151
|
Delker C, Zolman BK, Miersch O, Wasternack C. Jasmonate biosynthesis in Arabidopsis thaliana requires peroxisomal beta-oxidation enzymes--additional proof by properties of pex6 and aim1. PHYTOCHEMISTRY 2007; 68:1642-50. [PMID: 17544464 DOI: 10.1016/j.phytochem.2007.04.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 04/17/2007] [Accepted: 04/17/2007] [Indexed: 05/15/2023]
Abstract
Jasmonic acid (JA) is an important regulator of plant development and stress responses. Several enzymes involved in the biosynthesis of JA from alpha-linolenic acid have been characterized. The final biosynthesis steps are the beta-oxidation of 12-oxo-phytoenoic acid. We analyzed JA biosynthesis in the Arabidopsis mutants pex6, affected in peroxisome biogenesis, and aim1, disrupted in fatty acid beta-oxidation. Upon wounding, these mutants exhibit reduced JA levels compared to wild type. pex6 accumulated the precursor OPDA. Feeding experiments with deuterated OPDA substantiate this accumulation pattern, suggesting the mutants are impaired in the beta-oxidation of JA biosynthesis at different steps. Decreased expression of JA-responsive genes, such as VSP1, VSP2, AtJRG21 and LOX2, following wounding in the mutants compared to the wild type reflects the reduced JA levels of the mutants. By use of these additional mutants in combination with feeding experiments, the necessity of functional peroxisomes for JA-biosynthesis is confirmed. Furthermore an essential function of one of the two multifunctional proteins of fatty acid beta-oxidation (AIM1) for wound-induced JA formation is demonstrated for the first time. These data confirm that JA biosynthesis occurs via peroxisomal fatty acid beta-oxidation machinery.
Collapse
Affiliation(s)
- Carolin Delker
- Leibniz Institute of Plant Biochemistry, Department of Natural Product Biotechnology, Weinberg 3, D-06120 Halle/S., Germany
| | | | | | | |
Collapse
|
152
|
Engelberth J, Seidl-Adams I, Schultz JC, Tumlinson JH. Insect elicitors and exposure to green leafy volatiles differentially upregulate major octadecanoids and transcripts of 12-oxo phytodienoic acid reductases in Zea mays. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:707-16. [PMID: 17555278 DOI: 10.1094/mpmi-20-6-0707] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The induction of jasmonic acid (JA) is one of the major signaling events in plants in response to insect herbivore damage and leads to the activation of direct and indirect defensive measures. Green leafy volatiles, which constitute a major portion of volatile organic compounds, often are released in response to insect herbivore attack and have been shown to significantly activate JA production in exposed corn (Zea mays) seedlings, thereby priming these plants specifically against subsequent herbivore attack. To explore the factors determining the specificity of the octadecanoid signaling pathway in corn, we analyzed qualitative and quantitative changes in major octadecanoids. The time course and the amount of induced JA and 12-oxophytodienoic acid levels in corn seedlings were strikingly different after wounding, application of caterpillar regurgitant, or treatment with cis-3-hexenyl acetate (Z-3-6:AC). Exposure to Z-3-6:AC induced accumulation of transcripts encoded by three putative 12-oxophytodienoate10,11-reductase genes (ZmOPR1/2, ZmOPR5, and ZmOPR8). Although changes in ZmOPR5 RNAs were detected only after exposure to Z-3-6:AC, ZmOPR1/2 RNAs and ZmOPR8 RNAs also were abundant after treatment with crude regurgitant elicitor or mechanical damage. The physiological implications of these findings in the context of plant-insect interactions are discussed.
Collapse
Affiliation(s)
- Jürgen Engelberth
- Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | |
Collapse
|
153
|
Goepfert S, Poirier Y. Beta-oxidation in fatty acid degradation and beyond. CURRENT OPINION IN PLANT BIOLOGY 2007; 10:245-51. [PMID: 17434787 DOI: 10.1016/j.pbi.2007.04.007] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 04/03/2007] [Indexed: 05/14/2023]
Abstract
The degradation of fatty acids in plants occurs primarily in the peroxisomes through the beta-oxidation cycle. Enzymes that are involved in various aspects of beta-oxidation have been identified recently and shown to act biochemically on a diversity of fatty acids and derivatives. Analysis of several mutants has revealed essential roles for beta-oxidation in the breakdown of reserve triacylglycerols, seed development, seed germination and post-germinative growth before the establishment of photosynthesis. Beta-oxidation has also a considerable importance during the vegetative and reproductive growth phases, and plays a role in plant responses to stress, particularly in the synthesis of jasmonic acid.
Collapse
Affiliation(s)
- Simon Goepfert
- Department of Plant Molecular Biology, Biophore, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
154
|
Zolman BK, Nyberg M, Bartel B. IBR3, a novel peroxisomal acyl-CoA dehydrogenase-like protein required for indole-3-butyric acid response. PLANT MOLECULAR BIOLOGY 2007; 64:59-72. [PMID: 17277896 DOI: 10.1007/s11103-007-9134-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Accepted: 01/03/2007] [Indexed: 05/13/2023]
Abstract
Indole-3-butyric acid (IBA) is an endogenous auxin that acts in Arabidopsis primarily via its conversion to the principal auxin indole-3-acetic acid (IAA). Genetic and biochemical evidence indicates that this conversion is similar to peroxisomal fatty acid beta-oxidation, but the specific enzymes catalyzing IBA beta-oxidation have not been identified. We identified an IBA-response mutant (ibr3) with decreased responses to the inhibitory effects of IBA on root elongation or the stimulatory effects of IBA on lateral root formation. However, ibr3 mutants respond normally to other forms of auxin, including IAA. The mutant seedlings germinate and develop normally, even in the absence of sucrose, suggesting that fatty acid beta-oxidation is unaffected. Additionally, double mutants between ibr3 and acx3, which is defective in an acyl-CoA oxidase acting in fatty acid beta-oxidation, have enhanced IBA resistance, consistent with a distinct role for IBR3. Positional cloning revealed that IBR3 encodes a putative acyl-CoA dehydrogenase with a consensus peroxisomal targeting signal. Based on the singular defect of this mutant in responding to IBA, we propose that IBR3 may act directly in the oxidation of IBA to IAA.
Collapse
Affiliation(s)
- Bethany K Zolman
- Department of Biology, University of Missouri-St Louis, One University Boulevard, R223 Research Building, St Louis, MO 63121, USA.
| | | | | |
Collapse
|
155
|
Carrera E, Holman T, Medhurst A, Peer W, Schmuths H, Footitt S, Theodoulou FL, Holdsworth MJ. Gene expression profiling reveals defined functions of the ATP-binding cassette transporter COMATOSE late in phase II of germination. PLANT PHYSIOLOGY 2007; 143:1669-79. [PMID: 17322332 PMCID: PMC1851828 DOI: 10.1104/pp.107.096057] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Phase II of germination represents a key developmental stage of plant growth during which imbibed seeds either enter stage III of germination, completing the germination process via radicle protrusion, or remain dormant. In this study, we analyzed the influence of the peroxisomal ATP-binding cassette transporter COMATOSE (CTS) on the postimbibition seed transcriptome of Arabidopsis (Arabidopsis thaliana) and also investigated interactions between gibberellin (GA) and CTS function. A novel method for analysis of transcriptome datasets allowed visualization of developmental signatures of seeds, showing that cts-1 retains the capacity to after ripen, indicating a germination block late in phase II. Expression of the key GA biosynthetic genes GA3ox1 and 2 was greatly reduced in cts seeds and genetic analysis suggested that CTS was epistatic to RGL2, a germination-repressing DELLA protein that is degraded by GA. Comparative analysis of seed transcriptome datasets indicated that specific cohorts of genes were influenced by GA and CTS. CTS function was required for expression of the flavonoid biosynthetic pathway. Confocal imaging demonstrated the exclusive accumulation of flavonoids in the epidermis of wild-type seeds. In contrast, flavonoids were absent from cts and kat2-1 mutant seeds, but accumulated following the application of sucrose, indicating an essential role for beta-oxidation in inducing flavonoid biosynthetic genes. These results demonstrate that CTS functions very late in phase II of germination and that its function is required for the expression of specific gene sets related to an important biochemical pathway associated with seedling establishment and survival.
Collapse
Affiliation(s)
- Esther Carrera
- Centro de Genomica, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Kottapalli KR, Kottapalli P, Agrawal GK, Kikuchi S, Rakwal R. Recessive bacterial leaf blight resistance in rice: complexity, challenges and strategy. Biochem Biophys Res Commun 2007; 355:295-301. [PMID: 17307154 DOI: 10.1016/j.bbrc.2007.01.134] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 01/24/2007] [Indexed: 11/22/2022]
Abstract
Physical mapping and map-based cloning strategies are routinely used for identification of candidate genes for major qualitative traits in rice. Such strategies have enabled mapping and characterization of dominant bacterial leaf blight (blb) resistance genes, but little progress has been made in case of the recessive resistance genes. Two recent studies on map-based cloning of xa5 and xa13 recessive blb resistance genes identified the general transcription factor IIA gamma subunit (TFIIAgamma) and the nodulin MtN21 as candidates, respectively. Subsequently, two other reports have raised discussion on whether the identified candidates are indeed recessive resistance genes, and are sufficient to confer blb resistance in rice. Based on published evidence, and our extensive in silico analyses of the genomic environment around xa5 and xa13 regions, we propose that the recessive gene mediated resistance mechanism is more complex and might not be governed by a single gene.
Collapse
Affiliation(s)
- Kameswara R Kottapalli
- Plant Genome Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannon-dai Tsukuba, Ibaraki 305-8602, Japan.
| | | | | | | | | |
Collapse
|
157
|
Schilmiller AL, Koo AJK, Howe GA. Functional diversification of acyl-coenzyme A oxidases in jasmonic acid biosynthesis and action. PLANT PHYSIOLOGY 2007; 143:812-24. [PMID: 17172287 PMCID: PMC1803733 DOI: 10.1104/pp.106.092916] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The biosynthesis of jasmonic acid (JA) in plant peroxisomes requires the action of acyl-coenzyme A oxidase (ACX). Among the five expressed members (ACX1-5) of the ACX gene family in Arabidopsis (Arabidopsis thaliana), only ACX1 is known to serve a role in JA production. Here, we used transgenic promoter-reporter lines to show that ACX1 is highly expressed in mature and germinating pollen, stem epidermal cells, and other tissues in which jasmonate-signaled processes occur. Wound-induced JA accumulation was reduced in a mutant that is defective in ACX1 and was abolished in a mutant that is impaired in both ACX1 and its closely related paralog, ACX5. The severe JA deficiency in acx1/5 double mutants was accompanied by decreased resistance to the leaf-eating insect Trichoplusia ni. The double mutant also showed reduced pollen viability and fecundity. Treatment of acx1/5 plants with JA restored both protection against T. ni larvae and normal seed set. Unexpectedly, acx1/5 plants accumulated JA in response to infection by the necrotrophic fungal pathogen Alternaria brassicicola. In contrast to mutants that are impaired in jasmonate perception or early steps of the JA biosynthetic pathway, acx1/5 plants maintained resistance to A. brassicicola infection. These results indicate that ACX1/5-mediated JA synthesis is essential for resistance to chewing insects and male reproductive function and further suggest that other ACX isozymes contribute to JA production in response to A. brassicicola challenge. Thus, different types of biotic stress may induce JA synthesis via distinct enzymatic routes.
Collapse
Affiliation(s)
- Anthony L Schilmiller
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
158
|
Norton G, Pappusamy A, Yusof F, Pujade-Renaud V, Perkins M, Griffiths D, Jones H. Characterisation of recombinant Hevea brasiliensis allene oxide synthase: effects of cycloxygenase inhibitors, lipoxygenase inhibitors and salicylates on enzyme activity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2007; 45:129-38. [PMID: 17344058 DOI: 10.1016/j.plaphy.2007.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Accepted: 01/05/2007] [Indexed: 05/14/2023]
Abstract
Mechanical wounding and jasmonic acid (JA) treatment have been shown to be important factors in controlling laticifer differentiation in Hevea brasiliensis (rubber tree). With the long-term aim of potentially modifying the endogenous levels of JA in H. brasiliensis by gene transfer, we describe in this paper the molecular cloning of a H. brasiliensis allene oxide synthase (AOS) cDNA and biochemical characterisation of the recombinant AOS (His(6)-HbAOS) enzyme. The AOS cDNA encodes a protein with the expected motifs present in CYP74A sub-group of the cytochrome P450 super-family of enzymes that metabolise 13-hydroperoxylinolenic acid (13-HPOT), the intermediate involved in JA synthesis. The recombinant H. brasiliensis AOS enzyme was estimated to have a high binding affinity for 13-HPOT with a K(m) value of 4.02+/-0.64 microM. Consistent with previous studies, mammalian cycloxygenase (COX) and lipoxygenase (LOX) inhibitors were shown to significantly reduce His(6)-HbAOS enzyme activity. Although JA had no effect on His(6)-HbAOS, salicylic acid (SA) was shown to significantly inhibit the recombinant AOS enzyme activity in a dose dependent manner. Moreover, it was demonstrated that SA, and various analogues of SA, acted as competitive inhibitors of His(6)-HbAOS when 13-HPOT was used as substrate. We speculate that this effect of salicylates on AOS activity may be important in cross-talking between the SA and JA signalling pathways in plants during biotic/abiotic stress.
Collapse
Affiliation(s)
- Gareth Norton
- Division of Biochemistry and Microbiology, School of Life Sciences, University of Hertfordshire, Hatfield, Herts AL10 9AB, UK
| | | | | | | | | | | | | |
Collapse
|
159
|
Zerbe P, Weiler EW, Schaller F. Preparative enzymatic solid phase synthesis of cis(+)-12-oxo-phytodienoic acid - physical interaction of AOS and AOC is not necessary. PHYTOCHEMISTRY 2007; 68:229-36. [PMID: 17113611 DOI: 10.1016/j.phytochem.2006.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 10/05/2006] [Accepted: 10/11/2006] [Indexed: 05/12/2023]
Abstract
The pathway of jasmonic acid (JA) biosynthesis was established in the 1980s by Vick and Zimmerman but, until now, the preparative biosynthesis of the jasmonic acid precursors 12-oxo-phytodienoic acid (OPDA) and 3-oxo-2-[2'-pentenyl]-cyclopentan-1-octanoic acid (OPC-8:0) in their endogenous and biologically relevant cis(+)-configuration was only possible in small amounts and had to put up with high costs. This was mainly due to the lack of high amounts of pure and enzymatically active allene oxide cyclase (AOC), which is a key enzyme in the biosynthesis of jasmonates in that it releases, in a coupled reaction with allene oxide synthase (AOS), the first cyclic and biological active metabolite - OPDA. We describe here the expression and purification of AOS and AOC and their subsequent coupling to solid matrices to produce an enantioselective, reusable bioreactor for octadecanoid production. With the method described here it is possible to produce optically pure enantiomers of octadecanoids in high amounts in a cost- and time-efficient manner. Furthermore, it could be demonstrated that a physical interaction of AOS and AOC, hitherto postulated to be required for substrate channeling from AOS to AOC, is not necessary for the in vitro cyclization of the unstable epoxide generated by the AOS reaction.
Collapse
Affiliation(s)
- Philipp Zerbe
- Lehrstuhl für Pflanzenphysiologie, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | | | | |
Collapse
|
160
|
Abstract
The ATP-binding cassette (ABC) protein superfamily is one of the largest known, with over 120 members in both Arabidopsis thaliana and rice (Oryza sativa). Most, but not all, ABC proteins are modularly organized membrane proteins ("ABC transporters") that mediate MgATP-energized transmembrane transport and/or regulate other transporters. The range of processes in which members of the various subclasses of plant ABC transporters have been implicated encompasses polar auxin transport, lipid catabolism, xenobiotic detoxification, disease resistance, and stomatal function. Although it is often possible to predict the likely function of a plant ABC transporter on the basis of its subfamily membership, there are many whose capabilities deviate from what would be predicted from the properties of even their most sequence-related counterparts. When taking account of this and the disparate processes in which the few that have been characterized participate, it is likely that elucidation of the mechanistic basis of any given plant process will necessitate consideration of at least one ABC transporter.
Collapse
Affiliation(s)
- Philip A Rea
- Plant Science Institute, Department of Biology, Carolyn Hoff Lynch Biology Laboratory, University of Pennsylvania, Philadelphia, PA 19104-6018, USA.
| |
Collapse
|
161
|
Rottensteiner H, Theodoulou FL. The ins and outs of peroxisomes: Co-ordination of membrane transport and peroxisomal metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1527-40. [PMID: 17010456 DOI: 10.1016/j.bbamcr.2006.08.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 08/15/2006] [Accepted: 08/18/2006] [Indexed: 11/28/2022]
Abstract
Peroxisomes perform a range of metabolic functions which require the movement of substrates, co-substrates, cofactors and metabolites across the peroxisomal membrane. In this review, we discuss the evidence for and against specific transport systems involved in peroxisomal metabolism and how these operate to co-ordinate biochemical reactions within the peroxisome with those in other compartments of the cell.
Collapse
Affiliation(s)
- Hanspeter Rottensteiner
- Medical Faculty of the Ruhr-University of Bochum, Department of Physiological Chemistry, Section of Systems Biochemistry, 44780 Bochum, Germany.
| | | |
Collapse
|
162
|
Koo AJK, Chung HS, Kobayashi Y, Howe GA. Identification of a peroxisomal acyl-activating enzyme involved in the biosynthesis of jasmonic acid in Arabidopsis. J Biol Chem 2006; 281:33511-20. [PMID: 16963437 DOI: 10.1074/jbc.m607854200] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Jasmonic acid (JA) is a lipid-derived signal that regulates a wide variety of developmental and defense-related processes in higher plants. JA is synthesized from linolenic acid via an enzymatic pathway that initiates in the plastid and terminates in peroxisomes. The C18 JA precursor 12-oxo-phytodienoic acid (OPDA) is converted in the peroxisome to 3-oxo-2-(2'-[Z]-pentenyl)cyclopentane-1-octanoic acid (OPC-8:0), which subsequently undergoes three rounds of beta-oxidation to yield JA. Although most JA biosynthetic enzymes have been identified, several key steps in the pathway remain to be elucidated. To address this knowledge gap, we employed co-expression analysis to identify genes that are coordinately regulated with known JA biosynthetic components in Arabidopsis. Among the candidate genes uncovered by this approach was a 4-coumarate-CoA ligase-like member of the acyl-activating enzyme (AAE) gene family, which we have named OPC-8:0 CoA Ligase1 (OPCL1). In response to wounding, opcl1 null mutants exhibited reduced levels of JA and hyperaccumulation of OPC-8:0. Recombinant OPCL1 was active against both OPDA and OPC-8:0, as well as medium-to-long straight-chain fatty acids. Subcellular localization studies with green fluorescent protein-tagged OPCL1 showed that the protein is targeted to peroxisomes. These findings establish a physiological role for OPCL1 in the activation of JA biosynthetic precursors in leaf peroxisomes, and further indicate that OPC-8:0 is a physiological substrate for the activation step. The results also demonstrate the utility of co-expression analysis for identification of factors that contribute to jasmonate homeostasis.
Collapse
Affiliation(s)
- Abraham J K Koo
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
163
|
Stumpe M, Göbel C, Demchenko K, Hoffmann M, Klösgen RB, Pawlowski K, Feussner I. Identification of an allene oxide synthase (CYP74C) that leads to formation of alpha-ketols from 9-hydroperoxides of linoleic and linolenic acid in below-ground organs of potato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:883-96. [PMID: 16899083 DOI: 10.1111/j.1365-313x.2006.02843.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Allene oxide synthase (AOS) enzymes are members of the cytochrome P450 enzyme family, sub-family CYP74. Here we describe the isolation of three cDNAs encoding AOS from potato (StAOS1-3). Based on sequence comparisons, they represent members of either the CYP74A (StAOS1 and 2) or the CYP74C (StAOS3) sub-families. StAOS3 is distinguished from the other two AOS isoforms in potato by its high substrate specificity for 9-hydroperoxides of linoleic and linolenic acid, compared with 13-hydroperoxides, which are only poor substrates. The highest activity was shown with (9S,10E,12Z)-9-hydroperoxy-10,12-octadecadienoic acid (9-HPODE) as a substrate. This hydroperoxide was metabolized in vitro to alpha- and gamma-ketols as well as to the cyclopentenone compound 10-oxo-11-phytoenoic acid. They represent hydrolysis products of the initial StAOS3 product 9,10-epoxyoctadecadienoic acid, an unstable allene oxide. By RNA gel hybridization blot analysis, StAOS3 was shown to be expressed in sprouting eyes, stolons, tubers and roots, but not in leaves. StAOS3 protein was found in all organs tested, but mainly in stems, stolons, sprouting eyes and tubers. As in vivo reaction products, the alpha-ketols derived from 9-hydroperoxides of linoleic and linolenic acid were only found in roots, tubers and sprouting eyes. Immunolocalization showed that StAOS3 was associated with amyloplasts and leucoplasts.
Collapse
Affiliation(s)
- Michael Stumpe
- Department of Plant Biochemistry, Georg-August-University Göttingen, Albrecht-von-Haller-Institute for Plant Sciences, D-37077 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
164
|
Nyathi Y, Baker A. Plant peroxisomes as a source of signalling molecules. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1478-95. [PMID: 17030442 DOI: 10.1016/j.bbamcr.2006.08.031] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 08/02/2006] [Accepted: 08/18/2006] [Indexed: 11/25/2022]
Abstract
Peroxisomes are pleiomorphic, metabolically plastic organelles. Their essentially oxidative function led to the adoption of the name 'peroxisome'. The dynamic and diverse nature of peroxisome metabolism has led to the realisation that peroxisomes are an important source of signalling molecules that can function to integrate cellular activity and multicellular development. In plants defence against predators and a hostile environment is of necessity a metabolic and developmental response--a plant has no place to hide. Mutant screens are implicating peroxisomes in disease resistance and signalling in response to light. Characterisation of mutants disrupted in peroxisomal beta-oxidation has led to a growing appreciation of the importance of this pathway in the production of jasmonic acid, conversion of indole butyric acid to indole acetic acid and possibly in the production of other signalling molecules. Likewise the role of peroxisomes in the production and detoxification of reactive oxygen, and possibly reactive nitrogen species and changes in redox status, suggests considerable scope for peroxisomes to contribute to perception and response to a wide range of biotic and abiotic stresses. Whereas the peroxisome is the sole site of beta-oxidation in plants, the production and detoxification of ROS in many cell compartments makes the specific contribution of the peroxisome much more difficult to establish. However progress in identifying peroxisome specific isoforms of enzymes associated with ROS metabolism should allow a more definitive assessment of these contributions in the future.
Collapse
Affiliation(s)
- Yvonne Nyathi
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | | |
Collapse
|
165
|
Hayashi M, Nishimura M. Arabidopsis thaliana--a model organism to study plant peroxisomes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1382-91. [PMID: 17005266 DOI: 10.1016/j.bbamcr.2006.08.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 07/28/2006] [Accepted: 08/18/2006] [Indexed: 10/24/2022]
Abstract
In higher plants, peroxisomes have been believed to play a pivotal role in three metabolic pathways, which are lipid breakdown, photorespiration and H2O2-detoxificaton. Recently, significant progress in the study of plant peroxisomes was established by forward-/reverse-genetics and post-genomic approaches using Arabidopsis thaliana, the first higher plant to have its entire genome sequenced. These studies illustrated that plant peroxisomes have more diverse functions than we previously thought. Research using Arabidopsis thaliana is improving our understanding of the function of plant peroxisomes.
Collapse
Affiliation(s)
- Makoto Hayashi
- National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | |
Collapse
|
166
|
Ralph SG, Yueh H, Friedmann M, Aeschliman D, Zeznik JA, Nelson CC, Butterfield YSN, Kirkpatrick R, Liu J, Jones SJM, Marra MA, Douglas CJ, Ritland K, Bohlmann J. Conifer defence against insects: microarray gene expression profiling of Sitka spruce (Picea sitchensis) induced by mechanical wounding or feeding by spruce budworms (Choristoneura occidentalis) or white pine weevils (Pissodes strobi) reveals large-scale changes of the host transcriptome. PLANT, CELL & ENVIRONMENT 2006; 29:1545-70. [PMID: 16898017 DOI: 10.1111/j.1365-3040.2006.01532.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Conifers are resistant to attack from a large number of potential herbivores or pathogens. Previous molecular and biochemical characterization of selected conifer defence systems support a model of multigenic, constitutive and induced defences that act on invading insects via physical, chemical, biochemical or ecological (multitrophic) mechanisms. However, the genomic foundation of the complex defence and resistance mechanisms of conifers is largely unknown. As part of a genomics strategy to characterize inducible defences and possible resistance mechanisms of conifers against insect herbivory, we developed a cDNA microarray building upon a new spruce (Picea spp.) expressed sequence tag resource. This first-generation spruce cDNA microarray contains 9720 cDNA elements representing c. 5500 unique genes. We used this array to monitor gene expression in Sitka spruce (Picea sitchensis) bark in response to herbivory by white pine weevils (Pissodes strobi, Curculionidae) or wounding, and in young shoot tips in response to western spruce budworm (Choristoneura occidentalis, Lepidopterae) feeding. Weevils are stem-boring insects that feed on phloem, while budworms are foliage feeding larvae that consume needles and young shoot tips. Both insect species and wounding treatment caused substantial changes of the host plant transcriptome detected in each case by differential gene expression of several thousand array elements at 1 or 2 d after the onset of treatment. Overall, there was considerable overlap among differentially expressed gene sets from these three stress treatments. Functional classification of the induced transcripts revealed genes with roles in general plant defence, octadecanoid and ethylene signalling, transport, secondary metabolism, and transcriptional regulation. Several genes involved in primary metabolic processes such as photosynthesis were down-regulated upon insect feeding or wounding, fitting with the concept of dynamic resource allocation in plant defence. Refined expression analysis using gene-specific primers and real-time PCR for selected transcripts was in agreement with microarray results for most genes tested. This study provides the first large-scale survey of insect-induced defence transcripts in a gymnosperm and provides a platform for functional investigation of plant-insect interactions in spruce. Induction of spruce genes of octadecanoid and ethylene signalling, terpenoid biosynthesis, and phenolic secondary metabolism are discussed in more detail.
Collapse
Affiliation(s)
- Steven G Ralph
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Benning C, Xu C, Awai K. Non-vesicular and vesicular lipid trafficking involving plastids. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:241-7. [PMID: 16603410 DOI: 10.1016/j.pbi.2006.03.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 03/22/2006] [Indexed: 05/08/2023]
Abstract
In plants, newly synthesized fatty acids are either directly incorporated into glycerolipids in the plastid or exported and assembled into lipids at the endoplasmic reticulum (ER). ER-derived glycerolipids serve as building blocks for extraplastidic membranes. Alternatively, they can return to the plastid where their diacylglycerol backbone is incorporated into the glycerolipids of the photosynthetic membranes, the thylakoids. Thylakoid lipids are assembled at the plastid envelope membranes and are transferred to the thylakoids. Under phosphate-limited growth conditions, galactolipids are exported from the outer plastid envelope membranes to extraplastidic membranes. Proteins, such as TRIGALACTOSYLDIACYLGLYCEROL1 (TGD1) or VESICLE-INDUCING PROTEIN IN PLASTIDS1 (VIPP1), which are involved in different aspects of plastid lipid trafficking phenomena have recently been identified and mechanistic models that are based on the analysis of these components have begun to emerge.
Collapse
Affiliation(s)
- Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48823, USA.
| | | | | |
Collapse
|
168
|
Delker C, Stenzel I, Hause B, Miersch O, Feussner I, Wasternack C. Jasmonate biosynthesis in Arabidopsis thaliana--enzymes, products, regulation. PLANT BIOLOGY (STUTTGART, GERMANY) 2006; 8:297-306. [PMID: 16807821 DOI: 10.1055/s-2006-923935] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Among the plant hormones jasmonic acid and related derivatives are known to mediate stress responses and several developmental processes. Biosynthesis, regulation, and metabolism of jasmonic acid in Arabidopsis thaliana are reviewed, including properties of mutants of jasmonate biosynthesis. The individual signalling properties of several jasmonates are described.
Collapse
Affiliation(s)
- C Delker
- Department of Natural Product Biotechnology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle/Saale, Germany
| | | | | | | | | | | |
Collapse
|
169
|
Ralph S, Oddy C, Cooper D, Yueh H, Jancsik S, Kolosova N, Philippe RN, Aeschliman D, White R, Huber D, Ritland CE, Benoit F, Rigby T, Nantel A, Butterfield YSN, Kirkpatrick R, Chun E, Liu J, Palmquist D, Wynhoven B, Stott J, Yang G, Barber S, Holt RA, Siddiqui A, Jones SJM, Marra MA, Ellis BE, Douglas CJ, Ritland K, Bohlmann J. Genomics of hybrid poplar (Populus trichocarpa× deltoides) interacting with forest tent caterpillars (Malacosoma disstria): normalized and full-length cDNA libraries, expressed sequence tags, and a cDNA microarray for the study of insect-induced defences. Mol Ecol 2006; 15:1275-97. [PMID: 16626454 DOI: 10.1111/j.1365-294x.2006.02824.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
As part of a genomics strategy to characterize inducible defences against insect herbivory in poplar, we developed a comprehensive suite of functional genomics resources including cDNA libraries, expressed sequence tags (ESTs) and a cDNA microarray platform. These resources are designed to complement the existing poplar genome sequence and poplar (Populus spp.) ESTs by focusing on herbivore- and elicitor-treated tissues and incorporating normalization methods to capture rare transcripts. From a set of 15 standard, normalized or full-length cDNA libraries, we generated 139,007 3'- or 5'-end sequenced ESTs, representing more than one-third of the c. 385,000 publicly available Populus ESTs. Clustering and assembly of 107,519 3'-end ESTs resulted in 14,451 contigs and 20,560 singletons, altogether representing 35,011 putative unique transcripts, or potentially more than three-quarters of the predicted c. 45,000 genes in the poplar genome. Using this EST resource, we developed a cDNA microarray containing 15,496 unique genes, which was utilized to monitor gene expression in poplar leaves in response to herbivory by forest tent caterpillars (Malacosoma disstria). After 24 h of feeding, 1191 genes were classified as up-regulated, compared to only 537 down-regulated. Functional classification of this induced gene set revealed genes with roles in plant defence (e.g. endochitinases, Kunitz protease inhibitors), octadecanoid and ethylene signalling (e.g. lipoxygenase, allene oxide synthase, 1-aminocyclopropane-1-carboxylate oxidase), transport (e.g. ABC proteins, calreticulin), secondary metabolism [e.g. polyphenol oxidase, isoflavone reductase, (-)-germacrene D synthase] and transcriptional regulation [e.g. leucine-rich repeat transmembrane kinase, several transcription factor classes (zinc finger C3H type, AP2/EREBP, WRKY, bHLH)]. This study provides the first genome-scale approach to characterize insect-induced defences in a woody perennial providing a solid platform for functional investigation of plant-insect interactions in poplar.
Collapse
Affiliation(s)
- Steven Ralph
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Rylott EL, Eastmond PJ, Gilday AD, Slocombe SP, Larson TR, Baker A, Graham IA. The Arabidopsis thaliana multifunctional protein gene (MFP2) of peroxisomal beta-oxidation is essential for seedling establishment. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:930-41. [PMID: 16507084 DOI: 10.1111/j.1365-313x.2005.02650.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The multifunctional protein (MFP) of peroxisomal beta-oxidation catalyses four separate reactions, two of which (2-trans enoyl-CoA hydratase and L-3-hydroxyacyl-CoA dehydrogenase) are core activities required for the catabolism of all fatty acids. We have isolated and characterized five Arabidopsis thaliana mutants in the MFP2 gene that is expressed predominantly in germinating seeds. Seedlings of mfp2 require an exogenous supply of sucrose for seedling establishment to occur. Analysis of mfp2-1 seedlings revealed that seed storage lipid was catabolized more slowly, long-chain acyl-CoA substrates accumulated and there was an increase in peroxisome size. Despite a reduction in the rate of beta-oxidation, mfp2 seedlings are not resistant to the herbicide 2,4-dichlorophenoxybutyric acid, which is catabolized to the auxin 2,4-dichlorophenoxyacetic acid by beta-oxidation. Acyl-CoA feeding experiments show that the MFP2 2-trans enoyl-CoA hydratase only exhibits activity against long chain (C18:0) substrates, whereas the MFP2 L-3-hydroxyacyl-CoA dehydrogenase is active on C6:0, C12:0 and C18:0 substrates. A mutation in the abnormal inflorescence meristem gene AIM1, the only homologue of MFP2, results in an abnormal inflorescence meristem phenotype in mature plants (Richmond and Bleecker, Plant Cell 11, 1999, 1911) demonstrating that the role of these genes is very different. The mfp2-1 aim1double mutant aborted during the early stages of embryo development showing that these two proteins share a common function that is essential for this key stage in the life cycle.
Collapse
Affiliation(s)
- Elizabeth L Rylott
- CNAP, Department of Biology, University of York, PO Box 373, York YO10 5YW, UK
| | | | | | | | | | | | | |
Collapse
|
171
|
Baker A, Graham IA, Holdsworth M, Smith SM, Theodoulou FL. Chewing the fat: beta-oxidation in signalling and development. TRENDS IN PLANT SCIENCE 2006; 11:124-32. [PMID: 16490379 DOI: 10.1016/j.tplants.2006.01.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 12/01/2005] [Accepted: 01/30/2006] [Indexed: 05/06/2023]
Abstract
Peroxisomal beta-oxidation is involved not only in fatty acid catabolism and lipid housekeeping but also in metabolism of hormones and amino acids in plants. Recent research in model species has led to new insights into the roles of this pathway in signalling and development, in particular regarding the involvement of beta-oxidation in jasmonic acid biosynthesis. Analysis of associated processes, such as the glyoxylate cycle and redox metabolism has also highlighted the importance of integration of beta-oxidation with cytosolic and mitochondrial metabolism. Mutations that disrupt beta-oxidation can have extremely pleiotropic effects, indicating important and varied roles for this pathway throughout the plant life cycle and making this an exciting topic for future research.
Collapse
Affiliation(s)
- Alison Baker
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | | | |
Collapse
|
172
|
Wasternack C, Stenzel I, Hause B, Hause G, Kutter C, Maucher H, Neumerkel J, Feussner I, Miersch O. The wound response in tomato--role of jasmonic acid. JOURNAL OF PLANT PHYSIOLOGY 2006; 163:297-306. [PMID: 16368162 DOI: 10.1016/j.jplph.2005.10.014] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 10/10/2005] [Indexed: 05/05/2023]
Abstract
Plants respond to mechanical wounding or herbivore attack with a complex scenario of sequential, antagonistic or synergistic action of different signals leading to defense gene expression. Tomato plants were used as a model system since the peptide systemin and the lipid-derived jasmonic acid (JA) were recognized as essential signals in wound-induced gene expression. In this review recent data are discussed with emphasis on wound-signaling in tomato. The following aspects are covered: (i) systemin signaling, (ii) JA biosynthesis and action, (iii) orchestration of various signals such as JA, H2O2, NO, and salicylate, (iv) local and systemic response, and (v) amplification in wound signaling. The common occurrence of JA biosynthesis and systemin generation in the vascular bundles suggest JA as the systemic signal. Grafting experiments with JA-deficient, JA-insensitive and systemin-insensitive mutants strongly support this assumption.
Collapse
Affiliation(s)
- Claus Wasternack
- Department of Natural Product Biotechnology, Leibniz-Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle/Saale, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Theodoulou FL, Holdsworth M, Baker A. Peroxisomal ABC transporters. FEBS Lett 2006; 580:1139-55. [PMID: 16413537 DOI: 10.1016/j.febslet.2005.12.095] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 12/22/2005] [Accepted: 12/23/2005] [Indexed: 12/22/2022]
Abstract
Peroxisomes perform a range of different functions, dependent upon organism, tissue type, developmental stage or environmental conditions, many of which are connected with lipid metabolism. This review summarises recent research on ATP binding cassette (ABC) transporters of the peroxisomal membrane (ABC subfamily D) and their roles in plants, fungi and animals. Analysis of mutants has revealed that peroxisomal ABC transporters play key roles in specific metabolic and developmental functions in different organisms. A common function is import of substrates for beta-oxidation but much remains to be determined concerning transport substrates and mechanisms which appear to differ significantly between phyla.
Collapse
Affiliation(s)
- Frederica L Theodoulou
- Crop Performance and Improvement Division, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom.
| | | | | |
Collapse
|
174
|
Penfield S, Pinfield-Wells HM, Graham IA. Storage reserve mobilisation and seedling establishment in Arabidopsis. THE ARABIDOPSIS BOOK 2006; 4:e0100. [PMID: 22303229 PMCID: PMC3243371 DOI: 10.1199/tab.0100] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
| | | | - Ian A. Graham
- Corresponding author: CNAP, Department of Biology, University of York, PO BOX 373, York YO10 5YW, UK.
| |
Collapse
|
175
|
Schulze B, Lauchli R, Sonwa MM, Schmidt A, Boland W. Profiling of structurally labile oxylipins in plants by in situ derivatization with pentafluorobenzyl hydroxylamine. Anal Biochem 2006; 348:269-83. [PMID: 16307716 DOI: 10.1016/j.ab.2005.10.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2005] [Revised: 10/11/2005] [Accepted: 10/12/2005] [Indexed: 11/27/2022]
Abstract
A GC-MS-based method for the simultaneous quantification of common oxylipins along with labile and highly reactive compounds based on in situ derivatization with pentafluorobenzyl hydroxylamine to the corresponding O-2,3,4,5,6-pentafluorobenzyl oximes (PFB oximes) is presented. The approach covers oxo derivatives such as jasmonic acid (JA), 12-oxophytodienoic acid (OPDA), certain phytoprostanes, unsaturated oxo-acids, oxo-hydroxy acids, and aldehyde fragments from the polar head of fatty acids. In the positive electron impact-MS mode, the PFB oximes display characteristic fragment ions that greatly facilitate the identification of oxylipins in complex matrices. In addition, the fluorinated derivatives allow a highly selective and low-background analysis by negative chemical ionization. Besides showing the general value of the method for the identification of a broad range of oxylipins (18 examples), we also demonstrate sensitivity, linearity, and reproducibility for the quantification of JA, OPDA, 11-oxo-9-undecenoic acid, and 13-oxo-9,11-tridecadienoic acid. The efficiency of the method is demonstrated by differential profiling of these four oxylipins in lima bean leaves after mechanical wounding and feeding by the herbivore Spodoptera littoralis. Caterpillar feeding induced several oxylipins, whereas after wounding only the level of JA increased. The rapid in situ derivatization prevents the isomerization of cis-JA to trans-JA. The resting level of JA in lima beans showed an isomer ratio of 80:20 for trans/cis-JA. After wounding, de novo synthesis of JA alters the ratio to 20:80 in favor of the cis isomer.
Collapse
Affiliation(s)
- Birgit Schulze
- Max Plank Institute for Chemical Ecology, 07745 Jena, Germany
| | | | | | | | | |
Collapse
|
176
|
Sparkes IA, Hawes C, Baker A. AtPEX2 and AtPEX10 are targeted to peroxisomes independently of known endoplasmic reticulum trafficking routes. PLANT PHYSIOLOGY 2005; 139:690-700. [PMID: 16169966 PMCID: PMC1255988 DOI: 10.1104/pp.105.065094] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Controversy exists in the literature over the involvement of the endoplasmic reticulum (ER) in the delivery of membrane proteins to peroxisomes. In this study, the involvement of the ER in the trafficking of two Arabidopsis (Arabidopsis thaliana) peroxisomal membrane proteins was investigated using confocal laser scanning microscopy of living cells expressing fusions between enhanced yellow fluorescent protein (eYFP) and AtPEX2 and AtPEX10. The fusion proteins were always detected in peroxisomes and cytosol irrespective of the location of the eYFP tag or the level of expression. The cytosolic fluorescence was not due to cleavage of the eYFP reporter from the C-terminal fusion proteins. Blocking known ER transport routes using the fungal metabolite Brefeldin A or expressing dominant negative mutants of Sar1 or RabD2a had no effect on the trafficking of AtPEX2 and AtPEX10 to peroxisomes. We conclude that AtPEX2 and AtPEX10 are inserted into peroxisome membranes directly from the cytosol.
Collapse
|
177
|
Pinfield-Wells H, Rylott EL, Gilday AD, Graham S, Job K, Larson TR, Graham IA. Sucrose rescues seedling establishment but not germination of Arabidopsis mutants disrupted in peroxisomal fatty acid catabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 43:861-72. [PMID: 16146525 DOI: 10.1111/j.1365-313x.2005.02498.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The Arabidopsis acyl-CoA oxidase (ACX) family comprises isozymes with distinct fatty acid chain-length specificities that together catalyse the first step of peroxisomal fatty acid beta-oxidation. We have isolated and characterized T-DNA insertion mutants in the medium to long-chain (ACX1) and long-chain (ACX2) acyl-CoA oxidases, and show that the corresponding endogenous activities are decreased in the mutants. Lipid catabolism during germination and early post-germinative growth was unaltered in the acx1-1 mutant, but slightly delayed in the acx2-1 mutant, with 3-day-old acx2-1 seedlings accumulating long-chain acyl-CoAs. In acx1-1 and acx2-1, seedling growth and establishment in the absence of an exogenous supply of sucrose was unaffected. Seedlings of the double mutant acx1-1 acx2-1 were unable to catabolize seed storage lipid, and accumulated long-chain acyl-CoAs. The acx1-1 acx2-1 seedlings were also unable to establish photosynthetic competency in the absence of an exogenous carbon supply, a phenotype that is shared with a number of other Arabidopsis mutants disrupted in storage lipid breakdown. Germination frequency of the double mutant was significantly reduced compared with wild-type seeds. This was unaffected by the addition of exogenous sucrose, but was improved by dormancy-breaking treatments such as cold stratification and after-ripening. We show that the acx1-1, acx2-1 and acx1-2 acx2-1 double mutants and the ketoacyl-CoA thiolase-2 (kat2) mutant exhibit a sucrose-independent germination phenotype comparable with that reported for comatose (cts-2), a mutant in a peroxisomal ABC transporter which exhibits enhanced dormancy. This demonstrates an additional role beyond that of carbon provision for the beta-oxidation pathway during germination or in dormant seeds.
Collapse
|
178
|
Schilmiller AL, Howe GA. Systemic signaling in the wound response. CURRENT OPINION IN PLANT BIOLOGY 2005; 8:369-77. [PMID: 15939667 DOI: 10.1016/j.pbi.2005.05.008] [Citation(s) in RCA: 312] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 05/17/2005] [Indexed: 05/02/2023]
Abstract
In many plants, localized tissue damage elicits an array of systemic defense responses against herbivore attack. Progress in our understanding of the long-distance signaling events that control these responses has been aided by the identification of mutants that fail to mount systemic defenses in response to wounding. Grafting experiments conducted with various mutants of tomato indicate that systemic signaling requires both the biosynthesis of jasmonic acid at the site of wounding and the ability to perceive a jasmonate signal in remote tissues. These and other studies support the hypothesis that jasmonic acid regulates the production of, or acts as, a mobile wound signal. Following its synthesis in peroxisomes, further metabolism of jasmonic acid might enhance its stability, transport, or action in remote tissues. Recent studies in tomato suggest that the peptide signal systemin promotes long-distance defense responses by amplifying jasmonate production in vascular tissues.
Collapse
Affiliation(s)
- Anthony L Schilmiller
- Department of Energy - Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|