151
|
Improving the therapeutic efficiency of noncoding RNAs in cancers using targeted drug delivery systems. Drug Discov Today 2019; 25:718-730. [PMID: 31758914 DOI: 10.1016/j.drudis.2019.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022]
Abstract
The delivery of noncoding (nc)RNA to target cancer stem cells and metastatic tumors has shown many positive outcomes, resulting in improved and more efficient treatment strategies. The success of therapeutic RNA depends solely on passing cellular barriers to reach the target site, where it binds to the mRNA of the interest. By 2018, 20 clinical trials had been initiated, most focusing on cancer and diabetes, with some progressing to Phase II clinical trials testing the safety and efficacy of small interfering (si)RNA. Many challenges limit RNA interference (RNAi) and miRNA usage in vivo; therefore, various approaches have been developed to promote ncRNA efficiency and stability. In this review, we focus on targeting the tumor microenvironment (TME) via the modification of delivery systems utilizing nanotechnology-based delivery approaches.
Collapse
|
152
|
Wang Y, Grainger DW. Lyophilized liposome-based parenteral drug development: Reviewing complex product design strategies and current regulatory environments. Adv Drug Deliv Rev 2019; 151-152:56-71. [PMID: 30898571 DOI: 10.1016/j.addr.2019.03.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 01/16/2023]
Abstract
Given the successful entry of several liposomal drug products into market, and some with decades of clinical efficacy, liposomal drug delivery systems have proven capabilities to overcome certain limitations of traditional drug delivery, especially for toxic and biologic drugs. This experience has helped promote new liposomal approaches to emerging drug classes and current therapeutic challenges. All approved liposomal dosage forms are parenteral formulations, a pathway demonstrating greatest safety and efficacy to date. Due to the intrinsic instability of aqueous liposomal dispersions, lyophilization is commonly applied as an important solution to improve liposomal drug stability, and facilitate transportation, storage and improve product shelf-life. While lyophilization is a mature pharmaceutical technology, liposome-specific lyophilization platforms must be developed using particular lyophilization experience and strategies. This review provides an overview of liposome formulation-specific lyophilization approaches for parenteral use, excipients used exclusively in liposomal parenteral products, lyophilized liposome formulation design and process development, long-term storage, and current regulatory guidance for liposome drug products. Readers should capture a comprehensive understanding of formulation and process variables and strategies for developing parenterally administered liposomal drugs.
Collapse
|
153
|
Maharramov AM, Hasanova UA, Suleymanova IA, Osmanova GE, Hajiyeva NE. The engineered nanoparticles in food chain: potential toxicity and effects. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1412-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
154
|
Rana A, Westein E, Niego B, Hagemeyer CE. Shear-Dependent Platelet Aggregation: Mechanisms and Therapeutic Opportunities. Front Cardiovasc Med 2019; 6:141. [PMID: 31620451 PMCID: PMC6763557 DOI: 10.3389/fcvm.2019.00141] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/03/2019] [Indexed: 01/04/2023] Open
Abstract
Cardiovascular diseases (CVD) are the number one cause of morbidity and death worldwide. As estimated by the WHO, the global death rate from CVD is 31% wherein, a staggering 85% results from stroke and myocardial infarction. Platelets, one of the key components of thrombi, have been well-investigated over decades for their pivotal role in thrombus development in healthy as well as diseased blood vessels. In hemostasis, when a vascular injury occurs, circulating platelets are arrested at the site of damage, where they are activated and aggregate to form hemostatic thrombi, thus preventing further bleeding. However, in thrombosis, pathological activation of platelets occurs, leading to uncontrolled growth of a thrombus, which in turn can occlude the blood vessel or embolize, causing downstream ischemic events. The molecular processes causing pathological thrombus development are in large similar to the processes controlling physiological thrombus formation. The biggest challenge of anti-thrombotics and anti-platelet therapeutics has been to decouple the pathological platelet response from the physiological one. Currently, marketed anti-platelet drugs are associated with major bleeding complications for this exact reason; they are not effective in targeting pathological thrombi without interfering with normal hemostasis. Recent studies have emphasized the importance of shear forces generated from blood flow, that primarily drive platelet activation and aggregation in thrombosis. Local shear stresses in obstructed blood vessels can be higher by up to two orders of magnitude as compared to healthy vessels. Leveraging abnormal shear forces in the thrombus microenvironment may allow to differentiate between thrombosis and hemostasis and develop shear-selective anti-platelet therapies. In this review, we discuss the influence of shear forces on thrombosis and the underlying mechanisms of shear-induced platelet activation. Later, we summarize the therapeutic approaches to target shear-sensitive platelet activation and pathological thrombus growth, with a particular focus on the shear-sensitive protein von Willebrand Factor (VWF). Inhibition of shear-specific platelet aggregation and targeted drug delivery may prove to be much safer and efficacious approaches over current state-of-the-art antithrombotic drugs in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Akshita Rana
- Nanobiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Erik Westein
- Nanobiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Be'eri Niego
- Nanobiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Christoph E Hagemeyer
- Nanobiotechnology Laboratory, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
155
|
Elkhoury K, Russell C, Sanchez-Gonzalez L, Mostafavi A, Williams T, Kahn C, Peppas NA, Arab-Tehrany E, Tamayol A. Soft-Nanoparticle Functionalization of Natural Hydrogels for Tissue Engineering Applications. Adv Healthc Mater 2019; 8:e1900506. [PMID: 31402589 PMCID: PMC6752977 DOI: 10.1002/adhm.201900506] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/06/2019] [Indexed: 12/29/2022]
Abstract
Tissue engineering has emerged as an important research area that provides numerous research tools for the fabrication of biologically functional constructs that can be used in drug discovery, disease modeling, and the treatment of diseased or injured organs. From a materials point of view, scaffolds have become an important part of tissue engineering activities and are usually used to form an environment supporting cellular growth, differentiation, and maturation. Among various materials used as scaffolds, hydrogels based on natural polymers are considered one of the most suitable groups of materials for creating tissue engineering scaffolds. Natural hydrogels, however, do not always provide the physicochemical and biological characteristics and properties required for optimal cell growth. This review discusses the properties and tissue engineering applications of widely used natural hydrogels. In addition, methods of modulation of their physicochemical and biological properties using soft nanoparticles as fillers or reinforcing agents are presented.
Collapse
Affiliation(s)
| | - Carina Russell
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE, 68508, USA
| | | | | | - Tyrell Williams
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE, 68508, USA
| | - Cyril Kahn
- LIBio, Université de Lorraine, F-54000 Nancy, France
| | - Nicholas A. Peppas
- Departments of Biomedical and Chemical Engineering, Departments of Pediatrics and Surgery, Dell Medical School, University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Ali Tamayol
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE, 68508, USA
- Mary and Dick Holland Regenerative Medicine Program University of Nebraska-Medical Center, Omaha, NE, 68198
| |
Collapse
|
156
|
Basha SA, Salkho N, Dalibalta S, Husseini GA. Liposomes in Active, Passive and Acoustically-Triggered Drug Delivery. Mini Rev Med Chem 2019; 19:961-969. [PMID: 30961495 DOI: 10.2174/1389557519666190408155251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/17/2018] [Accepted: 11/06/2018] [Indexed: 12/23/2022]
Abstract
Cancer has become one of the most deadly noncommunicable diseases globally. Several modalities used to treat cancer patients exist today yet many have failed to prove high efficacy with low side effects. The most common example of such modalities is the use of chemotherapeutic drugs to treat cancerous cells and deter their uncontrolled proliferation. In addition to the destruction of cancerous tissues, chemotherapy destroys healthy tissues as it lacks the specificity to annihilate cancerous cells only and preferentially, which result in adverse side effects including nausea, hair fall and myocardial infarction. To prevent the side effects of non-selective chemotherapy, cancer therapy research has been focused on the implementation of nanocarrier systems that act as vehicles to encapsulate drugs and selectively transport their agent to the tumor site. In this paper, we shed light on liposomes along with three anticancer drug delivery approaches: passive, active and ultrasound-triggered drug delivery.
Collapse
Affiliation(s)
- Sara Al Basha
- Department of Chemistry, Biology and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Najla Salkho
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Sarah Dalibalta
- Department of Chemistry, Biology and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Ghaleb Adnan Husseini
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
157
|
Rosa A, Caprioglio D, Isola R, Nieddu M, Appendino G, Falchi AM. Dietary zerumbone from shampoo ginger: new insights into its antioxidant and anticancer activity. Food Funct 2019; 10:1629-1642. [PMID: 30834410 DOI: 10.1039/c8fo02395f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The dietary sesquiterpene dienone zerumbone (ZER) selectively targets cancer cells, inducing mitochondrial dysfunction and apoptosis, and protects non-cancerous cells towards oxidative stress and insult. This study examines the in vitro effects of ZER on lipid peroxidation in biological systems (cholesterol and phospholipid membrane oxidation) and explores its antitumor action in terms of its ability to modulate cancer cell lipid profile. Evaluation of the antioxidant activity of ZER showed that this compound is unable to trap lipoperoxyl radicals per se. ZER significantly modulated the total lipid and fatty acid profiles in cancer cells, inducing marked changes in the phospholipid/cholesterol ratio, with significant decreases in the levels of oleic and palmitic acids and a marked increase of stearic acid. Cell-based fluorescent measurements of intracellular membranes and lipid droplets using the Nile Red staining technique showed that in cancer cells, ZER induced significant accumulation of cytosolic lipid droplets and altered cell membrane organization/protein dynamics, depolarizing the mitochondrial membranes and inducing apoptosis and alteration of nuclear morphology. The modulatory activity of ZER on the total lipid and fatty acid profiles and lipid droplets may therefore represent another possible mechanism of its anticancer properties.
Collapse
Affiliation(s)
- A Rosa
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Km 4.5 SS 554, 09042 Monserrato, CA, Italy.
| | | | | | | | | | | |
Collapse
|
158
|
Yusuf A, Casey A. Evaluation of silver nanoparticle encapsulation in DPPC-based liposome by different methods for enhanced cytotoxicity. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1626390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Azeez Yusuf
- School of Physics, Dublin Institute of Technology, Dublin, Ireland
- Nanolab Research Centre, FOCAS Research Institute, Dublin Institute of Technology, Dublin, Ireland
| | - Alan Casey
- School of Physics, Dublin Institute of Technology, Dublin, Ireland
- Nanolab Research Centre, FOCAS Research Institute, Dublin Institute of Technology, Dublin, Ireland
| |
Collapse
|
159
|
Zyuzin MV, Timin AS, Sukhorukov GB. Multilayer Capsules Inside Biological Systems: State-of-the-Art and Open Challenges. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4747-4762. [PMID: 30840473 DOI: 10.1021/acs.langmuir.8b04280] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
There are many reports about the interaction of multilayer capsules with biological systems in the literature. A majority of them are devoted to the in vitro study with two-dimensional cell cultures. Multilayer capsule fabrication had been under intensive investigation from 1990s and 2000s by Prof. Helmuth Möhwald, and many of his followers further developed their own research directions, focusing on capsule implementation in various fields of biology and medicine. The aim of this future article is to consistently consider the most recent advances in cell-capsule interactions for different biomedical applications, including functionalization of clinically relevant cells, nonviral gene delivery, magnetization of cells to control their movement, and in vivo drug delivery. Finally, the description and discussion of the new trends and perspectives for improved functionalities of capsules in design and functionalization of cell-assisted drug vehicles are the major topics of this work.
Collapse
Affiliation(s)
- Mikhail V Zyuzin
- Faculty of Physics and Engineering , ITMO University , Lomonosova 9 , 191002 St. Petersburg , Russia
| | - Alexander S Timin
- National Research Tomsk Polytechnic University , Lenin Avenue, 30 , 634050 Tomsk , Russian Federation
- First I. P. Pavlov State Medical University of St. Petersburg , Lev Tolstoy Street, 6/8 , 197022 St. Petersburg , Russian Federation
| | - Gleb B Sukhorukov
- National Research Tomsk Polytechnic University , Lenin Avenue, 30 , 634050 Tomsk , Russian Federation
- School of Engineering and Materials Science , Queen Mary University of London , Mile End Road , E1 4NS London , U.K
| |
Collapse
|
160
|
Temperature- and rigidity-mediated rapid transport of lipid nanovesicles in hydrogels. Proc Natl Acad Sci U S A 2019; 116:5362-5369. [PMID: 30837316 DOI: 10.1073/pnas.1818924116] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lipid nanovesicles are widely present as transport vehicles in living organisms and can serve as efficient drug delivery vectors. It is known that the size and surface charge of nanovesicles can affect their diffusion behaviors in biological hydrogels such as mucus. However, how temperature effects, including those of both ambient temperature and phase transition temperature (T m), influence vehicle transport across various biological barriers outside and inside the cell remains unclear. Here, we utilize a series of liposomes with different T m as typical models of nanovesicles to examine their diffusion behavior in vitro in biological hydrogels. We observe that the liposomes gain optimal diffusivity when their T m is around the ambient temperature, which signals a drastic change in the nanovesicle rigidity, and that liposomes with T m around body temperature (i.e., ∼37 °C) exhibit enhanced cellular uptake in mucus-secreting epithelium and show significant improvement in oral insulin delivery efficacy in diabetic rats compared with those with higher or lower T m Molecular-dynamics (MD) simulations and superresolution microscopy reveal a temperature- and rigidity-mediated rapid transport mechanism in which the liposomes frequently deform into an ellipsoidal shape near the phase transition temperature during diffusion in biological hydrogels. These findings enhance our understanding of the effect of temperature and rigidity on extracellular and intracellular functions of nanovesicles such as endosomes, exosomes, and argosomes, and suggest that matching T m to ambient temperature could be a feasible way to design highly efficient nanovesicle-based drug delivery vectors.
Collapse
|
161
|
Kurtz SL, Lawson LB. Liposomes Enhance Dye Localization within the Mammary Ducts of Porcine Nipples. Mol Pharm 2019; 16:1703-1713. [DOI: 10.1021/acs.molpharmaceut.9b00037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Samantha L. Kurtz
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana 70112 United States
- Bioinnovation Ph.D. Program, Tulane University School of Science and Engineering, New Orleans, Louisiana 70118 United States
| | - Louise B. Lawson
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana 70112 United States
| |
Collapse
|
162
|
Hammoud Z, Gharib R, Fourmentin S, Elaissari A, Greige-Gerges H. New findings on the incorporation of essential oil components into liposomes composed of lipoid S100 and cholesterol. Int J Pharm 2019; 561:161-170. [PMID: 30836153 DOI: 10.1016/j.ijpharm.2019.02.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 12/29/2022]
Abstract
The encapsulation of essential oil components into liposomes was demonstrated to improve their solubility and chemical stability. In this study, we investigated the effect of chemical structure, Henry's law constant (Hc), and aqueous solubility of essential oil components on their liposomal encapsulation. Estragole, eucalyptol, isoeugenol, pulegone, terpineol, and thymol were encapsulated in lipoid S100-liposomes using the ethanol injection method. The Hc values were determined. The incorporation in liposomes was more efficient (encapsulation efficiency > 90%) for the essential oil components exhibiting low aqueous solubility (estragole, isoeugenol, and pulegone). Moreover, efficient entrapment into vesicles (loading rate > 18%) was obtained for isoeugenol, terpineol, and thymol. This result suggests that the presence of a hydroxyl group in the structure and a low Hc value enhance the entrapment of essential oil components into liposomes. Furthermore, drug release rate from liposomes was controlled by the loading rate of essential oil components into liposomes, the size of particles, the location of essential oil components within the lipid bilayer, and the cholesterol incorporation rate of liposomes. Finally, considerable concentrations of isoeugenol, pulegone, terpineol, and thymol were retained in liposomes after 10 months with respect to the initial concentration.
Collapse
Affiliation(s)
- Zahraa Hammoud
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Section II, Lebanese University, Lebanon; University Claude Bernard Lyon-1, CNRS, LAGEP-UMR 5007, F-69622 Lyon, France
| | - Riham Gharib
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Section II, Lebanese University, Lebanon
| | - Sophie Fourmentin
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, EA 4492), SFR Condorcet FR CNRS 3417, ULCO, F-59140 Dunkerque, France
| | | | - Hélène Greige-Gerges
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Section II, Lebanese University, Lebanon.
| |
Collapse
|
163
|
Bouguéon G, Kauss T, Dessane B, Barthélémy P, Crauste-Manciet S. Micro- and nano-formulations for bioprinting and additive manufacturing. Drug Discov Today 2019; 24:163-178. [DOI: 10.1016/j.drudis.2018.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/05/2018] [Accepted: 10/25/2018] [Indexed: 02/06/2023]
|
164
|
Shi Y, Wang Y, Ma S, Liu T, Tian H, Zhu Q, Wang W, Li Y, Ding F. Increasing the removal of protein-bound uremic toxins by liposome-supported hemodialysis. Artif Organs 2018; 43:490-503. [PMID: 30375673 DOI: 10.1111/aor.13383] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/13/2018] [Accepted: 10/17/2018] [Indexed: 12/14/2022]
Abstract
Protein-bound uremic toxins (PBUTs) accumulate at high plasma levels and cause various deleterious effects in end-stage renal disease patients because their removal by conventional hemodialysis is severely limited by their low free-fraction levels in plasma. Here, we assessed the extent to which solute removal can be increased by adding liposomes to the dialysate. The uptake of liposomes by direct incubation in vitro showed an obvious dose-response relationship for p-cresyl sulfate (PCS) and indoxyl sulfate (IS) but not for hippuric acid (HA). The percent removal of both PCS and IS but not of HA was gradually increased with the increased concentration of liposomes in a rapid equilibrium dialysis setup. In vitro closed circulation showed that adding liposomes to the dialysate markedly increased the dialysances of PBUTs without greatly altering that of urea and creatinine. In vivo experiments in uremic rats demonstrated that adding liposomes to the dialysate resulted in higher reduction ratios (RRs) and more total solute removal (TSR) for several PBUTs compared to the conventional dialysate, which was approximately similar to the addition of bovine serum albumin to the dialysate. These findings highlight that as an adjunct to conventional hemodialysis, addition of liposomes to the dialysate could significantly improve the removal of protein-bound uremic solutes without greatly altering the removal of small, water-soluble solutes.
Collapse
Affiliation(s)
- Yuanyuan Shi
- Division of Nephrology & Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yifeng Wang
- Division of Nephrology & Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,The State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science & Technology, Shanghai, China
| | - Shuai Ma
- Division of Nephrology & Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Tingyan Liu
- Division of Nephrology & Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Huajun Tian
- Division of Nephrology & Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qiuyu Zhu
- Division of Nephrology & Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wenji Wang
- Division of Nephrology & Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yulin Li
- The State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science & Technology, Shanghai, China
| | - Feng Ding
- Division of Nephrology & Unit of Critical Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
165
|
Forbes N, Hussain MT, Briuglia ML, Edwards DP, Horst JHT, Szita N, Perrie Y. Rapid and scale-independent microfluidic manufacture of liposomes entrapping protein incorporating in-line purification and at-line size monitoring. Int J Pharm 2018; 556:68-81. [PMID: 30503269 DOI: 10.1016/j.ijpharm.2018.11.060] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 10/27/2022]
Abstract
Within this paper we present work that has the ability to de-risk the translation of liposomes from bench to the clinic. We have used microfluidics for the rapid and scale-independent manufacture of liposomes and have incorporated in-line purification and at-line monitoring of particle size. Using this process, we have manufactured a range of neutral and anionic liposomes incorporating protein. Factors investigated include the microfluidics operating parameters (flow rate ratio (FRR) and total flow rate (TFR)) and the liposome formulation. From these studies, we demonstrate that FRR is a key factor influencing liposome size, protein loading and release profiles. The liposome formulations produced by microfluidics offer high protein loading (20-35%) compared to production by sonication or extrusion (<5%). This high loading achieved by microfluidics results from the manufacturing process and is independent of lipid selection and concentration across the range tested. Using in-line purification and at-line size monitoring, we outline the normal operating range for effective production of size controlled (60-100 nm), homogenous (PDI <0.2) high load liposomes. This easy microfluidic process provides a translational manufacturing pathway for liposomes in a wide-range of applications.
Collapse
Affiliation(s)
- Neil Forbes
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral St, University of Strathclyde, Glasgow, Scotland, G4 0RE, United Kingdom
| | - Maryam T Hussain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral St, University of Strathclyde, Glasgow, Scotland, G4 0RE, United Kingdom
| | - Maria L Briuglia
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Technology and Innovation Centre, University of Strathclyde, 99 George St, Glasgow, G1 1RD, United Kingdom
| | - Darren P Edwards
- Drug Discovery Unit, School of Life and Health Sciences, University of Dundee, Dow St, Dundee, Scotland DD1 5EH, United Kingdom
| | - Joop H Ter Horst
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Technology and Innovation Centre, University of Strathclyde, 99 George St, Glasgow, G1 1RD, United Kingdom
| | - Nicolas Szita
- Department of Biochemical Engineering, University College London, London WC1H 0AH, United Kingdom
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral St, University of Strathclyde, Glasgow, Scotland, G4 0RE, United Kingdom.
| |
Collapse
|
166
|
Li X, Fan C, Xiao Z, Zhao Y, Zhang H, Sun J, Zhuang Y, Wu X, Shi J, Chen Y, Dai J. A collagen microchannel scaffold carrying paclitaxel-liposomes induces neuronal differentiation of neural stem cells through Wnt/β-catenin signaling for spinal cord injury repair. Biomaterials 2018; 183:114-127. [DOI: 10.1016/j.biomaterials.2018.08.037] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 08/09/2018] [Accepted: 08/20/2018] [Indexed: 01/16/2023]
|
167
|
Neunert G, Tomaszewska-Gras J, Siejak P, Pietralik Z, Kozak M, Polewski K. Disruptive effect of tocopherol oxalate on DPPC liposome structure: DSC, SAXS, and fluorescence anisotropy studies. Chem Phys Lipids 2018; 216:104-113. [PMID: 30308198 DOI: 10.1016/j.chemphyslip.2018.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/26/2018] [Accepted: 10/05/2018] [Indexed: 02/05/2023]
Abstract
α-Tocopherol oxalate (TO), a tocopherol ester derivative, was investigated for its effect on the structural changes of fully hydrated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes, as a function of concentration and temperature, by applying differential scanning calorimetry (DSC), small angle X-ray scattering (SAXS), and DPH fluorescence anisotropy methods. The DSC and DPH anisotropy data indicated that TO embedded into DPPC membrane lowered the enthalpy (ΔHm) and temperature (Tm) of the main phase transition as well its cooperativity. Fluidization of the membrane at a lowered temperature was accompanied by formation of mixed structures of tocopherol-enriched domains. SAXS studies showed the formation of various ordered structures in DPPC gel-phase during incorporation of TO into the bilayer, as evidenced by the existence of lamellar phases with repeat distances (d) of 6.13 and 6.87 nm, assigned to TO-enriched domains and a lamellar, liquid-ordered DPPC phase with d = 8.45 nm at increasing TO concentrations with lowering and broadening of the Bragg peaks, and diffuse scattering, characteristic of a fluid Lα phase, were observed. In DPPC fluid-phase, the increasing presence of TO at low concentrations resulted in the appearance of a liquid-ordered phase with repeat d = 6.9 nm coexistent with a lamellar structure with d = 9.2 nm, assigned to liquid-disordered structures. An increasing repeat distance observed with raising the TO amount in the DPPC bilayer evolved from an increasing interlamellar water layer of increasing thickness. Presence of TO facilitated penetration of water molecules into the acyl chain region which decreased van der Waals interactions in the bilayer. The DSC, SAXS, and fluorescence anisotropy data established that TO exhibited pronounced disruptive activity in DPPC membranes compared to α-tocopherol. The driving force of the observed action was attributed to electrostatic and dipole interactions of the acidic moiety with the polar head group of phospholipids in the interface region of the bilayer.
Collapse
Affiliation(s)
- Grażyna Neunert
- Department of Physics and Biophysics, Faculty of Food and Nutrition Sciences, Poznan University of Life Sciences, Wojska Polskiego 38/42, 60-637, Poznan, Poland
| | - Jolanta Tomaszewska-Gras
- Department of Food Quality Management, Faculty of Food and Nutrition Sciences, Poznan University of Life Sciences, Wojska Polskiego 31/33, 60-624, Poznan, Poland
| | - Przemyslaw Siejak
- Department of Physics and Biophysics, Faculty of Food and Nutrition Sciences, Poznan University of Life Sciences, Wojska Polskiego 38/42, 60-637, Poznan, Poland
| | - Zuzanna Pietralik
- Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614, Poznań, Poland
| | - Maciej Kozak
- Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614, Poznań, Poland
| | - Krzysztof Polewski
- Department of Physics and Biophysics, Faculty of Food and Nutrition Sciences, Poznan University of Life Sciences, Wojska Polskiego 38/42, 60-637, Poznan, Poland.
| |
Collapse
|
168
|
Kondratowicz A, Neunert G, Niezgoda N, Bryś J, Siger A, Rudzińska M, Lewandowicz G. Egg Yolk Extracts as Potential Liposomes Shell Material: Composition Compared with Vesicles Characteristics. J Food Sci 2018; 83:2527-2535. [PMID: 30229905 DOI: 10.1111/1750-3841.14341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/04/2018] [Accepted: 08/07/2018] [Indexed: 01/20/2023]
Abstract
Our aim was to propose simple extraction process to obtain phospholipids along with yolk-derived vitamins and fats. Five extracts marked as ethanol/acetone, methanol-chloroform/acetone, hot ethanol, hexane, and cold ethanol were developed and compared. Extracts' compositions were analyzed in terms of phospholipid, polar and nonpolar fraction, cholesterol, carotenoids, and tocopherols content. Further, liposomes prepared from extracts were characterized. The highest extraction efficiency was achieved by a one-step hexane procedure. However, that sample, in contrast to the other four extracts, revealed distinctively lower permeability when used for liposomes membrane formation. Principal component analysis proved that major components contents were decisive for liposomes membranes permeability, whereas minor constituents' content controlled zeta potential and Z-average size. PRACTICAL APPLICATION Liposomes are nanocarriers widely used in pharmaceutical industry. Due to intravenous route of administration, they have to be produced from phospholipids of very fine purity. On the other hand, there is increasing interest in nanoencapsulation of labile, bioactive substances for manufacturing of health promoting food. Unfortunately, high-price pure phospholipids are prohibitive for food applications. The use of raw material obtained by simple extraction procedure instead of highly purified phospholipids could be an attractive alternative for food industry.
Collapse
Affiliation(s)
- Anna Kondratowicz
- Faculty of Chemical Technology, Poznan Univ. of Technology, 4 Berdychowo Street, 60-695, Poznan, Poland
| | - Grażyna Neunert
- Faculty of Food Science and Nutrition, Poznan Univ. of Life Sciences, Dept. of Physics and Biophysics, 38/42 Wojska Polskiego Street, 60-637, Poznań, Poland
| | - Natalia Niezgoda
- Faculty of Biotechnology and Food Science, Wroclaw Univ. of Environmental and Life Sciences, 25 Norwida Street, 50-375, Wroclaw, Poland
| | - Joanna Bryś
- Faculty of Food Sciences, Warsaw Univ. of Life Sciences, 159c Nowoursynowska Street, 02-787, Warsaw, Poland
| | - Aleksander Siger
- Faculty of Food Science and Nutrition, Dept. of Food Biochemistry and Analysis, Poznan Univ. of Life Sciences, 48 Mazowiecka Street, 60-623, Poznan, Poland
| | - Magdalena Rudzińska
- Faculty of Food Science and Nutrition, Inst. of Food Technology of Plant Origin, Poznan Univ. of Life Sciences, 31 Wojska Polskiego Street, 60-624, Poznan, Poland
| | - Grażyna Lewandowicz
- Dept. of Biotechnology and Food Microbiology, Faculty of Food Science and Nutrition, Poznan Univ. of Life Sciences, 48 Wojska Polskiego Street, 60-627, Poznan, Poland
| |
Collapse
|
169
|
Ha JH, Jeong YJ, Kim AY, Hong IK, Lee NH, Park SN. Preparation and Physicochemical Properties of a Cysteine Derivative‐Loaded Deformable Liposomes in Hydrogel for Enhancing Whitening Effects. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201800125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ji Hoon Ha
- Department of Fine ChemistryNanobiocosmetic Laboratory and Cosmetic R&D CenterSeoul National University of Science and Technology232 Gongneung‐roNowon‐guSeoul01811Republic of Korea
| | - Yun Ju Jeong
- Department of Fine ChemistryNanobiocosmetic Laboratory and Cosmetic R&D CenterSeoul National University of Science and Technology232 Gongneung‐roNowon‐guSeoul01811Republic of Korea
| | - A Young Kim
- Department of Fine ChemistryNanobiocosmetic Laboratory and Cosmetic R&D CenterSeoul National University of Science and Technology232 Gongneung‐roNowon‐guSeoul01811Republic of Korea
| | - In Ki Hong
- Department of Fine ChemistryNanobiocosmetic Laboratory and Cosmetic R&D CenterSeoul National University of Science and Technology232 Gongneung‐roNowon‐guSeoul01811Republic of Korea
| | - Nan Hee Lee
- Department of Fine ChemistryNanobiocosmetic Laboratory and Cosmetic R&D CenterSeoul National University of Science and Technology232 Gongneung‐roNowon‐guSeoul01811Republic of Korea
| | - Soo Nam Park
- Department of Fine ChemistryNanobiocosmetic Laboratory and Cosmetic R&D CenterSeoul National University of Science and Technology232 Gongneung‐roNowon‐guSeoul01811Republic of Korea
| |
Collapse
|
170
|
Dang M, Saunders L, Niu X, Fan Y, Ma PX. Biomimetic delivery of signals for bone tissue engineering. Bone Res 2018; 6:25. [PMID: 30181921 PMCID: PMC6115422 DOI: 10.1038/s41413-018-0025-8] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/22/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023] Open
Abstract
Bone tissue engineering is an exciting approach to directly repair bone defects or engineer bone tissue for transplantation. Biomaterials play a pivotal role in providing a template and extracellular environment to support regenerative cells and promote tissue regeneration. A variety of signaling cues have been identified to regulate cellular activity, tissue development, and the healing process. Numerous studies and trials have shown the promise of tissue engineering, but successful translations of bone tissue engineering research into clinical applications have been limited, due in part to a lack of optimal delivery systems for these signals. Biomedical engineers are therefore highly motivated to develop biomimetic drug delivery systems, which benefit from mimicking signaling molecule release or presentation by the native extracellular matrix during development or the natural healing process. Engineered biomimetic drug delivery systems aim to provide control over the location, timing, and release kinetics of the signal molecules according to the drug's physiochemical properties and specific biological mechanisms. This article reviews biomimetic strategies in signaling delivery for bone tissue engineering, with a focus on delivery systems rather than specific molecules. Both fundamental considerations and specific design strategies are discussed with examples of recent research progress, demonstrating the significance and potential of biomimetic delivery systems for bone tissue engineering.
Collapse
Affiliation(s)
- Ming Dang
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI USA
| | - Laura Saunders
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI USA
| | - Xufeng Niu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Peter X. Ma
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI USA
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
171
|
Controlled Non-Viral Gene Delivery in Cartilage and Bone Repair: Current Strategies and Future Directions. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
172
|
Azzi J, Jraij A, Auezova L, Fourmentin S, Greige-Gerges H. Novel findings for quercetin encapsulation and preservation with cyclodextrins, liposomes, and drug-in-cyclodextrin-in-liposomes. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
173
|
Melling GE, Colombo JS, Avery SJ, Ayre WN, Evans SL, Waddington RJ, Sloan AJ. Liposomal Delivery of Demineralized Dentin Matrix for Dental Tissue Regeneration. Tissue Eng Part A 2018; 24:1057-1065. [PMID: 29316874 PMCID: PMC6033301 DOI: 10.1089/ten.tea.2017.0419] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/08/2018] [Indexed: 12/31/2022] Open
Abstract
Current dental restorations have short longevity, and consequently, there is a need for novel tissue engineering strategies that aim to regenerate the dentin-pulp complex. Dentin matrix contains a myriad of bioactive growth factors and extracellular matrix proteins associated with the recruitment, proliferation, and differentiation of dental pulp progenitor cells. In this study, we show that demineralized dentin matrix (DDM), from noncarious dentine, can be encapsulated into liposomes for delivery to dental tissue to promote regeneration. Liposomes were formulated to encapsulate 0-100 μg/mL DDM, lysed with Triton X, and used in vascular endothelial growth factor (VEGF) and transforming growth factor-β1 (TGF-β1) enzyme-linked immunosorbent assays to quantify release. The encapsulation efficiencies were calculated to be 25.9% and 28.8% (VEGF/TGF-β1) for 50 μg/mL DDM liposomes and 39% and 146.7% (VEGF/TGF-β1) for 100 μg/mL DDM liposomes. All liposome formulations had no cytotoxic effects on a dental pulp stem cell (DPSC) clone, as shown by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltertrazolium bromide), Caspase 3/7 assays, and cell counts. The ability of the liposomes to stimulate DPSC chemotactic recruitment was tested by Boyden chamber chemotaxis assays. Unloaded liposomes alone stimulated significant progenitor cell recruitment, while DDM-loaded liposomes further promoted chemotactic recruitment in a dose-dependent manner. DDM liposomes promoted the upregulation of "osteodentin" markers osteocalcin and RUNX2 (Runt-related transcription factor 2) in DPSCs after 9 days of treatment, determined by real-time quantitative PCR. Furthermore, Alizarin Red S staining showed that unloaded liposomes alone induced biomineralization of DPSCs, and DDM liposomes further increased the amount of mineralization observed. DDM liposomes were more effective than free DDM (10 μg/mL) at activating recruitment and osteogenic differentiation of DPSC, which are key events in the endogenous repair of the dentin-pulp complex. The study has highlighted the therapeutic potential of bioactive DDM liposomes in activating dental tissue repair in vitro, suggesting that liposomal delivery from biomaterials could be a valuable tool for reparative dentistry and hard-tissue engineering applications.
Collapse
Affiliation(s)
- Genevieve E. Melling
- Department of Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, United Kingdom
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
- Cardiff Institute for Tissue Engineering and Repair (CITER), Cardiff, United Kingdom
| | - John S. Colombo
- School of Dentistry, University of Utah, Salt Lake City, Utah
| | - Steven J. Avery
- Department of Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, United Kingdom
- Cardiff Institute for Tissue Engineering and Repair (CITER), Cardiff, United Kingdom
| | - Wayne Nishio Ayre
- Department of Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, United Kingdom
- Cardiff Institute for Tissue Engineering and Repair (CITER), Cardiff, United Kingdom
| | - Samuel L. Evans
- Cardiff Institute for Tissue Engineering and Repair (CITER), Cardiff, United Kingdom
- School of Engineering, Cardiff University, Cardiff, United Kingdom
| | - Rachel J. Waddington
- Department of Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, United Kingdom
- Cardiff Institute for Tissue Engineering and Repair (CITER), Cardiff, United Kingdom
| | - Alastair J. Sloan
- Department of Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, United Kingdom
- Cardiff Institute for Tissue Engineering and Repair (CITER), Cardiff, United Kingdom
| |
Collapse
|
174
|
Salkho NM, Paul V, Kawak P, Vitor RF, Martins AM, Al Sayah M, Husseini GA. Ultrasonically controlled estrone-modified liposomes for estrogen-positive breast cancer therapy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:462-472. [DOI: 10.1080/21691401.2018.1459634] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Najla M. Salkho
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Vinod Paul
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Pierre Kawak
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Rute F. Vitor
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Ana M. Martins
- California Institute for Quantitative Biosciences, Berkeley, CA, USA
| | - Mohammad Al Sayah
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Ghaleb A. Husseini
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
175
|
Abstract
Liposomes are spherical vesicles with a wide range of sizes from nano- to micrometer scale. For the past 7-8 decades, these vesicles have occupied the interest of a variety of scientists due to its physical, chemical, and mathematical properties and, to say the least, for its immense utility and potential as delivery vehicles for toxic and nontoxic excipients into biological tissues. Methods related to selection of reagents for creation of specific liposomes of certain properties are beyond the scope of this chapter, but here, we would outline a simplistic protocol to prepare and qualify an uniform batch of simple liposome with basic cargo. This chapter will attempt to provide the reader with a starting point for this immensely potent tool to build upon the right kind of liposome, appropriate for their studies.
Collapse
|
176
|
Mohammadi M, Mousavi Shaegh SA, Alibolandi M, Ebrahimzadeh MH, Tamayol A, Jaafari MR, Ramezani M. Micro and nanotechnologies for bone regeneration: Recent advances and emerging designs. J Control Release 2018; 274:35-55. [PMID: 29410062 DOI: 10.1016/j.jconrel.2018.01.032] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 02/08/2023]
Abstract
Treatment of critical-size bone defects is a major medical challenge since neither the bone tissue can regenerate nor current regenerative approaches are effective. Emerging progresses in the field of nanotechnology have resulted in the development of new materials, scaffolds and drug delivery strategies to improve or restore the damaged tissues. The current article reviews promising nanomaterials and emerging micro/nano fabrication techniques for targeted delivery of biomolecules for bone tissue regeneration. In addition, recent advances in fabrication of bone graft substitutes with similar properties to normal tissue along with a brief summary of current commercialized bone grafts have been discussed.
Collapse
Affiliation(s)
- Marzieh Mohammadi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ali Mousavi Shaegh
- Orthopedic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Clinical Research Unit, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ali Tamayol
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Lincoln, NE 68588, USA; Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
177
|
Koshiyama T, Tanaka M, Honjo M, Fukunaga Y, Okamura T, Ohba M. Direct Synthesis of Prussian Blue Nanoparticles in Liposomes Incorporating Natural Ion Channels for Cs + Adsorption and Particle Size Control. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1666-1672. [PMID: 29323910 DOI: 10.1021/acs.langmuir.7b03926] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Coordination polymer (CP) nanoparticles (NPs) formed by a self-assembly of organic ligands and metal ions are one of the attractive materials for molecular capture and deliver/release in aqueous media. Control of particle size and prevention of aggregation among CP NPs are important factors for improving their adsorption capability in water. We demonstrate here the potential of a liposome incorporating an antibiotic ion channel as a vessel for synthesizing Prussian blue (PB) NPs, being a typical CP. In the formation of PB NPs within liposomes, the influx rate of Fe2+ ions into liposome encapsulated [Fe(CN)6]3- through channels was fundamental for the change of NPs' sizes. The optimized PB NP-liposome composite showed higher adsorption capacity of Cs+ ions than that of aggregated PB NPs that are prepared without liposome in aqueous media.
Collapse
Affiliation(s)
- Tomomi Koshiyama
- Department of Chemistry, Graduate School of Science, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Motoki Tanaka
- Department of Chemistry, Graduate School of Science, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masayuki Honjo
- Department of Chemistry, Graduate School of Science, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yumi Fukunaga
- Department of Chemistry, Graduate School of Science, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tomoya Okamura
- Department of Chemistry, Graduate School of Science, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaaki Ohba
- Department of Chemistry, Graduate School of Science, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
178
|
Fang YP, Hu PY, Huang YB. Diminishing the side effect of mitomycin C by using pH-sensitive liposomes: in vitro characterization and in vivo pharmacokinetics. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:159-169. [PMID: 29391780 PMCID: PMC5774480 DOI: 10.2147/dddt.s150201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction Mitomycin C is an anticancer antibiotic agent that has the potential for broad-spectrum use against several cancers, including mammary cancers. Because its half-life is 17 min after a 30 mg intravenous bolus administration, the suitability of mitomycin C for wide use in the clinical setting is limited. Based on tumor pathophysiology, pH-sensitive liposomes could provide better tumor-targeted effects. The aim of this study was to investigate the possibility of diminishing the side effect of mitomycin C by using pH-sensitive liposomes. Materials and methods pH-sensitive liposomes was employed to deliver mitomycin C and evaluate the characterization, release behaviors, cytotoxicity, in vivo pharmacokinetics and biochemical assay. Results The results demonstrated that mitomycin C-loaded pH-sensitive liposomes had a particle diameter of 144.5±2.8 nm and an entrapment efficiency of 66.5%. The in vitro release study showed that the pH-sensitive liposome release percentages at pH 7.4 and pH 5.5 were approximately 47% and 93%, respectively. The cell viability of MCF-7 cells showed that both the solution and liposome group exhibited a concentration-dependent effect on cell viability. The MCF-7 cell uptake of pH-sensitive liposomes with a folate modification was higher which was indicated by an increased fluorescence intensity compared to that without a folate modification. The area under the concentration-time curve of mitomycin C-loaded pH-sensitive liposomes (18.82±0.51 µg·h/L) was significantly higher than that of the mitomycin C solution group (10.07±0.31 µg·h/L). The mean residence times of the mitomycin C-loaded and mitomycin C solution groups were 1.53±0.16 and 0.05 h, respectively. In addition, there was no significant difference in terms of Vss (p>0.05). Moreover, the half-life of pH-sensitive liposomes and the mitomycin C solution was 1.35±0.15 and 1.60±0.04 h, respectively. In terms of safety, mitomycin C-loaded pH-sensitive liposomes did not affect the platelet count and the levels of blood urea nitrogen and aspartate aminotransferase. Conclusion The positive results of pH-sensitive liposomes demonstrated maintained the cytotoxicity and decrease the side effect.
Collapse
Affiliation(s)
- Yi-Ping Fang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University.,Department of Medical Research, Kaohsiung Medical University Hospital
| | - Pei-Yu Hu
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University
| | - Yaw-Bin Huang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University.,Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
179
|
Latxague L, Gaubert A, Barthélémy P. Recent Advances in the Chemistry of Glycoconjugate Amphiphiles. Molecules 2018; 23:E89. [PMID: 29301326 PMCID: PMC6017060 DOI: 10.3390/molecules23010089] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/22/2017] [Accepted: 12/28/2017] [Indexed: 11/23/2022] Open
Abstract
Glyconanoparticles essentially result from the (covalent or noncovalent) association of nanometer-scale objects with carbohydrates. Such glyconanoparticles can take many different forms and this mini review will focus only on soft materials (colloids, liposomes, gels etc.) with a special emphasis on glycolipid-derived nanomaterials and the chemistry involved for their synthesis. Also this contribution presents Low Molecular Weight Gels (LMWGs) stabilized by glycoconjugate amphiphiles. Such soft materials are likely to be of interest for different biomedical applications.
Collapse
Affiliation(s)
- Laurent Latxague
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, F-33000 Bordeaux, France.
| | - Alexandra Gaubert
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, F-33000 Bordeaux, France.
| | - Philippe Barthélémy
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, F-33000 Bordeaux, France.
| |
Collapse
|
180
|
Efficient gene editing via non-viral delivery of CRISPR–Cas9 system using polymeric and hybrid microcarriers. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:97-108. [DOI: 10.1016/j.nano.2017.09.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/13/2017] [Accepted: 09/07/2017] [Indexed: 11/21/2022]
|
181
|
Tomitaka A, Arami H, Huang Z, Raymond A, Rodriguez E, Cai Y, Febo M, Takemura Y, Nair M. Hybrid magneto-plasmonic liposomes for multimodal image-guided and brain-targeted HIV treatment. NANOSCALE 2017; 10:184-194. [PMID: 29210401 PMCID: PMC6450097 DOI: 10.1039/c7nr07255d] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Image-guided drug delivery is an emerging strategy in the field of nanomedicine. The addition of image guidance to a traditional drug delivery system is expected to achieve highly efficient treatment by tracking the drug carriers in the body and monitoring their effective accumulation in the targeted tissues. In this study, we developed multifunctional magneto-plasmonic liposomes (MPLs), a hybrid system combining liposomes and magneto-plasmonic nanoparticles for a triple-modality image-guided drug delivery. Tenofovir disoproxil fumarate, an antiretroviral drug used to treat human immunodeficiency virus type 1 (HIV-1), was encapsulated into the MPLs to enable the treatment in the brain microenvironment, which is inaccessible to most of the drugs. We found strong negative and positive contrasts originating from the magnetic core of MPLs in magnetic resonance imaging (MRI) and magnetic particle imaging (MPI), respectively. The gold shell of MPLs showed bright positive contrast in X-ray computed tomography (CT). MPLs achieved enhanced transmigration across an in vitro blood-brain barrier (BBB) model by magnetic targeting. Moreover, MPLs provided desired therapeutic effects against HIV infected microglia cells.
Collapse
Affiliation(s)
- Asahi Tomitaka
- Department of Immunology, Institute of NeuroImmune Pharmacology, Centre for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Xu X, Wang L, Luo Z, Ni Y, Sun H, Gao X, Li Y, Zhang S, Li Y, Wei S. Facile and Versatile Strategy for Construction of Anti-Inflammatory and Antibacterial Surfaces with Polydopamine-Mediated Liposomes Releasing Dexamethasone and Minocycline for Potential Implant Applications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:43300-43314. [PMID: 29140074 DOI: 10.1021/acsami.7b06295] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Reducing early nonbacterial inflammation induced by implanted materials and infection resulting from bacterial contamination around the implant-abutment interface could greatly decrease implant failure rates, which would be of clinical significance. In this work, we presented a facile and versatile strategy for the construction of anti-inflammatory and antibacterial surfaces. Briefly, the surfaces of polystyrene culture plates were first coated with polydopamine and then decorated with dexamethasone plus minocycline-loaded liposomes (Dex/Mino liposomes), which was validated by contact angle goniometry, quartz crystal microbalance, and fluorescence microscopy. Dex/Mino liposomes were dispersed on functional surfaces and the drug release kinetics exhibited the sustained release of dexamethasone and minocycline. Our results demonstrated that the Dex/Mino liposome-modified surfaces had good biocompatibility. Additionally, liposomal dexamethasone reduced proinflammatory mediator expression (particularly IL-6 and TNF-α) in lipopolysaccharide-stimulated human gingival fibroblasts and human mesenchymal stem cells. Moreover, liposomal minocycline prevented the adhesion and proliferation of Porphyromonas gingivalis (Gram-negative bacteria) and Streptococcus mutans (Gram-positive bacteria). These findings demonstrate that an anti-inflammatory and antibacterial surface was developed, using dopamine as a medium and combining a liposomal delivery device, which has potential for use to reduce implant failure rates. Accordingly, the surface modification strategy presented could be useful in biofunctionalization of implant materials.
Collapse
Affiliation(s)
- Xiao Xu
- Central Laboratory/Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Beijing 100081, P. R. China
| | - Lixin Wang
- Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University , Beijing 100038, P. R. China
| | - Zuyuan Luo
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, P. R. China
| | - Yaofeng Ni
- Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University , Beijing 100038, P. R. China
| | - Haitao Sun
- Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University , Beijing 100038, P. R. China
| | - Xiang Gao
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University , Chongqing 401147, P. R. China
| | - Yongliang Li
- Central Laboratory/Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Beijing 100081, P. R. China
| | - Siqi Zhang
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, P. R. China
| | - Yan Li
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, P. R. China
| | - Shicheng Wei
- Central Laboratory/Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Beijing 100081, P. R. China
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, P. R. China
| |
Collapse
|
183
|
Application of xanthan gum as polysaccharide in tissue engineering: A review. Carbohydr Polym 2017; 180:128-144. [PMID: 29103488 DOI: 10.1016/j.carbpol.2017.10.009] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 09/20/2017] [Accepted: 10/02/2017] [Indexed: 12/11/2022]
Abstract
Xanthan gum is a microbial high molecular weight exo-polysaccharide produced by Xanthomonas bacteria (a Gram-negative bacteria genus that exhibits several different species) and it has widely been used as an additive in various industrial and biomedical applications such as food and food packaging, cosmetics, water-based paints, toiletries, petroleum, oil-recovery, construction and building materials, and drug delivery. Recently, it has shown great potential in issue engineering applications and a variety of modification methods have been employed to modify xanthan gum as polysaccharide for this purpose. However, xanthan gum-based biomaterials need further modification for several targeted applications due to some disadvantages (e.g., processing and mechanical performance of xanthan gum), where modified xanthan gum will be well suited for tissue engineering products. In this review, the current scenario of the use of xanthan gum for various tissue engineering applications, including its origin, structure, properties, modification, and processing for the preparation of the hydrogels and/or the scaffolds is precisely reviewed.
Collapse
|
184
|
Lolli A, Penolazzi L, Narcisi R, van Osch GJVM, Piva R. Emerging potential of gene silencing approaches targeting anti-chondrogenic factors for cell-based cartilage repair. Cell Mol Life Sci 2017; 74:3451-3465. [PMID: 28434038 PMCID: PMC11107620 DOI: 10.1007/s00018-017-2531-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 12/18/2022]
Abstract
The field of cartilage repair has exponentially been growing over the past decade. Here, we discuss the possibility to achieve satisfactory regeneration of articular cartilage by means of human mesenchymal stem cells (hMSCs) depleted of anti-chondrogenic factors and implanted in the site of injury. Different types of molecules including transcription factors, transcriptional co-regulators, secreted proteins, and microRNAs have recently been identified as negative modulators of chondroprogenitor differentiation and chondrocyte function. We review the current knowledge about these molecules as potential targets for gene knockdown strategies using RNA interference (RNAi) tools that allow the specific suppression of gene function. The critical issues regarding the optimization of the gene silencing approach as well as the delivery strategies are discussed. We anticipate that further development of these techniques will lead to the generation of implantable hMSCs with enhanced potential to regenerate articular cartilage damaged by injury, disease, or aging.
Collapse
Affiliation(s)
- Andrea Lolli
- Department of Orthopaedics, Erasmus MC, University Medical Center, 3015 CN, Rotterdam, The Netherlands.
| | - Letizia Penolazzi
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberto Narcisi
- Department of Orthopaedics, Erasmus MC, University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Gerjo J V M van Osch
- Department of Orthopaedics, Erasmus MC, University Medical Center, 3015 CN, Rotterdam, The Netherlands
- Department of Otorhinolaryngology, Erasmus MC, University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Roberta Piva
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
185
|
Effects of Liposomes Contained in Thermosensitive Hydrogels as Biomaterials Useful in Neural Tissue Engineering. MATERIALS 2017; 10:ma10101122. [PMID: 28937646 PMCID: PMC5666928 DOI: 10.3390/ma10101122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 09/16/2017] [Accepted: 09/20/2017] [Indexed: 12/20/2022]
Abstract
Advances in the generation of suitable thermosensitive hydrogels for the delivery of cells in neural tissue engineering demonstrate a delicate relationship between physical properties and capabilities to promote cell proliferation and differentiation. To improve the properties of these materials, it is possible to add liposomes for the controlled release of bioactive elements, which in turn can affect the physical and biological properties of the hydrogels. In the present investigation, different hydrogels based on Pluronic F127 have been formulated with the incorporation of chitosan and two types of liposomes of two different sizes. The rheological and thermal properties and their relation with the neurite proliferation and growth of the PC12 cell line were evaluated. Our results show that the incorporation of liposomes modifies the properties of the hydrogels dependent on the concentration of chitosan and the lipid type in the liposomes, which directly affect the capabilities of the hydrogels to promote the viability and differentiation of PC12 cells.
Collapse
|
186
|
Kaur S, Jena SK, Samal SK, Saini V, Sangamwar AT. Freeze dried solid dispersion of exemestane: A way to negate an aqueous solubility and oral bioavailability problems. Eur J Pharm Sci 2017; 107:54-61. [DOI: 10.1016/j.ejps.2017.06.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/07/2017] [Accepted: 06/25/2017] [Indexed: 12/18/2022]
|
187
|
Monteiro N, Yelick PC. Advances and perspectives in tooth tissue engineering. J Tissue Eng Regen Med 2017; 11:2443-2461. [PMID: 27151766 PMCID: PMC6625321 DOI: 10.1002/term.2134] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/30/2015] [Accepted: 12/10/2015] [Indexed: 12/20/2022]
Abstract
Bio-engineered teeth that can grow and remodel in a manner similar to that of natural teeth have the potential to serve as permanent replacements to the currently used prosthetic teeth, such as dental implants. A major challenge in designing functional bio-engineered teeth is to mimic both the structural and anisotropic mechanical characteristics of the native tooth. Therefore, the field of dental and whole tooth regeneration has advanced towards the molecular and nanoscale design of bio-active, biomimetic systems, using biomaterials, drug delivery systems and stem cells. The focus of this review is to discuss recent advances in tooth tissue engineering, using biomimetic scaffolds that provide proper architectural cues, exhibit the capacity to support dental stem cell proliferation and differentiation and sequester and release bio-active agents, such as growth factors and nucleic acids, in a spatiotemporal controlled manner. Although many in vitro and in vivo studies on tooth regeneration appear promising, before tooth tissue engineering becomes a reality for humans, additional research is needed to perfect methods that use adult human dental stem cells, as opposed to embryonic dental stem cells, and to devise the means to generate bio-engineered teeth of predetermined size and shape. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nelson Monteiro
- Department of Oral and Maxillofacial Pathology, Tufts University, Boston, MA, USA
| | - Pamela C. Yelick
- Department of Oral and Maxillofacial Pathology, Tufts University, Boston, MA, USA
| |
Collapse
|
188
|
Loredo-Tovias M, Duran-Meza AL, Villagrana-Escareño MV, Vega-Acosta R, Reynaga-Hernández E, Flores-Tandy LM, Valdes-Resendiz OE, Cadena-Nava RD, Alvizo-Paez ER, Ruiz-Garcia J. Encapsidated ultrasmall nanolipospheres as novel nanocarriers for highly hydrophobic anticancer drugs. NANOSCALE 2017; 9:11625-11631. [PMID: 28770909 DOI: 10.1039/c7nr02118f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The design and construction of novel nanocarriers that have controlled shape and size and are made of inherently biocompatible components represents a milestone in the field of nanomedicine. Here, we show the tailoring of nanoliposphere-like particles for use as biocompatible drug nanocarriers. They are made with the building block components present in human lipoproteins by means of microfluidization, which allows for good size and polydispersity control, mimicking the physical properties of natural low-density lipoproteins (LDLs). This new type of nanocarrier has a negative surface charge and a hydrophobic core that allow the stabilization and encapsulation of hydrophobic anticancer drugs such as camptothecin, resulting in anticancer drug-loaded nanolipospheres. However, we found that the nanoparticles are unstable since their size increases with time. These nanolipospheres were further encapsidated using the non-cytotoxic capsid protein of the plant virus CCMV, which renders the nanoparticles stable. In a more general application, this new virus-like particle confers a controlled microenvironment for the transport of any kind of hydrophobic drug that can bypass the cellular defense mechanisms and deliver its payload.
Collapse
Affiliation(s)
- M Loredo-Tovias
- Biological Physics Laboratory, Institute of Physics, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí, S. L. P. 78000, Mexico.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Song J, Klymov A, Shao J, Zhang Y, Ji W, Kolwijck E, Jansen JA, Leeuwenburgh SCG, Yang F. Electrospun Nanofibrous Silk Fibroin Membranes Containing Gelatin Nanospheres for Controlled Delivery of Biomolecules. Adv Healthc Mater 2017; 6. [PMID: 28464454 DOI: 10.1002/adhm.201700014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 01/24/2017] [Indexed: 12/21/2022]
Abstract
Development of novel and effective drug delivery systems for controlled release of bioactive molecules is of critical importance in the field of regenerative medicine. Here, oppositely charged gelatin nanospheres are incorporated into silk fibroin nanofibers through a colloidal electrospinning technique. A novel fibrous nano-in-nano drug delivery system is fabricated without the use of any organic solvent. The distribution of fluorescently labeled gelatin A and B nanospheres inside the nanofibers can be fine-tuned by simple adjustment of the weight ratio between the nanospheres and the relative feeding rate of core and shell solutions containing nanospheres by using single and coaxial nozzle electrospinning, respectively. Incorporation of vancomycin-loaded gelatin B nanospheres into the silk fibroin nanofibrous membranes results in a more sustained release of vancomycin, compared to the gelatin nanospheres free membranes. In addition, these membranes exhibit excellent and prolonged antibacterial effects against Staphylococcus aureus. Moreover, these membranes support the attachment, spreading, and proliferation of periodontal ligament cells. These results suggest that the beneficial properties of gelatin nanospheres can be exploited to improve the biological functionality of electrospun nanofibrous silk fibroin membranes.
Collapse
Affiliation(s)
- Jiankang Song
- Department of Biomaterials; Radboud University Medical Centre; P.O. Box 9101 6500 HB Nijmegen The Netherlands
| | - Alexey Klymov
- Department of Biomaterials; Radboud University Medical Centre; P.O. Box 9101 6500 HB Nijmegen The Netherlands
| | - Jinlong Shao
- Department of Biomaterials; Radboud University Medical Centre; P.O. Box 9101 6500 HB Nijmegen The Netherlands
| | - Yang Zhang
- Department of Biomaterials; Radboud University Medical Centre; P.O. Box 9101 6500 HB Nijmegen The Netherlands
| | - Wei Ji
- Prometheus; Division of Skeletal Tissue Engineering; Katholieke Universiteit Leuven; 3000 Leuven Belgium
- Skeletal Biology and Engineering Research Center; Department of Development and Regeneration; Katholieke Universiteit Leuven; 3000 Leuven Belgium
| | - Eva Kolwijck
- Department of Medical Microbiology; Radboud University Medical Centre; 6500 HB Nijmegen The Netherlands
| | - John A. Jansen
- Department of Biomaterials; Radboud University Medical Centre; P.O. Box 9101 6500 HB Nijmegen The Netherlands
| | - Sander C. G. Leeuwenburgh
- Department of Biomaterials; Radboud University Medical Centre; P.O. Box 9101 6500 HB Nijmegen The Netherlands
| | - Fang Yang
- Department of Biomaterials; Radboud University Medical Centre; P.O. Box 9101 6500 HB Nijmegen The Netherlands
| |
Collapse
|
190
|
Deformable Nanovesicles Synthesized through an Adaptable Microfluidic Platform for Enhanced Localized Transdermal Drug Delivery. JOURNAL OF DRUG DELIVERY 2017; 2017:4759839. [PMID: 28480080 PMCID: PMC5396447 DOI: 10.1155/2017/4759839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/13/2017] [Indexed: 12/29/2022]
Abstract
Phospholipid-based deformable nanovesicles (DNVs) that have flexibility in shape offer an adaptable and facile method to encapsulate diverse classes of therapeutics and facilitate localized transdermal delivery while minimizing systemic exposure. Here we report the use of a microfluidic reactor for the synthesis of DNVs and show that alteration of input parameters such as flow speeds as well as molar and flow rate ratios increases entrapment efficiency of drugs and allows fine-tuning of DNV size, elasticity, and surface charge. To determine the ability of DNV-encapsulated drug to be delivered transdermally to a local site, we synthesized, characterized, and tested DNVs carrying the fluorescently labeled hydrophilic bisphosphonate drug AF-647 zoledronate (AF647-Zol). AF647-Zol DNVs were lyophilized, resuspended, and applied topically as a paste to the calvarial skin of mice. High-resolution fluorescent imaging and confocal microscopy revealed significant increase of encapsulated payload delivery to the target tissue-cranial bone-by DNVs as compared to nondeformable nanovesicles (NVs) or aqueous drug solutions. Interestingly, NV delivery was not superior to aqueous drug solution. Our studies show that microfluidic reactor-synthesized DNVs can be produced in good yield, with high encapsulation efficiency, reproducibility, and stability after storage, and represent a useful vehicle for localized transdermal drug delivery.
Collapse
|
191
|
Mouhid L, Corzo-Martínez M, Torres C, Vázquez L, Reglero G, Fornari T, Ramírez de Molina A. Improving In Vivo Efficacy of Bioactive Molecules: An Overview of Potentially Antitumor Phytochemicals and Currently Available Lipid-Based Delivery Systems. JOURNAL OF ONCOLOGY 2017; 2017:7351976. [PMID: 28555156 PMCID: PMC5438845 DOI: 10.1155/2017/7351976] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/06/2017] [Indexed: 02/07/2023]
Abstract
Cancer is among the leading causes of morbidity and mortality worldwide. Many of the chemotherapeutic agents used in cancer treatment exhibit cell toxicity and display teratogenic effect on nontumor cells. Therefore, the search for alternative compounds which are effective against tumor cells but reduce toxicity against nontumor ones is of great importance in the progress or development of cancer treatments. In this sense, scientific knowledge about relevant aspects of nutrition intimately involved in the development and progression of cancer progresses rapidly. Phytochemicals, considered as bioactive ingredients present in plant products, have shown promising effects as potential therapeutic/preventive agents on cancer in several in vitro and in vivo assays. However, despite their bioactive properties, phytochemicals are still not commonly used in clinical practice due to several reasons, mainly attributed to their poor bioavailability. In this sense, new formulation strategies are proposed as carriers to improve their bioefficacy, highlighting the use of lipid-based delivery systems. Here, we review the potential antitumoral activity of the bioactive compounds derived from plants and the current studies carried out in animal and human models. Furthermore, their association with lipids as a formulation strategy to enhance their efficacy in vivo is also reported. The development of high effective bioactive supplements for cancer treatment based on the improvement of their bioavailability goes through this association.
Collapse
Affiliation(s)
- Lamia Mouhid
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Marta Corzo-Martínez
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
| | - Carlos Torres
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
| | - Luis Vázquez
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
| | - Guillermo Reglero
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA Food Institute, CEI UAM+CSIC, Madrid, Spain
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
| | - Tiziana Fornari
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
| | - Ana Ramírez de Molina
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA Food Institute, CEI UAM+CSIC, Madrid, Spain
| |
Collapse
|
192
|
Tuğcu-Demiröz F. Vaginal Delivery of Benzydamine Hydrochloride through Liposomes Dispersed in Mucoadhesive Gels. Chem Pharm Bull (Tokyo) 2017; 65:660-667. [PMID: 28442642 DOI: 10.1248/cpb.c17-00133] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Liposomal vaginal drug delivery systems are important strategy in the treatment of both topical and systemic diseases. The aim of this study was to develop a vaginal delivery system for benzydamine hydrochloride (BNZ) loaded liposomes dispersed into mucoadhesive gels. The delivery system was also designed for a once a day dosage and to obtain controlled release of the BNZ. For this purpose BNZ containing gel formulations using hydroxypropyl methylcellulose (HPMC) K100M and Carbopol® 974P, which are composed of polymers that show promising potential as mucoadhesive vaginal delivery systems, were developed. In addition, a BNZ containing liposome formulation was developed for vaginal administration. To improve the vaginal retention time, liposome was incorporated in HPMC K100M and Carbopol® 974P gel formulations. This system is called lipogel. The developed BNZ liposomes have a slightly negative zeta potential (-1.50±0.16 mV), a 2.25±0.009 µm particle size and a 34% entrapment efficiency. These gels and lipogels have appropriate pH, viscosity, textural properties and mucoadhesive value for vaginal administration. Lipogels were found to be the best formulations for in vitro diffusion and ex vivo mucoadhesion. The work of mucoadhesion obtained from liposomes was in the range of 0.027±0.045 and 0.030±0.017 mJ/cm2, while the value obtained from lipogels was between 0.176±0.037 and 0.243±0.53 mJ/cm2. N1 and N2 lipogel formulations diffused 57 and 67% of BNZ respectively at the end of 24 h. Moreover, a higher mucoadhesion, which increases drug residence time in comparison to liposomes, could improve BNZ efficacy. In conclusion, BNZ mucoadhesive vaginal lipogel formulations can be promising alternatives to traditional dosage forms for vaginal topical therapy.
Collapse
|
193
|
Hayashi K, Iwai H, Kamei T, Iwamoto K, Shimanouchi T, Fujita S, Nakamura H, Umakoshi H. Tailor-made drug carrier: Comparison of formation-dependent physicochemical properties within self-assembled aggregates for an optimal drug carrier. Colloids Surf B Biointerfaces 2017; 152:269-276. [DOI: 10.1016/j.colsurfb.2017.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/30/2016] [Accepted: 01/07/2017] [Indexed: 10/20/2022]
|
194
|
Janeczek AA, Scarpa E, Horrocks MH, Tare RS, Rowland CA, Jenner D, Newman TA, Oreffo RO, Lee SF, Evans ND. PEGylated liposomes associate with Wnt3A protein and expand putative stem cells in human bone marrow populations. Nanomedicine (Lond) 2017; 12:845-863. [PMID: 28351228 DOI: 10.2217/nnm-2016-0386] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIM To fabricate PEGylated liposomes which preserve the activity of hydrophobic Wnt3A protein, and to demonstrate their efficacy in promoting expansion of osteoprogenitors from human bone marrow. METHODS PEGylated liposomes composed of several synthetic lipids were tested for their ability to preserve Wnt3A activity in reporter and differentiation assays. Single-molecule microspectroscopy was used to test for direct association of protein with liposomes. RESULTS Labeled Wnt3A protein directly associated with all tested liposome preparations. However, Wnt3A activity was preserved or enhanced in PEGylated 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) liposomes but not in PEGylated 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes. PEGylated Wnt3A liposomes associated with skeletal stem cell populations in human bone marrow and promoted osteogenesis. CONCLUSION Active Wnt protein-containing PEGylated liposomes may have utility for systemic administration for bone repair.
Collapse
Affiliation(s)
- Agnieszka A Janeczek
- Human Development & Health Academic Unit, Faculty of Medicine, Centre for Human Development, Stem Cells & Regeneration, Bone & Joint Research Group & Institute for Life Sciences, Institute for Developmental Sciences, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Edoardo Scarpa
- Human Development & Health Academic Unit, Faculty of Medicine, Centre for Human Development, Stem Cells & Regeneration, Bone & Joint Research Group & Institute for Life Sciences, Institute for Developmental Sciences, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Mathew H Horrocks
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Rahul S Tare
- Human Development & Health Academic Unit, Faculty of Medicine, Centre for Human Development, Stem Cells & Regeneration, Bone & Joint Research Group & Institute for Life Sciences, Institute for Developmental Sciences, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Caroline A Rowland
- Microbiology Group, Chemical, Biological & Radiological Division, Dstl, Porton Down, Salisbury, SP4 0JQ, UK
| | - Dominic Jenner
- Microbiology Group, Chemical, Biological & Radiological Division, Dstl, Porton Down, Salisbury, SP4 0JQ, UK
| | - Tracey A Newman
- Clinical & Experimental Sciences, Faculty of Medicine, Institute for Life Sciences, University of Southampton, Building 85, Life Sciences Building, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Richard Oc Oreffo
- Human Development & Health Academic Unit, Faculty of Medicine, Centre for Human Development, Stem Cells & Regeneration, Bone & Joint Research Group & Institute for Life Sciences, Institute for Developmental Sciences, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Steven F Lee
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Nicholas D Evans
- Human Development & Health Academic Unit, Faculty of Medicine, Centre for Human Development, Stem Cells & Regeneration, Bone & Joint Research Group & Institute for Life Sciences, Institute for Developmental Sciences, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| |
Collapse
|
195
|
Nanoliposomal Buparvaquone Immunomodulates Leishmania infantum-Infected Macrophages and Is Highly Effective in a Murine Model. Antimicrob Agents Chemother 2017; 61:AAC.02297-16. [PMID: 28167544 DOI: 10.1128/aac.02297-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/22/2017] [Indexed: 11/20/2022] Open
Abstract
Visceral leishmaniasis is a fatal parasitic neglected disease affecting 1.5 million people worldwide. Based on a drug repositioning approach, the aim of this work was to investigate the in vitro immunomodulatory potential of buparvaquone (BPQ) and to establish a safe regimen to evaluate the in vivo efficacy of BPQ entrapped by negatively charged nanoliposomes (BPQ-LP) in Leishmania infantum-infected hamsters. Small-angle X-ray scattering, dynamic light scattering, and the ζ-potential were applied in order to study the influence of BPQ on the liposome structure. Our data revealed that BPQ was located in the polar-apolar interface, snorkeling the polar region, and protected against aggregation inside the lipophilic region. The presence of BPQ also decreased the Z-average hydrodynamic diameter and increased the surface charge. Compared to intravenous and intramuscular administration, a subcutaneous route was a more effective route for BPQ-LP; at 0.4 mg/kg, BPQ-LP reduced infection in the spleen and liver by 98 and 96%, respectively. Treatment for 5 days resulted in limited efficacy, but 10 days of treatment resulted in an efficacy similar to that of a 15-day regimen. The nanoliposomal drug was highly effective, with a mean 50% effective dose of 0.25 mg/kg, reducing the parasite load in bone marrow by 80%, as detected using quantitative PCR analysis. In addition, flow cytometry studies showed that BPQ upregulated cytokines as tumor necrosis factor, monocyte chemoattractant protein 1, interleukin-10 (IL-10), and IL-6 in Leishmania-infected macrophages, eliminating the parasites via a nitric oxide-independent mechanism. This new formulation proved to be a safe and effective treatment for murine leishmaniasis that could be a useful candidate against visceral leishmaniasis.
Collapse
|
196
|
Liang T, Guan R, Shen H, Xia Q, Liu M. Optimization of Conditions for Cyanidin-3-OGlucoside (C3G) Nanoliposome Production by Response Surface Methodology and Cellular Uptake Studies in Caco-2 Cells. Molecules 2017; 22:molecules22030457. [PMID: 28335396 PMCID: PMC6155436 DOI: 10.3390/molecules22030457] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/08/2017] [Indexed: 01/28/2023] Open
Abstract
We aimed to optimize the formulation of C3G nanoliposomes using response surface methodology. Additionally, we evaluated the stability, particle change, and encapsulation efficiency (EE) of C3G nanoliposomes under different temperatures and storage durations, as well as in simulated gastrointestinal juice (SGF) and simulated intestinal fluid. The morphology of C3G nanoliposomes was observed by transmission electron microscope. The ability of C3G nanoliposomes to affect cancer cell morphology and inhibit cancer cell proliferation was studied with Caco-2 cells. Reverse-phase evaporation method is a simple and efficient method for liposome preparation. The optimal preparation conditions for this method were as follows: C3G concentration of 0.17 mg/mL, phosphatidylcholine/cholesterol ratio of 2.87, and rotary evaporation temperature of 41.41 °C. At optimal conditions, the particle size and EE of the C3G nanoliposomes were 165.78 ± 4.3 nm and 70.43% ± 1.95%, respectively. The C3G nanoliposomes showed an acceptable stability in SGF at 37 °C for 4 h, but were unstable under extended storage durations and high temperatures. Moreover, our results showed that different concentrations of C3G nanoliposomes affected the morphology and inhibited the proliferation of Caco-2 cells.
Collapse
Affiliation(s)
- Tisong Liang
- Zhejiang Proceincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018, China.
| | - Rongfa Guan
- Zhejiang Proceincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018, China.
| | - Haitao Shen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China.
| | - Qile Xia
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, 298 Desheng Road, Hangzhou 310021, China.
| | - Mingqi Liu
- Zhejiang Proceincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
197
|
Ahani E, Montazer M, Toliyat T, Mahmoudi Rad M, Harifi T. Preparation of nano cationic liposome as carrier membrane for polyhexamethylene biguanide chloride through various methods utilizing higher antibacterial activities with low cell toxicity. J Microencapsul 2017; 34:121-131. [PMID: 28609225 DOI: 10.1080/02652048.2017.1296500] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This study suggested successful encapsulation of polyhexamethylene biguanide chloride (PHMB) into nano cationic liposome as a biocompatible antibacterial agent with less cytotoxicity and higher activities. Phosphatidylcholine, cholesterol and stearylamine were used to prepare nano cationic liposome using thin film hydration method along with sonication or homogeniser. Sonication was more effective in PHMB loaded nano cationic liposome preparation with smaller size (34 nm). FTIR, 1H NMR and XRD analyses were used to confirm the encapsulation of PHMB into nano cationic liposome. PHMB inclusion in nano cationic liposome was beneficial for increased antibacterial activity against Staphylococcus aureus and Escherichia coli. PHMB-loaded cationic liposome enables to deliver high concentrations of the antibacterial agent into the infectious cell. The cytotoxicity of PHMB entrapped in positively charged liposome was prominently reduced showing no significant visible detrimental effect on normal primary human skin fibroblast cell lines morphology confirming the effective role of cationic liposome encapsulation. Comparing with PHMB alone, encapsulation of PHMB in nano cationic liposome resulted in significant increase in cell viability from 2.4 to 63%.
Collapse
Affiliation(s)
- Elnaz Ahani
- a Science and Research Branch , Islamic Azad University , Tehran , Iran
| | - Majid Montazer
- b Department of Textile Engineering, Functional Fibrous Structures & Environmental Enhancement (FFSEE) , Amirkabir Nanotechnology Research Institute (ANTRI), Amirkabir University of Technology , Tehran , Iran
| | - Tayebeh Toliyat
- c Department of Pharmaceutics, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
| | - Mahnaz Mahmoudi Rad
- d Skin Research Centre, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Tina Harifi
- e Department of Textile Engineering, Functional Fibrous Structures & Environmental Enhancement (FFSEE) , Amirkabir University of Technology , Tehran , Iran
| |
Collapse
|
198
|
Lewicki S, Leśniak M, Machaj EK, Antos-Bielska M, Trafny EA, Kocik J, Pojda Z. Physical properties and biological interactions of liposomes developed as a drug carrier in the field of regenerative medicine. J Liposome Res 2017; 27:90-98. [PMID: 28067107 DOI: 10.3109/08982104.2016.1166510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Liposomes are used for encapsulation of the active compounds in different therapies, with the increasing frequency. The important areas of clinical applications of liposomes are cancer targeted treatment, antibiotic delivery or regenerative medicine. The liposomes can transfer both hydrophilic and hydrophobic compounds and have the lipid bilayer which imitates the cell membrane. Liposomes additionally may extend half-live period of drugs and protect them against the elimination in different ways, such as phagocytosis, enzymatic cleavage or exclusion by detoxification. The size and charge of liposomes play an important role in drug distribution and absorption into the cell. Limited data is available on the effects of liposomes on stem cells and progenitor cells. In this article, we examined the effect of charged conventional liposomes on growth of mesenchymal and blood stem cells isolated from umbilical cord. The data suggest a likelihood, that positively charged liposomes could impair stem cell growth and metabolism. Different methodological approaches allowed for the selection of negatively charged liposomes for further experiments, as the only type of liposomes which has the lowest cytotoxicity and does not affect hematopoietic cell proliferation.
Collapse
Affiliation(s)
- Sławomir Lewicki
- a Department of Regenerative Medicine , Military Institute of Hygiene and Epidemiology , Warsaw , Poland
| | - Monika Leśniak
- a Department of Regenerative Medicine , Military Institute of Hygiene and Epidemiology , Warsaw , Poland
| | - Eugeniusz Krzysztof Machaj
- b Department of Cellular Engineering , The Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology , Warsaw , Poland
| | - Małgorzata Antos-Bielska
- c Department of Microbiology , Military Institute of Hygiene and Epidemiology , Warsaw , Poland , and
| | - Elżbieta Anna Trafny
- d Military Institute of Technology, Biomedical Engineering Center, Institute of Optoelectronics , Warsaw , Poland
| | - Janusz Kocik
- a Department of Regenerative Medicine , Military Institute of Hygiene and Epidemiology , Warsaw , Poland
| | - Zygmunt Pojda
- b Department of Cellular Engineering , The Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology , Warsaw , Poland
| |
Collapse
|
199
|
Cao Q, Guo J, Qian D, Ma H, Peng Y, Shang E, Zhao B, Duan J. Liposome encapsulation attenuated venenum bufonis induced vascular irritation in rabbit ear vein via regulating TLR/MAPK/NF-κB pathway. RSC Adv 2017. [DOI: 10.1039/c7ra01820g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Venenum bufonis (VB) induced vascular irritation was related with the regulation of TLR/MAPK/NF-κB signaling pathway, and liposome encapsulation significantly attenuated VB induced vascular irritation while maintaining its anticancer activity.
Collapse
Affiliation(s)
- Qin Cao
- College of Traditional Chinese Medicine
- China Pharmaceutical University
- Nanjing 210009
- China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization
| | - Jianming Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization
- Nanjing University of Chinese Medicine
- Nanjing 210023
- China
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization
- Nanjing University of Chinese Medicine
- Nanjing 210023
- China
| | - Hongyue Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization
- Nanjing University of Chinese Medicine
- Nanjing 210023
- China
| | - Yunru Peng
- Jiangsu Academy of Traditional Chinese Medicine
- Nanjing 210028
- China
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization
- Nanjing University of Chinese Medicine
- Nanjing 210023
- China
| | | | - Jinao Duan
- College of Traditional Chinese Medicine
- China Pharmaceutical University
- Nanjing 210009
- China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization
| |
Collapse
|
200
|
Abstract
Nanostructures have been widely involved in changes in the drug delivery system. Nanoparticles have unique physicochemical properties, e.g., ultrasmall size, large surface area, and the ability to target specific actions. Various nanomaterials, like Ag, ZnO, Cu/CuO, and Al2O3, have antimicrobial activity. Basically, six mechanisms are involved in the production of antimicrobial activity, i.e., (1) destruction of the peptidoglycan layer, (2) release of toxic metal ions, (3) alteration of cellular pH via proton efflux pumps, (4) generation of reactive oxygen species, (5) damage of nuclear materials, and (6) loss of ATP production. Nanomedicine contributes to various pharmaceutical applications, like diagnosis and treatment of various ailments including microbial diseases. Furthermore, nanostructured antimicrobial agents are also involved in the treatment of the neuroinfections associated with neurodegenerative disorders. This chapter focuses on the nanostructure and nanomedicine of antimicrobial agents and their prospects for the possible management of infections associated with neurodegenerative disorders.
Collapse
|