151
|
Yang CQ, Fang X, Wu XM, Mao YB, Wang LJ, Chen XY. Transcriptional regulation of plant secondary metabolism. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:703-12. [PMID: 22947222 DOI: 10.1111/j.1744-7909.2012.01161.x] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant secondary metabolites play critical roles in plant-environment interactions. They are synthesized in different organs or tissues at particular developmental stages, and in response to various environmental stimuli, both biotic and abiotic. Accordingly, corresponding genes are regulated at the transcriptional level by multiple transcription factors. Several families of transcription factors have been identified to participate in controlling the biosynthesis and accumulation of secondary metabolites. These regulators integrate internal (often developmental) and external signals, bind to corresponding cis-elements--which are often in the promoter regions--to activate or repress the expression of enzyme-coding genes, and some of them interact with other transcription factors to form a complex. In this review, we summarize recent research in these areas, with an emphasis on newly-identified transcription factors and their functions in metabolism regulation.
Collapse
Affiliation(s)
- Chang-Qing Yang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
152
|
Azuma A, Yakushiji H, Koshita Y, Kobayashi S. Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. PLANTA 2012; 236:1067-80. [PMID: 22569920 DOI: 10.1007/s00425-012-1650-x] [Citation(s) in RCA: 237] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/06/2012] [Indexed: 05/21/2023]
Abstract
Temperature and light are important environmental factors that affect flavonoid biosynthesis in grape berry skin. However, the interrelationships between temperature and light effects on flavonoid biosynthesis have not been fully elucidated at the molecular level. Here, we investigated the effects of temperature and light conditions on the biosynthesis of flavonoids (anthocyanins and flavonols) and the expression levels of related genes in an in vitro environmental experiment using detached grape berries. Sufficient anthocyanin accumulation in the grape skin was observed under a low temperature (15 °C) plus light treatment, whereas high temperature (35 °C) or dark treatment severely suppressed anthocyanin accumulation. This indicates that the accumulation of anthocyanins is dependent on both low temperature and light. qRT-PCR analysis showed that the responses of three MYB-related genes (VlMYBA1-3, VlMYBA1-2, and VlMYBA2) to temperature and light differed greatly even though the products of all three genes had the ability to regulate anthocyanin biosynthesis pathway genes. Furthermore, the expression levels of other MYB-related genes and many flavonoid biosynthesis pathway genes were regulated independently by temperature and light. We also found that temperature and light conditions affected the anthocyanin composition in the skin through the regulation of flavonoid biosynthesis pathway genes. Our results suggest that low temperature and light have a synergistic effect on the expression of genes in the flavonoid biosynthesis pathway. These findings provide new information about the relationships between environmental factors and flavonoid accumulation in grape berry skin.
Collapse
Affiliation(s)
- Akifumi Azuma
- Grape and Persimmon Research Station, National Institute of Fruit Tree Science, National Agriculture and Food Research Organization, NARO, Akitsu 301-2, Higashi Hiroshima, Hiroshima 739-2494, Japan.
| | | | | | | |
Collapse
|
153
|
Cardoso S, Lau W, Eiras Dias J, Fevereiro P, Maniatis N. A candidate-gene association study for berry colour and anthocyanin content in Vitis vinifera L. PLoS One 2012; 7:e46021. [PMID: 23029369 PMCID: PMC3461038 DOI: 10.1371/journal.pone.0046021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 08/27/2012] [Indexed: 01/28/2023] Open
Abstract
Anthocyanin content is a trait of major interest in Vitis vinifera L. These compounds affect grape and wine quality, and have beneficial effects on human health. A candidate-gene approach was used to identify genetic variants associated with anthocyanin content in grape berries. A total of 445 polymorphisms were identified in 5 genes encoding transcription factors and 10 genes involved in either the biosynthetic pathway or transport of anthocyanins. A total of 124 SNPs were selected to examine association with a wide range of phenotypes based on RP-HPLC analysis and visual characterization. The phenotypes were total skin anthocyanin (TSA) concentration but also specific types of anthocyanins and relative abundance. The visual assessment was based on OIV (Organisation Internationale de la Vigne et du Vin) descriptors for berry and skin colour. The genes encoding the transcription factors MYB11, MYBCC and MYC(B) were significantly associated with TSA concentration. UFGT and MRP were associated with several different types of anthocyanins. Skin and pulp colour were associated with nine genes (MYB11, MYBCC, MYC(B), UFGT, MRP, DFR, LDOX, CHI and GST). Pulp colour was associated with a similar group of 11 genes (MYB11, MYBCC, MYC(B), MYC(A), UFGT, MRP, GST, DFR, LDOX, CHI and CHS(A)). Statistical interactions were observed between SNPs within the transcription factors MYB11, MYBCC and MYC(B). SNPs within LDOX interacted with MYB11 and MYC(B), while SNPs within CHI interacted with MYB11 only. Together, these findings suggest the involvement of these genes in anthocyanin content and on the regulation of anthocyanin biosynthesis. This work forms a benchmark for replication and functional studies.
Collapse
Affiliation(s)
- Silvana Cardoso
- Laboratory of Plant Cell Biotechnology, Instituto de Tecnologia Química e Biológica, Oeiras, Portugal.
| | | | | | | | | |
Collapse
|
154
|
Cáceres A, Peña-Neira A, Galvez A, Obreque-Slier E, López-Solís R, Canals JM. Phenolic compositions of grapes and wines from cultivar cAbernet Sauvignon produced in Chile and their relationship to commercial value. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:8694-8702. [PMID: 22860632 DOI: 10.1021/jf301374t] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The phenolic composition of wine depends on, among other factors, the grapes used to make it. In this sense, knowledge of the chemical composition of grapes and its association with the resulting wines is an important tool to determine if there is a relationship between the phenolic composition of grapes and the price that these wines obtain in the market. For this purpose, grape skins and seeds from the cultivar Cabernet Sauvignon from the central region of Chile, in 2009 and 2010 vintages from two ripening points, were subjected to chemical and phenolic analyses, as were the wines made from these grapes. Grapes and the corresponding wines from three retail price wine categories, U.S. $6-8, U.S. $28-30, and U.S. $150-160, were evaluated. No differences were found across the price categories in the chemical analysis of grapes. Berry skins and wines from the higher price categories presented a higher concentration only of total tannins, and the differences in their concentrations were only among the different fractions of proanthocyanidins in the skins, seeds, and wines; there were no differences in their proportions. A seasonal effect influenced the concentrations of certain compounds in grapes and led to a decrease in the concentration of total phenols, total tannins, and total anthocyanins between sampling dates as harvesting moved toward the common commercial grape harvest in Chilean viticulture.
Collapse
Affiliation(s)
- Alejandro Cáceres
- Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
155
|
Kotseridis Y, Georgiadou A, Tikos P, Kallithraka S, Koundouras S. Effects of severity of post-flowering leaf removal on berry growth and composition of three red Vitis vinifera L. cultivars grown under semiarid conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:6000-6010. [PMID: 22630367 DOI: 10.1021/jf300605j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The effects of the severity of post-flowering leaf removal on the growth and phenolic composition of berry skin and seeds were studied in three Vitis vinifera L. genotypes over two consecutive seasons, 2007 and 2008. The study was conducted in a commercial vertical shoot positioned (VSP)-trained nonirrigated vineyard of northern Greece, planted with cultivars Merlot, Cabernet Sauvignon, and Sangiovese. Three different severities of leaf removal in the fruit zone were applied manually at berry set: nondefoliated (ND), removal of the lateral shoots of the first six basal nodes (LR), and full removal of the total leaf area (main leaves and lateral shoots) of the first six basal nodes (FR). Grape samples were obtained at commercial harvest. Leaf removal decreased yield per vine and cluster weight in Merlot and Sangiovese. Cluster compactness was reduced with the severity of defoliation only in Merlot, due to a decrease in berry number per cluster; berry fresh weight was unaffected in both cultivars. On the contrary, in Cabernet Sauvignon, yield was unaffected but berry size was restrained by leaf removal. Skin and seed mass followed variations in berry mass (except for seed mass in Sangiovese). Fruit zone leaf removal did not affect must soluble solids and increased titratable acidity only in Merlot. Defoliation increased skin anthocyanins in Merlot and Cabernet Sauvignon in the order FR > LR > ND but significantly reduced seed flavan-3-ols mainly as a result of the reduction in catechin and epicatechin amount. For these varieties, FR had lower seed flavan-3-ols than ND in both varieties, whereas LR had intermediate values. However, in Sangiovese, the highest seed phenolic content was recorded in LR. The results showed that post-flowering leaf removal improved the overall berry composition in Merlot and Cabernet Sauvignon but had limited effect in Sangiovese.
Collapse
Affiliation(s)
- Yorgos Kotseridis
- Department of Food Science and Technology, Agricultural University of Athens , 75 Iera Odos, 11855 Athens, Greece
| | | | | | | | | |
Collapse
|
156
|
Koyama K, Ikeda H, Poudel PR, Goto-Yamamoto N. Light quality affects flavonoid biosynthesis in young berries of Cabernet Sauvignon grape. PHYTOCHEMISTRY 2012; 78:54-64. [PMID: 22455871 DOI: 10.1016/j.phytochem.2012.02.026] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/05/2012] [Accepted: 02/29/2012] [Indexed: 05/20/2023]
Abstract
Biosynthesis of phenolic compounds is known to be sensitive to light environments, which reflects the possible role of these compounds for photoprotection in plants. Herein, the effects of UV and visible light on biosynthesis of flavonoids was investigated, i.e., proanthocyanidins (PAs) and flavonols, in young berry skins of a red-wine grape, Vitis vinifera cv. Cabernet Sauvignon. Shading with light-proof boxes from the flowering stage until 49 days after treatment (DAT) partially decreased PA concentrations, and completely decreased flavonol concentrations in the berry skins. Shading decreased the transcript abundance of a flavonol-related gene more remarkably than those of PA-related genes. In addition, light exclusion influenced the composition of PAs, such as the decrease in the proportion of trihydroxylated subunits and the mean degree of polymerization (mDP) within PAs. However, solar UV exclusion did not affect the concentration and composition of PAs, whereas this exclusion remarkably decreased the flavonol concentration. Consistently, UV exclusion did not influence the transcript levels of PA-related genes, whereas it dramatically decreased that of flavonol-related genes. These findings indicated a different light regulation of the biosynthesis of these flavonoids in young berry skins of wine grape. Visible light primarily induces biosynthesis of PAs and affects their composition, whereas UV light specifically induces biosynthesis of flavonols. Distinct roles of members of a MYB transcription factor family for light regulation of flavonoid biosynthesis were proposed.
Collapse
Affiliation(s)
- Kazuya Koyama
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan.
| | | | | | | |
Collapse
|
157
|
Cohen SD, Tarara JM, Gambetta GA, Matthews MA, Kennedy JA. Impact of diurnal temperature variation on grape berry development, proanthocyanidin accumulation, and the expression of flavonoid pathway genes. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2655-65. [PMID: 22268158 PMCID: PMC3346226 DOI: 10.1093/jxb/err449] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 12/12/2011] [Accepted: 12/15/2011] [Indexed: 05/20/2023]
Abstract
Little is known about the impact of temperature on proanthocyanidin (PA) accumulation in grape skins, despite its significance in berry composition and wine quality. Field-grown grapes (cv. Merlot) were cooled during the day or heated at night by +/-8 °C, from fruit set to véraison in three seasons, to determine the effect of temperature on PA accumulation. Total PA content per berry varied only in one year, when PA content was highest in heated berries (1.46 mg berry(-1)) and lowest in cooled berries (0.97 mg berry(-1)). In two years, cooling berries resulted in a significant increase in the proportion of (-)-epigallocatechin as an extension subunit. In the third year, rates of berry development, PA accumulation, and the expression levels of several genes involved in flavonoid biosynthesis were assessed. Heating and cooling berries altered the initial rates of PA accumulation, which was correlated strongly with the expression of core genes in the flavonoid pathway. Both heating and cooling altered the rate of berry growth and coloration, and the expression of several structural genes within the flavonoid pathway.
Collapse
Affiliation(s)
- Seth D Cohen
- Department of Food Science and Technology, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | |
Collapse
|
158
|
Akagi T, Katayama-Ikegami A, Kobayashi S, Sato A, Kono A, Yonemori K. Seasonal abscisic acid signal and a basic leucine zipper transcription factor, DkbZIP5, regulate proanthocyanidin biosynthesis in persimmon fruit. PLANT PHYSIOLOGY 2012; 158:1089-102. [PMID: 22190340 PMCID: PMC3271745 DOI: 10.1104/pp.111.191205] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Proanthocyanidins (PAs) are secondary metabolites that contribute to plant protection and crop quality. Persimmon (Diospyros kaki) has a unique characteristic of accumulating large amounts of PAs, particularly in its fruit. Normal astringent-type and mutant nonastringent-type fruits show different PA accumulation patterns depending on the seasonal expression patterns of DkMyb4, which is a Myb transcription factor (TF) regulating many PA pathway genes in persimmon. In this study, attempts were made to identify the factors involved in DkMyb4 expression and the resultant PA accumulation in persimmon fruit. Treatment with abscisic acid (ABA) and an ABA biosynthesis inhibitor resulted in differential changes in the expression patterns of DkMyb4 and PA biosynthesis in astringent-type and nonastringent-type fruits depending on the development stage. To obtain an ABA-signaling TF, we isolated a full-length basic leucine zipper (bZIP) TF, DkbZIP5, which is highly expressed in persimmon fruit. We also showed that ectopic DkbZIP5 overexpression in persimmon calluses induced the up-regulation of DkMyb4 and the resultant PA biosynthesis. In addition, a detailed molecular characterization using the electrophoretic mobility shift assay and transient reporter assay indicated that DkbZIP5 recognized ABA-responsive elements in the promoter region of DkMyb4 and acted as a direct regulator of DkMyb4 in an ABA-dependent manner. These results suggest that ABA signals may be involved in PA biosynthesis in persimmon fruit via DkMyb4 activation by DkbZIP5.
Collapse
|
159
|
Tillett RL, Wheatley MD, Tattersall EA, Schlauch KA, Cramer GR, Cushman JC. The Vitis vinifera C-repeat binding protein 4 (VvCBF4) transcriptional factor enhances freezing tolerance in wine grape. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:105-24. [PMID: 21914113 PMCID: PMC4357522 DOI: 10.1111/j.1467-7652.2011.00648.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Chilling and freezing can reduce significantly vine survival and fruit set in Vitis vinifera wine grape. To overcome such production losses, a recently identified grapevine C-repeat binding factor (CBF) gene, VvCBF4, was overexpressed in grape vine cv. 'Freedom' and found to improve freezing survival and reduced freezing-induced electrolyte leakage by up to 2 °C in non-cold-acclimated vines. In addition, overexpression of this transgene caused a reduced growth phenotype similar to that observed for CBF overexpression in Arabidopsis and other species. Both freezing tolerance and reduced growth phenotypes were manifested in a transgene dose-dependent manner. To understand the mechanistic basis of VvCBF4 transgene action, one transgenic line (9-12) was genotyped using microarray-based mRNA expression profiling. Forty-seven and 12 genes were identified in unstressed transgenic shoots with either a >1.5-fold increase or decrease in mRNA abundance, respectively. Comparison of mRNA changes with characterized CBF regulons in woody and herbaceous species revealed partial overlaps, suggesting that CBF-mediated cold acclimation responses are widely conserved. Putative VvCBF4-regulon targets included genes with functions in cell wall structure, lipid metabolism, epicuticular wax formation and stress-responses suggesting that the observed cold tolerance and dwarf phenotypes are the result of a complex network of diverse functional determinants.
Collapse
Affiliation(s)
- Richard L. Tillett
- Department of Biochemistry and Molecular Biology, University of Nevada, Mail Stop 330, Reno, NV 89557-0330, USA
| | - Matthew D. Wheatley
- Department of Biochemistry and Molecular Biology, University of Nevada, Mail Stop 330, Reno, NV 89557-0330, USA
| | - Elizabeth A.R. Tattersall
- Department of Biochemistry and Molecular Biology, University of Nevada, Mail Stop 330, Reno, NV 89557-0330, USA
| | - Karen A. Schlauch
- Department of Biochemistry and Molecular Biology, University of Nevada, Mail Stop 330, Reno, NV 89557-0330, USA
| | - Grant R. Cramer
- Department of Biochemistry and Molecular Biology, University of Nevada, Mail Stop 330, Reno, NV 89557-0330, USA
| | - John C. Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Mail Stop 330, Reno, NV 89557-0330, USA
| |
Collapse
|
160
|
Raffo MD, Ponce NMA, Sozzi GO, Vicente AR, Stortz CA. Compositional changes in 'Bartlett' pear ( Pyrus communis L.) cell wall polysaccharides as affected by sunlight conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:12155-62. [PMID: 21980919 DOI: 10.1021/jf203950d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Preharvest conditions can have a great impact on fruit quality attributes and postharvest responses. Firmness is an important quality attribute in pear, and excessive softening increases susceptibility to bruising and decay, thus limiting fruit postharvest life. Textural characteristics of fruits are determined at least in part by cell wall structure and disassembly. Few studies have analyzed the influence of fruit preharvest environment in softening, cell wall composition, and degradation. In the current work 'Bartlett' pears grown either facing the sun (S) or in the shade (H) were harvested and stored for 13 days at 20 °C. An evaluation of fruit soluble solids, acidity, color, starch degradation, firmness, cell wall yield, pectin and matrix glycan solubilization, depolymerization, and monosaccharide composition was carried out. Sun-exposed pears showed more advanced color development and similar levels of starch degradation, sugars, and acids than shaded fruit. Sunlight-grown pears were at harvest firmer than shade-grown pears. Both fruit groups softened during storage at 20 °C, but even after ripening, sun-exposed pears remained firmer. Sunlight exposure did not have a great impact on pectin molecular weight. Instead, at harvest a higher proportion of water-solubilized uronic acids and alkali-solubilized neutral sugars and a larger mean molecular size of tightly bound glycans was found in sun-exposed pears. During ripening cell wall catabolism took place in both sun- and shade-grown pears, but pectin solubilization was clearly delayed in sun-exposed fruit. This was associated with decreased removal of RG I-arabinan side chains rather than with reduced depolymerization.
Collapse
Affiliation(s)
- María D Raffo
- Instituto Nacional de Tecnología Agropecuaria, EEA Alto Valle de Río Negro, Ruta Nac 22 Km 1190, 8332 Allen, Argentina
| | | | | | | | | |
Collapse
|
161
|
Galbiati M, Matus JT, Francia P, Rusconi F, Cañón P, Medina C, Conti L, Cominelli E, Tonelli C, Arce-Johnson P. The grapevine guard cell-related VvMYB60 transcription factor is involved in the regulation of stomatal activity and is differentially expressed in response to ABA and osmotic stress. BMC PLANT BIOLOGY 2011; 11:142. [PMID: 22018045 PMCID: PMC3206852 DOI: 10.1186/1471-2229-11-142] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/21/2011] [Indexed: 05/18/2023]
Abstract
BACKGROUND Under drought, plants accumulate the signaling hormone abscisic acid (ABA), which induces the rapid closure of stomatal pores to prevent water loss. This event is trigged by a series of signals produced inside guard cells which finally reduce their turgor. Many of these events are tightly regulated at the transcriptional level, including the control exerted by MYB proteins. In a previous study, while identifying the grapevine R2R3 MYB family, two closely related genes, VvMYB30 and VvMYB60 were found with high similarity to AtMYB60, an Arabidopsis guard cell-related drought responsive gene. RESULTS Promoter-GUS transcriptional fusion assays showed that expression of VvMYB60 was restricted to stomatal guard cells and was attenuated in response to ABA. Unlike VvMYB30, VvMYB60 was able to complement the loss-of-function atmyb60-1 mutant, indicating that VvMYB60 is the only true ortholog of AtMYB60 in the grape genome. In addition, VvMYB60 was differentially regulated during development of grape organs and in response to ABA and drought-related stress conditions. CONCLUSIONS These results show that VvMYB60 modulates physiological responses in guard cells, leading to the possibility of engineering stomatal conductance in grapevine, reducing water loss and helping this species to tolerate drought under extreme climatic conditions.
Collapse
Affiliation(s)
- Massimo Galbiati
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
- Fondazione Filarete, Viale Ortles 22/4, 20139, Milano, Italy
| | - José Tomás Matus
- Pontificia Universidad Católica de Chile, Departamento de Genética Molecular y Microbiología. Alameda 340. Santiago, Chile
- Centre for Research in Agricultural Genomics (CRAG), 08193 Barcelona, Spain
| | - Priscilla Francia
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Fabio Rusconi
- Fondazione Filarete, Viale Ortles 22/4, 20139, Milano, Italy
| | - Paola Cañón
- Pontificia Universidad Católica de Chile, Departamento de Genética Molecular y Microbiología. Alameda 340. Santiago, Chile
| | - Consuelo Medina
- Pontificia Universidad Católica de Chile, Departamento de Genética Molecular y Microbiología. Alameda 340. Santiago, Chile
| | - Lucio Conti
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
- Fondazione Filarete, Viale Ortles 22/4, 20139, Milano, Italy
| | - Eleonora Cominelli
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
- Istituto di Biologia e Biotecnologia Agraria, CNR; Milano, Italy
| | - Chiara Tonelli
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Patricio Arce-Johnson
- Pontificia Universidad Católica de Chile, Departamento de Genética Molecular y Microbiología. Alameda 340. Santiago, Chile
| |
Collapse
|
162
|
Vega A, Gutiérrez RA, Peña-Neira A, Cramer GR, Arce-Johnson P. Compatible GLRaV-3 viral infections affect berry ripening decreasing sugar accumulation and anthocyanin biosynthesis in Vitis vinifera. PLANT MOLECULAR BIOLOGY 2011; 77:261-74. [PMID: 21786204 DOI: 10.1007/s11103-011-9807-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 07/06/2011] [Indexed: 05/21/2023]
Abstract
Virus infections in grapevine cause important economic losses and affect fruit quality worldwide. Although the phenotypic symptoms associated to viral infections have been described, the molecular plant response triggered by virus infection is still poorly understood in Vitis vinifera. As a first step to understand the fruit changes and mechanisms involved in the compatible grapevine-virus interaction, we analyzed the berry transcriptome in two stages of development in the red wine cultivar Cabernet Sauvignon infected with Grapevine leaf-roll-associated virus-3 (GLRaV-3). Analysis of global gene expression patterns indicate incomplete berry maturation in infected berries as compared to uninfected fruit suggesting viral infection interrupts the normal berry maturation process. Genes with altered expression in berries harvested from GLRaV-3-infected vines as compared to uninfected tissue include anthocyanin biosynthesis and sugar metabolism genes. The reduction in transcript accumulation for sugar and anthocyanin metabolism during fruit development is consistent with a dramatic reduction in anthocyanin biosynthesis as well as reduced sugar levels in berries, a hallmark phenotypic change observed in virus infected grapevines. Analysis of key regulatory factors provides a mechanism for the observed gene expression changes. Our results provide insight into commonly observed phenotypic alterations in virus infected vines and the molecular mechanisms associated with the plant response to the virus during berry ripening.
Collapse
Affiliation(s)
- Andrea Vega
- Center for Genome Regulation, Millennium Nucleus Center for Plant Functional Genomics, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | | | | | | | | |
Collapse
|
163
|
Dal Cin V, Tieman DM, Tohge T, McQuinn R, de Vos RC, Osorio S, Schmelz EA, Taylor MG, Smits-Kroon MT, Schuurink RC, Haring MA, Giovannoni J, Fernie AR, Klee HJ. Identification of genes in the phenylalanine metabolic pathway by ectopic expression of a MYB transcription factor in tomato fruit. THE PLANT CELL 2011; 23:2738-53. [PMID: 21750236 PMCID: PMC3226207 DOI: 10.1105/tpc.111.086975] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Altering expression of transcription factors can be an effective means to coordinately modulate entire metabolic pathways in plants. It can also provide useful information concerning the identities of genes that constitute metabolic networks. Here, we used ectopic expression of a MYB transcription factor, Petunia hybrida ODORANT1, to alter Phe and phenylpropanoid metabolism in tomato (Solanum lycopersicum) fruits. Despite the importance of Phe and phenylpropanoids to plant and human health, the pathway for Phe synthesis has not been unambiguously determined. Microarray analysis of ripening fruits from transgenic and control plants permitted identification of a suite of coregulated genes involved in synthesis and further metabolism of Phe. The pattern of coregulated gene expression facilitated discovery of the tomato gene encoding prephenate aminotransferase, which converts prephenate to arogenate. The expression and biochemical data establish an arogenate pathway for Phe synthesis in tomato fruits. Metabolic profiling and ¹³C flux analysis of ripe fruits further revealed large increases in the levels of a specific subset of phenylpropanoid compounds. However, while increased levels of these human nutrition-related phenylpropanoids may be desirable, there were no increases in levels of Phe-derived flavor volatiles.
Collapse
Affiliation(s)
- Valeriano Dal Cin
- University of Florida, Horticultural Sciences, Gainesville, Florida 32611-0690
| | - Denise M. Tieman
- University of Florida, Horticultural Sciences, Gainesville, Florida 32611-0690
| | - Takayuki Tohge
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Ryan McQuinn
- U.S. Department of Agriculture–Agricultural Research Service, Robert W. Holley Center and Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853
| | - Ric C.H. de Vos
- Plant Research International, 6700 AA Wageningen, The Netherlands
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands
- Netherlands Metabolomics Centre, 2333 CC Leiden, The Netherlands
| | - Sonia Osorio
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Eric A. Schmelz
- Center of Medical, Agricultural, and Veterinary Entomology, U.S. Department of Agriculture–Agricultural Research Service, Chemistry Research Unit, Gainesville, FL 32608
| | - Mark G. Taylor
- University of Florida, Horticultural Sciences, Gainesville, Florida 32611-0690
| | - Miriam T. Smits-Kroon
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands
- University of Amsterdam, Swammerdam Institute for Life Sciences, 1098 XH Amsterdam, The Netherlands
| | - Robert C. Schuurink
- University of Amsterdam, Swammerdam Institute for Life Sciences, 1098 XH Amsterdam, The Netherlands
| | - Michel A. Haring
- University of Amsterdam, Swammerdam Institute for Life Sciences, 1098 XH Amsterdam, The Netherlands
| | - James Giovannoni
- U.S. Department of Agriculture–Agricultural Research Service, Robert W. Holley Center and Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Harry J. Klee
- University of Florida, Horticultural Sciences, Gainesville, Florida 32611-0690
- Address correspondence to
| |
Collapse
|
164
|
Fanzone M, Zamora F, Jofré V, Assof M, Peña-Neira Á. Phenolic composition of Malbec grape skins and seeds from Valle de Uco (Mendoza, Argentina) during ripening. Effect of cluster thinning. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:6120-6136. [PMID: 21520971 DOI: 10.1021/jf200073k] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The phenolic composition of Malbec (Vitis vinifera L.) grape skins and seeds during ripening and the effect of cluster thinning (CT) in two consecutive seasons (2008-2009) were evaluated by high-performance liquid chromatography-diode array detection/electrospray ionization-mass spectrometry (HPLC-DAD/ESI-MS). Removal of 50% of clusters was performed at 40 days (T1), 80 days (T2), and 100 days after flowering (T3) in a vineyard located in southern Mendoza (Argentina). Yield components, with the exception of cluster weight, were significantly affected by CT in both seasons, but no statistically significant differences were found among treatments. Cluster thinning and its timing had little or no influence on physical parameters and fruit chemical composition, and the differences with respect to the control were mainly due to the season. At harvest in 2008, T1 encouraged the biosynthesis of individual anthocyanins in skins, generating 44.0, 39.6, and 41.2% more glucosylated, acetylated, and total anthocyanins, respectively, as compared to the control, whereas in seeds, T1 and T2 mainly changed the concentrations of (+)-catechin, epicatechin-3-gallate, procyanidin B4, dimer gallate 1, trimer gallate 2, and tetramer. Conversely in 2009, T1 significantly affected the content of flavanols and flavonols in skins, whereas in seeds, T1 and T2 modified the level of (+)-catechin, procyanidins B4 and B6, and trimer gallate 2. Moreover, in 2008 the grapes had a higher concentration of most phenolic compounds, indicating a greater potential for more complex wines. Finally, dihydroquercetin-3-glucoside was the major compound among all nonanthocyanin phenolics detected in Malbec skins and represented 25.7% (2008) and 39.9% (2009) of the total content of those compounds at harvest. This finding could represent a distinctive feature of this grape variety.
Collapse
Affiliation(s)
- Martín Fanzone
- Laboratorio de Aromas y Sustancias Naturales, Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (INTA), San Martín 3853, 5507 Luján de Cuyo, Mendoza, Argentina.
| | | | | | | | | |
Collapse
|
165
|
Lorrain B, Chira K, Teissedre PL. Phenolic composition of Merlot and Cabernet-Sauvignon grapes from Bordeaux vineyard for the 2009-vintage: Comparison to 2006, 2007 and 2008 vintages. Food Chem 2011; 126:1991-9. [DOI: 10.1016/j.foodchem.2010.12.062] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 11/27/2010] [Accepted: 12/09/2010] [Indexed: 11/17/2022]
|
166
|
Akagi T, Tsujimoto T, Ikegami A, Yonemori K. Effects of seasonal temperature changes on DkMyb4 expression involved in proanthocyanidin regulation in two genotypes of persimmon (Diospyros kaki Thunb.) fruit. PLANTA 2011; 233:883-894. [PMID: 21225280 DOI: 10.1007/s00425-010-1346-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Accepted: 12/22/2010] [Indexed: 05/30/2023]
Abstract
Persimmon fruits accumulate a large amount of proanthocyanidin (PA). Fruits of the mutant non-astringent (NA) type lose their ability to accumulate PA at an early stage of fruit development, whereas fruits of the normal astringent (A) type sustain PA accumulation until ripening. This allelotype is determined by the genotype of a single ASTRINGENCY (AST) locus. It is possible that the reduction in PA accumulation in NA-type fruits is due to phenological down-regulation of DkMyb4 (a PA regulator) and the resultant down-regulation of structural genes in the PA pathway. In this study, attempts were made to identify the regulatory mechanisms of phenological PA accumulation in A- and NA-type fruits, focusing particularly on the effects of ambient temperature. Continuous cool temperature conditions caused sustained expression of DkMyb4 in NA-type fruits, as well as in A-type fruits, resulting in increased expression of PA pathway genes and PA accumulation. However, the expression of some A/NA phenotypic marker genes was not significantly affected by the cool temperature conditions. In addition, PA composition in NA-type fruits exposed to cool temperatures differed from that in A-type fruits. These results indicate that a cool ambient temperature may have induced DkMyb4 expression and resultant PA accumulation, but did not directly affect the expression of the AST gene.
Collapse
Affiliation(s)
- Takashi Akagi
- Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
167
|
Azuma A, Udo Y, Sato A, Mitani N, Kono A, Ban Y, Yakushiji H, Koshita Y, Kobayashi S. Haplotype composition at the color locus is a major genetic determinant of skin color variation in Vitis × labruscana grapes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:1427-1438. [PMID: 21311854 DOI: 10.1007/s00122-011-1542-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 01/14/2011] [Indexed: 05/30/2023]
Abstract
Skin color is one of the most important fruit traits in grape, and has become greatly diversified due to hybridization and human selection. Many studies concerning the genetic control of grape color in European species (Vitis vinifera L.), especially the role of MYB-related genes, have been reported. On the other hand, there have been few studies of the MYB-related genes in grapes belonging to V. ×labruscana L.H. Bailey, a subgroup of grapes that originated from the hybridization of V. labrusca with V. vinifera. In the present study, we found a novel functional haplotype, HapE2 (consisting of the genes VlMYBA2 and VlMYBA1-3), in diploid V. ×labruscana. Moreover, we developed a method to determine the haplotype compositions of tetraploid grapes by means of quantitative real-time PCR, and investigated the relationship between haplotype composition and skin color. The color locus in V. ×labruscana grapes usually consists of functional haplotypes (HapE1 and/or HapE2), and non-functional haplotype HapA. The number of functional haplotypes in the genome was found to be correlated with the level of anthocyanin in the skin. Anthocyanin contents of grapes that contained HapE2 were significantly higher than those containing HapE1. These results suggest that the number and kind of functional haplotypes at the color locus are the major genetic factors that determine skin color variation. These findings provide new knowledge about the unique genetic control of color in V. ×labruscana grapes, and should contribute to development of new cultivars that have the desired color and anthocyanin content.
Collapse
Affiliation(s)
- Akifumi Azuma
- National Institute of Fruit Tree Science, Hiroshima, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Martz F, Jaakola L, Julkunen-Tiitto R, Stark S. Phenolic Composition and Antioxidant Capacity of Bilberry (Vaccinium myrtillus) Leaves in Northern Europe Following Foliar Development and Along Environmental Gradients. J Chem Ecol 2010; 36:1017-28. [DOI: 10.1007/s10886-010-9836-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 06/30/2010] [Accepted: 07/19/2010] [Indexed: 10/19/2022]
|
169
|
Abstract
Ripening of fleshy fruit is a differentiation process involving biochemical and biophysical changes that lead to the accumulation of sugars and subsequent changes in tissue texture. Also affected are phenolic compounds, which confer color, flavor/aroma, and resistance to pathogen invasion and adverse environmental conditions. These phenolic compounds, which are the products of branches of the phenylpropanoid pathway, appear to be closely linked to fruit ripening processes. Three key enzymes of the phenylpropanoid pathway, namely phenylalanine ammonia lyase, O-methyltransferase, and cinnamyl alcohol dehydrogenase (CAD) have been reported to modulate various end products including lignin and protect plants against adverse conditions. In addition, peroxidase, the enzyme following CAD in the phenylpropanoid pathway, has also been associated with injury, wound repair, and disease resistance. However, the role of these enzymes in fruit ripening is a matter of only recent investigation and information is lacking on the relationships between phenylpropanoid metabolism and fruit ripening processes. Understanding the role of these enzymes in fruit ripening and their manipulation may possibly be valuable for delineating the regulatory network that controls the expression of ripening genes in fruit. This review elucidates the functional characterization of these key phenylpropanoid biosynthetic enzymes/genes during fruit ripening processes.
Collapse
Affiliation(s)
- Rupinder Singh
- Authors Singh and Dwivedi are with Dept. of Biochemistry, Lucknow Univ., Lucknow 226007, India. Author Rastogi is with Dept. of Biotechnology, Integral Univ., Lucknow 226026, India. Direct inquiries to author Dwivedi (E-mail: )
| | - Smita Rastogi
- Authors Singh and Dwivedi are with Dept. of Biochemistry, Lucknow Univ., Lucknow 226007, India. Author Rastogi is with Dept. of Biotechnology, Integral Univ., Lucknow 226026, India. Direct inquiries to author Dwivedi (E-mail: )
| | - Upendra N Dwivedi
- Authors Singh and Dwivedi are with Dept. of Biochemistry, Lucknow Univ., Lucknow 226007, India. Author Rastogi is with Dept. of Biotechnology, Integral Univ., Lucknow 226026, India. Direct inquiries to author Dwivedi (E-mail: )
| |
Collapse
|
170
|
Ono E, Homma Y, Horikawa M, Kunikane-Doi S, Imai H, Takahashi S, Kawai Y, Ishiguro M, Fukui Y, Nakayama T. Functional differentiation of the glycosyltransferases that contribute to the chemical diversity of bioactive flavonol glycosides in grapevines (Vitis vinifera). THE PLANT CELL 2010; 22:2856-71. [PMID: 20693356 PMCID: PMC2947185 DOI: 10.1105/tpc.110.074625] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We identified two glycosyltransferases that contribute to the structural diversification of flavonol glycosides in grapevine (Vitis vinifera): glycosyltransferase 5 (Vv GT5) and Vv GT6. Biochemical analyses showed that Vv GT5 is a UDP-glucuronic acid:flavonol-3-O-glucuronosyltransferase (GAT), and Vv GT6 is a bifunctional UDP-glucose/UDP-galactose:flavonol-3-O-glucosyltransferase/galactosyltransferase. The Vv GT5 and Vv GT6 genes have very high sequence similarity (91%) and are located in tandem on chromosome 11, suggesting that one of these genes arose from the other by gene duplication. Both of these enzymes were expressed in accordance with flavonol synthase gene expression and flavonoid distribution patterns in this plant, corroborating their significance in flavonol glycoside biosynthesis. The determinant of the specificity of Vv GT5 for UDP-glucuronic acid was found to be Arg-140, which corresponded to none of the determinants previously identified for other plant GATs in primary structures, providing another example of convergent evolution of plant GAT. We also analyzed the determinants of the sugar donor specificity of Vv GT6. Gln-373 and Pro-19 were found to play important roles in the bifunctional specificity of the enzyme. The results presented here suggest that the sugar donor specificities of these Vv GTs could be determined by a limited number of amino acid substitutions in the primary structures of protein duplicates, illustrating the plasticity of plant glycosyltransferases in acquiring new sugar donor specificities.
Collapse
Affiliation(s)
- Eiichiro Ono
- Core Research Group, R&D Planning Division, Suntory Holdings Ltd., Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Yu Homma
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Manabu Horikawa
- Suntory Institute for Bioorganic Research, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Satoshi Kunikane-Doi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Haruna Imai
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Seiji Takahashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Yosuke Kawai
- College of Life Sciences, Institute of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Masaji Ishiguro
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Akiha, Niigata 956-8603, Japan
| | - Yuko Fukui
- Institute for Health Care Science, Suntory Wellness Ltd., Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Toru Nakayama
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
- Address correspondence to
| |
Collapse
|
171
|
Mencarelli F, Bellincontro A, Nicoletti I, Cirilli M, Muleo R, Corradini D. Chemical and biochemical change of healthy phenolic fractions in winegrape by means of postharvest dehydration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:7557-7564. [PMID: 20521817 DOI: 10.1021/jf100331z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Clusters of Aleatico winegrape were picked at 18 degrees Brix and placed at 10, 20, or 30 degrees C, 45% relative humidity (RH) and 1.5 m/s of air flow to dehydrate the berries up to 40% of loss of initial fresh weight. Sampling was done at 0, 10, 20, 30, and 40% weight loss (wl). Selected polyphenols and sugar content (expressed as SSC = soluble solids content) both measured on dry weight basis, polyphenol oxidase (PPO), and phenylpropanoid pathway gene expression were analyzed. Phenolic acids increased significantly at 20% wl at 20 degrees C, while at 10 degrees C the increase was lower. Stilbenes (trans-resveratrol and trans-piceid) and catechins rose more than double to 100 mg/kg and more than 3-fold to 135 mg/kg at 20 degrees C and 10% wl. At 10 degrees C the increase of these compounds was less, but higher than initial values. At 30 degrees C, except for a significant rise at 10% wl for catechins and stilbenes, all the rest of the compounds diminished. Anthocyanins increased at 10 and 20 degrees C, but decreased at 30 degrees C. PPO rapidly increased at 20 and 30 degrees C at 10% wl and then declined, while at 10 degrees C the activity lasted longer. Relative gene expression of phenylalanine ammonia lyase (PAL), stilbene synthase (STS), chalcone isomerase (CHI), dihydroflavonol reductase (DFR) were upregulated at 10 degrees C more than at 20 degrees C, at 20% wl, while at 30 degrees C the gene expression was downregulated.
Collapse
Affiliation(s)
- Fabio Mencarelli
- Department of Food Science and Technology, University of Tuscia, Viterbo, Italy.
| | | | | | | | | | | |
Collapse
|
172
|
Hichri I, Heppel SC, Pillet J, Léon C, Czemmel S, Delrot S, Lauvergeat V, Bogs J. The basic helix-loop-helix transcription factor MYC1 is involved in the regulation of the flavonoid biosynthesis pathway in grapevine. MOLECULAR PLANT 2010; 3:509-23. [PMID: 20118183 DOI: 10.1093/mp/ssp118] [Citation(s) in RCA: 219] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Previous results indicated that in grapevine (Vitis vinifera), regulation of the flavonoid pathway genes by MYB transcription factors depends on their interaction with basic helix-loop-helix proteins (bHLHs). The present study describes the first functional characterization of a bHLH factor from grapevine named VvMYC1. This transcription factor is phylogenetically related to Arabidopsis bHLH proteins, which participate in the control of flavonoid biosynthesis and epidermal cell fate. Transient promoter and yeast two-hybrid assays demonstrated that VvMYC1 physically interacts with MYB5a, MYB5b, MYBA1/A2, and MYBPA1 to induce promoters of flavonoid pathway genes involved in anthocyanin and/or proanthocyanidin (PA) synthesis. Additionally, transient promoter assays revealed that VvMYC1 is involved in feedback regulation of its own expression. Transcript levels of VvMYC1 during berry development correlate with the synthesis of anthocyanins and PAs in skins and seeds of berries, suggesting that VvMYC1 is involved in the regulation of anthocyanins and PA synthesis in these organs. Likewise, transient expression of VvMYC1 and VvMYBA1 induces anthocyanin synthesis in grapevine suspension cells. These results suggest that VvMYC1 is part of the transcriptional cascade controlling anthocyanin and PA biosynthesis in grapevine.
Collapse
Affiliation(s)
- Imène Hichri
- Institut des Sciences de la Vigne et du Vin, UMR 1287 Ecophysiologie et Génomique Fonctionnelle de la Vigne--INRA, Université de Bordeaux, 210 Chemin de Leysotte, 33882 Villenave d'Ornon, France
| | | | | | | | | | | | | | | |
Collapse
|
173
|
Matus JT, Poupin MJ, Cañón P, Bordeu E, Alcalde JA, Arce-Johnson P. Isolation of WDR and bHLH genes related to flavonoid synthesis in grapevine (Vitis vinifera L.). PLANT MOLECULAR BIOLOGY 2010; 72:607-620. [PMID: 20112051 DOI: 10.1007/s11103-010-9597-9594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 12/29/2009] [Indexed: 05/25/2023]
Abstract
Anthocyanins and tannins are two of the most abundant flavonoids found in grapevine, and their synthesis is derived from the phenylpropanoid pathway. As described for model species such as Arabidopsis thaliana, maize and petunia, the end-point branches of this pathway are tightly regulated by the combinatorial interaction of three families of regulatory factors; MYB, bHLH (also known as MYC) and WDR proteins. Among these, only MYB genes have been previously identified in grapes. Here, we report the isolation of the first members from the WDR and bHLH families found in Vitis vinifera, named WDR1, WDR2 and MYCA1. WDR1 contributed positively to the accumulation of anthocyanins when it was overexpressed in A. thaliana, although it was not possible to determine the function of WDR2 by ectopic expression. The sub-cellular localizations of WDR1 and MYCA1 were observed by means of GFP-fusion proteins, indicating both cytoplasm and nuclear localization, in contrast to the localization of a MYB factor exclusively in the nucleus. The expression patterns of these genes were quantified in coloured reproductive organs throughout development, and correlated with anthocyanin accumulation and the expression profiles of the flavonoid-related MYBA1-2, UFGT, and ANR genes. In vitro grapevine plantlets grown under high salt concentrations showed a cultivar-dependent response for anthocyanin accumulation, which correlated with the expression of MYBA1-2, MYCA1 and WDR1 genes. These results suggest that MYCA1 may regulate ANR and UFGT and that this last control is easier to distinguish whenever MYBA genes are absent or in low abundance. Future studies should address the specific interactions of these proteins and their quantitative contribution to flavonoid synthesis in grape berries.
Collapse
Affiliation(s)
- J T Matus
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4560, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
174
|
Matus JT, Poupin MJ, Cañón P, Bordeu E, Alcalde JA, Arce-Johnson P. Isolation of WDR and bHLH genes related to flavonoid synthesis in grapevine (Vitis vinifera L.). PLANT MOLECULAR BIOLOGY 2010; 72:607-20. [PMID: 20112051 DOI: 10.1007/s11103-010-9597-4] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 12/29/2009] [Indexed: 05/03/2023]
Abstract
Anthocyanins and tannins are two of the most abundant flavonoids found in grapevine, and their synthesis is derived from the phenylpropanoid pathway. As described for model species such as Arabidopsis thaliana, maize and petunia, the end-point branches of this pathway are tightly regulated by the combinatorial interaction of three families of regulatory factors; MYB, bHLH (also known as MYC) and WDR proteins. Among these, only MYB genes have been previously identified in grapes. Here, we report the isolation of the first members from the WDR and bHLH families found in Vitis vinifera, named WDR1, WDR2 and MYCA1. WDR1 contributed positively to the accumulation of anthocyanins when it was overexpressed in A. thaliana, although it was not possible to determine the function of WDR2 by ectopic expression. The sub-cellular localizations of WDR1 and MYCA1 were observed by means of GFP-fusion proteins, indicating both cytoplasm and nuclear localization, in contrast to the localization of a MYB factor exclusively in the nucleus. The expression patterns of these genes were quantified in coloured reproductive organs throughout development, and correlated with anthocyanin accumulation and the expression profiles of the flavonoid-related MYBA1-2, UFGT, and ANR genes. In vitro grapevine plantlets grown under high salt concentrations showed a cultivar-dependent response for anthocyanin accumulation, which correlated with the expression of MYBA1-2, MYCA1 and WDR1 genes. These results suggest that MYCA1 may regulate ANR and UFGT and that this last control is easier to distinguish whenever MYBA genes are absent or in low abundance. Future studies should address the specific interactions of these proteins and their quantitative contribution to flavonoid synthesis in grape berries.
Collapse
Affiliation(s)
- J T Matus
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4560, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
175
|
Obreque-Slier E, Peña-Neira A, López-Solís R, Zamora-Marín F, Ricardo-da Silva JM, Laureano O. Comparative study of the phenolic composition of seeds and skins from Carménère and Cabernet Sauvignon grape varieties (Vitis vinifera L.) during ripening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:3591-3599. [PMID: 20163111 DOI: 10.1021/jf904314u] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The phenolic composition of skins and seeds from Vitis vinifera L. cv. Carménère and Cabernet Sauvignon grapes during ripening was evaluated by high-performance liquid chromatography-diode array detection and spectrophotometric analysis. As compared to Cabernet Sauvignon grape skins, Carménère grape skins presented higher contents of total anthocyanins, monomeric flavan-3-ols, and total flavonoids, a higher mean degree of polymerization, a higher percentage of galloylation, a higher average molecular weight of the flavanol fraction, and a higher color intensity. As compared to Cabernet Sauvignon grape seeds, Carménère grape seeds presented a lower content of monomeric flavan-3-ols, a higher mean degree of polymerization, a higher percentage of galloylation, a higher average molecular weight of the flavanol fraction, a lower content of (+)-catechin, and higher contents of (-)-epicatechin, epicatechin-3-O-gallate, gallic acid, and dimeric procyanidins esterified with gallic acid. Altogether, we conclude that Carménère grapes present a differential composition and evolution of phenolic compounds when compared to Cabernet Sauvignon grapes.
Collapse
Affiliation(s)
- Elías Obreque-Slier
- Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
176
|
Niu SS, Xu CJ, Zhang WS, Zhang B, Li X, Lin-Wang K, Ferguson IB, Allan AC, Chen KS. Coordinated regulation of anthocyanin biosynthesis in Chinese bayberry (Myrica rubra) fruit by a R2R3 MYB transcription factor. PLANTA 2010; 231:887-99. [PMID: 20183921 DOI: 10.1007/s00425-009-1095-z] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Chinese bayberry (Myrica rubra) is a fruit crop with cultivars producing fruit ranging from white (Shuijing, SJ) to red (Dongkui, DK) and dark red-purple (Biqi, BQ), as a result of different levels of anthocyanin accumulation. Genes encoding the anthocyanin biosynthesis enzymes chalcone synthase, chalcone isomerase, flavanone 3-hydroxylase (F3H), flavonoid 3'-hydroxylase (F3'H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS) and UDPglucose: flavonoid 3-O-glucosyltransferase (UFGT), as well as MrMYB1, a R2R3 MYB transcription factor homologous to known activators of anthocyanin biosynthesis, were isolated from ripe fruit of BQ. Differences in mRNA abundance of MrF3H, MrF3'H, MrDFR1, MrANS and MrUFGT were highly correlated with differential accumulation of anthocyanins between cultivars, suggesting coordinated regulation by transcription factors. The transcript level of MrMYB1 was strongly associated with the anthocyanin content in ripe fruit of the three cultivars, as well as different anthocyanin containing tissues of BQ fruit. Fruit bagging strongly inhibited anthocyanin accumulation in fruit as well as the expression of all anthocyanin biosynthetic genes and MrMYB1. Overexpression of MrMYB1 stimulated both anthocyanin accumulation and activated an Arabidopsis-DFR promoter in tobacco (Nicotiana tabacum). MrMYB1d, an allele with a 1 bp deletion at nucleotide 30 of coding sequence, was observed in SJ and DK fruit, suggesting that a nonsense mutation of the MYB1 protein may be responsible for no or low expression of MYB1 in the white and red fruit. These results show that coordinated expression of multiple biosynthetic genes is involved in anthocyanin accumulation in Chinese bayberry fruit, and this is regulated by MrMYB1.
Collapse
Affiliation(s)
- Shan-Shan Niu
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Huajiachi Campus, 310029 Hangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Ballester AR, Molthoff J, de Vos R, Hekkert BTL, Orzaez D, Fernández-Moreno JP, Tripodi P, Grandillo S, Martin C, Heldens J, Ykema M, Granell A, Bovy A. Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color. PLANT PHYSIOLOGY 2010; 152:71-84. [PMID: 19906891 PMCID: PMC2799347 DOI: 10.1104/pp.109.147322] [Citation(s) in RCA: 229] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 11/03/2009] [Indexed: 05/18/2023]
Abstract
The color of tomato fruit is mainly determined by carotenoids and flavonoids. Phenotypic analysis of an introgression line (IL) population derived from a cross between Solanum lycopersicum 'Moneyberg' and the wild species Solanum chmielewskii revealed three ILs with a pink fruit color. These lines had a homozygous S. chmielewskii introgression on the short arm of chromosome 1, consistent with the position of the y (yellow) mutation known to result in colorless epidermis, and hence pink-colored fruit, when combined with a red flesh. Metabolic analysis showed that pink fruit lack the ripening-dependent accumulation of the yellow-colored flavonoid naringenin chalcone in the fruit peel, while carotenoid levels are not affected. The expression of all genes encoding biosynthetic enzymes involved in the production of the flavonol rutin from naringenin chalcone was down-regulated in pink fruit, suggesting that the candidate gene underlying the pink phenotype encodes a regulatory protein such as a transcription factor rather than a biosynthetic enzyme. Of 26 MYB and basic helix-loop-helix transcription factors putatively involved in regulating transcription of genes in the phenylpropanoid and/or flavonoid pathway, only the expression level of the MYB12 gene correlated well with the decrease in the expression of structural flavonoid genes in peel samples of pink- and red-fruited genotypes during ripening. Genetic mapping and segregation analysis showed that MYB12 is located on chromosome 1 and segregates perfectly with the characteristic pink fruit color. Virus-induced gene silencing of SlMYB12 resulted in a decrease in the accumulation of naringenin chalcone, a phenotype consistent with the pink-colored tomato fruit of IL1b. In conclusion, biochemical and molecular data, gene mapping, segregation analysis, and virus-induced gene silencing experiments demonstrate that the MYB12 transcription factor plays an important role in regulating the flavonoid pathway in tomato fruit and suggest strongly that SlMYB12 is a likely candidate for the y mutation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Arnaud Bovy
- Plant Research International, 6700 AA Wageningen, The Netherlands (A.-R.B., J.M., R.d.V., B.t.L.H., A.B.); Centre for Biosystems Genomics, 6700 PB Wageningen, The Netherlands (A.-R.B., R.d.V., A.B.); Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022 Valencia, Spain (D.O., J.-P.F.-M., A.G.); Consiglio Nazionale delle Ricerche-Istituto di Genetica Vegetale, I–80055 Portici, Italy (P.T., S.G.); John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, United Kingdom (C.M.); and Enza Zaden Research and Development, 1600 AA Enkhuizen, The Netherlands (J.H., M.Y.)
| |
Collapse
|
178
|
Czemmel S, Stracke R, Weisshaar B, Cordon N, Harris NN, Walker AR, Robinson SP, Bogs J. The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries. PLANT PHYSIOLOGY 2009; 151:1513-30. [PMID: 19741049 PMCID: PMC2773091 DOI: 10.1104/pp.109.142059] [Citation(s) in RCA: 286] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Flavonols are important ultraviolet light protectants in many plants and contribute substantially to the quality and health-promoting effects of fruits and derived plant products. To study the regulation of flavonol synthesis in fruit, we isolated and characterized the grapevine (Vitis vinifera 'Shiraz') R2R3-MYB transcription factor VvMYBF1. Transient reporter assays established VvMYBF1 to be a specific activator of flavonol synthase1 (VvFLS1) and several other promoters of grapevine and Arabidopsis (Arabidopsis thaliana) genes involved in flavonol synthesis. Expression of VvMYBF1 in the Arabidopsis mutant myb12 resulted in complementation of its flavonol-deficient phenotype and confirmed the function of VvMYBF1 as a transcriptional regulator of flavonol synthesis. Transcript analysis of VvMYBF1 throughout grape berry development revealed its expression during flowering and in skins of ripening berries, which correlates with the accumulation of flavonols and expression of VvFLS1. In addition to its developmental regulation, VvMYBF1 expression was light inducible, implicating VvMYBF1 in the control of VvFLS1 transcription. Sequence analysis of VvMYBF1 and VvFLS1 indicated conserved putative light regulatory units in promoters of both genes from different cultivars. By analysis of the VvMYBF1 amino acid sequence, we identified the previously described SG7 domain and an additional sequence motif conserved in several plant MYB factors. The described motifs have been used to identify MYB transcription factors from other plant species putatively involved in the regulation of flavonol biosynthesis. To our knowledge, this is the first functional characterization of a light-inducible MYB transcription factor controlling flavonol synthesis in fruit.
Collapse
|
179
|
Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp. sativa) berry: a quantitative trait locus to quantitative trait nucleotide integrated study. Genetics 2009; 183:1127-39. [PMID: 19720862 DOI: 10.1534/genetics.109.103929] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The combination of QTL mapping studies of synthetic lines and association mapping studies of natural diversity represents an opportunity to throw light on the genetically based variation of quantitative traits. With the positional information provided through quantitative trait locus (QTL) mapping, which often leads to wide intervals encompassing numerous genes, it is now feasible to directly target candidate genes that are likely to be responsible for the observed variation in completely sequenced genomes and to test their effects through association genetics. This approach was performed in grape, a newly sequenced genome, to decipher the genetic architecture of anthocyanin content. Grapes may be either white or colored, ranging from the lightest pink to the darkest purple tones according to the amount of anthocyanin accumulated in the berry skin, which is a crucial trait for both wine quality and human nutrition. Although the determinism of the white phenotype has been fully identified, the genetic bases of the quantitative variation of anthocyanin content in berry skin remain unclear. A single QTL responsible for up to 62% of the variation in the anthocyanin content was mapped on a Syrah x Grenache F(1) pseudo-testcross. Among the 68 unigenes identified in the grape genome within the QTL interval, a cluster of four Myb-type genes was selected on the basis of physiological evidence (VvMybA1, VvMybA2, VvMybA3, and VvMybA4). From a core collection of natural resources (141 individuals), 32 polymorphisms revealed significant association, and extended linkage disequilibrium was observed. Using a multivariate regression method, we demonstrated that five polymorphisms in VvMybA genes except VvMybA4 (one retrotransposon, three single nucleotide polymorphisms and one 2-bp insertion/deletion) accounted for 84% of the observed variation. All these polymorphisms led to either structural changes in the MYB proteins or differences in the VvMybAs promoters. We concluded that the continuous variation in anthocyanin content in grape was explained mainly by a single gene cluster of three VvMybA genes. The use of natural diversity helped to reduce one QTL to a set of five quantitative trait nucleotides and gave a clear picture of how isogenes combined their effects to shape grape color. Such analysis also illustrates how isogenes combine their effect to shape a complex quantitative trait and enables the definition of markers directly targeted for upcoming breeding programs.
Collapse
|
180
|
Bertolini A, Peresson C, Petrussa E, Braidot E, Passamonti S, Macrì F, Vianello A. Identification and localization of the bilitranslocase homologue in white grape berries (Vitis vinifera L.) during ripening. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3861-71. [PMID: 19596699 PMCID: PMC2736896 DOI: 10.1093/jxb/erp225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 06/23/2009] [Accepted: 06/24/2009] [Indexed: 05/28/2023]
Abstract
A homologue of the mammalian bilirubin transporter bilitranslocase (BTL) (TCDB 2.A.65.1.1), able to perform an apparent secondary active transport of flavonoids, has previously been found in carnation petals and red grape berries. In the present work, a BTL homologue was also shown in white berries from Vitis vinifera L. cv. Tocai/Friulano, using anti-sequence antibodies specific for rat liver BTL. This transporter, similarly to what found in red grape, was localized in the first layers of the epidermal tissue and in the vascular bundle cells of the mesocarp. In addition, a strong immunochemical reaction was detected in the placental tissue and particularly in peripheral integuments of the seed. The protein was expressed during the last maturation stages in both skin and pulp tissues and exhibited an apparent molecular mass of c. 31 kDa. Furthermore, the transport activity of such a carrier, measured as bromosulphophthalein (BSP) uptake, was detected in berry pulp microsomes, where it was inhibited by specific anti-BTL antibodies. The BTL homologue activity exhibited higher values, for both K(m) and V(max), than those found in the red cultivar. Moreover, two non-pigmented flavonoids, such as quercetin (a flavonol) and eriodictyol (a flavanone), inhibited the uptake of BSP in an uncompetitive manner. Such results strengthen the hypothesis that this BTL homologue acts as a carrier involved also in the membrane transport of colourless flavonoids and demonstrate the presence of such a carrier in different organs and tissues.
Collapse
Affiliation(s)
- Alberto Bertolini
- Dipartimento di Biologia e Protezione delle Piante, Sezione di Biologia Vegetale, Università di Udine, via delle Scienze 91, I-33100 Udine, Italy
| | - Carlo Peresson
- Dipartimento di Biologia e Protezione delle Piante, Sezione di Biologia Vegetale, Università di Udine, via delle Scienze 91, I-33100 Udine, Italy
| | - Elisa Petrussa
- Dipartimento di Biologia e Protezione delle Piante, Sezione di Biologia Vegetale, Università di Udine, via delle Scienze 91, I-33100 Udine, Italy
| | - Enrico Braidot
- Dipartimento di Biologia e Protezione delle Piante, Sezione di Biologia Vegetale, Università di Udine, via delle Scienze 91, I-33100 Udine, Italy
| | - Sabina Passamonti
- Dipartimento di Scienze della Vita, Università di Trieste, via L. Giorgieri, 1, I-34127 Trieste, Italy
| | - Francesco Macrì
- Dipartimento di Biologia e Protezione delle Piante, Sezione di Biologia Vegetale, Università di Udine, via delle Scienze 91, I-33100 Udine, Italy
| | - Angelo Vianello
- Dipartimento di Biologia e Protezione delle Piante, Sezione di Biologia Vegetale, Università di Udine, via delle Scienze 91, I-33100 Udine, Italy
| |
Collapse
|