151
|
Yamada T, Kurosaki T, Hikida M. Essential roles of mgcRacGAP in multilineage differentiation and survival of murine hematopoietic cells. Biochem Biophys Res Commun 2008; 372:941-6. [PMID: 18541143 DOI: 10.1016/j.bbrc.2008.05.170] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 05/30/2008] [Indexed: 12/17/2022]
Abstract
MgcRacGAP, a negative regulator for Rho family GTPases, has been shown to play important roles in cytokinesis using several cell lines. However, the physiological role of mgcRacGAP in multilineage hematopoietic development remains unclear. Here, we conditionally ablated mgcRacGAP in vivo to clarify this issue. As the result, we found that normal hematopoietic development including proliferation and survival requires mgcRacGAP. We also found that depletion of mgcRacGAP in hematopoietic cells results in a marked decrease in c-Kit(+)Sca-1(+)Lin(-) cells, suggesting that mgcRacGAP is required for the maintenance of the hematopoietic stem cells. In addition, B cells in which mgcRacGAP had been selectively ablated showed proliferation failure and fell into apoptosis. Taken together, mgcRacGAP is now shown to play a indispensable role in the development of hematopoietic cells in vivo.
Collapse
Affiliation(s)
- Takayuki Yamada
- Laboratory for Lymphocyte Differentiation, RIKEN Research Center for Allergy and Immunology, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | |
Collapse
|
152
|
Abstract
The International Mouse Knockout Consortium aims to generate a knockout mouse for every single gene on a C57BL/6 background. Our ability to generate such mice is hampered by the poor economics of producing blastocysts to achieve germline transmission of C57BL/6 embryonic stem (ES) cells. We demonstrate superior utility of (C3H x BALB/c)F1 blastocysts compared with BALB/c blastocysts, with blastocyst numbers and germline transmission from subsequent chimeras at a rate 2- to 3-fold higher than that produced with BALB/c blastocysts.
Collapse
|
153
|
Grenningloh R, Darj A, Bauer H, zur Lage S, Chakraborty T, Jacobs T, Weiss S. Liposome-encapsulated antigens induce a protective CTL response against Listeria monocytogenes independent of CD4+ T cell help. Scand J Immunol 2008; 67:594-602. [PMID: 18433404 DOI: 10.1111/j.1365-3083.2008.02112.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protection against intracellular pathogens is usually mediated by cytotoxic T lymphocytes (CTL). Induction of a protective CTL response for vaccination purposes has proven difficult because of the limited access of protein antigens or attenuated pathogens to the MHC class I presentation pathway. We show here that pH-sensitive PE/CHEMS liposomes can be used as a vehicle to efficiently deliver intact proteins for presentation by MHC class I. Mice immunized with listerial proteins encapsulated in such liposomes launched a strong CTL response and were protected against a subsequent challenge with L. monocytogenes. Remarkably, the CTL response was induced independently of detectable CD4(+) T cell help.
Collapse
Affiliation(s)
- R Grenningloh
- Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
154
|
Merkwirth C, Dargazanli S, Tatsuta T, Geimer S, Löwer B, Wunderlich FT, von Kleist-Retzow JC, Waisman A, Westermann B, Langer T. Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria. Genes Dev 2008; 22:476-88. [PMID: 18281461 DOI: 10.1101/gad.460708] [Citation(s) in RCA: 433] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Prohibitins comprise an evolutionarily conserved and ubiquitously expressed family of membrane proteins with poorly described functions. Large assemblies of PHB1 and PHB2 subunits are localized in the inner membrane of mitochondria, but various roles in other cellular compartments have also been proposed for both proteins. Here, we used conditional gene targeting of murine Phb2 to define cellular activities of prohibitins. Our experiments restrict the function of prohibitins to mitochondria and identify the processing of the dynamin-like GTPase OPA1, an essential component of the mitochondrial fusion machinery, as the central cellular process controlled by prohibitins. Deletion of Phb2 leads to the selective loss of long isoforms of OPA1. This results in an aberrant cristae morphogenesis and an impaired cellular proliferation and resistance toward apoptosis. Expression of a long OPA1 isoform in PHB2-deficient cells suppresses these defects, identifying impaired OPA1 processing as the primary cellular defect in the absence of prohibitins. Our results therefore assign an essential function for the formation of mitochondrial cristae to prohibitins and suggest a coupling of cell proliferation to mitochondrial morphogenesis.
Collapse
Affiliation(s)
- Carsten Merkwirth
- Institute for Genetics, Centre for Molecular Medicine, University of Cologne, 50674 Cologne, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Wang Y, Kissenpfennig A, Mingueneau M, Richelme S, Perrin P, Chevrier S, Genton C, Lucas B, DiSanto JP, Acha-Orbea H, Malissen B, Malissen M. Th2 lymphoproliferative disorder of LatY136F mutant mice unfolds independently of TCR-MHC engagement and is insensitive to the action of Foxp3+ regulatory T cells. THE JOURNAL OF IMMUNOLOGY 2008; 180:1565-75. [PMID: 18209052 DOI: 10.4049/jimmunol.180.3.1565] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mutant mice where tyrosine 136 of linker for activation of T cells (LAT) was replaced with a phenylalanine (Lat(Y136F) mice) develop a fast-onset lymphoproliferative disorder involving polyclonal CD4 T cells that produce massive amounts of Th2 cytokines and trigger severe inflammation and autoantibodies. We analyzed whether the Lat(Y136F) pathology constitutes a bona fide autoimmune disorder dependent on TCR specificity. Using adoptive transfer experiments, we demonstrated that the expansion and uncontrolled Th2-effector function of Lat(Y136F) CD4 cells are not triggered by an MHC class II-driven, autoreactive process. Using Foxp3EGFP reporter mice, we further showed that nonfunctional Foxp3(+) regulatory T cells are present in Lat(Y136F) mice and that pathogenic Lat(Y136F) CD4 T cells were capable of escaping the control of infused wild-type Foxp3(+) regulatory T cells. These results argue against a scenario where the Lat(Y136F) pathology is primarily due to a lack of functional Foxp3(+) regulatory T cells and suggest that a defect intrinsic to Lat(Y136F) CD4 T cells leads to a state of TCR-independent hyperactivity. This abnormal status confers Lat(Y136F) CD4 T cells with the ability to trigger the production of Abs and of autoantibodies in a TCR-independent, quasi-mitogenic fashion. Therefore, despite the presence of autoantibodies causative of severe systemic disease, the pathological conditions observed in Lat(Y136F) mice unfold in an Ag-independent manner and thus do not qualify as a genuine autoimmune disorder.
Collapse
Affiliation(s)
- Ying Wang
- Centre d'Immunologie de Marseille-Luminy, INSERM/CNRS, Université de la Méditerranée, Parc Scientifique et Technologique de Luminy, Marseille Cedex 09, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Leipner C, Grün K, Müller A, Buchdunger E, Borsi L, Kosmehl H, Berndt A, Janik T, Uecker A, Kiehntopf M, Böhmer FD. Imatinib mesylate attenuates fibrosis in coxsackievirus b3-induced chronic myocarditis. Cardiovasc Res 2008; 79:118-26. [DOI: 10.1093/cvr/cvn063] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
157
|
Harrington LE, Janowski KM, Oliver JR, Zajac AJ, Weaver CT. Memory CD4 T cells emerge from effector T-cell progenitors. Nature 2008; 452:356-60. [PMID: 18322463 DOI: 10.1038/nature06672] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 01/11/2008] [Indexed: 02/06/2023]
Abstract
A hallmark of adaptive immunity is the generation of memory T cells that confer long-lived, antigen-specific protection against repeat challenges by pathogens. Understanding the mechanisms by which memory T cells arise is important for rational vaccination strategies and improved therapeutic interventions for chronic infections and autoimmune disorders. The large clonal expansion of CD8 T cells in response to some infections has made the development of CD8 T-cell memory more amenable to study, giving rise to a model of memory cell differentiation in which a fraction of fully competent effector T cells transition into long-lived memory T cells. Delineation of CD4 T-cell memory development has proved more difficult as a result of limitations on tracking the smaller populations of CD4 effector T cells generated during a pathogenic challenge, complicating efforts to determine whether CD4 memory T cells are direct descendants of effector T cells or whether they develop by alternative pathways. Here, using two complementary cytokine reporter mouse models to identify interferon (IFN)-gamma-positive effector T cells and track their fate, we show that the lineage relationship between effector and memory CD4 T cells resembles that for CD8 T cells responding to the same pathogen. We find that, in parallel with effector CD8 T cells, IFN-gamma-positive effector CD4 T cells give rise to long-lived memory T cells capable of anamnestic responses to antigenic rechallenge.
Collapse
Affiliation(s)
- Laurie E Harrington
- Department of Pathology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, Alabama 35294, USA
| | | | | | | | | |
Collapse
|
158
|
Agnellini P, Wiesel M, Schwarz K, Wolint P, Bachmann MF, Oxenius A. Kinetic and Mechanistic Requirements for Helping CD8 T Cells. THE JOURNAL OF IMMUNOLOGY 2008; 180:1517-25. [DOI: 10.4049/jimmunol.180.3.1517] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
159
|
Matthews KE, Qin JS, Yang J, Hermans IF, Palmowski MJ, Cerundolo V, Ronchese F. Increasing the survival of dendritic cells in vivo does not replace the requirement for CD4+ T cell help during primary CD8+ T cell responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 179:5738-47. [PMID: 17947646 DOI: 10.4049/jimmunol.179.9.5738] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The survival of dendritic cells (DC) in vivo determines the duration of Ag presentation and is critical in determining the strength and magnitude of the resulting T cell response. We used a mouse model to show that Ag-loaded C57BL/6 DC (MHC class II(+/+) (MHC II(+/+))) that reach the lymph node survived longer than Ag-loaded MHC II(-/-) DC, with the numbers of C57BL/6 DC being approximately 2.5-fold the number of the MHC II(-/-) DC by day 4 and approximately 5-fold by day 7. The differential survival of DC in vivo was not affected by low doses of LPS, but in vitro pretreatment with CD40L or with high doses of LPS increased the numbers of MHC II(-/-) DC to levels approaching those of C57BL/6 DC. Regardless of their numbers and relative survival in lymph nodes, MHC II(-/-) DC were profoundly defective in their ability to induce CTL responses against the gp33 peptide epitope, and were unable to induce expansion and optimal cytotoxic activity of CD8(+) T cells specific for the male Ag UTY. We conclude that CD4(+) T cell help for CD8(+) responses involves mechanisms other than the increased survival of Ag-presenting DC in the lymph node.
Collapse
Affiliation(s)
- Kate E Matthews
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | | | | | | | | | | |
Collapse
|
160
|
Fukui T, Nishio A, Okazaki K, Kasahara K, Saga K, Tanaka J, Uza N, Ueno S, Kido M, Ohashi S, Asada M, Nakase H, Watanabe N, Chiba T. Cross-primed CD8+ cytotoxic T cells induce severe Helicobacter-associated gastritis in the absence of CD4+ T cells. Helicobacter 2007; 12:486-97. [PMID: 17760716 DOI: 10.1111/j.1523-5378.2007.00536.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Although previous studies have reported important roles of CD4(+) type 1-helper T cells and regulatory T cells in Helicobacter-associated gastritis, the significance of CD8(+) cytotoxic T cells remains unknown. To study the roles of CD8(+) T cells, we examined the immune response in the gastric mucosa of Helicobacter felis-infected major histocompatibility complex (MHC) class II-deficient (II(-/-)) mice, which lack CD4(+) T cells. MATERIALS AND METHODS Stomachs from H. felis-infected wild-type and infected MHC II(-/-) mice were examined histologically and immunohistochemically. Gastric acidity and serum levels of anti-H. felis antibodies were measured. The expression of pro-inflammatory and anti-inflammatory cytokine, Fas-ligand, perforin, and Foxp3 genes in the gastric mucosa was investigated. RESULTS H. felis-infected MHC II(-/-) mice developed severe gastritis, accompanied by marked infiltration of CD8(+) cells. At 1 and 2 months after inoculation, mucosal inflammation and atrophy were more severe in MHC II(-/-) mice, although gastritis had reached similar advanced stages at 3 months after inoculation. There was little infiltration of CD4(+) cells, and no Foxp3-positive cells were detected in the gastric mucosa of the infected MHC II(-/-) mice. The expression of the interleukin-1beta and Fas-ligand genes was up regulated, but that of Foxp3 was down regulated in the infected MHC II(-/-) mice. Serum levels of anti-H. felis antibodies were lower in the infected MHC II(-/-) mice, despite severe gastritis. CONCLUSIONS The present study suggests that cross-primed CD8(+) cytotoxic T cells can induce severe H.-associated gastritis in the absence of CD4(+) helper T cells and that Foxp3-positive cells may have an important role in the control of gastric inflammation.
Collapse
Affiliation(s)
- Toshiro Fukui
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Kozlov SV, Bogenpohl JW, Howell MP, Wevrick R, Panda S, Hogenesch JB, Muglia LJ, Van Gelder RN, Herzog ED, Stewart CL. The imprinted gene Magel2 regulates normal circadian output. Nat Genet 2007; 39:1266-72. [PMID: 17893678 DOI: 10.1038/ng2114] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 07/17/2007] [Indexed: 11/09/2022]
Abstract
Mammalian circadian rhythms of activity are generated within the suprachiasmatic nucleus (SCN). Transcripts from the imprinted, paternally expressed Magel2 gene, which maps to the chromosomal region associated with Prader-Willi Syndrome (PWS), are highly enriched in the SCN. The Magel2 message is circadianly expressed and peaks during the subjective day. Mice deficient in Magel2 expression entrain to light cycles and express normal running-wheel rhythms, but with markedly reduced amplitude of activity and increased daytime activity. These changes are associated with reductions in food intake and male fertility. Orexin levels and orexin-positive neurons in the lateral hypothalamus are substantially reduced, suggesting that some of the consequences of Magel2 loss are mediated through changes in orexin signaling. The robust rhythmicity of Magel2 expression in the SCN and the altered behavioral rhythmicity of null mice reveal Magel2 to be a clock-controlled circadian output gene whose disruption results in some of the phenotypes characteristic of PWS.
Collapse
Affiliation(s)
- Serguei V Kozlov
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Hughes ED, Qu YY, Genik SJ, Lyons RH, Pacheco CD, Lieberman AP, Samuelson LC, Nasonkin IO, Camper SA, Van Keuren ML, Saunders TL. Genetic variation in C57BL/6 ES cell lines and genetic instability in the Bruce4 C57BL/6 ES cell line. Mamm Genome 2007; 18:549-58. [PMID: 17828574 DOI: 10.1007/s00335-007-9054-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Accepted: 05/09/2007] [Indexed: 01/12/2023]
Abstract
Genetically modified mouse strains derived from embryonic stem (ES) cells are powerful tools for gene function analysis. ES cells from the C57BL/6 mouse strain are not widely used to generate mouse models despite the advantage of a defined genetic background. We assessed genetic variation in six such ES cell lines with 275 SSLP markers. Compared to C57BL/6, Bruce4 differed at 34 SSLP markers and had significant heterozygosity on three chromosomes. BL/6#3 and Dale1 ES cell lines differed at only 3 SSLP makers. The C2 and WB6d ES cell lines differed at 6 SSLP markers. It is important to compare the efficiency of producing mouse models with available C57BL/6 ES cells relative to standard 129 mouse strain ES cells. We assessed genetic stability (the tendency of cells to become aneuploid) in 110 gene-targeted ES cell clones from the most widely used C57BL/6 ES cell line, Bruce4, and 710 targeted 129 ES cell clones. Bruce4 clones were more likely to be aneuploid and unsuitable for ES cell-mouse chimera production. Despite their tendency to aneuploidy and consequent inefficiency, use of Bruce4 ES cells can be valuable for models requiring behavioral studies and other mouse models that benefit from a defined C57BL/6 background.
Collapse
Affiliation(s)
- Elizabeth D Hughes
- Transgenic Animal Model Core, Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Keskintepe L, Norris K, Pacholczyk G, Dederscheck SM, Eroglu A. Derivation and comparison of C57BL/6 embryonic stem cells to a widely used 129 embryonic stem cell line. Transgenic Res 2007; 16:751-8. [PMID: 17701442 DOI: 10.1007/s11248-007-9125-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 07/31/2007] [Indexed: 11/27/2022]
Abstract
Typically, embryonic stem (ES) cells derived from 129 mouse substrains are used to generate genetically altered mouse models. Resulting chimeric mice were then usually converted to a C57BL/6 background, which takes at least a year, even in the case of speed congenics. In recent years, embryonic stem cells have been derived from various mouse strains. However, 129 ES cells are still widely used partially due to poor germline transmission of ES cells derived from other strains. Availability of highly germline-competent C57BL/6 ES cells would enormously facilitate generation of genetically altered mice in a pure C57BL/6 genetic background by eliminating backcrossing time, and thus significantly reducing associated costs and efforts. Here, we describe establishment of a C57BL/6 ES cell line (LK1) and compare its efficacy to a widely used 129SvJ ES cell line (GSI-1) in generating germline chimeras. In contrast to earlier studies, our data shows that highly germline-competent C57BL/6 ES cell lines can be derived using a simple approach, and thus support broader use of C57BL/6 ES cell lines for genetically engineered mouse models.
Collapse
Affiliation(s)
- Levent Keskintepe
- Mouse ES Cell and Transgenic Core Facility, Institute of Molecular Medicine and Genetics, Medical College of Georgia, 1120 15th Street, CB-2803, Augusta, GA, USA
| | | | | | | | | |
Collapse
|
164
|
French CA, Groszer M, Preece C, Coupe AM, Rajewsky K, Fisher SE. Generation of mice with a conditional Foxp2 null allele. Genesis 2007; 45:440-6. [PMID: 17619227 PMCID: PMC2682329 DOI: 10.1002/dvg.20305] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 04/05/2007] [Indexed: 12/18/2022]
Abstract
Disruptions of the human FOXP2 gene cause problems with articulation of complex speech sounds, accompanied by impairment in many aspects of language ability. The FOXP2/Foxp2 transcription factor is highly similar in humans and mice, and shows a complex conserved expression pattern, with high levels in neuronal subpopulations of the cortex, striatum, thalamus, and cerebellum. In the present study we generated mice in which loxP sites flank exons 12-14 of Foxp2; these exons encode the DNA-binding motif, a key functional domain. We demonstrate that early global Cre-mediated recombination yields a null allele, as shown by loss of the loxP-flanked exons at the RNA level and an absence of Foxp2 protein. Homozygous null mice display severe motor impairment, cerebellar abnormalities and early postnatal lethality, consistent with other Foxp2 mutants. When crossed to transgenic lines expressing Cre protein in a spatially and/or temporally controlled manner, these conditional mice will provide new insights into the contributions of Foxp2 to distinct neural circuits, and allow dissection of roles during development and in the mature brain.
Collapse
Affiliation(s)
- Catherine A French
- The Wellcome Trust Centre for Human Genetics, University of OxfordOxford, United Kingdom
| | - Matthias Groszer
- The Wellcome Trust Centre for Human Genetics, University of OxfordOxford, United Kingdom
| | - Christopher Preece
- The Wellcome Trust Centre for Human Genetics, University of OxfordOxford, United Kingdom
| | - Anne-Marie Coupe
- The Wellcome Trust Centre for Human Genetics, University of OxfordOxford, United Kingdom
| | - Klaus Rajewsky
- The CBR Institute for Biomedical Research, Harvard Medical SchoolBoston, Massachusetts
| | - Simon E Fisher
- The Wellcome Trust Centre for Human Genetics, University of OxfordOxford, United Kingdom
| |
Collapse
|
165
|
Mishina M, Sakimura K. Conditional gene targeting on the pure C57BL/6 genetic background. Neurosci Res 2007; 58:105-12. [PMID: 17298852 DOI: 10.1016/j.neures.2007.01.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2006] [Accepted: 01/09/2007] [Indexed: 01/14/2023]
Abstract
Brain functions are the products of dynamic interactions between multiple genes and environments. Accordingly, there are large differences among mouse strains at the behavioral and neurobiological levels. Therefore, it is crucial to manipulate genes on the same and homogenous genetic background and then to analyze and compare the phenotypes of various genetically modified mice. Furthermore, a conditional gene targeting to restrict the gene knockout to specific cells and time is a powerful tool to investigate the molecular basis of higher brain functions such as learning and memory. We have developed a system employing Cre-progesterone receptor fusion recombinase for temporal regulation of gene targeting and Flp/frt recombination system for elimination of marker genes. Importantly, both the recombinase lines and target mice have been produced with embryonic stem cells derived from the C57BL/6 strain suitable for brain function analysis. Thus, we have established an inducible and neuron-specific gene targeting system on the pure C57BL/6 genetic background.
Collapse
Affiliation(s)
- Masayoshi Mishina
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan.
| | | |
Collapse
|
166
|
Bauler TJ, Hughes ED, Arimura Y, Mustelin T, Saunders TL, King PD. Normal TCR signal transduction in mice that lack catalytically active PTPN3 protein tyrosine phosphatase. THE JOURNAL OF IMMUNOLOGY 2007; 178:3680-7. [PMID: 17339465 DOI: 10.4049/jimmunol.178.6.3680] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PTPN3 (PTPH1) is a cytoskeletal protein tyrosine phosphatase that has been implicated as a negative regulator of early TCR signal transduction and T cell activation. To determine whether PTPN3 functions as a physiological negative regulator of TCR signaling in primary T cells, we generated gene-trapped and gene-targeted mouse strains that lack expression of catalytically active PTPN3. PTPN3 phosphatase-negative mice were born in expected Mendelian ratios and exhibited normal growth and development. Furthermore, numbers and ratios of T cells in primary and secondary lymphoid organs were unaffected by the PTPN3 mutations and there were no signs of spontaneous T cell activation in the mutant mice with increasing age. TCR-induced signal transduction, cytokine production, and proliferation was normal in PTPN3 phosphatase-negative mice. This was observed using both quiescent T cells and recently stimulated T cells where expression of PTPN3 is substantially up-regulated. We conclude, therefore, that the phosphatase activity of PTPN3 is dispensable for negative regulation of TCR signal transduction and T cell activation.
Collapse
Affiliation(s)
- Timothy J Bauler
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
167
|
Wiethe C, Schiemann M, Busch D, Haeberle L, Kopf M, Schuler G, Lutz MB. Interdependency of MHC Class II/Self-Peptide and CD1d/Self-Glycolipid Presentation by TNF-Matured Dendritic Cells for Protection from Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2007; 178:4908-16. [PMID: 17404272 DOI: 10.4049/jimmunol.178.8.4908] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DC) are key regulators of T cell immunity and tolerance. NKT cells are well-known enhancers of Th differentiation and regulatory T cell function. However, the nature of the DC directing T and NKT cell activation and polarization as well as the role of the respective CD1d Ags presented is still unclear. In this study, we show that peptide-specific CD4(+)IL-10(+) T cell-mediated full experimental autoimmune encephalomyelitis (EAE) protection by TNF-treated semimatured DCs was dependent on NKT cells recognizing an endogenous CD1d ligand. NKT cell activation by TNF-matured DCs induced high serum levels of IL-4 and IL-13 which are absent in NKT cell-deficient mice, whereas LPS plus anti-CD40-treated fully mature DCs induce serum IFN-gamma. In the absence of IL-4Ralpha chain signaling or NKT cells, no complete EAE protection was achieved by TNF-DCs, whereas transfer of NKT cells into Jalpha281(-/-) mice restored it. However, activation of NKT cells alone was not sufficient for EAE protection and early serum Th2 deviation. Simultaneous activation of NKT cells and CD4(+) T cells by the same DC was required for EAE protection. Blocking experiments demonstrated that NKT cells recognize an endogenous glycolipid presented on CD1d on the injected DC. Together, this indicates that concomitant and interdependent presentation of MHC II/self-peptide and CD1d/self-isoglobotrihexosylceramide to T and NKT cells by the same partially or fully matured DC determines protective and nonprotective immune responses in EAE.
Collapse
Affiliation(s)
- Carsten Wiethe
- Department of Dermatology, University Hospital, Erlangen, Germany.
| | | | | | | | | | | | | |
Collapse
|
168
|
Wahl C, Bochtler P, Schirmbeck R, Reimann J. Type I IFN-producing CD4 Valpha14i NKT cells facilitate priming of IL-10-producing CD8 T cells by hepatocytes. THE JOURNAL OF IMMUNOLOGY 2007; 178:2083-93. [PMID: 17277112 DOI: 10.4049/jimmunol.178.4.2083] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Upon entering the liver CD8 T cells encounter large numbers of NKT cells patrolling the hepatocyte (HC) surface facing the perisinusoidal space. We asked whether hepatic NKT cells modulate the priming of CD8 T cells by HC. Hepatic (alpha-galactosyl-ceramide-loaded CD1d dimer binding) NKT cells produce predominantly IL-4 when stimulated with glycolipid-presenting HC but predominantly IFN-gamma when stimulated with glycolipid-presenting dendritic cells. These NKT cells prime naive CD8 T cells to a (K(b)-presented) peptide ligand if they simultaneously recognize a CD1d-binding glycolipid presented to them on the surface of the responding CD8 T cells that they prime. No IL-10-producing CD8 T cells are detected if these T cells are primed by either HC or NKT cells. In contrast, IL-10 is produced by HC-primed CD8 T cells if IFN-beta-producing NKT cells are coactivated by the same HC presenting a glycolipid (in the context of CD1d) and an antigenic peptide (in the context of K(b)). Hence, IL-10-producing CD8 T cells are generated in a type I IFN-dependent manner if the three cell types (CD8 T cells, NKT cells, and ligand-presenting HC) specifically and closely interact. IL-10-producing CD8 T cells generated under these conditions down-modulate IL-2 (and proliferative) responses of naive CD4 or CD8 T cells primed by DC. If in close proximity, NKT cells can thus locally modulate the phenotype of CD8 T cells during their priming by HC thereby limiting the local activation of proinflammatory immune effector cells and protecting the liver against immune injury.
Collapse
Affiliation(s)
- Christian Wahl
- Department of Internal Medicine I, University of Ulm, Ulm, Germany
| | | | | | | |
Collapse
|
169
|
Luche H, Weber O, Nageswara Rao T, Blum C, Fehling HJ. Faithful activation of an extra-bright red fluorescent protein in "knock-in" Cre-reporter mice ideally suited for lineage tracing studies. Eur J Immunol 2007; 37:43-53. [PMID: 17171761 DOI: 10.1002/eji.200636745] [Citation(s) in RCA: 395] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The considerable potential of Cre recombinase as a tool for in vivo fate-mapping studies depends on the availability of reliable reporter mice. By targeting a tandem-dimer red fluorescent protein (tdRFP) with advanced spectral and biological properties into the ubiquitously expressed ROSA26 locus of C57BL/6-ES cells, we have generated a novel inbred Cre-reporter mouse with several unique characteristics. We directly demonstrate the usefulness of our reporter strain in inter-crosses with a "universal Cre-deleter" strain and with mice expressing Cre recombinase in a T lineage-specific manner. Cytofluorometric and histological analyses illustrate: (i) non-toxicity and extraordinary brightness of the fluorescent reporter, allowing quantitative detection and purification of labeled cells with highest accuracy, (ii) reliable Cre-mediated activation of tdRFP from an antisense orientation relative to ROSA26 transcription, effectively excluding "leaky" reporter expression, (iii) absence of gene expression variegation effects, (iv) quantitative detection of tdRFP-expressing cells even in paraformaldehyde-fixed tissue sections, and (v) full compatibility with GFP/YFP-based fluorescent markers in multicolor experiments. Taken together, the data show that our C57BL/6-inbred reporter mice are ideally suited for sophisticated lineage-tracing experiments requiring sensitive and quantitative detection/purification of live Cre-expressing cells and their progeny.
Collapse
Affiliation(s)
- Hervé Luche
- Institute of Immunology, University Clinics Ulm, Ulm, Germany
| | | | | | | | | |
Collapse
|
170
|
Bochtler P, Wahl C, Schirmbeck R, Reimann J. Functional Adaptive CD4 Foxp3 T Cells Develop in MHC Class II-Deficient Mice. THE JOURNAL OF IMMUNOLOGY 2006; 177:8307-14. [PMID: 17142726 DOI: 10.4049/jimmunol.177.12.8307] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD4 Foxp3 regulatory T (T(R)) cells are well-defined regulator T cells known to develop in the thymus through positive selection by medium-to-high affinity TCR-MHC interactions. We asked whether Foxp3 T(R) cells can be generated in the complete absence of MHC class II molecules. CD4 Foxp3 T(R) cells are found in secondary lymphoid tissues (spleen and lymph nodes) and peripheral tissues (liver) but not the thymus of severely MHC class II-deficient (Aalpha(-/-) B6) mice. These T(R) cells preferentially express CD103 (but not CD25) but up-regulate CD25 surface expression to high levels in response to TCR-mediated activation. MHC class II-independent Foxp3 T(R) cells down modulate vaccine-induced, specific antiviral CD8 T cell responses of Aalpha(-/-) B6 mice in vivo. Furthermore, these T(R) cells suppress IL-2 release and proliferative responses in vitro of naive CD25(-) (CD4 or CD8) T cells from normal B6 mice primed by bead-coupled anti-CD3/anti-CD28 Ab as efficiently as CD4CD25(high) T(R) cells from congenic, normal B6 mice. MHC class II-independent CD4 Foxp3(+) T(R) cells thus preferentially express the (TGF-beta-induced) integrin molecule alpha(E) (CD103), are generated mainly in the periphery and efficiently mediate immunosuppressive effects.
Collapse
Affiliation(s)
- Petra Bochtler
- Department of Internal Medicine I, University of Ulm, Albert Einstein Allee 11, D-89081 Ulm, Germany
| | | | | | | |
Collapse
|
171
|
MacKay PA, Leibundgut-Landmann S, Koch N, Dunn AC, Reith W, Jack RW, McLellan AD. Circulating, soluble forms of major histocompatability complex antigens are not exosome-associated. Eur J Immunol 2006; 36:2875-84. [PMID: 17072917 DOI: 10.1002/eji.200636041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In vitro studies have shown that soluble MHC (sMHC) released by cell lines is bound to nano-vesicles termed exosomes. It is thought that exosomes may represent the major reservoir of sMHC class I and II molecules in biological fluids. However, most studies have been confined to in vitro assays performed with cell lines. We show here that sMHC in the serum or plasma differs from exosome-bound sMHC in five ways: In contrast to exosome-associated sMHC, circulating sMHC is of low density, has a low apparent molecular mass (40-300 kDa) and is not detergent-labile. Moreover, the majority of MHC class II isoforms and MHC class I in blood are not physically linked and circulating HLA-DR is accessible to an antibody specific for the HLA-DR alpha-chain intracellular epitope, which is masked by its association with cellular or exosomal membranes. Finally, utilizing transcriptional activator of murine MHC class II (C2ta) promoter-mutant mice, we showed that the release of sMHC class II into the circulation is dependent on the C2ta pI promoter, but not pIII or pIV. This suggests that myeloid dendritic cells and/or macrophages, which preferentially use promoter pI of the C2ta gene, produce most of the sMHC class II found in the circulation.
Collapse
|
172
|
Lee H, Zahra D, Vogelzang A, Newton R, Thatcher J, Quan A, So T, Zwirner J, Koentgen F, Padkjaer SB, Mackay F, Whitfeld PL, Mackay CR. Human C5aR knock-in mice facilitate the production and assessment of anti-inflammatory monoclonal antibodies. Nat Biotechnol 2006; 24:1279-84. [PMID: 16980974 DOI: 10.1038/nbt1248] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 08/07/2006] [Indexed: 01/10/2023]
Abstract
Complement component C5a binds C5a receptor (C5aR) and facilitates leukocyte chemotaxis and release of inflammatory mediators. We used neutrophils from human C5aR knock-in mice, in which the mouse C5aR coding region was replaced with that of human C5aR, to immunize wild-type mice and to generate high-affinity antagonist monoclonal antibodies (mAbs) to human C5aR. These mAbs blocked neutrophil migration to C5a in vitro and, at low doses, both prevented and reversed inflammatory arthritis in the murine K/BxN model. Of approximately 40 mAbs generated to C5aR, all potent inhibitors recognized a small region of the second extracellular loop that seems to be critical for regulation of receptor activity. Human C5aR knock-in mice not only facilitated production of high-affinity mAbs against an important human therapeutic target but were also useful in preclinical validation of the potency of these antagonists. This strategy should be applicable to other important mAb therapeutics.
Collapse
Affiliation(s)
- Hyun Lee
- Immunology and Inflammation Department, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Patterson HCK, Kraus M, Kim YM, Ploegh H, Rajewsky K. The B cell receptor promotes B cell activation and proliferation through a non-ITAM tyrosine in the Igalpha cytoplasmic domain. Immunity 2006; 25:55-65. [PMID: 16860757 DOI: 10.1016/j.immuni.2006.04.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2006] [Revised: 03/19/2006] [Accepted: 04/18/2006] [Indexed: 01/01/2023]
Abstract
In addition to the tyrosines of the Igalpha and beta immunoreceptor tyrosine-based activation motifs (ITAMs), the evolutionarily conserved Igalpha non-ITAM tyrosine 204 becomes phosphorylated upon antigen recognition by the B cell receptor (BCR). Here we demonstrate that splenic B cells from mice with a targeted mutation of Igalpha Y204 exhibited an isolated defect in T cell-independent B cell activation, proliferation, and antibody response upon BCR engagement, yet normal BCR capping, antigen internalization, antigen presentation, and T cell-dependent antibody production. Mutant B cells, present in normal numbers, exhibited unimpaired BCR-induced spleen tyrosine kinase (Syk) phosphorylation but reduced B cell linker protein (BLNK) phosphorylation, calcium flux, and nuclear factor kappaB (NFkappaB), c-jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) activation. These results suggest that Igalpha non-ITAM tyrosine 204 promotes a distinct cellular response, namely T-independent B cell proliferation and differentiation via phosphorylation of the adaptor BLNK.
Collapse
|
174
|
Wang F, Thirumangalathu S, Loeken MR. Establishment of new mouse embryonic stem cell lines is improved by physiological glucose and oxygen. CLONING AND STEM CELLS 2006; 8:108-16. [PMID: 16776602 DOI: 10.1089/clo.2006.8.108] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Embryonic stem cell lines are routinely selected and cultured in glucose and oxygen concentrations that are well above those of the intrauterine environment. Supraphysiological glucose and hyperoxia each increase oxidative stress, which could be detrimental to survival in vitro by inhibiting proliferation and/or inducing cell death. The aim of this study was to test whether isolation of new embryonic stem cell lines from murine blastocysts is improved by culture in physiological (5%) oxygen instead of approximately 20%, the concentration of oxygen in room air, or in media containing physiological (100 mg/dL) instead of 450 mg/dL glucose. We found that culturing in either physiological oxygen or physiological glucose improved the success of establishing new murine embryonic stem cell lines, and that culture when concentrations of both oxygen and glucose were physiological improved the success of establishing new lines more than culture in either alone. Physiological oxygen and glucose reduce oxidative stress, as determined by 2',7'-dichloro-dihydrofluorescein fluorescence. BrdU incorporation suggests that physiological oxygen and glucose increase the pool of proliferating cells. Cells isolated in physiological oxygen and glucose are capable of self-renewal and differentiation into all three germ layers in vitro. However, none of the culture conditions prevents cytogenetic instability with prolonged passage. These results suggest that culture of cells derived from murine blastocysts in physiological oxygen and glucose reduces oxidant stress, which increases the success of establishing new embryonic stem cell lines.
Collapse
Affiliation(s)
- Fangnian Wang
- Section on Developmental and Stem Cell Biology, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| | | | | |
Collapse
|
175
|
Otten LA, Leibundgut-Landmann S, Huarte J, Kos-Braun IC, Lavanchy C, Barras E, Borisch B, Steimle V, Acha-Orbea H, Reith W. Revisiting the specificity of the MHC class II transactivator CIITA in vivo. Eur J Immunol 2006; 36:1548-58. [PMID: 16703565 DOI: 10.1002/eji.200535687] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
CIITA is a master regulatory factor for the expression of MHC class II (MHC-II) and accessory genes involved in Ag presentation. It has recently been suggested that CIITA also regulates numerous other genes having diverse functions within and outside the immune system. To determine whether these genes are indeed relevant targets of CIITA in vivo, we studied their expression in CIITA-transgenic and CIITA-deficient mice. In contrast to the decisive control of MHC-II and related genes by CIITA, nine putative non-MHC target genes (Eif3s2, Kpna6, Tap1, Yars, Col1a2, Ctse, Ptprr, Tnfsf6 and Plxna1) were found to be CIITA independent in all cell types examined. Two other target genes, encoding IL-4 and IFN-gamma, were indeed found to be up- and down-regulated, respectively, in CIITA-transgenic CD4(+) T cells. However, there was no correlation between MHC-II expression and this Th2 bias at the level of individual transgenic T cells, indicating an indirect control by CIITA. These results show that MHC-II-restricted Ag presentation, and its indirect influences on T cells, remains the only pathway under direct control by CIITA in vivo. They also imply that precisely regulated MHC-II expression is essential for maintaining a proper Th1-Th2 balance.
Collapse
Affiliation(s)
- Luc A Otten
- Department of Pathology and Immunology, University of Geneva Medical School, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Chaudhri G, Panchanathan V, Bluethmann H, Karupiah G. Obligatory requirement for antibody in recovery from a primary poxvirus infection. J Virol 2006; 80:6339-44. [PMID: 16775322 PMCID: PMC1488964 DOI: 10.1128/jvi.00116-06] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To understand the correlates of protective immunity against primary variola virus infection in humans, we have used the well-characterized mousepox model. This is an excellent surrogate small-animal model for smallpox in which the disease is caused by infection with the closely related orthopoxvirus, ectromelia virus. Similarities between the two infections include virus replication and transmission, aspects of pathology, and development of pock lesions. Previous studies using ectromelia virus have established critical roles for cytokines and effector functions of CD8 T cells in the control of acute stages of poxvirus infection. Here, we have used mice deficient in B cells to demonstrate that B-cell function is also obligatory for complete virus clearance and recovery of the host. In the absence of B cells, virus persists and the host succumbs to infection, despite the generation of CD8 T-cell responses. Intriguingly, transfer of naive B cells or ectromelia virus-immune serum to B-cell-deficient mice with established infection allowed these animals to clear virus and fully recover. In contrast, transfer of ectromelia virus-immune CD8 T cells was ineffective. Our data show that mice deficient in CD8 T-cell function die early in infection, whereas those deficient in B cells or antibody production die much later, indicating that B-cell function becomes critical after the effector phase of the CD8 T-cell response to infection subsides. Strikingly, our results show that antibody prevents virus from seeding the skin and forming pock lesions, which are important for virus transmission between hosts.
Collapse
Affiliation(s)
- Geeta Chaudhri
- Infection and Immunology Group, Division of Immunology and Genetics, The John Curtin School of Medical Research, Australian National University, Mills Road, Acton, ACT 0200, Australia
| | | | | | | |
Collapse
|
177
|
Panchanathan V, Chaudhri G, Karupiah G. Protective immunity against secondary poxvirus infection is dependent on antibody but not on CD4 or CD8 T-cell function. J Virol 2006; 80:6333-8. [PMID: 16775321 PMCID: PMC1488959 DOI: 10.1128/jvi.00115-06] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Renewed interest in smallpox and the need for safer vaccines have highlighted our lack of understanding of the requirements for protective immunity. Since smallpox has been eradicated, surrogate animal models of closely related orthopoxviruses, such as ectromelia virus, have been used to establish critical roles for CD8 T cells in the control of primary infection. To study the requirements for protection against secondary infection, we have used a prime-challenge regime, in which avirulent ectromelia virus was used to prime mice that were then challenged with virulent ectromelia virus. In contrast to primary infection, T cells are not required for recovery from secondary infection, since gene knockout mice deficient in CD8 T-cell function and wild-type mice acutely depleted of CD4, CD8, or both subsets were fully protected. Protection correlated with effective virus control and generation of neutralizing antibody. Notably, primed mice that lacked B cells, major histocompatibility complex class II, or CD40 succumbed to secondary infection. Thus, antibody is essential, but CD4 or CD8 T cells are not required for recovery from secondary poxvirus infection.
Collapse
Affiliation(s)
- Vijay Panchanathan
- Infection and Immunology Group, Division of Immunology and Genetics, The John Curtin School of Medical Research, Australian National University, Mills Road, Acton, ACT 0200, Australia
| | | | | |
Collapse
|
178
|
van Loo G, De Lorenzi R, Schmidt H, Huth M, Mildner A, Schmidt-Supprian M, Lassmann H, Prinz MR, Pasparakis M. Inhibition of transcription factor NF-κB in the central nervous system ameliorates autoimmune encephalomyelitis in mice. Nat Immunol 2006; 7:954-61. [PMID: 16892069 DOI: 10.1038/ni1372] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Accepted: 07/12/2006] [Indexed: 12/31/2022]
Abstract
Activation of transcription factor NF-kappaB in the central nervous system (CNS) has been linked to autoimmune demyelinating disease; however, it remains unclear whether its function is protective or pathogenic. Here we show that CNS-restricted ablation of 'upstream' NF-kappaB activators NEMO or IKK2 but not IKK1 ameliorated disease pathology in a mouse model of multiple sclerosis, suggesting that 'canonical' NF-kappaB activation in cells of the CNS has a mainly pathogenic function in autoimmune demyelinating disease. NF-kappaB inhibition prevented the expression of proinflammatory cytokines, chemokines and the adhesion molecule VCAM-1 from CNS-resident cells. Thus, NF-kappaB-dependent gene expression in non-microglial cells of the CNS provides a permissive proinflammatory milieu that is critical for CNS inflammation and tissue damage in autoimmune demyelinating disease.
Collapse
Affiliation(s)
- Geert van Loo
- European Molecular Biology Laboratory Mouse Biology Unit, I-00016 Monterotondo, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Prinz I, Sansoni A, Kissenpfennig A, Ardouin L, Malissen M, Malissen B. Visualization of the earliest steps of γδ T cell development in the adult thymus. Nat Immunol 2006; 7:995-1003. [PMID: 16878135 DOI: 10.1038/ni1371] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 07/06/2006] [Indexed: 01/15/2023]
Abstract
The checkpoint in gammadelta cell development that controls successful T cell receptor (TCR) gene rearrangements remains poorly characterized. Using mice expressing a reporter gene 'knocked into' the Tcrd constant region gene, we have characterized many of the events that mark the life of early gammadelta cells in the adult thymus. We identify the developmental stage during which the Tcrd locus 'opens' in early T cell progenitors and show that a single checkpoint controls gammadelta cell development during the penultimate CD4- CD8- stage. Passage through this checkpoint required the assembly of gammadelta TCR heterodimers on the cell surface and signaling via the Lat adaptor protein. In addition, we show that gammadelta selection triggered a phase of sustained proliferation similar to that induced by the pre-TCR.
Collapse
Affiliation(s)
- Immo Prinz
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Case 906, Institut National de la Santé et de la Recherche Médicale, U631, Marseille, France
| | | | | | | | | | | |
Collapse
|
180
|
McCoy KD, Harris NL, Diener P, Hatak S, Odermatt B, Hangartner L, Senn BM, Marsland BJ, Geuking MB, Hengartner H, Macpherson AJS, Zinkernagel RM. Natural IgE Production in the Absence of MHC Class II Cognate Help. Immunity 2006; 24:329-39. [PMID: 16546101 DOI: 10.1016/j.immuni.2006.01.013] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 12/14/2005] [Accepted: 01/12/2006] [Indexed: 12/13/2022]
Abstract
IgE induction by parasites and allergens is antigen driven and cognate T cell help dependent. We demonstrate that spontaneously produced IgE in T cell-deficient and germ-free wild-type (wt) mice is composed of natural specificities and induced by a mechanism independent of MHC class II (MHC II) cognate help. This does not require secondary lymphoid structures or germinal center formation, although some bystander T cell-derived IL-4 is necessary. The pathway of spontaneous IgE production is not inhibited by regulatory T cells and increases with age to constitute significant serum concentrations, even in naive animals.
Collapse
Affiliation(s)
- Kathy D McCoy
- Institute of Experimental Immunology, Department of Pathology, Universitätsspital, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Damak S, Rong M, Yasumatsu K, Kokrashvili Z, Pérez CA, Shigemura N, Yoshida R, Mosinger B, Glendinning JI, Ninomiya Y, Margolskee RF. Trpm5 null mice respond to bitter, sweet, and umami compounds. Chem Senses 2006; 31:253-64. [PMID: 16436689 DOI: 10.1093/chemse/bjj027] [Citation(s) in RCA: 244] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Trpm5 is a calcium-activated cation channel expressed selectively in taste receptor cells. A previous study reported that mice with an internal deletion of Trpm5, lacking exons 15-19 encoding transmembrane segments 1-5, showed no taste-mediated responses to bitter, sweet, and umami compounds. We independently generated knockout mice null for Trpm5 protein expression due to deletion of Trpm5's promoter region and exons 1-4 (including the translation start site). We examined the taste-mediated responses of Trpm5 null mice and wild-type (WT) mice using three procedures: gustatory nerve recording [chorda tympani (CT) and glossopharyngeal (NG) nerves], initial lick responses, and 24-h two-bottle preference tests. With bitter compounds, the Trpm5 null mice showed reduced, but not abolished, avoidance (as indicated by licking responses and preference ratios higher than those of WT), a normal CT response, and a greatly diminished NG response. With sweet compounds, Trpm5 null mice showed no licking response, a diminished preference ratio, and absent or greatly reduced nerve responses. With umami compounds, Trpm5 null mice showed no licking response, a diminished preference ratio, a normal NG response, and a greatly diminished CT response. Our results demonstrate that the consequences of eliminating Trmp5 expression vary depending upon the taste quality and the lingual taste field examined. Thus, while Trpm5 is an important factor in many taste responses, its absence does not eliminate all taste responses. We conclude that Trpm5-dependent and Trpm5-independent pathways underlie bitter, sweet, and umami tastes.
Collapse
Affiliation(s)
- Sami Damak
- Department of Neuroscience, The Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Abstract
Embryonic stem (ES) cells are derived from preimplantation stage mouse embryos at the time when they have reached the blastocyst stage. It is at this point that the first steps of differentiation take place during mammalian embryonic development. The individual blastomeres now start to organize themselves into three distinct locations, each encompassing a different cell type: outside epithelial cells, trophectoderm; cells at the blastocele surface of the inner cell mass (ICM), the primitive endoderm; and inside cells of the ICM, the primitive ectoderm. ES cells originate from the third population, the primitive ectoderm, which is a transiently existing group of cells in the embryo. Primitive ectoderm cells diminish within a day as the embryo is entering into the next steps of differentiation. ES cells, however, while retaining the property of their origin in terms of developmental potential, also have the ability to self-renew. It is hence important to realize that ES cells do not exist in vivo; they should be regarded simply as tissue culture artifact. Nevertheless, these powerful cells have the potential to differentiate into all the cells of the embryo proper and postnatal animal. Furthermore, they retain the limitation of their origin through their inability to contribute to the trophectoderm lineage (the trophoblast of the placenta) and the lineages of the primitive endoderm, the visceral and parietal endoderm. Due to these unique features, we must admit that even if we regard ES cells as products of in vitro culture and should not compare them to true somatic stem cells found in the adult organism, they certainly offer us a fantastic tool for genetic, developmental, and disease studies.
Collapse
Affiliation(s)
- Andras Nagy
- Mount Sinai Hospital, Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada
| | | |
Collapse
|
183
|
Hövelmeyer N, Hao Z, Kranidioti K, Kassiotis G, Buch T, Frommer F, von Hoch L, Kramer D, Minichiello L, Kollias G, Lassmann H, Waisman A. Apoptosis of oligodendrocytes via Fas and TNF-R1 is a key event in the induction of experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2005; 175:5875-84. [PMID: 16237080 DOI: 10.4049/jimmunol.175.9.5875] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis, immunization with myelin Ags leads to demyelination and paralysis. To investigate which molecules are crucial for the pathogenesis of EAE, we specifically assessed the roles of the death receptors Fas and TNF-R1. Mice lacking Fas expression in oligodendrocytes (ODCs) were generated and crossed to TNF-R1-deficient mice. To achieve specific deletion of a loxP-flanked fas allele in ODCs, we generated a new insertion transgene, expressing the Cre recombinase specifically in ODCs. Fas inactivation alone as well as the complete absence of TNF-R1 protected mice partially from EAE induced by the immunization with myelin ODC glycoprotein. The double-deficient mice, however, showed almost no clinical signs of EAE after immunization. Histological analysis revealed that demyelination was suppressed in CNS tissue and that lymphocyte infiltration was notably reduced. We conclude that the death receptors Fas and TNF-R1 are major initiators of ODC apoptosis in EAE. Although only moderate reduction of lymphocyte infiltration into CNS tissue was observed, the absence of these receptors appears to confer protection from demyelination and development of clinical disease.
Collapse
Affiliation(s)
- Nadine Hövelmeyer
- Laboratory for Molecular Immunology, Institute for Genetics, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Martens S, Parvanova I, Zerrahn J, Griffiths G, Schell G, Reichmann G, Howard JC. Disruption of Toxoplasma gondii parasitophorous vacuoles by the mouse p47-resistance GTPases. PLoS Pathog 2005; 1:e24. [PMID: 16304607 PMCID: PMC1287907 DOI: 10.1371/journal.ppat.0010024] [Citation(s) in RCA: 286] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Accepted: 10/04/2005] [Indexed: 11/30/2022] Open
Abstract
The p47 GTPases are essential for interferon-γ-induced cell-autonomous immunity against the protozoan parasite, Toxoplasma gondii, in mice, but the mechanism of resistance is poorly understood. We show that the p47 GTPases, including IIGP1, accumulate at vacuoles containing T. gondii. The accumulation is GTP-dependent and requires live parasites. Vacuolar IIGP1 accumulations undergo a maturation-like process accompanied by vesiculation of the parasitophorous vacuole membrane. This culminates in disruption of the parasitophorous vacuole and finally of the parasite itself. Over-expression of IIGP1 leads to accelerated vacuolar disruption whereas a dominant negative form of IIGP1 interferes with interferon-γ-mediated killing of intracellular parasites. Targeted deletion of the IIGP1 gene results in partial loss of the IFN-γ-mediated T. gondii growth restriction in mouse astrocytes. Toxoplasma gondii is a small unicellular parasite infecting virtually every warm-blooded animal including humans. After infection, T. gondii does not stay in extracellular fluids such as the blood, but actively invades body cells. The parasite has developed elaborate mechanisms enabling it to form a so-called parasitophorous vacuole (PV) within the cell it invades. Within this vacuole the parasite multiplies until the host cell ruptures and the progeny are released into the extracellular space to infect further cells. Host cells have developed several special mechanisms to combat the parasite. In mice, these mechanisms include a protein family, the p47 GTPases, which are induced by immune-alert factors called interferons. This study begins to address how the mouse p47 GTPases function. The study shows that the p47 GTPases assemble on the PV very shortly after infection, apparently to form a “membrane attack complex.” Within an hour the PV membrane shows signs of damage, bulging into small out-foldings that separate from the membrane in small vesicles. Shortly afterward the PV membrane ruptures and the parasite deteriorates. The p47 GTPase have several properties in common with the dynamin GTPases, which deform cellular membranes, suggesting that the p47 GTPases function in a mechanistically similar manner.
Collapse
Affiliation(s)
- Sascha Martens
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Iana Parvanova
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Jens Zerrahn
- Max Planck Institute for Infection Biology, Berlin, Germany
| | | | - Gudrun Schell
- Institute for Medical Microbiology, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Gaby Reichmann
- Institute for Medical Microbiology, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Jonathan C Howard
- Institute for Genetics, University of Cologne, Cologne, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
185
|
Takeuchi T, Miyazaki T, Watanabe M, Mori H, Sakimura K, Mishina M. Control of synaptic connection by glutamate receptor delta2 in the adult cerebellum. J Neurosci 2005; 25:2146-56. [PMID: 15728855 PMCID: PMC6726062 DOI: 10.1523/jneurosci.4740-04.2005] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Precise topological matching of presynaptic and postsynaptic specializations is essential for efficient synaptic transmission. Furthermore, synaptic connections are subjected to rearrangements throughout life. Here we examined the role of glutamate receptor (GluR) delta2 in the adult brain by inducible and cerebellar Purkinje cell (PC)-specific gene targeting under the pure C57BL/6 genetic background. Concomitant with the decrease of postsynaptic GluRdelta2 proteins, presynaptic active zones shrank progressively and postsynaptic density (PSD) expanded, resulting in mismatching between presynaptic and postsynaptic specializations at parallel fiber-PC synapses. Furthermore, GluRdelta2 and PSD-93 proteins were concentrated at the contacted portion of mismatched synapses, whereas AMPA receptors were distributed in both the contacted and dissociated portions. When GluRdelta2 proteins were diminished, PC spines lost their synaptic contacts. We thus identified postsynaptic GluRdelta2 as a key regulator of the presynaptic active zone and PSD organization at parallel fiber-PC synapses in the adult brain.
Collapse
Affiliation(s)
- Tomonori Takeuchi
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, and Solution Oriented Research for Science and Technology, Japan Science and Technology Agency, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
186
|
Abstract
The development of transgenic mice expressing human DR and DQ major histocompatibility complex (MHC) class II molecules has been of value in studying the immunopathology of human MHC class II-associated autoimmune diseases such as rheumatoid arthritis, multiple sclerosis, insulin-dependent diabetes mellitus and celiac disease. Such mice have been used to identify the target antigens that are involved in the initiation of these diseases. Many of the mice develop aspects of the human diseases, either spontaneously or following immunization with the relevant antigen, thus providing an in vivo disease model, which may be used as a tool for further understanding the disease mechanisms and testing novel immunotherapies.
Collapse
Affiliation(s)
- J W Gregersen
- Department of Clinical Immunology, Aarhus University Hospital, Skejby Sygehus, N Aarhus, Denmark
| | | | | |
Collapse
|
187
|
Buch T, Heppner FL, Tertilt C, Heinen TJAJ, Kremer M, Wunderlich FT, Jung S, Waisman A. A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat Methods 2005; 2:419-26. [PMID: 15908920 DOI: 10.1038/nmeth762] [Citation(s) in RCA: 701] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Accepted: 04/18/2005] [Indexed: 12/12/2022]
Abstract
A new system for lineage ablation is based on transgenic expression of a diphtheria toxin receptor (DTR) in mouse cells and application of diphtheria toxin (DT). To streamline this approach, we generated Cre-inducible DTR transgenic mice (iDTR) in which Cre-mediated excision of a STOP cassette renders cells sensitive to DT. We tested the iDTR strain by crossing to the T cell- and B cell-specific CD4-Cre and CD19-Cre strains, respectively, and observed efficient ablation of T and B cells after exposure to DT. In MOGi-Cre/iDTR double transgenic mice expressing Cre recombinase in oligodendrocytes, we observed myelin loss after intraperitoneal DT injections. Thus, DT crosses the blood-brain barrier and promotes cell ablation in the central nervous system. Notably, we show that the developing DT-specific antibody response is weak and not neutralizing, and thus does not impede the efficacy of DT. Our results validate the use of iDTR mice as a tool for cell ablation in vivo.
Collapse
Affiliation(s)
- Thorsten Buch
- Laboratory for Molecular Immunology, Institute for Genetics, University of Cologne, D-50931 Cologne, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
188
|
Bennett CL, van Rijn E, Jung S, Inaba K, Steinman RM, Kapsenberg ML, Clausen BE. Inducible ablation of mouse Langerhans cells diminishes but fails to abrogate contact hypersensitivity. ACTA ACUST UNITED AC 2005; 169:569-76. [PMID: 15897263 PMCID: PMC2171694 DOI: 10.1083/jcb.200501071] [Citation(s) in RCA: 345] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Langerhans cells (LC) form a unique subset of dendritic cells (DC) in the epidermis but so far their in vivo functions in skin immunity and tolerance could not be determined, in particular in relation to dermal DC (dDC). Here, we exploit a novel diphtheria toxin (DT) receptor (DTR)/DT-based system to achieve inducible ablation of LC without affecting the skin environment. Within 24 h after intra-peritoneal injection of DT into Langerin-DTR mice LC are completely depleted from the epidermis and only begin to return 4 wk later. LC deletion occurs by apoptosis in the absence of inflammation and, in particular, the dDC compartment is not affected. In LC-depleted mice contact hypersensitivity (CHS) responses are significantly decreased, although ear swelling still occurs indicating that dDC can mediate CHS when necessary. Our results establish Langerin-DTR mice as a unique tool to study LC function in the steady state and to explore their relative importance compared with dDC in orchestrating skin immunity and tolerance.
Collapse
MESH Headings
- Animals
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- Cell Death/drug effects
- Cell Death/physiology
- Dermatitis, Contact/immunology
- Dermatitis, Contact/physiopathology
- Diphtheria Toxin/pharmacology
- Disease Models, Animal
- Green Fluorescent Proteins
- Heparin-binding EGF-like Growth Factor
- Immune Tolerance/immunology
- Intercellular Signaling Peptides and Proteins
- Langerhans Cells/cytology
- Langerhans Cells/drug effects
- Langerhans Cells/immunology
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Mannose-Binding Lectins/genetics
- Mannose-Binding Lectins/metabolism
- Mice
- Mice, Transgenic
- Receptors, Cell Surface/drug effects
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Skin/cytology
- Skin/immunology
Collapse
Affiliation(s)
- Clare L Bennett
- Department of Cell Biology and Histology, Academic Medical Center (AMC), University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | | | | | | | | | | | | |
Collapse
|
189
|
Wan YY, Flavell RA. Identifying Foxp3-expressing suppressor T cells with a bicistronic reporter. Proc Natl Acad Sci U S A 2005; 102:5126-31. [PMID: 15795373 PMCID: PMC556008 DOI: 10.1073/pnas.0501701102] [Citation(s) in RCA: 483] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Regulatory T cells are critical for maintaining self-tolerance and to negatively regulate immune responses. Foxp3 is a regulatory T cell-specific transcription factor that functions as the master regulator of the development and function of regulatory T cells. Here, we report the generation of a mouse model, in which a bicistronic reporter expressing a red fluorescent protein has been knocked into the endogenous Foxp3 locus. Using this mouse model, we assessed Foxp3 expression in various lymphocyte compartments and identified previously unreported Foxp3-expressing cells. In addition, we showed that de novo Foxp3 expression along with suppressive function were induced by TGF-beta in activated CD4 T cells in vitro. Finally, we demonstrated that non-Foxp3-expressing CD4 T cells could not be converted into Foxp3-expressing cells upon adoptive transfer into immunodeficient hosts. This Foxp3 bicistronic reporter knockin mouse model should greatly enhance the study of regulation and function of Foxp3-expressing regulatory T cells.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Base Sequence
- DNA/genetics
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Forkhead Transcription Factors
- Gene Expression
- Genes, Reporter
- In Vitro Techniques
- Luminescent Proteins/genetics
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Models, Animal
- Models, Immunological
- Recombinant Proteins/genetics
- Severe Combined Immunodeficiency/genetics
- Severe Combined Immunodeficiency/immunology
- Severe Combined Immunodeficiency/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Transforming Growth Factor beta/pharmacology
- Red Fluorescent Protein
Collapse
Affiliation(s)
- Yisong Y Wan
- Section of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
190
|
Grün K, Markova B, Böhmer FD, Berndt A, Kosmehl H, Leipner C. Elevated expression of PDGF-C in coxsackievirus B3-induced chronic myocarditis. Eur Heart J 2005; 26:728-39. [PMID: 15757958 DOI: 10.1093/eurheartj/ehi168] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Coxsackievirus B3 (CVB3) is a frequent cause of human chronic myocarditis and subsequent fibrosis, leading to dilated cardiomyopathy. The molecular processes underlying the development of fibrosis are poorly understood. Enhanced levels of platelet-derived growth factors (PDGFs), especially PDGF-C, have recently been linked with the development of different forms of fibrosis. Therefore, the expression of PDGF was analysed in hearts of CVB3-infected major histocompatability complex class II knockout mice. The latter were recently established as mouse model mimicking the chronic inflammation and fibrosis characteristic for this disease. METHODS AND RESULTS Expression of PDGF was analysed by reverse transcription-polymerase chain reaction, in situ hybridization, and immunohistochemistry. Hearts of C57BL/6 mice served as controls because infection of these animals leads to acute cardiac inflammation, but the hearts heal without signs of chronic inflammation. In uninfected hearts, basal expression of PDGF, notably PDGF-C, was detectable throughout the heart. The chronic inflammatory process was associated with elevated and sustained expression of all tested PDGF isoforms. Immunostaining and in situ hybridization analysis localized enhanced PDGF levels to areas with highest virus load and inflammatory infiltrations, adjacent to fibrotic areas. CONCLUSION PDGF may participate in fibrosis development in CVB3-induced myocarditis. Therefore, PDGF signalling may be considered a target for therapeutic interference.
Collapse
Affiliation(s)
- Katja Grün
- Institute of Virology and Antiviral Therapy, Klinikum, Friedrich Schiller University Jena, Hans-Knöll-Strasse 2, D-07745 Jena, Germany
| | | | | | | | | | | |
Collapse
|
191
|
Zhang C, Kitsberg D, Chy H, Zhou Q, Morrison JR. Transposon-mediated generation of targeting vectors for the production of gene knockouts. Nucleic Acids Res 2005; 33:e24. [PMID: 15699181 PMCID: PMC549422 DOI: 10.1093/nar/gni014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vectors used for gene targeting experiments usually consist of a selectable marker flanked by two regions of homology to the targeted gene. In a homologous recombination event, the selectable marker replaces an essential element of the target gene rendering it inactive. Other applications of gene targeting technology include gene replacement (knockins) and conditional vectors which allow for the generation of inducible or tissue-specific gene-targeting events. The assembly of gene-targeting vectors is generally a laborious process requiring considerable technical skill. The procedures presented here report the application of transposons as tools for the construction of targeting vectors. Two mini-Mu transposons were sequentially inserted by in vitro transposition at each side of the region targeted for deletion. One such transposon carries an antibiotic resistance marker suitable for selection in mammalian cells. A deletion is then generated between the two transposons either by LoxP-induced recombination or by restriction digestion followed by ligation. This deletion removes part of both transposons plus the targeted region in between, leaving a transposon carrying the selectable marker flanked by two arms which are homologous to the targeted gene. Targeting vectors constructed using these transposons were electroporated into embryonic stem cells and shown to be effective in gene-targeting events.
Collapse
Affiliation(s)
- Chunfang Zhang
- CopyRat Pty Ltd 27-31 Wright Street, Clayton, Victoria 3168, Australia.
| | | | | | | | | |
Collapse
|
192
|
Cheng J, Dutra A, Takesono A, Garrett-Beal L, Schwartzberg PL. Improved generation of C57BL/6J mouse embryonic stem cells in a defined serum-free media. Genesis 2005; 39:100-4. [PMID: 15170695 DOI: 10.1002/gene.20031] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
C57BL/6 is a well-characterized mouse strain that is used extensively for immunological and neurological research. The establishment of C57BL/6 ES cell lines has facilitated the study of gene-altered mice in a pure genetic background-however, relatively few such lines exist. Using a defined media supplement, knockout serum replacement (KSR) with knockout DMEM (KSR-KDMEM), we find that we can readily establish ES cell lines from blastocysts of C57BL/6J mice. Six lines were established, all of which were karyotypically normal and could be maintained in the undifferentiated state on mouse embryonic fibroblast (MEF) feeders. One line was further tested and found to be karyotypically stable and germline competent, both prior to manipulation and after gene targeting. For this cell line, efficiencies of cell cloning and chimera generation were greater when maintained in KSR-KDMEM. Our work suggests that the use of defined serum-free media may facilitate the generation of ES cells from inbred mouse strains.
Collapse
Affiliation(s)
- Jun Cheng
- Genetic Diseases Research Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
193
|
Liu ZQ, Bohatschek M, Pfeffer K, Bluethmann H, Raivich G. Major histocompatibility complex (MHC2+) perivascular macrophages in the axotomized facial motor nucleus are regulated by receptors for interferon-gamma (IFNgamma) and tumor necrosis factor (TNF). Neuroscience 2005; 131:283-92. [PMID: 15708473 DOI: 10.1016/j.neuroscience.2004.10.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2004] [Indexed: 11/26/2022]
Abstract
The major histocompatibility complex (MHC) glycoproteins, MHC1 and MHC2, play a key role in the presentation of antigen and the development of the immune response. In the current study we examined the regulation of the MHC2 in the mouse brain after facial axotomy. The normal facial motor nucleus showed very few slender and elongated MHC2+ cells. Transection of the facial nerve led to a gradual but strong upregulation in the number of MHC2+ cells, beginning at day 2 and reaching a maximum 14 days after axotomy, correlated with the induction of mRNA for tumor necrosis factor (TNF) alpha, interleukin (IL) 1beta and interferon-gamma (IFNgamma) and a peak in neuronal cell death. In almost all cases, MHC2 immunoreactivity was restricted to perivascular macrophages that colocalized with vascular basement membrane laminin and macrophage IBA1-immunoreactivity, with no immunoreactivity on phagocytic microglia, astrocytes or invading T-cells. Heterologous transplantation and systemic injection of endotoxin or IFNgamma did not affect this perivascular MHC2 immunoreactivity, and transgenic deletion of the IL1 receptor type I, or TNF receptor type 1, also had no effect. However, the deletion of IFNgamma receptor subunit 1 caused a significant increase, and that of TNF receptor type 2 a strong reduction in the number of MHC2+ macrophages, pointing to a counter-regulatory role of IFNgamma and TNFalpha in the immune surveillance of the injured nervous system.
Collapse
MESH Headings
- Animals
- Axotomy/methods
- Facial Nerve/metabolism
- Facial Nerve Injuries/genetics
- Facial Nerve Injuries/metabolism
- Genes, MHC Class II/physiology
- Macrophages/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Interferon/deficiency
- Receptors, Interferon/genetics
- Receptors, Interferon/physiology
- Receptors, Tumor Necrosis Factor/deficiency
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/physiology
- TNF Receptor-Associated Factor 1/deficiency
- TNF Receptor-Associated Factor 1/genetics
- TNF Receptor-Associated Factor 1/physiology
- TNF Receptor-Associated Factor 2/deficiency
- TNF Receptor-Associated Factor 2/genetics
- TNF Receptor-Associated Factor 2/physiology
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Z Q Liu
- Department of Neuromorphology, Max-Planck Institute for Neurobiology, Martinsried, Germany
| | | | | | | | | |
Collapse
|
194
|
Seizer P, Riedl P, Reimann J, Schirmbeck R. Different sources of ?help? facilitate the antibody response to hepatitis D virus ? antigen. J Mol Med (Berl) 2004; 83:225-34. [PMID: 15776288 DOI: 10.1007/s00109-004-0598-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Accepted: 09/02/2004] [Indexed: 12/18/2022]
Abstract
Repeated injections of hepatitis D antigen (HDAg) delivered either as a recombinant protein, or expressed from a DNA vaccine elicited no (or only very low) antibody responses in inbred mouse strains. Codelivery of oligonucleotides (ODN) with immune-stimulating sequences (ISS) with the protein antigen, or ISS in DNA vaccines (encoding HDAg) did not overcome the low intrinsic immunogenicity of this small viral antigen for B cells. In contrast, codelivery of immunogenic, heterologous proteins (either mixed to recombinant HDAg as recombinant proteins, or fused to HDAg sequences as chimeric antigens expressed from DNA vaccines) provided specific, CD4+ T cell-dependent "help" that supported efficient priming of antibody responses to HDAg. Chimeric proteins in which selected HDAg fragments were fused in frame with immunogenic, heterologous protein fragments produced by DNA vaccines allowed the mapping of antibody-binding HDAg domains of the viral antigen. The described approach thus facilitates induction of serum antibody responses against native viral antigens with low immunogenicity for B cells.
Collapse
Affiliation(s)
- Peter Seizer
- Institute for Medical Microbiology and Immunology, University of Ulm, Albert Einstein Allee 11, 89081, Ulm, Germany
| | | | | | | |
Collapse
|
195
|
Seong E, Wainer BH, Hughes ED, Saunders TL, Burmeister M, Faundez V. Genetic analysis of the neuronal and ubiquitous AP-3 adaptor complexes reveals divergent functions in brain. Mol Biol Cell 2004; 16:128-40. [PMID: 15537701 PMCID: PMC539158 DOI: 10.1091/mbc.e04-10-0892] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Neurons express adaptor (AP)-3 complexes assembled with either ubiquitous (beta3A) or neuronal-specific (beta3B) beta3 isoforms. However, it is unknown whether these complexes indeed perform distinct functions in neuronal tissue. Here, we explore this hypothesis by using genetically engineered mouse models lacking either beta3A- or beta3B-containing AP-3 complexes. Somatic and neurological phenotypes were specifically associated with the ubiquitous and neuronal adaptor deficiencies, respectively. At the cellular level, AP-3 isoforms were localized to distinct neuronal domains. beta3B-containing AP-3 complexes were preferentially targeted to neuronal processes. Consistently, beta3B deficiency compromised synaptic zinc stores assessed by Timm's staining and the synaptic vesicle targeting of membrane proteins involved in zinc uptake (ZnT3 and ClC-3). Surprisingly, despite the lack of neurological symptoms, beta3A-deficient mouse brain possessed significantly increased synaptic zinc stores and synaptic vesicle content of ZnT3 and ClC-3. These observations indicate that the functions of beta3A- and beta3B-containing complexes are distinct and divergent. Our results suggest that concerted nonredundant functions of neuronal and ubiquitous AP-3 provide a mechanism to control the levels of selected membrane proteins in synaptic vesicles.
Collapse
Affiliation(s)
- E Seong
- Mental Health Research Institute and Neuroscience Program, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
196
|
Krebs DL, Metcalf D, Merson TD, Voss AK, Thomas T, Zhang JG, Rakar S, O'bryan MK, Willson TA, Viney EM, Mielke LA, Nicola NA, Hilton DJ, Alexander WS. Development of hydrocephalus in mice lacking SOCS7. Proc Natl Acad Sci U S A 2004; 101:15446-51. [PMID: 15494444 PMCID: PMC524464 DOI: 10.1073/pnas.0406870101] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SOCS7 is a member of the suppressor of cytokine signaling (SOCS) family of proteins (SOCS1-SOCS7 and CIS). SOCS proteins are composed of an N-terminal domain of variable length, a central Src homology 2 domain, and a C-terminal SOCS box. Biochemical and genetic studies have revealed that SOCS1, SOCS2, SOCS3, and CIS play an important role in the termination of cytokine and growth factor signaling. However, the biological actions of other SOCS proteins are less well defined. To investigate the physiological role of SOCS7, we have used gene targeting to generate mice that lack expression of the Socs7 gene. Socs7-/- mice were born in expected numbers, were fertile, and did not exhibit defects in hematopoiesis or circulating glucose or insulin concentrations. However, Socs7-/- mice were 7-10% smaller than their wild-type littermates, and within 15 weeks of age approximately 50% of the Socs7-/- mice died as a result of hydrocephalus that was characterized by cranial distortion, dilation of the ventricular system, reduced thickness of the cerebral cortex, and disorganization of the subcommissural organ. In situ hybridization studies revealed prominent expression of Socs7 in the brain, suggestive of an important functional role of SOCS7 in this organ.
Collapse
Affiliation(s)
- Danielle L Krebs
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Sasaki Y, Casola S, Kutok JL, Rajewsky K, Schmidt-Supprian M. TNF family member B cell-activating factor (BAFF) receptor-dependent and -independent roles for BAFF in B cell physiology. THE JOURNAL OF IMMUNOLOGY 2004; 173:2245-52. [PMID: 15294936 DOI: 10.4049/jimmunol.173.4.2245] [Citation(s) in RCA: 298] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The cytokine TNF family member B cell-activating factor (BAFF; also termed BLyS) is essential for B cell generation and maintenance. Three receptors have been identified that bind to BAFF: transmembrane activator, calcium modulator, and cyclophilin ligand interactor (TACI); B cell maturation Ag (BCMA); and BAFF-R. Recently, it was shown that A/WySnJ mice, which contain a dramatically reduced peripheral B cell compartment due to decreased B cell life span, express a mutant BAFF-R. This finding, together with normal or enhanced B cell generation in mice deficient for BCMA or TACI, respectively, suggested that the interaction of BAFF with BAFF-R triggers signals essential for the generation and maintenance of mature B cells. However, B cells in mice deficient for BAFF differ phenotypically and functionally from A/WySnJ B cells. Residual signaling through the mutant BAFF-R could account for these differences. Alternatively, dominant-negative interference by the mutant receptor could lead to an overestimation of the importance of BAFF-R. To resolve this issue, we generated BAFF-R-null mice. Baff-r(-/-) mice display strongly reduced late transitional and follicular B cell numbers and are essentially devoid of marginal zone B cells. Overexpression of Bcl-2 rescues mature B cell development in Baff-r(-/-) mice, suggesting that BAFF-R mediates a survival signal. CD21 and CD23 surface expression are reduced on mature Baff-r(-/-) B cells, but not to the same extent as on mature B cells in BAFF-deficient mice. In addition, we found that Baff-r(-/-) mice mount significant, but reduced, Ag-specific Ab responses and are able to form spontaneous germinal centers in mesenteric lymph nodes. The reduction in Ab titers correlates with the reduced B cell numbers in the mutant mice.
Collapse
Affiliation(s)
- Yoshiteru Sasaki
- CBR Institute for Biomedical Research, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
198
|
Koonce CH, Bikoff EK. Dissecting MHC class II export, B cell maturation, and DM stability defects in invariant chain mutant mice. THE JOURNAL OF IMMUNOLOGY 2004; 173:3271-80. [PMID: 15322189 DOI: 10.4049/jimmunol.173.5.3271] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Invariant (Ii) chain loss causes defective class II export, B cell maturation, and reduced DM stability. In this study, we compare Ii chain and class II mutant mouse phenotypes to dissect these disturbances. The present results demonstrate that ER retention of alphabeta complexes, and not beta-chain aggregates, disrupts B cell development. In contrast, we fail to detect class II aggregates in Ii chain mutant thymi. Ii chain loss in NOD mice leads to defective class II export and formation of alphabeta aggregates, but in this background, downstream signals are misregulated and mature B cells develop normally. Finally, Ii chain mutant strains all display reduced levels of DM, but mice expressing either p31 or p41 alone, and class II single chain mutants, are indistinguishable from wild type. We conclude that Ii chain contributions as a DM chaperone are independent of its role during class II export. This Ii chain/DM partnership favors class II peptide loading via conventional pathway(s).
Collapse
Affiliation(s)
- Chad H Koonce
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
199
|
Gatto D, Ruedl C, Odermatt B, Bachmann MF. Rapid Response of Marginal Zone B Cells to Viral Particles. THE JOURNAL OF IMMUNOLOGY 2004; 173:4308-16. [PMID: 15383559 DOI: 10.4049/jimmunol.173.7.4308] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Marginal zone (MZ) B cells are thought to be responsible for the first wave of Abs against bacterial Ags. In this study, we assessed the in vivo response of MZ B cells in mice immunized with viral particles derived from the RNA phage Qbeta. We found that both follicular (FO) and MZ B cells responded to immunization with viral particles. MZ B cells responded with slightly faster kinetics, but numerically, FO B cells dominated the response. B1 B cells responded similarly to MZ B cells. Both MZ and FO B cells underwent isotype switching, with MZ B cells again exhibiting faster kinetics. In fact, almost all Qbeta-specific MZ B cells expressed surface IgG by day 5. Histological analysis demonstrated that a population of activated B cells remain associated with the MZ, probably due to the elevated integrin levels expressed by these cells. Thus, both MZ and FO B cells respond with rapid proliferation to viral infection and both populations undergo isotype switching, but MZ B cells remain in the MZ and may be responsible for local Ab production, opsonizing pathogens entering the spleen.
Collapse
|
200
|
Böse J, Gruber AD, Helming L, Schiebe S, Wegener I, Hafner M, Beales M, Köntgen F, Lengeling A. The phosphatidylserine receptor has essential functions during embryogenesis but not in apoptotic cell removal. J Biol 2004; 3:15. [PMID: 15345036 PMCID: PMC549712 DOI: 10.1186/jbiol10] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Revised: 07/16/2004] [Accepted: 07/21/2004] [Indexed: 11/10/2022] Open
Abstract
Background Phagocytosis of apoptotic cells is fundamental to animal development, immune function and cellular homeostasis. The phosphatidylserine receptor (Ptdsr) on phagocytes has been implicated in the recognition and engulfment of apoptotic cells and in anti-inflammatory signaling. To determine the biological function of the phosphatidylserine receptor in vivo, we inactivated the Ptdsr gene in the mouse. Results Ablation of Ptdsr function in mice causes perinatal lethality, growth retardation and a delay in terminal differentiation of the kidney, intestine, liver and lungs during embryogenesis. Moreover, eye development can be severely disturbed, ranging from defects in retinal differentiation to complete unilateral or bilateral absence of eyes. Ptdsr -/- mice with anophthalmia develop novel lesions, with induction of ectopic retinal-pigmented epithelium in nasal cavities. A comprehensive investigation of apoptotic cell clearance in vivo and in vitro demonstrated that engulfment of apoptotic cells was normal in Ptdsr knockout mice, but Ptdsr-deficient macrophages were impaired in pro- and anti-inflammatory cytokine signaling after stimulation with apoptotic cells or with lipopolysaccharide. Conclusion Ptdsr is essential for the development and differentiation of multiple organs during embryogenesis but not for apoptotic cell removal. Ptdsr may thus have a novel, unexpected developmental function as an important differentiation-promoting gene. Moreover, Ptdsr is not required for apoptotic cell clearance by macrophages but seems to be necessary for the regulation of macrophage cytokine responses. These results clearly contradict the current view that the phosphatidylserine receptor primarily functions in apoptotic cell clearance.
Collapse
Affiliation(s)
- Jens Böse
- Junior Research Group Infection Genetics, German Research Center for Biotechnology (GBF), Mascheroder Weg 1, 38124 Braunschweig, Germany
| | - Achim D Gruber
- Department of Pathology, School of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Laura Helming
- Junior Research Group Infection Genetics, German Research Center for Biotechnology (GBF), Mascheroder Weg 1, 38124 Braunschweig, Germany
| | - Stefanie Schiebe
- Junior Research Group Infection Genetics, German Research Center for Biotechnology (GBF), Mascheroder Weg 1, 38124 Braunschweig, Germany
| | - Ivonne Wegener
- Junior Research Group Infection Genetics, German Research Center for Biotechnology (GBF), Mascheroder Weg 1, 38124 Braunschweig, Germany
| | - Martin Hafner
- Department of Experimental Immunology, German Research Center for Biotechnology (GBF), Mascheroder Weg 1, 38124 Braunschweig, Germany
| | | | | | - Andreas Lengeling
- Junior Research Group Infection Genetics, German Research Center for Biotechnology (GBF), Mascheroder Weg 1, 38124 Braunschweig, Germany
| |
Collapse
|