVID-19. However, limited information has been shared about these methods, and there is a need for the scientific community to learn about these technologies, in addition to their sensitivity, specificity, and limitations. This review article is focused on providing insights into the major methods used for SARS-CoV-2 detection. We describe in detail the core principle of each method, including molecular and serological approaches, along with reported claims about the rates of false negatives and false positives, the types of specimens needed, and the level of technology and the time required to perform each test. Although this study will not rank or prioritize these methods, the information will help in the development of guidelines and diagnostic protocols in clinical settings and reference laboratories.
Collapse
Affiliation(s)
| | | | | | - Saleh A. Naser
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4110 Libra Drive, Orlando, FL 32816, USA; (A.Q.); (A.M.S.); (E.E.)
| |
Collapse
|
165
|
Abstract
The occurrence of the COVID-19 pandemic caused by the SARS-CoV-2 virus since the end of 2019 has significantly affected the entire world. Now SARS-CoV-2 diagnostic tests are not only required for screening of suspected infected people for their medical treatment, but have also become a routine diagnosis for all people at a place where new cases have emerged in order to control spread of the disease from that region. For these reasons, sensitive methods for detection of SARS-CoV-2 are highly needed in order to avoid undetected infections. In addition, sample pooling that uses pooled specimens has been routinely employed as a time- and cost-effective strategy for community monitoring of SARS-CoV-2. In this regard, the content of each viral RNA sample of an individual will be further diluted in detection; therefore, higher detection sensitivity would be rather preferred. Among nucleic acid-based detection methods, isothermal nucleic acid amplifications are considered quite promising because they typically take less time to complete the test (even less than 20 min) without the need of thermal cycles. Hence, it does not necessitate the use of highly costly real-time PCR machines. According to recently published isothermal nucleic acid amplification methods, the reverse transcription recombinase polymerase amplification (RT-RPA) approach shows outstanding sensitivity with up to single-copy sensitivity in a test reaction. This chapter will mainly focus on how to employ RT-RPA technology to sensitively detect SARS-CoV-2 RNA. Besides, recently published RT-RPA based detection methods will be summarized and compared regarding their detection parameters and the primers and probes being used. In addition, we will also highlight the key considerations on how to design an ultrasensitive RT-RPA assay and the precautions needed to conduct the assay. Moreover, based on our recent report, we will also detail the methods we developed to detect SARS-CoV-2 RNA using modified RT-RPA, or RT-ERA, with single-copy sensitivity and the possible extensions beyond this method.
Collapse
Affiliation(s)
- Xi Chen
- The HIT Center for Life Sciences (HCLS), Harbin Institute of Technology, Harbin, Heilongjiang Province, People's Republic of China
| | - Simin Xia
- The HIT Center for Life Sciences (HCLS), Harbin Institute of Technology, Harbin, Heilongjiang Province, People's Republic of China
| |
Collapse
|
166
|
Li XL, Li T, Du QC, Yang L, He KL. Effects of angiotensin receptor blockers and angiotensin-converting enzyme inhibitors on COVID-19. World J Clin Cases 2021; 9:5462-5469. [PMID: 34307600 PMCID: PMC8281418 DOI: 10.12998/wjcc.v9.i20.5462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/30/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The World Health Organization reported that 28637952 people worldwide had been infected with severe acute respiratory syndrome coronavirus 2, the causative agent of coronavirus disease 2019 (COVID-19), by September 13.
AIM The aim was to investigate whether long-term use of renin-angiotensin-aldosterone system (RAAS) inhibitors for the treatment of hypertension aggravates the performance of COVID-19 patients with hypertension.
METHODS This was a retrospective analysis of lung computed tomography (CT) data and laboratory values of COVID-19 patients with hypertension who were admitted to Huoshenshan Hospital, Wuhan, Hubei Province, between February 18 and March 31, 2020. Patients were divided into two groups. Group A included 19 people who were long-term users of RAAS inhibitors for hypertension; and group B included 28 people who were randomly selected from the database and matched with group A by age, sex, basic diseases, and long-term use of other antihypertensive drugs. All patients underwent a series of CT and laboratory tests. We compared the most severe CT images of the two groups and the laboratory examination results within 2 d of the corresponding CT images.
RESULTS The time until the most severe CT images from the onset of COVID-19 was 30.37 ± 14.25 d group A and 26.50 ± 11.97 d in group B. The difference between the two groups was not significant (t = 1.01, P = 0.32). There were no significant differences in blood laboratory values, C-reactive protein, markers of cardiac injury, liver function, or kidney function between the two groups. There was no significant difference in the appearance of the CT images between the two groups. The semiquantitative scores of each involved lobe were 11.84 ± 5.88 in group A and 10.36 ± 6.04 group B. The difference was not significantly different (t = 0.84, P = 0.41).
CONCLUSION Chest CT is an important imaging tool to monitor the characteristics of COVID-19 and the degree of lung injury. Chronic use of RAAS inhibitors is not related to the severity of COVID-19, and it does not worsen the clinical process.
Collapse
Affiliation(s)
- Xiao-Long Li
- Department of Diagnostic Radiology, PLA General Hospital, Beijing 100853, China
| | - Tao Li
- Department of Radiology, The First Medical Center of PLA General Hospital, Beijing 100853, China
| | - Qi-Cong Du
- Department of Diagnostic Radiology, The First Medical Center of PLA General Hospital, Beijing 100853, China
| | - Li Yang
- Department of Radiology, The First Medical Center of PLA General Hospital, Beijing 100853, China
| | - Kun-Lun He
- Translational Medical Research Center, Key Laboratory of Ministry of Industry and Information Technology of Biomedical Engineering and Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
167
|
Chen X, Zhou Q, Li S, Yan H, Chang B, Wang Y, Dong S. Rapid and Visual Detection of SARS-CoV-2 Using Multiplex Reverse Transcription Loop-Mediated Isothermal Amplification Linked With Gold Nanoparticle-Based Lateral Flow Biosensor. Front Cell Infect Microbiol 2021; 11:581239. [PMID: 34336708 PMCID: PMC8316814 DOI: 10.3389/fcimb.2021.581239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 06/29/2021] [Indexed: 12/28/2022] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus that has caused the outbreak of coronavirus disease 2019 (COVID-19) all over the world. In the absence of appropriate antiviral drugs or vaccines, developing a simple, rapid, and reliable assay for SARS-CoV-2 is necessary for the prevention and control of the COVID-19 transmission. Methods A novel molecular diagnosis technique, named multiplex reverse transcription loop-mediated isothermal amplification, that has been linked to a nanoparticle-based lateral flow biosensor (mRT-LAMP-LFB) was applied to detect SARS-CoV-2 based on the SARS-CoV-2 RdRp and N genes, and the mRT-LAMP products were analyzed using nanoparticle-based lateral flow biosensor. The mRT-LAMP-LFB amplification conditions, including the target RNA concentration, amplification temperature, and time were optimized. The sensitivity and specificity of the mRT-LAMP-LFB method were tested in the current study, and the mRT-LAMP-LFB assay was applied to detect the SARS-CoV-2 virus from clinical samples and artificial sputum samples. Results The SARS-CoV-2 specific primers based on the RdRp and N genes were valid for the establishment of mRT-LAMP-LFB assay to detect the SARS-CoV-2 virus. The multiple-RT-LAMP amplification condition was optimized at 63°C for 30 min. The full process, including reaction preparation, viral RNA extraction, RT-LAMP, and product identification, could be achieved in 80 min. The limit of detection (LoD) of the mRT-LAMP-LFB technology was 20 copies per reaction. The specificity of mRT-LAMP-LFB detection was 100%, and no cross-reactions to other respiratory pathogens were observed. Conclusion The mRT-LAMP-LFB technique developed in the current study is a simple, rapid, and reliable method with great specificity and sensitivity when it comes to identifying SARS-CoV-2 virus for prevention and control of the COVID-19 disease, especially in resource-constrained regions of the world.
Collapse
Affiliation(s)
- Xu Chen
- The Second Clinical College, Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Central Laboratory of the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Laboratory of Bacterial Infectious Disease of Experimental Centre, Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, China
| | - Qingxue Zhou
- Clinical Laboratory, Hangzhou Women's Hospital, Hangzhou, China
| | - Shijun Li
- Laboratory of Bacterial Infectious Disease of Experimental Centre, Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, China
| | - Hao Yan
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Bingcheng Chang
- The Second Clinical College, Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Central Laboratory of the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yuexia Wang
- TCM Research Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shilei Dong
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
168
|
Salleh MZ, Derrick JP, Deris ZZ. Structural Evaluation of the Spike Glycoprotein Variants on SARS-CoV-2 Transmission and Immune Evasion. Int J Mol Sci 2021; 22:7425. [PMID: 34299045 PMCID: PMC8306177 DOI: 10.3390/ijms22147425] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents significant social, economic and political challenges worldwide. SARS-CoV-2 has caused over 3.5 million deaths since late 2019. Mutations in the spike (S) glycoprotein are of particular concern because it harbours the domain which recognises the angiotensin-converting enzyme 2 (ACE2) receptor and is the target for neutralising antibodies. Mutations in the S protein may induce alterations in the surface spike structures, changing the conformational B-cell epitopes and leading to a potential reduction in vaccine efficacy. Here, we summarise how the more important variants of SARS-CoV-2, which include cluster 5, lineages B.1.1.7 (Alpha variant), B.1.351 (Beta), P.1 (B.1.1.28/Gamma), B.1.427/B.1.429 (Epsilon), B.1.526 (Iota) and B.1.617.2 (Delta) confer mutations in their respective spike proteins which enhance viral fitness by improving binding affinity to the ACE2 receptor and lead to an increase in infectivity and transmission. We further discuss how these spike protein mutations provide resistance against immune responses, either acquired naturally or induced by vaccination. This information will be valuable in guiding the development of vaccines and other therapeutics for protection against the ongoing coronavirus disease 2019 (COVID-19) pandemic.
Collapse
Affiliation(s)
- Mohd Zulkifli Salleh
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian 16150, Malaysia;
| | - Jeremy P. Derrick
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester M13 9PL, UK;
| | - Zakuan Zainy Deris
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian 16150, Malaysia;
| |
Collapse
|
169
|
Raman R, Patel KJ, Ranjan K. COVID-19: Unmasking Emerging SARS-CoV-2 Variants, Vaccines and Therapeutic Strategies. Biomolecules 2021; 11:993. [PMID: 34356617 PMCID: PMC8301790 DOI: 10.3390/biom11070993] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of the coronavirus disease 2019 (COVID-19) pandemic, which has been a topic of major concern for global human health. The challenge to restrain the COVID-19 pandemic is further compounded by the emergence of several SARS-CoV-2 variants viz. B.1.1.7 (Alpha), B.1.351 (Beta), P1 (Gamma) and B.1.617.2 (Delta), which show increased transmissibility and resistance towards vaccines and therapies. Importantly, there is convincing evidence of increased susceptibility to SARS-CoV-2 infection among individuals with dysregulated immune response and comorbidities. Herein, we provide a comprehensive perspective regarding vulnerability of SARS-CoV-2 infection in patients with underlying medical comorbidities. We discuss ongoing vaccine (mRNA, protein-based, viral vector-based, etc.) and therapeutic (monoclonal antibodies, small molecules, plasma therapy, etc.) modalities designed to curb the COVID-19 pandemic. We also discuss in detail, the challenges posed by different SARS-CoV-2 variants of concern (VOC) identified across the globe and their effects on therapeutic and prophylactic interventions.
Collapse
Affiliation(s)
- Renuka Raman
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA;
| | - Krishna J. Patel
- Mount Sinai Innovation Partners, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Kishu Ranjan
- School of Medicine, Yale University, New Haven, CT 06519, USA
| |
Collapse
|
170
|
Bulut D, Sefa Sayar M, Koparal B, Cem Bulut E, Çelik S. Which of us were more affected by the pandemic? The psychiatric impacts of the COVID-19 pandemic on healthcare professionals in the province where the first quarantine units were established in Turkey. Int J Clin Pract 2021; 75:e14235. [PMID: 33864403 PMCID: PMC8250300 DOI: 10.1111/ijcp.14235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/11/2021] [Accepted: 04/10/2021] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Psychiatric problems, such as stress and anxiety disorders, are encountered amongst healthcare professionals fighting epidemics. Considering that COVID-19 suddenly became a pandemic and healthcare professionals have not had access to sufficient information, it is a fact that healthcare professionals have been affected on a large scale. Heavy workloads, insufficient equipment and anxiety over families increase this impact. We aimed to investigate the extent to which healthcare professionals have been psychologically affected by COVID-19 and related factors. METHODOLOGY Data obtained through questionnaires completed by 348 healthcare professionals working during the COVID-19 pandemic and 350 participants who are in the control group were investigated. The Impact of Event Scale-revised (IES-R) for post-traumatic stress disorder (PTSD) and the Severity Index (ISI) for insomnia were used. Differences regarding gender, occupation, age group, marital status and sub-groups were statistically analysed. RESULTS Of the 348 healthcare professionals, 176 (50.6%) were women and 172 (49.4%) men, while 190 (54.6%) were doctors and 158 (45.4%) nurses. The incidence of PTSD was statistically significantly higher in the healthcare professionals group than in the control group (P < .001). The incidence of PTSD was statistically significantly higher amongst nurses (P = .001), women (P = .002) and those who were married (P = .007). Both PTSD and insomnia were found to be statistically significantly higher amongst those working in the "area of final diagnosis" (P = .016 and P = .002, respectively). CONCLUSIONS The determination of the groups most affected amongst professionals working in epidemics is important for the planning of in-service training and psychological support studies. If the fight against pandemics includes health teams with strong psychological grounding, it leads to qualified medical care for patients.
Collapse
Affiliation(s)
- Dilek Bulut
- Department of Infectious Diseases and Clinical MicrobiologyVan Training and Research HospitalVanTurkey
| | - Merve Sefa Sayar
- Department of Infectious Diseases and Clinical MicrobiologyVan Training and Research HospitalVanTurkey
| | - Buket Koparal
- Department of PsychiatryRecep Tayyip Erdogan University Training and Research HospitalRizeTurkey
| | - Ender Cem Bulut
- Department of UrologyVan Training and Research HospitalVanTurkey
| | - Sebahattin Çelik
- Department of General SurgeryVan Training and Research HospitalVanTurkey
| |
Collapse
|
171
|
Singhal S, Turner PE. Effects of historical co-infection on host shift abilities of exploitative and competitive viruses. Evolution 2021; 75:1878-1888. [PMID: 33969482 PMCID: PMC12058955 DOI: 10.1111/evo.14263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 04/03/2021] [Accepted: 04/16/2021] [Indexed: 12/29/2022]
Abstract
Rapid evolution contributes to frequent emergence of RNA viral pathogens on novel hosts. However, accurately predicting which viral genotypes will emerge has been elusive. Prior work with lytic RNA bacteriophage ɸ6 (family Cystoviridae) suggested that evolution under low multiplicity of infection (MOI; proportion of viruses to susceptible cells) selected for greater host exploitation, while evolution under high MOI selected for better intracellular competition against co-infecting viruses. We predicted that phage genotypes that had experienced 300 generations of low MOI ecological history would be relatively advantaged in initial growth on two novel hosts. We inferred viral growth through changes in host population density, specifically by analyzing five attributes of growth curves of infected bacteria. Despite equivalent growth of evolved viruses on the original host, low MOI evolved clones were generally advantaged relative to high MOI clones in exploiting novel hosts. However, the specific attributes of growth curves that supported their advantage differed by host, indicating interactions between both viral and host genotype. Although there will be host specificity in viral growth, we suggest based on infectivity differences of viruses from high versus low MOI histories that prior MOI selection can later affect emergence potential.
Collapse
Affiliation(s)
- Sonia Singhal
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan 48824, USA
- Current affiliation: Department of Biological Sciences, San José Sate University, San José, California 95192, USA
| | - Paul E. Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan 48824, USA
- Graduate Program in Microbiology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
172
|
Schukraft S, Magnin JL, Cook S. Cardiovascular Manifestations of COVID-19: Insights into a Single-Center Experience. TH OPEN 2021; 5:e329-e334. [PMID: 34568743 PMCID: PMC8459177 DOI: 10.1055/s-0041-1731775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
Background Since December 2019, an emerging outbreak of novel coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The aim of the present report is to describe a population with elevated levels of high-sensitive cardiac troponin T (hs-cTnT) and report on their management during the pandemic of COVID-19. Methods In this retrospective cohort, we collected data from all patients with hs-cTnT levels of >50 ng/mL admitted to Fribourg Hospital between February 15, 2020, and April 15, 2020. The primary diagnosis for troponin elevation was recorded. Echocardiographic, electrocardiographic, and coronary angiographic data were analyzed for signs of myocardial ischemia, infarction, or other cardiomyopathies. In-hospital follow-up was performed for deaths from all causes and for cardiac deaths. Propensity score matching was used in a subgroup analysis to match COVID-19 and non-COVID-19 patients ( n = 21 per group). Results Overall, 215 patients with high hs-cTnT levels were enrolled. The median age was 75 [65-83] years and 30% were women. 21 patients (10%) were diagnosed with COVID-19. Of these, acute myocardial injury related to COVID-19 was the most commonly described cardiovascular manifestation during the pandemic peak. Median troponin values were not different between COVID-19 patients and non-COVID-19 patients (94 vs. 137, p = 0.14). The number of cardiological examinations was globally low (echocardiography 51% and coronary angiography 52%) in the context of the pandemic. Patients in the COVID-19 group underwent significantly less echocardiographic examinations (19 vs. 55%, p ≤ 0.01) and coronary angiographies (5 vs. 58%, p ≤ 0.01) than non-COVID-19 patients. Overall mortality in patient with COVID-19 and elevated troponins was very high, as 38% of patients died during hospitalization including 14% for cardiac death. This trend was confirmed in the propensity score-matched analysis. Conclusion Interpretation of troponins during the COVID-19 pandemic was complicated due to the low number of cardiovascular investigations in this context. Follow-up of patients with COVID-19 and cardiovascular events is important to assess their prognosis and to improve their care.
Collapse
Affiliation(s)
- Sara Schukraft
- Department of Cardiology, Hospital and University Fribourg, Fribourg, Switzerland
| | - Jean-Luc Magnin
- Department of Cardiology, Hospital and University Fribourg, Fribourg, Switzerland
| | - Stéphane Cook
- Department of Cardiology, Hospital and University Fribourg, Fribourg, Switzerland
| |
Collapse
|
173
|
Yasumizu Y, Hara A, Sakaguchi S, Ohkura N. VIRTUS: a pipeline for comprehensive virus analysis from conventional RNA-seq data. Bioinformatics 2021; 37:1465-1467. [PMID: 33017003 PMCID: PMC7745649 DOI: 10.1093/bioinformatics/btaa859] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/03/2020] [Accepted: 09/21/2020] [Indexed: 12/30/2022] Open
Abstract
Summary The possibility that RNA transcripts from clinical samples contain plenty of virus RNAs has not been pursued actively so far. We here developed a new tool for analyzing virus-transcribed mRNAs, not virus copy numbers, in the data of bulk and single-cell RNA-sequencing of human cells. Our pipeline, named VIRTUS (VIRal Transcript Usage Sensor), was able to detect 762 viruses including herpesviruses, retroviruses and even SARS-CoV-2 (COVID-19), and quantify their transcripts in the sequence data. This tool thus enabled simultaneously detecting infected cells, the composition of multiple viruses within the cell, and the endogenous host-gene expression profile of the cell. This bioinformatics method would be instrumental in addressing the possible effects of covertly infecting viruses on certain diseases and developing new treatments to target such viruses. Availability and implementation : VIRTUS is implemented using Common Workflow Language and Docker under a CC-NC license. VIRTUS is freely available at https://github.com/yyoshiaki/VIRTUS. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yoshiaki Yasumizu
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Atsushi Hara
- Department of Immunology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Shimon Sakaguchi
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Naganari Ohkura
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
174
|
Yamamoto S, Saito M, Tamura A, Prawisuda D, Mizutani T, Yotsuyanagi H. The human microbiome and COVID-19: A systematic review. PLoS One 2021; 16:e0253293. [PMID: 34161373 PMCID: PMC8221462 DOI: 10.1371/journal.pone.0253293] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/02/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Human microbiotas are communities of microorganisms living in symbiosis with humans. They play an important role in the host immune response to respiratory viral infection. However, evidence on the human microbiome and coronavirus disease (COVID-19) relationship is insufficient. The aim of this systematic literature review was to evaluate existing evidence on the association between the microbiome and COVID-19 in humans and summarize these data in the pandemic era. METHODS We conducted a systematic literature review on the association between the microbiome and COVID-19 in humans by searching PubMed, Embase, and the Cochrane Library, CINAHL, and Web of Science databases for articles in English published up to October 31, 2020. The results were analyzed qualitatively. This study is registered with PROSPERO (CRD42020195982). RESULTS Of the 543 articles identified by searching databases, 16 in line with the research objectives were eligible for qualitative review: eight sampled the microbiome using stool, four using nasopharyngeal or throat swab, three using bronchoalveolar lavage fluid, and one using lung tissue. Fecal microbiome dysbiosis and increased opportunistic pathogens were reported in COVID-19 patients. Several studies suggested the dysbiosis in the lung microbiome of COVID-19 patients with an abundance of opportunistic pathogens using lower respiratory tract samples. The association between COVID-19 severity and the human microbiome remains uncertain. CONCLUSION The human fecal and respiratory tract microbiome changed in COVID-19 patients with opportunistic pathogen abundance. Further research to elucidate the effect of alternation of the human microbiome in disease pathogenesis is warranted.
Collapse
Affiliation(s)
- Shinya Yamamoto
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Makoto Saito
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Azumi Tamura
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Diki Prawisuda
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Taketoshi Mizutani
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan,* E-mail:
| | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
175
|
Zhang J, Zhang Y, Kang JY, Chen S, He Y, Han B, Liu MF, Lu L, Li L, Yi Z, Chen L. Potential transmission chains of variant B.1.1.7 and co-mutations of SARS-CoV-2. Cell Discov 2021; 7:44. [PMID: 34127650 PMCID: PMC8203788 DOI: 10.1038/s41421-021-00282-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/15/2021] [Indexed: 02/05/2023] Open
Abstract
The presence of SARS-CoV-2 mutants, including the emerging variant B.1.1.7, has raised great concerns in terms of pathogenesis, transmission, and immune escape. Characterizing SARS-CoV-2 mutations, evolution, and effects on infectivity and pathogenicity is crucial to the design of antibody therapies and surveillance strategies. Here, we analyzed 454,443 SARS-CoV-2 spike genes/proteins and 14,427 whole-genome sequences. We demonstrated that the early variant B.1.1.7 may not have evolved spontaneously in the United Kingdom or within human populations. Our extensive analyses suggested that Canidae, Mustelidae or Felidae, especially the Canidae family (for example, dog) could be a possible host of the direct progenitor of variant B.1.1.7. An alternative hypothesis is that the variant was simply yet to be sampled. Notably, the SARS-CoV-2 whole-genome represents a large number of potential co-mutations. In addition, we used an experimental SARS-CoV-2 reporter replicon system to introduce the dominant co-mutations NSP12_c14408t, 5'UTR_c241t, and NSP3_c3037t into the viral genome, and to monitor the effect of the mutations on viral replication. Our experimental results demonstrated that the co-mutations significantly attenuated the viral replication. The study provides valuable clues for discovering the transmission chains of variant B.1.1.7 and understanding the evolutionary process of SARS-CoV-2.
Collapse
Affiliation(s)
- Jingsong Zhang
- grid.9227.e0000000119573309State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yang Zhang
- grid.8547.e0000 0001 0125 2443Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun-Yan Kang
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Shanghai, China
| | - Shuiye Chen
- grid.8547.e0000 0001 0125 2443Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yongqun He
- grid.214458.e0000000086837370Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI USA
| | - Benhao Han
- grid.9227.e0000000119573309State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Mo-Fang Liu
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Shanghai, China
| | - Lina Lu
- grid.9227.e0000000119573309State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Li Li
- grid.38142.3c000000041936754XDepartment of Genetics, Harvard Medical School, Boston, MA USA
| | - Zhigang Yi
- grid.8547.e0000 0001 0125 2443Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Luonan Chen
- grid.9227.e0000000119573309State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.440637.20000 0004 4657 8879School of Life Science and Technology, ShanghaiTech University, Shanghai, China ,grid.410726.60000 0004 1797 8419Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China ,Pazhou Lab, Guangzhou, China
| |
Collapse
|
176
|
Murgod P, Doshi P, Nimbargi R. Urine Biochemical Parameters in Predicting Severity of SARS-CoV-2 Infection: an Experience in Tertiary Care Centre in Western India. IRANIAN JOURNAL OF PATHOLOGY 2021; 16:304-309. [PMID: 34306126 PMCID: PMC8298056 DOI: 10.30699/ijp.2021.136576.2496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/17/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND & OBJECTIVE Coronavirus is an enveloped RNA virus that mainly causes respiratory infection. Real-time reverse transcriptase polymerase chain reaction (RT-PCR) test of nasopharyngeal and oropharyngeal swab is the confirmatory diagnostic test for severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) infection. The relationship between SARS-COV-2 and body fluid parameters is still not known. There have been few studies regarding the correlation between urine biochemical parameters and SARS-COV-2 infection. The aim of the study is to determine the importance of urinary biochemical parameters in SARS-COV-2 infection and whether these parameters can be used to predict the severity of the infection. METHODS This was a retrospective observational study consisting of total of 285 patients diagnosed with SARS-COV-2 infection. The patients were divided into three groups according to the severity of infection as mild (120 cases), moderate (110 cases) and severe (55 cases). During the study period 72 healthy persons were enrolled as controls. Analysis was done to find any relationship between various urine biochemical parameters and the severity of SARS-COV-2 infection. RESULTS Urinary occult blood (U. Blood) and Urinary protein (U. Pro) have higher positive rates in SARS-COV-2 patients as compared with healthy controls. Among the severities of SARS-COV-2 infection (mild, moderate and severe), both these parameters were significantly higher. Glucose (Glu) and Ketone (Ket) positivity rate was more in moderate cases of SARS-COV-2 than mild cases. CONCLUSION Urinary biochemical parameters are very useful in identification of SARS-COV-2 infection and also have the advantage in evaluating the progression in patients infected with SARS-COV-2. Among the different parameters, Urinary Occult Blood and Urinary protein are significant in the differentiation of SARS-COV-2 severity.
Collapse
Affiliation(s)
- Priyanka Murgod
- Department of Pathology, Maharashtra Institute of Medical Education and Research (MIMER), Talegaon Dabhade, Pune, India
| | - Preeti Doshi
- Department of Pathology, Bharati Vidyapeeth (DTU) Medical College and Hospital, Pune, India
| | - Ravindra Nimbargi
- Department of Pathology, Bharati Vidyapeeth (DTU) Medical College and Hospital, Pune, India
| |
Collapse
|
177
|
Behl T, Kaur I, Sehgal A, Singh S, Bhatia S, Al-Harrasi A, Zengin G, Babes EE, Brisc C, Stoicescu M, Toma MM, Sava C, Bungau SG. Bioinformatics Accelerates the Major Tetrad: A Real Boost for the Pharmaceutical Industry. Int J Mol Sci 2021; 22:6184. [PMID: 34201152 PMCID: PMC8227524 DOI: 10.3390/ijms22126184] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 02/01/2023] Open
Abstract
With advanced technology and its development, bioinformatics is one of the avant-garde fields that has managed to make amazing progress in the pharmaceutical-medical field by modeling the infrastructural dimensions of healthcare and integrating computing tools in drug innovation, facilitating prevention, detection/more accurate diagnosis, and treatment of disorders, while saving time and money. By association, bioinformatics and pharmacovigilance promoted both sample analyzes and interpretation of drug side effects, also focusing on drug discovery and development (DDD), in which systems biology, a personalized approach, and drug repositioning were considered together with translational medicine. The role of bioinformatics has been highlighted in DDD, proteomics, genetics, modeling, miRNA discovery and assessment, and clinical genome sequencing. The authors have collated significant data from the most known online databases and publishers, also narrowing the diversified applications, in order to target four major areas (tetrad): DDD, anti-microbial research, genomic sequencing, and miRNA research and its significance in the management of current pandemic context. Our analysis aims to provide optimal data in the field by stratification of the information related to the published data in key sectors and to capture the attention of researchers interested in bioinformatics, a field that has succeeded in advancing the healthcare paradigm by introducing developing techniques and multiple database platforms, addressed in the manuscript.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Ishnoor Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Gurugram 122413, India;
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa 616, Oman;
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa 616, Oman;
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, 42130 Konya, Turkey;
| | - Elena Emilia Babes
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (E.E.B.); (C.B.); (M.S.); (C.S.)
| | - Ciprian Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (E.E.B.); (C.B.); (M.S.); (C.S.)
| | - Manuela Stoicescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (E.E.B.); (C.B.); (M.S.); (C.S.)
| | - Mirela Marioara Toma
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Cristian Sava
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (E.E.B.); (C.B.); (M.S.); (C.S.)
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
178
|
Hu H, Kong W, Yao N, Qiu Y, Yao R. Prognostic value of three rapid scoring scales and combined predictors for the assessment of patients with coronavirus disease 2019. Nurs Open 2021; 9:1865-1872. [PMID: 34080790 PMCID: PMC8242648 DOI: 10.1002/nop2.934] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/04/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Aim To explore the factors affecting mortality in patients with COVID‐19 and to verify the predictive value of the three rapid scoring scales MEWS, RAPS and REMS. Design Cross‐sectional observational study. Methods Kaplan–Meier and Cox survival analyses were performed to identify the risk factors associated with COVID‐19‐related death. A ROC curve analysis was used to evaluate the abilities of the three scoring scales to predict the prognosis of COVID‐19 patients. Results Age, low blood oxygen saturation level and decreased lymphocyte count were the high risk factors for COVID‐19‐related mortality. The analysis of the abilities of the three scales to predict the prognosis of COVID‐19 patients: The AUC of 0.641 for the RAPS (p = .065). The MEWS (AUC = 0.705, p = .007), compared with RAPS, the NRI was 0.371(p = .03), and the IDI = 0.092 (p = .046); The REMS (AUC = 0.841, p < .001), compared with MEWS, the NRI was 0.227(p = .12), and the IDI=0.09(p = .047); The Combining Predictor (AUC = 0.878, p < .001), compared with REMS, the NRI was 0.25(p = .113), and the IDI=0.02(p = .598). Conclusion Patients with an old age, low blood oxygen saturation level and decreased lymphocyte count were at a high risk of COVID‐19‐related mortality. Moreover, our analysis revealed that the REMS had a better prognostic ability than the MEWS and RAPS when applied to COVID‐19 patients. Our findings suggest that the REMS can be used as a rapid scoring tool for the early assessment of COVID‐19 severity.
Collapse
Affiliation(s)
- Hai Hu
- International Emergency Medical Team (Sichuan), Emergency Office of West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Weili Kong
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ni Yao
- Department of Critical Care Medicine, COVID-19 Medical Team (Hubei) of West China Hospital, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yanru Qiu
- Oncology Department of Renmin Hospital of Wuhan University (East Campus), COVID-19 Ward of Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Rong Yao
- International Emergency Medical Team (Sichuan), Emergency Office of West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
179
|
Antony P, Vijayan R. Role of SARS-CoV-2 and ACE2 variations in COVID-19. Biomed J 2021; 44:235-244. [PMID: 34193390 PMCID: PMC8059258 DOI: 10.1016/j.bj.2021.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/28/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is one of the worst medical emergencies that has hit the world in almost a century. The virus has now spread to a large number of countries/territories and has caused over three million deaths. Evidently, the virus has been mutating and adapting during this period. Significant effort has been spent on identifying these variations and their impact on transmission, virulence and pathogenicity of SARS-CoV-2. Binding of the SARS-CoV-2 spike protein to the angiotensin converting enzyme 2 (ACE2) promotes cellular entry. Therefore, human ACE2 variations could also influence susceptibility or resistance to the virus. A deeper understanding of the evolution and genetic variations in SARS-CoV-2 as well as ACE2 could contribute to the development of effective treatment and preventive measures. Here, we review the literature on SARS-CoV-2 and ACE2 variations and their role in COVID-19.
Collapse
Affiliation(s)
- Priya Antony
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
180
|
Goud BKM, Sharma D, Varanasi S. A review on COVID-19 for medical students. INDIAN JOURNAL OF MEDICAL SCIENCES 2021. [PMCID: PMC8219016 DOI: 10.25259/ijms_47_2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It has not been very long since the SARS-CoV 2002 and MERS-CoV 2012 epidemics. Yet again, nature has introduced SARS-CoV-2, also known as COVID-19, a highly virulent strain of the coronavirus that has its origin in the city of Wuhan, Hubei Province, China. Primarily, a zoonotic infection, the virus probably found its way to humans through infected wild bats sold in the Wuhan local market. What makes the virus virulent, is its ability to infect multiple people at once through single index case. This has led to inability to contain the virus with ease posing a significant threat to national and international health-care resources and economies. The objective of this review is to highlight the key features of the novel CoV-19 infection as per existing data for better understanding of the disease.
Collapse
Affiliation(s)
- B. K. Manjunatha Goud
- Department of Biochemistry, RAK Medical and Health Sciences University, RAK College of Medical Science, Kingdom of Saudi Arabia,
| | - Dharmendra Sharma
- Department of Microbiology, College of Medicine Shaqra, Kingdom of Saudi Arabia,
| | - Sreya Varanasi
- Department of Microbiology, RAK Medical and Health Sciences University, RAK College of Medical Science, United Arab Emirates,
| |
Collapse
|
181
|
Mehta P, Sahni S, Siddiqui S, Mishra N, Sharma P, Sharma S, Tyagi A, Chattopadhyay P, Vivekanand A, Devi P, Khan A, Waghdhare S, Budhiraja S, Uppili B, Maurya R, Nangia V, Shamim U, Hazarika PP, Wadhwa S, Tyagi N, Dewan A, Tarai B, Das P, Faruq M, Agrawal A, Jha S, Pandey R. Respiratory Co-Infections: Modulators of SARS-CoV-2 Patients' Clinical Sub-Phenotype. Front Microbiol 2021; 12:653399. [PMID: 34122366 PMCID: PMC8193731 DOI: 10.3389/fmicb.2021.653399] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/27/2021] [Indexed: 12/31/2022] Open
Abstract
Co-infection with ancillary pathogens is a significant modulator of morbidity and mortality in infectious diseases. There have been limited reports of co-infections accompanying SARS-CoV-2 infections, albeit lacking India specific study. The present study has made an effort toward elucidating the prevalence, diversity and characterization of co-infecting respiratory pathogens in the nasopharyngeal tract of SARS-CoV-2 positive patients. Two complementary metagenomics based sequencing approaches, Respiratory Virus Oligo Panel (RVOP) and Holo-seq, were utilized for unbiased detection of co-infecting viruses and bacteria. The limited SARS-CoV-2 clade diversity along with differential clinical phenotype seems to be partially explained by the observed spectrum of co-infections. We found a total of 43 bacteria and 29 viruses amongst the patients, with 18 viruses commonly captured by both the approaches. In addition to SARS-CoV-2, Human Mastadenovirus, known to cause respiratory distress, was present in a majority of the samples. We also found significant differences of bacterial reads based on clinical phenotype. Of all the bacterial species identified, ∼60% have been known to be involved in respiratory distress. Among the co-pathogens present in our sample cohort, anaerobic bacteria accounted for a preponderance of bacterial diversity with possible role in respiratory distress. Clostridium botulinum, Bacillus cereus and Halomonas sp. are anaerobes found abundantly across the samples. Our findings highlight the significance of metagenomics based diagnosis and detection of SARS-CoV-2 and other respiratory co-infections in the current pandemic to enable efficient treatment administration and better clinical management. To our knowledge this is the first study from India with a focus on the role of co-infections in SARS-CoV-2 clinical sub-phenotype.
Collapse
Affiliation(s)
- Priyanka Mehta
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Shweta Sahni
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Samreen Siddiqui
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, New Delhi, India
| | - Neha Mishra
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Pooja Sharma
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Sachin Sharma
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Akansha Tyagi
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, New Delhi, India
| | - Partha Chattopadhyay
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - A Vivekanand
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Priti Devi
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Azka Khan
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Swati Waghdhare
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, New Delhi, India
| | - Sandeep Budhiraja
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, New Delhi, India
| | - Bharathram Uppili
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Ranjeet Maurya
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Vivek Nangia
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, New Delhi, India
| | - Uzma Shamim
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Pranjal P Hazarika
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, New Delhi, India
| | - Saruchi Wadhwa
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Nishu Tyagi
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Arun Dewan
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, New Delhi, India
| | - Bansidhar Tarai
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, New Delhi, India
| | - Poonam Das
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, New Delhi, India
| | - Mohammed Faruq
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Anurag Agrawal
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Sujeet Jha
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, New Delhi, India
| | - Rajesh Pandey
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
182
|
Deigin Y, Segreto R. SARS-CoV-2's claimed natural origin is undermined by issues with genome sequences of its relative strains: Coronavirus sequences RaTG13, MP789 and RmYN02 raise multiple questions to be critically addressed by the scientific community. Bioessays 2021; 43:e2100015. [PMID: 34046923 PMCID: PMC8209872 DOI: 10.1002/bies.202100015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/05/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022]
Abstract
RaTG13, MP789, and RmYN02 are the strains closest to SARS‐CoV‐2, and their existence came to light only after the start of the pandemic. Their genomes have been used to support a natural origin of SARS‐CoV‐2 but after a close examination all of them exhibit several issues. We specifically address the presence in RmYN02 and closely related RacCSxxx strains of a claimed natural PAA/PVA amino acid insertion at the S1/S2 junction of their spike protein at the same position where the PRRA insertion in SARS‐CoV‐2 has created a polybasic furin cleavage site. We show that RmYN02/RacCSxxx instead of the claimed insertion carry a 6‐nucleotide deletion in the region and that the 12‐nucleotide insertion in SARS‐CoV‐2 remains unique among Sarbecoviruses. Also, our analysis of RaTG13 and RmYN02's metagenomic datasets found unexpected reads which could indicate possible contamination. Because of their importance to inferring SARS‐CoV‐2′s origin, we call for a careful reevaluation of RaTG13, MP789 and RmYN02 sequencing records and assembly methods.
Collapse
Affiliation(s)
- Yuri Deigin
- Youthereum Genetics Inc., Toronto, Ontario, Canada
| | - Rossana Segreto
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
183
|
Significant variations across European centres in implementing recommended guidelines for the paediatric gastroenterology endoscopy suite during the COVID-19 pandemic. JPGN REPORTS 2021; 2:e061. [PMID: 34192294 PMCID: PMC8162040 DOI: 10.1097/pg9.0000000000000061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/21/2021] [Indexed: 12/23/2022]
Abstract
Supplemental Digital Content is available in the text. The European Society for Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) published recommendations regarding protection for the paediatric endoscopist during the coronavirus 2019 (COVID-19) pandemic.The aim of this survey was to investigate whether European paediatric gastroenterology centres applied the recommendations and how this extraordinary situation was handled by the different centres.
Collapse
|
184
|
Bauso LV, Imbesi C, Irene G, Calì G, Bitto A. New Approaches and Repurposed Antiviral Drugs for the Treatment of the SARS-CoV-2 Infection. Pharmaceuticals (Basel) 2021; 14:503. [PMID: 34070359 PMCID: PMC8228036 DOI: 10.3390/ph14060503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/02/2021] [Accepted: 05/08/2021] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that causes coronavirus disease 2019 (COVID-19). The outbreak of this coronavirus was first identified in Wuhan (Hubei, China) in December 2019, and it was declared as pandemic by the World Health Organization (WHO) in March 2020. Today, several vaccines against SARS-CoV-2 have been approved, and some neutralizing monoclonal antibodies are being tested as therapeutic approaches for COVID-19 but, one of the key questions is whether both vaccines and monoclonal antibodies could be effective against infections by new SARS-CoV-2 variants. Nevertheless, there are currently more than 1000 ongoing clinical trials focusing on the use and effectiveness of antiviral drugs as a possible therapeutic treatment. Among the classes of antiviral drugs are included 3CL protein inhibitors, RNA synthesis inhibitors and other small molecule drugs which target the ability of SARS-COV-2 to interact with host cells. Considering the need to find specific treatment to prevent the emergent outbreak, the aim of this review is to explain how some repurposed antiviral drugs, indicated for the treatment of other viral infections, could be potential candidates for the treatment of COVID-19.
Collapse
Affiliation(s)
- Luana Vittoria Bauso
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (L.V.B.); (C.I.); (G.I.); (G.C.)
| | - Chiara Imbesi
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (L.V.B.); (C.I.); (G.I.); (G.C.)
- Laboratori Campisi, Corso Vittorio Emanuele 231, 96012 Avola, Italy
| | - Gasparo Irene
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (L.V.B.); (C.I.); (G.I.); (G.C.)
| | - Gabriella Calì
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (L.V.B.); (C.I.); (G.I.); (G.C.)
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (L.V.B.); (C.I.); (G.I.); (G.C.)
| |
Collapse
|
185
|
Tascioglu D, Akkaya E, Genc S. The understanding of the immunopathology in COVID-19 infection. Scandinavian Journal of Clinical and Laboratory Investigation 2021; 81:255-263. [PMID: 34032527 DOI: 10.1080/00365513.2021.1892817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Coronaviruses belonging to the Coronaviridae family are single-stranded RNA viruses. The entry of SARS-CoV-2 is accomplished via ACE-2 receptors. SARS-CoV-2 infection coactivates both innate and adaptive immune responses. Although SARS-CoV-2 stimulates antibody production with a typical pattern of IgM/IgG, cellular immunity is also impaired. In severe cases, low CD4 + and CD8 + T cell counts are associated with impaired immune functions, and high neutrophil/lymphocyte ratios accompanying low lymphocyte subsets have been demonstrated. Recently, high IFN -α/γ ratios with impaired T cell responses, and increased IL-1, IL-6, TNF-α, MCP-1, IP-10, IL-4, IL-10 have been reported in COVID-19 infection. Increased proinflammatory cytokines and chemokines in patients with severe COVID-19 may cause the suppression of CD4 + and CD8 + T cells and regulatory T cells, causing excessive inflammatory responses and fatal cytokine storm with tissue and organ damage. Consequently, novel therapeutics to be developed against host immune system, including blockade of cytokines (IL-6, IL-1, IFN) themselves, their receptors or signaling pathways- JAK inhibitors- could be effective as potential therapeutics.
Collapse
Affiliation(s)
- Didem Tascioglu
- Department of Infectious Disease and Clinical Microbiology, Liv Hospital, Istinye University, Esenyurt, Istanbul, Turkey
| | - Emre Akkaya
- Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Capa, Istanbul, Turkey
| | - Sema Genc
- Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Capa, Istanbul, Turkey
| |
Collapse
|
186
|
Zhang L, Liu M, Li J, Li X, Cheng L, Ji Y, Li N, Wang J. Clinical Characteristics of Foreign-Imported COVID-19 Cases in Xi'an, China. Int J Gen Med 2021; 14:2069-2078. [PMID: 34079347 PMCID: PMC8164692 DOI: 10.2147/ijgm.s315159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/05/2021] [Indexed: 01/08/2023] Open
Abstract
Background Effective management of foreign-imported COVID-19 cases is a new and great challenge for China. Our study focused on the foreign-imported COVID-19 cases to provide detailed data for insights into the prevention, early diagnosis, treatment and control of imported COVID-19. Methods For this observational and retrospective study, we investigated the clinical characteristics of imported COVID-19 cases that were confirmed by real-time RT-PCR in the Xi’an Public Health Center from 29 March 2020 to 31 August 2020. Results Of the 79 patients with COVID-19, 19 (24.1%) had exposure to confirmed COVID-19 patients, 15 (19.0%) had exposure to suspicious COVID-19 patients, and 45 (56.9%) had an unclear history of exposure to confirmed patients. The mean age of the patients was 38 years, and 70 (88.7%) patients were male. Except for 2 severe cases, the remaining 58 (73.4%) cases displayed mild or moderate symptoms, and 19 (24.2%) infected patients were asymptomatic. Twenty-one (26.6%) patients were not diagnosed until a third or later nucleic acid test. Ten (12.7%) patients had chronic diseases. The most common manifestations of the patients were cough [18 (22.8%) cases], fever [9 (11.4%) cases] and sore throat [9 (11.4%) cases]. Forty-one (51.9%) cases showed abnormal chest CT images, To date, all patients have been discharged, and no patient has died. Conclusion The imported COVID-19 cases in Xi’an were mainly young and middle-aged adults with mild or moderate symptoms who had a low rate of comorbidity, showed favourable laboratory and chest CT images, and had a better prognosis. Notably, for suspected COVID-19 cases, at least three consecutive nucleic acid tests should be carried out to avoid missed detection of infected patients. Except for severe cases, high-level medical resources are not necessary in most cases.
Collapse
Affiliation(s)
- Li Zhang
- Department of Intensive Care Unit, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, People's Republic of China.,Xi'an Public Health Center, Xi'an, Shaanxi, 710200, People's Republic of China
| | - Minjie Liu
- Xi'an Public Health Center, Xi'an, Shaanxi, 710200, People's Republic of China.,Department of Respiratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, People's Republic of China
| | - Jianying Li
- Xi'an Public Health Center, Xi'an, Shaanxi, 710200, People's Republic of China.,The Department of Respiratory Medicine, Xi'an Central Hospital, The Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, 710003, People's Republic of China
| | - Xiaoli Li
- Department of Respiratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, People's Republic of China
| | - Li Cheng
- Department of Respiratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, People's Republic of China
| | - Yahong Ji
- Department of Respiratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, People's Republic of China
| | - Na Li
- Department of Respiratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, People's Republic of China
| | - Junning Wang
- Xi'an Public Health Center, Xi'an, Shaanxi, 710200, People's Republic of China.,Department of Respiratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, People's Republic of China
| |
Collapse
|
187
|
Shrivastava T, Singh B, Rizvi ZA, Verma R, Goswami S, Vishwakarma P, Jakhar K, Sonar S, Mani S, Bhattacharyya S, Awasthi A, Surjit M. Comparative Immunomodulatory Evaluation of the Receptor Binding Domain of the SARS-CoV-2 Spike Protein; a Potential Vaccine Candidate Which Imparts Potent Humoral and Th1 Type Immune Response in a Mouse Model. Front Immunol 2021; 12:641447. [PMID: 34108961 PMCID: PMC8182375 DOI: 10.3389/fimmu.2021.641447] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/12/2021] [Indexed: 12/18/2022] Open
Abstract
The newly emerged novel coronavirus, SARS-CoV-2, the causative agent of COVID-19 has proven to be a threat to the human race globally, thus, vaccine development against SARS-CoV-2 is an unmet need driving mass vaccination efforts. The receptor binding domain of the spike protein of this coronavirus has multiple neutralizing epitopes and is associated with viral entry. Here we have designed and characterized the SARS-CoV-2 spike protein fragment 330-526 as receptor binding domain 330-526 (RBD330-526) with two native glycosylation sites (N331 and N343); as a potential subunit vaccine candidate. We initially characterized RBD330-526 biochemically and investigated its thermal stability, humoral and T cell immune response of various RBD protein formulations (with or without adjuvant) to evaluate the inherent immunogenicity and immunomodulatory effect. Our result showed that the purified RBD immunogen is stable up to 72 h, without any apparent loss in affinity or specificity of interaction with the ACE2 receptor. Upon immunization in mice, RBD generates a high titer humoral response, elevated IFN-γ producing CD4+ cells, cytotoxic T cells, and robust neutralizing antibodies against live SARS-CoV-2 virus. Our results collectively support the potential of RBD330-526 as a promising vaccine candidate against SARS-CoV-2.
Collapse
Affiliation(s)
- Tripti Shrivastava
- Infection and Immunology, Translational Health Science & Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Wang D, Jiang A, Feng J, Li G, Guo D, Sajid M, Wu K, Zhang Q, Ponty Y, Will S, Liu F, Yu X, Li S, Liu Q, Yang XL, Guo M, Li X, Chen M, Shi ZL, Lan K, Chen Y, Zhou Y. The SARS-CoV-2 subgenome landscape and its novel regulatory features. Mol Cell 2021; 81:2135-2147.e5. [PMID: 33713597 PMCID: PMC7927579 DOI: 10.1016/j.molcel.2021.02.036] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 10/28/2020] [Accepted: 02/24/2021] [Indexed: 12/31/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently a global pandemic. CoVs are known to generate negative subgenomes (subgenomic RNAs [sgRNAs]) through transcription-regulating sequence (TRS)-dependent template switching, but the global dynamic landscapes of coronaviral subgenomes and regulatory rules remain unclear. Here, using next-generation sequencing (NGS) short-read and Nanopore long-read poly(A) RNA sequencing in two cell types at multiple time points after infection with SARS-CoV-2, we identified hundreds of template switches and constructed the dynamic landscapes of SARS-CoV-2 subgenomes. Interestingly, template switching could occur in a bidirectional manner, with diverse SARS-CoV-2 subgenomes generated from successive template-switching events. The majority of template switches result from RNA-RNA interactions, including seed and compensatory modes, with terminal pairing status as a key determinant. Two TRS-independent template switch modes are also responsible for subgenome biogenesis. Our findings reveal the subgenome landscape of SARS-CoV-2 and its regulatory features, providing a molecular basis for understanding subgenome biogenesis and developing novel anti-viral strategies.
Collapse
Affiliation(s)
- Dehe Wang
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Ao Jiang
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiangpeng Feng
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Guangnan Li
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Dong Guo
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Muhammad Sajid
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Kai Wu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Qiuhan Zhang
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yann Ponty
- CNRS UMR 7161 LIX, Ecole Polytechnique, Institut Polytechnique de Paris, Paris, France
| | - Sebastian Will
- CNRS UMR 7161 LIX, Ecole Polytechnique, Institut Polytechnique de Paris, Paris, France
| | - Feiyan Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Xinghai Yu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Shaopeng Li
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Qianyun Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xing-Lou Yang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Ming Guo
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xingqiao Li
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Mingzhou Chen
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Ke Lan
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
| | - Yu Chen
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China.
| | - Yu Zhou
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
| |
Collapse
|
189
|
Souza PFN, Mesquita FP, Amaral JL, Landim PGC, Lima KRP, Costa MB, Farias IR, Lima LB, Montenegro RC. The human pandemic coronaviruses on the show: The spike glycoprotein as the main actor in the coronaviruses play. Int J Biol Macromol 2021; 179:1-19. [PMID: 33667553 PMCID: PMC7921731 DOI: 10.1016/j.ijbiomac.2021.02.203] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 01/28/2023]
Abstract
Three coronaviruses (CoVs) have threatened the world population by causing outbreaks in the last two decades. In late 2019, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged and caused the coronaviruses to disease 2019 (COVID-19), leading to the ongoing global outbreak. The other pandemic coronaviruses, SARS-CoV and Middle East respiratory syndrome CoV (MERS-CoV), share a considerable level of similarities at genomic and protein levels. However, the differences between them lead to distinct behaviors. These differences result from the accumulation of mutations in the sequence and structure of spike (S) glycoprotein, which plays an essential role in coronavirus infection, pathogenicity, transmission, and evolution. In this review, we brought together many studies narrating a sequence of events and highlighting the differences among S proteins from SARS-CoV, MERS-CoV, and SARS-CoV-2. It was performed here, analysis of S protein sequences and structures from the three pandemic coronaviruses pointing out the mutations among them and what they come through. Additionally, we investigated the receptor-binding domain (RBD) from all S proteins explaining the mutation and biological importance of all of them. Finally, we discuss the mutation in the S protein from several new isolates of SARS-CoV-2, reporting their difference and importance. This review brings into detail how the variations in S protein that make SARS-CoV-2 more aggressive than its relatives coronaviruses and other differences between coronaviruses.
Collapse
Affiliation(s)
- Pedro F N Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Brazil.
| | - Felipe P Mesquita
- Drug research and Development Center, Department of Medicine, Federal University of Ceara, Brazil
| | - Jackson L Amaral
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Brazil
| | - Patrícia G C Landim
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Brazil
| | - Karollyny R P Lima
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Brazil
| | - Marília B Costa
- Drug research and Development Center, Department of Medicine, Federal University of Ceara, Brazil
| | - Izabelle R Farias
- Drug research and Development Center, Department of Medicine, Federal University of Ceara, Brazil
| | - Luina B Lima
- Drug research and Development Center, Department of Medicine, Federal University of Ceara, Brazil
| | - Raquel C Montenegro
- Drug research and Development Center, Department of Medicine, Federal University of Ceara, Brazil
| |
Collapse
|
190
|
Rezaei Z, Mobasheri L, Sadri F. Molecular Insights into COVID-19 Pathophysiology, Immune Pathogenesis, Detection, and Treatment. DNA Cell Biol 2021; 40:858-868. [PMID: 33989051 DOI: 10.1089/dna.2021.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In late December 2019, a new kind of Coronavirus called severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) was officially identified in Wuhan, China. In March 2020, SARS-CoV-2 was declared a pandemic by the World Health Organization (WHO), and it has infected millions of people worldwide. SARS-CoV-2 is a highly contagious Coronavirus, which has led to an outbreak of acute respiratory tract infection called "Coronavirus disease 2019" (COVID-19), resulting in mild to severe respiratory infections in humans. The design of appropriate therapeutic approaches is dependent on the understanding of molecular and cellular pathways of Coronavirus infections. In this study, we summarized the characteristic features of SARS-CoV-2. In addition, we considered the recent information regarding COVID-19 molecular immune pathogenesis, diagnosis, and potential treatment, which may provide novel perspectives and therapeutic goals in combating SARS-CoV-2.
Collapse
Affiliation(s)
- Zohreh Rezaei
- Department of Biology, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, Iran.,Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Leila Mobasheri
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.,Department of Medical Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Farzad Sadri
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.,Young Researchers and Elite Club, Yasooj Branch, Islamic Azad University, Yasooj, Iran
| |
Collapse
|
191
|
Stevaert A, Krasniqi B, Van Loy B, Nguyen T, Thomas J, Vandeput J, Jochmans D, Thiel V, Dijkman R, Dehaen W, Voet A, Naesens L. Betulonic Acid Derivatives Interfering with Human Coronavirus 229E Replication via the nsp15 Endoribonuclease. J Med Chem 2021; 64:5632-5644. [PMID: 33877845 PMCID: PMC8084268 DOI: 10.1021/acs.jmedchem.0c02124] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 02/08/2023]
Abstract
To develop antiviral therapeutics against human coronavirus (HCoV) infections, suitable coronavirus drug targets and corresponding lead molecules must be urgently identified. Here, we describe the discovery of a class of HCoV inhibitors acting on nsp15, a hexameric protein component of the viral replication-transcription complexes, endowed with immune evasion-associated endoribonuclease activity. Structure-activity relationship exploration of these 1,2,3-triazolo-fused betulonic acid derivatives yielded lead molecule 5h as a strong inhibitor (antiviral EC50: 0.6 μM) of HCoV-229E replication. An nsp15 endoribonuclease active site mutant virus was markedly less sensitive to 5h, and selected resistance to the compound mapped to mutations in the N-terminal part of HCoV-229E nsp15, at an interface between two nsp15 monomers. The biological findings were substantiated by the nsp15 binding mode for 5h, predicted by docking. Hence, besides delivering a distinct class of inhibitors, our study revealed a druggable pocket in the nsp15 hexamer with relevance for anti-coronavirus drug development.
Collapse
Affiliation(s)
- Annelies Stevaert
- Laboratory of Virology and Chemotherapy,
Rega Institute, KU Leuven, 3000 Leuven,
Belgium
| | - Besir Krasniqi
- Molecular Design and Synthesis, Department of
Chemistry, KU Leuven, 3001 Leuven,
Belgium
| | - Benjamin Van Loy
- Laboratory of Virology and Chemotherapy,
Rega Institute, KU Leuven, 3000 Leuven,
Belgium
| | - Tien Nguyen
- Biochemistry, Molecular and Structural Biology,
Department of Chemistry, KU Leuven, 3001 Leuven,
Belgium
| | - Joice Thomas
- Molecular Design and Synthesis, Department of
Chemistry, KU Leuven, 3001 Leuven,
Belgium
| | - Julie Vandeput
- Laboratory of Virology and Chemotherapy,
Rega Institute, KU Leuven, 3000 Leuven,
Belgium
| | - Dirk Jochmans
- Laboratory of Virology and Chemotherapy,
Rega Institute, KU Leuven, 3000 Leuven,
Belgium
| | - Volker Thiel
- Institute of Virology and Immunology
(IVI), 3012 Bern and 3012 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology,
Vetsuisse Faculty, University of Bern, 3012 Bern,
Switzerland
| | - Ronald Dijkman
- Institute of Virology and Immunology
(IVI), 3012 Bern and 3012 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology,
Vetsuisse Faculty, University of Bern, 3012 Bern,
Switzerland
- Institute for Infectious Diseases (IFIK),
University of Bern, 3012 Bern,
Switzerland
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of
Chemistry, KU Leuven, 3001 Leuven,
Belgium
| | - Arnout Voet
- Biochemistry, Molecular and Structural Biology,
Department of Chemistry, KU Leuven, 3001 Leuven,
Belgium
| | - Lieve Naesens
- Laboratory of Virology and Chemotherapy,
Rega Institute, KU Leuven, 3000 Leuven,
Belgium
| |
Collapse
|
192
|
Exploring antibody repurposing for COVID-19: beyond presumed roles of therapeutic antibodies. Sci Rep 2021; 11:10220. [PMID: 33986382 PMCID: PMC8119408 DOI: 10.1038/s41598-021-89621-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/29/2021] [Indexed: 12/24/2022] Open
Abstract
The urgent need for a treatment of COVID-19 has left researchers with limited choice of either developing an effective vaccine or identifying approved/investigational drugs developed for other medical conditions for potential repurposing, thus bypassing long clinical trials. In this work, we compared the sequences of experimentally verified SARS-CoV-2 neutralizing antibodies and sequentially/structurally similar commercialized therapeutic monoclonal antibodies. We have identified three therapeutic antibodies, Tremelimumab, Ipilimumab and Afasevikumab. Interestingly, these antibodies target CTLA4 and IL17A, levels of which have been shown to be elevated during severe SARS-CoV-2 infection. The candidate antibodies were evaluated further for epitope restriction, interaction energy and interaction surface to gauge their repurposability to tackle SARS-CoV-2 infection. Our work provides candidate antibody scaffolds with dual activities of plausible viral neutralization and immunosuppression. Further, these candidate antibodies can also be explored in diagnostic test kits for SARS-CoV-2 infection. We opine that this in silico workflow to screen and analyze antibodies for repurposing would have widespread applications.
Collapse
|
193
|
Zhan Y, Li XP, Yin JY. COVID-19 one year later: a retrospect of CRISPR-Cas system in combating COVID-19. Int J Biol Sci 2021; 17:2080-2088. [PMID: 34131407 PMCID: PMC8193275 DOI: 10.7150/ijbs.60655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 04/28/2021] [Indexed: 12/26/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), an infectious disease caused by Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has posed a persistent global threat. The transmission of SARS-CoV-2 is wide and swift. Rapid detection of the viral RNA and effective therapy are imperative to prevent the worldwide spread of the new infectious disease. Clustered Regularly-Interspaced Short Palindromic Repeats (CRISPR)- CRISPR-associated protein (Cas) system is an RNA-directed adaptive immune system, and it has been transformed into a gene editing tool. Applications of CRISPR-Cas system involves in many fields, such as human gene therapy, drug discovery and disease diagnosis. Under the background of COVID-19 pandemic, CRISPR-Cas system shows hidden capacity to fight the emergency in many aspects. This review will focus on the role of gene editing in COVID-19 diagnosis and treatment. We will describe the potential use of CRISPR-Cas-based system in combating COVID-19, from diagnosis to treatment. Furthermore, the limitation and perspectives of this novel technology are also evaluated.
Collapse
Affiliation(s)
- Yan Zhan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410078, P. R. China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Xiang-Ping Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410078, P. R. China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China.,Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Changsha 410078, P. R. China
| |
Collapse
|
194
|
Obakachi VA, Kushwaha ND, Kushwaha B, Mahlalela MC, Shinde SR, Kehinde I, Karpoormath R. Design and synthesis of pyrazolone-based compounds as potent blockers of SARS-CoV-2 viral entry into the host cells. J Mol Struct 2021; 1241:130665. [PMID: 34007088 PMCID: PMC8118388 DOI: 10.1016/j.molstruc.2021.130665] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/26/2021] [Accepted: 05/09/2021] [Indexed: 11/24/2022]
Abstract
SARS-CoV-2 are enveloped positive-stranded RNA viruses that replicate in the cytoplasm. It relies on the fusion of their envelope with the host cell membrane to deliver their nucleocapsid into the host cell. The spike glycoprotein (S) mediates virus entry into cells via the human Angiotensin-converting enzyme 2 (hACE2) protein located on many cell types and tissues' outer surface. This study, therefore, aimed to design and synthesize novel pyrazolone-based compounds as potential inhibitors that would interrupt the interaction between the viral spike protein and the host cell receptor to prevent SARS-CoV 2 entrance into the cell. A series of pyrazolone compounds as potential SARS-CoV-2 inhibitors were designed and synthesized. Employing computational techniques, the inhibitory potentials of the designed compounds against both spike protein and hACE2 were evaluated. Results of the binding free energy from the in-silico analysis, showed that three compounds (7i, 7k and 8f) and six compounds (7b, 7h, 7k, 8d, 8g, and 8h) showed higher and better binding high affinity to SARS-CoV-2 Sgp and hACE-2, respectively compared to the standard drugs cefoperazone (CFZ) and MLN-4760. Furthermore, the outcome of the structural analysis of the two proteins upon binding of the inhibitors showed that the two proteins (SARS-CoV-2 Sgp and hACE-2) were stable, and the structural integrity of the proteins was not compromised. This study suggests pyrazolone-based compounds might be potent blockers of the viral entry into the host cells.
Collapse
Affiliation(s)
- Vincent A Obakachi
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Narva Deshwar Kushwaha
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Babita Kushwaha
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Mavela Cleopus Mahlalela
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Suraj Raosaheb Shinde
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Idowu Kehinde
- School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| |
Collapse
|
195
|
Probiotic-Based Vaccines May Provide Effective Protection against COVID-19 Acute Respiratory Disease. Vaccines (Basel) 2021; 9:vaccines9050466. [PMID: 34066443 PMCID: PMC8148110 DOI: 10.3390/vaccines9050466] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/29/2021] [Accepted: 04/24/2021] [Indexed: 12/23/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 virus (SARS-CoV-2) infection, the causative agent of COVID-19, now represents the sixth Public Health Emergency of International Concern (PHEIC)—as declared by the World Health Organization (WHO) since 2009. Considering that SARS-CoV-2 is mainly transmitted via the mucosal route, a therapy administered by this same route may represent a desirable approach to fight SARS-CoV-2 infection. It is now widely accepted that genetically modified microorganisms, including probiotics, represent attractive vehicles for oral or nasal mucosal delivery of therapeutic molecules. Previous studies have shown that the mucosal administration of therapeutic molecules is able to induce an immune response mediated by specific serum IgG and mucosal IgA antibodies along with mucosal cell-mediated immune responses, which effectively concur to neutralize and eradicate infections. Therefore, advances in the modulation of mucosal immune responses, and in particular the use of probiotics as live delivery vectors, may encourage prospective studies to assess the effectiveness of genetically modified probiotics for SARS-CoV-2 infection. Emerging trends in the ever-progressing field of vaccine development re-emphasize the contribution of adjuvants, along with optimization of codon usage (when designing a synthetic gene), expression level, and inoculation dose to elicit specific and potent protective immune responses. In this review, we will highlight the existing pre-clinical and clinical information on the use of genetically modified microorganisms in control strategies against respiratory and non-respiratory viruses. In addition, we will discuss some controversial aspects of the use of genetically modified probiotics in modulating the cross-talk between mucosal delivery of therapeutics and immune system modulation.
Collapse
|
196
|
Yang C, Pan X, Huang Y, Cheng C, Xu X, Wu Y, Xu Y, Shang W, Niu X, Wan Y, Li Z, Zhang R, Liu S, Xiao G, Xu W. Drug Repurposing of Itraconazole and Estradiol Benzoate against COVID-19 by Blocking SARS-CoV-2 Spike Protein-Mediated Membrane Fusion. ADVANCED THERAPEUTICS 2021; 4:2000224. [PMID: 33786369 PMCID: PMC7994988 DOI: 10.1002/adtp.202000224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/31/2020] [Indexed: 12/12/2022]
Abstract
SARS-CoV-2 caused the emerging epidemic of coronavirus disease in 2019 (COVID-19). To date, there are more than 82.9 million confirmed cases worldwide, there is no clinically effective drug against SARS-CoV-2 infection. The conserved properties of the membrane fusion domain of the spike (S) protein across SARS-CoV-2 make it a promising target to develop pan-CoV therapeutics. Herein, two clinically approved drugs, Itraconazole (ITZ) and Estradiol benzoate (EB), are found to inhibit viral entry by targeting the six-helix (6-HB) fusion core of SARS-CoV-2 S protein. Further studies shed light on the mechanism that ITZ and EB can interact with the heptad repeat 1 (HR1) region of the spike protein, to present anti-SARS-CoV-2 infections in vitro, indicating they are novel potential therapeutic remedies for COVID-19 treatment. Furthermore, ITZ shows broad-spectrum activity targeting 6-HB in the S2 subunit of SARS-CoV and MERS-CoV S protein, inspiring that ITZ have the potential for development as a pan-coronavirus fusion inhibitor.
Collapse
Affiliation(s)
- Chan Yang
- School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | | | - Yuan Huang
- School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Chen Cheng
- School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Xinfeng Xu
- School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Yan Wu
- Chinese Academy of SciencesWuhan430071China
| | - Yunxia Xu
- Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhou510000China
| | | | - Xiaoge Niu
- School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Yihong Wan
- School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Zhaofeng Li
- School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Rong Zhang
- School of Basic Medical SciencesFudan UniversityShanghai200433China
| | - Shuwen Liu
- School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | | | - Wei Xu
- School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
- Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhou510000China
| |
Collapse
|
197
|
Kaufmann CC, Ahmed A, Kassem M, Freynhofer MK, Jäger B, Aicher G, Equiluz-Bruck S, Spiel AO, Funk GC, Gschwantler M, Fasching P, Wojta J, Huber K. Mid-regional pro-atrial natriuretic peptide independently predicts short-term mortality in COVID-19. Eur J Clin Invest 2021; 51:e13531. [PMID: 33657664 PMCID: PMC7995001 DOI: 10.1111/eci.13531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 02/27/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mid-regional pro-atrial natriuretic peptide (MR-proANP) is a strong prognostic marker in several inflammatory, respiratory and cardiovascular conditions, but has not been studied in COVID-19 yet. METHODS This prospective, observational study of patients with COVID-19 infection was conducted from 6 June to 26 November 2020 in different wards of a tertiary hospital. MR-proANP, N-terminal pro-brain natriuretic peptide (NT-proBNP) and high-sensitive cardiac troponin I levels on admission were collected and tested for their association with disease severity and 28-day mortality. RESULTS A total of 213 eligible patients with COVID-19 were included in the final analyses of whom 13.2% (n = 28) died within 28 days. Median levels of MR-proANP at admission were significantly higher in nonsurvivors (307 pmol/L IQR, [161 - 532] vs 75 pmol/L [IQR, 43 - 153], P < .001) compared to survivors and increased with disease severity and level of hypoxaemia. The area under the ROC curve for MR-proANP predicting 28-day mortality was 0.832 (95% CI 0.753 - 0.912, P < .001). An optimal cut-off point of 160 pmol/L yielded a sensitivity of 82.1% and a specificity of 76.2%. MR-proANP was a significant predictor of 28-day mortality independent of clinical confounders, comorbidities and established prognostic markers of COVID-19 (HR 2.77, 95% CI 1.21 - 6.37; P = .016), while NT-proBNP failed to independently predict 28-day mortality and had a numerically lower AUC compared to MR-proANP. CONCLUSION Higher levels of MR-proANP at admission are associated with disease severity of COVID-19 and act as a powerful and independent prognostic marker of 28-day mortality.
Collapse
Affiliation(s)
- Christoph C Kaufmann
- 3rd Medical Department with Cardiology and Intensive Care Medicine, Wilhelminenhospital, Vienna, Austria
| | - Amro Ahmed
- 3rd Medical Department with Cardiology and Intensive Care Medicine, Wilhelminenhospital, Vienna, Austria
| | - Mona Kassem
- 3rd Medical Department with Cardiology and Intensive Care Medicine, Wilhelminenhospital, Vienna, Austria
| | - Matthias K Freynhofer
- 3rd Medical Department with Cardiology and Intensive Care Medicine, Wilhelminenhospital, Vienna, Austria
| | - Bernhard Jäger
- 3rd Medical Department with Cardiology and Intensive Care Medicine, Wilhelminenhospital, Vienna, Austria
| | - Gabriele Aicher
- Department of Laboratory Medicine, Wilhelminenhospital, Vienna, Austria
| | | | - Alexander O Spiel
- Department of Emergency Medicine, Wilhelminenhospital, Vienna, Austria
| | - Georg-Christian Funk
- Karl-Landsteiner-Institute for Lung Research and Pulmonary Oncology, Wilhelminenhospital, Vienna, Austria
| | - Michael Gschwantler
- Department of Gastroenterology and Hepatology, Wilhelminenhospital, Vienna, Austria
| | - Peter Fasching
- Department of Endocrinology and Rheumatology, Wilhelminenhospital, Vienna, Austria
| | - Johann Wojta
- Department of Internal Medicine 2, Division of Cardiology, Medical University of Vienna, Vienna, Austria.,Core Facilities, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Kurt Huber
- 3rd Medical Department with Cardiology and Intensive Care Medicine, Wilhelminenhospital, Vienna, Austria.,Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria.,Medical School, Sigmund Freud University, Vienna, Austria
| |
Collapse
|
198
|
Schmidt KG, Nganou-Makamdop K, Tenbusch M, El Kenz B, Maier C, Lapuente D, Überla K, Spriewald B, Bergmann S, Harrer EG, Harrer T. SARS-CoV-2-Seronegative Subjects Target CTL Epitopes in the SARS-CoV-2 Nucleoprotein Cross-Reactive to Common Cold Coronaviruses. Front Immunol 2021; 12:627568. [PMID: 33995351 PMCID: PMC8113865 DOI: 10.3389/fimmu.2021.627568] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/15/2021] [Indexed: 12/22/2022] Open
Abstract
The beta-coronavirus SARS-CoV-2 induces severe disease (COVID-19) mainly in elderly persons with risk factors, whereas the majority of patients experience a mild course of infection. As the circulating common cold coronaviruses OC43 and HKU1 share some homologous sequences with SARS-CoV-2, beta-coronavirus cross-reactive T-cell responses could influence the susceptibility to SARS-CoV-2 infection and the course of COVID-19. To investigate the role of beta-coronavirus cross-reactive T-cells, we analyzed the T-cell response against a 15 amino acid long peptide (SCoV-DP15: DLSPRWYFYYLGTGP) from the SARS-CoV-2 nucleoprotein sequence with a high homology to the corresponding sequence (QLLPRWYFYYLGTGP) in OC43 and HKU1. SCoV-DP15-specific T-cells were detected in 4 out of 23 (17.4%) SARS-CoV-2-seronegative healthy donors. As HIV-1 infection is a potential risk factor for COVID-19, we also studied a cohort of HIV-1-infected patients on antiretroviral therapy. 44 out of these 116 HIV-1-infected patients (37.9%) showed a specific recognition of the SCoV-DP15 peptide or of shorter peptides within SCoV-DP15 by CD4+ T-cells and/or by CD8+ T-cells. We could define several new cross-reactive HLA-I-restricted epitopes in the SARS-CoV-2 nucleoprotein such as SPRWYFYYL (HLA-B*07, HLA-B*35), DLSPRWYFYY (HLA-A*02), LSPRWYFYY (HLA-A*29), WYFYYLGTGP and WYFYYLGT. Epitope specific CD8+ T-cell lines recognized corresponding epitopes within OC43 and HKU1 to a similar degree or even at lower peptide concentrations suggesting that they were induced by infection with OC43 or HKU1. Our results confirm that SARS-CoV-2-seronegative subjects can target SARS-CoV-2 not only by beta-coronavirus cross-reactive CD4+ T-cells but also by cross-reactive CD8+ cytotoxic T-cells (CTL). The delineation of cross-reactive T-cell epitopes contributes to an efficient epitope-specific immunomonitoring of SARS-CoV-2-specific T-cells. Further prospective studies are needed to prove a protective role of cross-reactive T-cells and their restricting HLA alleles for control of SARS-CoV-2 infection. The frequent observation of SARS-CoV-2-reactive T-cells in HIV-1-infected subjects could be a reason that treated HIV-1 infection does not seem to be a strong risk factor for the development of severe COVID-19.
Collapse
Affiliation(s)
- Katja G. Schmidt
- Infectious Disease and Immunodeficiency Section, Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Krystelle Nganou-Makamdop
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Tenbusch
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Boutaina El Kenz
- Infectious Disease and Immunodeficiency Section, Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Clara Maier
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Dennis Lapuente
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Bernd Spriewald
- Department of Medicine 5, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Silke Bergmann
- Infectious Disease and Immunodeficiency Section, Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Ellen G. Harrer
- Infectious Disease and Immunodeficiency Section, Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Harrer
- Infectious Disease and Immunodeficiency Section, Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
199
|
Haq SM, Yaqoob U, Hassan M, da Silva RJ, Calixto ES. Predicted impacts of government policies and actions on the SARS-CoV-2 disease in the northwestern Himalayan region, India. ZEITSCHRIFT FUR GESUNDHEITSWISSENSCHAFTEN = JOURNAL OF PUBLIC HEALTH 2021; 31:635-643. [PMID: 33880322 PMCID: PMC8049861 DOI: 10.1007/s10389-021-01541-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 04/03/2021] [Indexed: 12/15/2022]
Abstract
AIM The outbreak of the new coronavirus pandemic (SARS-CoV-2) was initiated in December 2019, and within a couple of months it became a global health emergency. Given the importance to assess the evolution and transmissibility of SARS-CoV-2 and to forecast the next scenario of the pandemic, mainly in countries with limited healthcare systems, we estimated the reproductive number (R0) of SARS-CoV-2 in Jammu and Kashmir (J&K), India, and a possible scenario for this pandemic in the region. SUBJECT AND METHODS We estimated the reproductive number (R0) of SARS-CoV-2 in its first outbreak stage in the northwestern region of Himalaya, India, and we also predicted new daily cases for the next 90 days using different R0, testing a plausible end of the SARS-CoV-2 outbreak. RESULTS Our results showed a considerable increase in the number of cases, but with a tendency to asymptote. Anantnag, Bandipora, Baramulla, Shopian, and Srinagar districts showed more than 100 cases and Kulgam and Kathua districts showed strong growth of the number of cases from the beginning of May, without a tendency to normalization. The estimated R0 for the J&K region was 1.041; but by decreasing the RO by 10, 25, and 50%, we observed a great decrease in the daily number of new cases, especially by decreasing by 50%. CONCLUSION In this study, we indicate positive effects of the preventive measures, such as lockdown and social distancing, taken in the J&K region, showing a stabilization of the growth curves of new cases of SARS-CoV-2, which tends to a strong decrease over time as the R0 decreases.
Collapse
Affiliation(s)
- Shiekh Marifatul Haq
- Department of Botany, University of Kashmir, Hazratbal, Srinagar, J&K 190006 India
| | - Umer Yaqoob
- Department of Life Science, Pacific University, Udaipur, 313003 India
| | - Musheerul Hassan
- Department of Life Science, Pacific University, Udaipur, 313003 India
| | - Rafaela José da Silva
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, 38408100 Brazil
| | | |
Collapse
|
200
|
Basawarajappa SG, Rangaiah A, Padukone S, Yadav PD, Gupta N, Shankar SM. Performance evaluation of Truenat™ Beta CoV & Truenat™ SARS-CoV-2 point-of-care assays for coronavirus disease 2019. Indian J Med Res 2021; 153:144-150. [PMID: 33818471 PMCID: PMC8184085 DOI: 10.4103/ijmr.ijmr_2363_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background & objectives: The rapid diagnosis of coronavirus disease 2019 (COVID-19) is a significant step towards the containment of the virus. The surge of COVID-19 cases in India and across the globe necessitates a rapid and sensitive molecular assay. Rapid point-of-care (PoC) assays (Truenat Beta CoV and Truenat SARS-CoV-2 assays) for the diagnosis of COVID-19 have been developed which are expected to shorten the turnaround time of reporting of results and also can be used for field investigations of COVID-19. The objectives of the study were to validate the performance of Truenat Beta CoV and Truenat SARS-CoV-2 PoC assays for the detection of SARS-CoV-2 infected cases with reference to analytical sensitivity, precision/inter-machine variation, clinical sensitivity and clinical specificity. Methods: The rapid PoC screening and confirmatory assays were prospectively validated at the State Level Virus Research and Diagnostic Laboratory at Bangalore Medical College and Research Institute, Bengaluru, under technical supervision by the Indian Council of Medical Research-National Institute of Virology (ICMR-NIV), Pune. Real-time reverse transcription-polymerase chain reaction (rRT-PCR) was considered as the reference standard against which the rapid assays were validated for all samples tested based on analytical sensitivity, precision/inter-machine variation, clinical sensitivity and clinical specificity. Results: Truenat Beta CoV and Truenat SARS-CoV-2 assays showed concordant results when compared with the reference standard rRT-PCR. These PoC assays exhibited 100 per cent sensitivity, specificity, positive predictive value and negative predictive value. Interpretation & conclusions: Truenat Beta CoV and Truenat SARS-CoV-2 assays showed concordance with the reference standard assay and may be recommended for screening and confirmation of SARS-CoV-2 in the field settings.
Collapse
Affiliation(s)
| | - Ambica Rangaiah
- Department of Microbiology, Bangalore Medical College & Research Institute, Bengaluru, Karnataka, India
| | - Shashiraja Padukone
- Department of Microbiology, Bangalore Medical College & Research Institute, Bengaluru, Karnataka, India
| | - Pragya D Yadav
- Maximum Containment Laboratory, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Nivedita Gupta
- Division of Epidemiology & Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | | |
Collapse
|