151
|
Martini F, Corallini A, Balatti V, Sabbioni S, Pancaldi C, Tognon M. Simian virus 40 in humans. Infect Agent Cancer 2007; 2:13. [PMID: 17620119 PMCID: PMC1941725 DOI: 10.1186/1750-9378-2-13] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 07/09/2007] [Indexed: 01/01/2023] Open
Abstract
Simian virus 40 (SV40) is a monkey virus that was administered to human populations by contaminated vaccines which were produced in SV40 naturally infected monkey cells. Recent molecular biology and epidemiological studies suggest that SV40 may be contagiously transmitted in humans by horizontal infection, independently from the earlier administration of SV40-contaminated vaccines.SV40 footprints in humans have been found associated at high prevalence with specific tumor types such as brain and bone tumors, mesotheliomas and lymphomas and with kidney diseases, and at lower prevalence in blood samples from healthy donors. Contrasting reports appeared in the literature on the circulation of SV40 in humans by contagious transmission and its association, as a possible etiologic cofactor, with specific human tumors. As a consequence of the conflicting results, a considerable debate has developed in the scientific community. In the present review we consider the main results obtained by different groups investigating SV40 sequences in human tumors and in blood specimens, the putative role of SV40 in the onset/progression of specific human tumors, and comment on the hypotheses arising from these data.
Collapse
Affiliation(s)
- Fernanda Martini
- Department of Morphology and Embryology, Section of Cell Biology and Molecular Genetics, School of Medicine, and Center of Biotechnology, University of Ferrara, Via Fossato di Mortara, 64/B. 44100 Ferrara, Italy
| | - Alfredo Corallini
- Department of Experimental and Diagnostic Medicine, Section of Microbiology, University of Ferrara, Via Luigi Borsari, 46. 44100 Ferrara, Italy
| | - Veronica Balatti
- Department of Morphology and Embryology, Section of Cell Biology and Molecular Genetics, School of Medicine, and Center of Biotechnology, University of Ferrara, Via Fossato di Mortara, 64/B. 44100 Ferrara, Italy
| | - Silvia Sabbioni
- Department of Experimental and Diagnostic Medicine, Section of Microbiology, University of Ferrara, Via Luigi Borsari, 46. 44100 Ferrara, Italy
| | - Cecilia Pancaldi
- Department of Morphology and Embryology, Section of Cell Biology and Molecular Genetics, School of Medicine, and Center of Biotechnology, University of Ferrara, Via Fossato di Mortara, 64/B. 44100 Ferrara, Italy
| | - Mauro Tognon
- Department of Morphology and Embryology, Section of Cell Biology and Molecular Genetics, School of Medicine, and Center of Biotechnology, University of Ferrara, Via Fossato di Mortara, 64/B. 44100 Ferrara, Italy
| |
Collapse
|
152
|
Ashok A, Atwood WJ. Virus receptors and tropism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 577:60-72. [PMID: 16626027 DOI: 10.1007/0-387-32957-9_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polyomaviruses are small, tumorigenic, nonenveloped viruses that infect several different species. Interaction of these viruses with cell surface receptors represents the initial step during infection of host cells. This interaction can be a major determinant of viral host and tissue tropism. This chapter reviews what is currently known about the cellular receptors for each of five polyomavirus family members: Mouse polyomavirus (PyV), JC virus (JCV), BK virus (BKV), Lymphotropic papovavirus (LPV) and Simian virus 40 (SV40). These polyomaviruses serve to illustrate the enormous diversity of virus-cell surface interactions and allow us to closely evaluate the role of receptors in their life cycles. The contribution of other factors such as transcriptional regulators and signaling pathways are also summarized.
Collapse
|
153
|
Beer C, Pedersen L. Matrix fibronectin binds gammaretrovirus and assists in entry: new light on viral infections. J Virol 2007; 81:8247-57. [PMID: 17522212 PMCID: PMC1951278 DOI: 10.1128/jvi.00312-07] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A major entry route for the gammaretrovirus amphotropic murine leukemia virus (A-MLV) into NIH 3T3 fibroblasts is via caveola-dependent endocytosis. However, during the infection time, few viral particles can be observed intracellularly. Analyzing the dynamics of the A-MLV infection process by using total internal reflection fluorescence microscopy, we show that the majority of viruses are extracellular and bound to the fibronectin matrix. Moreover, the amounts of bound virus and of fibronectin correlated. Using confocal microscopy, nanoparticles targeted to fibronectin by a III1C-fibronectin fragment or anti-fibronectin antibody were detected intracellularly in NIH 3T3 cells; unconjugated nanoparticles neither bound to cells nor were detectable intracellularly. Furthermore, A-MLV colocalized intracellularly with the fibronectin-targeted nanoparticles, suggesting that they were taken up by the same cellular pathway. Both A-MLV entry and fibronectin turnover depend on caveolar endocytosis, and we found that inhibiting viral binding to the extracellular NIH 3T3 fibronectin-matrix dramatically reduced A-MLV infection, indeed, showing an active role of fibronectin in infection. We suggest that binding to the cellular fibronectin matrix provides a new mechanism by which viruses can enter cells.
Collapse
Affiliation(s)
- Christiane Beer
- Department of Molecular Biology, Aarhus University, C. F. Møllers Allé, Building 130, DK-8000 Aarhus C, Denmark
| | | |
Collapse
|
154
|
Hambleton S, Steinberg SP, Gershon MD, Gershon AA. Cholesterol dependence of varicella-zoster virion entry into target cells. J Virol 2007; 81:7548-58. [PMID: 17494071 PMCID: PMC1933378 DOI: 10.1128/jvi.00486-07] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The entry of inhaled virions into airway cells is presumably the initiating step of varicella-zoster infection. In order to characterize viral entry, we studied the relative roles played by lipid rafts and clathrin-mediated transport. Virus and target cells were pretreated with agents designed to perturb selected aspects of endocytosis and membrane composition, and the effects of these perturbations on infectious focus formation were monitored. Infectivity was exquisitely sensitive to methyl-beta-cyclodextrin (M beta CD) and nystatin, which disrupt lipid rafts by removing cholesterol. These agents inhibited infection by enveloped, but not cell-associated, varicella-zoster virus (VZV) in a dose-dependent manner and exerted these effects on both target cell and viral membranes. Inhibition by M beta CD, which could be reversed by cholesterol replenishment, rapidly declined as a function of time after exposure of target cells to VZV, suggesting that an early step in viral infection requires cholesterol. No effect of cholesterol depletion, however, was seen on viral binding; moreover, there was no reduction in the surface expression or internalization of mannose 6-phosphate receptors, which are required for VZV entry. Viral entry was energy dependent and showed concentration-dependent inhibition by chlorpromazine, which, among other actions, blocks clathrin-mediated endocytosis. These data suggest that both membrane lipid composition and clathrin-mediated transport are critical for VZV entry. Lipid rafts are likely to contribute directly to viral envelope integrity and, in the host membrane, may influence endocytosis, evoke downstream signaling, and/or facilitate membrane fusion.
Collapse
Affiliation(s)
- S Hambleton
- Department of Paediatric, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | | | | | | |
Collapse
|
155
|
Louboutin JP, Reyes BAS, Agrawal L, Van Bockstaele E, Strayer DS. Strategies for CNS-directed gene delivery: in vivo gene transfer to the brain using SV40-derived vectors. Gene Ther 2007; 14:939-49. [PMID: 17443215 DOI: 10.1038/sj.gt.3302939] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Gene transfer to the central nervous system (CNS) has been approached using various vectors. Recombinant SV40-derived vectors (rSV40s) transduce neurons and microglia effectively in vitro, so we tested rSV40s gene transfer to the CNS in vivo, and characterized the distribution, duration and cell types transduced. We used rSV40s carrying Human Immunodeficiency Virus Type 1 Net protein (HIV-1 Nef) with a C-terminal FLAG epitope tag as a marker, and another with Cu/Zn superoxide dismutase (SOD1). Rats were given vectors stereotaxically, either intraparenchymally into the caudate-putamen (CP) or into the lateral ventricle (LV). FLAG expression was studied for 3 months by immunostaining serial brain sections. After intraparenchymal administration, numerous transgene-expressing cells were seen, many as far as 4 mm from the injection site. Transgene expression remained strong throughout the 3-month study period. Coimmunostaining for lineage markers showed that neurons and, more rarely, microglial cells were tranduced, except astrocytes and oligodendroglia. After injection into the LV, high levels of transgene expression were detected throughout the frontal cortex by Western analysis. Systemic mannitol-induced hyperosmolarity further augmented LV transgene delivery. SV40-derived vectors may, thus, be useful for long-term gene expression in the brain, whether locally by intraparenchymal administration or diffusely by intraventricular injection, with or without mannitol.
Collapse
Affiliation(s)
- J-P Louboutin
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | |
Collapse
|
156
|
Abstract
Caveolae are a highly abundant but enigmatic feature of mammalian cells. They form remarkably stable membrane domains at the plasma membrane but can also function as carriers in the exocytic and endocytic pathways. The apparently diverse functions of caveolae, including mechanosensing and lipid regulation, might be linked to their ability to respond to plasma membrane changes, a property that is dependent on their specialized lipid composition and biophysical properties.
Collapse
Affiliation(s)
- Robert G Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland 4072, Australia.
| | | |
Collapse
|
157
|
Singh RD, Holicky EL, Cheng ZJ, Kim SY, Wheatley CL, Marks DL, Bittman R, Pagano RE. Inhibition of caveolar uptake, SV40 infection, and beta1-integrin signaling by a nonnatural glycosphingolipid stereoisomer. ACTA ACUST UNITED AC 2007; 176:895-901. [PMID: 17371832 PMCID: PMC2064075 DOI: 10.1083/jcb.200609149] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Caveolar endocytosis is an important mechanism for the uptake of certain pathogens and toxins and also plays a role in the internalization of some plasma membrane (PM) lipids and proteins. However, the regulation of caveolar endocytosis is not well understood. We previously demonstrated that caveolar endocytosis and β1-integrin signaling are stimulated by exogenous glycosphingolipids (GSLs). In this study, we show that a synthetic GSL with nonnatural stereochemistry, β-d-lactosyl-N-octanoyl-l-threo-sphingosine, (1) selectively inhibits caveolar endocytosis and SV40 virus infection, (2) blocks the clustering of lipids and proteins into GSLs and cholesterol-enriched microdomains (rafts) at the PM, and (3) inhibits β1-integrin activation and downstream signaling. Finally, we show that small interfering RNA knockdown of β1 integrin in human skin fibroblasts blocks caveolar endocytosis and the stimulation of signaling by a GSL with natural stereochemistry. These experiments identify a new compound that can interfere with biological processes by inhibiting microdomain formation and also identify β1 integrin as a potential mediator of signaling by GSLs.
Collapse
Affiliation(s)
- Raman Deep Singh
- Department of Biochemistry and Molecular Biology, Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
158
|
Cantín C, Holguera J, Ferreira L, Villar E, Muñoz-Barroso I. Newcastle disease virus may enter cells by caveolae-mediated endocytosis. J Gen Virol 2007; 88:559-569. [PMID: 17251575 DOI: 10.1099/vir.0.82150-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The entry into cells of Newcastle disease virus (NDV), a prototype member of the paramyxoviruses, is believed to occur by direct fusion at the plasma membrane through a pH-independent mechanism. In addition, NDV may enter host cells by an endocytic pathway. Treatment of cells with drugs that block caveolae-dependent endocytosis reduced NDV fusion and infectivity, the degree of inhibition being dependent on virus concentration. The inhibitory effect was reduced greatly when drugs were added after virus adsorption. Cells treated with methyl beta-cyclodextrin, a drug that sequesters cholesterol from membranes, reduced the extent of fusion, infectivity and virus-cell binding; this indicates that cholesterol plays a role in NDV entry. Double-labelling immunofluorescence assays performed with anti-NDV monoclonal antibodies and antibodies against the early endosome marker EEA1 revealed the localization of the virus in these intracellular structures. Using fluorescence microscopy, it was found that cell-cell fusion was enhanced at low pH. It is concluded that NDV may infect cells through a caveolae-dependent endocytic pathway, suggesting that this pathway could be an alternative route for virus entry into cells.
Collapse
Affiliation(s)
- Celia Cantín
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab. 108, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | - Javier Holguera
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab. 108, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | - Laura Ferreira
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab. 108, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | - Enrique Villar
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab. 108, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | - Isabel Muñoz-Barroso
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab. 108, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| |
Collapse
|
159
|
Li PP, Nguyen AP, Qu Q, Jafri QH, Aungsumart S, Cheng RH, Kasamatsu H. Importance of calcium-binding site 2 in simian virus 40 infection. J Virol 2007; 81:6099-105. [PMID: 17360742 PMCID: PMC1900253 DOI: 10.1128/jvi.02195-06] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The exposure of molecular signals for simian virus 40 (SV40) cell entry and nuclear entry has been postulated to involve calcium coordination at two sites on the capsid made of Vp1. The role of calcium-binding site 2 in SV40 infection was examined by analyzing four single mutants of site 2, the Glu160Lys, Glu160Arg, Glu157Lys (E157K), and Glu157Arg mutants, and an E157K-E330K combination mutant. The last three mutants were nonviable. All mutants replicated viral DNA normally, and all except the last two produced particles containing all three capsid proteins and viral DNA. The defect of the site 1-site 2 E157K-E330K double mutant implies that at least one of the sites is required for particle assembly in vivo. The nonviable E157K particles, about 10% larger in diameter than the wild type, were able to enter cells but did not lead to T-antigen expression. Cell-internalized E157K DNA effectively coimmunoprecipitated with anti-Vp1 antibody, but little of the DNA did so with anti-Vp3 antibody, and none was detected in anti-importin immunoprecipitate. Yet, a substantial amount of Vp3 was present in anti-Vp1 immune complexes, suggesting that internalized E157K particles are ineffective at exposing Vp3. Our data show that E157K mutant infection is blocked at a stage prior to the interaction of the Vp3 nuclear localization signal with importins, consistent with a role for calcium-binding site 2 in postentry steps leading to the nuclear import of the infecting SV40.
Collapse
Affiliation(s)
- Peggy P Li
- Molecular Biology Institute, 456 Boyer Hall, University of California at Los Angeles, 611 East Charles E. Young Dr., Box 951570, Los Angeles, CA 90095-1570, USA
| | | | | | | | | | | | | |
Collapse
|
160
|
Martin JHJ, Crotty S, Warren P, Nelson PN. Does an apple a day keep the doctor away because a phytoestrogen a day keeps the virus at bay? A review of the anti-viral properties of phytoestrogens. PHYTOCHEMISTRY 2007; 68:266-74. [PMID: 17182070 DOI: 10.1016/j.phytochem.2006.11.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 10/17/2006] [Accepted: 11/03/2006] [Indexed: 05/13/2023]
Abstract
From dengue to herpes and influenza to AIDS, the phytoestrogens that are present in many fruits and vegetables have been shown to exert anti-viral properties. Here we review the various different anti-viral mechanisms employed by phytoestrogens.
Collapse
Affiliation(s)
- J H J Martin
- Research Institute of Healthcare Science, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1SB, United Kingdom.
| | | | | | | |
Collapse
|
161
|
Daniels R, Rusan NM, Wadsworth P, Hebert DN. SV40 VP2 and VP3 Insertion into ER Membranes Is Controlled by the Capsid Protein VP1: Implications for DNA Translocation out of the ER. Mol Cell 2006; 24:955-66. [PMID: 17189196 DOI: 10.1016/j.molcel.2006.11.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 10/20/2006] [Accepted: 11/01/2006] [Indexed: 02/03/2023]
Abstract
Nonenveloped viruses such as Simian Virus 40 (SV40) exploit established cellular pathways for internalization and transport to their site of penetration. By analyzing mutant SV40 genomes that do not express VP2 or VP3, we found that these structural proteins perform essential functions that are regulated by VP1. VP2 significantly enhanced SV40 particle association with the host cell, while VP3 functioned downstream. VP2 and VP3 both integrated posttranslationally into the endoplasmic reticulum (ER) membrane. Association with VP1 pentamers prevented their ER membrane integration, indicating that VP1 controls the function of VP2 and VP3 by directing their localization between the particle and the ER membrane. These findings suggest a model in which VP2 aids in cell binding. After capsid disassembly within the ER lumen, VP3, and perhaps VP2, oligomerizes and integrates into the ER membrane, potentially creating a viroporin that aids in viral DNA transport out of the ER.
Collapse
Affiliation(s)
- Robert Daniels
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | |
Collapse
|
162
|
Chinnapen DJF, Chinnapen H, Saslowsky D, Lencer WI. Rafting with cholera toxin: endocytosis and trafficking from plasma membrane to ER. FEMS Microbiol Lett 2006; 266:129-37. [PMID: 17156122 PMCID: PMC3511785 DOI: 10.1111/j.1574-6968.2006.00545.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cholera toxin (CT), and members of the AB(5) family of toxins enter host cells and hijack the cell's endogenous pathways to induce toxicity. CT binds to a lipid receptor on the plasma membrane (PM), ganglioside GM1, which has the ability to associate with lipid rafts. The toxin can then enter the cell by various modes of receptor-mediated endocytosis and traffic in a retrograde manner from the PM to the Golgi and the endoplasmic reticulum (ER). Once in the ER, a portion of the toxin is unfolded and retro-translocated to the cytosol so as to induce disease. GM1 is the vehicle that carries CT from PM to ER. Thus, the toxin pathway from PM to ER is a lipid-based sorting pathway, which is potentially meditated by the determinants of the GM1 ganglioside structure itself.
Collapse
Affiliation(s)
- Daniel J.-F. Chinnapen
- GI Cell Biology, Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | | | - David Saslowsky
- GI Cell Biology, Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Wayne I. Lencer
- GI Cell Biology, Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- The Harvard Digestive Diseases Center, Boston, MA, USA
| |
Collapse
|
163
|
Garrean S, Gao XP, Brovkovych V, Shimizu J, Zhao YY, Vogel SM, Malik AB. Caveolin-1 regulates NF-kappaB activation and lung inflammatory response to sepsis induced by lipopolysaccharide. THE JOURNAL OF IMMUNOLOGY 2006; 177:4853-60. [PMID: 16982927 DOI: 10.4049/jimmunol.177.7.4853] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Caveolin-1, the principal structural and signaling protein of caveolae, is implicated in NO-mediated cell signaling events, but its precise role in inflammation is not well understood. Using caveolin-1-knockout (Cav-1(-/-)) mice, we addressed the role of caveolin-1 in the lung inflammatory response to sepsis induced by i.p. injection of LPS. LPS-challenged wild-type (WT) lungs exhibited significant increases in neutrophil sequestration (approximately 16-fold), lung microvascular permeability K(f,c) (approximately 5.7-fold), and edema formation (approximately 1.6-fold). Compared with WT, Cav-1(-/-) lungs showed marked attenuation of LPS-induced neutrophil sequestration (approximately 11-fold increase) and inhibition of microvascular barrier breakdown and edema formation. Prevention of lung injury in Cav-1(-/-) mice was associated with decreased mortality in response to LPS challenge. To address the basis of the reduced inflammation and injury in Cav-1(-/-) lungs, we examined the role of NO because its plasma concentration is known to be increased in Cav-1(-/-) mice. Cav-1(-/-) mouse lungs demonstrated a significant increase in endothelial NO synthase (eNOS)-derived NO production relative to WT, which is consistent with the role of caveolin-1 as a negative regulator of eNOS activity. Cav-1(-/-) lungs concurrently showed suppression of NF-kappaB activity and decreased transcription of inducible NO synthase and ICAM-1. Coadministration of LPS with the NO synthase inhibitor nitro-L-arginine in Cav-1(-/-) mice prevented the suppression of NF-kappaB activity and restored lung polymorphonuclear leukocyte sequestration in response to LPS challenge. Thus, caveolin-1, through its ability to regulate eNOS-derived NO production, is a crucial determinant of NF-kappaB activation and the lung inflammatory response to LPS.
Collapse
Affiliation(s)
- Sean Garrean
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois College of Medicine, 835 South Wolcott Avenue, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
164
|
Chu H, Lee JH, Han SH, Kim SY, Cho NH, Kim IS, Choi MS. Exploitation of the endocytic pathway by Orientia tsutsugamushi in nonprofessional phagocytes. Infect Immun 2006; 74:4246-53. [PMID: 16790799 PMCID: PMC1489698 DOI: 10.1128/iai.01620-05] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Orientia tsutsugamushi, a causative agent of scrub typhus, is an obligate intracellular bacterium that requires the exploitation of the endocytic pathway in the host cell. We observed the localization of O. tsutsugamushi with clathrin or adaptor protein 2 within 30 min after the infection of nonprofessional phagocytes. We have further confirmed that the infectivity of O. tsutsugamushi is significantly reduced by drugs that block clathrin-mediated endocytosis but not by filipin III, an inhibitor that blocks caveola-mediated endocytosis. In the present study, with a confocal microscope, O. tsutsugamushi was sequentially colocalized with the early and late endosomal markers EEA1 and LAMP2, respectively, within 1 h after infection. The colocalization of O. tsutsugamushi organisms with EEA1 and LAMP2 gradually disappeared until 2 h postinfection, and then free O. tsutsugamushi organisms were found in the cytoplasm. When the acidification of endocytic vesicles was blocked by treating the cells with NH(4)Cl or bafilomycin A, the escape of O. tsutsugamushi organisms from the endocytic pathway was severely impaired, and the infectivity of O. tsutsugamushi was drastically reduced. To our knowledge, this is the first report that the invasion of O. tsutsugamushi is dependent on the clathrin-dependent endocytic pathway and the acidification process of the endocytic vesicles in nonprofessional phagocytes.
Collapse
Affiliation(s)
- Hyuk Chu
- Department of Microbiology and Immunology, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Gu, Seoul 110-799, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
165
|
Abstract
Caveolae, specialized membrane nanodomains, have a key role in signaling processes, including calcium handling in smooth muscle cells (SMC). We explored the three-dimensional (3D) architecture of peripheral cytoplasmic space at the nanoscale level and the close spatial relationships between caveolae, sarcoplasmic reticulum (SR), and mitochondria, as ultrastructural basis for an excitation-contraction coupling system and, eventually, for excitation - transcription coupling. About 150 electron micrographs of SMC showed that superficial SR and peripheral mitochondria are rigorously located along the caveolar domains of plasma membrane, alternating with plasmalemmal dense plaques. Electron micrographs made on serial ultrathin sections were digitized, then computer-assisted organellar profiles were traced on images, and automatic 3D reconstruction was obtained using the ‘Reconstruct’ software. The reconstruction was made for 1 μm3 in rat stomach (muscularis mucosae) and 10 μm3 in rat urinary bladder (detrusor smooth muscle). The close appositions (about 15 nm distance) of caveolae, peripheral SR, and mitochondria create coherent cytoplasmic nanoscale subdomains. Apparently, 80% of caveolae establish close contacts with SR and about 10% establish close contacts with mitochondria in both types of SMC. Thus, our results show that caveolae and peripheral SR build Ca2+release units in which mitochondria often could play a part. The caveolae-SR couplings occupy 4.19% of the cellular volume in stomach and 3.10% in rat urinary bladder, while caveolae-mitochondria couplings occupy 3.66% and 3.17%, respectively. We conclude that there are strategic caveolae-SR or caveolae-mitochondria contacts at the nanoscale level in the cortical cytoplasm of SMC, presumably responsible for a vectorial control of free Ca2+ cytoplasmic concentrations in definite nanospaces. This may account for slective activation of specific Ca2+ signaling pathways.
Collapse
Affiliation(s)
| | - L M Popescu
- “Victor Babe” National Institute of PathologyBucharest, Romania
- Department of Cellular and Molecular Medicine, “Carol Davila” University of Medicine and PharmacyBucharest, Romania
- * Correspondence to: L.M. POPESCU, M.D., Ph.D. P.O. Box 35-29, Bucharest 35, Romania. E-mail:
| |
Collapse
|
166
|
Stuart AD, Brown TDK. Entry of feline calicivirus is dependent on clathrin-mediated endocytosis and acidification in endosomes. J Virol 2006; 80:7500-9. [PMID: 16840330 PMCID: PMC1563722 DOI: 10.1128/jvi.02452-05] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Accepted: 04/26/2006] [Indexed: 11/20/2022] Open
Abstract
Feline calicivirus is a major causative agent of respiratory disease in cats. It is also one of the few cultivatable members of Caliciviridae. We have examined the entry process of feline calicivirus (FCV). An earlier study demonstrated that acidification in endosomes may be required. We have confirmed this observation and expanded upon it, demonstrating, using drugs to inhibit the various endocytic pathways and dominant-negative mutants, that FCV infects cells via clathrin-mediated endocytosis. We have also observed that FCV permeabilizes cell membranes early during infection to allow the co-entry of toxins such as alpha-sarcin. Inhibitors of endosome acidification such as chloroquine and bafilomycin A1 blocked this permeabilization event, demonstrating that acidification is required for uncoating of the genome and access to the cytoplasm.
Collapse
Affiliation(s)
- Amanda D Stuart
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom.
| | | |
Collapse
|
167
|
Triantafilou M, Gamper FGJ, Haston RM, Mouratis MA, Morath S, Hartung T, Triantafilou K. Membrane sorting of toll-like receptor (TLR)-2/6 and TLR2/1 heterodimers at the cell surface determines heterotypic associations with CD36 and intracellular targeting. J Biol Chem 2006; 281:31002-11. [PMID: 16880211 DOI: 10.1074/jbc.m602794200] [Citation(s) in RCA: 350] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Toll-like receptors (TLRs) are receptors of the innate immune system responsible for recognizing pathogen-associated molecular patterns. TLR2 seems to be the most promiscuous TLR receptor able to recognize the most diverse set of pathogen-associated patterns. Its promiscuity has been attributed to its unique ability to heterodimerize with TLRs 1 and 6 and, most recently, to its association with CD36 in response to diacylated lipoproteins. Thus, it seems that TLR2 forms receptor clusters in response to different microbial ligands. In this study we investigated TLR2 cell surface heterotypic interactions in response to different ligands as well as internalization and intracellular trafficking. Our data show that TLR2 forms heterodimers with TLR1 and TLR6 and that these heterodimer pre-exist and are not induced by the ligand. Upon stimulation by the specific ligand, these heterodimers are recruited within lipid rafts. In contrast, heterotypic associations of TLR2/6 with CD36 are not preformed and are ligand-induced. All TLR2 receptor clusters accumulate in lipid rafts and are targeted to the Golgi apparatus. This localization and targeting is ligand-specific. Activation occurs at the cell surface, and the observed trafficking is independent of signaling.
Collapse
Affiliation(s)
- Martha Triantafilou
- Infection and Immunity Group, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
168
|
Abstract
BK virus (BKV) is a small, non-enveloped, double-stranded DNA virus and a member of the Polyomaviridae family. As the recently recognized etiologic agent of polyomavirus-associated nephropathy, the events involved in BKV invasion of host cells are an important area of study. Using cell culture models, the mechanism by which BKV infects permissive hosts to gain access to the replication machinery within these cells is beginning to unfold. BKV uses an N-linked glycoprotein containing an alpha(2,3)-linked sialic acid as a receptor. After this initial attachment, BKV enters cells through caveolae-mediated endocytosis. Intracellular trafficking via cellular cytoskeletal components follows this relatively slow and cholesterol-dependent internalization. BKV must reach the nucleus for viral transcription and replication to occur. Elucidating the steps of the early viral lifecycle would provide clues to help explain the infectious spread and pathology of this human pathogen.
Collapse
Affiliation(s)
- A S Dugan
- Graduate Program in Pathobiology, Brown University, Providence, RI 02903, USA
| | | | | |
Collapse
|
169
|
Roskopf J, Trofe J, Stratta RJ, Ahsan N. Pharmacotherapeutic options for the management of human polyomaviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 577:228-54. [PMID: 16626040 DOI: 10.1007/0-387-32957-9_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Polyomaviruses [BK virus (BKV), JC virus (JCV) and simian virus 40 (SV40)] have been known to be associated with diseases in humans for over thirty years. BKV-associated nephropathy and JCV-induced progressive multifocal leukoencephalopathy (PML) were for many years rare diseases occurring only in patients with underlying severe impaired immunity. Over the past decade, the use of more potent immunosuppression (IS) in transplantation, and the Acquired Immune Deficiency Syndrome (AIDS) epidemic, have coincided with a significant increase in the prevalence of these viral complications. Prophylactic and therapeutic interventions for human polyomavirus diseases are limited by our current understanding of polyomaviral pathogenesis. Clinical trials are limited by small numbers of patients affected with clinically significant diseases, lack of defined risk factors and disease definitions, no proven effective treatment and the overall significant morbidity and mortality associated with these diseases. This chapter will focus on a review of the current and future research related to therapeutic targets and interventions for polyomavirus-associated diseases.
Collapse
Affiliation(s)
- Julie Roskopf
- Wake Forest University Baptist Medical Center, Winston-Salem, North Carolina, USA
| | | | | | | |
Collapse
|
170
|
Khalili K, Gordon J, White MK. The polyomavirus, JCV and its involvement in human disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 577:274-87. [PMID: 16626043 DOI: 10.1007/0-387-32957-9_20] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The human neurotropic polyomavirus, JC virus (JCV), is the etiologic agent of progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease of the central nervous system that occurs mainly in immunosuppressed patients. JCV has also been found to be associated with human tumors of the brain and other organs. In this chapter, we describe JC virus and its role in human diseases.
Collapse
Affiliation(s)
- Kamel Khalili
- Center for Neurovirology and Cancer Biology, Temple University, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
171
|
Garcion E, Lamprecht A, Heurtault B, Paillard A, Aubert-Pouessel A, Denizot B, Menei P, Benoît JP. A new generation of anticancer, drug-loaded, colloidal vectors reverses multidrug resistance in glioma and reduces tumor progression in rats. Mol Cancer Ther 2006; 5:1710-22. [PMID: 16891457 DOI: 10.1158/1535-7163.mct-06-0289] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
By focusing on rat glioma, we elucidated whether new lipid nanocapsules (LNC) were able to improve anticancer hydrophobic drug bioavailability while also overcoming multidrug resistance. Blank LNCs and LNCs loaded with the antineoplastic agent paclitaxel were formulated by an emulsion inversion phase process. Expression of efflux pumps by rat glioma cells was assessed by reverse transcription-PCR, Western blot, and immunohistochemistry, and their activity was followed using the tracer (99)Tc(m)-methoxyisobutylisonitrile. Modalities of LNC action were addressed by using confocal microscopy detection of fluorescently labeled LNCs, fluorescence-activated cell sorting, high-performance liquid chromatography measurement of paclitaxel release, and analysis of tumor cell growth. This revealed an interaction between LNCs and efflux pumps that resulted in an inhibition of multidrug resistance in glioma cells, both in culture and in cell implants in animals. LNCs were able to target the intracellular compartment of glioma cells, a mechanism that was abrogated by using intracellular cholesterol inhibitors but not by clathrin-coated pit or caveolae uptake inhibitors. This result can be correlated to the LNC inhibitory effects on efflux pump activity that is itself known to be stimulated by intracellular cholesterol. In parallel, we showed that paclitaxel-loaded LNCs were active reservoirs from which paclitaxel could be released. Finally, we established that paclitaxel-loaded LNCs were more efficient than the commercially available paclitaxel formulation (Taxol) for clinical use, thus reducing tumor expansion in vitro and in vivo. Considering the physiologically compatible nature of LNC excipients, these data may represent an important step towards the development of new clinical therapeutic strategies against cancers.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/analysis
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/analysis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Antineoplastic Agents/administration & dosage
- Capsules/administration & dosage
- Capsules/metabolism
- Drug Carriers/chemistry
- Drug Carriers/metabolism
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Neoplasm/drug effects
- Endocytosis
- Glioma/drug therapy
- Glioma/metabolism
- Male
- Nanostructures/chemistry
- Nitriles/analysis
- Paclitaxel/administration & dosage
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred F344
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Emmanuel Garcion
- Institut National de la Santé et de la Recherche Medicale Unité 646, 10 rue André Boquel, 49100 Angers, France.
| | | | | | | | | | | | | | | |
Collapse
|
172
|
Liu S, Rodriguez AV, Tosteson MT. Role of simvastatin and methyl-beta-cyclodextrin [corrected] on inhibition of poliovirus infection. Biochem Biophys Res Commun 2006; 347:51-9. [PMID: 16824485 DOI: 10.1016/j.bbrc.2006.06.107] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 06/05/2006] [Indexed: 01/25/2023]
Abstract
Cells exposed to simvastatin or to methyl-beta-cyclodextrin show reduced poliovirus infection, without alteration in virus binding or on the kinetics of genome entry, suggesting that the steps which are altered are those post uncoating and genome entry. Reduction of infection by cyclodextrin is reversed by increasing MOI whereas that produced by simvastatin treatment is not, suggesting that the effects on infection are not due to a reduction in cholesterol. The differences in the characteristics of inhibition can be explained by the differential effects of the compounds. Cyclodextrin inhibits the store-operated calcium channels, suggesting that reduction in infection is through translational inhibition. Simvastatin produces vesicles from internal membranes which cannot sustain viral RNA synthesis, reducing infection through reduced transcription. The results indicate that the impact on viral infection by the cholesterol-modifying agents is due to the cellular changes produced rather than due to disruption of the cholesterol-rich domains.
Collapse
Affiliation(s)
- Shumei Liu
- Department of Cell Biology, Harvard Medical School, Cambridge, MA 02116, USA
| | | | | |
Collapse
|
173
|
Cheng ZJ, Singh RD, Marks DL, Pagano RE. Membrane microdomains, caveolae, and caveolar endocytosis of sphingolipids. Mol Membr Biol 2006; 23:101-10. [PMID: 16611585 DOI: 10.1080/09687860500460041] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Caveolae are flask-shape membrane invaginations of the plasma membrane that have been implicated in endocytosis, transcytosis, and cell signaling. Recent years have witnessed the resurgence of studies on caveolae because they have been found to be involved in the uptake of some membrane components such as glycosphingolipids and integrins, as well as viruses, bacteria, and bacterial toxins. Accumulating evidence shows that endocytosis mediated by caveolae requires unique structural and signaling machinery (caveolin-1, src kinase), which indicates that caveolar endocytosis occurs through a mechanism which is distinct from other forms of lipid microdomain-associated, clathrin-independent endocytosis. Furthermore, a balance of glycosphingolipids, cholesterol, and caveolin-1 has been shown to be important in regulating caveolae endocytosis.
Collapse
Affiliation(s)
- Zhi-Jie Cheng
- Department of Biochemistry and Molecular Biology, Thoracic Diseases Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
174
|
Liebl D, Difato F, Horníková L, Mannová P, Stokrová J, Forstová J. Mouse polyomavirus enters early endosomes, requires their acidic pH for productive infection, and meets transferrin cargo in Rab11-positive endosomes. J Virol 2006; 80:4610-22. [PMID: 16611921 PMCID: PMC1472029 DOI: 10.1128/jvi.80.9.4610-4622.2006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mouse polyomavirus (PyV) virions enter cells by internalization into smooth monopinocytic vesicles, which fuse under the cell membrane with larger endosomes. Caveolin-1 was detected on monopinocytic vesicles carrying PyV particles in mouse fibroblasts and epithelial cells (33). Here, we show that PyV can be efficiently internalized by Jurkat cells, which do not express caveolin-1 and lack caveolae, and that overexpression of a caveolin-1 dominant-negative mutant in mouse epithelial cells does not prevent their productive infection. Strong colocalization of VP1 with early endosome antigen 1 (EEA1) and of EEA1 with caveolin-1 in mouse fibroblasts and epithelial cells suggests that the monopinocytic vesicles carrying the virus (and vesicles containing caveolin-1) fuse with EEA1-positive early endosomes. In contrast to SV40, PyV infection is dependent on the acidic pH of endosomes. Bafilomycin A1 abolished PyV infection, and an increase in endosomal pH by NH4Cl markedly reduced its efficiency when drugs were applied during virion transport towards the cell nucleus. The block of acidification resulted in the retention of a fraction of virions in early endosomes. To monitor further trafficking of PyV, we used fluorescent resonance energy transfer (FRET) to determine mutual localization of PyV VP1 with transferrin and Rab11 GTPase at a 2- to 10-nm resolution. Positive FRET between PyV VP1 and transferrin cargo and between PyV VP1 and Rab11 suggests that during later times postinfection (1.5 to 3 h), the virus meets up with transferrin in the Rab11-positive recycling endosome. These results point to a convergence of the virus and the cargo internalized by different pathways in common transitional compartments.
Collapse
Affiliation(s)
- David Liebl
- Department of Genetics and Microbiology, Faculty of Medicine, Charles University in Prague, Vinicná 5, 128 44 Prague 2, Czech Republic
| | | | | | | | | | | |
Collapse
|
175
|
Akan I, Sariyer IK, Biffi R, Palermo V, Woolridge S, White MK, Amini S, Khalili K, Safak M. Human polyomavirus JCV late leader peptide region contains important regulatory elements. Virology 2006; 349:66-78. [PMID: 16497349 DOI: 10.1016/j.virol.2006.01.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 12/01/2005] [Accepted: 01/18/2006] [Indexed: 10/25/2022]
Abstract
Transcription is a complex process that relies on the cooperative interaction between sequence-specific factors and the basal transcription machinery. The strength of a promoter depends on upstream or downstream cis-acting DNA elements, which bind transcription factors. In this study, we investigated whether DNA elements located downstream of the JCV late promoter, encompassing the late leader peptide region, which encodes agnoprotein, play regulatory roles in the JCV lytic cycle. For this purpose, the entire coding region of the leader peptide was deleted and the functional consequences of this deletion were analyzed. We found that viral gene expression and replication were drastically reduced. Gene expression also decreased from a leader peptide point mutant but to a lesser extent. This suggested that the leader peptide region of JCV might contain critical cis-acting DNA elements to which transcription factors bind and regulate viral gene expression and replication. We analyzed the entire coding region of the late leader peptide by a footprinting assay and identified three major regions (region I, II and III) that were protected by nuclear proteins. Further investigation of the first two protected regions by band shift assays revealed a new band that appeared in new infection cycles, suggesting that viral infection induces new factors that interact with the late leader peptide region of JCV. Analysis of the effect of the leader peptide region on the promoter activity of JCV by transfection assays demonstrated that this region has a positive and negative effect on the large T antigen (LT-Ag)-mediated activation of the viral early and late promoters, respectively. Furthermore, a partial deletion analysis of the leader peptide region encompassing the protected regions I and II demonstrated a significant down-regulation of viral gene expression and replication. More importantly, these results were similar to that obtained from a complete deletion of the late leader peptide region, indicating the critical importance of these two protected regions in JCV regulation. Altogether, these findings suggest that the late leader peptide region contains important regulatory elements to which transcription factors bind and contribute to the JCV gene regulation and replication.
Collapse
Affiliation(s)
- Ilhan Akan
- Department of Neuroscience, Center for Neurovirology, Laboratory of Molecular Neurovirology, Temple University School of Medicine, Philadelphia, PA 19122, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Sariyer IK, Akan I, Palermo V, Gordon J, Khalili K, Safak M. Phosphorylation mutants of JC virus agnoprotein are unable to sustain the viral infection cycle. J Virol 2006; 80:3893-903. [PMID: 16571806 PMCID: PMC1440453 DOI: 10.1128/jvi.80.8.3893-3903.2006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many eukaryotic and viral regulatory proteins are known to undergo posttranslational modifications including phosphorylation, which plays a critical role in many aspects of cell function. Previous studies from our and other laboratories indicated that the JC virus (JCV) late regulatory protein, agnoprotein, plays an important role in the JCV life cycle. Agnoprotein contains several potential phosphorylation sites, including Ser7, Ser11, and Thr21, which are potential targets for the serine/threonine-specific protein kinase C (PKC). In this study, we investigated the functional significance of these phosphorylation sites for the activity of agnoprotein. In vitro and in vivo kinase assays demonstrated that agnoprotein is a target for phosphorylation by PKC. In addition, each of the PKC phosphorylation sites was mutated to Ala singly and in combination, and the effects of these mutations on the JCV life cycle were analyzed. Although the expression of each mutant agnoprotein was detectable during the infection cycle, virus containing each of these mutations failed to propagate. These results contrast with those obtained with an agnoprotein start codon point (Pt) mutant where agnoprotein expression was completely inhibited. The Pt mutant was viable but replicates less efficiently than the wild type (WT). Moreover, conservative substitutions at PKC phosphorylation sites (Ser7, Ser11, and Thr21 to Asp) resulted in a viable virus, which further demonstrate the importance of these sites on agnoprotein function. Further analysis of the mutants by viral release assay and electron microscopy studies revealed that viral particles were efficiently released from infected cells and morphologically indistinguishable from those of WT but were deficient in DNA content. This may account for the defective propagation of the mutants. These results imply that phosphorylated forms of agnoprotein may have essential functions in the viral life cycle and serve as potential targets for therapeutic interventions to limit JCV propagation and JCV-induced diseases.
Collapse
Affiliation(s)
- Ilker K Sariyer
- Department of Neuroscience, Center for Neurovirology, Laboratory of Molecular Neurovirology, Temple University School of Medicine, 1900 North 12th St., 015-96, Rm. 442, Philadelphia, Pennsylvania 19122, USA
| | | | | | | | | | | |
Collapse
|
177
|
Spooner RA, Smith DC, Easton AJ, Roberts LM, Lord JM. Retrograde transport pathways utilised by viruses and protein toxins. Virol J 2006; 3:26. [PMID: 16603059 PMCID: PMC1524934 DOI: 10.1186/1743-422x-3-26] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 04/07/2006] [Indexed: 11/15/2022] Open
Abstract
A model has been presented for retrograde transport of certain toxins and viruses from the cell surface to the ER that suggests an obligatory interaction with a glycolipid receptor at the cell surface. Here we review studies on the ER trafficking cholera toxin, Shiga and Shiga-like toxins, Pseudomonas exotoxin A and ricin, and compare the retrograde routes followed by these protein toxins to those of the ER trafficking SV40 and polyoma viruses. We conclude that there is in fact no obligatory requirement for a glycolipid receptor, nor even with a protein receptor in a lipid-rich environment. Emerging data suggests instead that there is no common pathway utilised for retrograde transport by all of these pathogens, the choice of route being determined by the particular receptor utilised.
Collapse
Affiliation(s)
- Robert A Spooner
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Daniel C Smith
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Andrew J Easton
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Lynne M Roberts
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - J Michael Lord
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
178
|
Beer C, Pedersen L. Amphotropic murine leukemia virus is preferentially attached to cholesterol-rich microdomains after binding to mouse fibroblasts. Virol J 2006; 3:21. [PMID: 16579862 PMCID: PMC1483818 DOI: 10.1186/1743-422x-3-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 04/02/2006] [Indexed: 01/31/2023] Open
Abstract
Background We have recently shown that amphotropic murine leukemia virus (A-MLV) can enter the mouse fibroblast cell line NIH3T3 via caveola-dependent endocytosis. But due to the size and omega-like shape of caveolae it is possible that A-MLV initially binds cells outside of caveolae. Rafts have been suggested to be pre-caveolae and we here investigate whether A-MLV initially binds to its receptor Pit2, a sodium-dependent phosphate transporter, in rafts or caveolae or outside these cholesterol-rich microdomains. Results Here, we show that a high amount of cell-bound A-MLV was attached to large rafts of NIH3T3 at the time of investigation. These large rafts were not enriched in caveolin-1, a major structural component of caveolae. In addition, they are rather of natural occurrence in NIH3T3 cells than a result of patching of smaller rafts by A-MLV. Thus cells incubated in parallel with vesicular stomatitis virus glycoprotein (VSV-G) pseudotyped MLV particles showed the same pattern of large rafts as cells incubated with A-MLV, but VSV-G pseudotyped MLV particles did not show any preference to attach to these large microdomains. Conclusion The high concentration of A-MLV particles bound to large rafts of NIH3T3 cells suggests a role of these microdomains in early A-MLV binding events.
Collapse
Affiliation(s)
- Christiane Beer
- Institute of Clinical Medicine and Department of Molecular Biology, University of Aarhus, Aarhus, Denmark
| | - Lene Pedersen
- Institute of Clinical Medicine and Department of Molecular Biology, University of Aarhus, Aarhus, Denmark
| |
Collapse
|
179
|
Abstract
Detailed information about the replication cycle of viruses and their interactions with host organisms is required to develop strategies to stop them. Cell biology studies, live-cell imaging, and systems biology have started to illuminate the multiple and subtly different pathways that animal viruses use to enter host cells. These insights are revolutionizing our understanding of endocytosis and the movement of vesicles within cells. In addition, such insights reveal new targets for attacking viruses before they can usurp the host-cell machinery for replication.
Collapse
Affiliation(s)
- Mark Marsh
- Cell Biology Unit, MRC Laboratory for Molecular Cell Biology, and Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom.
| | | |
Collapse
|
180
|
Kirkham M, Parton RG. Clathrin-independent endocytosis: new insights into caveolae and non-caveolar lipid raft carriers. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1745:273-86. [PMID: 16046009 DOI: 10.1016/j.bbamcr.2005.06.002] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 06/06/2005] [Accepted: 06/06/2005] [Indexed: 01/06/2023]
Abstract
A number of recent studies have provided new insights into the complexity of the endocytic pathways originating at the plasma membrane of mammalian cells. Many of the molecules involved in clathrin coated pit internalization are now well understood but other pathways are less well defined. Caveolae appear to represent a low capacity but highly regulated pathway in a restricted set of tissues in vivo. A third pathway, which is both clathrin- and caveolae-independent, may constitute a specialized high capacity endocytic pathway for lipids and fluid. The relationship of this pathway, if any, to macropinocytosis or to the endocytic pathways of lower eukaryotes remains an interesting open question. Our understanding of the regulatory mechanisms and molecular components involved in this pathway are at a relatively primitive stage. In this review, we will consider some of the characteristics of different endocytic pathways in high and lower eukaryotes and consider some of the common themes in endocytosis. One theme which becomes apparent from comparison of these pathways is that apparently different pathways can share common molecular machinery and that pathways considered to be distinct actually represent similar basic pathways to which additional levels of regulatory complexity have been added.
Collapse
Affiliation(s)
- Matthew Kirkham
- Institute for Molecular Bioscience, University of Queensland, Queensland 4072, Australia
| | | |
Collapse
|
181
|
Abstract
Despite many endeavors, no satisfactory strategy has emerged for modulating the aging process, most probably because they were based on faulty rationales. In an extension of the "gate theory of aging" that we proposed recently, we propose here that caveolin, an essential component of caveolae structure, may offer a potential target for modulating the aging process. According to the gate theory, certain biomolecules such as caveolins, amphiphysins, G proteins, and integrins play decisive roles in determining the senescent phenotype and thus provide targets for modulating the aging process. Among these molecules, we chose caveolin, because it can associate with a variety of regulatory and structural molecules via their scaffolding domains and thereby influence a broad spectrum of biological phenomena including both the physiology and morphology of the senescent cells. This is an attempt to review the vast body of evidence available in the literature, both direct and indirect, supporting the accord of this pivotal role to the caveolin in the background of the gate theory for the aging process.
Collapse
Affiliation(s)
- Sang Chul Park
- Department of Biochemistry and Molecular Biology, Aging and Apoptosis Research Center, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
182
|
Villanueva RA, Rouillé Y, Dubuisson J. Interactions between virus proteins and host cell membranes during the viral life cycle. ACTA ACUST UNITED AC 2006; 245:171-244. [PMID: 16125548 PMCID: PMC7112339 DOI: 10.1016/s0074-7696(05)45006-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The structure and function of cells are critically dependent on membranes, which not only separate the interior of the cell from its environment but also define the internal compartments. It is therefore not surprising that the major steps of the life cycle of viruses of animals and plants also depend on cellular membranes. Indeed, interactions of viral proteins with host cell membranes are important for viruses to enter into host cells, replicate their genome, and produce progeny particles. To replicate its genome, a virus first needs to cross the plasma membrane. Some viruses can also modify intracellular membranes of host cells to create a compartment in which genome replication will take place. Finally, some viruses acquire an envelope, which is derived either from the plasma membrane or an internal membrane of the host cell. This paper reviews recent findings on the interactions of viral proteins with host cell membranes during the viral life cycle.
Collapse
Affiliation(s)
- Rodrigo A Villanueva
- CNRS-UPR2511, Institut de Biologie de Lille, Institut Pasteur de Lille, 59021 Lille Cedex, France
| | | | | |
Collapse
|
183
|
Kirkham M, Parton RG. Clathrin-independent endocytosis: new insights into caveolae and non-caveolar lipid raft carriers. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1746:349-63. [PMID: 16440447 DOI: 10.1016/j.bbamcr.2005.11.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A number of recent studies have provided new insights into the complexity of the endocytic pathways originating at the plasma membrane of mammalian cells. Many of the molecules involved in clathrin coated pit internalization are now well understood but other pathways are less well defined. Caveolae appear to represent a low capacity but highly regulated pathway in a restricted set of tissues in vivo. A third pathway, which is both clathrin- and caveolae-independent, may constitute a specialized high capacity endocytic pathway for lipids and fluid. The relationship of this pathway, if any, to macropinocytosis or to the endocytic pathways of lower eukaryotes remains an interesting open question. Our understanding of the regulatory mechanisms and molecular components involved in this pathway are at a relatively primitive stage. In this review, we will consider some of the characteristics of different endocytic pathways in high and lower eukaryotes and consider some of the common themes in endocytosis. One theme which becomes apparent from comparison of these pathways is that apparently different pathways can share common molecular machinery and that pathways considered to be distinct actually represent similar basic pathways to which additional levels of regulatory complexity have been added.
Collapse
Affiliation(s)
- Matthew Kirkham
- Institute for Molecular Bioscience, University of Queensland, 4072, Australia
| | | |
Collapse
|
184
|
Croucher D, Saunders DN, Ranson M. The urokinase/PAI-2 complex: a new high affinity ligand for the endocytosis receptor low density lipoprotein receptor-related protein. J Biol Chem 2006; 281:10206-13. [PMID: 16459332 DOI: 10.1074/jbc.m513645200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The efficient inactivation of urokinase plasminogen activator (uPA) by plasminogen activator inhibitor type 2 (PAI-2) at the surface of carcinoma cells is followed by rapid endocytosis of the uPA-PAI-2 complex. We now show that one pathway of this receptor-mediated endocytosis is mediated via the low density lipoprotein receptor-related protein (LRP) in prostate cancer cells. Detailed biochemical analyses using ligand binding assays and surface plasmon resonance revealed a novel and distinct interaction mechanism between native, human LRP and uPA-PAI-2. As reported previously for PAI-1, inhibition of uPA by PAI-2 significantly increased the affinity of the complex for LRP (K(D) of 36 nm for uPA-PAI-2 versus 200 nm for uPA). This interaction was maintained in the presence of uPAR, confirming the validity of this interaction at the cell surface. However, unlike PAI-1, no interaction was observed between LRP and PAI-2 in either the stressed or the relaxed conformation. This suggests that the uPA-PAI-2-LRP interaction is mediated by site(s) within the uPA molecule alone. Thus, as inhibition of uPA by PAI-2 resulted in accelerated clearance of uPA from the cell surface possibly via its increased affinity for LRP, this represents a mechanism through which PAI-2 can clear proteolytic activity from the cell surface. Furthermore, lack of a direct interaction between PAI-2 and LRP implies that downstream signaling events initiated by PAI-1 may not be activated by PAI-2.
Collapse
Affiliation(s)
- David Croucher
- School of Biological Sciences, University of Wollongong, New South Wales 2522
| | | | | |
Collapse
|
185
|
Abstract
A new genome-wide analysis of human kinases using RNA interference shows an unexpected depth and complexity to the interactions between signal transduction and vesicular transport. The mechanisms of signal transduction and vesicular transport have traditionally been studied in isolation, but recent studies make it clear that the two processes are inextricably linked. A new genome-wide analysis of human kinases using RNA interference shows an unexpected depth and complexity to the interactions between these processes.
Collapse
Affiliation(s)
- Zita Balklava
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
186
|
Cuitino L, Matute R, Retamal C, Bu G, Inestrosa NC, Marzolo MP. ApoER2 is endocytosed by a clathrin-mediated process involving the adaptor protein Dab2 independent of its Rafts' association. Traffic 2005; 6:820-38. [PMID: 16101684 DOI: 10.1111/j.1600-0854.2005.00320.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The apolipoprotein E receptor 2 (apoER2) is a member of the low-density lipoprotein receptor family which binds ligands such as reelin, apolipoprotein E and apolipoprotein J/clusterin and has been shown to play roles in neuronal migration during development and in male fertility. The function of apoER2 mainly depends on cellular signaling triggered by ligand binding. Although the receptor is internalized, the mechanism and functional significance of its endocytic trafficking remain unclear. Apolipoprotein E receptor 2 partitions into lipid rafts and interacts with caveolin-1, a feature that could modulate its endocytic behavior. Recent evidence also suggested that apoER2 might be endocytosed by a pathway independent of clathrin. Here, we show that despite a raft association, apoER2 internalization depends on its cytoplasmic FxNPXY motif that is similar to canonical motifs for clathrin-mediated endocytosis. This motif mediates receptor binding to the adaptor protein Dab2, which can interact directly with clathrin. Several inhibitory conditions of clathrin-mediated endocytosis, including expression of the dominant negative forms of eps15 and Dab2, decreased apoER2 internalization. In contrast, treatment with the drug nystatin, which blocks the caveolar/raft internalization pathway, has no effect on the receptor's endocytosis. Neither the transmembrane nor the proline-rich insert of the cytoplasmic domain, which has been previously reported to exclude the receptor from the clathrin-mediated pathway, altered apoER2 endocytic activity. These studies indicate that apoER2 internalizes through a clathrin-mediated pathway and that its association with caveolar and noncaveolar rafts does not determine its endocytosis.
Collapse
Affiliation(s)
- Loreto Cuitino
- FONDAP Center for Cell Regulation and Pathology, Joaquín V. Luco, Department of Cell and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
187
|
Affiliation(s)
- Akira Ono
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, National Institutes of Health, Maryland 21702, USA
| | | |
Collapse
|
188
|
Abstract
Posttransplant reactivation of BK virus (BKV) in the renal allograft progresses to polyomavirus-associated nephropathy in 1% to 8% of kidney recipients. Graft dysfunction and loss in 30% to 45% of polyomavirus-associated nephropathy-affected patients are secondary to extensive tubular epithelial cell injury induced by the lytic replication of BKV. The early events in productive BKV infection are not thoroughly understood. We have previously shown that BKV enters cells by caveola-mediated endocytosis. In this report we examine the role of microfilaments and microtubules during early viral infection. Our results show that BKV infection of Vero cells is sensitive to nocodazole-induced disassembly of the microtubule network for the initial 8 hours following virus binding. In contrast, suppression of microtubule turnover with the stabilizing agent paclitaxel has no effect on BKV infectivity. Selective disassembly of the actin filaments with latrunculin A does not impede BKV infection, while inhibition of microfilament dynamics with jasplakinolide results in reduced numbers of viral antigen-positive cells. These data demonstrate that BKV, like other polyomaviruses, relies on an intact microtubule network during early infection. BKV, however, does not share the requirement with the closely related JC virus for an intact actin cytoskeleton during intracellular transport.
Collapse
Affiliation(s)
- Sylvia Eash
- Graduate Program in Pathobiology, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | | |
Collapse
|
189
|
Beer C, Andersen DS, Rojek A, Pedersen L. Caveola-dependent endocytic entry of amphotropic murine leukemia virus. J Virol 2005; 79:10776-87. [PMID: 16051869 PMCID: PMC1182675 DOI: 10.1128/jvi.79.16.10776-10787.2005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Early results suggested that the amphotropic murine leukemia virus (A-MLV) does not enter cells via endocytosis through clathrin-coated pits and this gammaretrovirus has therefore been anticipated to fuse directly with the plasma membrane. However, here we present data implicating a caveola-mediated endocytic entry route for A-MLV via its receptor Pit2. Caveolae belong to the cholesterol-rich microdomains characterized by resistance to nonionic detergents such as Triton X-100. Extraction of murine fibroblastic NIH 3T3 cells in cold Triton X-100 showed the presence of the A-MLV receptor Pit2 in detergent-insoluble microdomains. Using coimmunoprecipitation of cell extracts, we were able to demonstrate direct association of Pit2 with caveolin-1, the structural protein of caveolae. Other investigations revealed that A-MLV infection in contrast to vesicular stomatitis virus infection is a slow process (t(1/2) approximately 5 h), which is dependent on plasma membrane cholesterol but independent of NH4Cl treatment of cells; NH4Cl impairs entry via clathrin-coated pits. Furthermore, expression of dominant-negative caveolin-1 decreased the susceptibility to infection via Pit2 by approximately 70%. These results show that A-MLV can enter cells via a caveola-dependent entry route. Moreover, increase in A-MLV infection by treatment with okadaic acid as well as entry of fusion-defective fluorescent A-MLV virions in NIH 3T3 cells further confirmed our findings and show that A-MLV can enter mouse fibroblasts via an endocytic entry route involving caveolae. Finally, we also found colocalization of fusion-defective fluorescent A-MLV virions with caveolin-1 in NIH 3T3 cells. This is the first time substantial evidence has been presented implicating the existence of a caveola-dependent endocytic entry pathway for a retrovirus.
Collapse
Affiliation(s)
- Christiane Beer
- Department of Molecular Biology, Aarhus University, C. F. Møllers Allé, Bldg. 130, DK-8000 Aarhus C, Denmark
| | | | | | | |
Collapse
|
190
|
O'Donnell V, LaRocco M, Duque H, Baxt B. Analysis of foot-and-mouth disease virus internalization events in cultured cells. J Virol 2005; 79:8506-18. [PMID: 15956593 PMCID: PMC1143741 DOI: 10.1128/jvi.79.13.8506-8518.2005] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been demonstrated that foot-and-mouth disease virus (FMDV) can utilize at least four members of the alpha(V) subgroup of the integrin family of receptors in vitro. The virus interacts with these receptors via a highly conserved arginine-glycine-aspartic acid amino acid sequence motif located within the betaG-betaH loop of VP1. While there have been extensive studies of virus-receptor interactions at the cell surface, our understanding of the events during viral entry into the infected cell is still not clear. We have utilized confocal microscopy to analyze the entry of two FMDV serotypes (types A and O) after interaction with integrin receptors at the cell surface. In cell cultures expressing both the alphaVbeta3 and alphaVbeta6 integrins, virus adsorbed to the cells at 4 degrees C appears to colocalize almost exclusively with the alphaVbeta6 integrin. Upon shifting the infected cells to 37 degrees C, FMDV capsid proteins were detected within 15 min after the temperature shift, in association with the integrin in vesicular structures that were positive for a marker of clathrin-mediated endocytosis. In contrast, virus did not colocalize with a marker for caveola-mediated endocytosis. Virus remained associated with the integrin until about 1 h after the temperature shift, when viral proteins appeared around the perinuclear region of the cell. By 15 min after the temperature shift, viral proteins were seen colocalizing with a marker for early endosomes, while no colocalization with late endosomal markers was observed. In the presence of monensin, which raises the pH of endocytic vesicles and has been shown to inhibit FMDV replication, viral proteins were not released from the recycling endosome structures. Viral proteins were not observed associated with the endoplasmic reticulum or the Golgi. These data indicate that FMDV utilizes the clathrin-mediated endocytosis pathway to infect the cells and that viral replication begins due to acidification of endocytic vesicles, causing the breakdown of the viral capsid structure and release of the genome by an as-yet-unidentified mechanism.
Collapse
Affiliation(s)
- Vivian O'Donnell
- Department of Pathobiology and Veterinary Science, University of Connecticut at Storrs, 06269, USA
| | | | | | | |
Collapse
|
191
|
Liu B, Daviau J, Nichols CN, Strayer DS. In vivo gene transfer into rat bone marrow progenitor cells using rSV40 viral vectors. Blood 2005; 106:2655-62. [PMID: 15994284 PMCID: PMC1895314 DOI: 10.1182/blood-2005-01-0028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hematopoietic stem cell (HSC) gene transfer has been attempted almost entirely ex vivo and has been limited by cytokine-induced loss of self-renewal capacity and transplantation-related defects in homing and engraftment. Here, we attempted to circumvent such limitations by injecting vectors directly into the bone marrow (BM) to transduce HSCs in their native environment. Simian virus 40 (SV40)-derived gene delivery vectors were used because they transduce resting CD34+ cells very efficiently. Rats received SV-(Nef-FLAG), carrying FLAG marker epitope--or a control recombinant SV40 (rSV40)--directly into both femoral marrow cavities. Intracellular transgene expression by peripheral blood (PB) or BM cells was detected by cytofluorimetry. An average of 5.3% PB leukocytes expressed FLAG for the entire study--56 weeks. Transgene expression was sustained in multiple cell lineages, including granulocytes (average, 3.3% of leukocytes, 20.4% of granulocytes), CD3+ T lymphocytes (average, 0.53% of leukocytes, 1% of total T cells), and CD45R+ B lymphocytes, indicating gene transfer to long-lived progenitor cells with multilineage capacity. An average of 15% of femoral marrow cells expressed FLAG up to 16.5 months after transduction. Thus, direct intramarrow administration of rSV40s yields efficient gene transfer to rat BM progenitor cells and may be worthy of further investigation.
Collapse
Affiliation(s)
- Bianling Liu
- Department of Pathology, Jefferson Medical College, 1020 Locust St, Rm 251, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
192
|
Abstract
After ingestion by macrophages, Legionella pneumophila enter spacious vacuoles that are quickly enveloped by endoplasmic reticulum (ER), then slowly transferred to lysosomes. Here we demonstrate that the macrophage autophagy machinery recognizes the pathogen phagosome as cargo for lysosome delivery. The autophagy conjugation enzyme Atg7 immediately translocated to phagosomes harbouring virulent Legionella. Subsequently, Atg8, a second autophagy enzyme, and monodansyl-cadaverine (MDC), a dye that accumulates in acidic autophagosomes, decorated the pathogen vacuoles. The autophagy machinery responded to 10-30 kDa species released into culture supernatants by Type IV secretion-competent Legionella, as judged by the macrophages' processing of Atg8 and formation of vacuoles that sequentially acquired Atg7, Atg8 and MDC. When compared with autophagosomes stimulated by rapamycin, Legionella vacuoles acquired Atg7, Atg8 and MDC more slowly, and Atg8 processing was also delayed. Moreover, compared with autophagosomes of Legionella-permissive naip5 mutant A/J macrophages, those of resistant C57BL/6 J macrophages matured quickly, preventing efficient Legionella replication. Accordingly, we discuss a model in which macrophages elevate autophagy as a barrier to infection, a decision influenced by regulatory interactions between Naip proteins and caspases.
Collapse
Affiliation(s)
| | - Michele S. Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School, 6734 Medical Science Building II, 1150 West Medical Center Drive, Ann Arbor, MI 48109-0620, USA
| |
Collapse
|
193
|
Pelkmans L, Fava E, Grabner H, Hannus M, Habermann B, Krausz E, Zerial M. Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Nature 2005; 436:78-86. [PMID: 15889048 DOI: 10.1038/nature03571] [Citation(s) in RCA: 485] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Accepted: 03/17/2005] [Indexed: 01/17/2023]
Abstract
Endocytosis is a key cellular process, encompassing different entry routes and endocytic compartments. To what extent endocytosis is subjected to high-order regulation by the cellular signalling machinery remains unclear. Using high-throughput RNA interference and automated image analysis, we explored the function of human kinases in two principal types of endocytosis: clathrin- and caveolae/raft-mediated endocytosis. We monitored this through infection of vesicular stomatitis virus, simian virus 40 and transferrin trafficking, and also through cell proliferation and apoptosis assays. Here we show that a high number of kinases are involved in endocytosis, and that each endocytic route is regulated by a specific kinase subset. Notably, one group of kinases exerted opposite effects on the two endocytic routes, suggesting coordinate regulation. Our analysis demonstrates that signalling functions such as those controlling cell adhesion, growth and proliferation, are built into the machinery of endocytosis to a much higher degree than previously recognized.
Collapse
Affiliation(s)
- Lucas Pelkmans
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
194
|
Gower TL, Pastey MK, Peeples ME, Collins PL, McCurdy LH, Hart TK, Guth A, Johnson TR, Graham BS. RhoA signaling is required for respiratory syncytial virus-induced syncytium formation and filamentous virion morphology. J Virol 2005; 79:5326-36. [PMID: 15827147 PMCID: PMC1082718 DOI: 10.1128/jvi.79.9.5326-5336.2005] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Accepted: 12/21/2004] [Indexed: 11/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is an important human pathogen that can cause severe and life-threatening respiratory infections in infants, the elderly, and immunocompromised adults. RSV infection of HEp-2 cells induces the activation of RhoA, a small GTPase. We therefore asked whether RhoA signaling is important for RSV replication or syncytium formation. The treatment of HEp-2 cells with Clostridium botulinum C3, an enzyme that ADP-ribosylates and specifically inactivates RhoA, inhibited RSV-induced syncytium formation and cell-to-cell fusion, although similar levels of PFU were released into the medium and viral protein expression levels were equivalent. Treatment with another inhibitor of RhoA signaling, the Rho kinase inhibitor Y-27632, yielded similar results. Scanning electron microscopy of C3-treated infected cells showed reduced numbers of single blunted filaments, in contrast to the large clumps of long filaments in untreated infected cells. These data suggest that RhoA signaling is associated with filamentous virus morphology, cell-to-cell fusion, and syncytium formation but is dispensable for the efficient infection and production of infectious virus in vitro. Next, we developed a semiquantitative method to measure spherical and filamentous virus particles by using sucrose gradient velocity sedimentation. Fluorescence and transmission electron microscopy confirmed the separation of spherical and filamentous forms of infectious virus into two identifiable peaks. The C3 treatment of RSV-infected cells resulted in a shift to relatively more spherical virions than those from untreated cells. These data suggest that viral filamentous protuberances characteristic of RSV infection are associated with RhoA signaling, are important for filamentous virion morphology, and may play a role in initiating cell-to-cell fusion.
Collapse
Affiliation(s)
- Tara L Gower
- Vaccine Research Center, Building 40, Room 2502, NIAID, NIH, 40 Convent Dr., MSC 3017, Bethesda, MD 20892-3017, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Norkin LC, Kuksin D. The caveolae-mediated sv40 entry pathway bypasses the golgi complex en route to the endoplasmic reticulum. Virol J 2005; 2:38. [PMID: 15840166 PMCID: PMC1087894 DOI: 10.1186/1743-422x-2-38] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Accepted: 04/19/2005] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Simian virus 40 (SV40) enters cells via an atypical caveolae-mediated endocytic pathway, which delivers the virus to a new intermediary compartment, the caveosome. The virus then is believed to go directly from the caveosome to the endoplasmic reticulum. Cholera toxin likewise enters via caveolae and traffics to caveosomes. But, in contrast to SV40, cholera toxin is transported from caveosomes to the endoplasmic reticulum via the Golgi. For that reason, and because the caveosome and Golgi may have some common markers, we revisited the issue of whether SV40 might access the endoplasmic reticulum via the Golgi. RESULTS We confirmed our earlier finding that SV40 co localizes with the Golgi marker beta-COP. However, we show that the virus does not co localize with the more discriminating Golgi markers, golgin 97 and BODIPY-ceramide. CONCLUSION The caveolae-mediated SV40 entry pathway does not intersect the Golgi. SV40 is seen to co localize with beta-COP because that protein is a marker for caveosomes as well as the Golgi. Moreover, these results are consistent with the likelihood that the caveosome is a sorting organelle. In addition, there are at least two distinct but related routes by which a ligand might traffic from the caveosome to the ER; one route involving transport through the Golgi, and another pathway that does not involve the Golgi.
Collapse
Affiliation(s)
- Leonard C Norkin
- Department of Microbiology, University of Massachusetts – Amherst, MA 01003, USA
| | - Dmitry Kuksin
- Department of Microbiology, University of Massachusetts – Amherst, MA 01003, USA
| |
Collapse
|
196
|
Bernacchi S, Mueller G, Langowski J, Waldeck W. Characterization of simian virus 40 on its infectious entry pathway in cells using fluorescence correlation spectroscopy. Biochem Soc Trans 2005; 32:746-9. [PMID: 15494004 DOI: 10.1042/bst0320746] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
SV40 (simian virus 40) is a double-stranded DNA virus and is strongly oncogenic in experimental animals. SV40 enters cells by atypical endocytosis mediated by caveolae, transporting the virus to its usual destination, namely the endoplasmic reticulum. The cellular mechanisms of capsid disassembly (uncoating) and deliverance of the viral genome into the cellular nucleus remain unknown. Here, we study (i) the formation of caveolae after viral infection and the diffusion of caveosome vesicles in the cytoplasm and (ii) the capsid disassembly and the mobility of the viral genome on its way to the nucleus, using fluorescence correlation spectroscopy. To follow the viral genome and capsids separately, the histone components of SV40 minichromosomes were labelled with enhanced yellow fluorescent protein and the capsid was labelled with a fluorescent red dye, Alexa568. We characterized the diffusion of caveosomes, the capsid disassembly process in the cytoplasm and the mobility of the viral genome in the nucleus, using two kinds of permissive cells.
Collapse
Affiliation(s)
- S Bernacchi
- Biophysics of Macromolecules, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, 580, D-69120, Heidelberg, Germany
| | | | | | | |
Collapse
|
197
|
Chung SK, Kim JY, Kim IB, Park SI, Paek KH, Nam JH. Internalization and trafficking mechanisms of coxsackievirus B3 in HeLa cells. Virology 2005; 333:31-40. [PMID: 15708590 DOI: 10.1016/j.virol.2004.12.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 10/22/2004] [Accepted: 12/02/2004] [Indexed: 11/21/2022]
Abstract
Coxsackievirus B3 (CVB3) is nonenveloped and has a single-stranded positive-sense RNA genome. CVB3 induces myocarditis and ultimately dilated cardiomyopathy. Although there are mounting evidences of an interaction between CVB3 particles and the cellular receptors, coxsackievirus and adenovirus receptor (CAR) and decay-accelerating factor (DAF), very little is known about the mechanisms of internalization and trafficking. In the present study, we used the CVB3 H3 strain, which is CAR-dependent but DAF-independent Woodruff variant and found that during entry, CVB3 particles were colocalized in clathrin, after interacting primarily with CAR, which was not recycled to the plasma membrane. We also found that CVB3 internalization was dependent on the function of dynamin, a large GTPase that has an essential role in endocytosis. Heat-shock cognate protein, Hsc70, which acts as a chaperone in the release of coat proteins from clathrin-coated vesicles (CCV), played a role in CVB3 trafficking processes. Moreover, endosomal acidification was crucial for CVB3 endocytosis. Finally, CVB3 was colocalized in early endosome autoantigen 1 (EEA1) molecules, which are involved in endosome-endosome tethering and fusion. In conclusion, these data together indicate that CVB3 uses clathrin-mediated endocytosis and is transcytosed to early endosomes.
Collapse
Affiliation(s)
- Sun-Ku Chung
- Department of Biomedical Sciences, National Institute of Health, 5 Nokbun-dong, Eunpyung-gu, Seoul, 122-701 Korea
| | | | | | | | | | | |
Collapse
|
198
|
Amer AO, Byrne BG, Swanson MS. Macrophages rapidly transfer pathogens from lipid raft vacuoles to autophagosomes. Autophagy 2005; 1:53-8. [PMID: 16874021 PMCID: PMC1584280 DOI: 10.4161/auto.1.1.1589] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Macrophages activate autophagy as an immediate response to Legionella pneumophila infection, but what marks the pathogen phagosome as a target for the autophagy machinery is not known. Because a variety of bacteria, parasites, viruses, and toxins that associate with the endoplasmic reticulum enter host cells by a cholesterol-dependent route, we tested the hypothesis that autophagy is triggered when microbes engage components of lipid raft domains. As the intracellular respiratory pathogen L. pneumophila or the extracellular uropathogen FimH(+) Escherichia coli entered macrophages by a cholesterol-sensitive mechanism, they immediatezly resided in vacuoles rich in glycosylphosphatidylinositol moieties and the autophagy enzyme Atg7. As expected for autophagosomes, the vacuoles sequentially acquired the endoplasmic reticulum protein BiP, the autophagy markers Atg8 and monodansyl-cadaverine, and the lysosomal protein LAMP-1. A robust macrophage response to the pathogens was cholesterol-dependent, since fewer Atg7-rich vacuoles were observed when macrophages were pretreated with methyl-beta-cyclodextrin or filipin. A model in which macrophages exploit autophagy to capture pathogens within the lipid raft pathway for antigen presentation prior to disposal in lysosomes is discussed.
Collapse
Affiliation(s)
| | | | - Michele S. Swanson
- *Correspondence to: M.S. Swanson; Department of Microbiology and Immunology; University of Michigan Medical School; 1150 West Medical Center Dr.; Ann Arbor, Michigan USA 48109-0620; Tel.: 734.647.7295; Fax: 734.764.3561;
| |
Collapse
|
199
|
Abstract
The conversion of exogenous and endogenous proteins into immunogenic peptides recognized by T lymphocytes involves a series of proteolytic and other enzymatic events culminating in the formation of peptides bound to MHC class I or class II molecules. Although the biochemistry of these events has been studied in detail, only in the past few years has similar information begun to emerge describing the cellular context in which these events take place. This review thus concentrates on the properties of antigen-presenting cells, especially those aspects of their overall organization, regulation, and intracellular transport that both facilitate and modulate the processing of protein antigens. Emphasis is placed on dendritic cells and the specializations that help account for their marked efficiency at antigen processing and presentation both in vitro and, importantly, in vivo. How dendritic cells handle antigens is likely to be as important a determinant of immunogenicity and tolerance as is the nature of the antigens themselves.
Collapse
Affiliation(s)
- E Sergio Trombetta
- Department of Cell Biology and Section of Immunobiology, Ludwig Institute for Cancer Research, Yale University School of Medicine, New Haven, Connecticut 06520-8002, USA.
| | | |
Collapse
|
200
|
Triantafilou M, Triantafilou K. Heat-shock protein 70 and heat-shock protein 90 associate with Toll-like receptor 4 in response to bacterial lipopolysaccharide. Biochem Soc Trans 2005; 32:636-9. [PMID: 15270695 DOI: 10.1042/bst0320636] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mammalian responses to bacterial LPS (lipopolysaccharide) from the outer membrane of Gram-negative bacteria can lead to an uncontrolled inflammatory response that can be deadly for the host. It has been shown that the innate immune system employs at least three cell surface receptors, CD14, TLR4 (Toll-like receptor 4) and MD-2, in order to recognize bacterial LPS. In our previous work we have found that Hsps (heat-shock proteins) are also involved in the innate recognition of bacterial products. Their presence on the cell surface, as well as their involvement in the innate recognition process, are poorly understood. In the present study we have investigated the association of TLR4 with Hsp70 and Hsp90 following LPS stimulation, both on the cell surface and intracellularly. Our results show that Hsp70 and Hsp90 form a cluster with TLR4 within lipid microdomains following LPS stimulation. In addition, Hsp70 and Hsp90 seem to be involved in TLR4/LPS trafficking and targeting to the Golgi apparatus, since upon LPS stimulation we found that both Hsps are targeted to the Golgi along with TLR4. The present study sheds new light into the involvement of Hsps in the innate immune response.
Collapse
Affiliation(s)
- M Triantafilou
- Infection and Immunity Group, University of Sussex, School of Life Sciences, Falmer, Brighton, BN1 9QG, UK
| | | |
Collapse
|