151
|
McWilliam HEG, Mak JYW, Awad W, Zorkau M, Cruz-Gomez S, Lim HJ, Yan Y, Wormald S, Dagley LF, Eckle SBG, Corbett AJ, Liu H, Li S, Reddiex SJJ, Mintern JD, Liu L, McCluskey J, Rossjohn J, Fairlie DP, Villadangos JA. Endoplasmic reticulum chaperones stabilize ligand-receptive MR1 molecules for efficient presentation of metabolite antigens. Proc Natl Acad Sci U S A 2020; 117:24974-24985. [PMID: 32958637 PMCID: PMC7547156 DOI: 10.1073/pnas.2011260117] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The antigen-presenting molecule MR1 (MHC class I-related protein 1) presents metabolite antigens derived from microbial vitamin B2 synthesis to activate mucosal-associated invariant T (MAIT) cells. Key aspects of this evolutionarily conserved pathway remain uncharacterized, including where MR1 acquires ligands and what accessory proteins assist ligand binding. We answer these questions by using a fluorophore-labeled stable MR1 antigen analog, a conformation-specific MR1 mAb, proteomic analysis, and a genome-wide CRISPR/Cas9 library screen. We show that the endoplasmic reticulum (ER) contains a pool of two unliganded MR1 conformers stabilized via interactions with chaperones tapasin and tapasin-related protein. This pool is the primary source of MR1 molecules for the presentation of exogenous metabolite antigens to MAIT cells. Deletion of these chaperones reduces the ER-resident MR1 pool and hampers antigen presentation and MAIT cell activation. The MR1 antigen-presentation pathway thus co-opts ER chaperones to fulfill its unique ability to present exogenous metabolite antigens captured within the ER.
Collapse
Affiliation(s)
- Hamish E G McWilliam
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia;
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, VIC 3010, Australia
| | - Jeffrey Y W Mak
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Wael Awad
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Matthew Zorkau
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Sebastian Cruz-Gomez
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hui Jing Lim
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Yuting Yan
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Sam Wormald
- Division of Systems Biology and Personalised Medicine, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Laura F Dagley
- Division of Systems Biology and Personalised Medicine, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Sidonia B G Eckle
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Haiyin Liu
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, VIC 3010, Australia
| | - Shihan Li
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, VIC 3010, Australia
| | - Scott J J Reddiex
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, VIC 3010, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Justine D Mintern
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, VIC 3010, Australia
| | - Ligong Liu
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, CF14 4XN Cardiff, United Kingdom
| | - David P Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia;
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jose A Villadangos
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia;
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, VIC 3010, Australia
| |
Collapse
|
152
|
Narayanan GA, McLaren JE, Meermeier EW, Ladell K, Swarbrick GM, Price DA, Tran JG, Worley AH, Vogt T, Wong EB, Lewinsohn DM. The MAIT TCRβ chain contributes to discrimination of microbial ligand. Immunol Cell Biol 2020; 98:770-781. [PMID: 32568415 PMCID: PMC7541710 DOI: 10.1111/imcb.12370] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 11/03/2019] [Accepted: 06/19/2020] [Indexed: 12/15/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells are key players in the immune response against microbial infection. The MAIT T-cell receptor (TCR) recognizes a diverse array of microbial ligands, and recent reports have highlighted the variability in the MAIT TCR that could further contribute to discrimination of ligand. The MAIT TCR complementarity determining region (CDR)3β sequence displays a high level of diversity across individuals, and clonotype usage appears to be dependent on antigenic exposure. To address the relationship between the MAIT TCR and microbial ligand, we utilized a previously defined panel of MAIT cell clones that demonstrated variability in responses against different microbial infections. Sequencing of these clones revealed four pairs, each with shared (identical) CDR3α and different CDR3β sequences. These pairs demonstrated varied responses against microbially infected dendritic cells as well as against 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil, a ligand abundant in Salmonella enterica serovar Typhimurium, suggesting that the CDR3β contributes to differences in ligand discrimination. Taken together, these results highlight a key role for the MAIT CDR3β region in distinguishing between MR1-bound antigens and ligands.
Collapse
Affiliation(s)
- Gitanjali A. Narayanan
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - James E. McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, UK
| | - Erin W. Meermeier
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, UK
| | - Gwendolyn M. Swarbrick
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- VA Portland Health Care Center, Portland, OR 97239, USA
| | - David A. Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, UK
| | | | | | - Todd Vogt
- VA Portland Health Care Center, Portland, OR 97239, USA
| | - Emily B. Wong
- Africa Health Research Institute, Durban, South Africa
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - David M. Lewinsohn
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- VA Portland Health Care Center, Portland, OR 97239, USA
| |
Collapse
|
153
|
Pavlovic M, Gross C, Chili C, Secher T, Treiner E. MAIT Cells Display a Specific Response to Type 1 IFN Underlying the Adjuvant Effect of TLR7/8 Ligands. Front Immunol 2020; 11:2097. [PMID: 33013883 PMCID: PMC7509539 DOI: 10.3389/fimmu.2020.02097] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells constitute a highly conserved subset of effector T cells with innate-like recognition of a wide array of bacteria and fungi in humans. Harnessing the potential of these cells could represent a major advance as a new immunotherapy approach to fight difficult-to-treat bacterial infections. However, despite recent advances in the design of potent agonistic ligands for MAIT cells, it has become increasingly evident that adjuvants are required to elicit potent antimicrobial effector functions by these cells, such as IFNγ production and cytotoxicity. Indeed, TCR triggering alone elicits mostly barrier repair functions in MAIT cells, whereas an inflammatory milieu is required to drive the antibacterial functions. Cytokines such as IL-7, IL-12 and IL-18, IL-15 or more recently type 1 IFN all display an apparently similar ability to synergize with TCR stimulation to induce IFNγ production and/or cytotoxic functions in vitro, but their mechanisms of action are not well established. Herein, we show that MAIT cells feature a build-in mechanism to respond to IFNα. We confirm that IFNα acts directly and specifically on MAIT cells and synergizes with TCR/CD3 triggering to induce maximum cytokine production and cytotoxic functions. We provide evidences suggesting that the preferential activation of the Stat4 pathway is involved in the high sensitivity of MAIT cells to IFNα stimulation. Finally, gene expression data confirm the specific responsiveness of MAIT cells to IFNα and pinpoints specific pathways that could be the target of this cytokine. Altogether, these data highlight the potential of IFNα-inducing adjuvants to maximize MAIT cells responsiveness to purified ligands in order to induce potent anti-infectious responses.
Collapse
Affiliation(s)
- Marion Pavlovic
- INSERM UMR 1043, Centre de Physiopathologie de Toulouse-Purpan, Toulouse, France
| | - Christelle Gross
- INSERM UMR 1043, Centre de Physiopathologie de Toulouse-Purpan, Toulouse, France
| | - Chahinaize Chili
- INSERM UMR 1043, Centre de Physiopathologie de Toulouse-Purpan, Toulouse, France
| | - Thomas Secher
- INSERM UMR 1043, Centre de Physiopathologie de Toulouse-Purpan, Toulouse, France
| | - Emmanuel Treiner
- INSERM UMR 1043, Centre de Physiopathologie de Toulouse-Purpan, Toulouse, France.,Paul Sabatier University Toulouse III, Toulouse, France.,Laboratory of Immunology, Toulouse University Hospital, Toulouse, France
| |
Collapse
|
154
|
Kulicke C, Karamooz E, Lewinsohn D, Harriff M. Covering All the Bases: Complementary MR1 Antigen Presentation Pathways Sample Diverse Antigens and Intracellular Compartments. Front Immunol 2020; 11:2034. [PMID: 32983150 PMCID: PMC7492589 DOI: 10.3389/fimmu.2020.02034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/27/2020] [Indexed: 01/01/2023] Open
Abstract
The ubiquitously expressed, monomorphic MHC class Ib molecule MHC class I-related protein 1 (MR1) presents microbial metabolites to mucosal-associated invariant T (MAIT) cells. However, recent work demonstrates that both the ligands bound by MR1 and the T cells restricted by it are more diverse than originally thought. It is becoming increasingly clear that MR1 is capable of presenting a remarkable variety of both microbial and non-microbial small molecule antigens to a diverse group of MR1-restricted T cells (MR1Ts) and that the antigen presentation pathway differs between exogenously delivered antigen and intracellular microbial infection. These distinct antigen presentation pathways suggest that MR1 shares features of both MHC class I and MHC class II antigen presentation, enabling it to sample diverse intracellular compartments and capture antigen of both intracellular and extracellular origin. Here, we review recent developments and new insights into the cellular mechanisms of MR1-dependent antigen presentation with a focus on microbial MR1T cell antigens.
Collapse
Affiliation(s)
- Corinna Kulicke
- Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, United States.,VA Portland Health Care System, Research and Development, Portland, OR, United States
| | - Elham Karamooz
- Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, United States.,VA Portland Health Care System, Research and Development, Portland, OR, United States
| | - David Lewinsohn
- Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, United States.,VA Portland Health Care System, Research and Development, Portland, OR, United States.,Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States.,Department of Molecular and Microbial Immunology, Oregon Health and Science University, Portland, OR, United States
| | - Melanie Harriff
- Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, United States.,VA Portland Health Care System, Research and Development, Portland, OR, United States.,Department of Molecular and Microbial Immunology, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
155
|
Rha MS, Han JW, Kim JH, Koh JY, Park HJ, Kim SI, Kim MS, Lee JG, Lee HW, Lee DH, Kim W, Park JY, Joo DJ, Park SH, Shin EC. Human liver CD8 + MAIT cells exert TCR/MR1-independent innate-like cytotoxicity in response to IL-15. J Hepatol 2020; 73:640-650. [PMID: 32247824 DOI: 10.1016/j.jhep.2020.03.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/26/2020] [Accepted: 03/23/2020] [Indexed: 01/16/2023]
Abstract
BACKGROUND & AIMS Mucosal-associated invariant T (MAIT) cells, the most abundant innate-like T cells in the human liver, can be activated by cytokines during viral infection without TCR stimulation. Here, we examined the mechanisms underlying TCR/MR1-independent innate-like cytotoxicity of cytokine-activated liver MAIT cells. We also examined the phenotype and function of MAIT cells from patients with acute viral hepatitis. METHODS We obtained liver sinusoidal mononuclear cells from donor liver perfusate during liver transplantation and examined the effect of various cytokines on liver MAIT cells using flow cytometry and in vitro cytotoxicity assays. We also obtained peripheral blood and liver-infiltrating T cells from patients with acute hepatitis A (AHA) and examined the phenotype and function of MAIT cells using flow cytometry. RESULTS IL-15-stimulated MAIT cells exerted granzyme B-dependent innate-like cytotoxicity in the absence of TCR/MR1 interaction. PI3K-mTOR signaling, NKG2D ligation, and CD2-mediated conjugate formation were critically required for this IL-15-induced innate-like cytotoxicity. MAIT cells from patients with AHA exhibited activated and cytotoxic phenotypes with higher NKG2D expression. The innate-like cytotoxicity of MAIT cells was significantly increased in patients with AHA and correlated with serum alanine aminotransferase levels. CONCLUSIONS Taken together, the results demonstrate that liver MAIT cells activated by IL-15 exert NKG2D-dependent innate-like cytotoxicity in the absence of TCR/MR1 engagement. Furthermore, the innate-like cytotoxicity of MAIT cells is associated with liver injury in patients with AHA, suggesting that MAIT cells contribute to immune-mediated liver injury. LAY SUMMARY Immune-mediated liver injury commonly occurs during viral infections of the liver. Mucosal-associated invariant T (MAIT) cells are the most abundant innate-like T cells in the human liver. Herein, we have identified a mechanism by which MAIT cells circumvent conventional T cell receptor interactions to exert cytotoxicity. We show that this innate-like cytotoxicity is increased during acute hepatitis A virus infection and correlates with the degree of hepatocyte injury.
Collapse
Affiliation(s)
- Min-Seok Rha
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Ji Won Han
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; Division of Hepatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul 06591, Republic of Korea
| | - Jong Hoon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; Department of Dermatology and Cutaneous Biology Research Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - June-Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hye Jung Park
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Soon Il Kim
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Myoung Soo Kim
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jae Geun Lee
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyun Woong Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Dong Hyeon Lee
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul 07061, Republic of Korea
| | - Won Kim
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul 07061, Republic of Korea
| | - Jun Yong Park
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Dong Jin Joo
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
156
|
Corbett AJ, Awad W, Wang H, Chen Z. Antigen Recognition by MR1-Reactive T Cells; MAIT Cells, Metabolites, and Remaining Mysteries. Front Immunol 2020; 11:1961. [PMID: 32973800 PMCID: PMC7482426 DOI: 10.3389/fimmu.2020.01961] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022] Open
Abstract
Mucosal-associated Invariant T (MAIT) cells recognize vitamin B-based antigens presented by the non-polymorphic MHC class I related-1 molecule (MR1). Both MAIT T cell receptors (TCR) and MR1 are highly conserved among mammals, suggesting an important, and conserved, immune function. For many years, the antigens they recognize were unknown. The discovery that MR1 presents vitamin B-based small molecule ligands resulted in a rapid expansion of research in this area, which has yielded information on the role of MAIT cells in immune protection, autoimmune disease and recently in homeostasis and cancer. More recently, we have begun to appreciate the diverse nature of the small molecule ligands that can bind MR1, with several less potent antigens and small molecule drugs that can bind MR1 being identified. Complementary structural information has revealed the complex nature of interactions defining antigen recognition. Additionally, we now view MAIT cells (defined here as MR1-riboflavin-Ag reactive, TRAV1-2+ cells) as one subset of a broader family of MR1-reactive T cells (MR1T cells). Despite these advances, we still lack a complete understanding of how MR1 ligands are generated, presented and recognized in vivo. The biological relevance of these MR1 ligands and the function of MR1T cells in infection and disease warrants further investigation with new tools and approaches.
Collapse
Affiliation(s)
- Alexandra J. Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Wael Awad
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| | - Huimeng Wang
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenjun Chen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
157
|
Shepherd FR, McLaren JE. T Cell Immunity to Bacterial Pathogens: Mechanisms of Immune Control and Bacterial Evasion. Int J Mol Sci 2020; 21:E6144. [PMID: 32858901 PMCID: PMC7504484 DOI: 10.3390/ijms21176144] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
The human body frequently encounters harmful bacterial pathogens and employs immune defense mechanisms designed to counteract such pathogenic assault. In the adaptive immune system, major histocompatibility complex (MHC)-restricted αβ T cells, along with unconventional αβ or γδ T cells, respond to bacterial antigens to orchestrate persisting protective immune responses and generate immunological memory. Research in the past ten years accelerated our knowledge of how T cells recognize bacterial antigens and how many bacterial species have evolved mechanisms to evade host antimicrobial immune responses. Such escape mechanisms act to corrupt the crosstalk between innate and adaptive immunity, potentially tipping the balance of host immune responses toward pathological rather than protective. This review examines the latest developments in our knowledge of how T cell immunity responds to bacterial pathogens and evaluates some of the mechanisms that pathogenic bacteria use to evade such T cell immunosurveillance, to promote virulence and survival in the host.
Collapse
Affiliation(s)
| | - James E. McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
| |
Collapse
|
158
|
Sasson SC, Zaunders JJ, Nahar K, Munier CML, Fairfax BP, Olsson-Brown A, Jolly C, Read SA, Ahlenstiel G, Palendira U, Scolyer RA, Carlino MS, Payne MJ, Cheung VTF, Gupta T, Klenerman P, Long GV, Brain O, Menzies AM, Kelleher AD. Mucosal-associated invariant T (MAIT) cells are activated in the gastrointestinal tissue of patients with combination ipilimumab and nivolumab therapy-related colitis in a pathology distinct from ulcerative colitis. Clin Exp Immunol 2020; 202:335-352. [PMID: 32734627 PMCID: PMC7670140 DOI: 10.1111/cei.13502] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/09/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to investigate the pathogenesis of combination ipilimumab and nivolumab-associated colitis (IN-COL) by measuring gut-derived and peripheral blood mononuclear cell (GMNC; PBMC) profiles. We studied GMNC and PBMC from patients with IN-COL, IN-treated with no adverse-events (IN-NAE), ulcerative colitis (UC) and healthy volunteers using flow cytometry. In the gastrointestinal-derived cells we found high levels of activated CD8+ T cells and mucosal-associated invariant T (MAIT) cells in IN-COL, changes that were not evident in IN-NAE or UC. UC, but not IN-C, was associated with a high proportion of regulatory T cells (Treg ). We sought to determine if local tissue responses could be measured in peripheral blood. Peripherally, checkpoint inhibition instigated a rise in activated memory CD4+ and CD8+ T cells, regardless of colitis. Low circulating MAIT cells at baseline was associated with IN-COL patients compared with IN-NAE in one of two cohorts. UC, but not IN-COL, was associated with high levels of circulating plasmablasts. In summary, the alterations in T cell subsets measured in IN-COL-affected tissue, characterized by high levels of activated CD8+ T cells and MAIT cells and a low proportion of Treg , reflected a pathology distinct from UC. These tissue changes differed from the periphery, where T cell activation was a widespread on-treatment effect, and circulating MAIT cell count was low but not reliably predictive of colitis.
Collapse
Affiliation(s)
- S C Sasson
- Translational Gastroenterology Unit and Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - J J Zaunders
- Centre for Applied Medical Research, St Vincent's Hospital, Sydney, Australia
| | - K Nahar
- Melanoma Institute Australia and The University of Sydney, Sydney, Australia
| | - C M L Munier
- The Kirby Institute, University of New South Wales, Sydney, Australia
| | - B P Fairfax
- Department of Oncology, Churchill Hospital, Oxford, UK.,Department of Oncology, University of Oxford, Oxford, UK.,MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - A Olsson-Brown
- The Clatterbridge Cancer Centre NHS Foundation Trust and Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - C Jolly
- The Clatterbridge Cancer Centre NHS Foundation Trust and Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - S A Read
- Westmead Institute of Medical Research, Sydney, Australia.,Western Sydney University, Sydney, Australia
| | - G Ahlenstiel
- Westmead Institute of Medical Research, Sydney, Australia.,Department of Gastroenterology, Blacktown Hospital, Sydney, Australia
| | - U Palendira
- Discipline of Infectious Diseases and Immunology, The University of Sydney, Sydney, Australia
| | - R A Scolyer
- Melanoma Institute Australia and The University of Sydney, Sydney, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, Australia
| | - M S Carlino
- Melanoma Institute Australia and The University of Sydney, Sydney, Australia.,Department of Medical Oncology, Westmead and Blacktown Hospitals, Sydney, Australia
| | - M J Payne
- Department of Oncology, Churchill Hospital, Oxford, UK
| | - V T F Cheung
- Translational Gastroenterology Unit and Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - T Gupta
- Translational Gastroenterology Unit and Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - P Klenerman
- Translational Gastroenterology Unit and Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Peter Medawar Building of Pathogen Research, University of Oxford, Oxford, UK
| | - G V Long
- Melanoma Institute Australia and The University of Sydney, Sydney, Australia.,Department of Medical Oncology, Royal North Shore Hospital and Mater Hospitals, Sydney, Australia
| | - O Brain
- Translational Gastroenterology Unit and Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Department of Gastroenterology, John Radcliffe Hospital, Oxford, UK
| | - A M Menzies
- Melanoma Institute Australia and The University of Sydney, Sydney, Australia.,Department of Medical Oncology, Royal North Shore Hospital and Mater Hospitals, Sydney, Australia
| | - A D Kelleher
- Centre for Applied Medical Research, St Vincent's Hospital, Sydney, Australia.,The Kirby Institute, University of New South Wales, Sydney, Australia
| |
Collapse
|
159
|
Kaipe H, Raffetseder J, Ernerudh J, Solders M, Tiblad E. MAIT Cells at the Fetal-Maternal Interface During Pregnancy. Front Immunol 2020; 11:1788. [PMID: 32973750 PMCID: PMC7466580 DOI: 10.3389/fimmu.2020.01788] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
One of the main functions of the human placenta is to provide a barrier between the fetal and maternal blood circulations, where gas exchange and transfer of nutrients to the developing fetus take place. Despite being a barrier, there is a multitude of crosstalk between maternal immune cells and fetally derived semi-allogeneic trophoblast cells. Therefore, the maternal immune system has a difficult task to both tolerate the fetus but at the same time also defend the mother and the fetus from infections. Mucosal-associated invariant T (MAIT) cells are an increasingly recognized subset of T cells with anti-microbial functions that get activated in the context of non-polymorphic MR1 molecules, but also in response to inflammation. MAIT cells accumulate at term pregnancy in the maternal blood that flows into the intervillous space inside the placenta. Chemotactic factors produced by the placenta may be involved in recruiting and retaining particular immune cell subsets, including MAIT cells. In this Mini-Review, we describe what is known about MAIT cells during pregnancy and discuss the potential biological functions of MAIT cells at the fetal-maternal interface. Since MAIT cells have anti-microbial and tissue-repairing functions, but lack alloantigen reactivity, they could play an important role in protecting the fetus from bacterial infections and maintaining tissue homeostasis without risks of mediating harmful responses toward semi-allogenic fetal tissues.
Collapse
Affiliation(s)
- Helen Kaipe
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Johanna Raffetseder
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Jan Ernerudh
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Martin Solders
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Eleonor Tiblad
- Center for Fetal Medicine, Karolinska University Hospital, Stockholm, Sweden.,Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
160
|
Souter MNT, Eckle SBG. Biased MAIT TCR Usage Poised for Limited Antigen Diversity? Front Immunol 2020; 11:1845. [PMID: 33013835 PMCID: PMC7461848 DOI: 10.3389/fimmu.2020.01845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a subset of unconventional T cells that recognize the evolutionarily conserved major histocompatibility complex (MHC) class I-like antigen-presenting molecule known as MHC class I related protein 1 (MR1). Since their rise from obscurity in the early 1990s, the study of MAIT cells has grown substantially, accelerating our fundamental understanding of these cells and their possible roles in immunity. In the context of recent advances, we review here the relationship between MR1, antigen, and TCR usage among MAIT and other MR1-reactive T cells and provide a speculative discussion.
Collapse
Affiliation(s)
- Michael N T Souter
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Sidonia B G Eckle
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
161
|
Ioannidis M, Cerundolo V, Salio M. The Immune Modulating Properties of Mucosal-Associated Invariant T Cells. Front Immunol 2020; 11:1556. [PMID: 32903532 PMCID: PMC7438542 DOI: 10.3389/fimmu.2020.01556] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are unconventional T lymphocytes that express a semi-invariant T cell receptor (TCR) recognizing microbial vitamin B metabolites presented by the highly conserved major histocompatibility complex (MHC) class I like molecule, MR1. The vitamin B metabolites are produced by several commensal and pathogenic bacteria and yeast, but not viruses. Nevertheless, viral infections can trigger MAIT cell activation in a TCR-independent manner, through the release of pro-inflammatory cytokines by antigen-presenting cells (APCs). MAIT cells belong to the innate like T family of cells with a memory phenotype, which allows them to rapidly release Interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and in some circumstances Interleukin (IL)-17 and IL-10, exerting an immunomodulatory role on the ensuing immune response, akin to iNKT cells and γδ T cells. Recent studies implicate MAIT cells in a variety of inflammatory, autoimmune diseases, and in cancer. In addition, through the analysis of the transcriptome of MAIT cells activated in different experimental conditions, an important function in tissue repair and control of immune homeostasis has emerged, shared with other innate-like T cells. In this review, we discuss these recent findings, focussing on the understanding of the molecular mechanisms underpinning MAIT cell activation and effector function in health and disease, which ultimately will aid in clinically harnessing this unique, not donor-restricted cell subtype.
Collapse
Affiliation(s)
- Melina Ioannidis
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Vincenzo Cerundolo
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Mariolina Salio
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
162
|
Artificially induced MAIT cells inhibit M. bovis BCG but not M. tuberculosis during in vivo pulmonary infection. Sci Rep 2020; 10:13579. [PMID: 32788608 PMCID: PMC7423888 DOI: 10.1038/s41598-020-70615-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/25/2020] [Indexed: 12/25/2022] Open
Abstract
There is significant interest in targeting MAIT cells with immunostimulatory agents to enhance immune responses. Mycobacterium tuberculosis (M. tb.) is a pervasive respiratory disease that could benefit from treatments that augment immunity. Here we investigate the role of MAIT cells in M. tb. infection and the potential for MAIT cell-targeted immunotherapy to control bacterial burdens. We find that MAIT cells fail to substantially accumulate in the lungs during murine pulmonary M. bovis BCG and M. tb. infections but this defect is overcome by intranasal installation of a TLR2/6 agonist and a MAIT cell antigen. Although artificially induced MAIT cells produce important cytokines in both infections, they control BCG but not M. tb. growth in the lungs. Correspondingly, M. tb.-infected mouse macrophages are relatively resistant to MAIT cell antimicrobial activities in vitro. Thus, MAIT cell antigen-mediated immunotherapy for M. tb. presents a complex challenge.
Collapse
|
163
|
MR1-Restricted T Cells in Cancer Immunotherapy. Cancers (Basel) 2020; 12:cancers12082145. [PMID: 32756356 PMCID: PMC7464881 DOI: 10.3390/cancers12082145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/20/2020] [Accepted: 07/29/2020] [Indexed: 01/09/2023] Open
Abstract
Major histocompatibility complex class I-related (MR1) was first identified as a cell membrane protein involved in the development and expansion of a unique set of T cells expressing an invariant T-cell receptor (TCR) α-chain. These cells were initially discovered in mucosal tissues, such as the intestinal mucosa, so they are called mucosal-associated invariant T (MAIT) cells. MR1 senses the presence of intermediate metabolites of riboflavin and folic acid synthesis that have been chemically modified by the side-products of glycolysis, glyoxal or methylglyoxal. These modified metabolites form complexes with MR1 and translocate from the endoplasmic reticulum to the plasma membrane where MAIT cells’ TCRs recognize them. Recent publications report that atypical MR1-restricted cytotoxic T cells, differing from MAIT cells in TCR usage, antigen, and transcription factor profile, recognize an as yet unknown cancer-specific metabolite presented by MR1 in cancer cells. This metabolite may represent another class of neoantigens, beyond the neo-peptides arising from altered tumor proteins. In an MR1-dependent manner, these MR1-restricted T cells, while sparing noncancerous cells, kill many cancer cell lines and attenuate cell-line-derived and patient-derived xenograft tumors. As MR1 is monomorphic and expressed in a wide range of cancer tissues, these findings raise the possibility of universal pan-cancer immunotherapies that are dependent on cancer metabolites.
Collapse
|
164
|
Yao T, Shooshtari P, Haeryfar SMM. Leveraging Public Single-Cell and Bulk Transcriptomic Datasets to Delineate MAIT Cell Roles and Phenotypic Characteristics in Human Malignancies. Front Immunol 2020; 11:1691. [PMID: 32849590 PMCID: PMC7413026 DOI: 10.3389/fimmu.2020.01691] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022] Open
Abstract
Mucosa-associated invariant T (MAIT) cells are unconventional, innate-like T lymphocytes that recognize vitamin B metabolites of microbial origin among other antigens displayed by the monomorphic molecule MHC class I-related protein 1 (MR1). Abundant in human tissues, reactive to local inflammatory cues, and endowed with immunomodulatory and cytolytic functions, MAIT cells are likely to play key roles in human malignancies. They accumulate in various tumor microenvironments (TMEs) where they often lose some of their functional capacities. However, the potential roles of MAIT cells in anticancer immunity or cancer progression and their significance in shaping clinical outcomes remain largely unknown. In this study, we analyzed publicly available bulk and single-cell tumor transcriptomic datasets to investigate the tissue distribution, phenotype, and prognostic significance of MAIT cells across several human cancers. We found that expanded MAIT cell clonotypes were often shared between the blood, tumor tissue and adjacent healthy tissue of patients with colorectal, hepatocellular, and non-small cell lung carcinomas. Gene expression comparisons between tumor-infiltrating and healthy tissue MAIT cells revealed the presence of activation and/or exhaustion programs within the TMEs of primary hepatocellular and colorectal carcinomas. Interestingly, in basal and squamous cell carcinomas of the skin, programmed cell death-1 (PD-1) blockade upregulated the expression of several effector genes in tumor-infiltrating MAIT cells. We derived a signature comprising stable and specific MAIT cell gene markers across several tissue compartments and cancer types. By applying this signature to estimate MAIT cell abundance in pan-cancer gene expression data, we demonstrate that a heavier intratumoral MAIT cell presence is positively correlated with a favorable prognosis in esophageal carcinoma but predicts poor overall survival in colorectal and squamous cell lung carcinomas. Finally, in colorectal carcinoma and four other cancer types, we found a positive correlation between MR1 expression and estimated MAIT cell abundance. Collectively, our findings indicate that MAIT cells serve important but diverse roles in human cancers. Our work provides useful models and resources that employ gene expression data platforms to enable future studies in the realm of MAIT cell biology.
Collapse
Affiliation(s)
- Tony Yao
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Parisa Shooshtari
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada.,Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, ON, Canada.,Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada.,Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, ON, Canada.,Division of General Surgery, Department of Surgery, Western University, London, ON, Canada.,Centre for Human Immunology, Western University, London, ON, Canada
| |
Collapse
|
165
|
Wang H, Kjer-Nielsen L, Shi M, D'Souza C, Pediongco TJ, Cao H, Kostenko L, Lim XY, Eckle SBG, Meehan BS, Zhu T, Wang B, Zhao Z, Mak JYW, Fairlie DP, Teng MWL, Rossjohn J, Yu D, de St Groth BF, Lovrecz G, Lu L, McCluskey J, Strugnell RA, Corbett AJ, Chen Z. IL-23 costimulates antigen-specific MAIT cell activation and enables vaccination against bacterial infection. Sci Immunol 2020; 4:4/41/eaaw0402. [PMID: 31732518 DOI: 10.1126/sciimmunol.aaw0402] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/09/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells are activated in a TCR-dependent manner by antigens derived from the riboflavin synthesis pathway, including 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU), bound to MHC-related protein-1 (MR1). However, MAIT cell activation in vivo has not been studied in detail. Here, we have found and characterized additional molecular signals required for optimal activation and expansion of MAIT cells after pulmonary Legionella or Salmonella infection in mice. We show that either bone marrow-derived APCs or non-bone marrow-derived cells can activate MAIT cells in vivo, depending on the pathogen. Optimal MAIT cell activation in vivo requires signaling through the inducible T cell costimulator (ICOS), which is highly expressed on MAIT cells. Subsequent expansion and maintenance of MAIT-17/1-type responses are dependent on IL-23. Vaccination with IL-23 plus 5-OP-RU augments MAIT cell-mediated control of pulmonary Legionella infection. These findings reveal cellular and molecular targets for manipulating MAIT cell function under physiological conditions.
Collapse
Affiliation(s)
- Huimeng Wang
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| | - Lars Kjer-Nielsen
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Mai Shi
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.,School of Medicine, Tsinghua University, Beijing, China
| | - Criselle D'Souza
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, VIC 3010, Australia
| | - Troi J Pediongco
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hanwei Cao
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Lyudmila Kostenko
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Xin Yi Lim
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Sidonia B G Eckle
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Bronwyn S Meehan
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Tianyuan Zhu
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.,School of Medicine, Tsinghua University, Beijing, China
| | - Bingjie Wang
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Zhe Zhao
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jeffrey Y W Mak
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Saint Lucia, QLD 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Queensland, Saint Lucia, QLD 4072, Australia
| | - David P Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Saint Lucia, QLD 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Queensland, Saint Lucia, QLD 4072, Australia
| | - Michele W L Teng
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia.,Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, CF14 4XN Wales, UK
| | - Di Yu
- John Curtin School of Medical Research, The Australian National University, Acton, ACT 2601 Australia
| | - Barbara Fazekas de St Groth
- Discipline of Pathology, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - George Lovrecz
- Biomedical Manufacturing, CSIRO, Parkville, VIC, 3052, Australia
| | - Louis Lu
- Biomedical Manufacturing, CSIRO, Parkville, VIC, 3052, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Richard A Strugnell
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Zhenjun Chen
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| |
Collapse
|
166
|
Pisarska MM, Dunne MR, O'Shea D, Hogan AE. Interleukin‐17 producing mucosal associated invariant T cells ‐ emerging players in chronic inflammatory diseases? Eur J Immunol 2020; 50:1098-1108. [DOI: 10.1002/eji.202048645] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/25/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Marta M. Pisarska
- Kathleen Lonsdale Institute for Human Health ResearchMaynooth University Kildare Ireland
- National Children's Research Centre Dublin Ireland
| | - Margaret R. Dunne
- Trinity Translational Medicine Institute, Department of SurgerySt James's Hospital Dublin Ireland
- Trinity St James's Cancer InstituteSt James's Hospital Dublin Dublin Ireland
| | - Donal O'Shea
- Obesity Immunology Group, Education and Research Centre, St Vincent's University HospitalUniversity College Dublin Ireland
| | - Andrew E. Hogan
- Kathleen Lonsdale Institute for Human Health ResearchMaynooth University Kildare Ireland
- National Children's Research Centre Dublin Ireland
- Obesity Immunology Group, Education and Research Centre, St Vincent's University HospitalUniversity College Dublin Ireland
| |
Collapse
|
167
|
Lacerda Mariano L, Ingersoll MA. The immune response to infection in the bladder. Nat Rev Urol 2020; 17:439-458. [PMID: 32661333 DOI: 10.1038/s41585-020-0350-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2020] [Indexed: 12/22/2022]
Abstract
The bladder is continuously protected by passive defences such as a mucus layer, antimicrobial peptides and secretory immunoglobulins; however, these defences are occasionally overcome by invading bacteria that can induce a strong host inflammatory response in the bladder. The urothelium and resident immune cells produce additional defence molecules, cytokines and chemokines, which recruit inflammatory cells to the infected tissue. Resident and recruited immune cells act together to eradicate bacteria from the bladder and to develop lasting immune memory against infection. However, urinary tract infection (UTI) is commonly recurrent, suggesting that the induction of a memory response in the bladder is inadequate to prevent reinfection. Additionally, infection seems to induce long-lasting changes in the urothelium, which can render the tissue more susceptible to future infection. The innate immune response is well-studied in the field of UTI, but considerably less is known about how adaptive immunity develops and how repair mechanisms restore bladder homeostasis following infection. Furthermore, data demonstrate that sex-based differences in immunity affect resolution and infection can lead to tissue remodelling in the bladder following resolution of UTI. To combat the rise in antimicrobial resistance, innovative therapeutic approaches to bladder infection are currently in development. Improving our understanding of how the bladder responds to infection will support the development of improved treatments for UTI, particularly for those at risk of recurrent infection.
Collapse
Affiliation(s)
- Livia Lacerda Mariano
- Department of Immunology, Institut Pasteur, Paris, France.,Inserm, U1223, Paris, France
| | - Molly A Ingersoll
- Department of Immunology, Institut Pasteur, Paris, France. .,Inserm, U1223, Paris, France.
| |
Collapse
|
168
|
Souter MNT, Loh L, Li S, Meehan BS, Gherardin NA, Godfrey DI, Rossjohn J, Fairlie DP, Kedzierska K, Pellicci DG, Chen Z, Kjer-Nielsen L, Corbett AJ, McCluskey J, Eckle SBG. Characterization of Human Mucosal-associated Invariant T (MAIT) Cells. ACTA ACUST UNITED AC 2020; 127:e90. [PMID: 31763790 DOI: 10.1002/cpim.90] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells are a subset of unconventional T cells restricted by the major histocompatibility complex (MHC) class I-like molecule MHC-related protein 1 (MR1). MAIT cells are found throughout the body, especially in human blood and liver. Unlike conventional T cells, which are stimulated by peptide antigens presented by MHC molecules, MAIT cells recognize metabolite antigens derived from an intermediate in the microbial biosynthesis of riboflavin. MAIT cells mediate protective immunity to infections by riboflavin-producing microbes via the production of cytokines and cytotoxicity. The discovery of stimulating MAIT cell antigens allowed for the development of an analytical tool, the MR1 tetramer, that binds specifically to the MAIT T cell receptor (TCR) and is becoming the gold standard for identification of MAIT cells by flow cytometry. This article describes protocols to characterize the phenotype of human MAIT cells in blood and tissues by flow cytometry using fluorescently labeled human MR1 tetramers alongside antibodies specific for MAIT cell markers. © 2019 by John Wiley & Sons, Inc. The main protocols include: Basic Protocol 1: Determining the frequency and steady-state surface phenotype of human MAIT cells Basic Protocol 2: Determining the activation phenotype of human MAIT cells in blood Basic Protocol 3: Characterizing MAIT cell TCRs using TCR-positive reporter cell lines Alternate protocols are provided for determining the absolute number, transcription factor phenotype, and TCR usage of human MAIT cells; and determining activation phenotype by staining for intracellular markers, measuring secreted cytokines, and measuring fluorescent dye dilution due to proliferation. Additional methods are provided for determining the capacity of MAIT cells to produce cytokine independently of antigen using plate-bound or bead-immobilized CD3/CD28 stimulation; and determining the MR1-Ag dependence of MAIT cell activation using MR1-blocking antibody or competitive inhibition. For TCR-positive reporter cell lines, methods are also provided for evaluating the MAIT TCR-mediated MR1-Ag response, determining the capacity of the reporter lines to produce cytokine independently of antigen, determining the MR1-Ag dependence of the reporter lines, and evaluating the MR1-Ag response of the reporter lines using IL-2 secretion. Support Protocols describe the preparation of PBMCs from human blood, the preparation of single-cell suspensions from tissue, the isolation of MAIT cells by FACS and MACS, cloning MAIT TCRα and β chain genes and MR1 genes for transduction, generating stably and transiently transfected cells lines, generating a stable MR1 knockout antigen-presenting cell line, and generating monocyte-derived dendritic cells.
Collapse
Affiliation(s)
- Michael N T Souter
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Australia
| | - Liyen Loh
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Shihan Li
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Australia
| | - Bronwyn S Meehan
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Nicholas A Gherardin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Wales, United Kingdom
| | - David P Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Queensland, Brisbane, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Daniel G Pellicci
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.,Murdoch Children's Research Institute, Parkville, Australia
| | - Zhenjun Chen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Lars Kjer-Nielsen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Sidonia B G Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| |
Collapse
|
169
|
Thymic development of unconventional T cells: how NKT cells, MAIT cells and γδ T cells emerge. Nat Rev Immunol 2020; 20:756-770. [DOI: 10.1038/s41577-020-0345-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2020] [Indexed: 12/11/2022]
|
170
|
Human Tumor-Infiltrating MAIT Cells Display Hallmarks of Bacterial Antigen Recognition in Colorectal Cancer. CELL REPORTS MEDICINE 2020; 1:100039. [PMID: 33205061 PMCID: PMC7659584 DOI: 10.1016/j.xcrm.2020.100039] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/25/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022]
Abstract
Growing evidence indicates a role for the gut microbiota in modulating anti-tumor treatment efficacy in human cancer. Here we study mucosa-associated invariant T (MAIT) cells to look for evidence of bacterial antigen recognition in human colon, lung, and kidney carcinomas. Using mass cytometry and single-cell mRNA sequencing, we identify a tumor-infiltrating MAIT cell subset expressing CD4 and Foxp3 and observe high expression of CD39 on MAIT cells from colorectal cancer (CRC) only, which we show in vitro to be expressed specifically after TCR stimulation. We further reveal that these cells are phenotypically and functionally exhausted. Sequencing data show high bacterial infiltration in CRC tumors and highlight an enriched species, Fusobacteria nucleatum, with capability to activate MAIT cells in a TCR-dependent way. Our results provide evidence of a MAIT cell response to microbial antigens in CRC and could pave the way for manipulating MAIT cells or the microbiome for cancer therapy.
Collapse
|
171
|
Abstract
Background Metabolic diseases represent a wide category of alterations affecting metabolism. These pathologies are notably marked by inflammation that implicates the immune system. Mucosal Associated Invariant (MAI)T cells are immune cells expressing a semi-invariant TCR able to recognize bacterial and fungal vitamin B metabolites. MAIT cells can promote inflammation and are present in many organs central to metabolism, suggesting a role in the etiopathology of these diseases. Scope of the review Here, we will review what is known of the involvement of MAIT cells in metabolic pathologies in humans and mice. Major conclusions MAIT cells are severely affected, overactivated with a frequency reduction and a phenotype shift from protective to deleterious. Therefore, they might be a novel target to treat, in particular, pancreas and liver metabolic diseases.
Collapse
|
172
|
Cross-Reactivity of Palladium in a Murine Model of Metal-Induced Allergic Contact Dermatitis. Int J Mol Sci 2020; 21:ijms21114061. [PMID: 32517103 PMCID: PMC7313072 DOI: 10.3390/ijms21114061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
Metal allergy is usually diagnosed by patch testing, however, the results do not necessarily reflect the clinical symptoms because of cross-reactivity between different metals. In this study, we established the novel mouse model of cross-reactive metal allergy, and aimed to elucidate the immune response in terms of T-cell receptor repertoire. This model was classified into two groups: the sensitization to nickel and challenge with palladium group, and the sensitization to chromium and challenge with palladium group. This model developed spongiotic edema with intra- and peri-epithelial infiltration of CD4+ T cells in the inflamed skin that resembles human contact dermatitis. Using T cell receptor analysis, we detected a high proportion of T cells bearing Trav8d-1-Traj49 and Trav5-1-Traj37 in the Ni- and Cr-sensitized Pd-challenged mice. Furthermore, mucosal-associated invariant T cells and invariant natural killer T cells were also detected. Our results indicated that T cells bearing Trav8d-1-Traj49 and Trav5-1-Traj37 induced the development of palladium-cross reactive allergy, and that mucosal-associated invariant T and invariant natural killer T cells were also involved in the cross-reactivity between different metals.
Collapse
|
173
|
Stamataki Z, Swadling L. The liver as an immunological barrier redefined by single-cell analysis. Immunology 2020; 160:157-170. [PMID: 32176810 PMCID: PMC7218664 DOI: 10.1111/imm.13193] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
The liver is a front-line immune tissue that plays a major role in the detection, capture and clearance of pathogens and foreign antigens entering the bloodstream, especially from the gut. Our largest internal organ maintains this immune barrier in the face of constant exposure to external but harmless antigens through a highly specialized network of liver-adapted immune cells. Mapping the immune resident compartment in the liver has been challenging because it requires multimodal single-cell deep phenotyping approaches of often rare cell populations in difficult to access samples. We can now measure the RNA transcripts present in a single cell (scRNA-seq), which is revolutionizing the way we characterize cell types. scRNA-seq has been applied to the diverse array of immune cells present in murine and human livers in health and disease. Here, we summarize how emerging single-cell technologies have advanced or redefined our understanding of the immunological barrier provided by the liver.
Collapse
Affiliation(s)
- Zania Stamataki
- Institute of Immunology and ImmunotherapyCentre for Liver and Gastrointestinal ResearchUniversity of BirminghamBirminghamUK
- NIHR Birmingham Liver Biomedical Research CentreUniversity Hospitals Birmingham NHS Foundation TrustBirminghamUK
| | - Leo Swadling
- Division of Infection & ImmunityUniversity College LondonLondonUK
| |
Collapse
|
174
|
Schmaler M, Orlova-Fink N, Rutishauser T, Abdulla S, Daubenberger C. Human unconventional T cells in Plasmodium falciparum infection. Semin Immunopathol 2020; 42:265-277. [PMID: 32076813 PMCID: PMC7223888 DOI: 10.1007/s00281-020-00791-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/07/2020] [Indexed: 12/22/2022]
Abstract
Malaria is an old scourge of humankind and has a large negative impact on the economic development of affected communities. Recent success in malaria control and reduction of mortality seems to have stalled emphasizing that our current intervention tools need to be complemented by malaria vaccines. Different populations of unconventional T cells such as mucosal-associated invariant T (MAIT) cells, invariant natural killer T (iNKT) cells and γδ T cells are gaining attention in the field of malaria immunology. Significant advances in our basic understanding of unconventional T cell biology in rodent malaria models have been made, however, their roles in humans during malaria are less clear. Unconventional T cells are abundant in skin, gut and liver tissues, and long-lasting expansions and functional alterations were observed upon malaria infection in malaria naïve and malaria pre-exposed volunteers. Here, we review the current understanding of involvement of unconventional T cells in anti-Plasmodium falciparum immunity and highlight potential future research avenues.
Collapse
Affiliation(s)
- Mathias Schmaler
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Nina Orlova-Fink
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Tobias Rutishauser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Salim Abdulla
- Ifakara Health Institute, Bagamoyo Clinical Trial Unit, Bagamoyo, Tanzania
| | - Claudia Daubenberger
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland.
| |
Collapse
|
175
|
Abstract
Mucosal associated invariant T (MAIT) cells are striking in their abundance and their strict conservation across 150 million years of mammalian evolution, implying they must fulfill critical immunological function(s). MAIT cells are defined by their expression of a semi-invariant αβ TCR which recognizes biosynthetic derivatives of riboflavin synthesis presented on MR1. Initial studies focused on their role in detecting predominantly intracellular bacterial and mycobacterial infections. However, it is now recognized that there are several modes of MAIT cell activation and these are related to activation of distinct transcriptional programmes, each associated with distinct functional roles. In this minireview, we summarize current knowledge from human and animal studies of MAIT cell activation induced (1) in an MR1-TCR dependent manner in the context of inflammatory danger signals and associated with antibacterial host defense; (2) in an MR1-TCR independent manner by the cytokines interleukin(IL)-12/-15/-18 and type I interferon, which is associated with antiviral responses; and (3) a recently-described TCR-dependent “tissue repair” programme which is associated with accelerated wound healing in the context of commensal microbiota. Because of this capability for diverse functional responses in diverse immunological contexts, these intriguing cells now appear to be multifunctional effectors central to the interface of innate and adaptive immunity.
Collapse
Affiliation(s)
- Timothy S C Hinks
- Respiratory Medicine Unit and National Institute for Health Research (NIHR), Nuffield Department of Medicine Experimental Medicine, Oxford Biomedical Research Centre (BRC), University of Oxford, Oxfordshire, United Kingdom
| | - Xia-Wei Zhang
- Respiratory Medicine Unit and National Institute for Health Research (NIHR), Nuffield Department of Medicine Experimental Medicine, Oxford Biomedical Research Centre (BRC), University of Oxford, Oxfordshire, United Kingdom.,Division of Respiratory Medicine, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
176
|
Boulouis C, Gorin JB, Dias J, Bergman P, Leeansyah E, Sandberg JK. Opsonization-Enhanced Antigen Presentation by MR1 Activates Rapid Polyfunctional MAIT Cell Responses Acting as an Effector Arm of Humoral Antibacterial Immunity. THE JOURNAL OF IMMUNOLOGY 2020; 205:67-77. [PMID: 32434941 DOI: 10.4049/jimmunol.2000003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/30/2020] [Indexed: 12/27/2022]
Abstract
Mucosa-associated invariant T (MAIT) cells are innate-like antimicrobial T cells recognizing a breadth of important pathogens via presentation of microbial riboflavin metabolite Ags by MHC class Ib-related (MR1) molecules. However, the interaction of human MAIT cells with adaptive immune responses and the role they may play in settings of vaccinology remain relatively little explored. In this study we investigated the interplay between MAIT cell-mediated antibacterial effector functions and the humoral immune response. IgG opsonization of the model microbe Escherichia coli with pooled human sera markedly enhanced the capacity of monocytic APC to stimulate MAIT cells. This effect included greater sensitivity of recognition and faster response kinetics, as well as a markedly higher polyfunctionality and magnitude of MAIT cell responses involving a range of effector functions. The boost of MAIT cell responses was dependent on strongly enhanced MR1-mediated Ag presentation via increased FcγR-mediated uptake and signaling primarily mediated by FcγRI. To investigate possible translation of this effect to a vaccine setting, sera from human subjects before and after vaccination with the 13-valent-conjugated Streptococcus pneumoniae vaccine were assessed in a MAIT cell activation assay. Interestingly, vaccine-induced Abs enhanced Ag presentation to MAIT cells, resulting in more potent effector responses. These findings indicate that enhancement of Ag presentation by IgG opsonization allows innate-like MAIT cells to mount a faster, stronger, and qualitatively more complex response and to function as an effector arm of vaccine-induced humoral adaptive antibacterial immunity.
Collapse
Affiliation(s)
- Caroline Boulouis
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Jean-Baptiste Gorin
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Joana Dias
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Peter Bergman
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, 14152 Stockholm, Sweden.,Infectious Disease Clinic, Immunodeficiency Unit, Karolinska University Hospital, Huddinge, 14186 Stockholm, Sweden; and
| | - Edwin Leeansyah
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, 14152 Stockholm, Sweden.,Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169587 Singapore
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, 14152 Stockholm, Sweden;
| |
Collapse
|
177
|
Kuyukina MS, Kochina OA, Gein SV, Ivshina IB, Chereshnev VA. Mechanisms of Immunomodulatory and Membranotropic Activity of Trehalolipid Biosurfactants (a Review). APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820030072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
178
|
Ellis AL, Balgeman AJ, Larson EC, Rodgers MA, Ameel C, Baranowski T, Kannal N, Maiello P, Juno JA, Scanga CA, O’Connor SL. MAIT cells are functionally impaired in a Mauritian cynomolgus macaque model of SIV and Mtb co-infection. PLoS Pathog 2020; 16:e1008585. [PMID: 32433713 PMCID: PMC7266356 DOI: 10.1371/journal.ppat.1008585] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/02/2020] [Accepted: 04/29/2020] [Indexed: 12/11/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells can recognize and respond to some bacterially infected cells. Several in vitro and in vivo models of Mycobacterium tuberculosis (Mtb) infection suggest that MAIT cells can contribute to control of Mtb, but these studies are often cross-sectional and use peripheral blood cells. Whether MAIT cells are recruited to Mtb-affected granulomas and lymph nodes (LNs) during early Mtb infection and what purpose they might serve there is less well understood. Furthermore, whether HIV/SIV infection impairs MAIT cell frequency or function at the sites of Mtb replication has not been determined. Using Mauritian cynomolgus macaques (MCM), we phenotyped MAIT cells in the peripheral blood and bronchoalveolar lavage (BAL) before and during infection with SIVmac239. To test the hypothesis that SIV co-infection impairs MAIT cell frequency and function within granulomas, SIV+ and -naïve MCM were infected with a low dose of Mtb Erdman, and necropsied at 6 weeks post Mtb-challenge. MAIT cell frequency and function were examined within the peripheral blood, BAL, and Mtb-affected lymph nodes (LN) and granulomas. MAIT cells did not express markers indicative of T cell activation in response to Mtb in vivo within granulomas in animals infected with Mtb alone. SIV and Mtb co-infection led to increased expression of the activation/exhaustion markers PD-1 and TIGIT, and decreased ability to secrete TNFα when compared to SIV-naïve MCM. Our study provides evidence that SIV infection does not prohibit the recruitment of MAIT cells to sites of Mtb infection, but does functionally impair those MAIT cells. Their impaired function could have impacts, either direct or indirect, on the long-term containment of TB disease.
Collapse
Affiliation(s)
- Amy L. Ellis
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Alexis J. Balgeman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Erica C. Larson
- Department of Microbiology and Molecular Genetics, and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mark A. Rodgers
- Department of Microbiology and Molecular Genetics, and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Cassaundra Ameel
- Department of Microbiology and Molecular Genetics, and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Tonilynn Baranowski
- Department of Microbiology and Molecular Genetics, and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nadean Kannal
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jennifer A. Juno
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Charles A. Scanga
- Department of Microbiology and Molecular Genetics, and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
179
|
Vacchini A, Chancellor A, Spagnuolo J, Mori L, De Libero G. MR1-Restricted T Cells Are Unprecedented Cancer Fighters. Front Immunol 2020; 11:751. [PMID: 32411144 PMCID: PMC7198878 DOI: 10.3389/fimmu.2020.00751] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Non-polymorphic MHC class I-related molecule MR1 presents antigenic bacterial metabolites to mucosal-associated invariant T (MAIT) cells and self-antigens to MR1-restricted T (MR1T) cells. Both MR1-restricted T cell populations are readily identified in healthy individuals, with MAIT cells accounting for 1-10% of circulating T cells, while MR1T cells have frequencies comparable to peptide-specific T cells (<0.1%). Self-reactive MR1T cells display a heterogeneous phenotype, and are capable of releasing both TH1 and TH2 cytokines, supporting not only activation of inflammation but also contributing to its regulation. Importantly, MR1T cells recognize and kill a diverse range of MR1-expressing tumor cells. On the other hand, evidence suggests MAIT cells augment cancer growth and metastases. This review addresses the potential role of MR1-restricted T cells in controlling tumor cells, facilitating their elimination and regulating cancer immunity. We also discuss therapeutic opportunities surrounding MR1-restricted T cells in cancer.
Collapse
Affiliation(s)
- Alessandro Vacchini
- Experimental Immunology, Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Andrew Chancellor
- Experimental Immunology, Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Julian Spagnuolo
- Experimental Immunology, Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Lucia Mori
- Experimental Immunology, Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Gennaro De Libero
- Experimental Immunology, Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| |
Collapse
|
180
|
Abstract
Mucosal-associated invariant T (MAIT) cells have been attracting increasing attention over the last few years as a potent unconventional T cell subset. Three factors largely account for this emerging interest. Firstly, these cells are abundant in humans, both in circulation and especially in some tissues such as the liver. Secondly is the discovery of a ligand that has uncovered their microbial targets, and also allowed for the development of tools to accurately track the cells in both humans and mice. Finally, it appears that the cells not only have a diverse range of functions but also are sensitive to a range of inflammatory triggers that can enhance or even bypass T cell receptor–mediated signals—substantially broadening their likely impact in health and disease. In this review we discuss how MAIT cells display antimicrobial, homeostatic, and amplifier roles in vivo, and how this may lead to protection and potentially pathology.
Collapse
Affiliation(s)
- Nicholas M. Provine
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Headington, Oxford OX3 9DU, United Kingdom
| | - Paul Klenerman
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Headington, Oxford OX3 9DU, United Kingdom
- NIHR Biomedical Research Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
181
|
Krause JL, Schäpe SS, Schattenberg F, Müller S, Ackermann G, Rolle-Kampczyk UE, Jehmlich N, Pierzchalski A, von Bergen M, Herberth G. The Activation of Mucosal-Associated Invariant T (MAIT) Cells Is Affected by Microbial Diversity and Riboflavin Utilization in vitro. Front Microbiol 2020; 11:755. [PMID: 32390989 PMCID: PMC7189812 DOI: 10.3389/fmicb.2020.00755] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
Recent research has demonstrated that MAIT cells are activated by individual bacterial or yeasts species that possess the riboflavin biosynthesis pathway. However, little is known about the MAIT cell activating potential of microbial communities and the contribution of individual community members. Here, we analyze the MAIT cell activating potential of a human intestinal model community (SIHUMIx) as well as intestinal microbiota after bioreactor cultivation. We determined the contribution of individual SIHUMIx community members to the MAIT cell activating potential and investigated whether microbial stress can influence their MAIT cell activating potential. The MAIT cell activating potential of SIHUMIx was directly related to the relative species abundances in the community. We therefore suggest an additive relationship between the species abundances and their MAIT cell activating potential. In diverse microbial communities, we found that a low MAIT cell activating potential was associated with high microbial diversity and a high level of riboflavin demand and vice versa. We suggest that microbial diversity might affect MAIT cell activation via riboflavin utilization within the community. Microbial acid stress significantly reduced the MAIT cell activating potential of SIHUMIx by impairing riboflavin availability through increasing the riboflavin demand. We show that MAIT cells can perceive microbial stress due to changes in riboflavin utilization and that riboflavin availability might also play a central role for the MAIT cell activating potential of diverse microbiota.
Collapse
Affiliation(s)
- Jannike L Krause
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research - UFZ Leipzig, Germany
| | - Stephanie S Schäpe
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Florian Schattenberg
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Susann Müller
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | | | - Ulrike E Rolle-Kampczyk
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Arkadiusz Pierzchalski
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research - UFZ Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany.,Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Gunda Herberth
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research - UFZ Leipzig, Germany
| |
Collapse
|
182
|
Affiliation(s)
- Lucia Mori
- Experimental Immunology, Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland.
| | - Gennaro De Libero
- Experimental Immunology, Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| |
Collapse
|
183
|
Abstract
PURPOSE OF REVIEW To analyze the possible role that the 'unconventional' T-cell populations mucosal-associated invariant T cell (MAIT) and iNKT cells play during HIV infection and following antiretroviral therapy (ART) treatment. RECENT FINDINGS A substantial body of evidence now demonstrates that both MAIT and iNKT cells are depleted in blood during HIV infection. The depletion and dysfunction of MAIT and iNKT cells are only partially restored by suppressive ART, potentially contributing to HIV-related comorbidities. SUMMARY The deficiency and dysfunction of MAIT and iNKT T-cell subsets likely impact on immunity to important coinfections including Mycobacterium tuberculosis. This underscores the importance of research on restoring these unconventional T cells during HIV infection. Future studies in this field should address the challenge of studying tissue-resident cells, particularly in the gut, and better defining the determinants of MAIT/iNKT cell dysfunction. Such studies could have a significant impact on improving the immune function of HIV-infected individuals.
Collapse
|
184
|
Abstract
Mucosal-associated invariant T (MAIT) cells are unique innate-like T cells that bridge innate and adaptive immunity. They are activated by conserved bacterial ligands derived from vitamin B biosynthesis and have important roles in defence against bacterial and viral infections. However, they can also have various deleterious and protective functions in autoimmune, inflammatory and metabolic diseases. MAIT cell involvement in a large spectrum of pathological conditions makes them attractive targets for potential therapeutic approaches.
Collapse
|
185
|
Awad W, Ler GJM, Xu W, Keller AN, Mak JYW, Lim XY, Liu L, Eckle SBG, Le Nours J, McCluskey J, Corbett AJ, Fairlie DP, Rossjohn J. The molecular basis underpinning the potency and specificity of MAIT cell antigens. Nat Immunol 2020; 21:400-411. [PMID: 32123373 DOI: 10.1038/s41590-020-0616-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/23/2020] [Indexed: 01/24/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are activated by microbial riboflavin-based metabolite antigens when presented by MR1. How modifications to the potent antigen 5-OP-RU affect presentation by MR1 and MAIT cell activation remains unclear. Here we design 20 derivatives, termed altered metabolite ligands (AMLs), to dissect the impact of different antigen components on the human MAIT-MR1 axis. Analysis of 11 crystal structures of MAIT T cell antigen receptor (TCR)-MR1-AML ternary complexes, along with biochemical and functional assays, shows that MR1 cell-surface upregulation is influenced by ribityl and non-ribityl components of the ligand and the hydrophobicity of the MR1-AML interface. The polar ribityl chain of the AML strongly influences MAIT cell activation potency through dynamic compensatory interactions within a MAIT TCR-MR1-AML interaction triad. We define the basis by which the MAIT TCR can differentially recognize AMLs, thereby providing insight into MAIT cell antigen specificity and potency.
Collapse
Affiliation(s)
- Wael Awad
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Geraldine J M Ler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of Queensland, Brisbane, Queensland, Australia
| | - Weijun Xu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of Queensland, Brisbane, Queensland, Australia
| | - Andrew N Keller
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Jeffrey Y W Mak
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of Queensland, Brisbane, Queensland, Australia
| | - Xin Yi Lim
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Ligong Liu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of Queensland, Brisbane, Queensland, Australia
| | - Sidonia B G Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia.
| | - David P Fairlie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia. .,ARC Centre of Excellence in Advanced Molecular Imaging, University of Queensland, Brisbane, Queensland, Australia.
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia. .,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia. .,Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK.
| |
Collapse
|
186
|
Tang X, Zhang S, Peng Q, Ling L, Shi H, Liu Y, Cheng L, Xu L, Cheng L, Chakrabarti LA, Chen Z, Wang H, Zhang Z. Sustained IFN-I stimulation impairs MAIT cell responses to bacteria by inducing IL-10 during chronic HIV-1 infection. SCIENCE ADVANCES 2020; 6:eaaz0374. [PMID: 32128419 PMCID: PMC7030930 DOI: 10.1126/sciadv.aaz0374] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/03/2019] [Indexed: 05/10/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells in HIV-1-infected individuals are functionally impaired by poorly understood mechanisms. Single-cell transcriptional and surface protein analyses revealed that peripheral MAIT cells from HIV-1-infected subjects were highly activated with the up-regulation of interferon (IFN)-stimulated genes as compared to healthy individuals. Sustained IFN-α treatment suppressed MAIT cell responses to Escherichia coli by triggering high-level interleukin-10 (IL-10) production by monocytes, which subsequently inhibited the secretion of IL-12, a crucial costimulatory cytokine for MAIT cell activation. Blocking IFN-α or IL-10 receptors prevented MAIT cell dysfunction induced by HIV-1 exposure in vitro. Moreover, blocking the IL-10 receptor significantly improved anti-Mycobacterium tuberculosis responses of MAIT cells from HIV-1-infected patients. Our findings demonstrate the central role of the IFN-I/IL-10 axis in MAIT cell dysfunction during HIV-1 infection, which has implications for the development of anti-IFN-I/IL-10 strategies against bacterial coinfections in HIV-1-infected patients.
Collapse
Affiliation(s)
- X. Tang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, Guangdong Province, China
- The Second Affiliated Hospital, School of Medicine, South University of Science and Technology, Shenzhen 518100, China
| | - S. Zhang
- Shanghai Public Health Clinical Center and Institute of Biomedical Sciences, Fudan University, Shanghai 201508, China
| | - Q. Peng
- Department of Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen 518112, China
| | - L. Ling
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - H. Shi
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, Guangdong Province, China
| | - Y. Liu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, Guangdong Province, China
| | - L. Cheng
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, Guangdong Province, China
| | - L. Xu
- Department of Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen 518112, China
| | - L. Cheng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - L. A. Chakrabarti
- Institut Pasteur, Groupe Contrôle des Infections Virales Chroniques, Unité Virus et Immunité, 75724 Paris Cedex 15, France
| | - Z. Chen
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, Guangdong Province, China
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - H. Wang
- Department of Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen 518112, China
| | - Z. Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, Guangdong Province, China
- The Second Affiliated Hospital, School of Medicine, South University of Science and Technology, Shenzhen 518100, China
- Guangdong Key Lab of Emerging Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen 518112, China
- Key Laboratory of Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences and Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
- Corresponding author.
| |
Collapse
|
187
|
Loh L, Gherardin NA, Sant S, Grzelak L, Crawford JC, Bird NL, Koay HF, van de Sandt CE, Moreira ML, Lappas M, Allen EK, Crowe J, Loudovaris T, Flanagan KL, Quinn KM, Rossjohn J, Thomas PG, Eckle SBG, McCluskey J, Godfrey DI, Kedzierska K. Human Mucosal-Associated Invariant T Cells in Older Individuals Display Expanded TCRαβ Clonotypes with Potent Antimicrobial Responses. THE JOURNAL OF IMMUNOLOGY 2020; 204:1119-1133. [PMID: 31988181 DOI: 10.4049/jimmunol.1900774] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/16/2019] [Indexed: 12/20/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells are important for immune responses against microbial infections. Although known to undergo marked numerical changes with age in humans, our understanding of how MAIT cells are altered during different phases across the human life span is largely unknown. Although also abundant in the tissues, our study focuses on MAIT cell analyses in blood. Across the human life span, we show that naive-like MAIT cells in umbilical cord blood switch to a central/effector memory-like profile that is sustained into older age. Whereas low-grade levels of plasma cytokine/chemokine were apparent in older donors (>65 y old), surprisingly, they did not correlate with the ex vivo MAIT hyperinflammatory cytokine profile observed in older adults. Removal of MAIT cells from older individuals and an aged environment resulted in the reversal of the baseline effector molecule profile comparable with MAIT cells from younger adults. An upregulated basal inflammatory profile accounted for reduced Escherichia coli-specific responses in aged MAIT cells compared with their young adult counterparts when fold change in expression levels of GzmB, CD107a, IFN-γ, and TNF was examined. However, the magnitude of antimicrobial MR1-dependent activation remained as potent and polyfunctional as with younger adults. Paired TCRαβ analyses of MAIT cells revealed large clonal expansions in older adults and tissues that rivalled, remarkably, the TCRαβ repertoire diversity of virus-specific CD8+ T cells. These data suggest that MAIT cells in older individuals, although associated with large clonal TCRαβ expansions and increased baseline inflammatory potential, demonstrate plasticity and provide potent antimicrobial immunity.
Collapse
Affiliation(s)
- Liyen Loh
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia;
| | - Nicholas A Gherardin
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Sneha Sant
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Ludivine Grzelak
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | | | - Nicola L Bird
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Carolien E van de Sandt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia.,Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centers, University of Amsterdam, 1066CX Amsterdam, the Netherlands
| | - Marcela L Moreira
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, The University of Melbourne, Mercy Hospital for Women, Heidelberg, Victoria 3084, Australia
| | - E Kaitlynn Allen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Jane Crowe
- Deepdene Surgery, Deepdene, Victoria 3103, Australia
| | - Thomas Loudovaris
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Katie L Flanagan
- Launceston General Hospital, Launceston, Tasmania 7250, Australia.,University of Tasmania, Launceston, Tasmania 7250, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Victoria 3004, Australia.,School of Health and Biomedical Science, Royal Melbourne Institute of Technology University, Bundoora, Victoria 3083, Australia
| | - Kylie M Quinn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia; and.,Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Sidonia B G Eckle
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia;
| |
Collapse
|
188
|
Berkson JD, Slichter CK, DeBerg HA, Delaney MA, Woodward-Davis AS, Maurice NJ, Lwo Y, Ko A, Hsu J, Chiu YW, Linsley PS, Dixon D, Prlic M. Inflammatory Cytokines Induce Sustained CTLA-4 Cell Surface Expression on Human MAIT Cells. Immunohorizons 2020; 4:14-22. [PMID: 31974109 DOI: 10.4049/immunohorizons.1900061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/08/2020] [Indexed: 01/05/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells acquire effector function in response to proinflammatory signals, which synergize with TCR-mediated signals. We asked if cell-intrinsic regulatory mechanisms exist to curtail MAIT cell effector function akin to the activation-induced expression of inhibitory receptors by conventional T cells. We examined human MAIT cells from blood and oral mucosal tissues by RNA sequencing and found differential expression of immunoregulatory genes, including CTLA-4, by MAIT cells isolated from tissue. Using an ex vivo experimental setup, we demonstrate that inflammatory cytokines were sufficient to induce CTLA-4 expression on the MAIT cell surface in the absence of TCR signals. Even brief exposure to the cytokines IL-12, IL-15, and IL-18 was sufficient for sustained CTLA-4 expression by MAIT cells. These data suggest that control of CTLA-4 expression is fundamentally different between MAIT cells and conventional T cells. We propose that this mechanism serves to limit MAIT cell-mediated tissue damage.
Collapse
Affiliation(s)
- Julia D Berkson
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.,Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195
| | - Chloe K Slichter
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.,Department of Global Health, University of Washington, Seattle, WA 98195
| | - Hannah A DeBerg
- Systems Immunology Division, Benaroya Research Institute, Seattle, WA 98101
| | - Martha A Delaney
- Zoological Pathology Program, University of Illinois, Brookfield, IL 60513
| | - Amanda S Woodward-Davis
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Nicholas J Maurice
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.,Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195
| | - Yu Lwo
- Department of Periodontics, University of Washington, Seattle, WA 98195; and
| | - Alex Ko
- Department of Periodontics, University of Washington, Seattle, WA 98195; and
| | - Jessica Hsu
- Department of Periodontics, University of Washington, Seattle, WA 98195; and
| | - Yu-Wen Chiu
- Department of Periodontics, University of Washington, Seattle, WA 98195; and
| | - Peter S Linsley
- Systems Immunology Division, Benaroya Research Institute, Seattle, WA 98101
| | - Douglas Dixon
- Department of Periodontics, University of Washington, Seattle, WA 98195; and
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; .,Department of Global Health, University of Washington, Seattle, WA 98195.,Department of Immunology, University of Washington, Seattle, WA 98109
| |
Collapse
|
189
|
Lal KG, Kim D, Costanzo MC, Creegan M, Leeansyah E, Dias J, Paquin-Proulx D, Eller LA, Schuetz A, Phuang-Ngern Y, Krebs SJ, Slike BM, Kibuuka H, Maganga L, Nitayaphan S, Kosgei J, Sacdalan C, Ananworanich J, Bolton DL, Michael NL, Shacklett BL, Robb ML, Eller MA, Sandberg JK. Dynamic MAIT cell response with progressively enhanced innateness during acute HIV-1 infection. Nat Commun 2020; 11:272. [PMID: 31937782 PMCID: PMC6959336 DOI: 10.1038/s41467-019-13975-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 12/10/2019] [Indexed: 12/31/2022] Open
Abstract
Mucosa-associated invariant T (MAIT) cell loss in chronic HIV-1 infection is a significant insult to antimicrobial immune defenses. Here we investigate the response of MAIT cells during acute HIV-1 infection utilizing the RV217 cohort with paired longitudinal pre- and post-infection samples. MAIT cells are activated and expand in blood and mucosa coincident with peak HIV-1 viremia, in a manner associated with emerging microbial translocation. This is followed by a phase with elevated function as viral replication is controlled to a set-point level, and later by their functional decline at the onset of chronic infection. Interestingly, enhanced innate-like pathways and characteristics develop progressively in MAIT cells during infection, in parallel with TCR repertoire alterations. These findings delineate the dynamic MAIT cell response to acute HIV-1 infection, and show how the MAIT compartment initially responds and expands with enhanced function, followed by progressive reprogramming away from TCR-dependent antibacterial responses towards innate-like functionality. Here, using longitudinal pre- and post-infection samples from the RV217 Early Capture HIV Cohort Study, the authors show that mucosa-associated invariant T (MAIT) cells become activated and expand during the early acute phase of HIV infection, with subsequent reprogramming towards innate-like functionality.
Collapse
Affiliation(s)
- Kerri G Lal
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.,Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Dohoon Kim
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Margaret C Costanzo
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Matthew Creegan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Edwin Leeansyah
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Joana Dias
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Dominic Paquin-Proulx
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Leigh Anne Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Alexandra Schuetz
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.,Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Yuwadee Phuang-Ngern
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Shelly J Krebs
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Bonnie M Slike
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Hannah Kibuuka
- Makerere University Walter Reed Project, Kampala, Uganda
| | - Lucas Maganga
- National Institute for Medical Research-Mbeya Medical Research Center, Mbeya, Tanzania
| | - Sorachai Nitayaphan
- Royal Thai Army Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Josphat Kosgei
- Kenya Medical Research Institute/U.S. Army Medical Research Directorate-Africa/Kenya, Kericho, Kenya
| | - Carlo Sacdalan
- SEARCH, The Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | - Jintanat Ananworanich
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.,SEARCH, The Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | - Diane L Bolton
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Nelson L Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Barbara L Shacklett
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Michael A Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
190
|
Koay HF, Godfrey DI. MicroRNA-managing the development of MAIT cells. Immunol Cell Biol 2020; 97:121-123. [PMID: 30746795 DOI: 10.1111/imcb.12232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hui-Fern Koay
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, the Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Dale I Godfrey
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, the Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
191
|
Abstract
Mucosal-associated invariant T (MAIT) cells are a novel subset of innate-like T cells that recognize vitamin B metabolites from a range of microbes presented by MHC class I-related molecules (MR1). The term mucosal-associated invariant T cells derives from the fact that MAIT cells are abundant in the liver and mucosal tissues, and human MAIT cells use a semi-invariant TCR Vα7.2 Jα33 paired with Vβ2 or Vβ13. Here, based on the interaction between MAIT cell and its ligand 5-OP-RU/MR1, we describe the protocols for identification, rapid expansion, and isolation of human MAIT cells.
Collapse
Affiliation(s)
- Yu Liu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiongwen Wu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiufang Weng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
192
|
Braganza CD, Motozono C, Sonoda KH, Yamasaki S, Shibata K, Timmer MSM, Stocker BL. Agonistic or antagonistic mucosal-associated invariant T (MAIT) cell activity is determined by the 6-alkylamino substituent on uracil MR1 ligands. Chem Commun (Camb) 2020; 56:5291-5294. [DOI: 10.1039/d0cc00247j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The 6-alkylamino side chain of aminouracil MR1 ligands controls MAIT cell agonistic or antagonistic activity.
Collapse
Affiliation(s)
- Chriselle D. Braganza
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- Wellington
- New Zealand
| | - Chihiro Motozono
- Department of Molecular Immunology
- Research Institute for Microbial Diseases
- Osaka University
- Osaka
- Japan
| | - Koh-Hei Sonoda
- Department of Ocular Pathology and Imaging Science
- Graduate School of Medical Sciences
- Kyushu University
- Fukuoka
- Japan
| | - Sho Yamasaki
- Department of Molecular Immunology
- Research Institute for Microbial Diseases
- Osaka University
- Osaka
- Japan
| | - Kensuke Shibata
- Department of Ocular Pathology and Imaging Science
- Graduate School of Medical Sciences
- Kyushu University
- Fukuoka
- Japan
| | - Mattie S. M. Timmer
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- Wellington
- New Zealand
| | - Bridget L. Stocker
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- Wellington
- New Zealand
| |
Collapse
|
193
|
Zhang Y, Kong D, Wang H. Mucosal-Associated Invariant T cell in liver diseases. Int J Biol Sci 2020; 16:460-470. [PMID: 32015682 PMCID: PMC6990906 DOI: 10.7150/ijbs.39016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023] Open
Abstract
Mucosal-associated invariant T cells (MAIT cells) are a new population of innate immune cells, which are abundant in the liver and play complex roles in various liver diseases. In this review, we summarize MAIT cells in the liver diseases in recent studies, figure out the role of MAIT cells in various liver disease, including Alcoholic liver disease, Non-alcoholic liver disease, Autoimmune liver diseases, Viral hepatitis and Liver Cancer. Briefly, MAIT cells are involved in anti-bacteria responses in the alcoholic liver diseases. Besides, the activated MAIT cells promote the liver inflammation by secreting inflammatory cytokines and produce regulatory cytokines, which induces anti-inflammatory macrophage polarization. MAIT cells participate in the liver fibrosis via enhancing hepatic stellate cell activation. In viral hepatitis, MAIT cells exhibit a flawed and exhausted phenotype, which results in little effect on controlling the virus and bacteria. In liver cancer, MAIT cells indicate the disease progression and the outcome of therapy. In summary, MAIT cells are attractive biomarkers and therapeutic targets for liver disease.
Collapse
Affiliation(s)
- Yujue Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Derun Kong
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.,Department of Gastroenterology, Fuyang Hospital of Anhui Medical University, Fuyang, Anhui 236000, P.R. China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
| |
Collapse
|
194
|
Di Blasi D, Vacchini A, De Libero G, Mori L. Isolation and Characterization of MAIT Cells from Human Tissue Biopsies. Methods Mol Biol 2020; 2098:23-38. [PMID: 31792813 DOI: 10.1007/978-1-0716-0207-2_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human mucosal-associated invariant T (MAIT) cells are unconventional T cells highly enriched in tissues exposed to microbial antigens including the oral, gastrointestinal and genital mucosae, liver, and lung. Here we describe a protocol for isolation and characterization of peripheral blood and tissue-infiltrating MAIT cells by using multicolor flow cytometry. This technology allows the analysis of multiple markers in a single sample at a single-cell level. Study of human samples requires particular care since the sample amount is often limited. We present a protocol optimized for the isolation and characterization of human MAIT cells and the identification of MAIT cell populations detected by simultaneous expression of multiple activation markers and inhibitory receptors.
Collapse
Affiliation(s)
- Daniela Di Blasi
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Alessandro Vacchini
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Gennaro De Libero
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Lucia Mori
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland.
| |
Collapse
|
195
|
Yan J, Allen S, McDonald E, Das I, Mak JYW, Liu L, Fairlie DP, Meehan BS, Chen Z, Corbett AJ, Varelias A, Smyth MJ, Teng MWL. MAIT Cells Promote Tumor Initiation, Growth, and Metastases via Tumor MR1. Cancer Discov 2019; 10:124-141. [PMID: 31826876 DOI: 10.1158/2159-8290.cd-19-0569] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 09/09/2019] [Accepted: 10/18/2019] [Indexed: 11/16/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells are innate-like T cells that require MHC class I-related protein 1 (MR1) for their development. The role of MAIT cells in cancer is unclear, and to date no study has evaluated these cells in vivo in this context. Here, we demonstrated that tumor initiation, growth, and experimental lung metastasis were significantly reduced in Mr1 -/- mice, compared with wild-type mice. The antitumor activity observed in Mr1 -/- mice required natural killer (NK) and/or CD8+ T cells and IFNγ. Adoptive transfer of MAIT cells into Mr1 -/- mice reversed metastasis reduction. Similarly, MR1-blocking antibodies decreased lung metastases and suppressed tumor growth. Following MR1 ligand exposure, some, but not all, mouse and human tumor cell lines upregulated MR1. Pretreatment of tumor cells with the stimulatory ligand 5-OP-RU or inhibitory ligand Ac-6-FP increased or decreased lung metastases, respectively. MR1-deleted tumors resulted in fewer metastases compared with parental tumor cells. MAIT cell suppression of NK-cell effector function was tumor-MR1-dependent and partially required IL17A. Our studies indicate that MAIT cells display tumor-promoting function by suppressing T and/or NK cells and that blocking MR1 may represent a new therapeutic strategy for cancer immunotherapy. SIGNIFICANCE: Contradicting the perception that MAIT cells kill tumor cells, here MAIT cells promoted tumor initiation, growth, and metastasis. MR1-expressing tumor cells activated MAIT cells to reduce NK-cell effector function, partly in a host IL17A-dependent manner. MR1-blocking antibodies reduced tumor metastases and growth, and may represent a new class of cancer therapeutics.This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Juming Yan
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
- School of Medicine, University of Queensland, Herston, Australia
| | - Stacey Allen
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Elizabeth McDonald
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Indrajit Das
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Jeffrey Y W Mak
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of Queensland, Brisbane, Australia
| | - Ligong Liu
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of Queensland, Brisbane, Australia
| | - David P Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of Queensland, Brisbane, Australia
| | - Bronwyn S Meehan
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Victoria, Australia
| | - Zhenjun Chen
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Victoria, Australia
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Victoria, Australia
| | - Antiopi Varelias
- School of Medicine, University of Queensland, Herston, Australia
- Transplantation Immunology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Mark J Smyth
- School of Medicine, University of Queensland, Herston, Australia
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Michele W L Teng
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia.
- School of Medicine, University of Queensland, Herston, Australia
| |
Collapse
|
196
|
Murayama G, Chiba A, Suzuki H, Nomura A, Mizuno T, Kuga T, Nakamura S, Amano H, Hirose S, Yamaji K, Suzuki Y, Tamura N, Miyake S. A Critical Role for Mucosal-Associated Invariant T Cells as Regulators and Therapeutic Targets in Systemic Lupus Erythematosus. Front Immunol 2019; 10:2681. [PMID: 31849932 PMCID: PMC6895065 DOI: 10.3389/fimmu.2019.02681] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/31/2019] [Indexed: 11/13/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a subset of innate-like lymphocytes that are restricted by major histocompatibility complex-related molecule 1 (MR1). In this study, we investigated the role of MAIT cells in the pathogenesis of lupus in FcγRIIb−/−Yaa mice, a spontaneous animal model of lupus. Using two approaches of MAIT cell deficiency, MR1 knockout animals and a newly synthesized inhibitory MR1 ligand, we demonstrate that MAIT cells augment the disease course of lupus by enhancing autoantibody production and tissue inflammation. MR1 deficiency reduced germinal center responses and T cell responses in these mice. Suppression of MAIT cell activation by the inhibitory MR1 ligand reduced autoantibody production and lupus nephritis in FcγRIIb−/−Yaa mice. MAIT cells directly enhanced autoantibody production by B cells in vitro. Our results indicate the contribution of MAIT cells to lupus pathology and the potential of these cells as novel therapeutic targets for autoimmune diseases such as lupus.
Collapse
Affiliation(s)
- Goh Murayama
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan.,Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Asako Chiba
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hitoshi Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Atsushi Nomura
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tomohiro Mizuno
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Taiga Kuga
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan.,Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shinji Nakamura
- Laboratory of Morphology and Image Analysis, Research Support Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Hirofumi Amano
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Sachiko Hirose
- Department of Biomedical Engineering, Toin Human Science and Technology Center, Toin University of Yokohama, Yokohama, Japan
| | - Ken Yamaji
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Naoto Tamura
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Sachiko Miyake
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
197
|
Koay HF, Su S, Amann-Zalcenstein D, Daley SR, Comerford I, Miosge L, Whyte CE, Konstantinov IE, d'Udekem Y, Baldwin T, Hickey PF, Berzins SP, Mak JYW, Sontani Y, Roots CM, Sidwell T, Kallies A, Chen Z, Nüssing S, Kedzierska K, Mackay LK, McColl SR, Deenick EK, Fairlie DP, McCluskey J, Goodnow CC, Ritchie ME, Belz GT, Naik SH, Pellicci DG, Godfrey DI. A divergent transcriptional landscape underpins the development and functional branching of MAIT cells. Sci Immunol 2019; 4:eaay6039. [PMID: 31757835 PMCID: PMC10627559 DOI: 10.1126/sciimmunol.aay6039] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022]
Abstract
MR1-restricted mucosal-associated invariant T (MAIT) cells play a unique role in the immune system. These cells develop intrathymically through a three-stage process, but the events that regulate this are largely unknown. Here, using bulk and single-cell RNA sequencing-based transcriptomic analysis in mice and humans, we studied the changing transcriptional landscape that accompanies transition through each stage. Many transcripts were sharply modulated during MAIT cell development, including SLAM (signaling lymphocytic activation molecule) family members, chemokine receptors, and transcription factors. We also demonstrate that stage 3 "mature" MAIT cells comprise distinct subpopulations including newly arrived transitional stage 3 cells, interferon-γ-producing MAIT1 cells and interleukin-17-producing MAIT17 cells. Moreover, the validity and importance of several transcripts detected in this study are directly demonstrated using specific mutant mice. For example, MAIT cell intrathymic maturation was found to be halted in SLAM-associated protein (SAP)-deficient and CXCR6-deficient mouse models, providing clear evidence for their role in modulating MAIT cell development. These data underpin a model that maps the changing transcriptional landscape and identifies key factors that regulate the process of MAIT cell differentiation, with many parallels between mice and humans.
Collapse
Affiliation(s)
- H-F Koay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - S Su
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Single Cell Open Research Endeavour (SCORE), Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - D Amann-Zalcenstein
- Single Cell Open Research Endeavour (SCORE), Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - S R Daley
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - I Comerford
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - L Miosge
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - C E Whyte
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - I E Konstantinov
- Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia
- Melbourne Children's Centre for Cardiovascular Genomics and Regenerative Medicine, Murdoch Children's Research Institute, Victoria 3052, Australia
- Murdoch Children's Research Institute, Victoria 3052, Australia
| | - Y d'Udekem
- Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia
- Melbourne Children's Centre for Cardiovascular Genomics and Regenerative Medicine, Murdoch Children's Research Institute, Victoria 3052, Australia
- Murdoch Children's Research Institute, Victoria 3052, Australia
| | - T Baldwin
- Single Cell Open Research Endeavour (SCORE), Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - P F Hickey
- Single Cell Open Research Endeavour (SCORE), Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - S P Berzins
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
- Federation University Australia, Ballarat, Victoria 3350, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, Victoria 3350, Australia
| | - J Y W Mak
- Division of Chemistry and Structural Biology, and Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Y Sontani
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - C M Roots
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - T Sidwell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - A Kallies
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Z Chen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - S Nüssing
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - K Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - L K Mackay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - S R McColl
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - E K Deenick
- Garvan Institute of Medical Research, Sydney, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales (UNSW), Sydney, Australia
| | - D P Fairlie
- Division of Chemistry and Structural Biology, and Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Queensland, Brisbane, Queensland 4072, Australia
| | - J McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - C C Goodnow
- Garvan Institute of Medical Research, Sydney, Australia
- UNSW Cellular Genomics Futures Institute, UNSW, Sydney, Australia
| | - M E Ritchie
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - G T Belz
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - S H Naik
- Single Cell Open Research Endeavour (SCORE), Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - D G Pellicci
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia.
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Melbourne, Victoria 3000, Australia
- Murdoch Children's Research Institute, Victoria 3052, Australia
| | - D I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia.
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Melbourne, Victoria 3000, Australia
| |
Collapse
|
198
|
Carnero Contentti E, Farez MF, Correale J. Mucosal-Associated Invariant T Cell Features and TCR Repertoire Characteristics During the Course of Multiple Sclerosis. Front Immunol 2019; 10:2690. [PMID: 31824489 PMCID: PMC6880779 DOI: 10.3389/fimmu.2019.02690] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/31/2019] [Indexed: 12/21/2022] Open
Abstract
Objective: To investigate the frequency, phenotype, function, and longitudinal repertoire of mucosal-associated invariant T (MAIT) cells in relapsing remitting multiple sclerosis (RRMS) and primary progressive multiple sclerosis (PPMS) patients. Methods: Forty-five RRMS patients in remission, 20 RRMS patients experiencing exacerbations, 15 PPMS patients, and 30 healthy controls (HCs) were included in the study. MAIT cells were identified phenotypically as CD3+ TCRγδ− Vα7.2 + CD161high. In 15 patients, MAIT cell number and MRI lesions were evaluated every 6 months, for 36 months. MAIT cell TCRVβ repertoire was defined using single-cell cloning and mRNA sequencing. Results: Circulating MAIT cells were significantly reduced in both RRMS and PPMS patients, particularly during exacerbations, compared to healthy subjects. This decrease was accompanied by pro-inflammatory cytokine production (TNF-α, IFN-γ, IL-17, and GM-CSF). Three months post-exacerbation, peripheral blood MAIT cell percentages increased significantly along with clinical recovery. Likewise, we observed inverse correlation between MRI lesions and peripheral blood MAIT cell numbers. In paired samples, MAIT cell percentage was significantly higher in CSF than in peripheral blood, suggesting MAIT cell migration through the blood–brain barrier. Finally, MAIT cells showed limited TCRVβ repertoires, in both CSF and peripheral blood, which remained stable over time. Conclusions: MAIT cell levels correlated with MS course both clinically and radiologically, showing marked and sustained oligoclonality. These findings may contribute to a better understanding of pathophysiological phenomena underlying the course of MS, and discovery of MAIT cell inhibitors could pave the way for the development of new therapeutic strategies.
Collapse
Affiliation(s)
| | - Mauricio F Farez
- Centro para el Estudio de Enfermedades Neuroinmunologicas (CIEN), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
| | - Jorge Correale
- Centro para el Estudio de Enfermedades Neuroinmunologicas (CIEN), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina.,Department of Neurology, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
| |
Collapse
|
199
|
Lamichhane R, Galvin H, Hannaway RF, de la Harpe SM, Munro F, Tyndall JDA, Vernall AJ, McCall JL, Husain M, Ussher JE. Type I interferons are important co-stimulatory signals during T cell receptor mediated human MAIT cell activation. Eur J Immunol 2019; 50:178-191. [PMID: 31608441 DOI: 10.1002/eji.201948279] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/20/2019] [Accepted: 10/11/2019] [Indexed: 01/12/2023]
Abstract
Mucosal associated invariant T (MAIT) cells are abundant unconventional T cells that can be stimulated either via their TCR or by innate cytokines. The MAIT cell TCR recognises a pyrimidine ligand, derived from riboflavin synthesising bacteria, bound to MR1. In infection, bacteria not only provide the pyrimidine ligand but also co-stimulatory signals, such as TLR agonists, that can modulate TCR-mediated activation. Recently, type I interferons (T1-IFNs) have been identified as contributing to cytokine-mediated MAIT cell activation. However, it is unknown whether T1-IFNs also have a role during TCR-mediated MAIT cell activation. In this study, we investigated the co-stimulatory role of T1-IFNs during TCR-mediated activation of MAIT cells by the MR1 ligand 5-amino-6-d-ribitylaminouracil/methylglyoxal. We found that T1-IFNs were able to boost interferon-γ and granzyme B production in 5-amino-6-d-ribitylaminouracil/methylglyoxal-stimulated MAIT cells. Similarly, influenza virus-induced T1-IFNs enhanced TCR-mediated MAIT cell activation. An essential role of T1-IFNs in regulating MAIT cell activation by riboflavin synthesising bacteria was also demonstrated. The co-stimulatory role of T1-IFNs was also evident in liver-derived MAIT cells. T1-IFNs acted directly on MAIT cells to enhance their response to TCR stimulation. Overall, our findings establish an important immunomodulatory role of T1-IFNs during TCR-mediated MAIT cell activation.
Collapse
Affiliation(s)
- Rajesh Lamichhane
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Henry Galvin
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Rachel F Hannaway
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | - Fran Munro
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Joel DA Tyndall
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | | | - John L McCall
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Matloob Husain
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - James E Ussher
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.,Southern Community Laboratories, Dunedin, New Zealand
| |
Collapse
|
200
|
Winter SJ, Krueger A. Development of Unconventional T Cells Controlled by MicroRNA. Front Immunol 2019; 10:2520. [PMID: 31708931 PMCID: PMC6820353 DOI: 10.3389/fimmu.2019.02520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/10/2019] [Indexed: 12/21/2022] Open
Abstract
Post-transcriptional gene regulation through microRNA (miRNA) has emerged as a major control mechanism of multiple biological processes, including development and function of T cells. T cells are vital components of the immune system, with conventional T cells playing a central role in adaptive immunity and unconventional T cells having additional functions reminiscent of both innate and adaptive immunity, such as involvement in stress responses and tissue homeostasis. Unconventional T cells encompass cells expressing semi-invariant T cell receptors (TCRs), such as invariant Natural Killer T (iNKT) and Mucosal-Associated Invariant T (MAIT) cells. Additionally, some T cells with diverse TCR repertoires, including γδT cells, intraepithelial lymphocytes (IEL) and regulatory T (Treg) cells, share some functional and/or developmental features with their semi-invariant unconventional counterparts. Unconventional T cells are particularly sensitive to disruption of miRNA function, both globally and on the individual miRNA level. Here, we review the role of miRNA in the development and function of unconventional T cells from an iNKT-centric point of view. The function of single miRNAs can provide important insights into shared and individual pathways for the formation of different unconventional T cell subsets.
Collapse
Affiliation(s)
- Samantha J Winter
- Institute for Molecular Medicine, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Andreas Krueger
- Institute for Molecular Medicine, Goethe-University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|