151
|
Clinical Utility of Serum Holotranscobalamin Measurements in Patients with First-Ever Ischemic Stroke. DISEASE MARKERS 2021; 2021:9914298. [PMID: 34545295 PMCID: PMC8449731 DOI: 10.1155/2021/9914298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/24/2021] [Accepted: 08/28/2021] [Indexed: 11/23/2022]
Abstract
Background Whether holotranscobalamin (holoTC) indicates B12 deficiency more sensitively than total vitamin B12 (B12) is unclear. This study is aimed at determining the impact of serum holoTC level as a risk factor for ischemic stroke and investigating its association with disease severity and short-term outcomes. Methods Serum holoTC, total B12, and homocysteine levels were compared between 130 stroke patients and 138 healthy controls. Biomarker level correlations with disease severity and stroke functional outcomes were investigated. Results holoTC levels were lower and homocysteine levels were higher in stroke patients than in healthy controls (P < 0.05). The holoTC/total B12 ratio and homocysteine level significantly predicted ischemic stroke in the multivariable regression analysis (P < 0.05). Along with hyperhomocysteinemia, patients more often had holoTC than total B12 deficiency (6.2% vs. 3.1%). holoTC levels negatively correlated with homocysteine levels (partial R -0.165, P < 0.05) in stroke patients in multiple linear regression analyses, but not total B12 levels. The holoTC level and holoTC/total B12 ratio, but not homocysteine and total B12 levels, negatively correlated with the National Institute of Health Stroke Scale (partial R, -0.405 and -0.207, respectively, P < 0.01). Conclusions Measurements of serum holoTC levels combined with total B12 and homocysteine levels may provide valuable information for predicting ischemic stroke and its severity and short-term outcomes of ischemic stroke patients.
Collapse
|
152
|
Marchesi N, Govoni S, Allegri M. Non-drug pain relievers active on non-opioid pain mechanisms. Pain Pract 2021; 22:255-275. [PMID: 34498362 DOI: 10.1111/papr.13073] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review is aimed to summarize the pain-relieving effect of non-drug substances, mostly prescribed as integrators in treatment of pain, including especially in chronic postoperative pain (CPSP) and in chronic back pain after acute episodes. Their use reflects the fact that the current treatments for these syndromes continue to pose problems of unsatisfactory responses in a significant portion of patients and/or of an excess of side effects like those noted in the present opioid crisis. As integrators are frequently introduced into the market without adequate clinical testing, this review is aimed to collect the present scientific evidence either preclinical or clinical for their effectiveness. In particular, we reviewed the data on the use of: B vitamins; vitamin C; vitamin D; alpha lipoic acid (ALA); N-acetylcysteine; acetyl L-carnitine; curcumin; boswellia serrata; magnesium; coenzyme Q10, and palmitoylethanolamide. The combination of preclinical findings and clinical observations strongly indicate that these compounds deserve more careful attention, some of them having interesting clinical potentials also in preventing chronic pain after an acute episode. In particular, examining their putative mechanisms of action it emerges that combinations of few of them may exert an extraordinary spectrum of activities on a large variety of pain-associated pathways and may be eventually used in combination with more traditional pain killers in order to extend the duration of the effect and to lower the doses. Convincing examples of effective combinations against pain are vitamin B complex plus gabapentin for CPSP, including neuropathic pain; vitamin B complex plus diclofenac against low back pain and also in association with gabapentin, and ALA for burning mouth syndrome. These as well as other examples need, however, careful controlled independent clinical studies confirming their role in therapy.
Collapse
Affiliation(s)
| | - Stefano Govoni
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Massimo Allegri
- Pain Therapy Service, Policlinico Monza, Monza, Italy.,Italian Pain Group, Monza-Brianza, Italy
| |
Collapse
|
153
|
Ergül M, Taşkıran AŞ. Thiamine Protects Glioblastoma Cells against Glutamate Toxicity by Suppressing Oxidative/Endoplasmic Reticulum Stress. Chem Pharm Bull (Tokyo) 2021; 69:832-839. [PMID: 34470947 DOI: 10.1248/cpb.c21-00169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thiamine (vitamin B1), which is synthesized only in bacteria, fungi and plants and which humans should take with diet, participates in basic biochemical and physiological processes in a versatile way and its deficiency is associated with neurological problems accompanied by cognitive dysfunctions. The rat glioblastoma (C6) model was used, which was exposed to a limited environment and toxicity with glutamate. The cells were stressed by exposure to glutamate in the presence and absence of thiamine. The difference in cell proliferation was evaluated in the XTT assay. Oxidative stress (OS) markers malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) levels, as well as endoplasmic reticulum (ER) stress markers 78-kDa glucose-regulated protein (GRP78), activating transcription factor-4 (ATF-4), and C/EBP homologous protein (CHOP) levels, were measured with commercial kits. Apoptosis determined by flow cytometry was confirmed by 4',6-diamidino-2-phenylindole (DAPI) staining. At all concentrations, thiamine protects the cells and increased the viability against glutamate-induced toxicity. Thiamine also significantly decreased the levels of MDA, while increasing SOD and CAT levels. Moreover, thiamine reduced ER stress proteins' levels. Moreover, it lessened the apoptotic cell amount and enhanced the live-cell percentage in the flow cytometry and DAPI staining. As a result, thiamine may be beneficial nutritional support for individuals with a predisposition to neurodegenerative disorders due to its protective effect on glutamate cytotoxicity in glioblastoma cells by suppressing OS and ER stress.
Collapse
Affiliation(s)
- Merve Ergül
- Department of Pharmacology, Faculty of Pharmacy, Sivas Cumhuriyet University
| | | |
Collapse
|
154
|
Nenseth HZ, Sahu A, Saatcioglu F, Osguthorpe S. A Nutraceutical Formula Is Effective in Raising the Circulating Vitamin and Mineral Levels in Healthy Subjects: A Randomized Trial. Front Nutr 2021; 8:703394. [PMID: 34540877 PMCID: PMC8440802 DOI: 10.3389/fnut.2021.703394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
Low levels of nutrient intake are common in industrialized countries. This has negative implications on health and is associated with chronic diseases. Supplementation of vitamins, minerals, and key nutrients to optimal levels may, therefore, be beneficial for individual health and for the health economy. Although the use of supplements has become very common, due to a lack of monitoring, there is very limited data on the efficacy of supplementation with different formulas. In this study, we present the results of a randomized controlled study on the efficacy of a novel formulated nutraceutical, N247, in 250 healthy volunteers aged 26-75 years and a placebo control group (n = 35). The broad-spectrum formulation of N247 includes essential vitamins, minerals, and trace elements that are adequately balanced in regard to synergies and related metabolic functions. Moreover, tolerance, safety, and nutrient availability is an important aspect of daily, long-term use of N247. After 3 months of regular N247 use, levels of vitamins and minerals in serum were significantly increased in the N247 group compared with the control group and a placebo group, with excellent compliance rates. Coupled with additional natural ingredients that aim to increase the potency of the nutrients, N247 may represent a novel and beneficial supplement for individuals with nutritional deficiencies. Clinical Trial Registration:https://clinicaltrials.gov/, identifier: NCT04054505.
Collapse
Affiliation(s)
| | - Aparna Sahu
- Turiyan Psyneuronics Pvt. Ltd, Bangalore, India
| | | | | |
Collapse
|
155
|
AlAli AM, AlAnzi TH. Inferior alveolar nerve damage secondary to orthodontic treatment: A systematic scoping review. INTERNATIONAL JOURNAL OF RISK & SAFETY IN MEDICINE 2021; 32:175-191. [PMID: 33579879 DOI: 10.3233/jrs-200098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Neurosensory impairment is a common complication following inferior alveolar nerve (IAN) damage. OBJECTIVE To document and report the various causes, diagnosis, and management of IAN damage secondary to orthodontic treatment. METHODS An electronic search for studies that reported IAN damage in patients undergoing orthodontic treatment was performed up to July 15, 2020 using MEDLINE, Embase, and PubMed databases. Descriptive analyses and linear regression model were performed. RESULTS A total of 15 case reports were identified including 16 patients with an overall mean age of 23.3. All the included studies reported temporary sensory alterations which manifested as anesthesia (19%, n = 3), paresthesia (75%, n = 12), or combined (6%, n = 1). The majority of cases managed by stopping the orthodontic force (75%, n = 12), followed by appliance adjustments (19%, n = 3), providing a bite plate (13%, n = 2), and/or providing pharmacological management (38%, n = 6). Full recovery median duration reported in all cases following the aforementioned managements was 17.5 days. CONCLUSIONS IAN damage secondary to orthodontic treatment is emerging in the literature in recent years. Identifying high risk patients with close proximity to the IAN canal is a must to formulate a proper treatment plan to avoid such complications.
Collapse
Affiliation(s)
- Ahmad M AlAli
- Oral and Maxillofacial Surgery Department, Al-Adan Specialized Dental Center, Ministry of Health, Kuwait
| | - Talal H AlAnzi
- Dental Department, Primary Dental Care Center, Ministry of Health, Kuwait
| |
Collapse
|
156
|
Rapid and simple CZE-UV method for quality control of B1 and B6 vitamins in drugs and dietary supplements. EUROPEAN PHARMACEUTICAL JOURNAL 2021. [DOI: 10.2478/afpuc-2021-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The application of hydrodynamically closed capillary zone electrophoresis combined with convenient ultraviolet (UV) detection allows fast, simple, environmentally friendly and cost-effective analysis of ions or ionisable molecules. This technique has been used to determine two selected B vitamins (thiamine, pyridoxine) in various drug formulations. The developed method was characterised by excellent validation parameters, such as linearity, precision, accuracy, limit of detection and limit of quantification. The total time of analysis was lower than 13.5 min. The results indicate that the method is suitable for implementation in routine quality control of selected B vitamins in pharmaceutical and food samples.
Collapse
|
157
|
The Role of Neurotropic B Vitamins in Nerve Regeneration. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9968228. [PMID: 34337067 PMCID: PMC8294980 DOI: 10.1155/2021/9968228] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/05/2021] [Indexed: 12/28/2022]
Abstract
Damage and regeneration naturally occur in the peripheral nervous system. The neurotropic B vitamins thiamine (B1), pyridoxine (B6), and cobalamin (B12) are key players, which maintain the neuronal viability in different ways. Firstly, they constantly protect nerves against damaging environmental influences. While vitamin B1 acts as a site-directed antioxidant, vitamin B6 balances nerve metabolism, and vitamin B12 maintains myelin sheaths. However, nerve injury occurs at times, because of an imbalance between protective factors and accumulating stress and noxae. This will result in the so-called Wallerian degeneration process. The presence of vitamins B1, B6, and B12 paves the way out to the following important regeneration by supporting the development of new cell structures. Furthermore, vitamin B1 facilitates the usage of carbohydrates for energy production, whereas vitamin B12 promotes nerve cell survival and remyelination. Absence of these vitamins will favor permanent nerve degeneration and pain, eventually leading to peripheral neuropathy.
Collapse
|
158
|
The Role of Dietary Nutrients in Peripheral Nerve Regeneration. Int J Mol Sci 2021; 22:ijms22147417. [PMID: 34299037 PMCID: PMC8303934 DOI: 10.3390/ijms22147417] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022] Open
Abstract
Peripheral nerves are highly susceptible to injuries induced from everyday activities such as falling or work and sport accidents as well as more severe incidents such as car and motorcycle accidents. Many efforts have been made to improve nerve regeneration, but a satisfactory outcome is still unachieved, highlighting the need for easy to apply supportive strategies for stimulating nerve growth and functional recovery. Recent focus has been made on the effect of the consumed diet and its relation to healthy and well-functioning body systems. Normally, a balanced, healthy daily diet should provide our body with all the needed nutritional elements for maintaining correct function. The health of the central and peripheral nervous system is largely dependent on balanced nutrients supply. While already addressed in many reviews with different focus, we comprehensively review here the possible role of different nutrients in maintaining a healthy peripheral nervous system and their possible role in supporting the process of peripheral nerve regeneration. In fact, many dietary supplements have already demonstrated an important role in peripheral nerve development and regeneration; thus, a tailored dietary plan supplied to a patient following nerve injury could play a non-negotiable role in accelerating and promoting the process of nerve regeneration.
Collapse
|
159
|
da Mota Gomes M. Historical Features Regarding the Neuropathic Outbreaks in Brazilian Troops in the Paraguayan War. Wilderness Environ Med 2021; 32:385-391. [PMID: 34253446 DOI: 10.1016/j.wem.2021.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/17/2021] [Accepted: 03/02/2021] [Indexed: 11/29/2022]
Abstract
During the Paraguayan War, Brazilian army and navy officers attributed outbreaks of combatant limb weakness with particular features such as tingling to palustrian causes. A dietary basis was not fully suspected at the time, and the popular name beriberi had not been coined. During wartime, there was a shortage in the food supply in addition to poor environmental conditions and diarrheal diseases, and many reports of "palustrian cachexia" were made. There are also reports of the use of native flora to feed troops, as well as alcoholism. There are also accounts of the death of horses with symptoms similar to those of combatants. It was reported that black soldiers were more resistant to "palustrian cachexia." This article presents the disease ecology and clinical manifestations of beriberi at wartime, linked to starvation and consumption of pickled food and native flora. These military explorations and operations in the Paraguayan War happened more than 150 y ago and present some aspects of wilderness medicine in the past.
Collapse
|
160
|
Yahaya TO, Yusuf AB, Danjuma JK, Usman BM, Ishiaku YM. Mechanistic links between vitamin deficiencies and diabetes mellitus: a review. EGYPTIAN JOURNAL OF BASIC AND APPLIED SCIENCES 2021. [DOI: 10.1080/2314808x.2021.1945395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Tajudeen O. Yahaya
- Department of Biology, Federal University Birnin Kebbi, Birnin Kebbi, Nigeria
| | - AbdulRahman B. Yusuf
- Department of Biochemistry and Molecular Biology, Federal University Birnin Kebbi, Birnin Kebbi, Nigeria
| | - Jamilu K. Danjuma
- Department of Biology, Federal University Birnin Kebbi, Birnin Kebbi Nigeria
| | - Bello M. Usman
- Department of Biology, Federal University Birnin Kebbi, Birnin Kebbi Nigeria
| | - Yahaya M. Ishiaku
- Department of Biochemistry and Molecular Biology, Federal University Dutsinma, Katsina, Nigeria
| |
Collapse
|
161
|
Altunay N, Elik A, Aydın D. Feasibility of supramolecular nanosized solvent based microsyringe-assisted liquid-phase microextraction for preconcentration and separation of Vitamin B12 from infant formula, food supplement, and dairy products: Spectrophotometric analysis and chemometric optimization. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
162
|
Modulation of vigabatrin induced cerebellar injury: the role of caspase-3 and RIPK1/RIPK3-regulated cell death pathways. J Mol Histol 2021; 52:781-798. [PMID: 34046766 DOI: 10.1007/s10735-021-09984-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/24/2021] [Indexed: 01/11/2023]
Abstract
Vigabatrin is the drug of choice in resistant epilepsy and infantile spasms. Ataxia, tremors, and abnormal gait have been frequently reported following its use indicating cerebellar involvement. This study aimed, for the first time, to investigate the involvement of necroptosis and apoptosis in the VG-induced cerebellar cell loss and the possible protective role of combined omega-3 and vitamin B12 supplementation. Fifty Sprague-Dawley adult male rats (160-200 g) were divided into equal five groups: the control group received normal saline, VG200 and VG400 groups received VG (200 mg or 400 mg/kg, respectively), VG200 + OB and VG400 + OB groups received combined VG (200 mg or 400 mg/kg, respectively), vitamin B12 (1 mg/kg), and omega-3 (1 g/kg). All medications were given daily by gavage for four weeks. Histopathological changes were examined in H&E and luxol fast blue (LFB) stained sections. Immunohistochemical staining for caspase-3 and receptor-interacting serine/threonine-protein kinase-1 (RIPK1) as well as quantitative real-time polymerase chain reaction (qRT-PCR) for myelin basic protein (MBP), caspase-3, and receptor-interacting serine/threonine-protein kinase-3 (RIPK3) genes were performed. VG caused a decrease in the granular layer thickness and Purkinje cell number, vacuolations, demyelination, suppression of MBP gene expression, and induction of caspases-3, RIPK1, and RIPK3 in a dose-related manner. Combined supplementation with B12 and omega-3 improved the cerebellar histology, increased MBP, and decreased apoptotic and necroptotic markers. In conclusion, VG-induced neuronal cell loss is dose-dependent and related to both apoptosis and necroptosis. This could either be ameliorated (in low-dose VG) or reduced (in high-dose VG) by combined supplementation with B12 and omega-3.
Collapse
|
163
|
Webster Z, Mollenhauer M, Steele R, Rosemergy I. Cobalamin (vitamin B12) testing in a tertiary neurology service: a review of current practice. Pathology 2021; 53:922-924. [PMID: 33994173 DOI: 10.1016/j.pathol.2021.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/09/2021] [Accepted: 02/02/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Zoe Webster
- Department of Internal Medicine, Wellington Regional Hospital, Wellington, New Zealand.
| | - Maas Mollenhauer
- Department of Neurology, Wellington Regional Hospital, Wellington, New Zealand
| | - Richard Steele
- Wellington SCL, Department of Immunology, Wellington, New Zealand
| | - Ian Rosemergy
- Department of Neurology, Wellington Regional Hospital, Wellington, New Zealand
| |
Collapse
|
164
|
Tynes VV, Landsberg GM. Nutritional Management of Behavior and Brain Disorders in Dogs and Cats. Vet Clin North Am Small Anim Pract 2021; 51:711-727. [PMID: 33773649 DOI: 10.1016/j.cvsm.2021.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
There are several natural products and functional ingredients that, either alone or in combination with other ingredients, have shown evidence for decreasing signs associated with cognitive dysfunction and anxiety in dogs and cats, and in management of seizures in dogs with epilepsy. The evidence supporting the role that a healthy gastrointestinal tract plays in behavior is also growing as more is learned about the gut-brain axis. Nutritional support may play an important role in therapy for certain brain disorders and behavioral problems, in conjunction with other aspects of management. A multimodal approach provides the greatest likelihood of success.
Collapse
Affiliation(s)
- Valarie V Tynes
- Ceva Animal Health, LLC 8735 Rosehill Road, Suite 300 Lenexa, KS 66215, USA.
| | | |
Collapse
|
165
|
Duda P, Budziak B, Rakus D. Cobalt Regulates Activation of Camk2α in Neurons by Influencing Fructose 1,6-bisphosphatase 2 Quaternary Structure and Subcellular Localization. Int J Mol Sci 2021; 22:4800. [PMID: 33946543 PMCID: PMC8125063 DOI: 10.3390/ijms22094800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
Fructose 1,6-bisphosphatase 2 (Fbp2) is a gluconeogenic enzyme and multifunctional protein modulating mitochondrial function and synaptic plasticity via protein-protein interactions. The ability of Fbp2 to bind to its cellular partners depends on a quaternary arrangement of the protein. NAD+ and AMP stabilize an inactive T-state of Fbp2 and thus, affect these interactions. However, more subtle structural changes evoked by the binding of catalytic cations may also change the affinity of Fbp2 to its cellular partners. In this report, we demonstrate that Fbp2 interacts with Co2+, a cation which in excessive concentrations, causes pathologies of the central nervous system and which has been shown to provoke the octal-like events in hippocampal slices. We describe for the first time the kinetics of Fbp2 in the presence of Co2+, and we provide a line of evidence that Co2+ blocks the AMP-induced transition of Fbp2 to the canonical T-state triggering instead of a new, non-canonical T-state. In such a state, Fbp2 is still partially active and may interact with its binding partners e.g., Ca2+/calmodulin-dependent protein kinase 2α (Camk2α). The Fbp2-Camk2α complex seems to be restricted to mitochondria membrane and it facilitates the Camk2α autoactivation and thus, synaptic plasticity.
Collapse
Affiliation(s)
- Przemysław Duda
- Department of Molecular Physiology and Neurobiology, University of Wrocław, 50-335 Wrocław, Poland;
| | | | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wrocław, 50-335 Wrocław, Poland;
| |
Collapse
|
166
|
Wang Q, Charmchi Z, George IC. Restrictive diet in a patient with irritable bowel syndrome leading to Wernicke encephalopathy. BMC Gastroenterol 2021; 21:179. [PMID: 33879093 PMCID: PMC8056557 DOI: 10.1186/s12876-021-01758-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 04/09/2021] [Indexed: 12/02/2022] Open
Abstract
Background We present a case of a woman with a past medical history of irritable bowel syndrome (IBS) and anxiety, who presents with ophthalmoplegia, ataxia and memory loss, characteristic of Wernicke encephalopathy. Case presentation A 64-year-old woman presented with double vision, unsteady gait and memory loss. These symptoms began after 3 months on an unfortified restricted diet, which she initiated to alleviate IBS symptoms. Magnetic resonance imaging of the brain demonstrated hyperintense T2-weighted signal in the dorsomedial aspect of bilateral thalami, periaqueductal grey matter and around the third ventricle. The patient’s visual symptoms improved significantly after thiamine supplementation, although her memory deficits persisted. Conclusion Although WE is often associated with chronic alcohol abuse, this case demonstrates the importance of recognizing WE in any patient with a restricted diet and subsequent timely initiation of thiamine.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Neurology, Kings County Hospital Center, SUNY Downstate Medical Center and Maimonides Medical Center, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Zeinab Charmchi
- Department of Neurology, Kings County Hospital Center, SUNY Downstate Medical Center and Maimonides Medical Center, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Ilena C George
- Department of Neurology, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA.
| |
Collapse
|
167
|
Nava-Mesa MO, Aispuru Lanche GR. [Role of B vitamins, thiamine, pyridoxine, and cyanocobalamin in back pain and other musculoskeletal conditions: a narrative review]. Semergen 2021; 47:551-562. [PMID: 33865694 DOI: 10.1016/j.semerg.2021.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/12/2021] [Indexed: 12/25/2022]
Abstract
Low back pain, as well as other musculoskeletal disorders (neck pain, osteoarthritis, etc.), are a very frequent cause of consultation both in primary care and in other hospital specialties and are usually associated with high functional and work disability. Acute low back pain can present different nociceptive, neuropathic and nonciplastic components, which leads to consider it as a mixed type pain. The importance of the concept of mixed pain is due to the fact that the symptomatic relief of these pathologies requires a multimodal therapeutic approach to various pharmacological targets. The antinociceptive role of the B vitamin complex has been recognized for several decades, specifically the combination of Thiamine, Pyridoxine and Cyanocobalamin (TPC). Likewise, there is accumulated evidence that indicates an adjuvant analgesic action in low back pain. The aim of the present review is to present the existing evidence and the latest findings on the therapeutic effects of the TPC combination in low back pain. Likewise, some of the most relevant mechanisms of action involved that can explain these effects are analyzed. The reviewed evidence indicates that the combined use of PCT has an adjuvant analgesic effect in mixed pain, specifically in low back pain and other musculoskeletal disorders with nociceptive and neuropathic components. This effect can be explained by an anti-inflammatory, antinociceptive, neuroprotective and neuromodulatory action of the TPC combination on the descending pain system.
Collapse
Affiliation(s)
- M O Nava-Mesa
- Grupo de Investigación en Neurociencias (NEUROS), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - G R Aispuru Lanche
- Grupo de Trabajo Aparato Locomotor Semergen. Gerencia de Atención Primaria de Burgos, Castilla y León, España.
| |
Collapse
|
168
|
Electrochemical sensors as a versatile tool for the quantitative analysis of Vitamin B12. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01574-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
169
|
Bjørklund G, Peana M, Dadar M, Lozynska I, Chirumbolo S, Lysiuk R, Lenchyk L, Upyr T, Severin B. The role of B vitamins in stroke prevention. Crit Rev Food Sci Nutr 2021; 62:5462-5475. [PMID: 33724098 DOI: 10.1080/10408398.2021.1885341] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Elevated plasma levels of homocysteine (Hcy) are a recognized risk factor for stroke. This relationship represents one aspect of the debated `Hcy hypothesis'. Elevated Hcy may be an independent and treatable cause of atherosclerosis and thrombotic vascular diseases. Further observations indicate that proper dietary supplementation with B-vitamins decreases total plasma Hcy concentrations and may be an effective intervention for stroke prevention. Metabolic vitamin B12 deficiency is a nutritional determinant of total Hcy and stroke risk. Genetic factors may link B vitamins with stroke severity due to the impact on Hcy metabolism of polymorphism in the genes coding for methylenetetrahydrofolate reductase, methionine-synthase, methionine synthase reductase, and cystathionine β-synthase. Several meta-analyses of large randomized controlled trials exist. However, they are not completely in agreement about B vitamins' role, particularly folic acid levels, vitamin B12, and B6, in lowering the homocysteine concentrations in people at high stroke risk. A very complex relationship exists between Hcy and B vitamins, and several factors appear to modify the preventive effects of B vitamins in stroke. This review highlights the regulating factors of the active role of B vitamins active in stroke prevention. Also, inputs for further large, well-designed studies, for specific, particularly sensitive subgroups are given.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | | | - Maryam Dadar
- Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Agricultural Research, Karaj, Iran
| | - Iryna Lozynska
- Department of Biochemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine.,CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,CONEM Scientific Secretary, Verona, Italy
| | - Roman Lysiuk
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine.,Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Larysa Lenchyk
- Department of Quality, Standardization and Certification of Medicines of IATPS, National University of Pharmacy, Kharkiv, Ukraine.,CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group National University of Pharmacy, Kharkiv, Ukraine
| | - Taras Upyr
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group National University of Pharmacy, Kharkiv, Ukraine.,Department of Pharmacognosy, National University of Pharmacy, Kharkiv, Ukraine
| | - Beatrice Severin
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
| |
Collapse
|
170
|
Current Nanocarrier Strategies Improve Vitamin B12 Pharmacokinetics, Ameliorate Patients' Lives, and Reduce Costs. NANOMATERIALS 2021; 11:nano11030743. [PMID: 33809596 PMCID: PMC8001893 DOI: 10.3390/nano11030743] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022]
Abstract
Vitamin B12 (VitB12) is a naturally occurring compound produced by microorganisms and an essential nutrient for humans. Several papers highlight the role of VitB12 deficiency in bone and heart health, depression, memory performance, fertility, embryo development, and cancer, while VitB12 treatment is crucial for survival in inborn errors of VitB12 metabolism. VitB12 is administrated through intramuscular injection, thus impacting the patients’ lifestyle, although it is known that oral administration may meet the specific requirement even in the case of malabsorption. Furthermore, the high-dose injection of VitB12 does not ensure a constant dosage, while the oral route allows only 1.2% of the vitamin to be absorbed in human beings. Nanocarriers are promising nanotechnology that can enable therapies to be improved, reducing side effects. Today, nanocarrier strategies applied at VitB12 delivery are at the initial phase and aim to simplify administration, reduce costs, improve pharmacokinetics, and ameliorate the quality of patients’ lives. The safety of nanotechnologies is still under investigation and few treatments involving nanocarriers have been approved, so far. Here, we highlight the role of VitB12 in human metabolism and diseases, and the issues linked to its molecule properties, and discuss how nanocarriers can improve the therapy and supplementation of the vitamin and reduce possible side effects and limits.
Collapse
|
171
|
Okuda T, Yonekawa T, Murakami Y, Kinoshita T, Ito T, Matsushita K, Koike Y, Inoue M, Uchida K, Yodoya N, Ohashi H, Sawada H, Iwamoto S, Mitani Y, Hirayama M.
PIGO
variants in a boy with features of Mabry syndrome who also exhibits Fryns syndrome with peripheral neuropathy. Am J Med Genet A 2021. [DOI: 10.1002/ajmg.a.62005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Taro Okuda
- Department of Pediatrics Mie University Graduate School of Medicine Tsu Mie Japan
| | - Takahiro Yonekawa
- Department of Pediatrics Mie University Graduate School of Medicine Tsu Mie Japan
| | - Yoshiko Murakami
- Research Institute for Microbial Diseases and World Premier International Immunology Frontier Research Center Osaka University Osaka Japan
| | - Taroh Kinoshita
- Research Institute for Microbial Diseases and World Premier International Immunology Frontier Research Center Osaka University Osaka Japan
| | - Takahiro Ito
- Department of Pediatrics Mie University Graduate School of Medicine Tsu Mie Japan
| | - Kohei Matsushita
- Department of Gastrointestinal and Pediatric Surgery Mie University Graduate School of Medicine Tsu Mie Japan
| | - Yuhki Koike
- Department of Gastrointestinal and Pediatric Surgery Mie University Graduate School of Medicine Tsu Mie Japan
| | - Mikihiro Inoue
- Department of Gastrointestinal and Pediatric Surgery Mie University Graduate School of Medicine Tsu Mie Japan
| | - Keiichi Uchida
- Department of Gastrointestinal and Pediatric Surgery Mie University Graduate School of Medicine Tsu Mie Japan
| | - Noriko Yodoya
- Department of Pediatrics Mie University Graduate School of Medicine Tsu Mie Japan
| | - Hiroyuki Ohashi
- Department of Pediatrics Mie University Graduate School of Medicine Tsu Mie Japan
| | - Hirofumi Sawada
- Department of Pediatrics Mie University Graduate School of Medicine Tsu Mie Japan
| | - Shotaro Iwamoto
- Department of Pediatrics Mie University Graduate School of Medicine Tsu Mie Japan
| | - Yoshihide Mitani
- Department of Pediatrics Mie University Graduate School of Medicine Tsu Mie Japan
| | - Masahiro Hirayama
- Department of Pediatrics Mie University Graduate School of Medicine Tsu Mie Japan
| |
Collapse
|
172
|
Antonaros F, Lanfranchi S, Locatelli C, Martelli A, Olivucci G, Cicchini E, Carosi Diatricch L, Mannini E, Vione B, Feliciello A, Ramacieri G, Onnivello S, Vianello R, Vitale L, Pelleri MC, Strippoli P, Cocchi G, Pulina F, Piovesan A, Caracausi M. One-carbon pathway and cognitive skills in children with Down syndrome. Sci Rep 2021; 11:4225. [PMID: 33608632 PMCID: PMC7895965 DOI: 10.1038/s41598-021-83379-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/02/2021] [Indexed: 02/08/2023] Open
Abstract
This work investigates the role of metabolite levels in the intellectual impairment of subjects with Down syndrome (DS). Homocysteine, folate, vitamin B12, uric acid (UA), creatinine levels and MTHFR C677T genotype were analyzed in 147 subjects with DS. For 77 subjects, metabolite levels were correlated with cognitive tests. Griffiths-III test was administered to 28 subjects (3.08–6.16 years) and WPPSI-III test was administered to 49 subjects (7.08–16.08 years). Significant correlations were found among some metabolite levels and between homocysteine levels and MTHFR C677T genotype. Moreover, homocysteine, UA and creatinine levels resulted increased with age. We did not find any correlation between metabolites and cognitive test score in the younger group. Homocysteine showed statistically significant correlation with WPPSI-III subtest scores when its level is ≥ 7.35 µmol/L, remaining correlated in higher thresholds only for non-verbal area scores. Vitamin B12 showed correlations with all WPPSI-III subtest scores when its level is < 442 pg/mL. The relevance of the present findings is the detection of a specific metabolite threshold related with a better or worse cognitive score, suggesting that vitamin B12 and homocysteine may have a role in cognitive development in children with DS.
Collapse
Affiliation(s)
- Francesca Antonaros
- Department of Experimental, Diagnostic and Specialty Medicine, (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Silvia Lanfranchi
- Department of Developmental Psychology and Socialisation, University of Padova, Via Venezia 8, 35131, Padua, PD, Italy
| | - Chiara Locatelli
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Via Massarenti 9, 40138, Bologna, BO, Italy
| | - Anna Martelli
- Neonatology Unit, Department of Medical and Surgical Sciences (DIMEC), St. Orsola-Malpighi Polyclinic, University of Bologna, Via Massarenti 9, 40138, Bologna, BO, Italy
| | - Giulia Olivucci
- Medical Genetics Unit, Department of Medical and Surgical Sciences (DIMEC), St. Orsola-Malpighi Polyclinic, University of Bologna, Via Massarenti 9, 40138, Bologna, BO, Italy
| | - Elena Cicchini
- Department of Experimental, Diagnostic and Specialty Medicine, (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Ludovica Carosi Diatricch
- Department of Experimental, Diagnostic and Specialty Medicine, (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Elisa Mannini
- Department of Experimental, Diagnostic and Specialty Medicine, (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Beatrice Vione
- Department of Experimental, Diagnostic and Specialty Medicine, (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Agnese Feliciello
- Neonatology Unit, Department of Medical and Surgical Sciences (DIMEC), St. Orsola-Malpighi Polyclinic, University of Bologna, Via Massarenti 9, 40138, Bologna, BO, Italy
| | - Giuseppe Ramacieri
- Department of Experimental, Diagnostic and Specialty Medicine, (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Sara Onnivello
- Department of Developmental Psychology and Socialisation, University of Padova, Via Venezia 8, 35131, Padua, PD, Italy
| | - Renzo Vianello
- Department of Developmental Psychology and Socialisation, University of Padova, Via Venezia 8, 35131, Padua, PD, Italy
| | - Lorenza Vitale
- Department of Experimental, Diagnostic and Specialty Medicine, (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Maria Chiara Pelleri
- Department of Experimental, Diagnostic and Specialty Medicine, (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Pierluigi Strippoli
- Department of Experimental, Diagnostic and Specialty Medicine, (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Guido Cocchi
- Neonatology Unit, Department of Medical and Surgical Sciences (DIMEC), St. Orsola-Malpighi Polyclinic, University of Bologna, Via Massarenti 9, 40138, Bologna, BO, Italy
| | - Francesca Pulina
- Department of Developmental Psychology and Socialisation, University of Padova, Via Venezia 8, 35131, Padua, PD, Italy.
| | - Allison Piovesan
- Department of Experimental, Diagnostic and Specialty Medicine, (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy.
| | - Maria Caracausi
- Department of Experimental, Diagnostic and Specialty Medicine, (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| |
Collapse
|
173
|
Eltanany BM, Abd El-Hadi HR, Zaazaa HE, Eissa MS. In vitro analytical dissolution profiling of antiemetic delayed release tablets in two different dissolution media: Validated spectrophotometric methods versus reported HPLC. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119013. [PMID: 33049467 DOI: 10.1016/j.saa.2020.119013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/11/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
The combination of pyridoxine HCl (PYR) and doxylamine succinate (DOX) was proved to be effective and safe acting as the first line of pregnancy medication for vomiting and nausea under a trade name; Vomibreak® delayed release tablets. This combination has been available in the Egyptian market since 2016. Dissolution study is a meaningful tool that represents a predictor of output because the rate controlling steps in any drug's absorption is the rate of discharging from its medicinal formulation. Generally, the dissolution test of all delayed release tablets is operated at two stages: first the acid stage then the buffer stage. In our work, the acid stage was performed in 0.1 N hydrochloric acid (0.1 M HCl) and the buffer one was in 0.2 M sodium phosphate buffer (0.2 M Na-PB), pH = 6.8, according to FDA guidelines. In present work, for the first time, this binary mixture was quantitatively determined by applying four spectrophotometric methods. PYR was directly determined by zero order spectra method (D0) at 291.0 nm in the range 2.0-26.0 μg/mL in the acid stage and at 325.0 nm in the range 5.0-35.0 μg/mL in the buffer stage, where DOX show no interference in both cases. However, DOX was determined by three methods, namely, Dual wavelength (DW), Ratio difference (RD) and Derivative ratio (DD1). DD1 was the chosen method for determination of DOX in the two-phase dissolution study of Vomibreak® tablets at 249.0 nm in the range 2.0-44.0 μg/mL and 273.0 nm in the range 5.0-100.0 μg/mL in acid and buffer phases, respectively. All of the suggested methods were tested in compliance with ICH guidelines, where all methods were found to be reliable, reproducible, and selective. A statistical comparison was computed between two analytical techniques of critical importance in the development of two media dissolution profile: proposed UV- spectrophotometric and reported HPLC methods where no significant difference was found. Difference (ƒ1) and similarity (ƒ2) factors were calculated for PYR and DOX and shown that ƒ1 was 1.490 and 1.654 and ƒ2 was 94.431 and 92.396 for PYR and DOX, respectively.
Collapse
Affiliation(s)
- Basma M Eltanany
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, 11562 Kasr El-Aini St., Cairo, Egypt.
| | - Heidi R Abd El-Hadi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, Egypt
| | - Hala E Zaazaa
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, 11562 Kasr El-Aini St., Cairo, Egypt
| | - Maya S Eissa
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, Egypt
| |
Collapse
|
174
|
Abd El-Hadi H, Eltanany BM, Zaazaa HE, Eissa MS. HPLC-DAD Approach for Determination of Pyridoxine HCl and Doxylamine Succinate in Pure and Pharmaceutical Dosage Forms: A Green Stability-Indicating Assay Method. SSRN ELECTRONIC JOURNAL 2021. [DOI: 10.2139/ssrn.3932863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
175
|
Calderon-Ospina CA, Nava-Mesa MO, Paez-Hurtado AM. Update on Safety Profiles of Vitamins B1, B6, and B12: A Narrative Review. Ther Clin Risk Manag 2020; 16:1275-1288. [PMID: 33376337 PMCID: PMC7764703 DOI: 10.2147/tcrm.s274122] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022] Open
Abstract
The neurotropic B vitamins B1 (thiamine), B6 (pyridoxine), and B12 (cobalamin) are essential for proper functioning of the nervous system. Deficiencies may induce neurological disorders like peripheral neuropathy (PN) and mainly occur in vulnerable populations (eg, elderly, diabetics, alcoholics). As epidemiologic cohort studies raised safety concerns about vitamin B6/B12 intake being potentially associated with increased risks of hip fracture (HF) and lung cancer (LC), we explored these aspects and performed comprehensive literature searches. However, we suggest not to neglect actual high-risk factors (eg, smoking in LC, higher age in HF) by focusing on individual nutrients, but to examine the complex interaction of numerous factors involved in disease development. Because it warrants continued consideration, we also provide an update on neurotoxicity associated with vitamin B6. We consider that neurological side effects due to vitamin B6 intake are rare and only occur with high daily doses and/or longer treatment duration. The benefit-risk ratio of high-dose treatment with neurotropic B vitamins in indications like PN is therefore considered advantageous, particularly if dosing recommendations are followed and serum levels monitored.
Collapse
Affiliation(s)
- Carlos-Alberto Calderon-Ospina
- Center for Research in Genetics and Genomics (CIGGUR), GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Mauricio Orlando Nava-Mesa
- Neuroscience Research Group (NEUROS), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Ana María Paez-Hurtado
- Neuroscience Research Group (NEUROS), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
176
|
Singh P, Sivanandam TM, Konar A, Thakur MK. Role of nutraceuticals in cognition during aging and related disorders. Neurochem Int 2020; 143:104928. [PMID: 33285273 DOI: 10.1016/j.neuint.2020.104928] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022]
Abstract
Cognitive abilities are compromised with advancing age posing a great risk for the development of dementia and other related brain disorders. Genetic susceptibility as well as environmental exposures determine the fate of cognitive aging and its transition to pathological states. Emerging epidemiological and observational studies have revealed the importance of lifestyle factors including dietary patterns and nutritional intake in the maintenance of cognitive health and reducing the risk of neurodegenerative disorders. In this context, nutraceutical interventions have gained considerable attention in preventing age-related cognitive deficits and counteracting pathological processes. Nutraceuticals include dietary plants and derivatives, food supplements and processed foods with nutritional and pharmaceutical values. The present review highlights the importance of nutraceuticals in attenuating cognitive aging and its progression to dementia, with specific emphasis on chemical constituents, neurocognitive properties and mechanism of action.
Collapse
Affiliation(s)
- Padmanabh Singh
- Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Thamil Mani Sivanandam
- Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Arpita Konar
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India.
| | - M K Thakur
- Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
177
|
Gundluru M, Badavath VN, Shaik HY, Sudileti M, Nemallapudi BR, Gundala S, Zyryanov GV, Cirandur SR. Design, synthesis, cytotoxic evaluation and molecular docking studies of novel thiazolyl α-aminophosphonates. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04321-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
178
|
Zhou J, Effiong U. Isolated Pyridoxine Deficiency Presenting as Muscle Spasms in a Patient With Type 2 Diabetes: A Case Report and Literature Review. Am J Med Sci 2020; 361:791-794. [PMID: 33958192 DOI: 10.1016/j.amjms.2020.10.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/12/2020] [Accepted: 10/27/2020] [Indexed: 11/17/2022]
Abstract
Pyridoxine is an important co-factor for many biochemical reactions in cellular metabolism related to the synthesis and catabolism of amino acids, fatty acids, neurotransmitters. Deficiency of pyridoxine results in impaired transcellular signaling between neurons and presents with muscular convulsions, hyperirritability, and peripheral neuropathy. Deficiency of pyridoxine is usually found in association with other vitamin B deficiencies such as folate (vitamin B9) and cobalamin (vitamin B12). Isolated pyridoxine deficiency is extremely rare. We present the case of a 59-year old female with type 2 diabetes who complained of painful muscle spasms. Her muscle spasms involved in both feet, which have spread proximally to her legs. She also experienced intermittent muscle spasms in her left arm, which is not alleviated by baclofen, cyclobenzaprine. Her plasma pyridoxal 5-phosphate confirmed pyridoxine deficiency. Vitamins B1, B3, B12, and folate were within normal limits. The patient received standard-dose intramuscular pyridoxine injections for three weeks followed by oral supplements for 3 months and her symptoms resolved. This case illustrates the rare instance of isolated pyridoxine deficiency in type 2 diabetes patient manifesting as myoclonic muscle spasms involving the legs and arms in the absence of objective polyneuropathy. Pyridoxine level should, therefore, be assessed in patients with type 2 diabetes, including newly diagnosed patients.
Collapse
Affiliation(s)
- Joseph Zhou
- College of Medicine, Central Michigan University, Mount Pleasant, MI, USA.
| | - Utibe Effiong
- College of Medicine, Central Michigan University, Mount Pleasant, MI, USA; MidMichigan Health, Midland, MI, USA
| |
Collapse
|
179
|
Oyeyinka BO, Afolayan AJ. Potentials of Musa Species Fruits against Oxidative Stress-Induced and Diet-Linked Chronic Diseases: In Vitro and In Vivo Implications of Micronutritional Factors and Dietary Secondary Metabolite Compounds. Molecules 2020; 25:E5036. [PMID: 33142997 PMCID: PMC7663138 DOI: 10.3390/molecules25215036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/10/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Nutritional quality and the well-being of the body system are directly linked aspects of human survival. From the unborn foetus to adulthood, the need for sustainable access to micronutrient-rich foods is pertinent and the global consumption of banana and plantain fruits, in effect, contributes to the alleviation of the scourge of malnutrition. This review is particularly aimed at evaluating the pharmacological dimensions through the biological mechanisms of Musa fruits in the body, which represent correlations with their constituent micronutrient factors and dietary polyphenolic constituents such as minerals, vitamin members, anthocyanins, lutein, α-,β- carotenes, neoxanthins and cryptoxanthins, epi- and gallo catechins, catecholamines, 3-carboxycoumarin, β-sitosterol, monoterpenoids, with series of analytical approaches for the various identified compounds being highlighted therein. Derivative value-products from the compartments (flesh and peel) of Musa fruits are equally highlighted, bringing forth the biomedicinal and nutritional relevance, including the potentials of Musa species in dietary diversification approaches.
Collapse
Affiliation(s)
| | - Anthony Jide Afolayan
- Medicinal Plants and Economic Development (MPED) Research Centre, Department of Botany, University of Fort Hare, Alice 5700, South Africa;
| |
Collapse
|
180
|
Mibielli MAN, Nunes CP, Goldberg H, Buchman L, Oliveira L, Mezitis SGE, Wajnzstajn F, Kaufman R, Nigri R, Cytrynbaum N, Cunha KS, Santos A, Goldberg SW, Platenik NC, Rzetelna H, Futuro DB, Da Fonseca ADS, Geller M. Nucleotides Cytidine and Uridine Associated with Vitamin B12 vs B-Complex Vitamins in the Treatment of Low Back Pain: The NUBES Study. J Pain Res 2020; 13:2531-2541. [PMID: 33116795 PMCID: PMC7568635 DOI: 10.2147/jpr.s277024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/08/2020] [Indexed: 11/28/2022] Open
Abstract
Purpose We report the results of low back pain treatment using a combination of nucleotides, uridine (UTP), cytidine (CMP) and vitamin B12, vs a combination of vitamins B1, B6, and B12. Patients and Methods Randomized, double-blind, controlled trial, of a 60-day oral treatment: Group A (n=317) receiving nucleotides+B12 and Group B (n=317) receiving B vitamins. The primary endpoint was the percentage of subjects in each group presenting adverse events (AEs). Secondary endpoints were visual analog scale (VAS) pain scores at Visit 2 (day 30) and Visit 3 (day 60) in relation to pretreatment values, Roland–Morris Questionnaire (RMQ) scores and finger-to-floor distance (FFD) (percentage of subjects per group presenting improvement ≥5 points and ≥3cm, respectively). Results Seventy-five (24%) and 105 (33%) subjects (P=0.21) presented 133 and 241 AEs, with 3159% of subjects presenting ≥2 AEs (P=0.0019) in Group A and Group B, respectively. Twenty-four subjects in Group B were discontinued due to AEs, while no AE-related discontinuations occurred in Group A (P<0.0001). VAS score reduction after 30 and 60 days of treatment was statistically significant (P<0.0001) in both groups, with Group A showing greater reduction at Visit 2 (P<0.0001). RMQ score improvement ≥5 points occurred in 99% of subjects from each group, and FFD improvement ≥3 cm occurred in all subjects. Conclusion Treatment with nucleotides+B12 was associated with a lower number of total AEs, fewer AEs per subject, and no AE-related treatment discontinuation. Pain intensity (VAS) reduction was superior at 30 days of treatment in the nucleotides+B12 group and equivalent between groups at 60 days of treatment. Improvements in efficacy measures RMQ and FFD were observed in both groups at treatment days 30 and 60.
Collapse
Affiliation(s)
| | - Carlos Pereira Nunes
- UNIFESO Medical School, Teresópolis, Brazil.,UERJ Medical School, Rio De Janeiro, Brazil
| | - Henrique Goldberg
- Instituto De Pós-Graduação Médica Carlos Chagas (ICC), Rio De Janeiro, Brazil
| | | | - Lisa Oliveira
- Federal University of Rio De Janeiro (UFRJ), Rio De Janeiro, Brazil
| | - Spyros G E Mezitis
- New York-Presbyterian Hospital/Weill-Cornell Medical Center, New York, NY, USA
| | | | - Renato Kaufman
- Instituto De Pós-Graduação Médica Carlos Chagas (ICC), Rio De Janeiro, Brazil
| | - Rafael Nigri
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Natasha Cytrynbaum
- Instituto De Pós-Graduação Médica Carlos Chagas (ICC), Rio De Janeiro, Brazil
| | - Karin Soares Cunha
- Pathology Department, Universidade Federal Fluminense (UFF) Medical School, Niterói, Brazil
| | | | | | | | - Helio Rzetelna
- Santa Casa Da Misericórdia Do Rio De Janeiro, Rio De Janeiro, Brazil
| | | | | | - Mauro Geller
- UNIFESO Medical School, Teresópolis, Brazil.,Instituto De Pós-Graduação Médica Carlos Chagas (ICC), Rio De Janeiro, Brazil.,Federal University of Rio De Janeiro (UFRJ), Rio De Janeiro, Brazil
| |
Collapse
|
181
|
Lehrer S, Rheinstein PH. Statins combined with niacin reduce the risk of peripheral neuropathy. INTERNATIONAL JOURNAL OF FUNCTIONAL NUTRITION 2020; 1. [PMID: 33330853 PMCID: PMC7737454 DOI: 10.3892/ijfn.2020.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Statins are a class of lipid-lowering medications that reduce illness and mortality in those who are at a high risk of developing cardiovascular disease. They are the most common cholesterol-lowering drugs. A case control study published in 2002 indicated that statins may increase the risk of peripheral neuropathy. Statin users were 14-fold more likely to develop peripheral neuropathy than non-users, although the overall risk of developing neuropathy was minimal. However, a number of other studies have produced conflicting results regarding neuropathy and statins. Statins are frequently combined with niacin (vitamin B3). Due to its beneficial effects on lipid profiles, niacin has been prescribed for the prevention of heart disease for >40 years. Among the B vitamins, niacin has long been recognized as a key mediator of neuronal development and survival, and may be of value for the treatment of neuropathy. The present study aimed to assess whether the combination of niacin and statin may reduce the risk of peripheral neuropathy attributed to statins. For this purpose, data from MedWatch, the Food and Drug Administration (FDA) Safety Information and Adverse Event Reporting Program were analyzed. The online tool OpenVigil 2.1 was used to query the databases. The results revealed that the majority of statins alone were related to neuropathy. Pitavastatin was the only exception. The association with neuropathy was most pronounced in the lipophilic statins: Atorvastatin and fluvastatin. The association was weaker for other lipophilic statins, such as lovastatin and simvastatin. Two hydrophilic statins, rosuvastatin and pravastatin, exhibited a similarly weaker association with neuropathy, while no reports of any association of pitavastatin with neuropathy were found. Statins + niacin were unrelated to neuropathy. On the whole, the findings of the present study demonstrate that the controversial association of statins with neuropathy may be due to the fact that previous studies have not included the use of niacin and the potential neuroprotective effects of niacin. Multiple reports have stated that niacin is no longer beneficial for the management of hyperlipidemia and should be abandoned. However, given the apparent ability of niacin to reduce the risk of neuropathy, perhaps niacin should not be discarded before further studies are performed to provide more in depth information.
Collapse
Affiliation(s)
- Steven Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | |
Collapse
|
182
|
Ghazi T, Arumugam T, Foolchand A, Chuturgoon AA. The Impact of Natural Dietary Compounds and Food-Borne Mycotoxins on DNA Methylation and Cancer. Cells 2020; 9:E2004. [PMID: 32878338 PMCID: PMC7565866 DOI: 10.3390/cells9092004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer initiation and progression is an accumulation of genetic and epigenetic modifications. DNA methylation is a common epigenetic modification that regulates gene expression, and aberrant DNA methylation patterns are considered a hallmark of cancer. The human diet is a source of micronutrients, bioactive molecules, and mycotoxins that have the ability to alter DNA methylation patterns and are thus a contributing factor for both the prevention and onset of cancer. Micronutrients such as betaine, choline, folate, and methionine serve as cofactors or methyl donors for one-carbon metabolism and other DNA methylation reactions. Dietary bioactive compounds such as curcumin, epigallocatechin-3-gallate, genistein, quercetin, resveratrol, and sulforaphane reactivate essential tumor suppressor genes by reversing aberrant DNA methylation patterns, and therefore, they have shown potential against various cancers. In contrast, fungi-contaminated agricultural foods are a source of potent mycotoxins that induce carcinogenesis. In this review, we summarize the existing literature on dietary micronutrients, bioactive compounds, and food-borne mycotoxins that affect DNA methylation patterns and identify their potential in the onset and treatment of cancer.
Collapse
Affiliation(s)
| | | | | | - Anil A. Chuturgoon
- Department of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (T.G.); (T.A.); (A.F.)
| |
Collapse
|
183
|
Roda M, di Geronimo N, Pellegrini M, Schiavi C. Nutritional Optic Neuropathies: State of the Art and Emerging Evidences. Nutrients 2020; 12:E2653. [PMID: 32878163 PMCID: PMC7551088 DOI: 10.3390/nu12092653] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022] Open
Abstract
Nutritional optic neuropathy is a cause of bilateral, symmetrical, and progressive visual impairment with loss of central visual acuity and contrast sensitivity, dyschromatopsia, and a central or centrocecal scotoma. The clinical features are not pathognomonic, since hereditary and toxic forms share similar signs and symptoms. It is becoming increasingly common due to the widespread of bariatric surgery and strict vegetarian or vegan diets, so even the scientific interest has recently increased. In particular, recent studies have focused on possible pathogenetic mechanisms, and on novel diagnostic and therapeutic strategies in order to prevent the onset, make a prompt diagnosis and an accurate nutritional supplementation, and to avoid irreversible optic nerve atrophy. Nowadays, there is clear evidence of the role of cobalamin, folic acid, thiamine, and copper, whereas further studies are needed to define the role of niacin, riboflavin, and pyridoxine. This review aims to summarize the etiology, diagnosis, and treatment of nutritional optic neuropathy, and it is addressed not only to ophthalmologists, but to all physicians who could come in contact with a patient with a possible nutritional optic neuropathy, being a fundamental multidisciplinary approach.
Collapse
Affiliation(s)
- Matilde Roda
- Ophthalmology Unit, S. Orsola-Malpighi University Hospital, University of Bologna, 40138 Bologna, Italy; (N.d.G.); (M.P.); (C.S.)
| | | | | | | |
Collapse
|
184
|
Mechanisms of small nerve fiber pathology. Neurosci Lett 2020; 737:135316. [PMID: 32828814 DOI: 10.1016/j.neulet.2020.135316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022]
Abstract
Small fiber pathology is increasingly recognized as a potential contributor to neuropathic pain in different clinical syndromes, however, the underlying mechanisms leading to nociceptor sensitization and degeneration are unclear. With the diversity in clinical pain phenotypes and etiology of small fiber pathology, individual mechanisms are assumed, but are not yet fully understood. The thinly-myelinated Aδ- and unmyelinated C-nerve fibers are mainly affected and clinically require special small fiber test methods to capture functional, morphological, and electrophysiological alterations. Several methods have been established and implemented in clinical practice in the last years. In parallel, experimental and in vitro test systems have been developed allowing important insights into the molecular mechanisms underlying nociceptor sensitization and degeneration as main hallmarks of small fiber pathology. In our narrative review, we focus on these methods and current knowledge, and provide a synopsis of the achievements made so far in this exciting field.
Collapse
|
185
|
Jung HY, Kim W, Hahn KR, Kang MS, Kim TH, Kwon HJ, Nam SM, Chung JY, Choi JH, Yoon YS, Kim DW, Yoo DY, Hwang IK. Pyridoxine Deficiency Exacerbates Neuronal Damage after Ischemia by Increasing Oxidative Stress and Reduces Proliferating Cells and Neuroblasts in the Gerbil Hippocampus. Int J Mol Sci 2020; 21:ijms21155551. [PMID: 32759679 PMCID: PMC7432354 DOI: 10.3390/ijms21155551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 01/26/2023] Open
Abstract
We investigated the effects of pyridoxine deficiency on ischemic neuronal death in the hippocampus of gerbil (n = 5 per group). Serum pyridoxal 5′-phosphate levels were significantly decreased in Pyridoxine-deficient diet (PDD)-fed gerbils, while homocysteine levels were significantly increased in sham- and ischemia-operated gerbils. PDD-fed gerbil showed a reduction in neuronal nuclei (NeuN)-immunoreactive neurons in the medial part of the hippocampal CA1 region three days after. Reactive astrocytosis and microgliosis were found in PDD-fed gerbils, and transient ischemia caused the aggregation of activated microglia in the stratum pyramidale three days after ischemia. Lipid peroxidation was prominently increased in the hippocampus and was significantly higher in PDD-fed gerbils than in Control diet (CD)-fed gerbils after ischemia. In contrast, pyridoxine deficiency decreased the proliferating cells and neuroblasts in the dentate gyrus in sham- and ischemia-operated gerbils. Nuclear factor erythroid-2-related factor 2 (Nrf2) and brain-derived neurotrophic factor (BDNF) levels also significantly decreased in PDD-fed gerbils sham 24 h after ischemia. These results suggest that pyridoxine deficiency accelerates neuronal death by increasing serum homocysteine levels and lipid peroxidation, and by decreasing Nrf2 levels in the hippocampus. Additionally, it reduces the regenerated potentials in hippocampus by decreasing BDNF levels. Collectively, pyridoxine is an essential element in modulating cell death and hippocampal neurogenesis after ischemia.
Collapse
Affiliation(s)
- Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (H.Y.J.); (K.R.H.); (Y.S.Y.)
| | - Woosuk Kim
- Department of Biomedical Sciences, and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea;
| | - Kyu Ri Hahn
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (H.Y.J.); (K.R.H.); (Y.S.Y.)
| | - Min Soo Kang
- Department of Anatomy, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea; (M.S.K.); (T.H.K.); (J.H.C.)
| | - Tae Hyeong Kim
- Department of Anatomy, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea; (M.S.K.); (T.H.K.); (J.H.C.)
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea; (H.J.K.); (D.W.K.)
| | - Sung Min Nam
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, Seoul 05030, Korea;
| | - Jin Young Chung
- Department of Veterinary Internal Medicine and Geriatrics, College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea;
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea; (M.S.K.); (T.H.K.); (J.H.C.)
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (H.Y.J.); (K.R.H.); (Y.S.Y.)
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea; (H.J.K.); (D.W.K.)
| | - Dae Young Yoo
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
- Correspondence: (D.Y.Y.); (I.K.H.)
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (H.Y.J.); (K.R.H.); (Y.S.Y.)
- Correspondence: (D.Y.Y.); (I.K.H.)
| |
Collapse
|
186
|
Mallone F, Lucchino L, Franzone F, Marenco M, Carlesimo SC, Moramarco A. High-dose vitamin B supplementation for persistent visual deficit in multiple sclerosis: a pilot study. Drug Discov Ther 2020; 14:122-128. [PMID: 32669520 DOI: 10.5582/ddt.2020.03031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aim of this study is to investigate the potential neuroprotective effect of high-doses vitamins B1, B6 and B12 in patients with relapsing-remitting multiple sclerosis (RRMS) and persistent visual loss after acute optic neuritis (AON). Sixteen patients (20 eyes) diagnosed with RRMS and visual permanent disability following AON were enrolled for the present open, pilot study. Each patient was treated with oral high-doses 300 mg of vitamin B1, 450 mg of vitamin B6 and 1,500 mcg of vitamin B12, as add-on treatment to concomitant disease-modifying therapies (DMTs) for consecutive 90 days. Outcome measures were to determine changes from baseline to month three in visual acuity (VA) and visual field (VF) testing, with correlations with clinical parameters. Logistical regression was performed to evaluate predictors of final VA. A statistically significant improvement was registered in visual acuity (p = 0.002) and foveal sensitivity threshold (FT) (p = 0.006) at follow-up compared to baseline. A similar trend was demonstrated for mean deviation (MD) (p < 0.0001), and pattern standard deviation (PSD) (p < 0.0001). Age at the time of inclusion was positively correlated with latency time (rho = 0.47, p = 0.03), while showing a negative correlation with visual acuity (rho = - 0.45, p = 0.04) and foveal sensitivity threshold (rho = - 0.6, p = 0.005) at follow up. A statistically significant correlation was demonstrated between foveal sensitivity threshold and visual acuity at baseline (rho = 0.79, p < 0.0001). In a linear regression model, the main predictor of visual acuity at follow up was the foveal sensitivity threshold (B = 1.39; p < 0.0001). Supplemental high-dose vitamins B1, B6 and B12 resulted as effective therapy to improve visual function parameters in MS-related visual persistent disability.
Collapse
Affiliation(s)
- Fabiana Mallone
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | - Luca Lucchino
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | - Federica Franzone
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | - Marco Marenco
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | | | | |
Collapse
|
187
|
Shi C, Wang P, Airen S, Brown C, Liu Z, Townsend JH, Wang J, Jiang H. Nutritional and medical food therapies for diabetic retinopathy. EYE AND VISION (LONDON, ENGLAND) 2020; 7:33. [PMID: 32582807 PMCID: PMC7310218 DOI: 10.1186/s40662-020-00199-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 05/28/2020] [Indexed: 02/07/2023]
Abstract
Diabetic retinopathy (DR) is a form of microangiopathy. Reducing oxidative stress in the mitochondria and cell membranes decreases ischemic injury and end-organ damage to the retina. New approaches are needed, which reduce the risk and improve the outcomes of DR while complementing current therapeutic approaches. Homocysteine (Hcy) elevation and oxidative stress are potential therapeutic targets in DR. Common genetic polymorphisms such as those of methylenetetrahydrofolate reductase (MTHFR), increase Hcy and DR risk and severity. Patients with DR have high incidences of deficiencies of crucial vitamins, minerals, and related compounds, which also lead to elevation of Hcy and oxidative stress. Addressing the effects of the MTHFR polymorphism and addressing comorbid deficiencies and insufficiencies reduce the impact and severity of the disease. This approach provides safe and simple strategies that support conventional care and improve outcomes. Suboptimal vitamin co-factor availability also impairs the release of neurotrophic and neuroprotective growth factors. Collectively, this accounts for variability in presentation and response of DR to conventional therapy. Fortunately, there are straightforward recommendations for addressing these issues and supporting traditional treatment plans. We have reviewed the literature for nutritional interventions that support conventional therapies to reduce disease risk and severity. Optimal combinations of vitamins B1, B2, B6, L-methylfolate, methylcobalamin (B12), C, D, natural vitamin E complex, lutein, zeaxanthin, alpha-lipoic acid, and n-acetylcysteine are identified for protecting the retina and choroid. Certain medical foods have been successfully used as therapy for retinopathy. Recommendations based on this review and our clinical experience are developed for clinicians to use to support conventional therapy for DR. DR from both type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) have similar retinal findings and responses to nutritional therapies.
Collapse
Affiliation(s)
- Ce Shi
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, McKnight Building - Room 202A, Miami, FL 33136 USA
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Peng Wang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, McKnight Building - Room 202A, Miami, FL 33136 USA
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shriya Airen
- College of Arts and Sciences, University of Miami, Miami, FL USA
| | - Craig Brown
- Department of Ophthalmology, College of Medicine, the University of Arkansas for Medical Sciences, Fayetteville, AR USA
| | - Zhiping Liu
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, McKnight Building - Room 202A, Miami, FL 33136 USA
- Ophthalmic Center, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong China
| | - Justin H. Townsend
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, McKnight Building - Room 202A, Miami, FL 33136 USA
| | - Jianhua Wang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, McKnight Building - Room 202A, Miami, FL 33136 USA
| | - Hong Jiang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, McKnight Building - Room 202A, Miami, FL 33136 USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL USA
| |
Collapse
|
188
|
Complications of Pediatric Bladder Reconstruction in the Adult Patient. CURRENT BLADDER DYSFUNCTION REPORTS 2020. [DOI: 10.1007/s11884-020-00584-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
189
|
Obi J, Pastores SM, Ramanathan LV, Yang J, Halpern NA. Treating sepsis with vitamin C, thiamine, and hydrocortisone: Exploring the quest for the magic elixir. J Crit Care 2020; 57:231-239. [PMID: 32061462 PMCID: PMC8254386 DOI: 10.1016/j.jcrc.2019.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/28/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
The administration of ascorbic acid (vitamin C) alone or in combination with thiamine (vitamin B1) and corticosteroids (VCTS) has recently been hypothesized to improve hemodynamics, end-organ function, and may even increase survival in critically ill patients. There are several clinical studies that have investigated the use of vitamin C alone or VCTS in patients with sepsis and septic shock or are ongoing. Some of these studies have demonstrated its safety and potential benefit in septic patients. However, many questions remain regarding the optimal dosing regimens and plasma concentrations, timing of administration, and adverse effects of vitamin C and thiamine. These questions exist because the bulk of research regarding the efficacy of vitamin C alone or in combination with thiamine and corticosteroids in sepsis is limited to a few randomized controlled trials, retrospective before-and-after studies, and case reports. Thus, although the underlying rationale and mechanistic pathways of vitamin C and thiamine in sepsis have been well described, the clinical impact of the VCTS regimen is complex and remains to be determined. This review aims to explore the current evidence and potential benefits and adverse effects of the VCTS regimen for the treatment of sepsis.
Collapse
Affiliation(s)
- J Obi
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - S M Pastores
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America; Weill Cornell Medical College, Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America.
| | - L V Ramanathan
- Clinical Chemistry Service, Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - J Yang
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - N A Halpern
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America; Weill Cornell Medical College, Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| |
Collapse
|
190
|
Abulseoud OA, Şenormancı G, Şenormancı Ö, Güçlü O, Schleyer B, Camsari U. Sex difference in the progression of manic symptoms during acute hospitalization: A prospective pilot study. Brain Behav 2020; 10:e01568. [PMID: 32053271 PMCID: PMC7066352 DOI: 10.1002/brb3.1568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/06/2020] [Accepted: 01/27/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Acute mania is a serious medical condition that impacts men and women equally. Longtime presentation of manic symptoms is sex-dependent; however, little is known about acute symptoms of mania. The objective of this study is to track and compare acute manic symptoms for sex differences during inpatient hospitalization. METHODS All patients with bipolar mania admitted to a large university hospital between January and October 2017 were invited to participate in this longitudinal naturalistic follow-up study. Manic (YMRS), depressive (MADRS), and psychotic (PAS) symptoms were tracked daily from admission to discharge. RESULTS The total YMRS scores decreased significantly overtime (p < .0001) in both male (n = 34) and female (n = 23) patients (p = .7). However, male patients scored significantly higher in sexual interest (p = .01), disruptive and aggressive behavior (p = .01), and appearance (p < .001) while females had better insight into their illness (p = .01). Males and females received similar doses of lithium (p = .1), but males received significantly higher doses of valproic acid (VPA) in comparison with females (p = .003). However, plasma lithium and VPA concentrations at discharge were not significantly different between sexes. CONCLUSION Our results show sex differences in the progression of certain domains of manic symptoms in a cohort of 23 female and 34 male patients admitted to a large academic center in Turkey. Males, in this sample, exhibited more sexual interest, disruptive and aggressive behaviors, better grooming, and less insight compared to females. While these results are concordant with our preclinical findings and with anecdotal clinical observations, replication in larger samples is needed.
Collapse
Affiliation(s)
- Osama A Abulseoud
- Neuroimaging Research Branch, IRP, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Güliz Şenormancı
- University of Health Sciences Bursa Yüksek İhtisas Training and Research Hospital Psychiatry Department, Bursa, Turkey
| | - Ömer Şenormancı
- University of Health Sciences Bursa Yüksek İhtisas Training and Research Hospital Psychiatry Department, Bursa, Turkey
| | - Oya Güçlü
- Bakirkoy Research & Training Hospital for Psychiatry, Neurology, Neurosurgery and Psychiatry Department, İstanbul, Turkey
| | - Brooke Schleyer
- Neuroimaging Research Branch, IRP, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Ulas Camsari
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
191
|
Calderón-Ospina CA, Nava-Mesa MO. B Vitamins in the nervous system: Current knowledge of the biochemical modes of action and synergies of thiamine, pyridoxine, and cobalamin. CNS Neurosci Ther 2019; 26:5-13. [PMID: 31490017 PMCID: PMC6930825 DOI: 10.1111/cns.13207] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 01/03/2023] Open
Abstract
Background Neurotropic B vitamins play crucial roles as coenzymes and beyond in the nervous system. Particularly vitamin B1 (thiamine), B6 (pyridoxine), and B12 (cobalamin) contribute essentially to the maintenance of a healthy nervous system. Their importance is highlighted by many neurological diseases related to deficiencies in one or more of these vitamins, but they can improve certain neurological conditions even without a (proven) deficiency. Aim This review focuses on the most important biochemical mechanisms, how they are linked with neurological functions and what deficits arise from malfunctioning of these pathways. Discussion We discussed the main role of B Vitamins on several functions in the peripheral and central nervous system (PNS and CNS) including cellular energetic processes, antioxidative and neuroprotective effects, and both myelin and neurotransmitter synthesis. We also provide an overview of possible biochemical synergies between thiamine, pyridoxine, and cobalamin and discuss by which major roles each of them may contribute to the synergy and how these functions are inter‐related and complement each other. Conclusion Taking into account the current knowledge on the neurotropic vitamins B1, B6, and B12, we conclude that a biochemical synergy becomes apparent in many different pathways in the nervous system, particularly in the PNS as exemplified by their combined use in the treatment of peripheral neuropathy.
Collapse
Affiliation(s)
- Carlos Alberto Calderón-Ospina
- Center for Research in Genetics and Genomics (CIGGUR), GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Mauricio Orlando Nava-Mesa
- Neuroscience Research Group (NEUROS), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|