151
|
Ritter ML, Wagner VA, Balapattabi K, Opichka MA, Lu KT, Wackman KK, Reho JJ, Keen HL, Kwitek AE, Morselli LL, Geurts AM, Sigmund CD, Grobe JL. Krüppel-like factor 4 in transcriptional control of the three unique isoforms of Agouti-related peptide in mice. Physiol Genomics 2024; 56:265-275. [PMID: 38145289 PMCID: PMC10866620 DOI: 10.1152/physiolgenomics.00042.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/15/2023] [Accepted: 12/21/2023] [Indexed: 12/26/2023] Open
Abstract
Agouti-related peptide (AgRP/Agrp) within the hypothalamic arcuate nucleus (ARC) contributes to the control of energy balance, and dysregulated Agrp may contribute to metabolic adaptation during prolonged obesity. In mice, three isoforms of Agrp are encoded via distinct first exons. Agrp-A (ENSMUST00000005849.11) contributed 95% of total Agrp in mouse ARC, whereas Agrp-B (ENSMUST00000194654.2) dominated in placenta (73%). Conditional deletion of Klf4 from Agrp-expressing cells (Klf4Agrp-KO mice) reduced Agrp mRNA and increased energy expenditure but had no effects on food intake or the relative abundance of Agrp isoforms in the ARC. Chronic high-fat diet feeding masked these effects of Klf4 deletion, highlighting the context-dependent contribution of KLF4 to Agrp control. In the GT1-7 mouse hypothalamic cell culture model, which expresses all three isoforms of Agrp (including Agrp-C, ENSMUST00000194091.6), inhibition of extracellular signal-regulated kinase (ERK) simultaneously increased KLF4 binding to the Agrp promoter and stimulated Agrp expression. In addition, siRNA-mediated knockdown of Klf4 reduced expression of Agrp. We conclude that the expression of individual isoforms of Agrp in the mouse is dependent upon cell type and that KLF4 directly promotes the transcription of Agrp via a mechanism that is superseded during obesity.NEW & NOTEWORTHY In mice, three distinct isoforms of Agouti-related peptide are encoded via distinct first exons. In the arcuate nucleus of the hypothalamus, Krüppel-like factor 4 stimulates transcription of the dominant isoform in lean mice, but this mechanism is altered during diet-induced obesity.
Collapse
Affiliation(s)
- McKenzie L Ritter
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Valerie A Wagner
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Genetics Graduate Program, University of Iowa, Iowa City, Iowa, United States
| | - Kirthikaa Balapattabi
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Megan A Opichka
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Ko-Ting Lu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Kelsey K Wackman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - John J Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Henry L Keen
- Bioinformatics Division, Institute of Human Genetics, University of Iowa, Iowa City, Iowa, United States
| | - Anne E Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Lisa L Morselli
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Division of Endocrinology and Molecular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Curt D Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
152
|
Li Y, Han M, Wei H, Huang W, Chen Z, Zhang T, Qian M, Jing L, Nan G, Sun X, Dai S, Wang K, Jiang J, Zhu P, Chen L. Id2 epigenetically controls CD8 + T-cell exhaustion by disrupting the assembly of the Tcf3-LSD1 complex. Cell Mol Immunol 2024; 21:292-308. [PMID: 38287103 PMCID: PMC10902300 DOI: 10.1038/s41423-023-01118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/01/2023] [Indexed: 01/31/2024] Open
Abstract
CD8+ T-cell exhaustion is a state of dysfunction that promotes tumor progression and is marked by the generation of Slamf6+ progenitor exhausted (Texprog) and Tim-3+ terminally exhausted (Texterm) subpopulations. Inhibitor of DNA binding protein 2 (Id2) has been shown to play important roles in T-cell development and CD8+ T-cell immunity. However, the role of Id2 in CD8+ T-cell exhaustion is unclear. Here, we found that Id2 transcriptionally and epigenetically regulates the generation of Texprog cells and their conversion to Texterm cells. Genetic deletion of Id2 dampens CD8+ T-cell-mediated immune responses and the maintenance of stem-like CD8+ T-cell subpopulations, suppresses PD-1 blockade and increases tumor susceptibility. Mechanistically, through its HLH domain, Id2 binds and disrupts the assembly of the Tcf3-Tal1 transcriptional regulatory complex, and thus modulates chromatin accessibility at the Slamf6 promoter by preventing the interaction of Tcf3 with the histone lysine demethylase LSD1. Therefore, Id2 increases the abundance of the permissive H3K4me2 mark on the Tcf3-occupied E-boxes in the Slamf6 promoter, modulates chromatin accessibility at the Slamf6 promoter and epigenetically regulates the generation of Slamf6+ Texprog cells. An LSD1 inhibitor GSK2879552 can rescue the Id2 knockout phenotype in tumor-bearing mice. Inhibition of LSD1 increases the abundance of Slamf6+Tim-3- Texprog cells in tumors and the expression level of Tcf1 in Id2-deleted CD8+ T cells. This study demonstrates that Id2-mediated transcriptional and epigenetic modification drives hierarchical CD8+ T-cell exhaustion, and the mechanistic insights gained may have implications for therapeutic intervention with tumor immune evasion.
Collapse
Affiliation(s)
- Yiming Li
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Ganzhou, Jiangxi, 341000, Xi'an, Shaanxi, 710032, China
| | - Mingwei Han
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Ganzhou, Jiangxi, 341000, Xi'an, Shaanxi, 710032, China
| | - Haolin Wei
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Ganzhou, Jiangxi, 341000, Xi'an, Shaanxi, 710032, China
| | - Wan Huang
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Ganzhou, Jiangxi, 341000, Xi'an, Shaanxi, 710032, China
| | - Zhinan Chen
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Ganzhou, Jiangxi, 341000, Xi'an, Shaanxi, 710032, China
| | - Tianjiao Zhang
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Ganzhou, Jiangxi, 341000, Xi'an, Shaanxi, 710032, China
| | - Meirui Qian
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Ganzhou, Jiangxi, 341000, Xi'an, Shaanxi, 710032, China
| | - Lin Jing
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Ganzhou, Jiangxi, 341000, Xi'an, Shaanxi, 710032, China
| | - Gang Nan
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Ganzhou, Jiangxi, 341000, Xi'an, Shaanxi, 710032, China
| | - Xiuxuan Sun
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Ganzhou, Jiangxi, 341000, Xi'an, Shaanxi, 710032, China
| | - Shuhui Dai
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Ganzhou, Jiangxi, 341000, Xi'an, Shaanxi, 710032, China
| | - Kun Wang
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Ganzhou, Jiangxi, 341000, Xi'an, Shaanxi, 710032, China
| | - Jianli Jiang
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Ganzhou, Jiangxi, 341000, Xi'an, Shaanxi, 710032, China.
| | - Ping Zhu
- Department of Cell Biology of National Translational Science Center for Molecular Medicine and Department of Clinical Immunology of Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Ganzhou, Jiangxi, 341000, Xi'an, Shaanxi, 710032, China.
| | - Liang Chen
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Ganzhou, Jiangxi, 341000, Xi'an, Shaanxi, 710032, China.
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
153
|
Liu S, Luo H, Zhang P, Li Y, Hao D, Zhang S, Song T, Xu T, He S. Adaptive Selection of Cis-regulatory Elements in the Han Chinese. Mol Biol Evol 2024; 41:msae034. [PMID: 38377343 PMCID: PMC10917166 DOI: 10.1093/molbev/msae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/18/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
Cis-regulatory elements have an important role in human adaptation to the living environment. However, the lag in population genomic cohort studies and epigenomic studies, hinders the research in the adaptive analysis of cis-regulatory elements in human populations. In this study, we collected 4,013 unrelated individuals and performed a comprehensive analysis of adaptive selection of genome-wide cis-regulatory elements in the Han Chinese. In total, 12.34% of genomic regions are under the influence of adaptive selection, where 1.00% of enhancers and 2.06% of promoters are under positive selection, and 0.06% of enhancers and 0.02% of promoters are under balancing selection. Gene ontology enrichment analysis of these cis-regulatory elements under adaptive selection reveals that many positive selections in the Han Chinese occur in pathways involved in cell-cell adhesion processes, and many balancing selections are related to immune processes. Two classes of adaptive cis-regulatory elements related to cell adhesion were in-depth analyzed, one is the adaptive enhancers derived from neanderthal introgression, leads to lower hyaluronidase level in skin, and brings better performance on UV-radiation resistance to the Han Chinese. Another one is the cis-regulatory elements regulating wound healing, and the results suggest the positive selection inhibits coagulation and promotes angiogenesis and wound healing in the Han Chinese. Finally, we found that many pathogenic alleles, such as risky alleles of type 2 diabetes or schizophrenia, remain in the population due to the hitchhiking effect of positive selections. Our findings will help deepen our understanding of the adaptive evolution of genome regulation in the Han Chinese.
Collapse
Affiliation(s)
- Shuai Liu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huaxia Luo
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Zhang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanyan Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Di Hao
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sijia Zhang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingrui Song
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Shunmin He
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
154
|
Pappas MP, Kawakami H, Corcoran D, Chen KQ, Scott EP, Wong J, Gearhart MD, Nishinakamura R, Nakagawa Y, Kawakami Y. Sall4 regulates posterior trunk mesoderm development by promoting mesodermal gene expression and repressing neural genes in the mesoderm. Development 2024; 151:dev202649. [PMID: 38345319 PMCID: PMC10946440 DOI: 10.1242/dev.202649] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
The trunk axial skeleton develops from paraxial mesoderm cells. Our recent study demonstrated that conditional knockout of the stem cell factor Sall4 in mice by TCre caused tail truncation and a disorganized axial skeleton posterior to the lumbar level. Based on this phenotype, we hypothesized that, in addition to the previously reported role of Sall4 in neuromesodermal progenitors, Sall4 is involved in the development of the paraxial mesoderm tissue. Analysis of gene expression and SALL4 binding suggests that Sall4 directly or indirectly regulates genes involved in presomitic mesoderm differentiation, somite formation and somite differentiation. Furthermore, ATAC-seq in TCre; Sall4 mutant posterior trunk mesoderm shows that Sall4 knockout reduces chromatin accessibility. We found that Sall4-dependent open chromatin status drives activation and repression of WNT signaling activators and repressors, respectively, to promote WNT signaling. Moreover, footprinting analysis of ATAC-seq data suggests that Sall4-dependent chromatin accessibility facilitates CTCF binding, which contributes to the repression of neural genes within the mesoderm. This study unveils multiple mechanisms by which Sall4 regulates paraxial mesoderm development by directing activation of mesodermal genes and repression of neural genes.
Collapse
Affiliation(s)
- Matthew P. Pappas
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hiroko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dylan Corcoran
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Katherine Q. Chen
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Earl Parker Scott
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Julia Wong
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Micah D. Gearhart
- Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yasushi Nakagawa
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
155
|
Muñoz-Galván S, Verdugo-Sivianes EM, Santos-Pereira JM, Estevez-García P, Carnero A. Essential role of PLD2 in hypoxia-induced stemness and therapy resistance in ovarian tumors. J Exp Clin Cancer Res 2024; 43:57. [PMID: 38403587 PMCID: PMC10895852 DOI: 10.1186/s13046-024-02988-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/15/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Hypoxia in solid tumors is an important source of chemoresistance that can determine poor patient prognosis. Such chemoresistance relies on the presence of cancer stem cells (CSCs), and hypoxia promotes their generation through transcriptional activation by HIF transcription factors. METHODS We used ovarian cancer (OC) cell lines, xenograft models, OC patient samples, transcriptional databases, induced pluripotent stem cells (iPSCs) and Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq). RESULTS Here, we show that hypoxia induces CSC formation and chemoresistance in ovarian cancer through transcriptional activation of the PLD2 gene. Mechanistically, HIF-1α activates PLD2 transcription through hypoxia response elements, and both hypoxia and PLD2 overexpression lead to increased accessibility around stemness genes, detected by ATAC-seq, at sites bound by AP-1 transcription factors. This in turn provokes a rewiring of stemness genes, including the overexpression of SOX2, SOX9 or NOTCH1. PLD2 overexpression also leads to decreased patient survival, enhanced tumor growth and CSC formation, and increased iPSCs reprograming, confirming its role in dedifferentiation to a stem-like phenotype. Importantly, hypoxia-induced stemness is dependent on PLD2 expression, demonstrating that PLD2 is a major determinant of de-differentiation of ovarian cancer cells to stem-like cells in hypoxic conditions. Finally, we demonstrate that high PLD2 expression increases chemoresistance to cisplatin and carboplatin treatments, both in vitro and in vivo, while its pharmacological inhibition restores sensitivity. CONCLUSIONS Altogether, our work highlights the importance of the HIF-1α-PLD2 axis for CSC generation and chemoresistance in OC and proposes an alternative treatment for patients with high PLD2 expression.
Collapse
Affiliation(s)
- Sandra Muñoz-Galván
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n 41013, Seville, Spain.
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| | - Eva M Verdugo-Sivianes
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n 41013, Seville, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - José M Santos-Pereira
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Seville, 41013, Spain
| | - Purificación Estevez-García
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n 41013, Seville, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n 41013, Seville, Spain.
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
156
|
Li D, Chen R, Huang C, Zhang G, Li Z, Xu X, Wang B, Li B, Chu XM. Comprehensive bioinformatics analysis and systems biology approaches to identify the interplay between COVID-19 and pericarditis. Front Immunol 2024; 15:1264856. [PMID: 38455049 PMCID: PMC10918693 DOI: 10.3389/fimmu.2024.1264856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/08/2024] [Indexed: 03/09/2024] Open
Abstract
Background Increasing evidence indicating that coronavirus disease 2019 (COVID-19) increased the incidence and related risks of pericarditis and whether COVID-19 vaccine is related to pericarditis has triggered research and discussion. However, mechanisms behind the link between COVID-19 and pericarditis are still unknown. The objective of this study was to further elucidate the molecular mechanisms of COVID-19 with pericarditis at the gene level using bioinformatics analysis. Methods Genes associated with COVID-19 and pericarditis were collected from databases using limited screening criteria and intersected to identify the common genes of COVID-19 and pericarditis. Subsequently, gene ontology, pathway enrichment, protein-protein interaction, and immune infiltration analyses were conducted. Finally, TF-gene, gene-miRNA, gene-disease, protein-chemical, and protein-drug interaction networks were constructed based on hub gene identification. Results A total of 313 common genes were selected, and enrichment analyses were performed to determine their biological functions and signaling pathways. Eight hub genes (IL-1β, CD8A, IL-10, CD4, IL-6, TLR4, CCL2, and PTPRC) were identified using the protein-protein interaction network, and immune infiltration analysis was then carried out to examine the functional relationship between the eight hub genes and immune cells as well as changes in immune cells in disease. Transcription factors, miRNAs, diseases, chemicals, and drugs with high correlation with hub genes were predicted using bioinformatics analysis. Conclusions This study revealed a common gene interaction network between COVID-19 and pericarditis. The screened functional pathways, hub genes, potential compounds, and drugs provided new insights for further research on COVID-19 associated with pericarditis.
Collapse
Affiliation(s)
- Daisong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ruolan Chen
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chao Huang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guoliang Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhaoqing Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaojian Xu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Banghui Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- Department of Dermatology, The Affiliated Haici Hospital of Qingdao University, Qingdao, China
| | - Xian-Ming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
157
|
Ma N, Lu H, Li N, Ni W, Zhang W, Liu Q, Wu W, Xia S, Wen J, Zhang T. CHOP-mediated Gasdermin E expression promotes pyroptosis, inflammation, and mitochondrial damage in renal ischemia-reperfusion injury. Cell Death Dis 2024; 15:163. [PMID: 38388468 PMCID: PMC10883957 DOI: 10.1038/s41419-024-06525-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
In clinical practice, renal ischemia-reperfusion injury (IRI) is a common cause of acute kidney injury (AKI), often leading to acute renal failure or end-stage renal disease (ESRD). The current understanding of renal IRI mechanisms remains unclear, and effective therapeutic strategies and clear targets are lacking. Therefore, the need to find explicit and effective ways to reduce renal IRI remains a scientific challenge. The current study explored pyroptosis, a type of inflammation-regulated programmed cell death, and the role of Gasdermins E (GSDME)-mediated pyroptosis, mitochondrial damage, and inflammation in renal IRI. The analysis of human samples showed that the expression levels of GSDME in normal human renal tissues were higher than those of GSDMD. Moreover, our study demonstrated that GSDME played an important role in mediating pyroptosis, inflammation, and mitochondrial damage in renal IRI. Subsequently, GSDME-N accumulated in the mitochondrial membrane, leading to mitochondrial damage and activation of caspase3, which generated a feed-forward loop of self-amplification injury. However, GSDME knockout resulted in the amelioration of renal IRI. Moreover, the current study found that the transcription factor CHOP was activated much earlier in renal IRI. Inhibition of BCL-2 by CHOP leaded to casapse3 activation, resulting in mitochondrial damage and apoptosis; not only that, but CHOP positively regulated GSDME thereby causing pyroptosis. Therefore, this study explored the transcriptional mechanisms of GSDME during IRI development and the important role of CHOP/Caspase3/GSDME mechanistic axis in regulating pyroptosis in renal IRI. This axis might serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Nannan Ma
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Hao Lu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Ning Li
- Department of Nephropathy, The Zhongda Affilicated Hospital of Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Weijian Ni
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Department of Pharmacy, Centre for Leading Medicine and Advanced Technologies of IHM, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui, People's Republic of China
| | - Wenbo Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Qiang Liu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Wenzheng Wu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Shichao Xia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jiagen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China.
| | - Tao Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
158
|
Li S, Zhao B, Yang H, Dai K, Cai Y, Xu H, Chen P, Wang F, Zhang Y. Comprehensive transcriptomic analysis revealing the regulatory dynamics and networks of the pituitary-testis axis in sheep across developmental stages. Front Vet Sci 2024; 11:1367730. [PMID: 38440388 PMCID: PMC10909840 DOI: 10.3389/fvets.2024.1367730] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Spermatogenesis is a complex process intricately regulated by the hypothalamic-pituitary-testis (HPT) axis. However, research on the regulatory factors governing the HPT axis remains limited. This study addresses this gap by conducting a comprehensive analysis of transcriptomes from the pituitary and testis tissues across various developmental stages, encompassing embryonic day (E120), neonatal period (P0), pre-puberty (P90), and post-puberty day (P270). Utilizing edgeR and WGCNA, we identified stage-specific genes in both the pituitary and testis throughout the four developmental stages. Notably, 380, 242, 34, and 479 stage-specific genes were identified in the pituitary, while 886, 297, 201, and 3,678 genes were identified in the testis. Subsequent analyses unveiled associations between these stage-specific genes and crucial pathways such as the cAMP signaling pathway, GnRH secretion, and male gamete generation. Furthermore, leveraging single-cell data from the pituitary and testis, we identified some signaling pathways involving BMP, HGF, IGF, and TGF-β, highlighting mutual regulation between the pituitary and testis at different developmental stages. This study sheds light on the pivotal role of the pituitary-testis axis in the reproductive process of sheep across four distinct developmental stages. Additionally, it delves into the intricate regulatory networks governing reproduction, offering novel insights into the dynamics of the pituitary-testis axis within the reproductive system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
159
|
Zheng H, Wu D, Chen X, He W, Hua J, Li Q, Ji Y. Endothelial downregulation of nuclear m6A reader YTHDC1 promotes pulmonary vascular remodeling in sugen hypoxia model of pulmonary hypertension. Heliyon 2024; 10:e24963. [PMID: 38318069 PMCID: PMC10838804 DOI: 10.1016/j.heliyon.2024.e24963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
Background Pulmonary hypertension (PH) is characterized with vascular remodeling, which is intiated by vascular endothelial dysfunction. N6-methyladenosine (m6A) modification mediates gene expression in many ways including mediating RNA degradation, splicing, nuclear export et al. m6A modification have been found to be associated with the development of PH. However, the role of m6A regulators in pulmonary artery endothelial cells (PAECs) dysfunction of PH is still under research. Methods The expression levels of m6A regulators in PAECs were analyzed with the single-cell sequencing Data(scRNA). Next, the target differentially expressed genes (DEGs) of m6A regulators in PAECs were functionally annotated. The analysis of cellular interactions included the examination of receptor-ligand pairs regulated by m6A regulators. Pseudo-time trajectory analyses and a ceRNA network involving lncRNAs, miRNAs, and mRNAs were conducted in PAECs. Furthermore, microarray data (GSE180169) for Sugen Hypoxia PH (SuHx PH) mouse models was screened for DEGs and m6A regulators in PAECs. Moreover, the expression of YTHDC1 in the lung samples of SuHx PH models was determined using immunofluorescence. In vitro, the mRNA expression of YTHDC1 in HPAECs under hypoxia conditions was detected. The effect of YTHDC1 recombinant protein on HPAEC proliferation was detected by Cell Counting Kit-8 (CCK8). Results Dysregulation of m6A regulators was observed in mouse PAECs. The m6A reader of YTHDC1 was decreased in PAECs in scRNA data and RNAseq data of isolated PAECs of SuHx PH models. Downregulation of YTHDC1 was caused by hypoxia in PAECs in vitro and similar results was observed in PAECs of SuHx PH mouse models. Next, YTHDC1 recombinant protein was found to inhibit HPAECs proliferation. The DEGs targeted by YTHDC1 were enriched in angiogenesis, endothelial cell migration, fluid shear stress, and stem cell maintenance. Analysis indicates that interactions among endothelial cells, smooth muscle cells, fibroblasts, and immune cells, mediated by specific YTHDC1 target genes (e.g., PTPRC-MRC1, ITBG2-ICAM1, COL4A1-CD44), contribute to PH development. Also, the YTHDC1 expression were consistent with Thioredoxin interacting protein (TXNIP). What's more, the predicted transcription factors showed that NFKB1, Foxd3 may be involved in the regulation of YTHDC1. Lastly, our data suggest that YTHDC1 may be involved in regulating PAECs dysfunction through lncRNA/miRNA/mRNA network. Conclusion For the first time, we analyzed changes in the expression and biological functions of m6A regulators in SuHx PH mouse models. We causatively linked YTHDC1 to PAECs dysfunction, providing novel insight into and opportunities to diagnose and treat PH.
Collapse
Affiliation(s)
| | | | - Xiangyu Chen
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87, Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Wenjuan He
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87, Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Jing Hua
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87, Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Qiang Li
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87, Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - YingQun Ji
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87, Dingjiaqiao, Gulou District, Nanjing, 210009, China
| |
Collapse
|
160
|
Davoudnia B, Dadkhodaie A, Moghadam A, Heidari B, Yassaie M. Transcriptome analysis in Aegilops tauschii unravels further insights into genetic control of stripe rust resistance. PLANTA 2024; 259:70. [PMID: 38345645 DOI: 10.1007/s00425-024-04347-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/14/2024] [Indexed: 02/15/2024]
Abstract
MAIN CONCLUSION The Aegilops tauschii resistant accession prevented the pathogen colonization by controlling the sugar flow and triggering the hypersensitive reaction. This study suggested that NBS-LRRs probably induce resistance through bHLH by controlling JA- and SA-dependent pathways. Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst) is one of wheat's most destructive fungal diseases that causes a severe yield reduction worldwide. The most effective and economically-friendly strategy to manage this disease is genetic resistance which can be achieved through deploying new and effective resistance genes. Aegilops tauschii, due to its small genome and co-evolution with Pst, can provide detailed information about underlying resistance mechanisms. Hence, we used RNA-sequencing approach to identify the transcriptome variations of two contrasting resistant and susceptible Ae. tauschii accessions in interaction with Pst and differentially expressed genes (DEGs) for resistance to stripe rust. Gene ontology, pathway analysis, and search for functional domains, transcription regulators, resistance genes, and protein-protein interactions were used to interpret the results. The genes encoding NBS-LRR, CC-NBS-kinase, and phenylalanine ammonia-lyase, basic helix-loop-helix (bHLH)-, basic-leucine zipper (bZIP)-, APETALA2 (AP2)-, auxin response factor (ARF)-, GATA-, and LSD-like transcription factors were up-regulated exclusively in the resistant accession. The key genes involved in response to salicylic acid, amino sugar and nucleotide sugar metabolism, and hypersensitive response contributed to plant defense against stripe rust. The activation of jasmonic acid biosynthesis and starch and sucrose metabolism pathways under Pst infection in the susceptible accession explained the colonization of the host. Overall, this study can fill the gaps in the literature on host-pathogen interaction and enrich the Ae. tauschii transcriptome sequence information. It also suggests candidate genes that could guide future breeding programs attempting to develop rust-resistant cultivars.
Collapse
Affiliation(s)
- Behnam Davoudnia
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran
| | - Ali Dadkhodaie
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran.
| | - Ali Moghadam
- Institute of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Bahram Heidari
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran
| | - Mohsen Yassaie
- Seed and Plant Improvement Research Department, Fars Agricultural and Natural Resources Research and Education Center, AREEO, Shiraz, Iran
| |
Collapse
|
161
|
Seneviratne JA, Ho WWH, Glancy E, Eckersley-Maslin MA. A low-input high resolution sequential chromatin immunoprecipitation method captures genome-wide dynamics of bivalent chromatin. Epigenetics Chromatin 2024; 17:3. [PMID: 38336688 PMCID: PMC10858499 DOI: 10.1186/s13072-024-00527-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Bivalent chromatin is an exemplar of epigenetic plasticity. This co-occurrence of active-associated H3K4me3 and inactive-associated H3K27me3 histone modifications on opposite tails of the same nucleosome occurs predominantly at promoters that are poised for future transcriptional upregulation or terminal silencing. We know little of the dynamics, resolution, and regulation of this chromatin state outside of embryonic stem cells where it was first described. This is partly due to the technical challenges distinguishing bone-fide bivalent chromatin, where both marks are on the same nucleosome, from allelic or sample heterogeneity where there is a mix of H3K4me3-only and H3K27me3-only mononucleosomes. RESULTS Here, we present a robust and sensitive method to accurately map bivalent chromatin genome-wide, along with controls, from as little as 2 million cells. We optimized and refined the sequential ChIP protocol which uses two sequential overnight immunoprecipitation reactions to robustly purify nucleosomes that are truly bivalent and contain both H3K4me3 and H3K27me3 modifications. Our method generates high quality genome-wide maps with strong peak enrichment and low background, which can be analyzed using standard bioinformatic packages. Using this method, we detect 8,789 bivalent regions in mouse embryonic stem cells corresponding to 3,918 predominantly CpG rich and developmentally regulated gene promoters. Furthermore, profiling Dppa2/4 knockout mouse embryonic stem cells, which lose both H3K4me3 and H3K27me3 at approximately 10% of bivalent promoters, demonstrated the ability of our method to capture bivalent chromatin dynamics. CONCLUSIONS Our optimized sequential reChIP method enables high-resolution genome-wide assessment of bivalent chromatin together with all required controls in as little as 2 million cells. We share a detailed protocol and guidelines that will enable bivalent chromatin landscapes to be generated in a range of cellular contexts, greatly enhancing our understanding of bivalent chromatin and epigenetic plasticity beyond embryonic stem cells.
Collapse
Affiliation(s)
- Janith A Seneviratne
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, 3010, Australia
| | - William W H Ho
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
| | - Eleanor Glancy
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, 3010, Australia
| | - Melanie A Eckersley-Maslin
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, 3010, Australia.
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
162
|
Carramolino L, Albarrán-Juárez J, Markov A, Hernández-SanMiguel E, Sharysh D, Cumbicus V, Morales-Cano D, Labrador-Cantarero V, Møller PL, Nogales P, Benguria A, Dopazo A, Sanchez-Cabo F, Torroja C, Bentzon JF. Cholesterol lowering depletes atherosclerotic lesions of smooth muscle cell-derived fibromyocytes and chondromyocytes. NATURE CARDIOVASCULAR RESEARCH 2024; 3:203-220. [PMID: 39196190 DOI: 10.1038/s44161-023-00412-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/14/2023] [Indexed: 08/29/2024]
Abstract
Drugs that lower plasma apolipoprotein B (ApoB)-containing lipoproteins are central to treating advanced atherosclerosis and provide partial protection against clinical events. Previous research showed that lowering ApoB-containing lipoproteins stops plaque inflammation, but how these drugs affect the heterogeneous population of plaque cells derived from smooth muscle cells (SMCs) is unknown. SMC-derived cells are the main cellular component of atherosclerotic lesions and the source of structural components that determine the size of plaques and their propensity to rupture and trigger thrombosis, the proximate cause of heart attack and stroke. Using lineage tracing and single-cell techniques to investigate the full SMC-derived cellular compartment in progressing and regressing plaques in mice, here we show that lowering ApoB-containing lipoproteins reduces nuclear factor kappa-light-chain-enhancer of activated B cells signaling in SMC-derived fibromyocytes and chondromyocytes and leads to depletion of these abundant cell types from plaques. These results uncover an important mechanism through which cholesterol-lowering drugs can achieve plaque regression.
Collapse
MESH Headings
- Animals
- Plaque, Atherosclerotic/pathology
- Plaque, Atherosclerotic/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/drug therapy
- Atherosclerosis/metabolism
- Disease Models, Animal
- Chondrocytes/drug effects
- Chondrocytes/pathology
- Chondrocytes/metabolism
- Signal Transduction/drug effects
- Mice, Inbred C57BL
- Anticholesteremic Agents/pharmacology
- Anticholesteremic Agents/therapeutic use
- Male
- Cholesterol/metabolism
- Cholesterol/blood
- Mice
- Aortic Diseases/pathology
- Aortic Diseases/metabolism
- Single-Cell Analysis
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- NF-kappa B/metabolism
Collapse
Affiliation(s)
| | - Julián Albarrán-Juárez
- Atherosclerosis Research Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anton Markov
- Atherosclerosis Research Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Diana Sharysh
- Atherosclerosis Research Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Vanessa Cumbicus
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Daniel Morales-Cano
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Atherosclerosis Research Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Paula Nogales
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Alberto Benguria
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Ana Dopazo
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | | | - Carlos Torroja
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Jacob F Bentzon
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.
- Atherosclerosis Research Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
163
|
Tao L, Qin Z, Lin L, Guo H, Liang Z, Wang T, Xu J, Xu M, Hua F, Su X. Long noncoding RNA lncPostn links TGF-β and p53 signaling pathways to transcriptional regulation of cardiac fibrosis. Am J Physiol Cell Physiol 2024; 326:C457-C472. [PMID: 38145299 DOI: 10.1152/ajpcell.00515.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Cardiac fibroblasts are essential for the homeostasis of the extracellular matrix, whose remodeling in many cardiovascular diseases leads to fibrosis. Long noncoding RNAs (lncRNAs) are associated with cardiac pathologies, but their functions in cardiac fibroblasts and contributions to cardiac fibrosis remain unclear. Here, we aimed to identify fibroblast-enriched lncRNAs essential in myocardial infarction (MI)-induced fibrosis and explore the molecular mechanisms responsible for their functions. Global lncRNA profiling was performed in post-MI mouse heart ventricles and transforming growth factor-β (TGF-β)-treated primary cardiac fibroblasts and confirmed in published data sets. We identified the cardiac fibroblast-enriched lncPostn, whose expression is stimulated in cardiac fibrosis induced by MI and the extracellular growth factor TGF-β. The promoter of lncPostn contains a functional TGF-β response element, and lncPostn knockdown suppresses TGF-β-stimulated cardiac fibroblast activation and improves cardiac functions post-MI. LncPostn stabilizes and recruits EP300 to the profibrotic periostin's promoter, representing a major mechanism for its transcriptional activation. Moreover, both MI and TGF-β enhance lncPostn expression while suppressing the cellular growth gatekeeper p53. TGF-β and p53 knockdown-induced profibrotic gene expression and fibrosis occur mainly through lncPostn and show additive effects. Finally, levels of serum lncPostn are significantly increased in patients' postacute MI and show a strong correlation with fibrosis markers, revealing a potential biomarker of cardiac fibrosis. Our findings identify the fibroblast-enriched lncPostn as a potent profibrotic factor, providing a transcriptional link between TGF-β and p53 signaling pathways to regulate fibrosis in cardiac fibroblasts.NEW & NOTEWORTHY Cardiac fibroblasts are essential for the homeostasis of the extracellular matrix, whose remodeling in many cardiovascular diseases leads to fibrosis. Long noncoding RNAs are functional and contribute to the biological processes of cardiovascular development and disorders. Our findings identify the fibroblast-enriched lncPostn as a potent profibrotic factor and demonstrate that serum lncPostn level may serve as a potential biomarker of human cardiac fibrosis postacute myocardial infarction.
Collapse
Affiliation(s)
- Lichan Tao
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Zihan Qin
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Lin Lin
- Department of Biochemistry and Molecular Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, People's Republic of China
| | - Haoran Guo
- Department of Biochemistry and Molecular Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, People's Republic of China
| | - Zi Liang
- Department of Biochemistry and Molecular Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, People's Republic of China
| | - Tingting Wang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Jiani Xu
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Min Xu
- Department of Echocardiography, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Fei Hua
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China
| | - Xiong Su
- Department of Biochemistry and Molecular Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
164
|
Yang M, Niu C. KLF9‑regulated FBXO31 inhibits the progression of endometrial cancer and enhances the sensitivity of endometrial cancer cells to cisplatin. Exp Ther Med 2024; 27:54. [PMID: 38234628 PMCID: PMC10790170 DOI: 10.3892/etm.2023.12342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/28/2023] [Indexed: 01/19/2024] Open
Abstract
Endometrial cancer (EC) is one of the most common malignancies with an increasing annual incidence. F-box only protein 31 (FBXO31) plays a significant regulatory role in several types of cancer. The transcription factor Krüppel-like factor 9 (KLF9) of FBXO31 is reduced in EC as a tumor suppressor. However, their particular regulatory role and mechanism in EC have not been previously reported. Therefore, the UALCAN database was used to predict the expression levels of FBXO31 in EC. In addition, the regulatory effect of FBXO31 on EC cell proliferation, invasion, migration, apoptosis and cisplatin (DDP) sensitivity was investigated at the cellular level. The association between KLF9 and FBXO31 was predicted using the JASPAR database and verified by chromatin immunoprecipitation and luciferase reporter assays. Finally, the regulatory effects of KLF9 and FBXO31 overexpression or silencing were also explored. The results demonstrated that FBXO31 was poorly expressed in EC. Additionally, FBXO31 overexpression inhibited the malignant progression of EC cells and enhanced their sensitivity to DDP. Furthermore, KLF9 promoted FBXO31 transcription. Overall, the present study suggested that the KLF9-mediated regulation of FBXO31 could inhibit the progression of EC and enhance the sensitivity of EC cells to DDP.
Collapse
Affiliation(s)
- Mudan Yang
- Department of Infectious Diseases (Fever Clinic), Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, P.R. China
| | - Changmin Niu
- School of Nursing, School of Public Health, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| |
Collapse
|
165
|
Xu J, Abdulsalam Khaleel R, Zaidan HK, Faisal Mutee A, Fahmi Fawy K, Gehlot A, Abbas AH, Arias Gonzáles JL, Amin AH, Ruiz-Balvin MC, Imannezhad S, Bahrami A, Akhavan-Sigari R. Discovery of common molecular signatures and drug repurposing for COVID-19/Asthma comorbidity: ACE2 and multi-partite networks. Cell Cycle 2024; 23:405-434. [PMID: 38640424 PMCID: PMC11529202 DOI: 10.1080/15384101.2024.2340859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/15/2024] [Accepted: 04/04/2024] [Indexed: 04/21/2024] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is identified as the functional receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the ongoing global coronavirus disease-2019 (COVID-19) pandemic. This study aimed to elucidate potential therapeutic avenues by scrutinizing approved drugs through the identification of the genetic signature associated with SARS-CoV-2 infection in individuals with asthma. This exploration was conducted through an integrated analysis, encompassing interaction networks between the ACE2 receptor and common host (co-host) factors implicated in COVID-19/asthma comorbidity. The comprehensive analysis involved the identification of common differentially expressed genes (cDEGs) and hub-cDEGs, functional annotations, interaction networks, gene set variation analysis (GSVA), gene set enrichment analysis (GSEA), and module construction. Interaction networks were used to identify overlapping disease modules and potential drug targets. Computational biology and molecular docking analyzes were utilized to discern functional drug modules. Subsequently, the impact of the identified drugs on the expression of hub-cDEGs was experimentally validated using a mouse model. A total of 153 cDEGs or co-host factors associated with ACE2 were identified in the COVID-19 and asthma comorbidity. Among these, seven significant cDEGs and proteins - namely, HRAS, IFNG, JUN, CDH1, TLR4, ICAM1, and SCD-were recognized as pivotal host factors linked to ACE2. Regulatory network analysis of hub-cDEGs revealed eight top-ranked transcription factors (TFs) proteins and nine microRNAs as key regulatory factors operating at the transcriptional and post-transcriptional levels, respectively. Molecular docking simulations led to the proposal of 10 top-ranked repurposable drug molecules (Rapamycin, Ivermectin, Everolimus, Quercetin, Estradiol, Entrectinib, Nilotinib, Conivaptan, Radotinib, and Venetoclax) as potential treatment options for COVID-19 in individuals with comorbid asthma. Validation analysis demonstrated that Rapamycin effectively inhibited ICAM1 expression in the HDM-stimulated mice group (p < 0.01). This study unveils the common pathogenesis and genetic signature underlying asthma and SARS-CoV-2 infection, delineated by the interaction networks of ACE2-related host factors. These findings provide valuable insights for the design and discovery of drugs aimed at more effective therapeutics within the context of lung disease comorbidities.
Collapse
Affiliation(s)
- Jiajun Xu
- College of Veterinary & Life Sciences, the University of Glasgow, Glasgow, UK
| | | | | | | | - Khaled Fahmi Fawy
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Anita Gehlot
- Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, India
| | | | - José Luis Arias Gonzáles
- Department of Social Sciences, Faculty of Social Studies, University of British Columbia, Vancouver, Canada
| | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | | | - Shima Imannezhad
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Bahrami
- Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, Munich, Germany
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum, Warsaw, Poland
| |
Collapse
|
166
|
Brunner TM, Serve S, Marx AF, Fadejeva J, Saikali P, Dzamukova M, Durán-Hernández N, Kommer C, Heinrich F, Durek P, Heinz GA, Höfer T, Mashreghi MF, Kühn R, Pinschewer DD, Löhning M. A type 1 immunity-restricted promoter of the IL-33 receptor gene directs antiviral T-cell responses. Nat Immunol 2024; 25:256-267. [PMID: 38172258 PMCID: PMC10834369 DOI: 10.1038/s41590-023-01697-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 11/02/2023] [Indexed: 01/05/2024]
Abstract
The pleiotropic alarmin interleukin-33 (IL-33) drives type 1, type 2 and regulatory T-cell responses via its receptor ST2. Subset-specific differences in ST2 expression intensity and dynamics suggest that transcriptional regulation is key in orchestrating the context-dependent activity of IL-33-ST2 signaling in T-cell immunity. Here, we identify a previously unrecognized alternative promoter in mice and humans that is located far upstream of the curated ST2-coding gene and drives ST2 expression in type 1 immunity. Mice lacking this promoter exhibit a selective loss of ST2 expression in type 1- but not type 2-biased T cells, resulting in impaired expansion of cytotoxic T cells (CTLs) and T-helper 1 cells upon viral infection. T-cell-intrinsic IL-33 signaling via type 1 promoter-driven ST2 is critical to generate a clonally diverse population of antiviral short-lived effector CTLs. Thus, lineage-specific alternative promoter usage directs alarmin responsiveness in T-cell subsets and offers opportunities for immune cell-specific targeting of the IL-33-ST2 axis in infections and inflammatory diseases.
Collapse
Affiliation(s)
- Tobias M Brunner
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany.
| | - Sebastian Serve
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Berlin, Germany
| | - Anna-Friederike Marx
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jelizaveta Fadejeva
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Philippe Saikali
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Maria Dzamukova
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Nayar Durán-Hernández
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Christoph Kommer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Frederik Heinrich
- Therapeutic Gene Regulation, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Pawel Durek
- Therapeutic Gene Regulation, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Gitta A Heinz
- Therapeutic Gene Regulation, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Mir-Farzin Mashreghi
- Therapeutic Gene Regulation, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Ralf Kühn
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Daniel D Pinschewer
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Max Löhning
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany.
| |
Collapse
|
167
|
Tian S, Chen X, Wu W, Lin H, Qing X, Liu S, Wang B, Xiao Y, Shao Z, Peng Y. Nucleus pulposus cells regulate macrophages in degenerated intervertebral discs via the integrated stress response-mediated CCL2/7-CCR2 signaling pathway. Exp Mol Med 2024; 56:408-421. [PMID: 38316963 PMCID: PMC10907345 DOI: 10.1038/s12276-024-01168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 02/07/2024] Open
Abstract
Lower back pain (LBP), which is a primary cause of disability, is largely attributed to intervertebral disc degeneration (IDD). Macrophages (MΦs) in degenerated intervertebral discs (IVDs) form a chronic inflammatory microenvironment, but how MΦs are recruited to degenerative segments and transform into a proinflammatory phenotype remains unclear. We evaluated chemokine expression in degenerated nucleus pulposus cells (NPCs) to clarify the role of NPCs in the establishment of an inflammatory microenvironment in IDD and explored the mechanisms. We found that the production of C-C motif chemokine ligand 2 (CCL2) and C-C motif chemokine ligand 7 (CCL7) was significantly increased in NPCs under inflammatory conditions, and blocking CCL2/7 and their receptor, C-C chemokine receptor type 2(CCR2), inhibited the inductive effects of NPCs on MΦ infiltration and proinflammatory polarization. Moreover, activation of the integrated stress response (ISR) was obvious in IDD, and ISR inhibition reduced the production of CCL2/7 in NPCs. Further investigation revealed that activating Transcription Factor 3 (ATF3) responded to ISR activation, and ChIP-qPCR verified the DNA-binding activity of ATF3 on CCL2/7 promoters. In addition, we found that Toll-like receptor 4 (TLR4) inhibition modulated ISR activation, and TLR4 regulated the accumulation of mitochondrial reactive oxygen species (mtROS) and double-stranded RNA (dsRNA). Downregulating the level of mtROS reduced the amount of dsRNA and ISR activation. Deactivating the ISR or blocking CCL2/7 release alleviated inflammation and the progression of IDD in vivo. Moreover, MΦ infiltration and IDD were inhibited in CCR2-knockout mice. In conclusion, this study highlights the critical role of TLR4/mtROS/dsRNA axis-mediated ISR activation in the production of CCL2/7 and the progression of IDD, which provides promising therapeutic strategies for discogenic LBP.
Collapse
Affiliation(s)
- Shuo Tian
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Xuanzuo Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangcheng Qing
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sheng Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - BaiChuan Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Xiao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yizhong Peng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
168
|
Deng Z, Loyher PL, Lazarov T, Li L, Shen Z, Bhinder B, Yang H, Zhong Y, Alberdi A, Massague J, Sun JC, Benezra R, Glass CK, Elemento O, Iacobuzio-Donahue CA, Geissmann F. The nuclear factor ID3 endows macrophages with a potent anti-tumour activity. Nature 2024; 626:864-873. [PMID: 38326607 PMCID: PMC10881399 DOI: 10.1038/s41586-023-06950-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 12/07/2023] [Indexed: 02/09/2024]
Abstract
Macrophage activation is controlled by a balance between activating and inhibitory receptors1-7, which protect normal tissues from excessive damage during infection8,9 but promote tumour growth and metastasis in cancer7,10. Here we report that the Kupffer cell lineage-determining factor ID3 controls this balance and selectively endows Kupffer cells with the ability to phagocytose live tumour cells and orchestrate the recruitment, proliferation and activation of natural killer and CD8 T lymphoid effector cells in the liver to restrict the growth of a variety of tumours. ID3 shifts the macrophage inhibitory/activating receptor balance to promote the phagocytic and lymphoid response, at least in part by buffering the binding of the transcription factors ELK1 and E2A at the SIRPA locus. Furthermore, loss- and gain-of-function experiments demonstrate that ID3 is sufficient to confer this potent anti-tumour activity to mouse bone-marrow-derived macrophages and human induced pluripotent stem-cell-derived macrophages. Expression of ID3 is therefore necessary and sufficient to endow macrophages with the ability to form an efficient anti-tumour niche, which could be harnessed for cell therapy in cancer.
Collapse
Affiliation(s)
- Zihou Deng
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pierre-Louis Loyher
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tomi Lazarov
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Li Li
- Graduate Center, City University of New York, New York, NY, USA
| | - Zeyang Shen
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Bhavneet Bhinder
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell, New York, NY, USA
| | - Hairu Yang
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yi Zhong
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Araitz Alberdi
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joan Massague
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph C Sun
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert Benezra
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher K Glass
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell, New York, NY, USA
| | | | - Frederic Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
169
|
Wang M, Liu Y, Sun R, Liu F, Li J, Yan L, Zhang J, Xie X, Li D, Wang Y, Li S, Zhu X, Li R, Lu F, Xiao Z, Wang H. Single-nucleus multi-omic profiling of human placental syncytiotrophoblasts identifies cellular trajectories during pregnancy. Nat Genet 2024; 56:294-305. [PMID: 38267607 PMCID: PMC10864176 DOI: 10.1038/s41588-023-01647-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/11/2023] [Indexed: 01/26/2024]
Abstract
The human placenta has a vital role in ensuring a successful pregnancy. Despite the growing body of knowledge about its cellular compositions and functions, there has been limited research on the heterogeneity of the billions of nuclei within the syncytiotrophoblast (STB), a multinucleated entity primarily responsible for placental function. Here we conducted integrated single-nucleus RNA sequencing and single-nucleus ATAC sequencing analyses of human placentas from early and late pregnancy. Our findings demonstrate the dynamic heterogeneity and developmental trajectories of STB nuclei and their correspondence with human trophoblast stem cell (hTSC)-derived STB. Furthermore, we identified transcription factors associated with diverse STB nuclear lineages through their gene regulatory networks and experimentally confirmed their function in hTSC and trophoblast organoid-derived STBs. Together, our data provide insights into the heterogeneity of human STB and represent a valuable resource for interpreting associated pregnancy complications.
Collapse
Affiliation(s)
- Meijiao Wang
- The Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yawei Liu
- The Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
- Medical Center of Soochow University, Suzhou, China
- Suzhou Dushu Lake Hospital, Suzhou, China
| | - Run Sun
- The Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fenting Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China
| | - Jiaqian Li
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Long Yan
- The Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jixiang Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinwei Xie
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Dongxu Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yiming Wang
- The Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shiwen Li
- The Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xili Zhu
- The Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China.
| | - Falong Lu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Zhenyu Xiao
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- School of Life Science, Beijing Institute of Technology, Beijing, China.
| | - Hongmei Wang
- The Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
170
|
Chopy M, Cavallini-Speisser Q, Chambrier P, Morel P, Just J, Hugouvieux V, Rodrigues Bento S, Zubieta C, Vandenbussche M, Monniaux M. Cell layer-specific expression of the homeotic MADS-box transcription factor PhDEF contributes to modular petal morphogenesis in petunia. THE PLANT CELL 2024; 36:324-345. [PMID: 37804091 PMCID: PMC10827313 DOI: 10.1093/plcell/koad258] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023]
Abstract
Floral homeotic MADS-box transcription factors ensure the correct morphogenesis of floral organs, which are organized in different cell layers deriving from distinct meristematic layers. How cells from these distinct layers acquire their respective identities and coordinate their growth to ensure normal floral organ morphogenesis is unresolved. Here, we studied petunia (Petunia × hybrida) petals that form a limb and tube through congenital fusion. We identified petunia mutants (periclinal chimeras) expressing the B-class MADS-box gene DEFICIENS in the petal epidermis or in the petal mesophyll, called wico and star, respectively. Strikingly, wico flowers form a strongly reduced tube while their limbs are almost normal, while star flowers form a normal tube but greatly reduced and unpigmented limbs, showing that petunia petal morphogenesis is highly modular. These mutants highlight the layer-specific roles of PhDEF during petal development. We explored the link between PhDEF and petal pigmentation, a well-characterized limb epidermal trait. The anthocyanin biosynthesis pathway was strongly downregulated in star petals, including its major regulator ANTHOCYANIN2 (AN2). We established that PhDEF directly binds to the AN2 terminator in vitro and in vivo, suggesting that PhDEF might regulate AN2 expression and therefore petal epidermis pigmentation. Altogether, we show that cell layer-specific homeotic activity in petunia petals differently impacts tube and limb development, revealing the relative importance of the different cell layers in the modular architecture of petunia petals.
Collapse
Affiliation(s)
- Mathilde Chopy
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69007, France
| | - Quentin Cavallini-Speisser
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69007, France
| | - Pierre Chambrier
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69007, France
| | - Patrice Morel
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69007, France
| | - Jérémy Just
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69007, France
| | - Véronique Hugouvieux
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, Grenoble 38000, France
| | - Suzanne Rodrigues Bento
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69007, France
| | - Chloe Zubieta
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, Grenoble 38000, France
| | - Michiel Vandenbussche
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69007, France
| | - Marie Monniaux
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69007, France
| |
Collapse
|
171
|
Yan F, Suzuki A, Iwaya C, Pei G, Chen X, Yoshioka H, Yu M, Simon LM, Iwata J, Zhao Z. Single-cell multiomics decodes regulatory programs for mouse secondary palate development. Nat Commun 2024; 15:821. [PMID: 38280850 PMCID: PMC10821874 DOI: 10.1038/s41467-024-45199-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 01/17/2024] [Indexed: 01/29/2024] Open
Abstract
Perturbations in gene regulation during palatogenesis can lead to cleft palate, which is among the most common congenital birth defects. Here, we perform single-cell multiome sequencing and profile chromatin accessibility and gene expression simultaneously within the same cells (n = 36,154) isolated from mouse secondary palate across embryonic days (E) 12.5, E13.5, E14.0, and E14.5. We construct five trajectories representing continuous differentiation of cranial neural crest-derived multipotent cells into distinct lineages. By linking open chromatin signals to gene expression changes, we characterize the underlying lineage-determining transcription factors. In silico perturbation analysis identifies transcription factors SHOX2 and MEOX2 as important regulators of the development of the anterior and posterior palate, respectively. In conclusion, our study charts epigenetic and transcriptional dynamics in palatogenesis, serving as a valuable resource for further cleft palate research.
Collapse
Affiliation(s)
- Fangfang Yan
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Akiko Suzuki
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri - Kansas City, Kansas City, Missouri, 64108, USA
| | - Chihiro Iwaya
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Xian Chen
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Hiroki Yoshioka
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Meifang Yu
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Lukas M Simon
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Junichi Iwata
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA.
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA.
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
172
|
Zhang L, Wang Z, Tang F, Wu M, Pan Y, Bai S, Lu B, Zhong S, Xie Y. Identification of Senescence-Associated Biomarkers in Diabetic Glomerulopathy Using Integrated Bioinformatics Analysis. J Diabetes Res 2024; 2024:5560922. [PMID: 38292407 PMCID: PMC10827377 DOI: 10.1155/2024/5560922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 02/01/2024] Open
Abstract
Background Cellular senescence is thought to play a significant role in the onset and development of diabetic nephropathy. The goal of this study was to explore potential biomarkers associated with diabetic glomerulopathy from the perspective of senescence. Methods Datasets about human glomerular biopsy samples related to diabetic nephropathy were systematically obtained from the Gene Expression Omnibus database. Hub senescence-associated genes were investigated by differential gene analysis and Least Absolute Shrinkage and Selection Operator analysis. Cluster analysis was employed to identify senescence molecular subtypes. A single-cell dataset was used to validate the above findings and further evaluate the senescence environment. The relationship between these genes and the glomerular filtration rate was explored based on the Nephroseq database. These gene expressions have also been explored in various kidney diseases. Results Twelve representative senescence-associated genes (VEGFA, IQGAP2, JUN, PLAT, ETS2, ANG, MMP14, VEGFC, SERPINE2, CXCR2, PTGES, and EGF) were finally identified. Biological changes in immune inflammatory response, cell cycle regulation, metabolic regulation, and immune microenvironment have been observed across different molecular subtypes. The above results were also validated based on single-cell analysis. Additionally, we also identified several significantly altered cell communication pathways, including COLLAGEN, PTN, LAMININ, SPP1, and VEGF. Finally, almost all these genes could well predict the occurrence of diabetic glomerulopathy based on receiver operating characteristic analysis and are associated with the glomerular filtration rate. These genes are differently expressed in various kidney diseases. Conclusion The present study identified potential senescence-associated biomarkers and further explored the heterogeneity of diabetic glomerulopathy that might provide new insights into the diagnosis, assessment, management, and personalized treatment of DN.
Collapse
Affiliation(s)
- Li Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou 215008, Jiangsu, China
- Department of Endocrinology, The First People's Hospital of Kunshan, Kunshan 215300, Jiangsu, China
| | - Zhaoxiang Wang
- Department of Endocrinology, The First People's Hospital of Kunshan, Kunshan 215300, Jiangsu, China
| | - Fengyan Tang
- Department of Endocrinology, The First People's Hospital of Kunshan, Kunshan 215300, Jiangsu, China
| | - Menghuan Wu
- Department of Cardiology, Xuyi People's Hospital, Xuyi 211700, Jiangsu, China
| | - Ying Pan
- Department of Endocrinology, The First People's Hospital of Kunshan, Kunshan 215300, Jiangsu, China
| | - Song Bai
- Department of Cardiology, Xuyi People's Hospital, Xuyi 211700, Jiangsu, China
| | - Bing Lu
- Department of Endocrinology, The First People's Hospital of Kunshan, Kunshan 215300, Jiangsu, China
| | - Shao Zhong
- Department of Endocrinology, The First People's Hospital of Kunshan, Kunshan 215300, Jiangsu, China
| | - Ying Xie
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou 215008, Jiangsu, China
| |
Collapse
|
173
|
Gisch DL, Brennan M, Lake BB, Basta J, Keller MS, Melo Ferreira R, Akilesh S, Ghag R, Lu C, Cheng YH, Collins KS, Parikh SV, Rovin BH, Robbins L, Stout L, Conklin KY, Diep D, Zhang B, Knoten A, Barwinska D, Asghari M, Sabo AR, Ferkowicz MJ, Sutton TA, Kelly KJ, De Boer IH, Rosas SE, Kiryluk K, Hodgin JB, Alakwaa F, Winfree S, Jefferson N, Türkmen A, Gaut JP, Gehlenborg N, Phillips CL, El-Achkar TM, Dagher PC, Hato T, Zhang K, Himmelfarb J, Kretzler M, Mollah S, Jain S, Rauchman M, Eadon MT. The chromatin landscape of healthy and injured cell types in the human kidney. Nat Commun 2024; 15:433. [PMID: 38199997 PMCID: PMC10781985 DOI: 10.1038/s41467-023-44467-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
There is a need to define regions of gene activation or repression that control human kidney cells in states of health, injury, and repair to understand the molecular pathogenesis of kidney disease and design therapeutic strategies. Comprehensive integration of gene expression with epigenetic features that define regulatory elements remains a significant challenge. We measure dual single nucleus RNA expression and chromatin accessibility, DNA methylation, and H3K27ac, H3K4me1, H3K4me3, and H3K27me3 histone modifications to decipher the chromatin landscape and gene regulation of the kidney in reference and adaptive injury states. We establish a spatially-anchored epigenomic atlas to define the kidney's active, silent, and regulatory accessible chromatin regions across the genome. Using this atlas, we note distinct control of adaptive injury in different epithelial cell types. A proximal tubule cell transcription factor network of ELF3, KLF6, and KLF10 regulates the transition between health and injury, while in thick ascending limb cells this transition is regulated by NR2F1. Further, combined perturbation of ELF3, KLF6, and KLF10 distinguishes two adaptive proximal tubular cell subtypes, one of which manifested a repair trajectory after knockout. This atlas will serve as a foundation to facilitate targeted cell-specific therapeutics by reprogramming gene regulatory networks.
Collapse
Affiliation(s)
- Debora L Gisch
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | - Blue B Lake
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- San Diego Institute of Science, Altos Labs, San Diego, CA, USA
| | - Jeannine Basta
- Washington University in Saint Louis, St. Louis, MO, 63103, USA
| | | | | | | | - Reetika Ghag
- Washington University in Saint Louis, St. Louis, MO, 63103, USA
| | - Charles Lu
- Washington University in Saint Louis, St. Louis, MO, 63103, USA
| | - Ying-Hua Cheng
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | - Samir V Parikh
- Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Brad H Rovin
- Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Lynn Robbins
- St. Louis Veteran Affairs Medical Center, St. Louis, MO, 63106, USA
| | - Lisa Stout
- Washington University in Saint Louis, St. Louis, MO, 63103, USA
| | - Kimberly Y Conklin
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Dinh Diep
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Bo Zhang
- Washington University in Saint Louis, St. Louis, MO, 63103, USA
| | - Amanda Knoten
- Washington University in Saint Louis, St. Louis, MO, 63103, USA
| | - Daria Barwinska
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mahla Asghari
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Angela R Sabo
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | - Timothy A Sutton
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | | | - Sylvia E Rosas
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | | | | | | | - Seth Winfree
- University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Nichole Jefferson
- Kidney Precision Medicine Project Community Engagement Committee, Dallas, TX, USA
| | - Aydın Türkmen
- Istanbul School of Medicine, Division of Nephrology, Istanbul, Turkey
| | - Joseph P Gaut
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | | | | | | | - Pierre C Dagher
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Takashi Hato
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kun Zhang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | | | | | - Shamim Mollah
- Washington University in Saint Louis, St. Louis, MO, 63103, USA
| | - Sanjay Jain
- Washington University in Saint Louis, St. Louis, MO, 63103, USA.
| | - Michael Rauchman
- Washington University in Saint Louis, St. Louis, MO, 63103, USA.
| | - Michael T Eadon
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
174
|
Viner C, Ishak CA, Johnson J, Walker NJ, Shi H, Sjöberg-Herrera MK, Shen SY, Lardo SM, Adams DJ, Ferguson-Smith AC, De Carvalho DD, Hainer SJ, Bailey TL, Hoffman MM. Modeling methyl-sensitive transcription factor motifs with an expanded epigenetic alphabet. Genome Biol 2024; 25:11. [PMID: 38191487 PMCID: PMC10773111 DOI: 10.1186/s13059-023-03070-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/21/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Transcription factors bind DNA in specific sequence contexts. In addition to distinguishing one nucleobase from another, some transcription factors can distinguish between unmodified and modified bases. Current models of transcription factor binding tend not to take DNA modifications into account, while the recent few that do often have limitations. This makes a comprehensive and accurate profiling of transcription factor affinities difficult. RESULTS Here, we develop methods to identify transcription factor binding sites in modified DNA. Our models expand the standard A/C/G/T DNA alphabet to include cytosine modifications. We develop Cytomod to create modified genomic sequences and we also enhance the MEME Suite, adding the capacity to handle custom alphabets. We adapt the well-established position weight matrix (PWM) model of transcription factor binding affinity to this expanded DNA alphabet. Using these methods, we identify modification-sensitive transcription factor binding motifs. We confirm established binding preferences, such as the preference of ZFP57 and C/EBPβ for methylated motifs and the preference of c-Myc for unmethylated E-box motifs. CONCLUSIONS Using known binding preferences to tune model parameters, we discover novel modified motifs for a wide array of transcription factors. Finally, we validate our binding preference predictions for OCT4 using cleavage under targets and release using nuclease (CUT&RUN) experiments across conventional, methylation-, and hydroxymethylation-enriched sequences. Our approach readily extends to other DNA modifications. As more genome-wide single-base resolution modification data becomes available, we expect that our method will yield insights into altered transcription factor binding affinities across many different modifications.
Collapse
Affiliation(s)
- Coby Viner
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Charles A Ishak
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James Johnson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Nicolas J Walker
- Department of Genetics, University of Cambridge, Cambridge, England
| | - Hui Shi
- Department of Genetics, University of Cambridge, Cambridge, England
| | - Marcela K Sjöberg-Herrera
- Wellcome Sanger Institute, Cambridge, England
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Shu Yi Shen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Santana M Lardo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Sarah J Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Timothy L Bailey
- Department of Pharmacology, University of Nevada, Reno, Reno, NV, USA
| | - Michael M Hoffman
- Department of Computer Science, University of Toronto, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada.
| |
Collapse
|
175
|
Omori Y, Burgess SM. The Goldfish Genome and Its Utility for Understanding Gene Regulation and Vertebrate Body Morphology. Methods Mol Biol 2024; 2707:335-355. [PMID: 37668923 DOI: 10.1007/978-1-0716-3401-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Goldfish, widely viewed as an ornamental fish, is a member of Cyprinidae family and has a very long history in research for both genetics and physiology studies. Among Cyprinidae, the chromosomal locations of orthologs and the amino acid sequences are usually highly conserved. Adult goldfish are 1000 times larger than adult zebrafish (who are in the same family of fishes), which can make it easier to perform several types of experiments compared to their zebrafish cousins. Comparing mutant phenotypes in orthologous genes between goldfish and zebrafish can often be very informative and provide a deeper insight into the gene function than studying the gene in either species alone. Comparative genomics and phenotypic comparisons between goldfish and zebrafish will provide new opportunities for understanding the development and evolution of body forms in the vertebrate lineage.
Collapse
Affiliation(s)
- Yoshihiro Omori
- Laboratory of Functional Genomics, Graduate School of Bioscience, Nagahama Institute of Bioscience and Technology, Nagahama, Japan.
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA.
| |
Collapse
|
176
|
Lee SW, Oh YM, Victor MB, Yang Y, Chen S, Strunilin I, Dahiya S, Dolle RE, Pak SC, Silverman GA, Perlmutter DH, Yoo AS. Longitudinal modeling of human neuronal aging reveals the contribution of the RCAN1-TFEB pathway to Huntington's disease neurodegeneration. NATURE AGING 2024; 4:95-109. [PMID: 38066314 PMCID: PMC11456361 DOI: 10.1038/s43587-023-00538-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/03/2023] [Indexed: 12/19/2023]
Abstract
Aging is a common risk factor in neurodegenerative disorders. Investigating neuronal aging in an isogenic background stands to facilitate analysis of the interplay between neuronal aging and neurodegeneration. Here we perform direct neuronal reprogramming of longitudinally collected human fibroblasts to reveal genetic pathways altered at different ages. Comparative transcriptome analysis of longitudinally aged striatal medium spiny neurons (MSNs) in Huntington's disease identified pathways involving RCAN1, a negative regulator of calcineurin. Notably, RCAN1 protein increased with age in reprogrammed MSNs as well as in human postmortem striatum and RCAN1 knockdown rescued patient-derived MSNs of Huntington's disease from degeneration. RCAN1 knockdown enhanced chromatin accessibility of genes involved in longevity and autophagy, mediated through enhanced calcineurin activity, leading to TFEB's nuclear localization by dephosphorylation. Furthermore, G2-115, an analog of glibenclamide with autophagy-enhancing activities, reduced the RCAN1-calcineurin interaction, phenocopying the effect of RCAN1 knockdown. Our results demonstrate that targeting RCAN1 genetically or pharmacologically can increase neuronal resilience in Huntington's disease.
Collapse
Affiliation(s)
- Seong Won Lee
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Sciences, Mercer University School of Medicine, Columbus, GA, USA
| | - Young Mi Oh
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Sciences, Mercer University School of Medicine, Columbus, GA, USA
| | - Matheus B Victor
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yan Yang
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Shawei Chen
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ilya Strunilin
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sonika Dahiya
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Roland E Dolle
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephen C Pak
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Gary A Silverman
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - David H Perlmutter
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew S Yoo
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
177
|
Zhu W, Bu G, Hu R, Zhang J, Qiao L, Zhou K, Wang T, Li Q, Zhang J, Wu L, Xie Y, Hu T, Yang S, Guan J, Chu X, Shi J, Zhang X, Lu F, Liu X, Miao YL. KLF4 facilitates chromatin accessibility remodeling in porcine early embryos. SCIENCE CHINA. LIFE SCIENCES 2024; 67:96-112. [PMID: 37698691 DOI: 10.1007/s11427-022-2349-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/20/2023] [Indexed: 09/13/2023]
Abstract
Chromatin accessibility remodeling driven by pioneer factors is critical for the development of early embryos. Current studies have illustrated several pioneer factors as being important for agricultural animals, but what are the pioneer factors and how the pioneer factors remodel the chromatin accessibility in porcine early embryos is not clear. By employing low-input DNase-seq (liDNase-seq), we profiled the landscapes of chromatin accessibility in porcine early embryos and uncovered a unique chromatin accessibility reprogramming pattern during porcine preimplantation development. Our data revealed that KLF4 played critical roles in remodeling chromatin accessibility in porcine early embryos. Knocking down of KLF4 led to the reduction of chromatin accessibility in early embryos, whereas KLF4 overexpression promoted the chromatin openness in porcine blastocysts. Furthermore, KLF4 deficiency resulted in mitochondrial dysfunction and developmental failure of porcine embryos. In addition, we found that overexpression of KLF4 in blastocysts promoted lipid droplet accumulation, whereas knockdown of KLF4 disrupted this process. Taken together, our study revealed the chromatin accessibility dynamics and identified KLF4 as a key regulator in chromatin accessibility and cellular metabolism during porcine preimplantation embryo development.
Collapse
Affiliation(s)
- Wei Zhu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, China
| | - Guowei Bu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, China
| | - Ruifeng Hu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, China
| | - Jixiang Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lianyong Qiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kai Zhou
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, China
| | - Tingting Wang
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, China
| | - Qiao Li
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, China
| | - Jingjing Zhang
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, China
| | - Linhui Wu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, China
| | - Yali Xie
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Taotao Hu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, China
| | - Shichun Yang
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, China
| | - Jiaqi Guan
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, China
| | - Xiaoyu Chu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, China
| | - Juanjuan Shi
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, China
| | - Xia Zhang
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, China
| | - Falong Lu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xin Liu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, China.
| | - Yi-Liang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
178
|
Manosalva Pérez N, Ferrari C, Engelhorn J, Depuydt T, Nelissen H, Hartwig T, Vandepoele K. MINI-AC: inference of plant gene regulatory networks using bulk or single-cell accessible chromatin profiles. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:280-301. [PMID: 37788349 DOI: 10.1111/tpj.16483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 10/05/2023]
Abstract
Gene regulatory networks (GRNs) represent the interactions between transcription factors (TF) and their target genes. Plant GRNs control transcriptional programs involved in growth, development, and stress responses, ultimately affecting diverse agricultural traits. While recent developments in accessible chromatin (AC) profiling technologies make it possible to identify context-specific regulatory DNA, learning the underlying GRNs remains a major challenge. We developed MINI-AC (Motif-Informed Network Inference based on Accessible Chromatin), a method that combines AC data from bulk or single-cell experiments with TF binding site (TFBS) information to learn GRNs in plants. We benchmarked MINI-AC using bulk AC datasets from different Arabidopsis thaliana tissues and showed that it outperforms other methods to identify correct TFBS. In maize, a crop with a complex genome and abundant distal AC regions, MINI-AC successfully inferred leaf GRNs with experimentally confirmed, both proximal and distal, TF-target gene interactions. Furthermore, we showed that both AC regions and footprints are valid alternatives to infer AC-based GRNs with MINI-AC. Finally, we combined MINI-AC predictions from bulk and single-cell AC datasets to identify general and cell-type specific maize leaf regulators. Focusing on C4 metabolism, we identified diverse regulatory interactions in specialized cell types for this photosynthetic pathway. MINI-AC represents a powerful tool for inferring accurate AC-derived GRNs in plants and identifying known and novel candidate regulators, improving our understanding of gene regulation in plants.
Collapse
Affiliation(s)
- Nicolás Manosalva Pérez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Camilla Ferrari
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Julia Engelhorn
- Molecular Physiology Department, Heinrich-Heine University, 40225, Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Thomas Depuydt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Thomas Hartwig
- Molecular Physiology Department, Heinrich-Heine University, 40225, Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9052, Ghent, Belgium
| |
Collapse
|
179
|
Wu L, Shi M, Liang Y, Huang J, Xia W, Bian H, Zhuo Q, Zhao C. The profiles and clinical significance of extraocular muscle-expressed lncRNAs and mRNAs in oculomotor nerve palsy. Front Mol Neurosci 2023; 16:1293344. [PMID: 38173464 PMCID: PMC10761543 DOI: 10.3389/fnmol.2023.1293344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction Oculomotor nerve palsy (ONP) arises from primary abnormalities in the central neural pathways that control the extraocular muscles (EOMs). Long non-coding RNAs (lncRNAs) have been found to be involved in the pathogenesis of various neuroparalytic diseases. However, little is known about the role of lncRNAs in ONP. Methods We collected medial rectus muscle tissue from ONP and constant exotropia (CXT) patients during strabismus surgeries for RNA sequencing analysis. Differentially expressed mRNAs and lncRNAs were revealed and included in the functional enrichment analysis. Co-expression analysis was conducted between these differentially expressed mRNAs and lncRNAs, followed by target gene prediction of differentially expressed lncRNAs. In addition, lncRNA-microRNA and lncRNA-transcription factor-mRNA interaction networks were constructed to further elaborate the pathological changes in medial rectus muscle of ONP. Furthermore, RT-qPCR was applied to further validate the expression levels of important lncRNAs and mRNAs, whose clinical significance was examined by receiver operating characteristic (ROC) curve analysis. Results A total of 618 differentially expressed lncRNAs and 322 differentially expressed mRNAs were identified. The up-regulated mRNAs were significantly related to cholinergic synaptic transmission (such as CHRM3 and CHRND) and the components and metabolism of extracellular matrix (such as CHI3L1 and COL19A1), while the down-regulated mRNAs were significantly correlated with the composition (such as MYH7 and MYL3) and contraction force (such as MYH7 and TNNT1) of muscle fibers. Co-expression analysis and target gene prediction revealed the strong correlation between MYH7 and NR_126491.1 as well as MYOD1 and ENST00000524479. Moreover, the differential expressions of lncRNAs (XR_001739409.1, NR_024160.1 and XR_001738373.1) and mRNAs (CDKN1A, MYOG, MYOD1, MYBPH, TMEM64, STATH, and MYL3) were validated by RT-qPCR. ROC curve analysis showed that lncRNAs (XR_001739409.1, NR_024160.1, and NR_002766.2) and mRNAs (CDKN1A, MYOG, MYOD1, MYBPH, TMEM64, and STATH) might be promising biomarkers of ONP. Conclusions These results may shed light on the molecular biology of EOMs of ONP, as well as the possible correlation of lncRNAs and mRNAs with clinical practice.
Collapse
Affiliation(s)
- Lianqun Wu
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Mingsu Shi
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yu Liang
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jiaqiu Huang
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Weiyi Xia
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Hewei Bian
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Qiao Zhuo
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Chen Zhao
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
180
|
Chen ZS, Ou M, Taylor S, Dafinca R, Peng SI, Talbot K, Chan HYE. Mutant GGGGCC RNA prevents YY1 from binding to Fuzzy promoter which stimulates Wnt/β-catenin pathway in C9ALS/FTD. Nat Commun 2023; 14:8420. [PMID: 38110419 PMCID: PMC10728118 DOI: 10.1038/s41467-023-44215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/05/2023] [Indexed: 12/20/2023] Open
Abstract
The GGGGCC hexanucleotide repeat expansion mutation in the chromosome 9 open reading frame 72 (C9orf72) gene is a major genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). In this study, we demonstrate that the zinc finger (ZF) transcriptional regulator Yin Yang 1 (YY1) binds to the promoter region of the planar cell polarity gene Fuzzy to regulate its transcription. We show that YY1 interacts with GGGGCC repeat RNA via its ZF and that this interaction compromises the binding of YY1 to the FuzzyYY1 promoter sites, resulting in the downregulation of Fuzzy transcription. The decrease in Fuzzy protein expression in turn activates the canonical Wnt/β-catenin pathway and induces synaptic deficits in C9ALS/FTD neurons. Our findings demonstrate a C9orf72 GGGGCC RNA-initiated perturbation of YY1-Fuzzy transcriptional control that implicates aberrant Wnt/β-catenin signalling in C9ALS/FTD-associated neurodegeneration. This pathogenic cascade provides a potential new target for disease-modifying therapy.
Collapse
Affiliation(s)
- Zhefan Stephen Chen
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Mingxi Ou
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Stephanie Taylor
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Ruxandra Dafinca
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK
| | - Shaohong Isaac Peng
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Kevin Talbot
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK.
| | - Ho Yin Edwin Chan
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
| |
Collapse
|
181
|
Lu C, Garipler G, Dai C, Roush T, Salome-Correa J, Martin A, Liscovitch-Brauer N, Mazzoni EO, Sanjana NE. Essential transcription factors for induced neuron differentiation. Nat Commun 2023; 14:8362. [PMID: 38102126 PMCID: PMC10724217 DOI: 10.1038/s41467-023-43602-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
Neurogenins are proneural transcription factors required to specify neuronal identity. Their overexpression in human pluripotent stem cells rapidly produces cortical-like neurons with spiking activity and, because of this, they have been widely adopted for human neuron disease models. However, we do not fully understand the key downstream regulatory effectors responsible for driving neural differentiation. Here, using inducible expression of NEUROG1 and NEUROG2, we identify transcription factors (TFs) required for directed neuronal differentiation by combining expression and chromatin accessibility analyses with a pooled in vitro CRISPR-Cas9 screen targeting all ~1900 TFs in the human genome. The loss of one of these essential TFs (ZBTB18) yields few MAP2-positive neurons. Differentiated ZBTB18-null cells have radically altered gene expression, leading to cytoskeletal defects and stunted neurites and spines. In addition to identifying key downstream TFs for neuronal differentiation, our work develops an integrative multi-omics and TFome-wide perturbation platform to rapidly characterize essential TFs for the differentiation of any human cell type.
Collapse
Affiliation(s)
- Congyi Lu
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Görkem Garipler
- Department of Biology, New York University, New York, NY, USA
| | - Chao Dai
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Timothy Roush
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Jose Salome-Correa
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Alex Martin
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Noa Liscovitch-Brauer
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Esteban O Mazzoni
- Department of Biology, New York University, New York, NY, USA.
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, USA.
| | - Neville E Sanjana
- New York Genome Center, New York, NY, USA.
- Department of Biology, New York University, New York, NY, USA.
| |
Collapse
|
182
|
Huang T, He J, Zhou X, Pan H, He F, Du A, Yu B, Jiang N, Li X, Yuan K, Wang Z. Discovering common pathogenetic processes between COVID-19 and tuberculosis by bioinformatics and system biology approach. Front Cell Infect Microbiol 2023; 13:1280223. [PMID: 38162574 PMCID: PMC10757339 DOI: 10.3389/fcimb.2023.1280223] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/07/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction The coronavirus disease 2019 (COVID-19) pandemic, stemming from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has persistently threatened the global health system. Meanwhile, tuberculosis (TB) caused by Mycobacterium tuberculosis (M. tuberculosis) still continues to be endemic in various regions of the world. There is a certain degree of similarity between the clinical features of COVID-19 and TB, but the underlying common pathogenetic processes between COVID-19 and TB are not well understood. Methods To elucidate the common pathogenetic processes between COVID-19 and TB, we implemented bioinformatics and systematic research to obtain shared pathways and molecular biomarkers. Here, the RNA-seq datasets (GSE196822 and GSE126614) are used to extract shared differentially expressed genes (DEGs) of COVID-19 and TB. The common DEGs were used to identify common pathways, hub genes, transcriptional regulatory networks, and potential drugs. Results A total of 96 common DEGs were selected for subsequent analyses. Functional enrichment analyses showed that viral genome replication and immune-related pathways collectively contributed to the development and progression of TB and COVID-19. Based on the protein-protein interaction (PPI) network analysis, we identified 10 hub genes, including IFI44L, ISG15, MX1, IFI44, OASL, RSAD2, GBP1, OAS1, IFI6, and HERC5. Subsequently, the transcription factor (TF)-gene interaction and microRNA (miRNA)-gene coregulatory network identified 61 TFs and 29 miRNAs. Notably, we identified 10 potential drugs to treat TB and COVID-19, namely suloctidil, prenylamine, acetohexamide, terfenadine, prochlorperazine, 3'-azido-3'-deoxythymidine, chlorophyllin, etoposide, clioquinol, and propofol. Conclusion This research provides novel strategies and valuable references for the treatment of tuberculosis and COVID-19.
Collapse
Affiliation(s)
- Tengda Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jinyi He
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyi Zhou
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongyuan Pan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Fang He
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Ao Du
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Bingxuan Yu
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Nan Jiang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoquan Li
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kefei Yuan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen Wang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
183
|
Yang P, Jin L, Liao J, Jin K, Shao X, Li C, Qian J, Cheng J, Yu D, Guo R, Xu X, Lu X, Fan X. Revealing spatial multimodal heterogeneity in tissues with SpaTrio. CELL GENOMICS 2023; 3:100446. [PMID: 38116121 PMCID: PMC10726534 DOI: 10.1016/j.xgen.2023.100446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/28/2023] [Accepted: 10/26/2023] [Indexed: 12/21/2023]
Abstract
Capturing and depicting the multimodal tissue information of tissues at the spatial scale remains a significant challenge owing to technical limitations in single-cell multi-omics and spatial transcriptomics sequencing. Here, we developed a computational method called SpaTrio that can build spatial multi-omics data by integrating these two datasets through probabilistic alignment and enabling further analysis of gene regulation and cellular interactions. We benchmarked SpaTrio using simulation datasets and demonstrated its accuracy and robustness. Next, we evaluated SpaTrio on biological datasets and showed that it could detect topological patterns of cells and modalities. SpaTrio has also been applied to multiple sets of actual data to uncover spatially multimodal heterogeneity, understand the spatiotemporal regulation of gene expression, and resolve multimodal communication among cells. Our data demonstrated that SpaTrio could accurately map single cells and reconstruct the spatial distribution of various biomolecules, providing valuable multimodal insights into spatial biology.
Collapse
Affiliation(s)
- Penghui Yang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314103, China
| | - Lijun Jin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314103, China
| | - Jie Liao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314103, China
| | - Kaiyu Jin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin Shao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314103, China
| | - Chengyu Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314103, China
| | - Jingyang Qian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314103, China
| | - Junyun Cheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dingyi Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Rongfang Guo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiaoyan Lu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua 321016 China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China.
| | - Xiaohui Fan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314103, China; Jinhua Institute of Zhejiang University, Jinhua 321016 China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China.
| |
Collapse
|
184
|
Zhang H, Jin Z, Cui F, Zhao L, Zhang X, Chen J, Zhang J, Li Y, Li Y, Niu Y, Zhang W, Gao C, Fu X, Tong Y, Wang L, Ling HQ, Li J, Xiao J. Epigenetic modifications regulate cultivar-specific root development and metabolic adaptation to nitrogen availability in wheat. Nat Commun 2023; 14:8238. [PMID: 38086830 PMCID: PMC10716289 DOI: 10.1038/s41467-023-44003-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The breeding of crops with improved nitrogen use efficiency (NUE) is crucial for sustainable agriculture, but the involvement of epigenetic modifications remains unexplored. Here, we analyze the chromatin landscapes of two wheat cultivars (KN9204 and J411) that differ in NUE under varied nitrogen conditions. The expression of nitrogen metabolism genes is closely linked to variation in histone modification instead of differences in DNA sequence. Epigenetic modifications exhibit clear cultivar-specificity, which likely contributes to distinct agronomic traits. Additionally, low nitrogen (LN) induces H3K27ac and H3K27me3 to significantly enhance root growth in KN9204, while remarkably inducing NRT2 in J411. Evidence from histone deacetylase inhibitor treatment and transgenic plants with loss function of H3K27me3 methyltransferase shows that changes in epigenetic modifications could alter the strategy preference for root development or nitrogen uptake in response to LN. Here, we show the importance of epigenetic regulation in mediating cultivar-specific adaptation to LN in wheat.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiyuan Jin
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China
| | - Fa Cui
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Long Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyu Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinchao Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, Hebei, China
| | - Yongpeng Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, Hebei, China
| | - Yanxiao Niu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement and Utilization, CICMCP, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiping Tong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, Hebei, China
| | - Hong-Qing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China.
| | - Junming Li
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China.
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China.
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, Hebei, China.
| | - Jun Xiao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Centre of Excellence for Plant and Microbial Science (CEPAMS), JIC-CAS, Beijing, China.
| |
Collapse
|
185
|
Meier AB, Zawada D, De Angelis MT, Martens LD, Santamaria G, Zengerle S, Nowak-Imialek M, Kornherr J, Zhang F, Tian Q, Wolf CM, Kupatt C, Sahara M, Lipp P, Theis FJ, Gagneur J, Goedel A, Laugwitz KL, Dorn T, Moretti A. Epicardioid single-cell genomics uncovers principles of human epicardium biology in heart development and disease. Nat Biotechnol 2023; 41:1787-1800. [PMID: 37012447 PMCID: PMC10713454 DOI: 10.1038/s41587-023-01718-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 02/22/2023] [Indexed: 04/05/2023]
Abstract
The epicardium, the mesothelial envelope of the vertebrate heart, is the source of multiple cardiac cell lineages during embryonic development and provides signals that are essential to myocardial growth and repair. Here we generate self-organizing human pluripotent stem cell-derived epicardioids that display retinoic acid-dependent morphological, molecular and functional patterning of the epicardium and myocardium typical of the left ventricular wall. By combining lineage tracing, single-cell transcriptomics and chromatin accessibility profiling, we describe the specification and differentiation process of different cell lineages in epicardioids and draw comparisons to human fetal development at the transcriptional and morphological levels. We then use epicardioids to investigate the functional cross-talk between cardiac cell types, gaining new insights into the role of IGF2/IGF1R and NRP2 signaling in human cardiogenesis. Finally, we show that epicardioids mimic the multicellular pathogenesis of congenital or stress-induced hypertrophy and fibrotic remodeling. As such, epicardioids offer a unique testing ground of epicardial activity in heart development, disease and regeneration.
Collapse
Affiliation(s)
- Anna B Meier
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - Dorota Zawada
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - Maria Teresa De Angelis
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Department of Experimental and Clinical Medicine, University 'Magna Graecia', Catanzaro, Italy
| | - Laura D Martens
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany
- Helmholtz Association-Munich School for Data Science (MUDS), Munich, Germany
| | - Gianluca Santamaria
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Department of Experimental and Clinical Medicine, University 'Magna Graecia', Catanzaro, Italy
| | - Sophie Zengerle
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - Monika Nowak-Imialek
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - Jessica Kornherr
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - Fangfang Zhang
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - Qinghai Tian
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology, Research Center for Molecular Imaging and Screening, Medical Faculty, Saarland University, Homburg, Germany
| | - Cordula M Wolf
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Department of Congenital Heart Defects and Pediatric Cardiology, German Heart Center Munich, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Christian Kupatt
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Makoto Sahara
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Peter Lipp
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology, Research Center for Molecular Imaging and Screening, Medical Faculty, Saarland University, Homburg, Germany
| | - Fabian J Theis
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Julien Gagneur
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Alexander Goedel
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Karl-Ludwig Laugwitz
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Tatjana Dorn
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - Alessandra Moretti
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany.
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany.
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany.
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
186
|
Wahle P, Brancati G, Harmel C, He Z, Gut G, Del Castillo JS, Xavier da Silveira Dos Santos A, Yu Q, Noser P, Fleck JS, Gjeta B, Pavlinić D, Picelli S, Hess M, Schmidt GW, Lummen TTA, Hou Y, Galliker P, Goldblum D, Balogh M, Cowan CS, Scholl HPN, Roska B, Renner M, Pelkmans L, Treutlein B, Camp JG. Multimodal spatiotemporal phenotyping of human retinal organoid development. Nat Biotechnol 2023; 41:1765-1775. [PMID: 37156914 PMCID: PMC10713453 DOI: 10.1038/s41587-023-01747-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/13/2023] [Indexed: 05/10/2023]
Abstract
Organoids generated from human pluripotent stem cells provide experimental systems to study development and disease, but quantitative measurements across different spatial scales and molecular modalities are lacking. In this study, we generated multiplexed protein maps over a retinal organoid time course and primary adult human retinal tissue. We developed a toolkit to visualize progenitor and neuron location, the spatial arrangements of extracellular and subcellular components and global patterning in each organoid and primary tissue. In addition, we generated a single-cell transcriptome and chromatin accessibility timecourse dataset and inferred a gene regulatory network underlying organoid development. We integrated genomic data with spatially segmented nuclei into a multimodal atlas to explore organoid patterning and retinal ganglion cell (RGC) spatial neighborhoods, highlighting pathways involved in RGC cell death and showing that mosaic genetic perturbations in retinal organoids provide insight into cell fate regulation.
Collapse
Affiliation(s)
- Philipp Wahle
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Giovanna Brancati
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Christoph Harmel
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Zhisong He
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Gabriele Gut
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | - Aline Xavier da Silveira Dos Santos
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Qianhui Yu
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Pascal Noser
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Jonas Simon Fleck
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Bruno Gjeta
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Dinko Pavlinić
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Simone Picelli
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Max Hess
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Gregor W Schmidt
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Tom T A Lummen
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Yanyan Hou
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Patricia Galliker
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - David Goldblum
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Marton Balogh
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Cameron S Cowan
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - Hendrik P N Scholl
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Botond Roska
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Magdalena Renner
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Lucas Pelkmans
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
| | - J Gray Camp
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland.
- Department of Ophthalmology, University of Basel, Basel, Switzerland.
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.
| |
Collapse
|
187
|
Lercher A, Cheong JG, Jiang C, Hoffmann HH, Ashbrook AW, Yin YS, Quirk C, DeGrace EJ, Chiriboga L, Rosenberg BR, Josefowicz SZ, Rice CM. Antiviral innate immune memory in alveolar macrophages following SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.24.568354. [PMID: 38076887 PMCID: PMC10705235 DOI: 10.1101/2023.11.24.568354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Pathogen encounter results in long-lasting epigenetic imprinting that shapes diseases caused by heterologous pathogens. The breadth of this innate immune memory is of particular interest in the context of respiratory pathogens with increased pandemic potential and wide-ranging impact on global health. Here, we investigated epigenetic imprinting across cell lineages in a disease relevant murine model of SARS-CoV-2 recovery. Past SARS-CoV-2 infection resulted in increased chromatin accessibility of type I interferon (IFN-I) related transcription factors in airway-resident macrophages. Mechanistically, establishment of this innate immune memory required viral pattern recognition and canonical IFN-I signaling and augmented secondary antiviral responses. Past SARS-CoV-2 infection ameliorated disease caused by the heterologous respiratory pathogen influenza A virus. Insights into innate immune memory and how it affects subsequent infections with heterologous pathogens to influence disease pathology could facilitate the development of broadly effective therapeutic strategies.
Collapse
Affiliation(s)
- Alexander Lercher
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Jin-Gyu Cheong
- Department of Pathology and Laboratory Medicine, Laboratory of Epigenetics and Immunity, Weill Cornell Medicine, New York, NY, 10065, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Chenyang Jiang
- Department of Pathology and Laboratory Medicine, Laboratory of Epigenetics and Immunity, Weill Cornell Medicine, New York, NY, 10065, USA
- BCMB Allied Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, 10065, USA
| | - Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Alison W. Ashbrook
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Yue S. Yin
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Corrine Quirk
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Emma J. DeGrace
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Luis Chiriboga
- Department of Pathology, New York University Medical Center, New York, NY, 10016, USA
- Center for Biospecimen Research and Development, New York, NY, 10016, USA
| | - Brad R. Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Steven Z. Josefowicz
- Department of Pathology and Laboratory Medicine, Laboratory of Epigenetics and Immunity, Weill Cornell Medicine, New York, NY, 10065, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
188
|
Terekhanova NV, Karpova A, Liang WW, Strzalkowski A, Chen S, Li Y, Southard-Smith AN, Iglesia MD, Wendl MC, Jayasinghe RG, Liu J, Song Y, Cao S, Houston A, Liu X, Wyczalkowski MA, Lu RJH, Caravan W, Shinkle A, Naser Al Deen N, Herndon JM, Mudd J, Ma C, Sarkar H, Sato K, Ibrahim OM, Mo CK, Chasnoff SE, Porta-Pardo E, Held JM, Pachynski R, Schwarz JK, Gillanders WE, Kim AH, Vij R, DiPersio JF, Puram SV, Chheda MG, Fuh KC, DeNardo DG, Fields RC, Chen F, Raphael BJ, Ding L. Epigenetic regulation during cancer transitions across 11 tumour types. Nature 2023; 623:432-441. [PMID: 37914932 PMCID: PMC10632147 DOI: 10.1038/s41586-023-06682-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 09/27/2023] [Indexed: 11/03/2023]
Abstract
Chromatin accessibility is essential in regulating gene expression and cellular identity, and alterations in accessibility have been implicated in driving cancer initiation, progression and metastasis1-4. Although the genetic contributions to oncogenic transitions have been investigated, epigenetic drivers remain less understood. Here we constructed a pan-cancer epigenetic and transcriptomic atlas using single-nucleus chromatin accessibility data (using single-nucleus assay for transposase-accessible chromatin) from 225 samples and matched single-cell or single-nucleus RNA-sequencing expression data from 206 samples. With over 1 million cells from each platform analysed through the enrichment of accessible chromatin regions, transcription factor motifs and regulons, we identified epigenetic drivers associated with cancer transitions. Some epigenetic drivers appeared in multiple cancers (for example, regulatory regions of ABCC1 and VEGFA; GATA6 and FOX-family motifs), whereas others were cancer specific (for example, regulatory regions of FGF19, ASAP2 and EN1, and the PBX3 motif). Among epigenetically altered pathways, TP53, hypoxia and TNF signalling were linked to cancer initiation, whereas oestrogen response, epithelial-mesenchymal transition and apical junction were tied to metastatic transition. Furthermore, we revealed a marked correlation between enhancer accessibility and gene expression and uncovered cooperation between epigenetic and genetic drivers. This atlas provides a foundation for further investigation of epigenetic dynamics in cancer transitions.
Collapse
Affiliation(s)
- Nadezhda V Terekhanova
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Alla Karpova
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Wen-Wei Liang
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | | | - Siqi Chen
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Yize Li
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Austin N Southard-Smith
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Michael D Iglesia
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Michael C Wendl
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Reyka G Jayasinghe
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Jingxian Liu
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Yizhe Song
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Song Cao
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Andrew Houston
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Xiuting Liu
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Matthew A Wyczalkowski
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Rita Jui-Hsien Lu
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Wagma Caravan
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Andrew Shinkle
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Nataly Naser Al Deen
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - John M Herndon
- Department of Surgery, Washington University in St Louis, St Louis, MO, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA
| | - Jacqueline Mudd
- Department of Surgery, Washington University in St Louis, St Louis, MO, USA
| | - Cong Ma
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Hirak Sarkar
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Kazuhito Sato
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Omar M Ibrahim
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Chia-Kuei Mo
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Sara E Chasnoff
- Department of Surgery, Washington University in St Louis, St Louis, MO, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA
| | - Eduard Porta-Pardo
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- Barcelona Supercomputing Center, Barcelona, Spain
| | - Jason M Held
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA
| | - Russell Pachynski
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA
| | - Julie K Schwarz
- Department of Radiation Oncology, Washington University in St Louis, St Louis, MO, USA
| | - William E Gillanders
- Department of Surgery, Washington University in St Louis, St Louis, MO, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA
| | - Albert H Kim
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA
- Department of Neurological Surgery, Washington University in St Louis, St Louis, MO, USA
| | - Ravi Vij
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA
| | - John F DiPersio
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA
| | - Sidharth V Puram
- Department of Otolaryngology-Head & Neck Surgery, Washington University in St Louis, St Louis, MO, USA
| | - Milan G Chheda
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA
| | - Katherine C Fuh
- Department of Obstetrics and Gynecology, University of California, San Francisco, San Francisco, CA, USA
- Department of Obstetrics and Gynecology, Washington University in St Louis, St Louis, MO, USA
| | - David G DeNardo
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA
| | - Ryan C Fields
- Department of Surgery, Washington University in St Louis, St Louis, MO, USA.
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA.
| | - Feng Chen
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA.
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA.
| | - Benjamin J Raphael
- Department of Computer Science, Princeton University, Princeton, NJ, USA.
| | - Li Ding
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA.
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA.
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA.
- Department of Genetics, Washington University in St Louis, St Louis, MO, USA.
| |
Collapse
|
189
|
Hu Y, Wang L, Yang G, Wang S, Guo M, Lu H, Zhang T. VDR promotes testosterone synthesis in mouse Leydig cells via regulation of cholesterol side chain cleavage cytochrome P450 (Cyp11a1) expression. Genes Genomics 2023; 45:1377-1387. [PMID: 37747642 DOI: 10.1007/s13258-023-01444-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/30/2022] [Indexed: 09/26/2023]
Abstract
BACKGROUND The vitamin D receptor (VDR) mediates the pleiotropic biological actions that include osteoporosis, immune responses and androgen synthesis.VDR is widely expressed in testis cells such as Leydig cells, Sertoli cells, and sperm. The levels of steroids are critical for sexual development. In the early stage of steroidogenesis, cholesterol is converted to pregnenolone (precursor of most steroid hormones) by cholesterol side-chain lyase (CYP11A1), which eventually synthesizes the male hormone testosterone. OBJECTIVE This study aims to reveal how VDR regulates CYP11A1 expression and affects testosterone synthesis in murine Leydig cells. METHODS The levels of VDR, CYP11A1 were determined by quantitative real-time polymerase chain reaction (RT-qPCR) or western blot. Targeted relationship between VDR and Cyp11a1 was evaluated by dual-luciferase reporter assay. The levels of testosterone concentrations in cell culture media serum by enzyme-linked immunosorbent assay (ELISA). RESULTS Phylogenetic and motif analysis showed that the Cyp11a1 family had sequence loss, which may have special biological functions during evolution. The results of promoter prediction showed that vitamin D response element (VDRE) existed in the upstream promoter region of murine Cyp11a1. Dual-luciferase assay confirmed that VDR could bind candidate VDREs in upstream region of Cyp11a1, and enhance gene expression. Tissue distribution and localizatio analysis showed that Cyp11a1 was mainly expressed in testis, and dominantly existed in murine Leydig cells. Furthermore, over-expression VDR and CYP11A1 significantly increased testosterone synthesis in mice Leydig cells. CONCLUSIONS Active vitamin D3 (VD3) and Vdr interference treatment showed that VD3/VDR had a positive regulatory effect on Cyp11a1 expression and testosterone secretion. VDR promotes testosterone synthesis in male mice by up-regulating Cyp11a1 expression, which played an important role for male reproduction.
Collapse
Affiliation(s)
- Yuanyuan Hu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Ling Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Ge Yang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Shanshan Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Miaomiao Guo
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China.
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi University of Technology, Hanzhong, 723001, China.
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong, 723001, China.
| |
Collapse
|
190
|
Ravid Lustig L, Sampath Kumar A, Schwämmle T, Dunkel I, Noviello G, Limberg E, Weigert R, Pacini G, Buschow R, Ghauri A, Stötzel M, Wittler L, Meissner A, Schulz EG. GATA transcription factors drive initial Xist upregulation after fertilization through direct activation of long-range enhancers. Nat Cell Biol 2023; 25:1704-1715. [PMID: 37932452 PMCID: PMC10635832 DOI: 10.1038/s41556-023-01266-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/22/2023] [Indexed: 11/08/2023]
Abstract
X-chromosome inactivation (XCI) balances gene expression between the sexes in female mammals. Shortly after fertilization, upregulation of Xist RNA from one X chromosome initiates XCI, leading to chromosome-wide gene silencing. XCI is maintained in all cell types, except the germ line and the pluripotent state where XCI is reversed. The mechanisms triggering Xist upregulation have remained elusive. Here we identify GATA transcription factors as potent activators of Xist. Through a pooled CRISPR activation screen in murine embryonic stem cells, we demonstrate that GATA1, as well as other GATA transcription factors can drive ectopic Xist expression. Moreover, we describe GATA-responsive regulatory elements in the Xist locus bound by different GATA factors. Finally, we show that GATA factors are essential for XCI induction in mouse preimplantation embryos. Deletion of GATA1/4/6 or GATA-responsive Xist enhancers in mouse zygotes effectively prevents Xist upregulation. We propose that the activity or complete absence of various GATA family members controls initial Xist upregulation, XCI maintenance in extra-embryonic lineages and XCI reversal in the epiblast.
Collapse
Affiliation(s)
- Liat Ravid Lustig
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Abhishek Sampath Kumar
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Till Schwämmle
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ilona Dunkel
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Gemma Noviello
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Elodie Limberg
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Raha Weigert
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Guido Pacini
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - René Buschow
- Microscopy and Cryo-Electron Microscopy, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Afrah Ghauri
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Maximilian Stötzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lars Wittler
- Transgenic Unit, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Edda G Schulz
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
191
|
Han YH, Mao YY, Lee KH, Cho HJ, Yu NN, Xing XY, Wang AG, Jin MH, Hong KS, Sun HN, Kwon T. Peroxiredoxin II regulates exosome secretion from dermal mesenchymal stem cells through the ISGylation signaling pathway. Cell Commun Signal 2023; 21:296. [PMID: 37864270 PMCID: PMC10588245 DOI: 10.1186/s12964-023-01331-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/22/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Exosomes are small extracellular vesicles that play important roles in intercellular communication and have potential therapeutic applications in regenerative medicine. Dermal mesenchymal stem cells (DMSCs) are a promising source of exosomes due to their regenerative and immunomodulatory properties. However, the molecular mechanisms regulating exosome secretion from DMSCs are not fully understood. RESULTS In this study, the role of peroxiredoxin II (Prx II) in regulating exosome secretion from DMSCs and the underlying molecular mechanisms were investigated. It was discovered that depletion of Prx II led to a significant reduction in exosome secretion from DMSCs and an increase in the number of intracellular multivesicular bodies (MVBs), which serve as precursors of exosomes. Mechanistically, Prx II regulates the ISGylation switch that controls MVB degradation and impairs exosome secretion. Specifically, Prx II depletion decreased JNK activity, reduced the expression of the transcription inhibitor Foxo1, and promoted miR-221 expression. Increased miR-221 expression inhibited the STAT signaling pathway, thus downregulating the expression of ISGylation-related genes involved in MVB degradation. Together, these results identify Prx II as a critical regulator of exosome secretion from DMSCs through the ISGylation signaling pathway. CONCLUSIONS Our findings provide important insights into the molecular mechanisms regulating exosome secretion from DMSCs and highlight the critical role of Prx II in controlling the ISGylation switch that regulates DMSC-exosome secretion. This study has significant implications for developing new therapeutic strategies in regenerative medicine. Video Abstract.
Collapse
Affiliation(s)
- Ying-Hao Han
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, P.R. China.
| | - Ying-Ying Mao
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, P.R. China
| | - Kyung Ho Lee
- KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungbuk, 28116, Republic of Korea
| | - Hee Jun Cho
- KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Nan-Nan Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, P.R. China
| | - Xiao-Ya Xing
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, P.R. China
| | - Ai-Guo Wang
- Laboratory Animal Center, Dalian Medical University, Dalian, 116041, P.R. China
| | - Mei-Hua Jin
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, P.R. China
| | - Kwan Soo Hong
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Chungbuk, 28119, Korea
| | - Hu-Nan Sun
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, P.R. China.
| | - Taeho Kwon
- KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea.
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, 56216, Republic of Korea.
| |
Collapse
|
192
|
Shi W, Ye J, Shi Z, Pan C, Zhang Q, Lin Y, Liang D, Liu Y, Lin X, Zheng Y. Single-cell chromatin accessibility and transcriptomic characterization of Behcet's disease. Commun Biol 2023; 6:1048. [PMID: 37848613 PMCID: PMC10582193 DOI: 10.1038/s42003-023-05420-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023] Open
Abstract
Behect's disease is a chronic vasculitis characterized by complex multi-organ immune aberrations. However, a comprehensive understanding of the gene-regulatory profile of peripheral autoimmunity and the diverse immune responses across distinct cell types in Behcet's disease (BD) is still lacking. Here, we present a multi-omic single-cell study of 424,817 cells in BD patients and non-BD individuals. This study maps chromatin accessibility and gene expression in the same biological samples, unraveling vast cellular heterogeneity. We identify widespread cell-type-specific, disease-associated active and pro-inflammatory immunity in both transcript and epigenomic aspects. Notably, integrative multi-omic analysis reveals putative TF regulators that might contribute to chromatin accessibility and gene expression in BD. Moreover, we predicted gene-regulatory networks within nominated TF activators, including AP-1, NF-kB, and ETS transcript factor families, which may regulate cellular interaction and govern inflammation. Our study illustrates the epigenetic and transcriptional landscape in BD peripheral blood and expands understanding of potential epigenomic immunopathology in this disease.
Collapse
Affiliation(s)
- Wen Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, 100085, Beijing, China
| | - Jinguo Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
| | - Zhuoxing Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
| | - Caineng Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
| | - Qikai Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
| | - Yuheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
| | - Dan Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China.
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China.
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, 100085, Beijing, China.
| | - Xianchai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China.
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, 100085, Beijing, China.
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China.
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, 100085, Beijing, China.
| |
Collapse
|
193
|
Akbari Rokn Abadi S, Tabatabaei S, Koohi S. KDeep: a new memory-efficient data extraction method for accurately predicting DNA/RNA transcription factor binding sites. J Transl Med 2023; 21:727. [PMID: 37845681 PMCID: PMC10580661 DOI: 10.1186/s12967-023-04593-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
This paper addresses the crucial task of identifying DNA/RNA binding sites, which has implications in drug/vaccine design, protein engineering, and cancer research. Existing methods utilize complex neural network structures, diverse input types, and machine learning techniques for feature extraction. However, the growing volume of sequences poses processing challenges. This study introduces KDeep, employing a CNN-LSTM architecture with a novel encoding method called 2Lk. 2Lk enhances prediction accuracy, reduces memory consumption by up to 84%, reduces trainable parameters, and improves interpretability by approximately 79% compared to state-of-the-art approaches. KDeep offers a promising solution for accurate and efficient binding site prediction.
Collapse
Affiliation(s)
| | | | - Somayyeh Koohi
- Department of Computer Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
194
|
Cheng LT, Tan GYT, Chang FP, Wang CK, Chou YC, Hsu PH, Hwang-Verslues WW. Core clock gene BMAL1 and RNA-binding protein MEX3A collaboratively regulate Lgr5 expression in intestinal crypt cells. Sci Rep 2023; 13:17597. [PMID: 37845346 PMCID: PMC10579233 DOI: 10.1038/s41598-023-44997-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/14/2023] [Indexed: 10/18/2023] Open
Abstract
The intestinal epithelium is highly regenerative. Rapidly proliferating LGR5+ crypt base columnar (CBC) cells are responsible for epithelial turnover needed to maintain intestinal homeostasis. Upon tissue damage, loss of LGR5+ CBCs can be compensated by activation of quiescent +4 intestinal stem cells (ISCs) or early progenitor cells to restore intestinal regeneration. LGR5+ CBC self-renewal and ISC conversion to LGR5+ cells are regulated by external signals originating from the ISC niche. In contrast, little is known about intrinsic regulatory mechanisms critical for maintenance of LGR5+ CBC homeostasis. We found that LGR5 expression in intestinal crypt cells is controlled by the circadian core clock gene BMAL1 and the BMAL1-regulated RNA-binding protein MEX3A. BMAL1 directly activated transcription of Mex3a. MEX3A in turn bound to and stabilized Lgr5 mRNA. Bmal1 depletion reduced Mex3a and Lgr5 expression and led to increased ferroptosis, which consequently decreased LGR5+ CBC numbers and increased the number of crypt cells expressing +4 ISC marker BMI1. Together, these findings reveal a BMAL1-centered intrinsic regulatory pathway that maintains LGR5 expression in the crypt cells and suggest a potential mechanism contributing to ISC homeostasis.
Collapse
Affiliation(s)
- Li-Tzu Cheng
- Genomics Research Center, Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei, 115, Taiwan
| | - Grace Y T Tan
- Genomics Research Center, Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei, 115, Taiwan
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Fang-Pei Chang
- Genomics Research Center, Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei, 115, Taiwan
| | - Cheng-Kai Wang
- Genomics Research Center, Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei, 115, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Wendy W Hwang-Verslues
- Genomics Research Center, Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei, 115, Taiwan.
| |
Collapse
|
195
|
Shi W, Zhong B, Dong J, Hu X, Li L. Super enhancer-driven core transcriptional regulatory circuitry crosstalk with cancer plasticity and patient mortality in triple-negative breast cancer. Front Genet 2023; 14:1258862. [PMID: 37900187 PMCID: PMC10602724 DOI: 10.3389/fgene.2023.1258862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a clinically aggressive subtype of breast cancer. Core transcriptional regulatory circuitry (CRC) consists of autoregulated transcription factors (TFs) and their enhancers, which dominate gene expression programs and control cell fate. However, there is limited knowledge of CRC in TNBC. Herein, we systemically characterized the activated super-enhancers (SEs) and interrogated 14 CRCs in breast cancer. We found that CRCs could be broadly involved in DNA conformation change, metabolism process, and signaling response affecting the gene expression reprogramming. Furthermore, these CRC TFs are capable of coordinating with partner TFs bridging the enhancer-promoter loops. Notably, the CRC TF and partner pairs show remarkable specificity for molecular subtypes of breast cancer, especially in TNBC. USF1, SOX4, and MYBL2 were identified as the TNBC-specific CRC TFs. We further demonstrated that USF1 was a TNBC immunophenotype-related TF. Our findings that the rewiring of enhancer-driven CRCs was related to cancer immune and mortality, will facilitate the development of epigenetic anti-cancer treatment strategies.
Collapse
Affiliation(s)
- Wensheng Shi
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, Hunan, China
- Furong Laboratory, Changsha, Hunan, China
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bowen Zhong
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, Hunan, China
- Furong Laboratory, Changsha, Hunan, China
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiaming Dong
- Department of Radiation, Cangzhou Central Hospital, Changsha, China
| | - Xiheng Hu
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, Hunan, China
- Furong Laboratory, Changsha, Hunan, China
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lingfang Li
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
196
|
Gamache J, Gingerich D, Shwab EK, Barrera J, Garrett ME, Hume C, Crawford GE, Ashley-Koch AE, Chiba-Falek O. Integrative single-nucleus multi-omics analysis prioritizes candidate cis and trans regulatory networks and their target genes in Alzheimer's disease brains. Cell Biosci 2023; 13:185. [PMID: 37789374 PMCID: PMC10546724 DOI: 10.1186/s13578-023-01120-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/30/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND The genetic underpinnings of late-onset Alzheimer's disease (LOAD) are yet to be fully elucidated. Although numerous LOAD-associated loci have been discovered, the causal variants and their target genes remain largely unknown. Since the brain is composed of heterogenous cell subtypes, it is imperative to study the brain on a cell subtype specific level to explore the biological processes underlying LOAD. METHODS Here, we present the largest parallel single-nucleus (sn) multi-omics study to simultaneously profile gene expression (snRNA-seq) and chromatin accessibility (snATAC-seq) to date, using nuclei from 12 normal and 12 LOAD brains. We identified cell subtype clusters based on gene expression and chromatin accessibility profiles and characterized cell subtype-specific LOAD-associated differentially expressed genes (DEGs), differentially accessible peaks (DAPs) and cis co-accessibility networks (CCANs). RESULTS Integrative analysis defined disease-relevant CCANs in multiple cell subtypes and discovered LOAD-associated cell subtype-specific candidate cis regulatory elements (cCREs), their candidate target genes, and trans-interacting transcription factors (TFs), some of which, including ELK1, JUN, and SMAD4 in excitatory neurons, were also LOAD-DEGs. Finally, we focused on a subset of cell subtype-specific CCANs that overlap known LOAD-GWAS regions and catalogued putative functional SNPs changing the affinities of TF motifs within LOAD-cCREs linked to LOAD-DEGs, including APOE and MYO1E in a specific subtype of microglia and BIN1 in a subpopulation of oligodendrocytes. CONCLUSIONS To our knowledge, this study represents the most comprehensive systematic interrogation to date of regulatory networks and the impact of genetic variants on gene dysregulation in LOAD at a cell subtype resolution. Our findings reveal crosstalk between epigenetic, genomic, and transcriptomic determinants of LOAD pathogenesis and define catalogues of candidate genes, cCREs, and variants involved in LOAD genetic etiology and the cell subtypes in which they act to exert their pathogenic effects. Overall, these results suggest that cell subtype-specific cis-trans interactions between regulatory elements and TFs, and the genes dysregulated by these networks contribute to the development of LOAD.
Collapse
Affiliation(s)
- Julia Gamache
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, DUMC Box 2900, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Daniel Gingerich
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, DUMC Box 2900, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - E Keats Shwab
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, DUMC Box 2900, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Julio Barrera
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, DUMC Box 2900, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Melanie E Garrett
- Duke Molecular Physiology Institute, Duke University Medical Center, DUMC Box 104775, Durham, NC, 27701, USA
| | - Cordelia Hume
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, DUMC Box 2900, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Gregory E Crawford
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA.
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, DUMC Box 3382, Durham, NC, 27708, USA.
- Center for Advanced Genomic Technologies, Duke University Medical Center, Durham, NC, 27708, USA.
| | - Allison E Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, DUMC Box 104775, Durham, NC, 27701, USA.
- Department of Medicine, Duke University Medical Center, Durham, NC, 27708, USA.
| | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, DUMC Box 2900, Durham, NC, 27710, USA.
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA.
| |
Collapse
|
197
|
Wartewig T, Daniels J, Schulz M, Hameister E, Joshi A, Park J, Morrish E, Venkatasubramani AV, Cernilogar FM, van Heijster FHA, Hundshammer C, Schneider H, Konstantinidis F, Gabler JV, Klement C, Kurniawan H, Law C, Lee Y, Choi S, Guitart J, Forne I, Giustinani J, Müschen M, Jain S, Weinstock DM, Rad R, Ortonne N, Schilling F, Schotta G, Imhof A, Brenner D, Choi J, Ruland J. PD-1 instructs a tumor-suppressive metabolic program that restricts glycolysis and restrains AP-1 activity in T cell lymphoma. NATURE CANCER 2023; 4:1508-1525. [PMID: 37723306 PMCID: PMC10597841 DOI: 10.1038/s43018-023-00635-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 08/15/2023] [Indexed: 09/20/2023]
Abstract
The PDCD1-encoded immune checkpoint receptor PD-1 is a key tumor suppressor in T cells that is recurrently inactivated in T cell non-Hodgkin lymphomas (T-NHLs). The highest frequencies of PDCD1 deletions are detected in advanced disease, predicting inferior prognosis. However, the tumor-suppressive mechanisms of PD-1 signaling remain unknown. Here, using tractable mouse models for T-NHL and primary patient samples, we demonstrate that PD-1 signaling suppresses T cell malignancy by restricting glycolytic energy and acetyl coenzyme A (CoA) production. In addition, PD-1 inactivation enforces ATP citrate lyase (ACLY) activity, which generates extramitochondrial acetyl-CoA for histone acetylation to enable hyperactivity of activating protein 1 (AP-1) transcription factors. Conversely, pharmacological ACLY inhibition impedes aberrant AP-1 signaling in PD-1-deficient T-NHLs and is toxic to these cancers. Our data uncover genotype-specific vulnerabilities in PDCD1-mutated T-NHL and identify PD-1 as regulator of AP-1 activity.
Collapse
Affiliation(s)
- Tim Wartewig
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
- Center of Molecular and Cellular Oncology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Jay Daniels
- Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Miriam Schulz
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Erik Hameister
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Abhinav Joshi
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Joonhee Park
- Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Emma Morrish
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Anuroop V Venkatasubramani
- Protein Analysis Unit, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Martinsried, Germany
| | - Filippo M Cernilogar
- Department of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Martinsried, Germany
| | - Frits H A van Heijster
- Department of Nuclear Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christian Hundshammer
- Department of Nuclear Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Heike Schneider
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Filippos Konstantinidis
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Judith V Gabler
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christine Klement
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Henry Kurniawan
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Calvin Law
- Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Yujin Lee
- Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Sara Choi
- Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Joan Guitart
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Ignasi Forne
- Protein Analysis Unit, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Martinsried, Germany
| | - Jérôme Giustinani
- Institut Mondor de Recherche Biomédicale, Inserm U955, Paris-Est Créteil University, Créteil, France
| | - Markus Müschen
- Center of Molecular and Cellular Oncology, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Salvia Jain
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - David M Weinstock
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Merck Research Laboratories, Boston, MA, USA
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Medicine II, School of Medicine, Technical University of Munich, Munich, Germany
| | - Nicolas Ortonne
- Institut Mondor de Recherche Biomédicale, Inserm U955, Paris-Est Créteil University, Créteil, France
- Pathology Department, AP-HP Inserm U955, Henri Mondor Hospital, Créteil, France
| | - Franz Schilling
- Department of Nuclear Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Gunnar Schotta
- Department of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Martinsried, Germany
| | - Axel Imhof
- Protein Analysis Unit, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Martinsried, Germany
| | - Dirk Brenner
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
- Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Jaehyuk Choi
- Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
- Center for Genetic Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
- Center for Human Immunobiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
| | - Jürgen Ruland
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany.
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany.
| |
Collapse
|
198
|
Antontseva EV, Degtyareva AO, Korbolina EE, Damarov IS, Merkulova TI. Human-genome single nucleotide polymorphisms affecting transcription factor binding and their role in pathogenesis. Vavilovskii Zhurnal Genet Selektsii 2023; 27:662-675. [PMID: 37965371 PMCID: PMC10641029 DOI: 10.18699/vjgb-23-77] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 11/16/2023] Open
Abstract
Single nucleotide polymorphisms (SNPs) are the most common type of variation in the human genome. The vast majority of SNPs identified in the human genome do not have any effect on the phenotype; however, some can lead to changes in the function of a gene or the level of its expression. Most SNPs associated with certain traits or pathologies are mapped to regulatory regions of the genome and affect gene expression by changing transcription factor binding sites. In recent decades, substantial effort has been invested in searching for such regulatory SNPs (rSNPs) and understanding the mechanisms by which they lead to phenotypic differences, primarily to individual differences in susceptibility to diseases and in sensitivity to drugs. The development of the NGS (next-generation sequencing) technology has contributed not only to the identification of a huge number of SNPs and to the search for their association (genome-wide association studies, GWASs) with certain diseases or phenotypic manifestations, but also to the development of more productive approaches to their functional annotation. It should be noted that the presence of an association does not allow one to identify a functional, truly disease-associated DNA sequence variant among multiple marker SNPs that are detected due to linkage disequilibrium. Moreover, determination of associations of genetic variants with a disease does not provide information about the functionality of these variants, which is necessary to elucidate the molecular mechanisms of the development of pathology and to design effective methods for its treatment and prevention. In this regard, the functional analysis of SNPs annotated in the GWAS catalog, both at the genome-wide level and at the level of individual SNPs, became especially relevant in recent years. A genome-wide search for potential rSNPs is possible without any prior knowledge of their association with a trait. Thus, mapping expression quantitative trait loci (eQTLs) makes it possible to identify an SNP for which - among transcriptomes of homozygotes and heterozygotes for its various alleles - there are differences in the expression level of certain genes, which can be located at various distances from the SNP. To predict rSNPs, approaches based on searches for allele-specific events in RNA-seq, ChIP-seq, DNase-seq, ATAC-seq, MPRA, and other data are also used. Nonetheless, for a more complete functional annotation of such rSNPs, it is necessary to establish their association with a trait, in particular, with a predisposition to a certain pathology or sensitivity to drugs. Thus, approaches to finding SNPs important for the development of a trait can be categorized into two groups: (1) starting from data on an association of SNPs with a certain trait, (2) starting from the determination of allele-specific changes at the molecular level (in a transcriptome or regulome). Only comprehensive use of strategically different approaches can considerably enrich our knowledge about the role of genetic determinants in the molecular mechanisms of trait formation, including predisposition to multifactorial diseases.
Collapse
Affiliation(s)
- E V Antontseva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A O Degtyareva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E E Korbolina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - I S Damarov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - T I Merkulova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
199
|
Shah R, Shah VK, Emin M, Gao S, Sampogna RV, Aggarwal B, Chang A, St-Onge MP, Malik V, Wang J, Wei Y, Jelic S. Mild sleep restriction increases endothelial oxidative stress in female persons. Sci Rep 2023; 13:15360. [PMID: 37717072 PMCID: PMC10505226 DOI: 10.1038/s41598-023-42758-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/14/2023] [Indexed: 09/18/2023] Open
Abstract
Sleep restriction is associated with increased cardiovascular risk, which is more pronounced in female than male persons. We reported recently first causal evidence that mild, prolonged sleep restriction mimicking "real-life" conditions impairs endothelial function, a key step in the development and progression of cardiovascular disease, in healthy female persons. However, the underlying mechanisms are unclear. In model organisms, sleep restriction increases oxidative stress and upregulates antioxidant response via induction of the antioxidant regulator nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Here, we assessed directly endothelial cell oxidative stress and antioxidant responses in healthy female persons (n = 35) after 6 weeks of mild sleep restriction (1.5 h less than habitual sleep) using randomized crossover design. Sleep restriction markedly increased endothelial oxidative stress without upregulating antioxidant response. Using RNA-seq and a predicted protein-protein interaction database, we identified reduced expression of endothelial Defective in Cullin Neddylation-1 Domain Containing 3 (DCUN1D3), a protein that licenses Nrf2 antioxidant responses, as a mediator of impaired endothelial antioxidant response in sleep restriction. Thus, sleep restriction impairs clearance of endothelial oxidative stress that over time increases cardiovascular risk.Trial Registration: NCT02835261 .
Collapse
Affiliation(s)
- Riddhi Shah
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Vikash Kumar Shah
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Memet Emin
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Su Gao
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Rosemary V Sampogna
- Division of Nephrology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Brooke Aggarwal
- Division of Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Audrey Chang
- NewYork-Presbyterian Morgan Stanley Children's Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Marie-Pierre St-Onge
- Division of General Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Vikas Malik
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Columbia Center for Human Development and Columbia Stem Cell Initiative, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jianlong Wang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Columbia Center for Human Development and Columbia Stem Cell Initiative, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Ying Wei
- Division of Biostatistics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Sanja Jelic
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
200
|
Soon HR, Gaunt JR, Bansal VA, Lenherr C, Sze SK, Ch’ng TH. Seizure enhances SUMOylation and zinc-finger transcriptional repression in neuronal nuclei. iScience 2023; 26:107707. [PMID: 37694138 PMCID: PMC10483055 DOI: 10.1016/j.isci.2023.107707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/29/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
A single episode of pilocarpine-induced status epilepticus can trigger the development of spontaneous recurrent seizures in a rodent model for epilepsy. The initial seizure-induced events in neuronal nuclei that lead to long-term changes in gene expression and cellular responses likely contribute toward epileptogenesis. Using a transgenic mouse model to specifically isolate excitatory neuronal nuclei, we profiled the seizure-induced nuclear proteome via tandem mass tag mass spectrometry and observed robust enrichment of nuclear proteins associated with the SUMOylation pathway. In parallel with nuclear proteome, we characterized nuclear gene expression by RNA sequencing which provided insights into seizure-driven transcriptional regulation and dynamics. Strikingly, we saw widespread downregulation of zinc-finger transcription factors, specifically proteins that harbor Krüppel-associated box (KRAB) domains. Our results provide a detailed snapshot of nuclear events induced by seizure activity and demonstrate a robust method for cell-type-specific nuclear profiling that can be applied to other cell types and models.
Collapse
Affiliation(s)
- Hui Rong Soon
- School of Biological Science, Nanyang Technological University, Singapore 636551, Singapore
| | - Jessica Ruth Gaunt
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Vibhavari Aysha Bansal
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Clara Lenherr
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Centre for Discovery Brain Science, The University of Edinburgh, Edinburgh, UK
| | - Siu Kwan Sze
- Faculty of Applied Health Sciences, Brock University, St. Catherines, ON, Canada
| | - Toh Hean Ch’ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- School of Biological Science, Nanyang Technological University, Singapore 636551, Singapore
| |
Collapse
|