151
|
Sereme Y, Michel M, Mezouar S, Guindo CO, Kaba L, Grine G, Mura T, Mège JL, Tran TA, Corbeau P, Filleron A, Vitte J. A Non-Invasive Neonatal Signature Predicts Later Development of Atopic Diseases. J Clin Med 2022; 11:jcm11102749. [PMID: 35628877 PMCID: PMC9143112 DOI: 10.3390/jcm11102749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Preterm birth is a major cause of morbidity and mortality in infants and children. Non-invasive methods for screening the neonatal immune status are lacking. Archaea, a prokaryotic life domain, comprise methanogenic species that are part of the neonatal human microbiota and contribute to early immune imprinting. However, they have not yet been characterized in preterm neonates. Objective: To characterize the gut immunological and methanogenic Archaeal (MA) signature in preterm neonates, using the presence or absence of atopic conditions at the age of one year as a clinical endpoint. Methods: Meconium and stool were collected from preterm neonates and used to develop a standardized stool preparation method for the assessment of mediators and cytokines and characterize the qPCR kinetics of gut MA. Analysis addressed the relationship between immunological biomarkers, Archaea abundance, and atopic disease at age one. Results: Immunoglobulin E, tryptase, calprotectin, EDN, cytokines, and MA were detectable in the meconium and later samples. Atopic conditions at age of one year were positively associated with neonatal EDN, IL-1β, IL-10, IL-6, and MA abundance. The latter was negatively associated with neonatal EDN, IL-1β, and IL-6. Conclusions: We report a non-invasive method for establishing a gut immunological and Archaeal signature in preterm neonates, predictive of atopic diseases at the age of one year.
Collapse
Affiliation(s)
- Youssouf Sereme
- IHU Méditerranée Infection, 13005 Marseille, France; (Y.S.); (M.M.); (S.M.); (C.O.G.); (L.K.); (G.G.); (J.-L.M.)
- IRD, APHM, MEPHI, Aix-Marseille Université, 13284 Marseille, France
| | - Moïse Michel
- IHU Méditerranée Infection, 13005 Marseille, France; (Y.S.); (M.M.); (S.M.); (C.O.G.); (L.K.); (G.G.); (J.-L.M.)
- IRD, APHM, MEPHI, Aix-Marseille Université, 13284 Marseille, France
- Immunology Department, University Hospital Nîmes, 30900 Nîmes, France
| | - Soraya Mezouar
- IHU Méditerranée Infection, 13005 Marseille, France; (Y.S.); (M.M.); (S.M.); (C.O.G.); (L.K.); (G.G.); (J.-L.M.)
- IRD, APHM, MEPHI, Aix-Marseille Université, 13284 Marseille, France
| | - Cheick Oumar Guindo
- IHU Méditerranée Infection, 13005 Marseille, France; (Y.S.); (M.M.); (S.M.); (C.O.G.); (L.K.); (G.G.); (J.-L.M.)
- IRD, APHM, MEPHI, Aix-Marseille Université, 13284 Marseille, France
| | - Lanceï Kaba
- IHU Méditerranée Infection, 13005 Marseille, France; (Y.S.); (M.M.); (S.M.); (C.O.G.); (L.K.); (G.G.); (J.-L.M.)
- IRD, AP-HM, SSA, VITROME, Aix-Marseille Université, 13284 Marseille, France
| | - Ghiles Grine
- IHU Méditerranée Infection, 13005 Marseille, France; (Y.S.); (M.M.); (S.M.); (C.O.G.); (L.K.); (G.G.); (J.-L.M.)
- IRD, APHM, MEPHI, Aix-Marseille Université, 13284 Marseille, France
- UFR Odontologie, Aix-Marseille Université, 13284 Marseille, France
| | - Thibault Mura
- INSERM, University of Montpellier, U1061, Neuropsychiatry: Epidemiological and Clinical Research, 34093 Montpellier, France;
- Laboratoire de Biostatistique, Epidémiologie Clinique, Santé Publique Innovation et Méthodologie (BESPIM), Groupe Hospitalier Caremeau, CHU de Nîmes, Nîmes University Hospital, 30900 Nîmes, France
| | - Jean-Louis Mège
- IHU Méditerranée Infection, 13005 Marseille, France; (Y.S.); (M.M.); (S.M.); (C.O.G.); (L.K.); (G.G.); (J.-L.M.)
- IRD, APHM, MEPHI, Aix-Marseille Université, 13284 Marseille, France
| | - Tu Anh Tran
- Paediatrics Department, University Hospital Nîmes, 30900 Nîmes, France;
- INSERM U1183, Institute for Regenerative Medicine & Biotherapy, 34295 Montpellier, France
- Faculty de Medicine, Montpellier University, 34000 Montpellier, France
| | - Pierre Corbeau
- Immunology Department, University Hospital Nîmes, 30900 Nîmes, France
- Faculty de Medicine, Montpellier University, 34000 Montpellier, France
- CNRS UMR 9002, Institute of Human Genetics, 34090 Montpellier, France
- Correspondence: (P.C.); (A.F.); (J.V.); Tel.: +33-4-13-73-20-51 (J.V.); Fax: +33-4-13-73-20-52 (J.V.)
| | - Anne Filleron
- Paediatrics Department, University Hospital Nîmes, 30900 Nîmes, France;
- INSERM U1183, Institute for Regenerative Medicine & Biotherapy, 34295 Montpellier, France
- Faculty de Medicine, Montpellier University, 34000 Montpellier, France
- Correspondence: (P.C.); (A.F.); (J.V.); Tel.: +33-4-13-73-20-51 (J.V.); Fax: +33-4-13-73-20-52 (J.V.)
| | - Joana Vitte
- IHU Méditerranée Infection, 13005 Marseille, France; (Y.S.); (M.M.); (S.M.); (C.O.G.); (L.K.); (G.G.); (J.-L.M.)
- IRD, APHM, MEPHI, Aix-Marseille Université, 13284 Marseille, France
- Faculty de Medicine, Montpellier University, 34000 Montpellier, France
- IDESP, INSERM UMR UA11, Institut Desbrest d’Epidemiologie et de Santé Publique (IDESP) Campus Sante, 34093 Montpellier, France
- Correspondence: (P.C.); (A.F.); (J.V.); Tel.: +33-4-13-73-20-51 (J.V.); Fax: +33-4-13-73-20-52 (J.V.)
| |
Collapse
|
152
|
Losol P, Barcik W. Dietary fiber and fermented food consumption and its link to allergic responses. Allergy 2022; 77:2568-2570. [PMID: 35553445 DOI: 10.1111/all.15367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Purevsuren Losol
- Division of Allergy and Clinical Immunology Department of Internal Medicine Seoul National University Bundang Hospital Seongnam Korea
- Medical Research Center Seoul National University Seoul Korea
- Department of Molecular Biology and Genetics School of Biomedicine Mongolian National University of Medical Sciences Ulaanbaatar Mongolia
| | - Weronika Barcik
- Genetics of Cognition Laboratory, Neuroscience Area Istituto Italiano di Tecnologia Genoa Italy
| |
Collapse
|
153
|
Borbet TC, Pawline MB, Zhang X, Wipperman MF, Reuter S, Maher T, Li J, Iizumi T, Gao Z, Daniele M, Taube C, Koralov SB, Müller A, Blaser MJ. Influence of the early-life gut microbiota on the immune responses to an inhaled allergen. Mucosal Immunol 2022; 15:1000-1011. [PMID: 35842561 PMCID: PMC9835105 DOI: 10.1038/s41385-022-00544-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/04/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023]
Abstract
Antibiotics, among the most used medications in children, affect gut microbiome communities and metabolic functions. These changes in microbiota structure can impact host immunity. We hypothesized that early-life microbiome alterations would lead to increased susceptibility to allergy and asthma. To test this, mouse pups between postnatal days 5-9 were orally exposed to water (control) or to therapeutic doses of azithromycin or amoxicillin. Later in life, these mice were sensitized and challenged with a model allergen, house dust mite (HDM), or saline. Mice with early-life azithromycin exposure that were challenged with HDM had increased IgE and IL-13 production by CD4+ T cells compared to unexposed mice; early-life amoxicillin exposure led to fewer abnormalities. To test that the microbiota contained the immunological cues to alter IgE and cytokine production after HDM challenge, germ-free mice were gavaged with fecal samples of the antibiotic-perturbed microbiota. Gavage of adult germ-free mice did not result in altered HDM responses, however, their offspring, which acquired the antibiotic-perturbed microbiota at birth showed elevated IgE levels and CD4+ cytokines in response to HDM, and altered airway reactivity. These studies indicate that early-life microbiota composition can heighten allergen-driven Th2/Th17 immune pathways and airway responses in an age-dependent manner.
Collapse
Affiliation(s)
- Timothy C. Borbet
- Department of Pathology, New York University School of Medicine, New York, NY USA
| | - Miranda B. Pawline
- Department of Pathology, New York University School of Medicine, New York, NY USA
| | - Xiaozhou Zhang
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Matthew F. Wipperman
- Immunology Program, Sloan Kettering Institute, New York, USA,Clinical and Translational Science Center, Weill Cornell Medicine, New York, New York, USA
| | - Sebastian Reuter
- Department of Pulmonary Medicine, University Hospital Essen – Ruhrlandklinik, Essen, Germany
| | - Timothy Maher
- Department of Pathology, New York University School of Medicine, New York, NY USA
| | - Jackie Li
- Department of Pathology, New York University School of Medicine, New York, NY USA
| | - Tadasu Iizumi
- Department of Pathology, New York University School of Medicine, New York, NY USA,Center for Advanced Biotechnology and Medicine, Rutgers University, New Brunswick, NJ, USA
| | - Zhan Gao
- Center for Advanced Biotechnology and Medicine, Rutgers University, New Brunswick, NJ, USA
| | - Megan Daniele
- Department of Pathology, New York University School of Medicine, New York, NY USA,Department of Pediatrics, New York Presbyterian/Morgan Stanley Children’s Hospital and Columbia University Irving Medical Center, New York, NY USA
| | - Christian Taube
- Immunology Program, Sloan Kettering Institute, New York, USA
| | - Sergei B. Koralov
- Department of Pathology, New York University School of Medicine, New York, NY USA
| | - Anne Müller
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland,Corresponding Authors: Martin J. Blaser, , Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane West, Room 106A, Piscataway, NJ 08854, Tel: 848-445-9834, Fax: 732-235-5318, Anne Müller, , Universität Zürich, Institut für Molekulare Krebsforschung, Winterthurerstrasse 190, CH 8057 Zürich, Tel: +41 44 635 34 74, Fax: +41 44 635 3484
| | - Martin J. Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, New Brunswick, NJ, USA,Corresponding Authors: Martin J. Blaser, , Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane West, Room 106A, Piscataway, NJ 08854, Tel: 848-445-9834, Fax: 732-235-5318, Anne Müller, , Universität Zürich, Institut für Molekulare Krebsforschung, Winterthurerstrasse 190, CH 8057 Zürich, Tel: +41 44 635 34 74, Fax: +41 44 635 3484
| |
Collapse
|
154
|
Celebi Sozener Z, Ozdel Ozturk B, Cerci P, Turk M, Gorgulu Akin B, Akdis M, Altiner S, Ozbey U, Ogulur I, Mitamura Y, Yilmaz I, Nadeau K, Ozdemir C, Mungan D, Akdis CA. Epithelial barrier hypothesis: Effect of the external exposome on the microbiome and epithelial barriers in allergic disease. Allergy 2022; 77:1418-1449. [PMID: 35108405 PMCID: PMC9306534 DOI: 10.1111/all.15240] [Citation(s) in RCA: 155] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 12/11/2022]
Abstract
Environmental exposure plays a major role in the development of allergic diseases. The exposome can be classified into internal (e.g., aging, hormones, and metabolic processes), specific external (e.g., chemical pollutants or lifestyle factors), and general external (e.g., broader socioeconomic and psychological contexts) domains, all of which are interrelated. All the factors we are exposed to, from the moment of conception to death, are part of the external exposome. Several hundreds of thousands of new chemicals have been introduced in modern life without our having a full understanding of their toxic health effects and ways to mitigate these effects. Climate change, air pollution, microplastics, tobacco smoke, changes and loss of biodiversity, alterations in dietary habits, and the microbiome due to modernization, urbanization, and globalization constitute our surrounding environment and external exposome. Some of these factors disrupt the epithelial barriers of the skin and mucosal surfaces, and these disruptions have been linked in the last few decades to the increasing prevalence and severity of allergic and inflammatory diseases such as atopic dermatitis, food allergy, allergic rhinitis, chronic rhinosinusitis, eosinophilic esophagitis, and asthma. The epithelial barrier hypothesis provides a mechanistic explanation of how these factors can explain the rapid increase in allergic and autoimmune diseases. In this review, we discuss factors affecting the planet's health in the context of the 'epithelial barrier hypothesis,' including climate change, pollution, changes and loss of biodiversity, and emphasize the changes in the external exposome in the last few decades and their effects on allergic diseases. In addition, the roles of increased dietary fatty acid consumption and environmental substances (detergents, airborne pollen, ozone, microplastics, nanoparticles, and tobacco) affecting epithelial barriers are discussed. Considering the emerging data from recent studies, we suggest stringent governmental regulations, global policy adjustments, patient education, and the establishment of individualized control measures to mitigate environmental threats and decrease allergic disease.
Collapse
Affiliation(s)
| | - Betul Ozdel Ozturk
- School of MedicineDepartment of Chest DiseasesDivision of Immunology and Allergic DiseasesAnkara UniversityAnkaraTurkey
| | - Pamir Cerci
- Clinic of Immunology and Allergic DiseasesEskisehir City HospitalEskisehirTurkey
| | - Murat Turk
- Clinic of Immunology and Allergic DiseasesKayseri City HospitalKayseriTurkey
| | - Begum Gorgulu Akin
- Clinic of Immunology and Allergic DiseasesAnkara City HospitalAnkaraTurkey
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| | - Seda Altiner
- Clinic of Internal Medicine Division of Immunology and Allergic DiseasesKahramanmaras Necip Fazil City HospitalKahramanmarasTurkey
| | - Umus Ozbey
- Department of Nutrition and DietAnkara UniversityAnkaraTurkey
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| | - Insu Yilmaz
- Department of Chest DiseasesDivision of Immunology and Allergic DiseasesErciyes UniversityKayseriTurkey
| | - Kari Nadeau
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University School of MedicineDivision of Pulmonary and Critical Care MedicineDepartment of MedicineStanford UniversityStanfordCaliforniaUSA
| | - Cevdet Ozdemir
- Institute of Child HealthDepartment of Pediatric Basic SciencesIstanbul UniversityIstanbulTurkey
- Istanbul Faculty of MedicineDepartment of PediatricsDivision of Pediatric Allergy and ImmunologyIstanbul UniversityIstanbulTurkey
| | - Dilsad Mungan
- School of MedicineDepartment of Chest DiseasesDivision of Immunology and Allergic DiseasesAnkara UniversityAnkaraTurkey
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| |
Collapse
|
155
|
Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D, Xiao C, Zhu D, Koya JB, Wei L, Li J, Chen ZS. Microbiota in health and diseases. Signal Transduct Target Ther 2022; 7:135. [PMID: 35461318 PMCID: PMC9034083 DOI: 10.1038/s41392-022-00974-4] [Citation(s) in RCA: 744] [Impact Index Per Article: 372.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
The role of microbiota in health and diseases is being highlighted by numerous studies since its discovery. Depending on the localized regions, microbiota can be classified into gut, oral, respiratory, and skin microbiota. The microbial communities are in symbiosis with the host, contributing to homeostasis and regulating immune function. However, microbiota dysbiosis can lead to dysregulation of bodily functions and diseases including cardiovascular diseases (CVDs), cancers, respiratory diseases, etc. In this review, we discuss the current knowledge of how microbiota links to host health or pathogenesis. We first summarize the research of microbiota in healthy conditions, including the gut-brain axis, colonization resistance and immune modulation. Then, we highlight the pathogenesis of microbiota dysbiosis in disease development and progression, primarily associated with dysregulation of community composition, modulation of host immune response, and induction of chronic inflammation. Finally, we introduce the clinical approaches that utilize microbiota for disease treatment, such as microbiota modulation and fecal microbial transplantation.
Collapse
Affiliation(s)
- Kaijian Hou
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou, Guangdong, 515000, China
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Xuan-Yu Chen
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Dongya Zhang
- Microbiome Research Center, Moon (Guangzhou) Biotech Ltd, Guangzhou, 510535, China
| | - Chuanxing Xiao
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou, Guangdong, 515000, China
| | - Dan Zhu
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou, Guangdong, 515000, China
| | - Jagadish B Koya
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Liuya Wei
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Jilin Li
- Department of Cardiovascular, The Second Affiliated Hospital of Medical College of Shantou University, Shantou, Guangdong, 515000, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| |
Collapse
|
156
|
Nutrition during Pregnancy and Lactation: Epigenetic Effects on Infants’ Immune System in Food Allergy. Nutrients 2022; 14:nu14091766. [PMID: 35565735 PMCID: PMC9103859 DOI: 10.3390/nu14091766] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022] Open
Abstract
Food allergies are an increasing health problem worldwide. They are multifactorial diseases, in which the genome alone does not explain the development of the disease, but a genetic predisposition and various environmental factors contribute to their onset. Environmental factors, in particular nutritional factors, in the early stages of life are recognized as key elements in the etiology of food allergies. There is growing evidence advising that nutrition can affect the risk of developing food allergies through epigenetic mechanisms elicited by the nutritional factors themselves or by modulating the gut microbiota and its functional products. Gut microbiota and postbiotics can in turn influence the risk of food allergy development through epigenetic mechanisms. Epigenetic programming accounts not only for the short-term effects on the individual’s health status, but also for those observed in adulthood. The first thousand days of life represent an important window of susceptibility in which environmental factors, including nutritional ones, can influence the risk of developing allergies through epigenetic mechanisms. From this point of view, it represents an interesting window of opportunity and intervention. This review reports the main nutritional factors that in the early stages of life can influence immune oral tolerance through the modulation of epigenetic mechanisms.
Collapse
|
157
|
Scadding GK, Smith PK, Blaiss M, Roberts G, Hellings PW, Gevaert P, Mc Donald M, Sih T, Halken S, Zieglmayer PU, Schmid-Grendelmeier P, Valovirta E, Pawankar R, Wahn U. Allergic Rhinitis in Childhood and the New EUFOREA Algorithm. FRONTIERS IN ALLERGY 2022; 2:706589. [PMID: 35387065 PMCID: PMC8974858 DOI: 10.3389/falgy.2021.706589] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/11/2021] [Indexed: 12/25/2022] Open
Abstract
Allergic rhinitis in childhood has been often missed, mistreated and misunderstood. It has significant comorbidities, adverse effects upon quality of life and educational performance and can progress to asthma or worsen control of existing asthma. Accurate diagnosis and effective treatment are important. The new EUFOREA algorithm provides a succinct but wide- ranging guide to management at all levels, based on previous guidelines with updated evidence and has been adjusted and approved by experts worldwide.
Collapse
Affiliation(s)
- Glenis Kathleen Scadding
- Ear, Nose and Throat Department, University College London Hospitals National Health Service Foundation Trust, London, United Kingdom.,Faculty of Medical Sciences, University College London, London, United Kingdom
| | | | - Michael Blaiss
- Department of Paediatrics, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Graham Roberts
- National Institute of Health Research Biomedical Research Centre, Southampton General Hospital, Southampton, United Kingdom.,The David Hide Asthma and Allergy Research Centre, Newport, United Kingdom.,Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Peter William Hellings
- Department of Microbiology and Immunology, Department of Otorhinolaryngology, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Otorhinolaryngology, Academic Medical Center, Amsterdam, Netherlands
| | - Philippe Gevaert
- Department of Otorhinolaryngology, Ghent University, Ghent, Belgium
| | | | - Tania Sih
- Medical School, University of São Paulo, São Paulo, Brazil
| | - Suzanne Halken
- Paediatric Allergy, University of Southern Denmark, Odense, Denmark
| | - Petra Ursula Zieglmayer
- Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria.,Vienna Challenge Chamber, Vienna, Austria
| | - Peter Schmid-Grendelmeier
- Allergy Unit, Dermatology Department, University Hospital of Zurich, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Erkka Valovirta
- Department of Lung Diseases and Clinical Immunology, University of Turku and Terveystalo Allergy Clinic, Turku, Finland
| | - Ruby Pawankar
- Division of Allergy, Department of Pediatrics, Nippon Medical School, Tokyo, Japan
| | - Ulrich Wahn
- Klinik für Pädiatrie m.S. Pneumologie und Immunologie, Charite-Berlin, Berlin, Germany
| |
Collapse
|
158
|
Cheng HY, Chan JCY, Yap GC, Huang CH, Kioh DYQ, Tham EH, Loo EXL, Shek LPC, Karnani N, Goh A, Van Bever HPS, Teoh OH, Chan YH, Lay C, Knol J, Yap F, Tan KH, Chong YS, Godfrey KM, Chan ECY, Lee BW, Ta LDH. Evaluation of Stool Short Chain Fatty Acids Profiles in the First Year of Life With Childhood Atopy-Related Outcomes. FRONTIERS IN ALLERGY 2022; 3:873168. [PMID: 35769572 PMCID: PMC9234937 DOI: 10.3389/falgy.2022.873168] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Short chain fatty acids (SCFAs) are the main intestinal intermediate and end products of metabolism of dietary fibers/polyphenols by the gut microbiota. The aim of this study was to evaluate the biological implication of stool SCFA profiles determined in the first year of life on the clinical presentation of allergic outcomes in childhood. Methods From the Growing Up in Singapore Toward healthy Outcomes (GUSTO) cohort, a sub-cohort of 75 participants was recruited. Scheduled questionnaire data was collected for cumulative prevalence of physician-diagnosed eczema, wheezing with the use of nebuliser, and allergen sensitization till the age of 8 years. Stool samples collected at week 3 and months 3, 6 and 12 were quantitated for 9 SCFAs using LC/MS/MS. SCFA data were grouped into lower (below the 25th) and higher (above the 75th percentiles) categories. Generalized Linear Mixed Models was employed to analyse longitudinal association between SCFAs and atopy-related outcomes. Results Children with lower stool butyric acid levels (≤25th percentile) over the first 3 time points had higher odds ratio (OR) for wheezing (adjOR = 14.6), eczema (adjOR = 13.2), food sensitization (adjOR = 12.3) and combined outcomes of both wheezing and eczema (adjOR = 22.6) till age 8 years, compared to those with higher levels (≥75 percentile). Additionally, lower longitudinal levels of propionic acid (≤25th percentile) over 4 time points in first year of life was associated with recurrent wheezing (≥2 episodes) till 8 years (adjOR = 7.4) (adj p < 0.05). Conclusion Our results suggest that relatively low levels of gut SCFAs in early life are associated with increased susceptibility to atopic-related outcomes in childhood.
Collapse
Affiliation(s)
- Hsin Yue Cheng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - James Chun Yip Chan
- Singapore Institute of Food and Biotechnology Innovation, ASTAR, Singapore, Singapore
- Skin Research Institute of Singapore, A*STAR, Singapore, Singapore
| | - Gaik Chin Yap
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chiung-Hui Huang
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dorinda Yan Qin Kioh
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Elizabeth Huiwen Tham
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Evelyn Xiu Ling Loo
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Lynette P. C. Shek
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Anne Goh
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Hugo P. S. Van Bever
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Oon Hoe Teoh
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Yiong Huak Chan
- Biostatistics Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christophe Lay
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Danone Nutricia Research, Singapore, Singapore
| | - Jan Knol
- Danone Nutricia Research, Utrecht, Netherlands
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Fabian Yap
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Kok Hian Tan
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Yap-Seng Chong
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| | - Keith M. Godfrey
- MRC Lifecourse Epidemiology Centre and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Bee Wah Lee
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Le Duc Huy Ta
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- *Correspondence: Le Duc Huy Ta
| |
Collapse
|
159
|
Vijay A, Valdes AM. Role of the gut microbiome in chronic diseases: a narrative review. Eur J Clin Nutr 2022; 76:489-501. [PMID: 34584224 PMCID: PMC8477631 DOI: 10.1038/s41430-021-00991-6] [Citation(s) in RCA: 179] [Impact Index Per Article: 89.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/29/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023]
Affiliation(s)
- Amrita Vijay
- Division of Rheumatology, Orthopaedics and Dermatology, School of Medicine, The University of Nottingham, Nottingham, UK.
| | - Ana M Valdes
- Division of Rheumatology, Orthopaedics and Dermatology, School of Medicine, The University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| |
Collapse
|
160
|
Tian GX, Peng KP, Yu Y, Liang CB, Xie HQ, Guo YY, Zhou S, Zheng MBW, Zheng PY, Yang PC. Propionic acid regulates immune tolerant properties in B Cells. J Cell Mol Med 2022; 26:2766-2776. [PMID: 35343043 PMCID: PMC9097846 DOI: 10.1111/jcmm.17287] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/27/2022] [Accepted: 03/03/2022] [Indexed: 12/05/2022] Open
Abstract
Interleukin 10 (IL‐10)‐producing B cells (B10 cells) are a canonical cell fraction for regulating other activities of immune cells. Posttranscriptional modification of IL‐10 in B10 cells is not yet fully understood. Short‐chain fatty acids play an important role to regulate the functions of immune cells. This study aims to clarify the role of propionic acid (PA), a short‐chain fatty acid, in regulating the expression of IL‐10 in B10 cells. Blood samples were collected from patients with food allergy (FA) and healthy subjects. Serum and cellular components were prepared with the samples, and analysed by enzyme‐linked immunosorbent assay and flow cytometry, respectively. The results showed that serum PA levels were lower in FA patients. PA concentrations were negatively correlated with serum cytokine Th2 concentrations, specific IgE concentrations in serum and skin prick test results. The peripheral frequency of B10 cells and the production of IL‐10 in B cells were also associated with serum PA concentrations. Activation of B cells by CpG induced the production of IL‐10 and tristetretrprolin (TTP), in which TTP caused the spontaneous decay of IL‐10 mRNA. PA was necessary to stabilize the IL‐10 mRNA in B cells by inducing the production of granzyme B, which resulted in the degradation of the IL‐10 mRNA. Administration of PA attenuated FA response in mice by maintaining homeostasis of B10 cells. In conclusion, PA is needed to stabilize the expression of IL‐10 in B10 cells. PA administration can mitigate experimental FA by maintaining B10 cell functions.
Collapse
Affiliation(s)
- Gui-Xiang Tian
- Department of Ultrasonic, The Second Xiangya Hospital of Central South University, Changsha, China.,Research Center of Ultrasonography, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ke-Ping Peng
- Department of Gastroenterology, Fifth Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Yong Yu
- Department of Otorhinolaryngology-Head and Neck surgery, The first Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Cheng-Bai Liang
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hai-Qing Xie
- Department of Ultrasonic, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yu-Yang Guo
- Department of Ultrasonic, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shan Zhou
- Department of Ultrasonic, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Michael B W Zheng
- Department of Life Science, McMaster University, Hamilton, Ontario, Canada
| | - Peng-Yuan Zheng
- Department of Otorhinolaryngology-Head and Neck surgery, The first Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Ping-Chang Yang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China.,State Key Laboratory of Respiratory Disease Allergy Division at Shenzhen University, Institute of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
161
|
Akagawa S, Kaneko K. Gut microbiota and allergic diseases in children. Allergol Int 2022; 71:301-309. [PMID: 35314107 DOI: 10.1016/j.alit.2022.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 12/11/2022] Open
Abstract
The gut microbiota resides in the human gastrointestinal tract, where it plays an important role in maintaining host health. The human gut microbiota is established by the age of 3 years. Studies have revealed that an imbalance in the gut microbiota, termed dysbiosis, occurs due to factors such as cesarean delivery and antibiotic use before the age of 3 years and that dysbiosis is associated with a higher risk of future onset of allergic diseases. Recent advancements in next-generation sequencing methods have revealed the presence of dysbiosis in patients with allergic diseases, which increases attention on the relationship between dysbiosis and the development of allergic diseases. However, there is no unified perspective on the characteristics on dysbiosis or the mechanistic link between dysbiosis and the onset of allergic diseases. Here, we introduce the latest studies on the gut microbiota in children with allergic diseases and present the hypothesis that dysbiosis characterized by fewer butyric acid-producing bacteria leads to fewer regulatory T cells, resulting in allergic disease. Further studies on correcting dysbiosis for the prevention and treatment of allergic diseases are warranted.
Collapse
Affiliation(s)
- Shohei Akagawa
- Department of Pediatrics, Kansai Medical University, Osaka, Japan
| | - Kazunari Kaneko
- Department of Pediatrics, Kansai Medical University, Osaka, Japan.
| |
Collapse
|
162
|
Huang J, Zhang J, Wang X, Jin Z, Zhang P, Su H, Sun X. Effect of Probiotics on Respiratory Tract Allergic Disease and Gut Microbiota. Front Nutr 2022; 9:821900. [PMID: 35295917 PMCID: PMC8920559 DOI: 10.3389/fnut.2022.821900] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Allergy is a hypersensitivity reaction triggered by specific cell or antibody-mediated immune mechanisms. Allergies have increased in industrialized countries in recent decades. The rise in allergic respiratory diseases such as allergic rhinitis (AR) and allergic asthma (AA) is a potential threat to public health. Searches were conducted using PubMed, Google Scholar and Medline using the following key terms: allergic rhinitis OR asthma AND probiotics, allergic airway inflammation AND immune disorders, probiotics OR gut microbiota AND allergic disease, probiotics AND inflammatory. Studies from all years were included, specifically those published within the last 10 years. Some review articles and their reference lists were searched to identify related articles. The role of microbiota in respiratory allergic diseases has attracted more and more attention. Pieces of evidence suggested that the development of allergic diseases causes a possible imbalance in the composition of the gut microbiota. Compared to colonized mice, germ-free mice exhibit exaggerated allergic airway responses, suggesting that microbial host interactions play an important role in the development of allergic diseases. Probiotics modulate both the innate and adaptive inflammatory immune responses, often used as dietary supplements to provide health benefits in gastrointestinal disorders. Probiotics may serve as immunomodulators and activators of host defense pathways. Besides, oral probiotics can modulate the immune response in the respiratory system. Recently, studies in humans and animals have demonstrated the role of probiotic in RA and AA. To understand the characterization, microbiota, and the potential role of probiotics intervention of AA/AR, this review provides an overview of clinical features of AA and AR, probiotics for the prevention and treatment of AR, AA, changes in gut microbiota, and their mechanisms of action.
Collapse
Affiliation(s)
- Jinli Huang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Juan Zhang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xingzhi Wang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zenghui Jin
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Panpan Zhang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hui Su
- Department of Geratology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xin Sun
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
163
|
The Immune Mechanisms of Severe Equine Asthma-Current Understanding and What Is Missing. Animals (Basel) 2022; 12:ani12060744. [PMID: 35327141 PMCID: PMC8944511 DOI: 10.3390/ani12060744] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 01/27/2023] Open
Abstract
Severe equine asthma is a chronic respiratory disease of adult horses, occurring when genetically susceptible individuals are exposed to environmental aeroallergens. This results in airway inflammation, mucus accumulation and bronchial constriction. Although several studies aimed at evaluating the genetic and immune pathways associated with the disease, the results reported are inconsistent. Furthermore, the complexity and heterogeneity of this disease bears great similarity to what is described for human asthma. Currently available studies identified two chromosome regions (ECA13 and ECA15) and several genes associated with the disease. The inflammatory response appears to be mediated by T helper cells (Th1, Th2, Th17) and neutrophilic inflammation significantly contributes to the persistence of airway inflammatory status. This review evaluates the reported findings pertaining to the genetical and immunological background of severe equine asthma and reflects on their implications in the pathophysiology of the disease whilst discussing further areas of research interest aiming at advancing treatment and prognosis of affected individuals.
Collapse
|
164
|
Rousseau Y. Allergies alimentaires et probiotiques. ACTUALITES PHARMACEUTIQUES 2022. [DOI: 10.1016/j.actpha.2021.12.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
165
|
Athalye-Jape G, Esvaran M, Patole S, Simmer K, Nathan E, Doherty D, Keil A, Rao S, Chen L, Chandrasekaran L, Kok C, Schuster S, Conway P. Effect of single versus multistrain probiotic in extremely preterm infants: a randomised trial. BMJ Open Gastroenterol 2022; 9:bmjgast-2021-000811. [PMID: 35185013 PMCID: PMC8860036 DOI: 10.1136/bmjgast-2021-000811] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/12/2022] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVE Evidence indicates that multistrain probiotics benefit preterm infants more than single-strain (SS) probiotics. We assessed the effects of SS versus triple-strain (TS) probiotic supplementation (PS) in extremely preterm (EP) infants. DESIGN EP infants (gestational age (GA) <28 weeks) were randomly allocated to TS or SS probiotic, assuring blinding. Reference (REF) group was EP infants in the placebo arm of our previous probiotic trial. PS was commenced with feeds and continued until 37 weeks' corrected GA. Primary outcome was time to full feed (TFF: 150 mL/kg/day). Secondary outcomes included short-chain fatty acids and faecal microbiota collected at T1 (first week) and T2 (after 3 weeks of PS) using 16S ribosomal RNA gene sequencing. RESULTS 173 EP (SS: 86, TS: 87) neonates with similar GA and birth weight (BW) were randomised. Median TFF was comparable (11 (IQR 8-16) vs 10 (IQR 8-16) days, p=0.92). Faecal propionate (SS, p<0.001, and TS, p=0.0009) and butyrate levels (TS, p=0.029) were significantly raised in T2 versus T1 samples. Secondary clinical outcomes were comparable. At T2, alpha diversity was comparable (p>0.05) between groups, whereas beta-diversity analysis revealed significant differences between PS and REF groups (both p=0.001). Actinobacteria were higher (both p<0.01), and Proteobacteria, Firmicutes and Bacteroidetes were lower in PS versus REF. Gammaproteobacteria, Clostridia and Negativicutes were lower in both PS versus REF. CONCLUSION TFF in EP infants was similar between SS and TS probiotics. Both probiotics were effective in reducing dysbiosis (higher bifidobacteria and lower Gammaproteobacteria). Long-term significance of increased propionate and butyrate needs further studies. TRIAL REGISTRATION NUMBER ACTRN 12615000940572.
Collapse
Affiliation(s)
- Gayatri Athalye-Jape
- Neonatology directorate, King Edward Memorial Hospital for Women Perth, Subiaco, Western Australia, Australia
| | - Meera Esvaran
- Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Sanjay Patole
- Neonatal Clinical Care Unit, King Edward Memorial Hospital, Subiaco, Western Australia, Australia
| | - Karen Simmer
- Neonatal Clinical Care Unit, King Edward Memorial Hospital, Subiaco, Western Australia, Australia
| | - Elizabeth Nathan
- Biostatistics, Women and Infants Research Foundation Western Australia, Subiaco, Western Australia, Australia
| | - Dorota Doherty
- Biostatistics, Women and Infants Research Foundation Western Australia, Subiaco, Western Australia, Australia
| | - Anthony Keil
- Microbiology, PathWest Laboratory Medicine Western Australia, Nedlands, Western Australia, Australia
| | - Shripada Rao
- Neonatal Clinical Care Unit, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Liwei Chen
- Genomics and Bioinformatics, Nanyang Technological University, Singapore
| | | | - Chooi Kok
- Neonatal Clinical Care Unit, King Edward Memorial Hospital, Subiaco, Western Australia, Australia
| | - Stephan Schuster
- Genomics and Bioinformatics, Nanyang Technological University, Singapore
| | - Patricia Conway
- Genomics and Bioinformatics, Nanyang Technological University, Singapore
| |
Collapse
|
166
|
Lunjani N, Tan G, Dreher A, Sokolowska M, Groeger D, Warwyzniak M, Altunbulakli C, Westermann P, Basera W, Hobane L, Botha M, Gray C, Mankahla A, Gray C, Nadeau KC, Hlela C, Levin M, O'Mahony L, Akdis CA. Environment-dependent alterations of immune mediators in urban and rural South African children with atopic dermatitis. Allergy 2022; 77:569-581. [PMID: 34086351 DOI: 10.1111/all.14974] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/09/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND In order to improve targeted therapeutic approaches for children with atopic dermatitis (AD), novel insights into the molecular mechanisms and environmental exposures that differentially contribute to disease phenotypes are required. We wished to identify AD immunological endotypes in South African children from rural and urban environments. METHODS We measured immunological, socio-economic and environmental factors in healthy children (n = 74) and children with AD (n = 78), in rural and urban settings from the same ethno-linguistic AmaXhosa background in South Africa. RESULTS Circulating eosinophils, monocytes, TARC, MCP-4, IL-16 and allergen-specific IgE levels were elevated, while IL-17A and IL-23 levels were reduced, in children with AD regardless of their location. Independent of AD, children living in a rural environment had the highest levels of TNFα, TNFβ, IL-1α, IL-6, IL-8, IL-21, MCP-1, MIP-1α, MIP-1β, MDC, sICAM1, sVCAM1, VEGFA, VEGFD and Tie2, suggesting a generalized microinflammation or a pattern of trained immunity without any specific TH polarization. In contrast, IL-15, IL-22, Flt1, PIGF and βFGF were highest in urban children. Rural healthy children had the lowest levels of food allergen-specific IgG4. Early life nutritional factors, medications, animal exposures, indoor environment, sunlight exposure, household size, household income and parental education levels were associated with differences in circulating cytokine levels. CONCLUSIONS This study highlights the immunological impact of environmental exposures and socio-economic status in the manifestation of immune endotypes in children with AD living in urban and rural areas, which are important in selecting appropriately matched immunological therapies for treatment of AD.
Collapse
Affiliation(s)
- Nonhlanhla Lunjani
- Swiss Institute of Allergy and Asthma Research (SIAF, University of Zurich, Davos, Switzerland.,Department of Dermatology, University of Cape Town, Cape Town, South Africa.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ge Tan
- Swiss Institute of Allergy and Asthma Research (SIAF, University of Zurich, Davos, Switzerland.,Functional Genomics Center, University of Zurich, Zurich, Switzerland
| | - Anita Dreher
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF, University of Zurich, Davos, Switzerland
| | - David Groeger
- Swiss Institute of Allergy and Asthma Research (SIAF, University of Zurich, Davos, Switzerland.,PrecisionBiotics Ltd, Cork, Ireland
| | - Marcin Warwyzniak
- Swiss Institute of Allergy and Asthma Research (SIAF, University of Zurich, Davos, Switzerland
| | - Can Altunbulakli
- Swiss Institute of Allergy and Asthma Research (SIAF, University of Zurich, Davos, Switzerland
| | - Patrick Westermann
- Swiss Institute of Allergy and Asthma Research (SIAF, University of Zurich, Davos, Switzerland
| | - Wisdom Basera
- Division of Paediatric Allergy, Department of Paediatrics and Child Health, University of Cape Town, South Africa
| | - Lelani Hobane
- Division of Paediatric Allergy, Department of Paediatrics and Child Health, University of Cape Town, South Africa
| | - Maresa Botha
- Division of Paediatric Allergy, Department of Paediatrics and Child Health, University of Cape Town, South Africa
| | - Claudia Gray
- Division of Paediatric Allergy, Department of Paediatrics and Child Health, University of Cape Town, South Africa
| | - Avumile Mankahla
- The Division of Dermatology, Department of Medicine and Pharmacology, Walter Sisulu University, Eastern Cape, South Africa
| | - Clive Gray
- Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA
| | - Carol Hlela
- Department of Dermatology, University of Cape Town, Cape Town, South Africa
| | - Michael Levin
- Division of Paediatric Allergy, Department of Paediatrics and Child Health, University of Cape Town, South Africa
| | - Liam O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Medicine, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF, University of Zurich, Davos, Switzerland.,Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| |
Collapse
|
167
|
Wang LC, Huang YM, Lu C, Chiang BL, Shen YR, Huang HY, Lee CC, Su NW, Lin BF. Lower caprylate and acetate levels in the breast milk is associated with atopic dermatitis in infancy. Pediatr Allergy Immunol 2022; 33:e13744. [PMID: 35212041 DOI: 10.1111/pai.13744] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/04/2022] [Accepted: 01/31/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) occurs in exclusively breastfed infants. As fatty acids have some immunomodulatory effect, we aimed to investigate the influence of fatty acid compositions in breast milk (BM) on the development of AD in exclusively breastfed infants. METHODS We enrolled two- to four-month-old exclusively breastfed infants. The objective SCORing Atopic Dermatitis (objSCORAD) was evaluated. The lipid layer of BM was analyzed by gas chromatography for fatty acid levels. Medical charts were reviewed. RESULTS Forty-seven AD infants and 47 healthy controls were enrolled. The objSCORAD was 20.5 ± 1.7 (shown as mean ± SEM) in the AD group. The age, sex, parental atopy history, and nutrient intake of mothers were not significantly different between two groups. The palmitate and monounsaturated fatty acid (MUFA) levels in BM positively correlated with objSCORAD, while caprylate, acetate, and short-chain fatty acid (SCFA) levels negatively correlated with objSCORAD (p = .031, .019, .039, .013, .022, respectively). However, the butyrate levels in BM were not significantly different. The caprylate and acetate levels in BM were significantly associated with the presence of infantile AD (p = .021 and .015, respectively) after adjusting for age, sex, parental allergy history, MUFA, palmitate, and SCFA levels in BM. ObjSCORAD in infancy was significantly associated with persistent AD (p = .026) after adjusting for age, sex, parental atopy history, caprylate, palmitate, MUFA, acetate, and SCFA levels in BM. CONCLUSION Caprylate and acetate levels in BM for exclusively breastfed infants were negatively associated with objSCORAD. Lower caprylate and acetate in BM might be the risk factors for infantile AD, while butyrate in BM was not associated with infantile AD.
Collapse
Affiliation(s)
- Li-Chieh Wang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Ming Huang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Emergency Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Chieh Lu
- Department of Biochemical Science and Technology, College of Life Sciences, National Taiwan University, Taipei, Taiwan
| | - Bor-Luen Chiang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Ying-Rou Shen
- Department of Biochemical Science and Technology, College of Life Sciences, National Taiwan University, Taipei, Taiwan
| | - Hsun-Yi Huang
- Department of Biochemical Science and Technology, College of Life Sciences, National Taiwan University, Taipei, Taiwan
| | - Chien-Chang Lee
- Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Nan-Wei Su
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Bi-Fong Lin
- Department of Biochemical Science and Technology, College of Life Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
168
|
Brough HA, Lanser BJ, Sindher SB, Teng JMC, Leung DYM, Venter C, Chan SM, Santos AF, Bahnson HT, Guttman‐Yassky E, Gupta RS, Lack G, Ciaccio CE, Sampath V, Nadeau KC, Nagler CR. Early intervention and prevention of allergic diseases. Allergy 2022; 77:416-441. [PMID: 34255344 DOI: 10.1111/all.15006] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022]
Abstract
Food allergy (FA) is now one of the most common chronic diseases of childhood often lasting throughout life and leading to significant worldwide healthcare burden. The precise mechanisms responsible for the development of this inflammatory condition are largely unknown; however, a multifactorial aetiology involving both environmental and genetic contributions is well accepted. A precise understanding of the pathogenesis of FA is an essential first step to developing comprehensive prevention strategies that could mitigate this epidemic. As it is frequently preceded by atopic dermatitis and can be prevented by early antigen introduction, the development of FA is likely facilitated by the improper initial presentation of antigen to the developing immune system. Primary oral exposure of antigens allowing for presentation via a well-developed mucosal immune system, rather than through a disrupted skin epidermal barrier, is essential to prevent FA. In this review, we present the data supporting the necessity of (1) an intact epidermal barrier to prevent epicutaneous antigen presentation, (2) the presence of specific commensal bacteria to maintain an intact mucosal immune system and (3) maternal/infant diet diversity, including vitamins and minerals, and appropriately timed allergenic food introduction to prevent FA.
Collapse
Affiliation(s)
- Helen A. Brough
- Department Women and Children’s Health (Pediatric Allergy) School of Life Course Sciences Faculty of Life Sciences and Medicine King’s College London London UK
- Peter Gorer Department of Immunobiology School of Immunology and Microbial Sciences King’s College London London UK
- Children’s Allergy Service Evelina Children’s Hospital Guy’s and St. Thomas’s NHS Foundation Trust London UK
| | - Bruce Joshua Lanser
- Division of Pediatric Allergy‐Immunology Department of Pediatrics National Jewish Health Denver CO USA
| | - Sayantani B. Sindher
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University Stanford University Stanford CA USA
- Division of Pulmonary and Critical Care Medicine Department of Medicine Stanford University Stanford CA USA
- Division of Allergy, Immunology and Rheumatology Department of Medicine Stanford University Stanford CA USA
| | - Joyce M. C. Teng
- Department of Dermatology Lucile Packard Children's Hospital at the Stanford University School of Medicine Palo Alto CA USA
| | - Donald Y. M. Leung
- Division of Pediatric Allergy‐Immunology Department of Pediatrics National Jewish Health Denver CO USA
| | - Carina Venter
- Section of Allergy & Immunology School of Medicine University of Colorado DenverChildren's Hospital Colorado Aurora CO USA
| | - Susan M. Chan
- Department Women and Children’s Health (Pediatric Allergy) School of Life Course Sciences Faculty of Life Sciences and Medicine King’s College London London UK
- Peter Gorer Department of Immunobiology School of Immunology and Microbial Sciences King’s College London London UK
- Children’s Allergy Service Evelina Children’s Hospital Guy’s and St. Thomas’s NHS Foundation Trust London UK
| | - Alexandra F. Santos
- Department Women and Children’s Health (Pediatric Allergy) School of Life Course Sciences Faculty of Life Sciences and Medicine King’s College London London UK
- Peter Gorer Department of Immunobiology School of Immunology and Microbial Sciences King’s College London London UK
- Children’s Allergy Service Evelina Children’s Hospital Guy’s and St. Thomas’s NHS Foundation Trust London UK
- Asthma UK Centre in Allergic Mechanisms of Asthma London UK
| | - Henry T. Bahnson
- Benaroya Research Institute and Immune Tolerance Network Seattle WA USA
| | - Emma Guttman‐Yassky
- Department of Dermatology and the Immunology Institute Icahn School of Medicine at Mount Sinai New York NY USA
- Laboratory for Investigative Dermatology The Rockefeller University New York NY USA
| | - Ruchi S. Gupta
- Center for Food Allergy and Asthma Research Northwestern University Feinberg School of Medicine Chicago IL USA
- Ann & Robert H. Lurie Children's Hospital of Chicago Chicago IL USA
| | - Gideon Lack
- Department Women and Children’s Health (Pediatric Allergy) School of Life Course Sciences Faculty of Life Sciences and Medicine King’s College London London UK
- Peter Gorer Department of Immunobiology School of Immunology and Microbial Sciences King’s College London London UK
- Children’s Allergy Service Evelina Children’s Hospital Guy’s and St. Thomas’s NHS Foundation Trust London UK
| | | | - Vanitha Sampath
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University Stanford University Stanford CA USA
| | - Kari C. Nadeau
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University Stanford University Stanford CA USA
- Division of Pulmonary and Critical Care Medicine Department of Medicine Stanford University Stanford CA USA
- Division of Allergy, Immunology and Rheumatology Department of Medicine Stanford University Stanford CA USA
| | - Cathryn R. Nagler
- Department of Pathology and Pritzker School of Molecular Engineering University of Chicago Chicago IL USA
| |
Collapse
|
169
|
Huang C, Du W, Ni Y, Lan G, Shi G. The effect of short-chain fatty acids on M2 macrophages polarization in vitro and in vivo. Clin Exp Immunol 2022; 207:53-64. [PMID: 35020860 PMCID: PMC8802183 DOI: 10.1093/cei/uxab028] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/16/2021] [Accepted: 12/01/2021] [Indexed: 12/19/2022] Open
Abstract
Alternatively activated macrophages (M2 polarization) play an important role in asthma. Short-chain fatty acids (SCFAs) possessed immune-regulatory functions, but their effects on M2 polarization of alveolar macrophages and its underlying mechanisms are still unclear. In our study, murine alveolar macrophage MH-S cell line and human monocyte-derived macrophages were used to polarize to M2 subset with interleukin-4 (IL-4) treatment. The underlying mechanisms involved were investigated using molecule inhibitors/agonists. In vivo, female C57BL/6 mice were divided into five groups: CON group, ovalbumin (OVA) asthma group, OVA+Acetate group, OVA+Butyrate group, and OVA+Propionate group. Mice were fed with or without SCFAs (Acetate, Butyrate, Propionate) in drinking water for 20 days before developing OVA-induced asthma model. In MH-S, SCFAs inhibited IL-4-incuced protein or mRNA expressions of M2-associated genes in a dose-dependent manner. G-protein-coupled receptor 43 (GPR43) agonist 4-CMTB and histone deacetylase (HDAC) inhibitor (trichostatin A, TSA), but not GPR41 agonist AR420626 could inhibit the protein or mRNA expressions M2-associated genes. 4-CMTB, but not TSA, had no synergistic role in the inhibitory effect of SCFAs on M2 polarization. In vivo study indicated Butyrate and Propionate, but not Acetate, attenuated OVA-induced M2 polarization in the lung and airway inflammation. We also found the inhibitory effect of SCFAs on M2 polarization in human-derived macrophages. Therefore, SCFAs inhibited M2 polarization in MH-S likely through GPR43 activation and/or HDAC inhibition. Butyrate and Propionate but not Acetate could inhibit M2 polarization and airway inflammation in asthma model. SCFAs also abrogated M2 polarization in human-derived macrophages.
Collapse
Affiliation(s)
- Chunrong Huang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, People's Republic of China
| | - Wei Du
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, People's Republic of China
| | - Yingmeng Ni
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, People's Republic of China
| | - Gelei Lan
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, People's Republic of China
| | - Guochao Shi
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, People's Republic of China
| |
Collapse
|
170
|
Contribution of Gut Microbiota to Immune Tolerance in Infants. J Immunol Res 2022; 2021:7823316. [PMID: 34993254 PMCID: PMC8727111 DOI: 10.1155/2021/7823316] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
The prevalence of food allergy has increased in recent years, especially among the pediatric population. Differences in the gut microbiota composition between children with FA and healthy children have brought this topic into the spotlight as a possible explanation for the increase in FA. The gut microbiota characteristics are acquired through environmental interactions starting early in life, such as type of delivery during birth and breastfeeding. The microbiota features may be shaped by a plethora of immunomodulatory mechanisms, including a predominant role of Tregs and the transcription factor FOXP3. Additionally, a pivotal role has been given to vitamin A and butyrate, the main anti-inflammatory metabolite. These observations have led to the study and development of therapies oriented to modifying the microbiota and metabolite profiles, such as the use of pre- and probiotics and the determination of their capacity to induce tolerance to allergens that are relevant to FA. To date, evidence supporting these approaches in humans is scarce and inconclusive. Larger cohorts and dose-titration studies are mandatory to evaluate whether the observed changes in gut microbiota composition reflect medical recovery and increased tolerance in pediatric patients with FA. In this article, we discuss the establishment of the microbiota, the immunological mechanisms that regulate the microbiota of children with food allergies, and the evidence in research focused on its regulation as a means to achieve tolerance to food allergens.
Collapse
|
171
|
Rastogi S, Mohanty S, Sharma S, Tripathi P. Possible role of gut microbes and host's immune response in gut-lung homeostasis. Front Immunol 2022; 13:954339. [PMID: 36275735 PMCID: PMC9581402 DOI: 10.3389/fimmu.2022.954339] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/07/2022] [Indexed: 02/05/2023] Open
Abstract
The vast diversity of microbial communities reside in various locations of the human body, and they are collectively named as the 'Human Microbiota.' The majority of those microbes are found in the gastrointestinal and respiratory tracts. The microorganisms present in the gastrointestinal and the respiratory tracts are called the gut microbiota and the airway microbiota, respectively. These microbial communities are known to affect both the metabolic functions and the immune responses of the host. Among multiple factors determining the composition of gut microbiota, diet has played a pivotal role. The gut microbes possess enzymatic machinery for assimilating dietary fibers and releasing different metabolites, primarily short-chain fatty acids (SCFAs). The SCFAs modulate the immune responses of not only the gut but other distal mucosal sites as well, such as the lungs. Dysbiosis in normal gut flora is one of the factors involved in the development of asthma and other respiratory disorders. Of note, several human and murine studies have indicated significant cross-talk between gut microbiota and lung immunity, known as the gut-lung axis. Here, in this review, we summarize the recent state of the field concerning the effect of dietary metabolites, particularly SCFAs, on the "gut-lung axis" as well as discuss its impact on lung health. Moreover, we have highlighted the role of the "gut-lung axis" in SARS-CoV-2 mediated inflammation. Also, to analyze the global research progress on the gut-lung axis and to identify the knowledge gap in this field, we have also utilized the bibliographic tools Dimension database and VOS viewer analysis software. Through network mapping and visualization analysis, we can predict the present research trend and the possibility to explore new directions.
Collapse
Affiliation(s)
- Sonakshi Rastogi
- Food Drug and Chemical Toxicology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Sneha Mohanty
- Food Drug and Chemical Toxicology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Sapna Sharma
- Institute of Biosciences and Biotechnology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India
- *Correspondence: Prabhanshu Tripathi, ; Sapna Sharma,
| | - Prabhanshu Tripathi
- Food Drug and Chemical Toxicology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
- *Correspondence: Prabhanshu Tripathi, ; Sapna Sharma,
| |
Collapse
|
172
|
Venter C, Palumbo MP, Glueck DH, Sauder KA, O'Mahony L, Fleischer DM, Ben‐Abdallah M, Ringham BM, Dabelea D. The maternal diet index in pregnancy is associated with offspring allergic diseases: the Healthy Start study. Allergy 2022; 77:162-172. [PMID: 34018205 DOI: 10.1111/all.14949] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/15/2021] [Accepted: 05/03/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND A systematic review showed limited associations between pregnancy diet and offspring allergy. We developed a maternal diet index during pregnancy that was associated with offspring allergy outcomes. METHODS Data came from Healthy Start, a Colorado pre-birth cohort of mother/offspring dyads. Food propensity questionnaires were completed during pregnancy. Offspring allergic rhinitis, atopic dermatitis, asthma, wheeze, and food allergy diagnosis up to age four were verified from electronic medical records. Data were randomized into test and replication sets. The index included the weighted combination of variables that best predicted a combined outcome of any allergy in the test set. Index utility was verified in the replication set. Separate adjusted and unadjusted logistic models estimated associations between the index and each offspring allergy diagnosis in the full sample. RESULTS The index included weighted measures of intake of vegetables, yogurt, fried potatoes, rice/grains, red meats, pure fruit juice, and cold cereals. Vegetables and yogurt were associated with the prevention of any allergy, while other components were associated with increased disease. In adjusted models, a one-unit increase in the index was significantly associated with reduced odds of offspring allergic rhinitis (odds ratio (CI) 0.82 [0.72-0.94]), atopic dermatitis (0.77 [0.69-0.86]), asthma (0.84 [0.74-0.96]), and wheeze (0.80 [0.71-0.90]), but not food allergy (0.84 [0.66-1.08]). CONCLUSIONS This is the first study that has shown associations between an index of maternal dietary intake during pregnancy and multiple offspring allergic diseases. The results give hope for prevention of allergic diseases in utero.
Collapse
Affiliation(s)
- Carina Venter
- Section of Allergy & Immunology Department of Pediatrics Children's Hospital Colorado University of Colorado School of Medicine Aurora Colorado USA
- Children's Hospital Colorado Aurora CO USA
| | - Michaela P. Palumbo
- Lifecourse Epidemiology of Adiposity and Diabetes Center University of Colorado Anschutz Medical Campus University of Colorado Denver Aurora Colorado USA
| | - Deborah H. Glueck
- Lifecourse Epidemiology of Adiposity and Diabetes Center University of Colorado Anschutz Medical Campus University of Colorado Denver Aurora Colorado USA
- Department of Pediatrics University of Colorado School of Medicine University of Colorado Denver Aurora Colorado USA
| | - Katherine A. Sauder
- Lifecourse Epidemiology of Adiposity and Diabetes Center University of Colorado Anschutz Medical Campus University of Colorado Denver Aurora Colorado USA
- Department of Pediatrics University of Colorado School of Medicine University of Colorado Denver Aurora Colorado USA
| | - Liam O'Mahony
- Departments of Medicine and Microbiology APC Microbiome Ireland University College Cork Cork Ireland
| | - David M. Fleischer
- Section of Allergy & Immunology Department of Pediatrics Children's Hospital Colorado University of Colorado School of Medicine Aurora Colorado USA
- Children's Hospital Colorado Aurora CO USA
| | - Miriam Ben‐Abdallah
- Department of Pediatrics University of Colorado School of Medicine University of Colorado Denver Aurora Colorado USA
| | - Brandy M. Ringham
- Lifecourse Epidemiology of Adiposity and Diabetes Center University of Colorado Anschutz Medical Campus University of Colorado Denver Aurora Colorado USA
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes Center University of Colorado Anschutz Medical Campus University of Colorado Denver Aurora Colorado USA
- Department of Pediatrics University of Colorado School of Medicine University of Colorado Denver Aurora Colorado USA
- Department of Epidemiology Colorado School of Public Health University of Colorado Denver Aurora Colorado USA
| |
Collapse
|
173
|
Lee MJ, Park YM, Kim B, Tae IH, Kim NE, Pranata M, Kim T, Won S, Kang NJ, Lee YK, Lee DW, Nam MH, Hong SJ, Kim BS. Disordered development of gut microbiome interferes with the establishment of the gut ecosystem during early childhood with atopic dermatitis. Gut Microbes 2022; 14:2068366. [PMID: 35485368 PMCID: PMC9067516 DOI: 10.1080/19490976.2022.2068366] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
The gut microbiome influences the development of allergic diseases during early childhood. However, there is a lack of comprehensive understanding of microbiome-host crosstalk. Here, we analyzed the influence of gut microbiome dynamics in early childhood on atopic dermatitis (AD) and the potential interactions between host and microbiome that control this homeostasis. We analyzed the gut microbiome in 346 fecal samples (6-36 months; 112 non-AD, 110 mild AD, and 124 moderate to severe AD) from the Longitudinal Cohort for Childhood Origin of Asthma and Allergic Disease birth cohort. The microbiome-host interactions were analyzed in animal and in vitro cell assays. Although the gut microbiome maturated with age in both AD and non-AD groups, its development was disordered in the AD group. Disordered colonization of short-chain fatty acids (SCFA) producers along with age led to abnormal SCFA production and increased IgE levels. A butyrate deficiency and downregulation of GPR109A and PPAR-γ genes were detected in AD-induced mice. Insufficient butyrate decreases the oxygen consumption rate of host cells, which can release oxygen to the gut and perturb the gut microbiome. The disordered gut microbiome development could aggravate balanced microbiome-host interactions, including immune responses during early childhood with AD.
Collapse
Affiliation(s)
- Min-Jung Lee
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
| | - Yoon Mee Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Byunghyun Kim
- Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - in Hwan Tae
- Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Nam-Eun Kim
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Marina Pranata
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bioscience, Soonchunhyang University, Cheonan, Republic of Korea
| | - Taewon Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Sungho Won
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Nam Joo Kang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu, Republic of Korea
| | - Yun Kyung Lee
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bioscience, Soonchunhyang University, Cheonan, Republic of Korea
| | - Dong-Woo Lee
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Myung Hee Nam
- Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Soo-Jong Hong
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Bong-Soo Kim
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
- The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
174
|
Xing Y, Wong GWK. Environmental Influences and Allergic Diseases in the Asia-Pacific Region: What Will Happen in Next 30 Years? ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:21-39. [PMID: 34983105 PMCID: PMC8724831 DOI: 10.4168/aair.2022.14.1.21] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/14/2021] [Indexed: 12/22/2022]
Abstract
Asia-Pacific is a populous region with remarkable variations in socioeconomic development and environmental exposure among countries. The prevalence rates of asthma and allergic rhinitis appear to have recently reached a plateau in Western countries, whereas they are still increasing in many Asian countries. Given the large population in Asia, even a slight increase in the prevalence rate will translate into an overwhelming number of patients. To reduce the magnitude of the increase in allergic diseases in next few decades in Asia, we must understand the potential factors leading to the occurrence of these disorders and the development of potential preventive strategies. The etiology of allergic disorders is likely due to complex interactions among genetic, epigenetic, and environmental factors for the manifestations of inappropriate immune responses. As urbanization and industrialization inevitably progress in Asia, there is an urgent need to curtail the upcoming waves of the allergy epidemic. Potentially modifiable risk exposure, such as air pollution, should be minimized through timely implementation of effective legislations. Meanwhile, re-introduction of protective factors that were once part of the traditional farming lifestyle might give new insight into primary prevention of allergy.
Collapse
Affiliation(s)
- Yuhan Xing
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Gary Wing-Kin Wong
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
175
|
Trujillo J, Lunjani N, Ryan D, O'Mahony L. Microbiome-immune interactions and relationship to asthma severity. J Allergy Clin Immunol 2021; 149:533-534. [PMID: 34953788 DOI: 10.1016/j.jaci.2021.12.774] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/24/2021] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
Affiliation(s)
- Juan Trujillo
- Cork University Hospital, Irish Centre for Maternal and Child Health Research (INFANT), HRB Clinical Research Facility Cork (CRF-C), Cork, Ireland
| | - Nonhlanhla Lunjani
- APC Microbiome Ireland, University College Cork, Cork, Ireland;; Department of Dermatology, University of Cape Town, South Africa
| | - Dermot Ryan
- Asthma UK Centre for Applied Research (AUKCAR), Usher Institute, University of Edinburgh, Scotland
| | - Liam O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland;; Department of Medicine, University College Cork, Cork, Ireland;; School of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
176
|
Xu B, Ling S, Xu X, Liu X, Wang A, Zhou Y, Luo Y, Li W, Yao X. A New Formulation of Probiotics Attenuates Calcipotriol-Induced Dermatitis by Inducing Regulatory Dendritic Cells. Front Immunol 2021; 12:775018. [PMID: 34868040 PMCID: PMC8634942 DOI: 10.3389/fimmu.2021.775018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Atopic dermatitis (AD) is a recurrent chronic inflammatory skin disease affecting up to 30% of the children population, and immuno-regulatory therapy that could modify the course of disease is urgently needed. Probiotics have demonstrated therapeutic effects on AD and could potentially regulate the disease process. However, the efficacy of probiotics for AD is inconsistent among different studies, which is mainly due to the elusive mechanism and different species and (or) strains used. In this study, we designed a mixture of five strains of probiotics (named IW5) and analyzed the effect and mechanism of IW5 on calcipotriol (MC903)-induced AD-like dermatitis. We found that IW5 significantly alleviated skin inflammation of the MC903-induced AD in mice. Administration with IW5 induced increased production of regulatory T cells and regulatory dendritic cells (DCregs) in the mesenteric lymph nodes. We also found that the diversity of the gut microbiota in the mice with MC903-induced dermatitis was increased after IW5 administration, and the level of butyrate in the gut was elevated. In cell culture, butyrate induced the production of DCregs. Our study revealed the therapeutic effects of a newly designed probiotics mixture and uncovered a possible mechanism, providing a foundation for future clinical studies.
Collapse
Affiliation(s)
- Beilei Xu
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Shiqi Ling
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xiaoqiang Xu
- Department of Bioinformatics, 01life Institute, Shenzhen, China
| | - Xiaochun Liu
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Ao Wang
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yuan Zhou
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yang Luo
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Wei Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xu Yao
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| |
Collapse
|
177
|
Logotheti M, Agioutantis P, Katsaounou P, Loutrari H. Microbiome Research and Multi-Omics Integration for Personalized Medicine in Asthma. J Pers Med 2021; 11:jpm11121299. [PMID: 34945771 PMCID: PMC8707330 DOI: 10.3390/jpm11121299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/13/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Asthma is a multifactorial inflammatory disorder of the respiratory system characterized by high diversity in clinical manifestations, underlying pathological mechanisms and response to treatment. It is generally established that human microbiota plays an essential role in shaping a healthy immune response, while its perturbation can cause chronic inflammation related to a wide range of diseases, including asthma. Systems biology approaches encompassing microbiome analysis can offer valuable platforms towards a global understanding of asthma complexity and improving patients' classification, status monitoring and therapeutic choices. In the present review, we summarize recent studies exploring the contribution of microbiota dysbiosis to asthma pathogenesis and heterogeneity in the context of asthma phenotypes-endotypes and administered medication. We subsequently focus on emerging efforts to gain deeper insights into microbiota-host interactions driving asthma complexity by integrating microbiome and host multi-omics data. One of the most prominent achievements of these research efforts is the association of refractory neutrophilic asthma with certain microbial signatures, including predominant pathogenic bacterial taxa (such as Proteobacteria phyla, Gammaproteobacteria class, especially species from Haemophilus and Moraxella genera). Overall, despite existing challenges, large-scale multi-omics endeavors may provide promising biomarkers and therapeutic targets for future development of novel microbe-based personalized strategies for diagnosis, prevention and/or treatment of uncontrollable asthma.
Collapse
Affiliation(s)
- Marianthi Logotheti
- G.P. Livanos and M. Simou Laboratories, 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, Medical School, National Kapodistrian University of Athens, 3 Ploutarchou Str., 10675 Athens, Greece; (M.L.); (P.A.)
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Panagiotis Agioutantis
- G.P. Livanos and M. Simou Laboratories, 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, Medical School, National Kapodistrian University of Athens, 3 Ploutarchou Str., 10675 Athens, Greece; (M.L.); (P.A.)
| | - Paraskevi Katsaounou
- Pulmonary Dept First ICU, Evangelismos Hospital, Medical School, National Kapodistrian University of Athens, Ipsilantou 45-7, 10675 Athens, Greece;
| | - Heleni Loutrari
- G.P. Livanos and M. Simou Laboratories, 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, Medical School, National Kapodistrian University of Athens, 3 Ploutarchou Str., 10675 Athens, Greece; (M.L.); (P.A.)
- Correspondence:
| |
Collapse
|
178
|
Allergic diseases in infancy: I - Epidemiology and current interpretation. World Allergy Organ J 2021; 14:100591. [PMID: 34820047 PMCID: PMC8593659 DOI: 10.1016/j.waojou.2021.100591] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
Objective Among non-communicable diseases, the prevalence of allergic diseases has increased significantly in the new millennium. The increase of allergic diseases is linked to the changing environment of infants. Methods This narrative review summarizes the discussions and conclusions from the 8th Human Milk Workshop. Information from the fields of pediatrics, epidemiology, biology, microbiology, and immunology are summarized to establish a framework describing potential avenues for the prevention of allergic diseases in the future. Results Several environmental circumstances are linked to the development of allergic diseases. While cesarean section is increasing the risk of allergies, early childhood exposure to a farm environment has a protective effect. From their analysis, nutritive and non-nutritive factors influencing the allergy risk in later life have been identified. The effect of breastfeeding on food allergy development is non-univocal. Human milk components including immunoglobulins, cytokines, and prebiotics have been indicated as important for allergy prevention. Conclusion Many factors linked to the western lifestyle have been associated with the development of allergic diseases. This suggests several theories that may serve as a basis for new protective interventions. While it is indubitable that mother's milk protects from infectious diseases, its role in the prevention of allergic diseases is to be elucidated.
Collapse
|
179
|
Tramper‐Stranders G, Ambrożej D, Arcolaci A, Atanaskovic‐Markovic M, Boccabella C, Bonini M, Karavelia A, Mingomataj E, O' Mahony L, Sokolowska M, Untersmayr E, Feleszko W. Dangerous liaisons: Bacteria, antimicrobial therapies, and allergic diseases. Allergy 2021; 76:3276-3291. [PMID: 34390006 DOI: 10.1111/all.15046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/31/2021] [Indexed: 12/15/2022]
Abstract
Microbiota composition and associated metabolic activities are essential for the education and development of a healthy immune system. Microbial dysbiosis, caused by risk factors such as diet, birth mode, or early infant antimicrobial therapy, is associated with the inception of allergic diseases. In turn, allergic diseases increase the risk for irrational use of antimicrobial therapy. Microbial therapies, such as probiotics, have been studied in the prevention and treatment of allergic diseases, but evidence remains limited due to studies with high heterogeneity, strain-dependent effectiveness, and variable outcome measures. In this review, we sketch the relation of microbiota with allergic diseases, the overuse and rationale for the use of antimicrobial agents in allergic diseases, and current knowledge concerning the use of bacterial products in allergic diseases. We urgently recommend 1) limiting antibiotic therapy in pregnancy and early childhood as a method contributing to the reduction of the allergy epidemic in children and 2) restricting antibiotic therapy in exacerbations and chronic treatment of allergic diseases, mainly concerning asthma and atopic dermatitis. Future research should be aimed at antibiotic stewardship implementation strategies and biomarker-guided therapy, discerning those patients that might benefit from antibiotic therapy.
Collapse
Affiliation(s)
- Gerdien Tramper‐Stranders
- Department of Pediatrics Franciscus Gasthuis & Vlietland Rotterdam the Netherlands
- Department of Neonatology Erasmus Medical CenterSophia Children's Hospital Rotterdam the Netherlands
| | - Dominika Ambrożej
- Department of Pediatric Pneumonology and Allergy Medical University of Warsaw Warsaw Poland
- Doctoral School Medical University of Warsaw Warsaw Poland
| | - Alessandra Arcolaci
- Immunology Unit University of Verona and General Hospital Borgo Roma Hospital Verona Italy
| | | | - Cristina Boccabella
- Department of Cardiovascular and Thoracic Sciences Università Cattolica del Sacro CuoreFondazione Policlinico Universitario A. Gemelli – IRCCS Rome Italy
| | - Matteo Bonini
- Department of Cardiovascular and Thoracic Sciences Università Cattolica del Sacro CuoreFondazione Policlinico Universitario A. Gemelli – IRCCS Rome Italy
- National Heart and Lung Institute (NHLI) Imperial College London London UK
| | - Aspasia Karavelia
- Department of Ear‐Nose‐Throat surgery General Hospital of Kozani Kozani Greece
| | - Ervin Mingomataj
- Department of Allergology & Clinical Immunology ‘Mother Theresa’ School of Medicine Tirana Albania
| | - Liam O' Mahony
- Departments of Medicine and Microbiology APC Microbiome IrelandNational University of Ireland Cork Ireland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Zurich Switzerland
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Wojciech Feleszko
- Department of Pediatric Pneumonology and Allergy Medical University of Warsaw Warsaw Poland
| | | |
Collapse
|
180
|
Suaini NHA, Siah KTH, Tham EH. Role of the gut-skin axis in IgE-mediated food allergy and atopic diseases. Curr Opin Gastroenterol 2021; 37:557-564. [PMID: 34411036 DOI: 10.1097/mog.0000000000000780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW In recent years, landmark clinical trials investigating the role of early oral exposure to food antigens for food allergy (FA) prevention have highlighted the importance of immunoregulatory pathways in the 'gut-skin axis'. This review highlights recent literature on the mechanisms of the immune system and microbiome involved in the gut-skin axis, contributing to the development of atopic dermatitis (AD), FA, allergic rhinitis (AR) and asthma. Therapeutic interventions harnessing the gut-skin axis are also discussed. RECENT FINDINGS Epicutaneous sensitization in the presence of AD is capable of inducing Th2 allergic inflammation in the intestinal tract and lower respiratory airways, predisposing one to the development of AR and asthma. Probiotics have demonstrated positive effects in preventing and treating AD, though there is no evident relationship of its beneficial effects on other allergic diseases. Prophylactic skin emollients use has not shown consistent protection against AD, whereas there is some evidence for the role of dietary changes in alleviating AD and airway inflammation. More randomized controlled trials are needed to clarify the potential of epicutaneous immunotherapy as a therapeutic strategy for patients with FA. SUMMARY The growing understanding of the gut-skin interactions on allergic disease pathogenesis presents novel avenues for therapeutic interventions which target modulation of the gut and/or skin.
Collapse
Affiliation(s)
| | - Kewin Tien Ho Siah
- Division of Gastroenterology & Hepatology, University Medicine Cluster, National University Hospital
- Department of Medicine, Yong Loo Lin School of Medicine
| | - Elizabeth Huiwen Tham
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A STAR)
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore (NUS)
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System (NUHS)
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
181
|
de Waal P, Murray S, Lennard K, Korsman J, Levin M. Bacterial microbiota composition of fresh unpasteurized cow's milk and home-made and commercially available fermented milk products. Pediatr Allergy Immunol 2021; 32:1879-1882. [PMID: 34314532 DOI: 10.1111/pai.13607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Pieter de Waal
- Division of Allergology, Department of Paediatrics, University of Cape Town, Rondebosch, South Africa
| | - Shane Murray
- Centre of Proteomic and Genomic Research, Cape Town, South Africa
| | - Katie Lennard
- Department of Biostatistics, University of Cape Town, Observatory, South Africa
| | - Jeanne Korsman
- Centre of Proteomic and Genomic Research, Cape Town, South Africa
| | - Michael Levin
- Division of Allergology, Department of Paediatrics, University of Cape Town, Rondebosch, South Africa.,InVIVO planetary health research group of the Worldwide Universities Network, South Africa
| |
Collapse
|
182
|
Zhang Y, Lan F, Zhang L. Advances and highlights in allergic rhinitis. Allergy 2021; 76:3383-3389. [PMID: 34379805 DOI: 10.1111/all.15044] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/01/2021] [Accepted: 08/09/2021] [Indexed: 12/20/2022]
Abstract
Allergic rhinitis (AR) is a growing public health, medical and economic problem worldwide. The current review describes the major discoveries related to AR during the past 2 years, including risk factors for the prevalence of AR, the corresponding diagnostic strategy, precise underlying immunological mechanisms, and efficient therapies for AR during the ongoing global "coronavirus disease 2019" (COVID-19) pandemic. The review further attempts to highlight future research perspectives. Increasing evidence suggests that environmental exposures, climate changes, and lifestyle are important risk factors for AR. Consequently, detailed investigation of the exposome and the connection between environmental exposures and health in the future should provide better risk profiles instead of single predictors, and also help mitigate adverse health outcomes in allergic diseases. Although patients with dual AR, a newly defined AR phenotype, display perennial and seasonal allergens-related nasal symptoms, they are only allergic to seasonal allergens, indicating the importance of measuring inflammation at the local sites. Herein, we suggest that a combination of precise diagnosis in local sites and traditional diagnostic methods may enhance the precision medicine-based approach for management of AR; however, this awaits further investigations. Apart from traditional treatments, social distancing, washing hands, and disinfection are also required to better manage AR patients in the ongoing global COVID-19 pandemic. Despite recent advances in understanding the immune mechanisms underlying the effects of allergen immunotherapy (AIT), further understanding changes of cell profiles after AIT and accurately evaluate the efficacy of AIT are required.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Allergy Beijing TongRen HospitalCapital Medical University Beijing China
- Beijing Key Laboratory of Nasal Diseases Beijing Institute of Otolaryngology Beijing China
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen HospitalCapital Medical University Beijing China
| | - Feng Lan
- Beijing Key Laboratory of Nasal Diseases Beijing Institute of Otolaryngology Beijing China
| | - Luo Zhang
- Department of Allergy Beijing TongRen HospitalCapital Medical University Beijing China
- Beijing Key Laboratory of Nasal Diseases Beijing Institute of Otolaryngology Beijing China
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen HospitalCapital Medical University Beijing China
| |
Collapse
|
183
|
Adjunctive Probiotics Alleviates Asthmatic Symptoms via Modulating the Gut Microbiome and Serum Metabolome. Microbiol Spectr 2021; 9:e0085921. [PMID: 34612663 PMCID: PMC8510161 DOI: 10.1128/spectrum.00859-21] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Asthma is a multifactorial disorder, and microbial dysbiosis enhances lung inflammation and asthma-related symptoms. Probiotics have shown anti-inflammatory effects and could regulate the gut-lung axis. Thus, a 3-month randomized, double-blind, and placebo-controlled human trial was performed to investigate the adjunctive efficacy of probiotics in managing asthma. Fifty-five asthmatic patients were randomly assigned to a probiotic group (n = 29; received Bifidobacterium lactis Probio-M8 powder and Symbicort Turbuhaler) and a placebo group (n = 26; received placebo and Symbicort Turbuhaler), and all 55 subjects provided details of their clinical history and demographic data. However, only 31 patients donated a complete set of fecal and blood samples at all three time points for further analysis. Compared with those of the placebo group, co-administering Probio-M8 with Symbicort Turbuhaler significantly decreased the fractional exhaled nitric oxide level at day 30 (P = 0.049) and improved the asthma control test score at the end of the intervention (P = 0.023). More importantly, the level of alveolar nitric oxide concentration decreased significantly among the probiotic receivers at day 30 (P = 0.038), and the symptom relief effect was even more obvious at day 90 (P = 0.001). Probiotic co-administration increased the resilience of the gut microbiome, which was reflected by only minor fluctuations in the gut microbiome diversity (P > 0.05, probiotic receivers; P < 0.05, placebo receivers). Additionally, the probiotic receivers showed significantly changes in some species-level genome bins (SGBs), namely, increases in potentially beneficial species Bifidobacterium animalis, Bifidobacterium longum, and Prevotella sp. CAG and decreases in Parabacteroides distasonis and Clostridiales bacterium (P < 0.05). Compared with that of the placebo group, the gut metabolic potential of probiotic receivers exhibited increased levels of predicted microbial bioactive metabolites (linoleoyl ethanolamide, adrenergic acid, erythronic acid) and serum metabolites (5-dodecenoic acid, tryptophan, sphingomyelin) during/after intervention. Collectively, our results suggested that co-administering Probio-M8 synergized with conventional therapy to alleviate diseases associated with the gut-lung axis, like asthma, possibly via activating multiple anti-inflammatory pathways. IMPORTANCE The human gut microbiota has a potential effect on the pathogenesis of asthma and is closely related to the disease phenotype. Our trial has demonstrated that co-administering Probio-M8 synergized with conventional therapy to alleviate asthma symptoms. The findings of the present study provide new insights into the pathogenesis and treatment of asthma, mechanisms of novel therapeutic strategies, and application of probiotics-based therapy.
Collapse
|
184
|
Pijnenburg MW, Frey U, De Jongste JC, Saglani S. Childhood asthma- pathogenesis and phenotypes. Eur Respir J 2021; 59:13993003.00731-2021. [PMID: 34711541 DOI: 10.1183/13993003.00731-2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 10/15/2021] [Indexed: 11/05/2022]
Abstract
In the pathogenesis of asthma in children there is a pivotal role for a type 2 inflammatory response to early life exposures or events. Interactions between infections, atopy, genetic susceptibility, and environmental exposures (such as farmyard environment, air pollution, tobacco smoke exposure) influence the development of wheezing illness and the risk for progression to asthma. The immune system, lung function and the microbiome in gut and airways develop in parallel and dysbiosis of the microbiome may be a critical factor in asthma development. Increased infant weight gain and preterm birth are other risk factors for development of asthma and reduced lung function. The complex interplay between these factors explains the heterogeneity of asthma in children. Subgroups of patients can be identified as phenotypes based on clinical parameters, or endotypes, based on a specific pathophysiological mechanism. Paediatric asthma phenotypes and endotypes may ultimately help to improve diagnosis of asthma, prediction of asthma development and treatment of individual children, based on clinical, temporal, developmental or inflammatory characteristics. Unbiased, data-driven clustering, using a multidimensional or systems biology approach may be needed to better define phenotypes. The present knowledge on inflammatory phenotypes of childhood asthma has now been successfully applied in the treatment with biologicals of children with severe therapy resistant asthma, and it is to be expected that more personalized treatment options may become available.
Collapse
Affiliation(s)
- Mariëlle W Pijnenburg
- Department of Paediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Urs Frey
- University Children's Hospital Basel (UKBB), Basel, Switzerland
| | - Johan C De Jongste
- Department of Paediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Sejal Saglani
- National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
185
|
Abstract
The neonatal body provides a range of potential habitats, such as the gut, for microbes. These sites eventually harbor microbial communities (microbiotas). A "complete" (adult) gut microbiota is not acquired by the neonate immediately after birth. Rather, the exclusive, milk-based nutrition of the infant encourages the assemblage of a gut microbiota of low diversity, usually dominated by bifidobacterial species. The maternal fecal microbiota is an important source of bacterial species that colonize the gut of infants, at least in the short-term. However, development of the microbiota is influenced by the use of human milk (breast feeding), infant formula, preterm delivery of infants, caesarean delivery, antibiotic administration, family details and other environmental factors. Following the introduction of weaning (complementary) foods, the gut microbiota develops in complexity due to the availability of a diversity of plant glycans in fruits and vegetables. These glycans provide growth substrates for the bacterial families (such as members of the Ruminococcaceae and Lachnospiraceae) that, in due course, will dominate the gut microbiota of the adult. Although current data are often fragmentary and observational, it can be concluded that the nutrition that a child receives in early life is likely to impinge not only on the development of the microbiota at that time but also on the subsequent lifelong, functional relationships between the microbiota and the human host. The purpose of this review, therefore, is to discuss the importance of promoting the assemblage of functionally robust gut microbiotas at appropriate times in early life.
Collapse
Affiliation(s)
- Gerald W. Tannock
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
186
|
Fiocchi A, Knol J, Koletzko S, O’Mahony L, Papadopoulos NG, Salminen S, Szajewska H, Nowak-Węgrzyn A. Early-Life Respiratory Infections in Infants with Cow's Milk Allergy: An Expert Opinion on the Available Evidence and Recommendations for Future Research. Nutrients 2021; 13:nu13113795. [PMID: 34836050 PMCID: PMC8621023 DOI: 10.3390/nu13113795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
Acute respiratory infections are a common cause of morbidity in infants and young children. This high rate of respiratory infections in early life has a major impact on healthcare resources and antibiotic use, with the associated risk of increasing antibiotic resistance, changes in intestinal microbiota composition and activity and, consequently, on the future health of children. An international group of clinicians and researchers working in infant nutrition and cow's milk allergy (CMA) met to review the available evidence on the prevalence of infections in healthy infants and in those with allergies, particularly CMA; the factors that influence susceptibility to infection in early life; links between infant feeding, CMA and infection risk; and potential strategies to modulate the gut microbiota and infection outcomes. The increased susceptibility of infants with CMA to infections, and the reported potential benefits with prebiotics, probiotics and synbiotics with regard to improving infection outcomes and reducing antibiotic usage in infants with CMA, makes this a clinically important issue that merits further research.
Collapse
Affiliation(s)
- Alessandro Fiocchi
- Translational Research in Pediatric Specialities Area, Division of Allergy, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy;
| | - Jan Knol
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands;
- The Laboratory of Microbiology, Wageningen University, 6700 HB Wageningen, The Netherlands
| | - Sibylle Koletzko
- Dr von Hauner Kinderspital, University Hospital, LMU Klinikum, 80337 Munich, Germany;
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Liam O’Mahony
- Department of Medicine, School of Microbiology, APC Microbiome Ireland National University of Ireland, T12 K8AF Cork, Ireland;
| | - Nikolaos G. Papadopoulos
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9WL, UK;
- Allergy Department, 2nd Pediatric Clinic, University of Athens, 11527 Athens, Greece
| | - Seppo Salminen
- Functional Foods Forum, Faculty of Medicine, University of Turku, 20014 Turku, Finland;
| | - Hania Szajewska
- Department of Paediatrics, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Anna Nowak-Węgrzyn
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, 10-719 Olsztyn, Poland
- Department of Pediatrics, NYU Grossman School of Medicine, Hassenfeld Children’s Hospital, New York, NY 10016, USA
- Correspondence:
| |
Collapse
|
187
|
van Daal MT, Folkerts G, Garssen J, Braber S. Pharmacological Modulation of Immune Responses by Nutritional Components. Pharmacol Rev 2021; 73:198-232. [PMID: 34663688 DOI: 10.1124/pharmrev.120.000063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The incidence of noncommunicable diseases (NCDs) has increased over the last few decades, and one of the major contributors to this is lifestyle, especially diet. High intake of saturated fatty acids and low intake of dietary fiber is linked to an increase in NCDs. Conversely, a low intake of saturated fatty acids and a high intake of dietary fiber seem to have a protective effect on general health. Several mechanisms have been identified that underlie this phenomenon. In this review, we focus on pharmacological receptors, including the aryl hydrocarbon receptor, binding partners of the retinoid X receptor, G-coupled protein receptors, and toll-like receptors, which can be activated by nutritional components and their metabolites. Depending on the nutritional component and the receptors involved, both proinflammatory and anti-inflammatory effects occur, leading to an altered immune response. These insights may provide opportunities for the prevention and treatment of NCDs and their inherent (sub)chronic inflammation. SIGNIFICANCE STATEMENT: This review summarizes the reported effects of nutritional components and their metabolites on the immune system through manipulation of specific (pharmacological) receptors, including the aryl hydrocarbon receptor, binding partners of the retinoid X receptor, G-coupled protein receptors, and toll-like receptors. Nutritional components, such as vitamins, fibers, and unsaturated fatty acids are able to resolve inflammation, whereas saturated fatty acids tend to exhibit proinflammatory effects. This may aid decision makers and scientists in developing strategies to decrease the incidence of noncommunicable diseases.
Collapse
Affiliation(s)
- Marthe T van Daal
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG, Utrecht, The Netherlands (M.T.v.D., G.F., J.G., S.B.); and Danone Nutricia Research, 3584 CT, Utrecht, The Netherlands (J.G.)
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG, Utrecht, The Netherlands (M.T.v.D., G.F., J.G., S.B.); and Danone Nutricia Research, 3584 CT, Utrecht, The Netherlands (J.G.)
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG, Utrecht, The Netherlands (M.T.v.D., G.F., J.G., S.B.); and Danone Nutricia Research, 3584 CT, Utrecht, The Netherlands (J.G.)
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG, Utrecht, The Netherlands (M.T.v.D., G.F., J.G., S.B.); and Danone Nutricia Research, 3584 CT, Utrecht, The Netherlands (J.G.)
| |
Collapse
|
188
|
De Paepe E, Van Gijseghem L, De Spiegeleer M, Cox E, Vanhaecke L. A Systematic Review of Metabolic Alterations Underlying IgE-Mediated Food Allergy in Children. Mol Nutr Food Res 2021; 65:e2100536. [PMID: 34648231 DOI: 10.1002/mnfr.202100536] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/10/2021] [Indexed: 12/24/2022]
Abstract
SCOPE Immunoglobulin E-mediated food allergies (IgE-FA) are characterized by an ever-increasing prevalence, currently reaching up to 10.4% of children in the European Union. Metabolomics has the potential to provide a deeper understanding of the pathogenic mechanisms behind IgE-FA. METHODS AND RESULTS In this work, literature is systematically searched using Web of Science, PubMed, Scopus, and Embase, from January 2010 until May 2021, including human and animal metabolomic studies on multiple biofluids (urine, blood, feces). In total, 15 studies on IgE-FA are retained and a dataset of 277 potential biomarkers is compiled for in-depth pathway mapping. Decreased indoleamine 2,3-dioxygenase-1 (IDO- 1) activity is hypothesized due to altered plasma levels of tryptophan and its metabolites in IgE-FA children. In feces of children prior to IgE-FA, aberrant metabolization of sphingolipids and histidine is noted. Decreased fecal levels of (branched) short chain fatty acids ((B)SCFAs) compel a shift towards aerobic glycolysis and suggest dysbiosis, associated with an immune system shift towards T-helper 2 (Th2) responses. During animal anaphylaxis, a similar switch towards glycolysis is observed, combined with increased ketogenic pathways. Additionally, altered histidine, purine, pyrimidine, and lipid pathways are observed. CONCLUSION To conclude, this work confirms the unprecedented opportunities of metabolomics and supports the in-depth pathophysiological qualification in the quest towards improved diagnostic and prognostic biomarkers for IgE-FA.
Collapse
Affiliation(s)
- Ellen De Paepe
- Department of Translational Physiology, Infectiology and Public Health, Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Lynn Van Gijseghem
- Department of Translational Physiology, Infectiology and Public Health, Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Margot De Spiegeleer
- Department of Translational Physiology, Infectiology and Public Health, Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Eric Cox
- Department of Translational Physiology, Infectiology and Public Health, Laboratory of Immunology, Ghent University, Ghent, Belgium
| | - Lynn Vanhaecke
- Department of Translational Physiology, Infectiology and Public Health, Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium.,Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, Belfast, UK
| |
Collapse
|
189
|
Sdona E, Georgakou AV, Ekström S, Bergström A. Dietary Fibre Intake in Relation to Asthma, Rhinitis and Lung Function Impairment-A Systematic Review of Observational Studies. Nutrients 2021; 13:nu13103594. [PMID: 34684594 PMCID: PMC8539618 DOI: 10.3390/nu13103594] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022] Open
Abstract
A high intake of dietary fibre has been associated with a reduced risk of several chronic diseases. This study aimed to review the current evidence on dietary fibre in relation to asthma, rhinitis and lung function impairment. Electronic databases were searched in June 2021 for studies on the association between dietary fibre and asthma, rhinitis, chronic obstructive pulmonary disease (COPD) and lung function. Observational studies with cross-sectional, case–control or prospective designs were included. Studies on animals, case studies and intervention studies were excluded. The quality of the evidence from individual studies was evaluated using the RoB-NObs tool. The World Cancer Research Fund criteria were used to grade the strength of the evidence. Twenty studies were included in this systematic review, of which ten were cohort studies, eight cross-sectional and two case–control studies. Fibre intake during pregnancy or childhood was examined in three studies, while seventeen studies examined the intake during adulthood. There was probable evidence for an inverse association between dietary fibre and COPD and suggestive evidence for a positive association with lung function. However, the evidence regarding asthma and rhinitis was limited and inconsistent. Further research is needed on dietary fibre intake and asthma, rhinitis and lung function among adults and children.
Collapse
Affiliation(s)
- Emmanouela Sdona
- Institute of Environmental Medicine, Karolinska Institute, 171 77 Stockholm, Sweden; (A.V.G.); (S.E.); (A.B.)
- Correspondence:
| | - Athina Vasiliki Georgakou
- Institute of Environmental Medicine, Karolinska Institute, 171 77 Stockholm, Sweden; (A.V.G.); (S.E.); (A.B.)
| | - Sandra Ekström
- Institute of Environmental Medicine, Karolinska Institute, 171 77 Stockholm, Sweden; (A.V.G.); (S.E.); (A.B.)
- Centre for Occupational and Environmental Medicine, Region Stockholm, 113 65 Stockholm, Sweden
| | - Anna Bergström
- Institute of Environmental Medicine, Karolinska Institute, 171 77 Stockholm, Sweden; (A.V.G.); (S.E.); (A.B.)
- Centre for Occupational and Environmental Medicine, Region Stockholm, 113 65 Stockholm, Sweden
| |
Collapse
|
190
|
Yuan X, Tang H, Wu R, Li X, Jiang H, Liu Z, Zhang Z. Short-Chain Fatty Acids Calibrate RARα Activity Regulating Food Sensitization. Front Immunol 2021; 12:737658. [PMID: 34721398 PMCID: PMC8551578 DOI: 10.3389/fimmu.2021.737658] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/20/2021] [Indexed: 01/01/2023] Open
Abstract
Gut-microbiota dysbiosis links to allergic diseases. The mechanism of the exacerbation of food allergy caused by gut-microbiota dysbiosis remains unknown. Regulation of retinoic acid receptor alpha (RARα) signaling is critical for gut immune homeostasis. Here we clarified that RARα in dendritic cells (DCs) promotes Th2 cell differentiation. Antibiotics treatment stimulates retinoic acid signaling in mucosal DCs. We found microbiota metabolites short-chain fatty acids (SCFAs) maintain IGF-1 levels in serum and mesenteric lymph nodes. The IGF-1/Akt pathway is essential for regulating the transcription of genes targeted by RARα. And RARα in DCs affects type I interferon (IFN-I) responses through regulating transcription of IFN-α. Our study identifies SCFAs crosstalk with RARα in dendritic cells as a critical modulator that plays a core role in promoting Th2 cells differentiation at a state of modified/disturbed microbiome.
Collapse
Affiliation(s)
- Xiefang Yuan
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hongmei Tang
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Renlan Wu
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xingjie Li
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, China
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Hongyu Jiang
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, China
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Zhigang Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen University School of Medicine, Shenzhen, China
| | - Zongde Zhang
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, China
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
191
|
Stampfli M, Frei R, Divaret-Chauveau A, Schmausser-Hechfellner E, Karvonen AM, Pekkanen J, Riedler J, Schaub B, von Mutius E, Lauener R, Roduit C. Inverse associations between food diversity in the second year of life and allergic diseases. Ann Allergy Asthma Immunol 2021; 128:39-45. [PMID: 34648974 DOI: 10.1016/j.anai.2021.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND The influence of diet in early childhood on later allergic diseases is currently a highly debated research topic. We and others have suggested that an increased diet diversity in the first year of life has a protective effect on the development of allergic diseases. OBJECTIVE This follow-up study aimed to investigate associations between diet in the second year of life and later allergic diseases. METHODS A total of 1014 children from rural areas in 5 European countries (the Protection against Allergy: Study in Rural Environments or PASTURE birth cohort) were included. Information on feeding practices in their second year of life and allergic diseases were collected up to age 6 years. Multivariate logistic regressions were performed with different models considering reverse causality, such as excluding children with a positive sensitization to egg and those with a positive sensitization to cow's milk at the age of 1 year. RESULTS An increased food diversity score during the second year of life was negatively associated with the development of asthma. Consumption of dairy products and eggs in the second year of life found an inverse association with reported allergic outcomes. Consumption of butter was strongly associated with protection against asthma and food sensitization. Egg was inversely associated with atopic dermatitis (odds ratio [OR], 0.17; 95% confidence interval [CI], 0.04-0.77). Yogurt and cow's milk were inversely associated with food allergy (OR for yogurt, 0.05; 95% CI, 0.01-0.55; OR for cow's milk, 0.31; 95% CI, 0.11-0.89). CONCLUSION Increased food diversity in the second year of life is inversely associated with the development of asthma, and consumption of dairy products might have a protective effect on allergic diseases.
Collapse
Affiliation(s)
- Martha Stampfli
- Department of Immunology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Remo Frei
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland; Division of Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Amandine Divaret-Chauveau
- Pediatric Allergy Department, University Hospital of Nancy, Nancy, France; EA3450 Développement Adaptation et Handicap (DevAH), University of Lorraine, Nancy, France; Unité de Mixte de Recherche (UMR) 6249 Chrono-environment, Centre National De La Recherche Scientifique (CNRS) and University of Franche-Comté, Besançon, France
| | - Elisabeth Schmausser-Hechfellner
- Helmholtz Zentrum München-German Research Center for Environmental Health, Institute for Asthma and Allergy Prevention, Neuherberg, Germany
| | - Anne M Karvonen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Juha Pekkanen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland; Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Josef Riedler
- Children's Hospital Schwarzach, Kardinal Schwarzenbergplatz 1, Schwarzach, Austria; Teaching Hospital of Paracelsus Medical Private University Salzburg, Salzburg, Austria
| | - Bianca Schaub
- Dr von Hauner Children's Hospital, Ludwig Maximilian University, Munich, Germany; Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research, Munich, Germany
| | - Erika von Mutius
- Helmholtz Zentrum München-German Research Center for Environmental Health, Institute for Asthma and Allergy Prevention, Neuherberg, Germany; Dr von Hauner Children's Hospital, Ludwig Maximilian University, Munich, Germany; Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research, Munich, Germany
| | - Roger Lauener
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland; Children's Hospital of Eastern Switzerland, St Gallen, Switzerland
| | - Caroline Roduit
- Department of Immunology, University Children's Hospital Zurich, Zurich, Switzerland; Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland; Children's Hospital of Eastern Switzerland, St Gallen, Switzerland.
| | | |
Collapse
|
192
|
Dogra SK, Cheong Kwong C, Wang D, Sakwinska O, Colombo Mottaz S, Sprenger N. Nurturing the Early Life Gut Microbiome and Immune Maturation for Long Term Health. Microorganisms 2021; 9:2110. [PMID: 34683431 PMCID: PMC8537230 DOI: 10.3390/microorganisms9102110] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 12/21/2022] Open
Abstract
Early life is characterized by developmental milestones such as holding up the head, turning over, sitting up and walking that are typically achieved sequentially in specific time windows. Similarly, the early gut microbiome maturation can be characterized by specific temporal microorganism acquisition, colonization and selection with differential functional features over time. This orchestrated microbial sequence occurs from birth during the first years of age before the microbiome reaches an adult-like composition and function between 3 and 5 years of age. Increasingly, these different steps of microbiome development are recognized as crucial windows of opportunity for long term health, primarily linked to appropriate immune and metabolic development. For instance, microbiome disruptors such as preterm and Cesarean-section birth, malnutrition and antibiotic use are associated with increased risk to negatively affect long-term immune and metabolic health. Different age discriminant microbiome taxa and functionalities are used to describe age-appropriate microbiome development, and advanced modelling techniques enable an understanding and visualization of an optimal microbiome maturation trajectory. Specific microbiome features can be related to later health conditions, however, whether such features have a causal relationship is the topic of intense research. Early life nutrition is an important microbiome modulator, and 'Mother Nature' provides the model with breast milk as the sole source of nutrition for the early postnatal period, while dietary choices during the prenatal and weaning period are to a large extent guided by tradition and culture. Increasing evidence suggests prenatal maternal diet and infant and child nutrition impact the infant microbiome trajectory and immune competence development. The lack of a universal feeding reference for such phases represents a knowledge gap, but also a great opportunity to provide adequate nutritional guidance to maintain an age-appropriate microbiome for long term health. Here, we provide a narrative review and perspective on our current understanding of age-appropriate microbiome maturation, its relation to long term health and how nutrition shapes and influences this relationship.
Collapse
Affiliation(s)
| | | | | | | | | | - Norbert Sprenger
- Nestlé Institute of Health Sciences, Société des Produits Nestlé S.A., 1000 Lausanne 26, Switzerland; (S.K.D.); (K.C.C.); (D.W.); (O.S.); (S.C.M.)
| |
Collapse
|
193
|
Kestose-enriched fructo-oligosaccharide alleviates atopic dermatitis by modulating the gut microbiome and immune response. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
194
|
Gozzi-Silva SC, Teixeira FME, Duarte AJDS, Sato MN, Oliveira LDM. Immunomodulatory Role of Nutrients: How Can Pulmonary Dysfunctions Improve? Front Nutr 2021; 8:674258. [PMID: 34557509 PMCID: PMC8453008 DOI: 10.3389/fnut.2021.674258] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
Nutrition is an important tool that can be used to modulate the immune response during infectious diseases. In addition, through diet, important substrates are acquired for the biosynthesis of regulatory molecules in the immune response, influencing the progression and treatment of chronic lung diseases, such as asthma and chronic obstructive pulmonary disease (COPD). In this way, nutrition can promote lung health status. A range of nutrients, such as vitamins (A, C, D, and E), minerals (zinc, selenium, iron, and magnesium), flavonoids and fatty acids, play important roles in reducing the risk of pulmonary chronic diseases and viral infections. Through their antioxidant and anti-inflammatory effects, nutrients are associated with better lung function and a lower risk of complications since they can decrease the harmful effects from the immune system during the inflammatory response. In addition, bioactive compounds can even contribute to epigenetic changes, including histone deacetylase (HDAC) modifications that inhibit the transcription of proinflammatory cytokines, which can contribute to the maintenance of homeostasis in the context of infections and chronic inflammatory diseases. These nutrients also play an important role in activating immune responses against pathogens, which can help the immune system during infections. Here, we provide an updated overview of the roles played by dietary factors and how they can affect respiratory health. Therefore, we will show the anti-inflammatory role of flavonoids, fatty acids, vitamins and microbiota, important for the control of chronic inflammatory diseases and allergies, in addition to the antiviral role of vitamins, flavonoids, and minerals during pulmonary viral infections, addressing the mechanisms involved in each function. These mechanisms are interesting in the discussion of perspectives associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and its pulmonary complications since patients with severe disease have vitamins deficiency, especially vitamin D. In addition, researches with the use of flavonoids have been shown to decrease viral replication in vitro. This way, a full understanding of dietary influences can improve the lung health of patients.
Collapse
Affiliation(s)
- Sarah Cristina Gozzi-Silva
- Laboratório de Dermatologia e Imunodeficiências (LIM-56), Departamento de Dermatologia, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo - FMUSP, São Paulo, Brazil.,Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Franciane Mouradian Emidio Teixeira
- Laboratório de Dermatologia e Imunodeficiências (LIM-56), Departamento de Dermatologia, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo - FMUSP, São Paulo, Brazil.,Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Maria Notomi Sato
- Laboratório de Dermatologia e Imunodeficiências (LIM-56), Departamento de Dermatologia, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo - FMUSP, São Paulo, Brazil
| | - Luana de Mendonça Oliveira
- Laboratório de Dermatologia e Imunodeficiências (LIM-56), Departamento de Dermatologia, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo - FMUSP, São Paulo, Brazil.,Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
195
|
Blanco-Pérez F, Steigerwald H, Schülke S, Vieths S, Toda M, Scheurer S. The Dietary Fiber Pectin: Health Benefits and Potential for the Treatment of Allergies by Modulation of Gut Microbiota. Curr Allergy Asthma Rep 2021; 21:43. [PMID: 34505973 PMCID: PMC8433104 DOI: 10.1007/s11882-021-01020-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 02/08/2023]
Abstract
Purpose of Review The incidence of allergies is increasing and has been associated with several environmental factors including westernized diets. Changes in environment and nutrition can result in dysbiosis of the skin, gut, and lung microbiota altering the production of microbial metabolites, which may in turn generate epigenetic modifications. The present review addresses studies on pectin-mediated effects on allergies, including the immune modulating mechanisms by bacterial metabolites. Recent Findings Recently, microbiota have gained attention as target for allergy intervention, especially with prebiotics, that are able to stimulate the growth and activity of certain microorganisms. Dietary fibers, which cannot be digested in the gastrointestinal tract, can alter the gut microbiota and lead to increased local and systemic concentrations of gut microbiota-derived short chain fatty acids (SCFAs). These can promote the generation of peripheral regulatory T cells (Treg) by epigenetic modulation and suppress the inflammatory function of dendritic cells (DCs) by transcriptional modulation. The dietary fiber pectin (a plant-derived polysaccharide commonly used as gelling agent and dietary supplement) can alter the ratio of Firmicutes to Bacteroidetes in gut and lung microbiota, increasing the concentrations of SCFAs in feces and sera, and reducing the development of airway inflammation by suppressing DC function. Summary Pectin has shown immunomodulatory effects on allergies, although the underlying mechanisms still need to be elucidated. It has been suggested that the different types of pectin may exert direct and/or indirect immunomodulatory effects through different mechanisms. However, little is known about the relation of certain pectin structures to allergies.
Collapse
Affiliation(s)
- Frank Blanco-Pérez
- Molecular Allergology, Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Institut, Langen, Germany.
| | - Hanna Steigerwald
- Molecular Allergology, Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Institut, Langen, Germany
| | - Stefan Schülke
- Molecular Allergology, Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Institut, Langen, Germany
| | - Stefan Vieths
- Molecular Allergology, Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Institut, Langen, Germany
| | - Masako Toda
- Laboratory of Food and Biomolecular Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Stephan Scheurer
- Molecular Allergology, Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
196
|
Nygaard UC, Xiao L, Nadeau KC, Hew KM, Lv N, Camargo CA, Strub P, Ma J. Improved diet quality is associated with decreased concentrations of inflammatory markers in adults with uncontrolled asthma. Am J Clin Nutr 2021; 114:1012-1027. [PMID: 33871602 PMCID: PMC8578836 DOI: 10.1093/ajcn/nqab063] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/19/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Asthma has become one of the major public health challenges, and recent studies show promising clinical benefits of dietary interventions, such as the Dietary Approaches to Stop Hypertension (DASH) diet. OBJECTIVE The objective of this study was to examine whether changes in diet quality are associated with changes in inflammatory markers important in asthma pathophysiology. METHODS In this exploratory study in patients with poorly controlled asthma participating in a randomized controlled trial of a DASH intervention study, changes in concentrations of a broad panel of serum proteins (51-plex Luminex assay, Affymetrix) were determined, and their relation to diet quality (DASH score) assessed by combining data of both intervention and usual-care control groups. Second, the relation between the serum proteins, other biomarkers of inflammation and nutrition, and Asthma Control Questionnaire (ACQ) was assessed. RESULTS During the first 3 mo, diet quality (DASH scores) were inversely associated (P < 0.05, false discovery rate P < 0.09) with serum concentrations of a large number serum proteins, reflecting not only general proinflammatory markers such as IL-1β, transforming growth factor α (TGF-α), and IL-6 (r = -0.31 to -0.39) but also a number of proteins associated with asthmatic conditions, specifically several T-helper (Th) 2 (Th2; r = -0.29 to -0.34) and Th17 (r = -0.4) associated cytokines and growth factors. Monokine induced by gamma/chemokine (C-X-C motif) ligand 9 (CXCL9) (MIG/CXCL9), a T-cell attractant induced by IFN-γ previously linked to asthma exacerbations, appeared to be the marker most consistently associated with DASH diet quality for the entire 6-mo study period (r = -0.40 and -0.30 for 0-3 and 3-6 mo, respectively, and standardized coefficient loadings -0.13 in the partial least squares analyses). Decreases in 19 serum protein concentrations were also correlated with improved asthma control during the 6-mo study period. CONCLUSIONS Our data in adult patients with poorly controlled asthma suggest that dietary changes, like the introduction of DASH, may have beneficial effects on reducing inflammatory status. This trial was registered at http://www.clinicaltrials.gov as NCT01725945.
Collapse
Affiliation(s)
- Unni C Nygaard
- Sean N Parker Center for Allergy and Asthma Research, Division of Pulmonary and Critical Care Medicine and Division of Allergy, Immunology and Rheumatology, Stanford University, Stanford, CA, USA.,Department for Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Lan Xiao
- Department of Medicine, Stanford University, Palo Alto, CA, USA
| | - Kari C Nadeau
- Sean N Parker Center for Allergy and Asthma Research, Division of Pulmonary and Critical Care Medicine and Division of Allergy, Immunology and Rheumatology, Stanford University, Stanford, CA, USA
| | - Kinjal M Hew
- Sean N Parker Center for Allergy and Asthma Research, Division of Pulmonary and Critical Care Medicine and Division of Allergy, Immunology and Rheumatology, Stanford University, Stanford, CA, USA
| | - Nan Lv
- Institute of Health Research and Policy, University of Illinois at Chicago, Chicago, IL, USA
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Peg Strub
- Department of Allergy, Asthma and Immunology, Kaiser Permanente San Francisco, San Francisco, CA, USA
| | - Jun Ma
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
197
|
Deckers J, Marsland BJ, von Mutius E. Protection against allergies: Microbes, immunity, and the farming effect. Eur J Immunol 2021; 51:2387-2398. [PMID: 34415577 DOI: 10.1002/eji.202048938] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/08/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022]
Abstract
The prevalence of asthma and other allergic diseases has rapidly increased in "Westernized" countries over recent decades. This rapid increase suggests the involvement of environmental factors, behavioral changes or lifestyle, rather than genetic drift. It has become increasingly clear that the microbiome plays a key role in educating the host immune system and, thus, regulation of disease susceptibility. This review will focus on recent advances uncovering immunological and microbial mechanisms that protect against allergies, in particular, within the context of a farming environment. A whole body of epidemiological data disclosed the nature of the protective exposures in a farm. Current evidence points toward an important role of the host microbiome in setting an immunological equilibrium that determines progression toward, or protection against allergic diseases. Conclusive mechanistic insights on how microbial exposures prevent from developing allergic diseases in humans are still lacking but findings from experimental models reveal plausible immunological mechanisms. Gathering further knowledge on these mechanisms and confirming their relevance in humans is of great importance to develop preventive strategies for children at risk of developing allergies.
Collapse
Affiliation(s)
- Julie Deckers
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent (Zwijnaarde), Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Benjamin J Marsland
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Erika von Mutius
- Institute for Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,German Center for Lung Research, München, Germany.,Dr. von Hauner Children's Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
198
|
Zhang Y, Zhang T, Liang Y, Jiang L, Sui X. Dietary Bioactive Lipids: A Review on Absorption, Metabolism, and Health Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8929-8943. [PMID: 34161727 DOI: 10.1021/acs.jafc.1c01369] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dietary lipids are an indispensable source of energy and nutrition in human life. Numerous studies have shown that dietary bioactive lipids have many health benefits, including prevention or treatment of chronic diseases. The different chemical compositions and structural characteristics of bioactive lipids not only affect their digestion, absorption, and metabolism but also affect their health properties. In this review, the major dietary bioactive lipids (fatty acids, carotenoids, phytosterols, phenolic lipids, fat-soluble vitamins, and sphingomyelins) in foods are systematically summarized, from the aspects of composition, digestion, absorption, metabolism, source, structural characteristics, and their health properties. In particular, the relationship between the compositional and structural changes of bioactive lipids and their absorption and metabolism is discussed as well as their effect on health properties. This review provides a comprehensive summary toward health properties of dietary bioactive lipids.
Collapse
Affiliation(s)
- Yan Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Tianyi Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Yan Liang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| |
Collapse
|
199
|
Alenius H, Sinkko H, Moitinho-Silva L, Rodriguez E, Broderick C, Alexander H, Reiger M, Hjort Hjelmsø M, Fyhrquist N, Olah P, Bryce P, Smith C, Koning F, Eyerich K, Greco D, van den Bogaard EH, Neumann AU, Traidl-Hoffmann C, Homey B, Flohr C, Bønnelykke K, Stokholm J, Weidinger S. The power and potential of BIOMAP to elucidate host-microbiome interplay in skin inflammatory diseases. Exp Dermatol 2021; 30:1517-1531. [PMID: 34387406 DOI: 10.1111/exd.14446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/02/2021] [Accepted: 08/02/2021] [Indexed: 11/27/2022]
Abstract
The two most common chronic inflammatory skin diseases are atopic dermatitis (AD) and psoriasis. The underpinnings of the remarkable degree of clinical heterogeneity of AD and psoriasis are poorly understood and, as a consequence, disease onset and progression are unpredictable and the optimal type and time-point for intervention are as yet unknown. The BIOMAP project is the first IMI (Innovative Medicines Initiative) project dedicated to investigating the causes and mechanisms of AD and psoriasis and to identify potential biomarkers responsible for the variation in disease outcome. The consortium includes 7 large pharmaceutical companies and 25 non-industry partners including academia. Since there is mounting evidence supporting an important role for microbial exposures and our microbiota as factors mediating immune polarization and AD and psoriasis pathogenesis, an entire work package is dedicated to the investigation of skin and gut microbiome linked to AD or psoriasis. The large collaborative BIOMAP project will enable the integration of patient cohorts, data and knowledge in unprecedented proportions. The project has a unique opportunity with a potential to bridge and fill the gaps between current problems and solutions. This review highlights the power and potential of BIOMAP project in the investigation of microbe-host interplay in AD and psoriasis.
Collapse
Affiliation(s)
- Harri Alenius
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77, Stockholm, Sweden.,Human Microbiome Research Program (HUMI), Faculty of Medicine, University of Helsinki, Finland
| | - Hanna Sinkko
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77, Stockholm, Sweden.,Human Microbiome Research Program (HUMI), Faculty of Medicine, University of Helsinki, Finland
| | - Lucas Moitinho-Silva
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.,Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Elke Rodriguez
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Conor Broderick
- Unit for Population-Based Dermatology Research, St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Helen Alexander
- Unit for Population-Based Dermatology Research, St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Matthias Reiger
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany.,Institute of Environmental Medicine, Helmholtz Zentrum München, Augsburg, Germany.,Chair of Environmental Medicine, Technical University Munich, Munich, Germany
| | - Mathis Hjort Hjelmsø
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Nanna Fyhrquist
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77, Stockholm, Sweden
| | - Peter Olah
- Department of Dermatology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.,Department of Dermatology, Venereology and Oncodermatology, Medical Faculty, University of Pécs, Hungary
| | - Paul Bryce
- Type 2 Inflammation & Fibrosis Cluster, Immunology & Inflammation Therapeutic Area, Sanofi US, Cambridge, MA, United States of America
| | - Catherine Smith
- St John's Institute of Dermatology, Kings College London, and Guys and St Thomas' NHS Foundation Trust, 9th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Frits Koning
- Department of Immunology, Leiden University Medical Centre (LUMC), Leiden, the Netherlands
| | - Kilian Eyerich
- Department of Medicine, Karolinska Institutet, Solna, Sweden
| | - Dario Greco
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ellen H van den Bogaard
- Department of Dermatology, Radboud university medical center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Avidan U Neumann
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany.,Institute of Environmental Medicine, Helmholtz Zentrum München, Augsburg, Germany
| | - Claudia Traidl-Hoffmann
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany.,Institute of Environmental Medicine, Helmholtz Zentrum München, Augsburg, Germany.,Chair of Environmental Medicine, Technical University Munich, Munich, Germany.,CK CARE, Christine Kühne Center for Allergy Research and Education, Davos, Switzerland.,ZIEL - Institute for Food & Health, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Bernhard Homey
- Department of Dermatology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Carsten Flohr
- Unit for Population-Based Dermatology Research, St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.,Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Stephan Weidinger
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
200
|
Komlósi ZI, van de Veen W, Kovács N, Szűcs G, Sokolowska M, O'Mahony L, Akdis M, Akdis CA. Cellular and molecular mechanisms of allergic asthma. Mol Aspects Med 2021; 85:100995. [PMID: 34364680 DOI: 10.1016/j.mam.2021.100995] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/21/2022]
Abstract
Asthma is a chronic disease of the airways, which affects more than 350 million people worldwide. It is the most common chronic disease in children, affecting at least 30 million children and young adults in Europe. Asthma is a complex, partially heritable disease with a marked heterogeneity. Its development is influenced both by genetic and environmental factors. The most common, as well as the most well characterized subtype of asthma is allergic eosinophilic asthma, which is characterized by a type 2 airway inflammation. The prevalence of asthma has substantially increased in industrialized countries during the last 60 years. The mechanisms underpinning this phenomenon are incompletely understood, however increased exposure to various environmental pollutants probably plays a role. Disease inception is thought to be enabled by a disadvantageous shift in the balance between protective and harmful lifestyle and environmental factors, including exposure to protective commensal microbes versus infection with pathogens, collectively leading to airway epithelial cell damage and disrupted barrier integrity. Epithelial cell-derived cytokines are one of the main drivers of the type 2 immune response against innocuous allergens, ultimately leading to infiltration of lung tissue with type 2 T helper (TH2) cells, type 2 innate lymphoid cells (ILC2s), M2 macrophages and eosinophils. This review outlines the mechanisms responsible for the orchestration of type 2 inflammation and summarizes the novel findings, including but not limited to dysregulated epithelial barrier integrity, alarmin release and innate lymphoid cell stimulation.
Collapse
Affiliation(s)
- Zsolt I Komlósi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary.
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Nóra Kovács
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary; Lung Health Hospital, Munkácsy Mihály Str. 70, 2045, Törökbálint, Hungary
| | - Gergő Szűcs
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary; Department of Pulmonology, Semmelweis University, Tömő Str. 25-29, 1083, Budapest, Hungary
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Liam O'Mahony
- Department of Medicine and School of Microbiology, APC Microbiome Ireland, University College Cork, Ireland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| |
Collapse
|