151
|
Coskun D, Britto DT, Kochian LV, Kronzucker HJ. How high do ion fluxes go? A re-evaluation of the two-mechanism model of K(+) transport in plant roots. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 243:96-104. [PMID: 26795154 DOI: 10.1016/j.plantsci.2015.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/04/2015] [Accepted: 12/08/2015] [Indexed: 05/21/2023]
Abstract
Potassium (K(+)) acquisition in roots is generally described by a two-mechanism model, consisting of a saturable, high-affinity transport system (HATS) operating via H(+)/K(+) symport at low (<1mM) external [K(+)] ([K(+)]ext), and a linear, low-affinity system (LATS) operating via ion channels at high (>1mM) [K(+)]ext. Radiotracer measurements in the LATS range indicate that the linear rise in influx continues well beyond nutritionally relevant concentrations (>10mM), suggesting K(+) transport may be pushed to extraordinary, and seemingly limitless, capacity. Here, we assess this rise, asking whether LATS measurements faithfully report transmembrane fluxes. Using (42)K(+)-isotope and electrophysiological methods in barley, we show that this flux is part of a K(+)-transport cycle through the apoplast, and masks a genuine plasma-membrane influx that displays Michaelis-Menten kinetics. Rapid apoplastic cycling of K(+) is corroborated by an absence of transmembrane (42)K(+) efflux above 1mM, and by the efflux kinetics of PTS, an apoplastic tracer. A linear apoplastic influx, masking a saturating transmembrane influx, was also found in Arabidopsis mutants lacking the K(+) transporters AtHAK5 and AtAKT1. Our work significantly revises the model of K(+) transport by demonstrating a surprisingly modest upper limit for plasma-membrane influx, and offers insight into sodium transport under salt stress.
Collapse
Affiliation(s)
- Devrim Coskun
- Department of Biological Sciences & Canadian Centre for World Hunger Research (CCWHR), University of Toronto, Toronto, Ontario M1C 1A4, Canada.
| | - Dev T Britto
- Department of Biological Sciences & Canadian Centre for World Hunger Research (CCWHR), University of Toronto, Toronto, Ontario M1C 1A4, Canada.
| | - Leon V Kochian
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, New York 14853, USA.
| | - Herbert J Kronzucker
- Department of Biological Sciences & Canadian Centre for World Hunger Research (CCWHR), University of Toronto, Toronto, Ontario M1C 1A4, Canada.
| |
Collapse
|
152
|
Vitali V, Sutka M, Amodeo G, Chara O, Ozu M. The Water to Solute Permeability Ratio Governs the Osmotic Volume Dynamics in Beetroot Vacuoles. FRONTIERS IN PLANT SCIENCE 2016; 7:1388. [PMID: 27695468 PMCID: PMC5024706 DOI: 10.3389/fpls.2016.01388] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 08/31/2016] [Indexed: 05/11/2023]
Abstract
Plant cell vacuoles occupy up to 90% of the cell volume and, beyond their physiological function, are constantly subjected to water and solute exchange. The osmotic flow and vacuole volume dynamics relies on the vacuole membrane -the tonoplast- and its capacity to regulate its permeability to both water and solutes. The osmotic permeability coefficient (Pf ) is the parameter that better characterizes the water transport when submitted to an osmotic gradient. Usually, Pf determinations are made in vitro from the initial rate of volume change, when a fast (almost instantaneous) osmolality change occurs. When aquaporins are present, it is accepted that initial volume changes are only due to water movements. However, in living cells osmotic changes are not necessarily abrupt but gradually imposed. Under these conditions, water flux might not be the only relevant driving force shaping the vacuole volume response. In this study, we quantitatively investigated volume dynamics of isolated Beta vulgaris root vacuoles under progressively applied osmotic gradients at different pH, a condition that modifies the tonoplast Pf . We followed the vacuole volume changes while simultaneously determining the external osmolality time-courses and analyzing these data with mathematical modeling. Our findings indicate that vacuole volume changes, under progressively applied osmotic gradients, would not depend on the membrane elastic properties, nor on the non-osmotic volume of the vacuole, but on water and solute fluxes across the tonoplast. We found that the volume of the vacuole at the steady state is determined by the ratio of water to solute permeabilites (Pf /Ps ), which in turn is ruled by pH. The dependence of the permeability ratio on pH can be interpreted in terms of the degree of aquaporin inhibition and the consequently solute transport modulation. This is relevant in many plant organs such as root, leaves, cotyledons, or stems that perform extensive rhythmic growth movements, which very likely involve considerable cell volume changes within seconds to hours.
Collapse
Affiliation(s)
- Victoria Vitali
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Instituto de Biodiversidad y Biología Experimental y Aplicada, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Moira Sutka
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Instituto de Biodiversidad y Biología Experimental y Aplicada, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Gabriela Amodeo
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Instituto de Biodiversidad y Biología Experimental y Aplicada, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Osvaldo Chara
- System Biology Group (SysBio), Institute of Physics of Liquids and Biological Systems (IFLYSIB) CONICET, University of La PlataLa Plata, Argentina
- Center for Information Services and High Performance Computing, Technische Universität DresdenDresden, Germany
| | - Marcelo Ozu
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Instituto de Biodiversidad y Biología Experimental y Aplicada, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Instituto de Fisiología y Biofísica (IFIBIO–Houssay), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
- *Correspondence: Marcelo Ozu
| |
Collapse
|
153
|
Nieves-Cordones M, Martínez V, Benito B, Rubio F. Comparison between Arabidopsis and Rice for Main Pathways of K(+) and Na(+) Uptake by Roots. FRONTIERS IN PLANT SCIENCE 2016; 7:992. [PMID: 27458473 PMCID: PMC4932104 DOI: 10.3389/fpls.2016.00992] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/22/2016] [Indexed: 05/22/2023]
Abstract
K(+) is an essential macronutrient for plants. It is acquired by specific uptake systems located in roots. Although the concentrations of K(+) in the soil solution are widely variable, K(+) nutrition is secured by uptake systems that exhibit different affinities for K(+). Two main systems have been described for root K(+) uptake in several species: the high-affinity HAK5-like transporter and the inward-rectifier AKT1-like channel. Other unidentified systems may be also involved in root K(+) uptake, although they only seem to operate when K(+) is not limiting. The use of knock-out lines has allowed demonstrating their role in root K(+) uptake in Arabidopsis and rice. Plant adaptation to the different K(+) supplies relies on the finely tuned regulation of these systems. Low K(+)-induced transcriptional up-regulation of the genes encoding HAK5-like transporters occurs through a signal cascade that includes changes in the membrane potential of root cells and increases in ethylene and reactive oxygen species concentrations. Activation of AKT1 channels occurs through phosphorylation by the CIPK23/CBL1 complex. Recently, activation of the Arabidopsis HAK5 by the same complex has been reported, pointing to CIPK23/CBL as a central regulator of the plant's adaptation to low K(+). Na(+) is not an essential plant nutrient but it may be beneficial for some plants. At low concentrations, Na(+) improves growth, especially under K(+) deficiency. Thus, high-affinity Na(+) uptake systems have been described that belong to the HKT and HAK families of transporters. At high concentrations, typical of saline environments, Na(+) accumulates in plant tissues at high concentrations, producing alterations that include toxicity, water deficit and K(+) deficiency. Data concerning pathways for Na(+) uptake into roots under saline conditions are still scarce, although several possibilities have been proposed. The apoplast is a significant pathway for Na(+) uptake in rice grown under salinity conditions, but in other plant species different mechanisms involving non-selective cation channels or transporters are under discussion.
Collapse
Affiliation(s)
- Manuel Nieves-Cordones
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2Montpellier, France
| | - Vicente Martínez
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura – Consejo Superior de Investigaciones CientíficasMurcia, Spain
| | - Begoña Benito
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de MadridMadrid, Spain
| | - Francisco Rubio
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura – Consejo Superior de Investigaciones CientíficasMurcia, Spain
- *Correspondence: Francisco Rubio,
| |
Collapse
|
154
|
Houmani H, J Corpas F. Differential responses to salt-induced oxidative stress in three phylogenetically related plant species: Arabidopsis thaliana (glycophyte), Thellungiella salsuginea and Cakile maritima (halophytes). Involvement of ROS and NO in the control of K+/Na+ homeostasis. AIMS BIOPHYSICS 2016. [DOI: 10.3934/biophy.2016.3.380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
155
|
Yang Y, Jiang H, Wang M, Korpelainen H, Li C. Male poplars have a stronger ability to balance growth and carbohydrate accumulation than do females in response to a short-term potassium deficiency. PHYSIOLOGIA PLANTARUM 2015; 155:400-413. [PMID: 25615581 DOI: 10.1111/ppl.12325] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 01/09/2015] [Accepted: 01/14/2015] [Indexed: 06/04/2023]
Abstract
Potassium (K) deficiency influences plant performance, such as ion uptake and carbohydrate transport. However, little is known about differences between males and females in response to K deficiency. In this study, dry matter accumulation, photosynthetic capacity, allocation patterns of K(+) , Na(+) and carbohydrates, and ultrastructural changes in males and females of Populus cathayana exposed to K deficiency were investigated. The results indicated that males maintained a significantly higher K(+) content and K(+) /Na(+) ratio in leaves and stems than did females under K deficiency. Moreover, K deficiency significantly increased the sucrose content of females, whereas no significant effect on males was detected. In addition, a comparative analysis showed that males allocated more resources to roots, while females allocated more to leaves, which resulted in sexually different root/shoot (R/S) ratios. Transmission electron microscopic (TEM) observations showed that males suffered fewer injuries than did females. These results suggested that males have a better ability to cope with K deficiency. In addition, the combined effects of salinity and K deficiency on poplars were studied. The results indicated that salt stress aggravates the negative effects caused by K deficiency. Taken together, our study provided evidence for gender-specific strategies in ion and carbohydrate allocation in poplars exposed to a short-term K deficiency. In leaves and stems, the lower K(+) accumulation inhibited sucrose translocation and resulted in a decreased R/S ratio, which may contribute to males having a stronger ability to balance growth and carbohydrate accumulation when compared with females.
Collapse
Affiliation(s)
- Yanni Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Hao Jiang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Maolin Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Chunyang Li
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
156
|
Fita A, Rodríguez-Burruezo A, Boscaiu M, Prohens J, Vicente O. Breeding and Domesticating Crops Adapted to Drought and Salinity: A New Paradigm for Increasing Food Production. FRONTIERS IN PLANT SCIENCE 2015; 6:978. [PMID: 26617620 PMCID: PMC4641906 DOI: 10.3389/fpls.2015.00978] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/26/2015] [Indexed: 05/17/2023]
Abstract
World population is expected to reach 9.2 × 10(9) people by 2050. Feeding them will require a boost in crop productivity using innovative approaches. Current agricultural production is very dependent on large amounts of inputs and water availability is a major limiting factor. In addition, the loss of genetic diversity and the threat of climate change make a change of paradigm in plant breeding and agricultural practices necessary. Average yields in all major crops are only a small fraction of record yields, and drought and soil salinity are the main factors responsible for yield reduction. Therefore there is the need to enhance crop productivity by improving crop adaptation. Here we review the present situation and propose the development of crops tolerant to drought and salt stress for addressing the challenge of dramatically increasing food production in the near future. The success in the development of crops adapted to drought and salt depends on the efficient and combined use of genetic engineering and traditional breeding tools. Moreover, we propose the domestication of new halophilic crops to create a 'saline agriculture' which will not compete in terms of resources with conventional agriculture.
Collapse
Affiliation(s)
- Ana Fita
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de ValènciaValencia, Spain
| | - Adrián Rodríguez-Burruezo
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de ValènciaValencia, Spain
| | - Monica Boscaiu
- Mediterranean Agroforestal Institute, Universitat Politècnica de ValènciaValencia, Spain
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de ValènciaValencia, Spain
| | - Oscar Vicente
- Institute of Plant Molecular and Cellular Biology, Universitat Politècnica de València – Consejo Superior de Investigaciones CientíficasValencia, Spain
| |
Collapse
|
157
|
Foster KJ, Miklavcic SJ. Toward a biophysical understanding of the salt stress response of individual plant cells. J Theor Biol 2015; 385:130-42. [DOI: 10.1016/j.jtbi.2015.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 08/22/2015] [Accepted: 08/25/2015] [Indexed: 10/23/2022]
|
158
|
Volkov V. Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes. FRONTIERS IN PLANT SCIENCE 2015; 6:873. [PMID: 26579140 PMCID: PMC4621421 DOI: 10.3389/fpls.2015.00873] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/01/2015] [Indexed: 05/18/2023]
Abstract
Ion transport is the fundamental factor determining salinity tolerance in plants. The Review starts from differences in ion transport between salt tolerant halophytes and salt-sensitive plants with an emphasis on transport of potassium and sodium via plasma membranes. The comparison provides introductory information for increasing salinity tolerance. Effects of salt stress on ion transport properties of membranes show huge opportunities for manipulating ion fluxes. Further steps require knowledge about mechanisms of ion transport and individual genes of ion transport proteins. Initially, the Review describes methods to measure ion fluxes, the independent set of techniques ensures robust and reliable basement for quantitative approach. The Review briefly summarizes current data concerning Na(+) and K(+) concentrations in cells, refers to primary thermodynamics of ion transport and gives special attention to individual ion channels and transporters. Simplified scheme of a plant cell with known transport systems at the plasma membrane and tonoplast helps to imagine the complexity of ion transport and allows choosing specific transporters for modulating ion transport. The complexity is enhanced by the influence of cell size and cell wall on ion transport. Special attention is given to ion transporters and to potassium and sodium transport by HKT, HAK, NHX, and SOS1 proteins. Comparison between non-selective cation channels and ion transporters reveals potential importance of ion transporters and the balance between the two pathways of ion transport. Further on the Review describes in detail several successful attempts to overexpress or knockout ion transporters for changing salinity tolerance. Future perspectives are questioned with more attention given to promising candidate ion channels and transporters for altered expression. Potential direction of increasing salinity tolerance by modifying ion channels and transporters using single point mutations is discussed and questioned. An alternative approach from synthetic biology is to create new regulation networks using novel transport proteins with desired properties for transforming agricultural crops. The approach had not been widely used earlier; it leads also to theoretical and pure scientific aspects of protein chemistry, structure-function relations of membrane proteins, systems biology and physiology of stress and ion homeostasis. Summarizing, several potential ways are aimed at required increase in salinity tolerance of plants of interest.
Collapse
Affiliation(s)
- Vadim Volkov
- Faculty of Life Sciences and Computing, London Metropolitan UniversityLondon, UK
| |
Collapse
|
159
|
Makhloufi E, Yousfi FE, Pirrello J, Bernadac A, Ghorbel A, Bouzayen M. TdERF1, an ethylene response factor associated with dehydration responses in durum wheat (Triticum turgidum L. subsp. durum). PLANT SIGNALING & BEHAVIOR 2015; 10:e1065366. [PMID: 26338450 PMCID: PMC4883918 DOI: 10.1080/15592324.2015.1065366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 06/05/2023]
Abstract
Water deficit and increasing salinization reduce productivity of wheat, the leading crop for human diet. While the complete genome sequence of this crop has not been deciphered, a BAC library screening allowed the isolation of TdERF1, the first ethylene response factor gene from durum wheat. This gene is putatively involved in mediating salt stress tolerance and its characterization provides clues toward understanding the mechanisms underlying the adaptation/tolerance of durum wheat to suboptimal growth conditions. TdERF1 expression is differentially induced by high salt treatment in 2 durum wheat varieties, the salt-tolerant Grecale (GR) and the salt-sensitive Om Rabiaa (OR). To further extend these findings, we show here that the expression of this ERF is correlated with physiological parameters, such as the accumulation of osmo-regulators and membrane integrity, that discriminate between the 2 contrasted wheat genotypes. The data confirm that GR and OR are 2 contrasted wheat genotypes with regard to salt-stress and show that TdERF1 is also induced by water stress with an expression pattern clearly discriminating between the 2 genotypes. These findings suggest that TdERF1 might be involved in responses to salt and water stress providing a potential genetic marker discriminating between tolerant and sensitive wheat varieties.
Collapse
Affiliation(s)
- Emna Makhloufi
- University of Toulouse, INPT; Laboratoire de Génomique et Biotechnologie des Fruits; Castanet-Tolosan, France
- INRA; UMR990 Génomique et Biotechnologie des Fruits; Castanet-Tolosan, France
- Center of Biotechnology of Borj Cedria (CBBC); Lab. Plant Molecular Physiology; Borj Cedria Science and Technology Park; Hammam-Lif, Tunisia
| | - Fatma-Ezzahra Yousfi
- University of Toulouse, INPT; Laboratoire de Génomique et Biotechnologie des Fruits; Castanet-Tolosan, France
- INRA; UMR990 Génomique et Biotechnologie des Fruits; Castanet-Tolosan, France
- Center of Biotechnology of Borj Cedria (CBBC); Lab. Plant Molecular Physiology; Borj Cedria Science and Technology Park; Hammam-Lif, Tunisia
| | - Julien Pirrello
- University of Toulouse, INPT; Laboratoire de Génomique et Biotechnologie des Fruits; Castanet-Tolosan, France
- INRA; UMR990 Génomique et Biotechnologie des Fruits; Castanet-Tolosan, France
| | - Anne Bernadac
- University of Toulouse, INPT; Laboratoire de Génomique et Biotechnologie des Fruits; Castanet-Tolosan, France
- INRA; UMR990 Génomique et Biotechnologie des Fruits; Castanet-Tolosan, France
| | - Abdelwahed Ghorbel
- Center of Biotechnology of Borj Cedria (CBBC); Lab. Plant Molecular Physiology; Borj Cedria Science and Technology Park; Hammam-Lif, Tunisia
| | - Mondher Bouzayen
- University of Toulouse, INPT; Laboratoire de Génomique et Biotechnologie des Fruits; Castanet-Tolosan, France
- INRA; UMR990 Génomique et Biotechnologie des Fruits; Castanet-Tolosan, France
| |
Collapse
|
160
|
Britto DT, Kronzucker HJ. Sodium efflux in plant roots: what do we really know? JOURNAL OF PLANT PHYSIOLOGY 2015; 186-187:1-12. [PMID: 26318642 DOI: 10.1016/j.jplph.2015.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/03/2015] [Accepted: 08/03/2015] [Indexed: 05/27/2023]
Abstract
The efflux of sodium (Na(+)) ions across the plasma membrane of plant root cells into the external medium is surprisingly poorly understood. Nevertheless, Na(+) efflux is widely regarded as a major mechanism by which plants restrain the rise of Na(+) concentrations in the cytosolic compartments of root cells and, thus, achieve a degree of tolerance to saline environments. In this review, several key ideas and bodies of evidence concerning root Na(+) efflux are summarized with a critical eye. Findings from decades past are brought to bear on current thinking, and pivotal studies are discussed, both "purely physiological", and also with regard to the SOS1 protein, the only major Na(+) efflux transporter that has, to date, been genetically characterized. We find that the current model of rapid transmembrane sodium cycling (RTSC), across the plasma membrane of root cells, is not adequately supported by evidence from the majority of efflux studies. An alternative hypothesis cannot be ruled out, that most Na(+) tracer efflux from the root in the salinity range does not proceed across the plasma membrane, but through the apoplast. Support for this idea comes from studies showing that Na(+) efflux, when measured with tracers, is rarely affected by the presence of inhibitors or the ionic composition in saline rooting media. We conclude that the actual efflux of Na(+) across the plasma membrane of root cells may be much more modest than what is often reported in studies using tracers, and may predominantly occur in the root tips, where SOS1 expression has been localized.
Collapse
Affiliation(s)
- D T Britto
- University of Toronto, Canadian Centre for World Hunger Research, Canada
| | - H J Kronzucker
- University of Toronto, Canadian Centre for World Hunger Research, Canada.
| |
Collapse
|
161
|
Wu GQ, Feng RJ, Wang SM, Wang CM, Bao AK, Wei L, Yuan HJ. Co-expression of xerophyte Zygophyllum xanthoxylum ZxNHX and ZxVP1-1 confers enhanced salinity tolerance in chimeric sugar beet (Beta vulgaris L.). FRONTIERS IN PLANT SCIENCE 2015; 6:581. [PMID: 26284097 PMCID: PMC4517593 DOI: 10.3389/fpls.2015.00581] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/13/2015] [Indexed: 05/20/2023]
Abstract
Salinity is one of the major abiotic stresses that limit the growth and productivity of sugar beet (Beta vulgaris L.). To improve sugar beet's salinity tolerance, the ZxNHX and ZxVP1-1 genes encoding tonoplast Na(+)/H(+) antiporter and H(+)-PPase from xerophyte Zygophyllum xanthoxylum were co-expressed by Agrobacterium tumefaciens-mediated transformation. It is showed here that co-expression of ZxNHX and ZxVP1-1 confers enhanced salinity tolerance to the transformed sugar beet plants compared with the wild-type (WT) plants. The chimeric plants grew well in the presence of high salinity (400 mM NaCl), whereas WT plants displayed chlorosis and died within 8 days. Compared to WT plants, the chimeric plants co-expressing ZxNHX and ZxVP1-1 accumulated more proline, Na(+) and K(+) in their leaves and petioles when exposed to high salinity, which caused lower solute potential, retained more water and thus subjected to lesser cell membrane damage. Interestingly, the chimeric plants accumulated higher sucrose, glucose and fructose contents in their storage roots than WT plants in the absence or presence of high salinity. Our results suggested that co-expression of ZxNHX and ZxVP1-1 improved the osmoregulatory capacity in chimeric sugar beet through increased compartmentalization of ions into the vacuoles by enhancing the activity of proton pumps and thus mitigated Na(+)-toxicity for plants.
Collapse
Affiliation(s)
- Guo-Qiang Wu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Rui-Jun Feng
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Suo-Min Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Chun-Mei Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ai-Ke Bao
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Li Wei
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Hui-Jun Yuan
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| |
Collapse
|
162
|
Chen Y, Li L, Zong J, Chen J, Guo H, Guo A, Liu J. Heterologous expression of the halophyte Zoysia matrella H⁺-pyrophosphatase gene improved salt tolerance in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 91:49-55. [PMID: 25874657 DOI: 10.1016/j.plaphy.2015.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 02/15/2015] [Accepted: 04/07/2015] [Indexed: 05/27/2023]
Abstract
A number of vacuolar H(+)-pyrophosphatase (VP) family genes play important roles in plant growth under salt stress condition. Despite their biological importance in plant salt-stress regulation, there is no report about VP in the halophytic turfgrass Zoysia matrella. Here, we isolated ZmVP1, a type I VP homologues gene encoding 768 amino acids by using the degenerated PCR and RACE PCR methods from Zoysia matrella. The expression level of ZmVP1 was significantly induced by salinity, drought and cold, but not by heat. ZmVP1 can restore the salt-tolerant ability of a salt-sensitive yeast strain. Overexpression of ZmVP1 in Arabidopsis thaliana resulted in more vigorous growth under salt stress. Moreover, the transgenic Arabidopsis accumulated more Na(+) and K(+) in the leaves compared to that of wild type plants under salt stress, had higher activities of V-ATPase and V-PPase, and showed higher relative gene expression levels of 5 stress-related genes (AtNHX1, AtLEA, AtP5CS, AtMn-SOD, AtAPX1). These results demonstrated that ZmVP1 from Z. matrella was a functional tonoplast H(+)-pyrophosphatase contributing to salt tolerance potentially through regulating the Na(+) compartment in vacuole, K(+) assimilation, osmotic regulation and antioxidant response.
Collapse
Affiliation(s)
- Yu Chen
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Institute of Botany, Jiangsu Province & Chinese Academy of Sciences, Nanjing 210014, China
| | - Lanlan Li
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Institute of Botany, Jiangsu Province & Chinese Academy of Sciences, Nanjing 210014, China
| | - Junqin Zong
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Institute of Botany, Jiangsu Province & Chinese Academy of Sciences, Nanjing 210014, China
| | - Jingbo Chen
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Institute of Botany, Jiangsu Province & Chinese Academy of Sciences, Nanjing 210014, China
| | - Hailin Guo
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Institute of Botany, Jiangsu Province & Chinese Academy of Sciences, Nanjing 210014, China
| | - Aigui Guo
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Institute of Botany, Jiangsu Province & Chinese Academy of Sciences, Nanjing 210014, China
| | - Jianxiu Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Institute of Botany, Jiangsu Province & Chinese Academy of Sciences, Nanjing 210014, China.
| |
Collapse
|
163
|
Wu GQ, Jiao Q, Shui QZ. Effect of salinity on seed germination, seedling growth, and inorganic and organic solutes accumulation in sunflower (Helianthus annuus L.). PLANT, SOIL AND ENVIRONMENT 2015. [PMID: 0 DOI: 10.17221/22/2015-pse] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
|
164
|
Calcium sensor kinase activates potassium uptake systems in gland cells of Venus flytraps. Proc Natl Acad Sci U S A 2015; 112:7309-14. [PMID: 25997445 PMCID: PMC4466697 DOI: 10.1073/pnas.1507810112] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Darwin plant Dionaea muscipula is able to grow on mineral-poor soil, because it gains essential nutrients from captured animal prey. Given that no nutrients remain in the trap when it opens after the consumption of an animal meal, we here asked the question of how Dionaea sequesters prey-derived potassium. We show that prey capture triggers expression of a K(+) uptake system in the Venus flytrap. In search of K(+) transporters endowed with adequate properties for this role, we screened a Dionaea expressed sequence tag (EST) database and identified DmKT1 and DmHAK5 as candidates. On insect and touch hormone stimulation, the number of transcripts of these transporters increased in flytraps. After cRNA injection of K(+)-transporter genes into Xenopus oocytes, however, both putative K(+) transporters remained silent. Assuming that calcium sensor kinases are regulating Arabidopsis K(+) transporter 1 (AKT1), we coexpressed the putative K(+) transporters with a large set of kinases and identified the CBL9-CIPK23 pair as the major activating complex for both transporters in Dionaea K(+) uptake. DmKT1 was found to be a K(+)-selective channel of voltage-dependent high capacity and low affinity, whereas DmHAK5 was identified as the first, to our knowledge, proton-driven, high-affinity potassium transporter with weak selectivity. When the Venus flytrap is processing its prey, the gland cell membrane potential is maintained around -120 mV, and the apoplast is acidified to pH 3. These conditions in the green stomach formed by the closed flytrap allow DmKT1 and DmHAK5 to acquire prey-derived K(+), reducing its concentration from millimolar levels down to trace levels.
Collapse
|
165
|
Katschnig D, Bliek T, Rozema J, Schat H. Constitutive high-level SOS1 expression and absence of HKT1;1 expression in the salt-accumulating halophyte Salicornia dolichostachya. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 234:144-54. [PMID: 25804817 DOI: 10.1016/j.plantsci.2015.02.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 02/16/2015] [Accepted: 02/18/2015] [Indexed: 05/08/2023]
Abstract
We investigated the effects of salinity on ion accumulation and expression of candidate salt tolerance genes in the highly tolerant salt accumulating halophyte Salicornia dolichostachya and the taxonomically related glycophytic Spinacia oleracea. S. dolichostachya, in comparison with S. oleracea, constitutively expressed SOS1 at a high level, but did not detectably express HKT1;1. These findings suggest that the constitutive high level of shoot salt accumulation in S. dolichostachya is accomplished through enhancement of SOS1-mediated Na(+) xylem loading, in combination with complete suppression of HKT1;1-mediated Na(+) retrieval from the xylem. Our findings demonstrate the importance of gene expression comparisons between highly tolerant halophytes and taxonomically related glycophytes to improve the understanding of mechanisms of Na(+) movement and salt tolerance in plants.
Collapse
Affiliation(s)
- D Katschnig
- Systems Ecology, Department of Ecological Science, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | - T Bliek
- Department of Genetics, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | - J Rozema
- Systems Ecology, Department of Ecological Science, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | - H Schat
- Department of Genetics, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
166
|
Assaha DV, Mekawy AMM, Ueda A, Saneoka H. Salinity-induced expression of HKT may be crucial for Na+ exclusion in the leaf blade of huckleberry (Solanum scabrum Mill.), but not of eggplant (Solanum melongena L.). Biochem Biophys Res Commun 2015; 460:416-21. [DOI: 10.1016/j.bbrc.2015.03.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 03/10/2015] [Indexed: 02/02/2023]
|
167
|
Pinto E, Ferreira IMPLVO. Cation transporters/channels in plants: Tools for nutrient biofortification. JOURNAL OF PLANT PHYSIOLOGY 2015; 179:64-82. [PMID: 25841207 DOI: 10.1016/j.jplph.2015.02.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/11/2015] [Accepted: 02/11/2015] [Indexed: 05/07/2023]
Abstract
Cation transporters/channels are key players in a wide range of physiological functions in plants, including cell signaling, osmoregulation, plant nutrition and metal tolerance. The recent identification of genes encoding some of these transport systems has allowed new studies toward further understanding of their integrated roles in plant. This review summarizes recent discoveries regarding the function and regulation of the multiple systems involved in cation transport in plant cells. The role of membrane transport in the uptake, distribution and accumulation of cations in plant tissues, cell types and subcellular compartments is described. We also discuss how the knowledge of inter- and intra-species variation in cation uptake, transport and accumulation as well as the molecular mechanisms responsible for these processes can be used to increase nutrient phytoavailability and nutrients accumulation in the edible tissues of plants. The main trends for future research in the field of biofortification are proposed.
Collapse
Affiliation(s)
- Edgar Pinto
- REQUIMTE/Department of Chemical Sciences, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy - University of Porto, Portugal; CISA - Research Centre on Environment and Health, School of Allied Health Sciences, Polytechnic Institute of Porto, Portugal.
| | - Isabel M P L V O Ferreira
- REQUIMTE/Department of Chemical Sciences, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy - University of Porto, Portugal
| |
Collapse
|
168
|
Yuan HJ, Ma Q, Wu GQ, Wang P, Hu J, Wang SM. ZxNHX controls Na⁺ and K⁺ homeostasis at the whole-plant level in Zygophyllum xanthoxylum through feedback regulation of the expression of genes involved in their transport. ANNALS OF BOTANY 2015; 115:495-507. [PMID: 25252687 PMCID: PMC4332602 DOI: 10.1093/aob/mcu177] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/09/2014] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS In order to cope with arid environments, the xerohalophyte Zygophyllum xanthoxylum efficiently compartmentalizes Na(+) into vacuoles, mediated by ZxNHX, and maintains stability of K(+) in its leaves. However, the function of ZxNHX in controlling Na(+) and K(+) homeostasis at the whole-plant level remains unclear. In this study, the role of ZxNHX in regulating the expression of genes involved in Na(+) and K(+) transport and spatial distribution was investigated. METHODS The role of ZxNHX in maintaining Na(+) and K(+) homeostasis in Z. xanthoxylum was studied using post-transcriptional gene silencing via Agrobacterium-mediated transformation. Transformed plants were grown with or without 50 mm NaCl, and expression levels and physiological parameters were measured. KEY RESULTS It was found that 50 mm NaCl induced a 620 % increase in transcripts of ZxSOS1 but only an 80 % increase in transcripts of ZxHKT1;1 in roots of wild-type (WT) plants. Consequently, the ability of ZxSOS1 to transport Na(+) exceeded that of ZxHKT1;1, and Na(+) was loaded into the xylem by ZxSOS1 and delivered to the shoots. However, in a ZxNHX-silenced line (L7), the capacity to sequester Na(+) into vacuoles of leaves was weakened, which in turn regulated long-distance Na(+) transport from roots to shoots. In roots of L7, NaCl (50 mm) increased transcripts of ZxSOS1 by only 10 %, whereas transcripts of ZxHKT1;1 increased by 53 %. Thus, in L7, the transport ability of ZxHKT1;1 for Na(+) outweighed that of ZxSOS1. Na(+) was unloaded from the xylem stream, consequently reducing Na(+) accumulation and relative distribution in leaves, but increasing the relative distribution of Na(+) in roots and the net selective transport capacity for K(+) over Na(+) from roots to shoots compared with the WT. Silencing of ZxNHX also triggered a downregulation of ZxAKT1 and ZxSKOR in roots, resulting in a significant decrease in K(+) accumulation in all the tissues in plants grown in 50 mm NaCl. These changes led to a significant reduction in osmotic adjustment, and thus an inhibition of growth in ZxNHX-silenced lines. CONCLUSIONS The results suggest that ZxNHX is essential for controlling Na(+), K(+) uptake, long-distance transport and their homeostasis at whole-plant level via feedback regulation of the expression of genes involved in Na(+), K(+) transport. The net result is the maintenance of the characteristic salt accumulation observed in Z. xanthoxylum and the regulation of its normal growth. A model is proposed for the role of ZxNHX in regulating the Na(+) transport system in Z. xanthoxylum under saline conditions.
Collapse
Affiliation(s)
- Hui-Jun Yuan
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Qing Ma
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Guo-Qiang Wu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Pei Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Jing Hu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Suo-Min Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| |
Collapse
|
169
|
Model of Cation Transportation Mediated by High-Affinity Potassium Transporters (HKTs) in Higher Plants. Biol Proced Online 2015; 17:1. [PMID: 25698907 PMCID: PMC4334588 DOI: 10.1186/s12575-014-0013-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/06/2014] [Indexed: 01/18/2023] Open
Abstract
Trk/Ktr/HKT transporters probably were evolved from simple K+ channels KcsA. HKT transporters, which mediate Na+-uniport or Na+/K+-symport, maintain K+/Na+ homeostasis and increase salinity tolerance, can be classified into three subfamilies in higher plants. In this review, we systematically analyzed the characteristics of amino acids sequences and physiological functions of HKT transporters in higher plant. Furthermore, we depicted the hypothetical models of cations selection and transportation mediated by HKT transporters according to the highly conserved structure for the goal of better understanding the cations transportation processes.
Collapse
|
170
|
Pinedo I, Ledger T, Greve M, Poupin MJ. Burkholderia phytofirmans PsJN induces long-term metabolic and transcriptional changes involved in Arabidopsis thaliana salt tolerance. FRONTIERS IN PLANT SCIENCE 2015; 6:466. [PMID: 26157451 PMCID: PMC4477060 DOI: 10.3389/fpls.2015.00466] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 06/11/2015] [Indexed: 05/18/2023]
Abstract
Salinity is one of the major limitations for food production worldwide. Improvement of plant salt-stress tolerance using plant-growth promoting rhizobacteria (PGPR) has arisen as a promising strategy to help overcome this limitation. However, the molecular and biochemical mechanisms controlling PGPR/plant interactions under salt-stress remain unclear. The main objective of this study was to obtain new insights into the mechanisms underlying salt-stress tolerance enhancement in the salt-sensitive Arabidopsis thaliana Col-0 plants, when inoculated with the well-known PGPR strain Burkholderia phytofirmans PsJN. To tackle this, different life history traits, together with the spatiotemporal accumulation patterns for key metabolites and salt-stress related transcripts, were analyzed in inoculated plants under short and long-term salt-stress. Inoculated plants displayed faster recovery and increased tolerance after sustained salt-stress. PsJN treatment accelerated the accumulation of proline and transcription of genes related to abscisic acid signaling (Relative to Dessication, RD29A and RD29B), ROS scavenging (Ascorbate Peroxidase 2), and detoxification (Glyoxalase I 7), and down-regulated the expression of Lipoxygenase 2 (related to jasmonic acid biosynthesis). Among the general transcriptional effects of this bacterium, the expression pattern of important ion-homeostasis related genes was altered after short and long-term stress (Arabidopsis K(+) Transporter 1, High-Affinity K(+) Transporter 1, Sodium Hydrogen Exchanger 2, and Arabidopsis Salt Overly Sensitive 1). In all, the faster and stronger molecular changes induced by the inoculation suggest a PsJN-priming effect, which may explain the observed tolerance after short-term and sustained salt-stress in plants. This study provides novel information about possible mechanisms involved in salt-stress tolerance induced by PGPR in plants, showing that certain changes are maintained over time. This opens up new venues to study these relevant biological associations, as well as new approaches to a better understanding of the spatiotemporal mechanisms involved in stress tolerance in plants.
Collapse
Affiliation(s)
- Ignacio Pinedo
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
| | - Thomas Ledger
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
- Center for Applied Ecology and SustainabilitySantiago, Chile
| | - Macarena Greve
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
| | - María J. Poupin
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
- Center for Applied Ecology and SustainabilitySantiago, Chile
- *Correspondence: María J. Poupin, Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Avenida Diagonal Las Torres 2640, Peñalolén, Santiago 7941169, Chile,
| |
Collapse
|
171
|
García-Abellan JO, Egea I, Pineda B, Sanchez-Bel P, Belver A, Garcia-Sogo B, Flores FB, Atares A, Moreno V, Bolarin MC. Heterologous expression of the yeast HAL5 gene in tomato enhances salt tolerance by reducing shoot Na+ accumulation in the long term. PHYSIOLOGIA PLANTARUM 2014; 152:700-13. [PMID: 24773242 DOI: 10.1111/ppl.12217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/14/2014] [Accepted: 03/24/2014] [Indexed: 05/11/2023]
Abstract
For salt tolerance to be achieved in the long-term plants must regulate Na(+)/K(+) homeostasis over time. In this study, we show that the salt tolerance induced by overexpression of the yeast HAL5 gene in tomato (Solanum lycopersicum) was related to a lower leaf Na(+) accumulation in the long term, by reducing Na(+) transport from root to shoot over time regardless of the severity of salt stress. Furthermore, maintaining Na(+)/K(+) homeostasis over time was associated with changes in the transcript levels of the Na(+) and K(+) transporters such as SlHKT1;2 and SlHAK5. The expression of SlHKT1;2 was upregulated in response to salinity in roots of transgenic plants but downregulated in the roots of wild-type (WT) plants, which seems to be related to the lower Na(+) transport rate from root to shoot in transgenic plants. The expression of the SlHAK5 increased in roots and leaves of both WT and transgenic plants under salinity. However, this increase was much higher in the leaves of transgenic plants than in those of WT plants, which may be associated with the ability of transgenic leaves to maintain Na(+)/K(+) homeostasis over time. Taken together, the results show that the salt tolerance mechanism induced by HAL5 overexpression in tomato is related to the appropriate regulation of ion transport from root to shoot and maintenance of the leaf Na(+)/K(+) homeostasis through modulation of SlHKT1 and SlHAK5 over time.
Collapse
Affiliation(s)
- Jose O García-Abellan
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, ES-30100, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Mansour MMF. The plasma membrane transport systems and adaptation to salinity. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1787-800. [PMID: 25262536 DOI: 10.1016/j.jplph.2014.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/18/2014] [Accepted: 08/21/2014] [Indexed: 05/09/2023]
Abstract
Salt stress represents one of the environmental challenges that drastically affect plant growth and yield. Evidence suggests that glycophytes and halophytes have a salt tolerance mechanisms working at the cellular level, and the plasma membrane (PM) is believed to be one facet of the cellular mechanisms. The responses of the PM transport proteins to salinity in contrasting species/cultivars were discussed. The review provides a comprehensive overview of the recent advances describing the crucial roles that the PM transport systems have in plant adaptation to salt. Several lines of evidence were presented to demonstrate the correlation between the PM transport proteins and adaptation of plants to high salinity. How alterations in these transport systems of the PM allow plants to cope with the salt stress was also addressed. Although inconsistencies exist in some of the information related to the responses of the PM transport proteins to salinity in different species/cultivars, their key roles in adaptation of plants to high salinity is obvious and evident, and cannot be precluded. Despite the promising results, detailed investigations at the cellular/molecular level are needed in some issues of the PM transport systems in response to salinity to further evaluate their implication in salt tolerance.
Collapse
|
173
|
Shabala S, Bose J, Hedrich R. Salt bladders: do they matter? TRENDS IN PLANT SCIENCE 2014; 19:687-91. [PMID: 25361704 DOI: 10.1016/j.tplants.2014.09.001] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/27/2014] [Accepted: 09/02/2014] [Indexed: 05/02/2023]
Abstract
Soil salinity is claiming about three hectares of arable land from conventional crop farming every minute. At the same time, the challenge of feeding 9.3 billion people by 2050 is forcing agricultural production into marginal areas, and providing sufficient food for this growing population cannot be achieved without a major breakthrough in crop breeding for salinity tolerance. In this Opinion article, we argue that the current trend of targeting Na(+) exclusion mechanisms in breeding programmes for salinity tolerance in crops needs revising. We propose that progress in this area will be achieved by learning from halophytes, naturally salt-loving plants capable of surviving in harsh saline environments, by targeting the mechanisms conferring Na(+) sequestration in external storage organs.
Collapse
Affiliation(s)
- Sergey Shabala
- School of Land and Food, University of Tasmania, Hobart, Australia.
| | - Jayakumar Bose
- School of Land and Food, University of Tasmania, Hobart, Australia
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Würzburg, Germany.
| |
Collapse
|
174
|
Mishra S, Alavilli H, Lee BH, Panda SK, Sahoo L. Cloning and functional characterization of a vacuolar Na+/H+ antiporter gene from mungbean (VrNHX1) and its ectopic expression enhanced salt tolerance in Arabidopsis thaliana. PLoS One 2014; 9:e106678. [PMID: 25350285 PMCID: PMC4211658 DOI: 10.1371/journal.pone.0106678] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/02/2014] [Indexed: 12/04/2022] Open
Abstract
Plant vacuolar NHX exchangers play a significant role in adaption to salt stress by compartmentalizing excess cytosolic Na+ into vacuoles and maintaining cellular homeostasis and ionic equilibrium. We cloned an orthologue of the vacuolar Na+/H+ antiporter gene, VrNHX1 from mungbean (Vigna radiata), an important Asiatic grain legume. The VrNHX1 (Genbank Accession number JN656211.1) contains 2095 nucleotides with an open reading frame of 1629 nucleotides encoding a predicted protein of 542 amino acids with a deduced molecular mass of 59.6 kDa. The consensus amiloride binding motif (84LFFIYLLPPI93) was observed in the third putative transmembrane domain of VrNHX1. Bioinformatic and phylogenetic analysis clearly suggested that VrNHX1 had high similarity to those of orthologs belonging to Class-I clade of plant NHX exchangers in leguminous crops. VrNHX1 could be strongly induced by salt stress in mungbean as the expression in roots significantly increased in presence of 200 mM NaCl with concomitant accumulation of total [Na+]. Induction of VrNHX1 was also observed under cold and dehydration stress, indicating a possible cross talk between various abiotic stresses. Heterologous expression in salt sensitive yeast mutant AXT3 complemented for the loss of yeast vacuolar NHX1 under NaCl, KCl and LiCl stress indicating that VrNHX1 was the orthologue of ScNHX1. Further, AXT3 cells expressing VrNHX1 survived under low pH environment and displayed vacuolar alkalinization analyzed using pH sensitive fluorescent dye BCECF-AM. The constitutive and stress inducible expression of VrNHX1 resulted in enhanced salt tolerance in transgenic Arabidopsis thaliana lines. Our work suggested that VrNHX1 was a salt tolerance determinant in mungbean.
Collapse
Affiliation(s)
- Sagarika Mishra
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, India
| | | | - Byeong-ha Lee
- Department of Life Science, Sogang University, Mapo-gu, Seoul, Korea
| | - Sanjib Kumar Panda
- Department of Life Sciences and Bioinformatics, Assam University, Silchar, India
- Department of Biochemistry & Molecular Biology, Noble Research Centre, Oklahoma State University, Stillwater, OK, United States of America
| | - Lingaraj Sahoo
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, India
- * E-mail:
| |
Collapse
|
175
|
Tu Y, Jiang A, Gan L, Hossain M, Zhang J, Peng B, Xiong Y, Song Z, Cai D, Xu W, Zhang J, He Y. Genome duplication improves rice root resistance to salt stress. RICE (NEW YORK, N.Y.) 2014; 7:15. [PMID: 25184027 PMCID: PMC4151024 DOI: 10.1186/s12284-014-0015-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 07/15/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Salinity is a stressful environmental factor that limits the productivity of crop plants, and roots form the major interface between plants and various abiotic stresses. Rice is a salt-sensitive crop and its polyploid shows advantages in terms of stress resistance. The objective of this study was to investigate the effects of genome duplication on rice root resistance to salt stress. RESULTS Both diploid rice (HN2026-2x and Nipponbare-2x) and their corresponding tetraploid rice (HN2026-4x and Nipponbare-4x) were cultured in half-strength Murashige and Skoog medium with 150 mM NaCl for 3 and 5 days. Accumulations of proline, soluble sugar, malondialdehyde (MDA), Na(+) content, H(+) (proton) flux at root tips, and the microstructure and ultrastructure in rice roots were examined. We found that tetraploid rice showed less root growth inhibition, accumulated higher proline content and lower MDA content, and exhibited a higher frequency of normal epidermal cells than diploid rice. In addition, a protective gap appeared between the cortex and pericycle cells in tetraploid rice. Next, ultrastructural analysis showed that genome duplication improved membrane, organelle, and nuclei stability. Furthermore, Na(+) in tetraploid rice roots significantly decreased while root tip H(+) efflux in tetraploid rice significantly increased. CONCLUSIONS Our results suggest that genome duplication improves root resistance to salt stress, and that enhanced proton transport to the root surface may play a role in reducing Na(+) entrance into the roots.
Collapse
Affiliation(s)
- Yi Tu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan 430062, P.R. China
| | - Aiming Jiang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan 430062, P.R. China
- Faculty of Biochemistry and Environmental Engineering, Yunyang Teachers’ College, Shiyan 442000, P.R. China
| | - Lu Gan
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan 430062, P.R. China
- Faculty of Biochemistry and Environmental Engineering, Yunyang Teachers’ College, Shiyan 442000, P.R. China
| | - Mokter Hossain
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jinming Zhang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan 430062, P.R. China
| | - Bo Peng
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan 430062, P.R. China
| | - Yuguo Xiong
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan 430062, P.R. China
| | - Zhaojian Song
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan 430062, P.R. China
| | - Detian Cai
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan 430062, P.R. China
| | - Weifeng Xu
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jianhua Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuchi He
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan 430062, P.R. China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
176
|
Coskun D, Britto DT, Hamam AM, Kronzucker HJ. Measuring fluxes of mineral nutrients and toxicants in plants with radioactive tracers. J Vis Exp 2014:51877. [PMID: 25177829 PMCID: PMC4758755 DOI: 10.3791/51877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Unidirectional influx and efflux of nutrients and toxicants, and their resultant net fluxes, are central to the nutrition and toxicology of plants. Radioisotope tracing is a major technique used to measure such fluxes, both within plants, and between plants and their environments. Flux data obtained with radiotracer protocols can help elucidate the capacity, mechanism, regulation, and energetics of transport systems for specific mineral nutrients or toxicants, and can provide insight into compartmentation and turnover rates of subcellular mineral and metabolite pools. Here, we describe two major radioisotope protocols used in plant biology: direct influx (DI) and compartmental analysis by tracer efflux (CATE). We focus on flux measurement of potassium (K(+)) as a nutrient, and ammonia/ammonium (NH3/NH4(+)) as a toxicant, in intact seedlings of the model species barley (Hordeum vulgare L.). These protocols can be readily adapted to other experimental systems (e.g., different species, excised plant material, and other nutrients/toxicants). Advantages and limitations of these protocols are discussed.
Collapse
Affiliation(s)
- Devrim Coskun
- Department of Biological Sciences, University of Toronto
| | - Dev T Britto
- Department of Biological Sciences, University of Toronto
| | - Ahmed M Hamam
- Department of Biological Sciences, University of Toronto
| | | |
Collapse
|
177
|
Gil R, Bautista I, Boscaiu M, Lidón A, Wankhade S, Sánchez H, Llinares J, Vicente O. Responses of five Mediterranean halophytes to seasonal changes in environmental conditions. AOB PLANTS 2014; 6:plu049. [PMID: 25139768 PMCID: PMC4163002 DOI: 10.1093/aobpla/plu049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/16/2014] [Indexed: 05/23/2023]
Abstract
In their natural habitats, different mechanisms may contribute to the tolerance of halophytes to high soil salinity and other abiotic stresses, but their relative contribution and ecological relevance, for a given species, remain largely unknown. We studied the responses to changing environmental conditions of five halophytes (Sarcocornia fruticosa, Inula crithmoides, Plantago crassifolia, Juncus maritimus and J. acutus) in a Mediterranean salt marsh, from summer 2009 to autumn 2010. A principal component analysis was used to correlate soil and climatic data with changes in the plants' contents of chemical markers associated with stress responses: ions, osmolytes, malondialdehyde (MDA, a marker of oxidative stress) and antioxidant systems. Stress tolerance in S. fruticosa, I. crithmoides and P. crassifolia (all succulent dicots) seemed to depend mostly on the transport of ions to aerial parts and the biosynthesis of specific osmolytes, whereas both Juncus species (monocots) were able to avoid accumulation of toxic ions, maintaining relatively high K(+)/Na(+) ratios. For the most salt-tolerant taxa (S. fruticosa and I. crithmoides), seasonal variations of Na(+), Cl(-), K(+) and glycine betaine, their major osmolyte, did not correlate with environmental parameters associated with salt or water stress, suggesting that their tolerance mechanisms are constitutive and relatively independent of external conditions, although they could be mediated by changes in the subcellular compartmentalization of ions and compatible osmolytes. Proline levels were too low in all the species to possibly have any effect on osmotic adjustment. However-except for P. crassifolia-proline may play a role in stress tolerance based on its 'osmoprotectant' functions. No correlation was observed between the degree of environmental stress and the levels of MDA or enzymatic and non-enzymatic antioxidants, indicating that the investigated halophytes are not subjected to oxidative stress under natural conditions and do not, therefore, need to activate antioxidant defence mechanisms.
Collapse
Affiliation(s)
- Ricardo Gil
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Inmaculada Bautista
- ReForest, Departamento de Ingeniería Hidráulica y Medio Ambiente, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Monica Boscaiu
- Instituto Agroforestal Mediterráneo (IAM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Antonio Lidón
- ReForest, Departamento de Ingeniería Hidráulica y Medio Ambiente, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Shantanu Wankhade
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Héctor Sánchez
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Josep Llinares
- Instituto de Investigación para la Gestión Integral de Zonas Costeras (IGIC), Universitat Politècnica de València, C/Paranimf 1, 46730 Grao de Gandia, Valencia, Spain
| | - Oscar Vicente
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
178
|
Ismail A, Seo M, Takebayashi Y, Kamiya Y, Eiche E, Nick P. Salt adaptation requires efficient fine-tuning of jasmonate signalling. PROTOPLASMA 2014; 251:881-98. [PMID: 24297515 DOI: 10.1007/s00709-013-0591-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/20/2013] [Indexed: 05/21/2023]
Abstract
Understanding the mechanism by which plants sense, signal and respond to salinity stress is of great interest to plant biologists. In stress signalling, often the same molecules are involved in both damage-related and adaptive events. To dissect this complexity, we compared the salinity responses of two grapevine cell lines differing in their salinity tolerance. We followed rapid changes in the cellular content of sodium and calcium, apoplastic alkalinisation and slower responses in the levels of jasmonic acid, its active isoleucine conjugate and abscisic acid, as well as of stilbenes. Differences in timing and sensitivity to either the lanthanoid Gd or exogenous calcium provide evidence for an adaptive role of early sodium uptake through non-selective cation channels acting upstream of Ca(2+) and H(+) fluxes. We find a correlation of salt sensitivity with unconstrained jasmonate (JA) signalling, whereas salt adaptation correlates with tight control of jasmonic acid and its isoleucine conjugate, accompanied by accumulation of abscisic acid and suppression of stilbenes that trigger defence-related cell death. The data are discussed by a model where efficient fine-tuning of JA signalling determines whether cells will progress towards adaptation or programme cell death.
Collapse
Affiliation(s)
- Ahmed Ismail
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany,
| | | | | | | | | | | |
Collapse
|
179
|
Krishnamurthy P, Jyothi-Prakash PA, Qin L, He J, Lin Q, Loh CS, Kumar PP. Role of root hydrophobic barriers in salt exclusion of a mangrove plant Avicennia officinalis. PLANT, CELL & ENVIRONMENT 2014; 37:1656-71. [PMID: 24417377 DOI: 10.1111/pce.12272] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 12/17/2013] [Accepted: 01/04/2014] [Indexed: 05/17/2023]
Abstract
Salt exclusion at the roots and salt secretion in the leaves were examined in a mangrove, Avicennia officinalis. The non-secretor mangrove Bruguiera cylindrica was used for comparative study of hydrophobic barrier formation in the roots. Bypass flow was reduced when seedlings were previously treated with high salt concentration. A biseriate exodermis was detected in the salt-treated roots, along with an enhanced deposition of hydrophobic barriers in the endodermis. These barriers reduced Na(+) loading into the xylem, accounting for a 90-95% salt exclusion in A. officinalis. Prominent barriers were found in the roots of B. cylindrica even in the absence of salt treatment. A cytochrome P450 gene that may regulate suberin biosynthesis was up-regulated within hours of salt treatment in A. officinalis roots and leaves, corresponding with increased suberin deposition. X-ray microanalysis showed preferential deposition of Na(+) and Cl(-) in the root cortex compared with the stele, suggesting that the endodermis is the primary site of salt exclusion. Enhanced salt secretion and increased suberin deposition surrounding the salt glands were seen in the leaves with salt treatment. Overall, these data show that the deposition of apoplastic barriers increases resistance to bypass flow leading to efficient salt exclusion at the roots in mangroves.
Collapse
Affiliation(s)
- Pannaga Krishnamurthy
- Department of Biological Sciences, National University of Singapore, 117543, Singapore; NUS Environmental Research Institute (NERI), National University of Singapore, 117411, Singapore
| | | | | | | | | | | | | |
Collapse
|
180
|
Coskun D, Britto DT, Kronzucker HJ. The physiology of channel-mediated K+ acquisition in roots of higher plants. PHYSIOLOGIA PLANTARUM 2014; 151:305-12. [PMID: 24697609 DOI: 10.1111/ppl.12174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/17/2014] [Accepted: 01/25/2014] [Indexed: 05/08/2023]
Abstract
K(+) channels are among the best-characterized classes of membrane protein in plants. Nevertheless, in-planta demonstrations of traits emerging from molecular characterizations have often been insufficient or lacking altogether. Such linkages are, however, critical to our basic understanding of plant nutrition and to addressing 'real-world' issues that are faced in environmental and agricultural settings. Here, we cover some of the recent advances in K(+) acquisition with particular focus on voltage-gated K(+) channel functioning and regulation in roots, and highlight where linkages to in-planta behavior have been successfully made and, conversely, where such linkages are yet to be made.
Collapse
Affiliation(s)
- Devrim Coskun
- Department of Biological Sciences, University of Toronto, Toronto, ON, M1C 1A4, Canada
| | | | | |
Collapse
|
181
|
Mei X, Li S, Li Q, Yang Y, Luo X, He B, Li H, Xu Z. Sodium chloride salinity reduces Cd uptake by edible amaranth (Amaranthus mangostanus L.) via competition for Ca channels. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 105:59-64. [PMID: 24785711 DOI: 10.1016/j.ecoenv.2014.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 05/16/2023]
Abstract
Soil salinity is known to enhance cadmium (Cd) accumulation in crops. However, the mechanism by which this occurs independent of the surrounding soil remains unclear. In this study, root adsorption and uptake of salt cations and Cd by edible amaranth under NaCl salinity stress were investigated in hydroponic cultures with 0, 40, 80, 120, and 160mM of NaCl and 27nM Cd. The dominant Cd species in the nutrient solution changed from free Cd(2+) to Cd chlorocomplexes as NaCl salinity increased. High salinity significantly reduced K, Ca, and Cd root adsorption and K, Ca, Mg, and Cd uptake. High salinity decreased root adsorption of Cd by 43 and 58 percent and Cd uptake by 32 and 36 percent in salt-tolerant and salt-sensitive cultivars, respectively. Transformation of Cd from free ion to chlorocomplexes is unlikely to have significantly affected Cd uptake by the plant because of the very low Cd concentrations involved. Application of Ca ion channel blocker significantly reduced Na, K, Ca, Mg, and Cd uptake by the roots, while blocking K ion channels significantly reduced Na and K uptake but not Ca, Mg, and Cd uptake. These results suggest that Na was absorbed by the roots through both Ca and K ion channels, while Cd was absorbed by the roots mainly through Ca ion channels and not K ion channels. Salinity caused a greater degree of reduction in Cd adsorption and uptake in the salt-sensitive cultivar than in the salt-tolerant cultivar. Thus, competition between Na and Cd for Ca ion channels can reduce Cd uptake at very low Cd concentrations in the nutrient solution.
Collapse
Affiliation(s)
- XiuQin Mei
- Department of Environmental Engineering, Jinan University, Guangzhou 510632, China; Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation, Department of Education of Guangdong province, Guangzhou 510632, China
| | - SongSong Li
- Department of Environmental Engineering, Jinan University, Guangzhou 510632, China; Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation, Department of Education of Guangdong province, Guangzhou 510632, China
| | - QuSheng Li
- Department of Environmental Engineering, Jinan University, Guangzhou 510632, China; Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation, Department of Education of Guangdong province, Guangzhou 510632, China.
| | - YuFeng Yang
- Department of Ecology, Jinan University, Guangzhou 510632, China.
| | - Xuan Luo
- Department of Environmental Engineering, Jinan University, Guangzhou 510632, China; Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation, Department of Education of Guangdong province, Guangzhou 510632, China
| | - BaoYan He
- Department of Environmental Engineering, Jinan University, Guangzhou 510632, China; Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation, Department of Education of Guangdong province, Guangzhou 510632, China
| | - Hui Li
- Department of Environmental Engineering, Jinan University, Guangzhou 510632, China; Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation, Department of Education of Guangdong province, Guangzhou 510632, China
| | - ZhiMin Xu
- Department of Environmental Engineering, Jinan University, Guangzhou 510632, China; Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation, Department of Education of Guangdong province, Guangzhou 510632, China
| |
Collapse
|
182
|
Ismail A, Takeda S, Nick P. Life and death under salt stress: same players, different timing? JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2963-79. [PMID: 24755280 DOI: 10.1093/jxb/eru159] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Salinity does not only stress plants but also challenges human life and the economy by posing severe constraints upon agriculture. To understand salt adaptation strategies of plants, it is central to extend agricultural production to salt-affected soils. Despite high impact and intensive research, it has been difficult to dissect the plant responses to salt stress and to define the decisive key factors for the outcome of salinity signalling. To connect the rapidly accumulating data from different systems, treatments, and organization levels (whole-plant, cellular, and molecular), and to identify the appropriate correlations among them, a clear conceptual framework is required. Similar to other stress responses, the molecular nature of the signals evoked after the onset of salt stress seems to be general, as with that observed in response to many other stimuli, and should not be considered to confer specificity per se. The focus of the current review is therefore on the temporal patterns of signals conveyed by molecules such as Ca(2+), H(+), reactive oxygen species, abscisic acid, and jasmonate. We propose that the outcome of the salinity response (adaptation versus cell death) depends on the timing with which these signals appear and disappear. In this context, the often-neglected non-selective cation channels are relevant. We also propose that constraining a given signal is as important as its induction, as it is the temporal competence of signalling (signal on demand) that confers specificity.
Collapse
Affiliation(s)
- Ahmed Ismail
- Department of Horticulture, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Shin Takeda
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Germany
| |
Collapse
|
183
|
Ariyarathna HACK, Ul-Haq T, Colmer TD, Francki MG. Characterization of the multigene family TaHKT 2;1 in bread wheat and the role of gene members in plant Na(+) and K(+) status. BMC PLANT BIOLOGY 2014; 14:159. [PMID: 24920193 PMCID: PMC4079177 DOI: 10.1186/1471-2229-14-159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/04/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND A member of the TaHKT2;1 multigene family was previously identified as a Na(+) transporter with a possible role in root Na(+) uptake. In the present study, the existing full-length cDNA of this member was used as a basis to query the International Wheat Genome Survey Sequence to identify all members of the TaHKT2;1 family. Individual TaHKT2;1 genes were subsequently studied for gene and predicted protein structures, promoter variability, tissue expression and their role in Na(+) and K(+) status of wheat. RESULTS Six TaHKT2;1 genes were characterized which included four functional genes (TaHKT2;1 7AL-1, TaHKT2;1 7BL-1, TaHKT2;1 7BL-2 and TaHKT2;1 7DL-1) and two pseudogenes (TaHKT2;1 7AL-2 and TaHKT2;1 7AL-3), on chromosomes 7A, 7B and 7D of hexaploid wheat. Variability in protein domains for cation specificity and in cis-regulatory elements for salt response in gene promoters, were identified amongst the functional TaHKT2;1 members. The functional genes were expressed under low and high NaCl conditions in roots and leaf sheaths, but were down regulated in leaf blades. Alternative splicing events were evident in TaHKT2;1 7AL-1. Aneuploid lines null for each functional gene were grown in high NaCl nutrient solution culture to identify potential role of each TaHKT2;1 member. Aneuploid lines null for TaHKT2;1 7AL-1, TaHKT2;1 7BL-1 and TaHKT2;1 7BL-2 showed no difference in Na(+) concentration between Chinese Spring except for higher Na(+) in sheaths. The same aneuploid lines had lower K(+) in roots, sheath and youngest fully expanded leaf but only under high (200 mM) NaCl in the external solution. There was no difference in Na(+) or K(+) concentration for any treatment between aneuploid line null for the TaHKT2;1 7DL-1 gene and Chinese Spring. CONCLUSIONS TaHKT2;1 is a complex family consisting of pseudogenes and functional members. TaHKT2;1 genes do not have an apparent role in controlling root Na(+) uptake in bread wheat seedlings under experimental conditions in this study, contrary to existing hypotheses. However, TaHKT2;1 genes or, indeed other genes in the same chromosome region on 7AL, are candidates that may control Na(+) transport from root to sheath and regulate K(+) levels in different plant tissues.
Collapse
Affiliation(s)
- HA Chandima K Ariyarathna
- School of Plant Biology and Institute of Agriculture, The University of Western Australia, Crawley 6009, Western Australia
- State Agricultural Biotechnology Centre, Murdoch University, Murdoch 6150, Western Australia
| | - Tanveer Ul-Haq
- School of Plant Biology and Institute of Agriculture, The University of Western Australia, Crawley 6009, Western Australia
- State Agricultural Biotechnology Centre, Murdoch University, Murdoch 6150, Western Australia
- College of Agriculture, D. G. Khan, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Timothy D Colmer
- School of Plant Biology and Institute of Agriculture, The University of Western Australia, Crawley 6009, Western Australia
| | - Michael G Francki
- State Agricultural Biotechnology Centre, Murdoch University, Murdoch 6150, Western Australia
- Department of Agriculture and Food Western Australia, South Perth 6151, Western Australia
| |
Collapse
|
184
|
Benito B, Haro R, Amtmann A, Cuin TA, Dreyer I. The twins K+ and Na+ in plants. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:723-31. [PMID: 24810769 DOI: 10.1016/j.jplph.2013.10.014] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/01/2013] [Accepted: 10/02/2013] [Indexed: 05/02/2023]
Abstract
In the earth's crust and in seawater, K(+) and Na(+) are by far the most available monovalent inorganic cations. Physico-chemically, K(+) and Na(+) are very similar, but K(+) is widely used by plants whereas Na(+) can easily reach toxic levels. Indeed, salinity is one of the major and growing threats to agricultural production. In this article, we outline the fundamental bases for the differences between Na(+) and K(+). We present the foundation of transporter selectivity and summarize findings on transporters of the HKT type, which are reported to transport Na(+) and/or Na(+) and K(+), and may play a central role in Na(+) utilization and detoxification in plants. Based on the structural differences in the hydration shells of K(+) and Na(+), and by comparison with sodium channels, we present an ad hoc mechanistic model that can account for ion permeation through HKTs.
Collapse
Affiliation(s)
- Begoña Benito
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Rosario Haro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Anna Amtmann
- Institute of Molecular, Cellular and Systems Biology (MCSB), College of Medical, Veterinary and Life Sciences (MVLS), University of Glasgow, Glasgow, UK
| | - Tracey Ann Cuin
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, Montpellier, France
| | - Ingo Dreyer
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
185
|
Müller M, Kunz HH, Schroeder JI, Kemp G, Young HS, Neuhaus HE. Decreased capacity for sodium export out of Arabidopsis chloroplasts impairs salt tolerance, photosynthesis and plant performance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:646-58. [PMID: 24617758 DOI: 10.1111/tpj.12501] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/05/2014] [Accepted: 02/26/2014] [Indexed: 05/06/2023]
Abstract
Salt stress is a widespread phenomenon, limiting plant performance in large areas around the world. Although various types of plant sodium/proton antiporters have been characterized, the physiological function of NHD1 from Arabidopsis thaliana has not been elucidated in detail so far. Here we report that the NHD1-GFP fusion protein localizes to the chloroplast envelope. Heterologous expression of AtNHD1 was sufficient to complement a salt-sensitive Escherichia coli mutant lacking its endogenous sodium/proton exchangers. Transport competence of NHD1 was confirmed using recombinant, highly purified carrier protein reconstituted into proteoliposomes, proving Na(+) /H(+) antiport. In planta NHD1 expression was found to be highest in mature and senescent leaves but was not induced by sodium chloride application. When compared to wild-type controls, nhd1 T-DNA insertion mutants showed decreased biomasses and lower chlorophyll levels after sodium feeding. Interestingly, if grown on sand and supplemented with high sodium chloride, nhd1 mutants exhibited leaf tissue Na(+) levels similar to those of wild-type plants, but the Na(+) content of chloroplasts increased significantly. These high sodium levels in mutant chloroplasts resulted in markedly impaired photosynthetic performance as revealed by a lower quantum yield of photosystem II and increased non-photochemical quenching. Moreover, high Na(+) levels might hamper activity of the plastidic bile acid/sodium symporter family protein 2 (BASS2). The resulting pyruvate deficiency might cause the observed decreased phenylalanine levels in the nhd1 mutants due to lack of precursors.
Collapse
Affiliation(s)
- Maria Müller
- Plant Physiology, University of Kaiserslautern, Erwin Schrödinger Straße, Kaiserslautern, D-67653, Germany
| | | | | | | | | | | |
Collapse
|
186
|
Adams E, Shin R. Transport, signaling, and homeostasis of potassium and sodium in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:231-49. [PMID: 24393374 DOI: 10.1111/jipb.12159] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/31/2013] [Indexed: 05/17/2023]
Abstract
Potassium (K⁺) is an essential macronutrient in plants and a lack of K⁺ significantly reduces the potential for plant growth and development. By contrast, sodium (Na⁺), while beneficial to some extent, at high concentrations it disturbs and inhibits various physiological processes and plant growth. Due to their chemical similarities, some functions of K⁺ can be undertaken by Na⁺ but K⁺ homeostasis is severely affected by salt stress, on the other hand. Recent advances have highlighted the fascinating regulatory mechanisms of K⁺ and Na⁺ transport and signaling in plants. This review summarizes three major topics: (i) the transport mechanisms of K⁺ and Na⁺ from the soil to the shoot and to the cellular compartments; (ii) the mechanisms through which plants sense and respond to K⁺ and Na⁺ availability; and (iii) the components involved in maintenance of K⁺/Na⁺ homeostasis in plants under salt stress.
Collapse
Affiliation(s)
- Eri Adams
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | | |
Collapse
|
187
|
Wang TT, Ren ZJ, Liu ZQ, Feng X, Guo RQ, Li BG, Li LG, Jing HC. SbHKT1;4, a member of the high-affinity potassium transporter gene family from Sorghum bicolor, functions to maintain optimal Na⁺ /K⁺ balance under Na⁺ stress. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:315-32. [PMID: 24325391 DOI: 10.1111/jipb.12144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/26/2013] [Indexed: 05/04/2023]
Abstract
In halophytic plants, the high-affinity potassium transporter HKT gene family can selectively uptake K⁺ in the presence of toxic concentrations of Na⁺. This has so far not been well examined in glycophytic crops. Here, we report the characterization of SbHKT1;4, a member of the HKT gene family from Sorghum bicolor. Upon Na⁺ stress, SbHKT1;4 expression was more strongly upregulated in salt-tolerant sorghum accession, correlating with a better balanced Na⁺ /K⁺ ratio and enhanced plant growth. Heterogeneous expression analyses in mutants of Saccharomyces cerevisiae and Arabidopsis thaliana indicated that overexpressing SbHKT1;4 resulted in hypersensitivity to Na⁺ stress, and such hypersensitivity could be alleviated with the supply of elevated levels of K⁺, implicating that SbHKT1;4 may mediate K⁺ uptake in the presence of excessive Na⁺. Further electrophysiological evidence demonstrated that SbHKT1;4 could transport Na⁺ and K⁺ when expressed in Xenopus laevis oocytes. The relevance of the finding that SbHKT1;4 functions to maintain optimal Na⁺ /K⁺ balance under Na⁺ stress to the breeding of salt-tolerant glycophytic crops is discussed.
Collapse
Affiliation(s)
- Tian-Tian Wang
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | | | | | | | | | | | | | | |
Collapse
|
188
|
Cordeiro MA, Moriuchi KS, Fotinos TD, Miller KE, Nuzhdin SV, von Wettberg EJ, Cook DR. Population differentiation for germination and early seedling root growth traits under saline conditions in the annual legume Medicago truncatula (Fabaceae). AMERICAN JOURNAL OF BOTANY 2014; 101:488-498. [PMID: 24638163 DOI: 10.3732/ajb.1300285] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
PREMISE OF THE STUDY Seedling establishment and survival are highly sensitive to soil salinity and plants that evolved in saline environments are likely to express traits that increase fitness in those environments. Such traits are of ecological interest and they may have practical value for improving salt tolerance in cultivated species. We examined responses to soil salinity and tested potential mechanisms of salt tolerance in Medicago truncatula, using genotypes that originated from natural populations occurring on saline and nonsaline soils. METHODS Germination and seedling responses were quantified and compared between saline and nonsaline origin genotypes. Germination treatments included a range of sodium chloride (NaCl) concentrations in both offspring and parental environments. Seedling treatments included NaCl, abscisic acid (ABA), and potassium chloride (KCl). KEY RESULTS Saline origin genotypes displayed greater salinity tolerance for germination and seedling traits relative to nonsaline origin genotypes. We observed population specific differences for the effects of salinity on time to germination and for the impact of parental environment on germination rates. ABA and NaCl treatments had similar negative effects on root growth, although relative sensitivities differed, with saline population less sensitive to NaCl and more sensitive to ABA compared to their nonsaline counterparts. CONCLUSIONS We report population differentiation for germination and seedling growth traits under saline conditions among populations derived from saline and nonsaline environments. These observations are consistent with a syndrome of adaptations for salinity tolerance during early plant development, including traits that are common among saline environments and those that are idiosyncratic to local populations.
Collapse
Affiliation(s)
- Matilde A Cordeiro
- Department of Plant Pathology, University of California, Davis, California 95616 USA
| | | | | | | | | | | | | |
Collapse
|
189
|
Liu C, Mao B, Ou S, Wang W, Liu L, Wu Y, Chu C, Wang X. OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. PLANT MOLECULAR BIOLOGY 2014; 84:19-36. [PMID: 23918260 DOI: 10.1007/s11103-013-0115-3] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 07/24/2013] [Indexed: 05/03/2023]
Abstract
The bZIP transcription factor (TF) family plays an important role in the abscisic acid (ABA) signaling pathway of abiotic stress in plants. We here report the cloning and characterization of OsbZIP71, which encodes a rice bZIP TF. Functional analysis showed that OsbZIP71 is a nuclear-localized protein that specifically binds to the G-box motif, but has no transcriptional activity both in yeast and rice protoplasts. In yeast two-hybrid assays, OsbZIP71 can form both homodimers and heterodimers with Group C members of the bZIP gene family. Expression of OsbZIP71 was strongly induced by drought, polyethylene glycol (PEG), and ABA treatments, but repressed by salt treatment. OsbZIP71 overexpressing (p35S::OsbZIP71) rice significantly improved tolerance to drought, salt and PEG osmotic stresses. In contrast, RNAi knockdown transgenic lines were much more sensitive to salt, PEG osmotic stresses, and also ABA treatment. Inducible expression (RD29A::OsbZIP71) lines were significantly improved their tolerance to PEG osmotic stresses, but hypersensitivity to salt, and insensitivity to ABA. Real-time PCR analysis revealed that the abiotic stress-related genes, OsVHA-B, OsNHX1, COR413-TM1, and OsMyb4, were up-regulated in overexpressing lines, while these same genes were down-regulated in RNAi lines. Chromatin immunoprecipitation analysis confirmed that OsbZIP71 directly binds the promoters of OsNHX1 and COR413-TM1 in vivo. These results suggest that OsbZIP71 may play an important role in ABA-mediated drought and salt tolerance in rice.
Collapse
Affiliation(s)
- Citao Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Han QQ, Lü XP, Bai JP, Qiao Y, Paré PW, Wang SM, Zhang JL, Wu YN, Pang XP, Xu WB, Wang ZL. Beneficial soil bacterium Bacillus subtilis (GB03) augments salt tolerance of white clover. FRONTIERS IN PLANT SCIENCE 2014; 5:525. [PMID: 25339966 PMCID: PMC4189326 DOI: 10.3389/fpls.2014.00525] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/16/2014] [Indexed: 05/20/2023]
Abstract
Soil salinity is an increasingly serious problem worldwide that reduces agricultural output potential. Selected beneficial soil bacteria can promote plant growth and augment tolerance to biotic and abiotic stresses. Bacillus subtilis strain GB03 has been shown to confer growth promotion and abiotic stress tolerance in the model plant Arabidopsis thaliana. Here we examined the effect of this beneficial soil bacterium on salt tolerance in the legume forage crop, white clover. Plants of white clover (Trifolium repens L. cultivar Huia) were grown from seeds with or without soil inoculation of the beneficial soil bacterium Bacillus subtilis GB03 supplemented with 0, 50, 100, or 150 mM NaCl water into soil. Growth parameters, chlorophyll content, malondialdehyde (MDA) content and osmotic potential were monitored during the growth cycle. Endogenous Na(+) and K(+) contents were determined at the time of harvest. White clover plants grown in GB03-inoculated soil were significantly larger than non-inoculated controls with respect to shoot height, root length, plant biomass, leaf area and chlorophyll content; leaf MDA content under saline condition and leaf osmotic potential under severe salinity condition (150 mM NaCl) were significantly decreased. Furthermore, GB03 significantly decreased shoot and root Na(+) accumulation and thereby improved K(+)/Na(+) ratio when GB03-inoculated plants were grown under elevated salt conditions. The results indicate that soil inoculation with GB03 promotes white clover growth under both non-saline and saline conditions by directly or indirectly regulating plant chlorophyll content, leaf osmotic potential, cell membrane integrity and ion accumulation.
Collapse
Affiliation(s)
- Qing-Qing Han
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Xin-Pei Lü
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Jiang-Ping Bai
- Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Provincial Key Laboratory of Arid Land Crop Science, College of Agronomy, Gansu Agricultural UniversityLanzhou, China
| | - Yan Qiao
- Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Provincial Key Laboratory of Arid Land Crop Science, College of Agronomy, Gansu Agricultural UniversityLanzhou, China
| | - Paul W. Paré
- Department of Chemistry and Biochemistry, Texas Tech UniversityLubbock, TX, USA
| | - Suo-Min Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Jin-Lin Zhang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
- *Correspondence: Jin-Lin Zhang, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, 768 West Jiayuguan Road, Chengguan District, Lanzhou 730020, Gansu, China e-mail:
| | - Yong-Na Wu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Xiao-Pan Pang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Wen-Bo Xu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Zhi-Liang Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| |
Collapse
|
191
|
Coskun D, Britto DT, Li M, Becker A, Kronzucker HJ. Rapid ammonia gas transport accounts for futile transmembrane cycling under NH3/NH4+ toxicity in plant roots. PLANT PHYSIOLOGY 2013; 163:1859-67. [PMID: 24134887 PMCID: PMC3850193 DOI: 10.1104/pp.113.225961] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/14/2013] [Indexed: 05/17/2023]
Abstract
Futile transmembrane NH3/NH4(+) cycling in plant root cells, characterized by extremely rapid fluxes and high efflux to influx ratios, has been successfully linked to NH3/NH4(+) toxicity. Surprisingly, the fundamental question of which species of the conjugate pair (NH3 or NH4(+)) participates in such fluxes is unresolved. Using flux analyses with the short-lived radioisotope (13)N and electrophysiological, respiratory, and histochemical measurements, we show that futile cycling in roots of barley (Hordeum vulgare) seedlings is predominately of the gaseous NH3 species, rather than the NH4(+) ion. Influx of (13)NH3/(13)NH4(+), which exceeded 200 µmol g(-1) h(-1), was not commensurate with membrane depolarization or increases in root respiration, suggesting electroneutral NH3 transport. Influx followed Michaelis-Menten kinetics for NH3 (but not NH4(+)), as a function of external concentration (Km = 152 µm, Vmax = 205 µmol g(-1) h(-1)). Efflux of (13)NH3/(13)NH4(+) responded with a nearly identical Km. Pharmacological characterization of influx and efflux suggests mediation by aquaporins. Our study fundamentally revises the futile-cycling model by demonstrating that NH3 is the major permeating species across both plasmalemma and tonoplast of root cells under toxicity conditions.
Collapse
Affiliation(s)
- Devrim Coskun
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Dev T. Britto
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Mingyuan Li
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Alexander Becker
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Herbert J. Kronzucker
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| |
Collapse
|
192
|
Zhan X, Liang X, Jiang T, Xu G. Interaction of phenanthrene and potassium uptake by wheat roots: a mechanistic model. BMC PLANT BIOLOGY 2013; 13:168. [PMID: 24160457 PMCID: PMC3817313 DOI: 10.1186/1471-2229-13-168] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 10/23/2013] [Indexed: 05/31/2023]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) are potentially carcinogenic, mutagenic and toxic to both human and non-human organisms. Dietary intake of PAHs is a dominant route of exposure for the general population where food crops are a major source of dietary PAHs. Over 20% of main food crops contain PAHs that exceed the control limits in China. However, the mechanisms on PAH accumulation in crops are not well understood. RESULTS Here we report the physiological mechanism of potassium (K+)-stimulated uptake of phenanthrene (PHE, a model PAH) in wheat. PHE uptake is stimulated by the external K+. The addition of blockers (tetraethlyammonium and barium) for K+ channels does not suppress the process, suggesting that K+ channels are not involved. The introduction of PHE and K+ elicits a much greater depolarization in root cell membrane potential than that of either PHE or K+. K+ activates the plasma membrane proton (H+)-ATPase in a K+-dependent manner. The pattern is quite similar to that in PHE uptake in the presence of K+. The external medium pH treated with PHE and K+ is higher than that with K+, and lower than that with PHE, indicating that H+ pump involves in the interaction between PHE and K+ uptake. CONCLUSIONS Therefore, it is concluded that a K+ influx/H+ efflux reaction is coupled with the transport of PHE into wheat root cells. Our results provide a novel insight into the PHE uptake by crop roots.
Collapse
Affiliation(s)
- Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, P.R. China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province 210008, P.R. China
| | - Xiao Liang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, P.R. China
| | - Tinghui Jiang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, P.R. China
| | - Guohua Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, P.R. China
| |
Collapse
|
193
|
Laohavisit A, Richards SL, Shabala L, Chen C, Colaço RD, Swarbreck SM, Shaw E, Dark A, Shabala S, Shang Z, Davies JM. Salinity-induced calcium signaling and root adaptation in Arabidopsis require the calcium regulatory protein annexin1. PLANT PHYSIOLOGY 2013; 163:253-62. [PMID: 23886625 PMCID: PMC3762646 DOI: 10.1104/pp.113.217810] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Salinity (NaCl) stress impairs plant growth and inflicts severe crop losses. In roots, increasing extracellular NaCl causes Ca²⁺ influx to elevate cytosolic free Ca²⁺ ([Ca²⁺](cyt)) as a second messenger for adaptive signaling. Amplification of the signal involves plasma membrane reduced nicotinamide adenine dinucleotide phosphate oxidase activation, with the resultant reactive oxygen species triggering Ca²⁺ influx. The genetic identities of the Ca²⁺-permeable channels involved in generating the [Ca²⁺](cyt) signal are unknown. Potential candidates in the model plant Arabidopsis (Arabidopsis thaliana) include annexin1 (AtANN1). Here, luminescent detection of [Ca²⁺](cyt) showed that AtANN1 responds to high extracellular NaCl by mediating reactive oxygen species-activated Ca²⁺ influx across the plasma membrane of root epidermal protoplasts. Electrophysiological analysis revealed that root epidermal plasma membrane Ca²⁺ influx currents activated by NaCl are absent from the Atann1 loss-of-function mutant. Both adaptive signaling and salt-responsive production of secondary roots are impaired in the loss-of-function mutant, thus identifying AtANN1 as a key component of root cell adaptation to salinity.
Collapse
|
194
|
Jiang C, Belfield EJ, Cao Y, Smith JAC, Harberd NP. An Arabidopsis soil-salinity-tolerance mutation confers ethylene-mediated enhancement of sodium/potassium homeostasis. THE PLANT CELL 2013; 25:3535-52. [PMID: 24064768 PMCID: PMC3809548 DOI: 10.1105/tpc.113.115659] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/28/2013] [Accepted: 09/03/2013] [Indexed: 05/18/2023]
Abstract
High soil Na concentrations damage plants by increasing cellular Na accumulation and K loss. Excess soil Na stimulates ethylene-induced soil-salinity tolerance, the mechanism of which we here define via characterization of an Arabidopsis thaliana mutant displaying transpiration-dependent soil-salinity tolerance. This phenotype is conferred by a loss-of-function allele of ethylene overproducer1 (ETO1; mutant alleles of which cause increased production of ethylene). We show that lack of ETO1 function confers soil-salinity tolerance through improved shoot Na/K homeostasis, effected via the ethylene resistant1-constitutive triple response1 ethylene signaling pathway. Under transpiring conditions, lack of ETO1 function reduces root Na influx and both stelar and xylem sap Na concentrations, thereby restricting root-to-shoot delivery of Na. These effects are associated with increased accumulation of respiratory burst oxidase homolog F (RBOHF)-dependent reactive oxygen species in the root stele. Additionally, lack of ETO1 function leads to significant enhancement of tissue K status by an RBOHF-independent mechanism associated with elevated high-affinity K(+) TRANSPORTER5 transcript levels. We conclude that ethylene promotes soil-salinity tolerance via improved Na/K homeostasis mediated by RBOHF-dependent regulation of Na accumulation and RBOHF-independent regulation of K accumulation.
Collapse
Affiliation(s)
- Caifu Jiang
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Eric J. Belfield
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Yi Cao
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - J. Andrew C. Smith
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Nicholas P. Harberd
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| |
Collapse
|
195
|
Coskun D, Britto DT, Li M, Oh S, Kronzucker HJ. Capacity and plasticity of potassium channels and high-affinity transporters in roots of barley and Arabidopsis. PLANT PHYSIOLOGY 2013; 162:496-511. [PMID: 23553635 PMCID: PMC3641226 DOI: 10.1104/pp.113.215913] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/31/2013] [Indexed: 05/03/2023]
Abstract
The role of potassium (K(+)) transporters in high- and low-affinity K(+) uptake was examined in roots of intact barley (Hordeum vulgare) and Arabidopsis (Arabidopsis thaliana) plants by use of (42)K radiotracing, electrophysiology, pharmacology, and mutant analysis. Comparisons were made between results from barley and five genotypes of Arabidopsis, including single and double knockout mutants for the high-affinity transporter, AtHAK5, and the Shaker-type channel, AtAKT1. In Arabidopsis, steady-state K(+) influx at low external K(+) concentration ([K(+)]ext = 22.5 µm) was predominantly mediated by AtAKT1 when high-affinity transport was inhibited by ammonium, whereas in barley, by contrast, K(+) channels could not operate below 100 µm. Withdrawal of ammonium resulted in an immediate and dramatic stimulation of K(+) influx in barley, indicating a shift from active to passive K(+) uptake at low [K(+)]ext and yielding fluxes as high as 36 µmol g (root fresh weight)(-1) h(-1) at 5 mm [K(+)]ext, among the highest transporter-mediated K(+) fluxes hitherto reported. This ammonium-withdrawal effect was also established in all Arabidopsis lines (the wild types, atakt1, athak5, and athak5 atakt1) at low [K(+)]ext, revealing the concerted involvement of several transport systems. The ammonium-withdrawal effect coincided with a suppression of K(+) efflux and a significant hyperpolarization of the plasma membrane in all genotypes except athak5 atakt1, could be sustained over 24 h, and resulted in increased tissue K(+) accumulation. We discuss key differences and similarities in K(+) acquisition between two important model systems and reveal novel aspects of K(+) transport in planta.
Collapse
Affiliation(s)
- Devrim Coskun
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4
| | - Dev T. Britto
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4
| | - Mingyuan Li
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4
| | - Saehong Oh
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4
| | - Herbert J. Kronzucker
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4
| |
Collapse
|
196
|
Britto DT, Kronzucker HJ. Isotope techniques to study kinetics of Na+ and K+ transport under salinity conditions. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2013; 913:389-98. [PMID: 22895774 DOI: 10.1007/978-1-61779-986-0_26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Radioisotopes (particularly (22)Na, (24)Na, (42)K, and (86)Rb) have been used for many decades to trace the fluxes and accumulation of sodium and potassium ions in plant tissues. In this article, standard procedures for the tracing of ion fluxes are described, with emphasis on special problems encountered when examining K(+) and Na(+) transport under salinity conditions. We focus in particular on unidirectional influx measurements, while also providing a brief introduction to compartmental analysis by tracer efflux.
Collapse
Affiliation(s)
- Dev T Britto
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
197
|
Jaarsma R, de Vries RSM, de Boer AH. Effect of salt stress on growth, Na+ accumulation and proline metabolism in potato (Solanum tuberosum) cultivars. PLoS One 2013; 8:e60183. [PMID: 23533673 PMCID: PMC3606169 DOI: 10.1371/journal.pone.0060183] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/22/2013] [Indexed: 01/21/2023] Open
Abstract
Potato (Solanum tuberosum) is a major crop world-wide and the productivity of currently used cultivars is strongly reduced at high soil salt levels. We compared the response of six potato cultivars to increased root NaCl concentrations. Cuttings were grown hydroponically and treated with 0 mM, 60 mM and 180 mM NaCl for one week. Growth reduction on salt was strongest for the cultivars Mozart and Mona Lisa with a severe senescence response at 180 mM NaCl and Mozart barely survived the treatment. The cultivars Desiree and Russett Burbank were more tolerant showing no senescence after salt treatment. A clear difference in Na(+) homeostasis was observed between sensitive and tolerant cultivars. The salt sensitive cultivar Mozart combined low Na(+) levels in root and stem with the highest leaf Na(+) concentration of all cultivars, resulting in a high Na(+) shoot distribution index (SDI) for Mozart as compared to Desiree. Overall, a positive correlation between salt tolerance and stem Na(+) accumulation was found and the SDI for Na(+) points to a role of stem Na(+) accumulation in tolerance. In stem tissue, Mozart accumulated more H2O2 and less proline compared to the tolerant cultivars. Analysis of the expression of proline biosynthesis genes in Mozart and Desiree showed a clear reduction in proline dehydrogenase (PDH) expression in both cultivars and an increase in pyrroline-5-carboxylate synthetase 1 (P5CS1) gene expression in Desiree, but not in Mozart. Taken together, current day commercial cultivars show promising differences in salt tolerance and the results suggest that mechanisms of tolerance reside in the capacity of Na(+) accumulation in stem tissue, resulting in reduced Na(+) transport to the leaves.
Collapse
Affiliation(s)
- Rinse Jaarsma
- Department of Structural Biology, Faculty of Earth and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Rozemarijn S. M. de Vries
- Department of Structural Biology, Faculty of Earth and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Albertus H. de Boer
- Department of Structural Biology, Faculty of Earth and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
198
|
Coskun D, Britto DT, Jean YK, Kabir I, Tolay I, Torun AA, Kronzucker HJ. K+ efflux and retention in response to NaCl stress do not predict salt tolerance in contrasting genotypes of rice (Oryza sativa L.). PLoS One 2013; 8:e57767. [PMID: 23460903 PMCID: PMC3583904 DOI: 10.1371/journal.pone.0057767] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/25/2013] [Indexed: 12/25/2022] Open
Abstract
Sudden elevations in external sodium chloride (NaCl) accelerate potassium (K(+)) efflux across the plasma membrane of plant root cells. It has been proposed that the extent of this acceleration can predict salt tolerance among contrasting cultivars. However, this proposal has not been considered in the context of plant nutritional history, nor has it been explored in rice (Oryza sativa L.), which stands among the world's most important and salt-sensitive crop species. Using efflux analysis with (42)K, coupled with growth and tissue K(+) analyses, we examined the short- and long-term effects of NaCl exposure to plant performance within a nutritional matrix that significantly altered tissue-K(+) set points in three rice cultivars that differ in salt tolerance: IR29 (sensitive), IR72 (moderate), and Pokkali (tolerant). We show that total short-term K(+) release from roots in response to NaCl stress is small (no more than 26% over 45 min) in rice. Despite strong varietal differences, the extent of efflux is shown to be a poor predictor of plant performance on long-term NaCl stress. In fact, no measure of K(+) status was found to correlate with plant performance among cultivars either in the presence or absence of NaCl stress. By contrast, shoot Na(+) accumulation showed the strongest correlation (a negative one) with biomass, under long-term salinity. Pharmacological evidence suggests that NaCl-induced K(+) efflux is a result of membrane disintegrity, possibly as result of osmotic shock, and not due to ion-channel mediation. Taken together, we conclude that, in rice, K(+) status (including efflux) is a poor predictor of salt tolerance and overall plant performance and, instead, shoot Na(+) accumulation is the key factor in performance decline on NaCl stress.
Collapse
Affiliation(s)
- Devrim Coskun
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Dev T. Britto
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Yuel-Kai Jean
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Imtiaz Kabir
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Inci Tolay
- Department of Agriculture, Akdeniz University, Antalya, Turkey
| | - Ayfer A. Torun
- Department of Soil Science & Plant Nutrition, Cukurova University, Adana, Turkey
| | | |
Collapse
|
199
|
Wu D, Cai S, Chen M, Ye L, Chen Z, Zhang H, Dai F, Wu F, Zhang G. Tissue metabolic responses to salt stress in wild and cultivated barley. PLoS One 2013; 8:e55431. [PMID: 23383190 PMCID: PMC3561194 DOI: 10.1371/journal.pone.0055431] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/22/2012] [Indexed: 12/18/2022] Open
Abstract
A thorough understanding of the mechanisms underlying barley salt tolerance and exploitation of elite genetic resource are essential for utilizing wild barley germplasm in developing barley varieties with salt tolerance. In order to reveal the physiological and molecular difference in salt tolerance between Tibetan wild barley (Hordeum spontaneum) and cultivated barley (Hordeum vulgare), profiles of 82 key metabolites were studies in wild and cultivated barley in response to salinity. According to shoot dry biomass under salt stress, XZ16 is a fast growing and salt tolerant wild barley. The results of metabolite profiling analysis suggested osmotic adjustment was a basic mechanism, and polyols played important roles in developing salt tolerance only in roots, and high level of sugars and energy in roots and active photosynthesis in leaves were important for barley to develop salt tolerance. The metabolites involved in tolerance enhancement differed between roots and shoots, and also between genotypes. Tibetan wild barley, XZ16 had higher chlorophyll content and higher contents of compatible solutes than CM72, while the cultivated barley, CM72 probably enhanced its salt tolerance mainly through increasing glycolysis and energy consumption, when the plants were exposed to high salinity. The current research extends our understanding of the mechanisms involved in barley salt tolerance and provides possible utilization of Tibetan wild barley in developing barley cultivars with salt tolerance.
Collapse
Affiliation(s)
- Dezhi Wu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Shengguan Cai
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Mingxian Chen
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Lingzhen Ye
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Zhonghua Chen
- School of Science and Health, University of Western Sydney, Penrith, New South Wales, Australia
| | - Haitao Zhang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Fei Dai
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Feibo Wu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Guoping Zhang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
200
|
Shitan N, Yazaki K. New insights into the transport mechanisms in plant vacuoles. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:383-433. [PMID: 23890387 DOI: 10.1016/b978-0-12-407695-2.00009-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The vacuole is the largest compartment in plant cells, often occupying more than 80% of the total cell volume. This organelle accumulates a large variety of endogenous ions, metabolites, and xenobiotics. The compartmentation of divergent substances is relevant for a wide range of biological processes, such as the regulation of stomata movement, defense mechanisms against herbivores, flower coloration, etc. Progress in molecular and cellular biology has revealed that a large number of transporters and channels exist at the tonoplast. In recent years, various biochemical and physiological functions of these proteins have been characterized in detail. Some are involved in maintaining the homeostasis of ions and metabolites, whereas others are related to defense mechanisms against biotic and abiotic stresses. In this review, we provide an updated inventory of vacuolar transport mechanisms and a comprehensive summary of their physiological functions.
Collapse
Affiliation(s)
- Nobukazu Shitan
- Laboratory of Natural Medicinal Chemistry, Kobe Pharmaceutical University, Kobe, Japan.
| | | |
Collapse
|