151
|
Mohanta TK, Bae H. Cloning and characterization of auxin efflux carrier genes EcPIN1a and EcPIN1b from finger millet Eleusine coracana L. 3 Biotech 2017; 7:51. [PMID: 28444595 DOI: 10.1007/s13205-017-0689-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/07/2017] [Indexed: 02/01/2023] Open
Abstract
Auxin signaling events in plants play important role in developmental regulation as well as gravitropic responses and plays crucial role in the development of root, lateral root and root hairs. The gene that is known to be most important in the development of root, lateral root and root hairs is commonly known as auxin efflux carrier (PIN). Being commonly known as orphan plant, the genome sequence of Eleusine coracana is not known yet, and hence it was very difficult to conduct advanced research in root development in this plant. As PIN gene plays crucial role in root development, to have some advanced study we proposed to clone the PIN genes from E. coracana. We cloned two PIN genes in E. coracana and named them as EcPIN1a and EcPIN1b. The coding sequence (CDS) of EcPIN1a was 1779 bp and EcPIN1b was 1788 bp long that encodes for 593 and 596 amino acids, respectively. In-silico analysis shows the presence of transmembrane domain in EcPIN1a and EcPIN1b protein. Multiple sequence alignment of EcPIN1a and EcPIN1b protein shows the presence of several conserved motifs. Phylogenetic analysis of EcPIN1a and EcPIN1b grouped with the PIN gene of monocot plant Oryza sativa. This shows that EcPIN genes were monocot specific, and closely match with the PIN genes of O. sativa. The transcript analysis of EcPIN1a gene in leaf tissue shows gradual up-regulation from 7th to 28th days of developmental time period while the transcript level was found to be lower in root tissue. The transcript abundance of EcPIN1b was not detected. Gradual up-regulation of EcPIN1a gene in developmental stages signifies its important role in root development in E. coracana.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Free Major of Natural Sciences, School of Basic Studies, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| | - Hanhong Bae
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| |
Collapse
|
152
|
Analysis of drought-responsive signalling network in two contrasting rice cultivars using transcriptome-based approach. Sci Rep 2017; 7:42131. [PMID: 28181537 PMCID: PMC5299611 DOI: 10.1038/srep42131] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/30/2016] [Indexed: 12/14/2022] Open
Abstract
Traditional cultivars of rice in India exhibit tolerance to drought stress due to their inherent genetic variations. Here we present comparative physiological and transcriptome analyses of two contrasting cultivars, drought tolerant Dhagaddeshi (DD) and susceptible IR20. Microarray analysis revealed several differentially expressed genes (DEGs) exclusively in DD as compared to IR20 seedlings exposed to 3 h drought stress. Physiologically, DD seedlings showed higher cell membrane stability and differential ABA accumulation in response to dehydration, coupled with rapid changes in gene expression. Detailed analyses of metabolic pathways enriched in expression data suggest interplay of ABA dependent along with secondary and redox metabolic networks that activate osmotic and detoxification signalling in DD. By co-localization of DEGs with QTLs from databases or published literature for physiological traits of DD and IR20, candidate genes were identified including those underlying major QTL qDTY1.1 in DD. Further, we identified previously uncharacterized genes from both DD and IR20 under drought conditions including OsWRKY51, OsVP1 and confirmed their expression by qPCR in multiple rice cultivars. OsFBK1 was also functionally validated in susceptible PB1 rice cultivar and Arabidopsis for providing drought tolerance. Some of the DEGs mapped to the known QTLs could thus, be of potential significance for marker-assisted breeding.
Collapse
|
153
|
Comprehensive Analysis of Rice Laccase Gene (OsLAC) Family and Ectopic Expression of OsLAC10 Enhances Tolerance to Copper Stress in Arabidopsis. Int J Mol Sci 2017; 18:ijms18020209. [PMID: 28146098 PMCID: PMC5343771 DOI: 10.3390/ijms18020209] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/13/2017] [Indexed: 02/02/2023] Open
Abstract
Laccases are encoded by a multigene family and widely distributed in plant genomes where they play roles oxidizing monolignols to produce higher-order lignin involved in plant development and stress responses. We identified 30 laccase genes (OsLACs) from rice, which can be divided into five subfamilies, mostly expressed during early development of the endosperm, growing roots, and stems. OsLACs can be induced by hormones, salt, drought, and heavy metals stresses. The expression level of OsLAC10 increased 1200-fold after treatment with 20 μM Cu for 12 h. The laccase activities of OsLAC10 were confirmed in an Escherichia coli expression system. Lignin accumulation increased in the roots of Arabidopsis over-expressing OsLAC10 (OsLAC10-OX) compared to wild-type controls. After growth on 1/2 Murashige and Skoog (MS) medium containing toxic levels of Cu for seven days, roots of the OsLAC10-OX lines were significantly longer than those of the wild type. Compared to control plants, the Cu concentration decreased significantly in roots of the OsLAC10-OX line under hydroponic conditions. These results provided insights into the evolutionary expansion and functional divergence of OsLAC family. In addition, OsLAC10 is likely involved in lignin biosynthesis, and reduces the uptake of Cu into roots required for Arabidopsis to develop tolerance to Cu.
Collapse
|
154
|
Wei T, Deng K, Zhang Q, Gao Y, Liu Y, Yang M, Zhang L, Zheng X, Wang C, Liu Z, Chen C, Zhang Y. Modulating AtDREB1C Expression Improves Drought Tolerance in Salvia miltiorrhiza. FRONTIERS IN PLANT SCIENCE 2017; 8:52. [PMID: 28174590 PMCID: PMC5259653 DOI: 10.3389/fpls.2017.00052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/10/2017] [Indexed: 05/20/2023]
Abstract
Dehydration responsive element binding proteins are transcription factors of the plant-specific AP2 family, many of which contribute to abiotic stress responses in several plant species. We investigated the possibility of increasing drought tolerance in the traditional Chinese medicinal herb, Salvia miltiorrhiza, through modulating the transcriptional regulation of AtDREB1C in transgenic plants under the control of a constitutive (35S) or drought-inducible (RD29A) promoter. AtDREB1C transgenic S. miltiorrhiza plants showed increased survival under severe drought conditions compared to the non-transgenic wild-type (WT) control. However, transgenic plants with constitutive overexpression of AtDREB1C showed considerable dwarfing relative to WT. Physiological tests suggested that the higher chlorophyll content, photosynthetic capacity, and superoxide dismutase, peroxidase, and catalase activity in the transgenic plants enhanced plant drought stress resistance compared to WT. Transcriptome analysis of S. miltiorrhiza following drought stress identified a number of differentially expressed genes (DEGs) between the AtDREB1C transgenic lines and WT. These DEGs are involved in photosynthesis, plant hormone signal transduction, phenylpropanoid biosynthesis, ribosome, starch and sucrose metabolism, and other metabolic pathways. The modified pathways involved in plant hormone signaling are thought to be one of the main causes of the increased drought tolerance of AtDREB1C transgenic S. miltiorrhiza plants.
Collapse
Affiliation(s)
- Tao Wei
- College of Life Sciences, Nankai UniversityTianjin, China
- School of Life Sciences and Technology, University of Electronic Science and Technology of ChinaChengdu, China
| | - Kejun Deng
- School of Life Sciences and Technology, University of Electronic Science and Technology of ChinaChengdu, China
- Center for Informational Biology, University of Electronic Science and Technology of ChinaChengdu, China
| | - Qingxia Zhang
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Yonghong Gao
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Yu Liu
- School of Life Sciences and Technology, University of Electronic Science and Technology of ChinaChengdu, China
- Center for Informational Biology, University of Electronic Science and Technology of ChinaChengdu, China
| | - Meiling Yang
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Lipeng Zhang
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Xuelian Zheng
- School of Life Sciences and Technology, University of Electronic Science and Technology of ChinaChengdu, China
- Center for Informational Biology, University of Electronic Science and Technology of ChinaChengdu, China
| | - Chunguo Wang
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Zhiwei Liu
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Chengbin Chen
- College of Life Sciences, Nankai UniversityTianjin, China
- *Correspondence: Chengbin Chen, Yong Zhang,
| | - Yong Zhang
- School of Life Sciences and Technology, University of Electronic Science and Technology of ChinaChengdu, China
- Center for Informational Biology, University of Electronic Science and Technology of ChinaChengdu, China
- *Correspondence: Chengbin Chen, Yong Zhang,
| |
Collapse
|
155
|
Liu Y, Huang W, Xian Z, Hu N, Lin D, Ren H, Chen J, Su D, Li Z. Overexpression of SlGRAS40 in Tomato Enhances Tolerance to Abiotic Stresses and Influences Auxin and Gibberellin Signaling. FRONTIERS IN PLANT SCIENCE 2017; 8:1659. [PMID: 29018467 PMCID: PMC5622987 DOI: 10.3389/fpls.2017.01659] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 09/11/2017] [Indexed: 05/20/2023]
Abstract
Abiotic stresses are major environmental factors that inhibit plant growth and development impacting crop productivity. GRAS transcription factors play critical and diverse roles in plant development and abiotic stress. In this study, SlGRAS40, a member of the tomato (Solanum lycopersicum) GRAS family, was functionally characterized. In wild-type (WT) tomato, SlGRAS40 was upregulated by abiotic stress induced by treatment with D-mannitol, NaCl, or H2O2. Transgenic tomato plants overexpressing SlGRAS40 (SlGRAS40-OE) were more tolerant of drought and salt stress than WT. SlGRAS40-OE plants displayed pleiotropic phenotypes reminiscent of those resulting from altered auxin and/or gibberellin signaling. A comparison of WT and SlGRAS40-OE transcriptomes showed that the expression of a large number of genes involved in hormone signaling and stress responses were modified. Our study of SlGRAS40 protein provides evidence of how another GRAS plays roles in resisting abiotic stress and regulating auxin and gibberellin signaling during vegetative and reproductive growth in tomato.
Collapse
|
156
|
Michalko J, Renner T, Mészáros P, Socha P, Moravčíková J, Blehová A, Libantová J, Polóniová Z, Matušíková I. Molecular characterization and evolution of carnivorous sundew (Drosera rotundifolia L.) class V β-1,3-glucanase. PLANTA 2017; 245:77-91. [PMID: 27580619 DOI: 10.1007/s00425-016-2592-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/25/2016] [Indexed: 06/06/2023]
Abstract
MAIN CONCLUSION A gene for β-1,3-glucanase was isolated from carnivorous sundew. It is active in leaves and roots, but not in digestive glands. Analyses in transgenic tobacco suggest its function in germination. Ancestral plant β-1,3-glucanases (EC 3.2.1.39) played a role in cell division and cell wall remodelling, but divergent evolution has extended their roles in plant defense against stresses to decomposition of prey in carnivorous plants. As available gene sequences from carnivorous plants are rare, we isolated a glucanase gene from roundleaf sundew (Drosera rotundifolia L.) by a genome walking approach. Computational predictions recognized typical gene features and protein motifs described for other plant β-1,3-glucanases. Phylogenetic reconstructions suggest strong support for evolutionary relatedness to class V β-1,3-glucanases, including homologs that are active in the traps of related carnivorous species. The gene is expressed in sundew vegetative tissues but not in flowers and digestive glands, and encodes for a functional enzyme when expressed in transgenic tobacco. Detailed analyses of the supposed promoter both in silico and in transgenic tobacco suggest that this glucanase plays a role in development. Specific spatiotemporal activity was observed during transgenic seed germination. Later during growth, the sundew promoter was active in marginal and sub-marginal areas of apical true leaf meristems of young tobacco plants. These results suggest that the isolated glucanase gene is regulated endogenously, possibly by auxin. This is the first report on a nuclear gene study from sundew.
Collapse
Affiliation(s)
- Jaroslav Michalko
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Akademická 2, P.O. Box 39A, 950 07, Nitra, Slovak Republic
| | - Tanya Renner
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-4614, USA
| | - Patrik Mészáros
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University, Nábrežie mládeže 91, 949 74, Nitra, Slovak Republic
| | - Peter Socha
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Akademická 2, P.O. Box 39A, 950 07, Nitra, Slovak Republic
| | - Jana Moravčíková
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Akademická 2, P.O. Box 39A, 950 07, Nitra, Slovak Republic
| | - Alžbeta Blehová
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University, Mlynská dolina B2, 842 15, Bratislava, Slovak Republic
| | - Jana Libantová
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Akademická 2, P.O. Box 39A, 950 07, Nitra, Slovak Republic
| | - Zuzana Polóniová
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Akademická 2, P.O. Box 39A, 950 07, Nitra, Slovak Republic
| | - Ildikó Matušíková
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Akademická 2, P.O. Box 39A, 950 07, Nitra, Slovak Republic.
- Department of Ecochemistry and Radioecology, University of SS. Cyril and Methodius, J. Herdu 2, 917 01, Trnava, Slovak Republic.
| |
Collapse
|
157
|
Lu T, Meng Z, Zhang G, Qi M, Sun Z, Liu Y, Li T. Sub-high Temperature and High Light Intensity Induced Irreversible Inhibition on Photosynthesis System of Tomato Plant ( Solanum lycopersicum L.). FRONTIERS IN PLANT SCIENCE 2017; 8:365. [PMID: 28360922 PMCID: PMC5352666 DOI: 10.3389/fpls.2017.00365] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 03/01/2017] [Indexed: 05/18/2023]
Abstract
High temperature and high light intensity is a common environment posing a great risk to organisms. This study aimed to elucidate the effects of sub-high temperature and high light intensity stress (HH, 35°C, 1000 μmol⋅m-2⋅s-1) and recovery on the photosynthetic mechanism, photoinhibiton of photosystem II (PSII) and photosystem I (PSI), and reactive oxygen (ROS) metabolism of tomato seedlings. The results showed that with prolonged stress time, net photosynthetic rate (Pn), Rubisco activity, maximal photochemistry efficiency (Fv/Fm), efficient quantum yield and electron transport of PSII [Y(II) and ETR(II)] and PSI [Y(I) and ETR(I)] decreased significantly whereas yield of non-regulated and regulated energy dissipation of PSII [Y(NO) and Y(NPQ)] increased sharply. The donor side limitation of PSI [Y(ND)] increased but the acceptor side limitation of PSI [Y(NA)] decreased. Content of malondialdehyde (MDA) and hydrogen peroxide (H2O2) were increased while activity of superoxide dismutase (SOD) and peroxidase (POD) were significantly inhibited compared with control. HH exposure affected photosynthetic carbon assimilation, multiple sites in PSII and PSI, ROS accumulation and elimination of Solanum lycopersicum L.
Collapse
Affiliation(s)
- Tao Lu
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning ProvinceShenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf RegionShenyang, China
| | - Zhaojuan Meng
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning ProvinceShenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf RegionShenyang, China
| | - Guoxian Zhang
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning ProvinceShenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf RegionShenyang, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning ProvinceShenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf RegionShenyang, China
| | - Zhouping Sun
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning ProvinceShenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf RegionShenyang, China
| | - Yufeng Liu
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning ProvinceShenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf RegionShenyang, China
- *Correspondence: Yufeng Liu, Tianlai Li,
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning ProvinceShenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf RegionShenyang, China
- *Correspondence: Yufeng Liu, Tianlai Li,
| |
Collapse
|
158
|
Bhattacharjee A, Sharma R, Jain M. Over-Expression of OsHOX24 Confers Enhanced Susceptibility to Abiotic Stresses in Transgenic Rice via Modulating Stress-Responsive Gene Expression. FRONTIERS IN PLANT SCIENCE 2017; 8:628. [PMID: 28484484 PMCID: PMC5399076 DOI: 10.3389/fpls.2017.00628] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/07/2017] [Indexed: 05/20/2023]
Abstract
Homeobox transcription factors play critical roles in plant development and abiotic stress responses. In the present study, we raised rice transgenics over-expressing stress-responsive OsHOX24 gene (rice homeodomain-leucine zipper I sub-family member) and analyzed their response to various abiotic stresses at different stages of development. At the seed germination stage, rice transgenics over-expressing OsHOX24 exhibited enhanced sensitivity to abiotic stress conditions and abscisic acid as compared to wild-type (WT). OsHOX24 over-expression rice seedlings showed reduced root and shoot growth under salinity and desiccation stress (DS) conditions. Various physiological and phenotypic assays confirmed higher susceptibility of rice transgenics toward abiotic stresses as compared to WT at mature and reproductive stages of rice development too. Global gene expression profiling revealed differential regulation of several genes in the transgenic plants under control and DS conditions. Many of these differentially expressed genes were found to be involved in transcriptional regulatory activities, besides carbohydrate, nucleic acid and lipid metabolic processes and response to abiotic stress and hormones. Taken together, our findings highlighted the role of OsHOX24 in regulation of abiotic stress responses via modulating the expression of stress-responsive genes in rice.
Collapse
Affiliation(s)
| | | | - Mukesh Jain
- National Institute of Plant Genome ResearchNew Delhi, India
- School of Computational and Integrative Sciences, Jawaharlal Nehru UniversityNew Delhi, India
- *Correspondence: Mukesh Jain, ;
| |
Collapse
|
159
|
Comparative transcriptome profiling of chilling tolerant rice chromosome segment substitution line in response to early chilling stress. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0471-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
160
|
Pan J, Wang W, Li D, Shu Z, Ye X, Chang P, Wang Y. Gene expression profile indicates involvement of NO in Camellia sinensis pollen tube growth at low temperature. BMC Genomics 2016; 17:809. [PMID: 27756219 PMCID: PMC5070194 DOI: 10.1186/s12864-016-3158-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 10/12/2016] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Nitric oxide (NO) functions as a critical signaling molecule in the low-temperature stress responses in plants, including polarized pollen tube growth in Camellia sinensis. Despite this, the potential mechanisms underlying the participation of NO in pollen tube responses to low temperature remain unclear. Here, we investigate alterations to gene expression in C. sinensis pollen tubes exposed to low-temperature stress and NO using RNA-Seq technology, in order to find the potential candidate genes related to the regulation of pollen tube elongation by NO under low-temperature stress. RESULTS Three libraries were generated from C. sinensis cv. 'Longjingchangye' pollen tubes cultured at 25 °C (CsPT-CK) and 4 °C (CsPT-LT) or with 25 μM DEA NONOate (CsPT-NO). The number of unigenes found for the three biological replications were 39,726, 40,440 and 41,626 for CsPT-CK; 36,993, 39,070 and 39,439 for CsPT-LT; and 39,514, 38,298 and 39,061 for CsPT-NO. A total of 36,097 unique assembled and annotated sequences from C. sinensis pollen tube reads were found in a BLAST search of the following databases: NCBI non-redundant nucleotide, Swiss-prot protein, Kyoto Encyclopedia of Genes and Genomes, Cluster of Orthologous Groups of proteins, and Gene Ontology. The absolute values of log2Ratio > 1 and probability > 0.7 were used as the thresholds for significantly differential gene expression, and 766, 497 and 929 differentially expressed genes (DEGs) were found from the comparison analyses of the CK-VS-LT, CK-VS-NO and LT-VS-NO libraries, respectively. Genes related to metabolism and signaling pathways of plant hormones, transcription factors (TFs), vesicle polarized trafficking, cell wall biosynthesis, the ubiquitination machinery of the ubiquitin system and species-specific secondary metabolite pathways were mainly observed in the CK-VS-LT and CK-VS-NO libraries. CONCLUSION Differentially expressed unigenes related to the inhibition of C. sinensis pollen tube growth under low temperature and NO are identified in this study. The transcriptomic gene expression profiles present a valuable genomic tool to improve studying the molecular mechanisms underlying low-temperature tolerance in pollen tube.
Collapse
Affiliation(s)
- Junting Pan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Weidong Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Dongqin Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zaifa Shu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiaoli Ye
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Pinpin Chang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yuhua Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
161
|
Mahajan AS, Kondhare KR, Rajabhoj MP, Kumar A, Ghate T, Ravindran N, Habib F, Siddappa S, Banerjee AK. Regulation, overexpression, and target gene identification of Potato Homeobox 15 (POTH15) - a class-I KNOX gene in potato. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4255-72. [PMID: 27217546 PMCID: PMC5301930 DOI: 10.1093/jxb/erw205] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Potato Homeobox 15 (POTH15) is a KNOX-I (Knotted1-like homeobox) family gene in potato that is orthologous to Shoot Meristemless (STM) in Arabidopsis. Despite numerous reports on KNOX genes from different species, studies in potato are limited. Here, we describe photoperiodic regulation of POTH15, its overexpression phenotype, and identification of its potential targets in potato (Solanum tuberosum ssp. andigena). qRT-PCR analysis showed a higher abundance of POTH15 mRNA in shoot tips and stolons under tuber-inducing short-day conditions. POTH15 promoter activity was detected in apical and axillary meristems, stolon tips, tuber eyes, and meristems of tuber sprouts, indicating its role in meristem maintenance and leaf development. POTH15 overexpression altered multiple morphological traits including leaf and stem development, leaflet number, and number of nodes and branches. In particular, the rachis of the leaf was completely reduced and leaves appeared as a bouquet of leaflets. Comparative transcriptomic analysis of 35S::GUS and two POTH15 overexpression lines identified more than 6000 differentially expressed genes, including 2014 common genes between the two overexpression lines. Functional analysis of these genes revealed their involvement in responses to hormones, biotic/abiotic stresses, transcription regulation, and signal transduction. qRT-PCR of selected candidate target genes validated their differential expression in both overexpression lines. Out of 200 randomly chosen POTH15 targets, 173 were found to have at least one tandem TGAC core motif, characteristic of KNOX interaction, within 3.0kb in the upstream sequence of the transcription start site. Overall, this study provides insights to the role of POTH15 in controlling diverse developmental processes in potato.
Collapse
Affiliation(s)
- Ameya S Mahajan
- Biology Division, Dr. Homi Bhabha Road, IISER Pune, Pune - 411008, Maharashtra, India
| | - Kirtikumar R Kondhare
- Biology Division, Dr. Homi Bhabha Road, IISER Pune, Pune - 411008, Maharashtra, India
| | - Mohit P Rajabhoj
- School of Biology, IISER TVM, Thiruvananthapuram (Trivandrum) - 695016, Kerala, India
| | - Amit Kumar
- Biology Division, Dr. Homi Bhabha Road, IISER Pune, Pune - 411008, Maharashtra, India
| | - Tejashree Ghate
- Dept. of Botany, SPP University (formerly University of Pune), Pune - 411007, Maharashtra, India
| | - Nevedha Ravindran
- Biological Sciences, IISER Bhopal, Bhopal - 462066, Madhya Pradesh, India
| | - Farhat Habib
- Biology Division, Dr. Homi Bhabha Road, IISER Pune, Pune - 411008, Maharashtra, India
| | - Sundaresha Siddappa
- Division of Crop Improvement, Central Potato Research Institute, Shimla - 171001, India
| | - Anjan K Banerjee
- Biology Division, Dr. Homi Bhabha Road, IISER Pune, Pune - 411008, Maharashtra, India
| |
Collapse
|
162
|
Park HJ, Kim WY, Yun DJ. A New Insight of Salt Stress Signaling in Plant. Mol Cells 2016; 39:447-59. [PMID: 27239814 PMCID: PMC4916396 DOI: 10.14348/molcells.2016.0083] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/06/2016] [Accepted: 05/16/2016] [Indexed: 12/12/2022] Open
Abstract
Many studies have been conducted to understand plant stress responses to salinity because irrigation-dependent salt accumulation compromises crop productivity and also to understand the mechanism through which some plants thrive under saline conditions. As mechanistic understanding has increased during the last decades, discovery-oriented approaches have begun to identify genetic determinants of salt tolerance. In addition to osmolytes, osmoprotectants, radical detoxification, ion transport systems, and changes in hormone levels and hormone-guided communications, the Salt Overly Sensitive (SOS) pathway has emerged to be a major defense mechanism. However, the mechanism by which the components of the SOS pathway are integrated to ultimately orchestrate plant-wide tolerance to salinity stress remains unclear. A higher-level control mechanism has recently emerged as a result of recognizing the involvement of GIGANTEA (GI), a protein involved in maintaining the plant circadian clock and control switch in flowering. The loss of GI function confers high tolerance to salt stress via its interaction with the components of the SOS pathway. The mechanism underlying this observation indicates the association between GI and the SOS pathway and thus, given the key influence of the circadian clock and the pathway on photoperiodic flowering, the association between GI and SOS can regulate growth and stress tolerance. In this review, we will analyze the components of the SOS pathways, with emphasis on the integration of components recognized as hallmarks of a halophytic lifestyle.
Collapse
Affiliation(s)
- Hee Jin Park
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Jinju 52828,
Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Jinju 52828,
Korea
- Institute of Agriculture & Life Sciences, Graduate School of Gyeongsang National University, Jinju 52828,
Korea
| | - Dae-Jin Yun
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Jinju 52828,
Korea
| |
Collapse
|
163
|
Han X, Yin H, Song X, Zhang Y, Liu M, Sang J, Jiang J, Li J, Zhuo R. Integration of small RNAs, degradome and transcriptome sequencing in hyperaccumulator Sedum alfredii uncovers a complex regulatory network and provides insights into cadmium phytoremediation. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1470-83. [PMID: 26801211 PMCID: PMC5066797 DOI: 10.1111/pbi.12512] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 11/05/2015] [Accepted: 11/13/2015] [Indexed: 05/15/2023]
Abstract
The hyperaccumulating ecotype of Sedum alfredii Hance is a cadmium (Cd)/zinc/lead co-hyperaccumulating species of Crassulaceae. It is a promising phytoremediation candidate accumulating substantial heavy metal ions without obvious signs of poisoning. However, few studies have focused on the regulatory roles of miRNAs and their targets in the hyperaccumulating ecotype of S. alfredii. Here, we combined analyses of the transcriptomics, sRNAs and the degradome to generate a comprehensive resource focused on identifying key regulatory miRNA-target circuits under Cd stress. A total of 87 721 unigenes and 356 miRNAs were identified by deep sequencing, and 79 miRNAs were differentially expressed under Cd stress. Furthermore, 754 target genes of 194 miRNAs were validated by degradome sequencing. A gene ontology (GO) enrichment analysis of differential miRNA targets revealed that auxin, redox-related secondary metabolism and metal transport pathways responded to Cd stress. An integrated analysis uncovered 39 pairs of miRNA targets that displayed negatively correlated expression profiles. Ten miRNA-target pairs also exhibited negative correlations according to a real-time quantitative PCR analysis. Moreover, a coexpression regulatory network was constructed based on profiles of differentially expressed genes. Two hub genes, ARF4 (auxin response factor 4) and AAP3 (amino acid permease 3), which might play central roles in the regulation of Cd-responsive genes, were uncovered. These results suggest that comprehensive analyses of the transcriptomics, sRNAs and the degradome provided a useful platform for investigating Cd hyperaccumulation in S. alfredii, and may provide new insights into the genetic engineering of phytoremediation.
Collapse
Affiliation(s)
- Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Hengfu Yin
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Xixi Song
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Yunxing Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Mingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Jiang Sang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Jihong Li
- Key Laboratory of Agricultural Ecology and Environment, College of Forestry, Shandong Agricultural University, Tai'an, Shandong, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| |
Collapse
|
164
|
Paul P, Dhandapani V, Rameneni JJ, Li X, Sivanandhan G, Choi SR, Pang W, Im S, Lim YP. Genome-Wide Analysis and Characterization of Aux/IAA Family Genes in Brassica rapa. PLoS One 2016; 11:e0151522. [PMID: 27049520 PMCID: PMC4822780 DOI: 10.1371/journal.pone.0151522] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/28/2016] [Indexed: 11/18/2022] Open
Abstract
Auxins are the key players in plant growth development involving leaf formation, phototropism, root, fruit and embryo development. Auxin/Indole-3-Acetic Acid (Aux/IAA) are early auxin response genes noted as transcriptional repressors in plant auxin signaling. However, many studies focus on Aux/ARF gene families and much less is known about the Aux/IAA gene family in Brassica rapa (B. rapa). Here we performed a comprehensive genome-wide analysis and identified 55 Aux/IAA genes in B. rapa using four conserved motifs of Aux/IAA family (PF02309). Chromosomal mapping of the B. rapa Aux/IAA (BrIAA) genes facilitated understanding cluster rearrangement of the crucifer building blocks in the genome. Phylogenetic analysis of BrIAA with Arabidopsis thaliana, Oryza sativa and Zea mays identified 51 sister pairs including 15 same species (BrIAA-BrIAA) and 36 cross species (BrIAA-AtIAA) IAA genes. Among the 55 BrIAA genes, expression of 43 and 45 genes were verified using Genebank B. rapa ESTs and in home developed microarray data from mature leaves of Chiifu and RcBr lines. Despite their huge morphological difference, tissue specific expression analysis of BrIAA genes between the parental lines Chiifu and RcBr showed that the genes followed a similar pattern of expression during leaf development and a different pattern during bud, flower and siliqua development stages. The response of the BrIAA genes to abiotic and auxin stress at different time intervals revealed their involvement in stress response. Single Nucleotide Polymorphisms between IAA genes of reference genome Chiifu and RcBr were focused and identified. Our study examines the scope of conservation and divergence of Aux/IAA genes and their structures in B. rapa. Analyzing the expression and structural variation between two parental lines will significantly contribute to functional genomics of Brassica crops and we belive our study would provide a foundation in understanding the Aux/IAA genes in B. rapa.
Collapse
Affiliation(s)
- Parameswari Paul
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, 305764, South Korea
| | - Vignesh Dhandapani
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, 305764, South Korea
| | - Jana Jeevan Rameneni
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, 305764, South Korea
| | - Xiaonan Li
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, 305764, South Korea
| | - Ganesan Sivanandhan
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, 305764, South Korea
| | - Su Ryun Choi
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, 305764, South Korea
| | - Wenxing Pang
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, 305764, South Korea
| | - Subin Im
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, 305764, South Korea
| | - Yong Pyo Lim
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, 305764, South Korea
- * E-mail:
| |
Collapse
|
165
|
Chai C, Wang Y, Valliyodan B, Nguyen HT. Comprehensive Analysis of the Soybean (Glycine max) GmLAX Auxin Transporter Gene Family. FRONTIERS IN PLANT SCIENCE 2016; 7:282. [PMID: 27014306 PMCID: PMC4783406 DOI: 10.3389/fpls.2016.00282] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/22/2016] [Indexed: 05/08/2023]
Abstract
The phytohormone auxin plays a critical role in regulation of plant growth and development as well as plant responses to abiotic stresses. This is mainly achieved through its uneven distribution in plant via a polar auxin transport process. Auxin transporters are major players in polar auxin transport. The AUXIN RESISTENT 1/LIKE AUX1 (AUX/LAX) auxin influx carriers belong to the amino acid permease family of proton-driven transporters and function in the uptake of indole-3-acetic acid (IAA). In this study, genome-wide comprehensive analysis of the soybean AUX/LAX (GmLAX) gene family, including phylogenic relationships, chromosome localization, and gene structure, was carried out. A total of 15 GmLAX genes, including seven duplicated gene pairs, were identified in the soybean genome. They were distributed on 10 chromosomes. Despite their higher percentage identities at the protein level, GmLAXs exhibited versatile tissue-specific expression patterns, indicating coordinated functioning during plant growth and development. Most GmLAXs were responsive to drought and dehydration stresses and auxin and abscisic acid (ABA) stimuli, in a tissue- and/or time point- sensitive mode. Several GmLAX members were involved in responding to salt stress. Sequence analysis revealed that promoters of GmLAXs contained different combinations of stress-related cis-regulatory elements. These studies suggest that the soybean GmLAXs were under control of a very complex regulatory network, responding to various internal and external signals. This study helps to identity candidate GmLAXs for further analysis of their roles in soybean development and adaption to adverse environments.
Collapse
Affiliation(s)
| | | | | | - Henry T. Nguyen
- Division of Plant Sciences, National Center for Soybean Biotechnology, University of MissouriColumbia, MO, USA
| |
Collapse
|
166
|
Rahmani F, Peymani A, Daneshvand E, Biparva P. Impact of zinc oxide and copper oxide nano-particles on physiological and molecular processes in Brassica napus L. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40502-016-0212-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
167
|
HUANG XING, BAO YANING, WANG BO, LIU LIJUN, CHEN JIE, DAI LUNJIN, BALOCH SANAULLAH, PENG DINGXIANG. Identification of small auxin-up RNA (SAUR) genes in Urticales plants: mulberry (Morus notabilis), hemp (Cannabis sativa) and ramie (Boehmeria nivea). J Genet 2016; 95:119-29. [DOI: 10.1007/s12041-016-0622-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
168
|
Ruiz C, Pla M, Company N, Riudavets J, Nadal A. High CO2 concentration as an inductor agent to drive production of recombinant phytotoxic antimicrobial peptides in plant biofactories. PLANT MOLECULAR BIOLOGY 2016; 90:329-343. [PMID: 26687131 DOI: 10.1007/s11103-015-0419-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/10/2015] [Indexed: 06/05/2023]
Abstract
Cationic α-helical antimicrobial peptides such as BP100 are of increasing interest for developing novel phytosanitary or therapeutic agents and products with industrial applications. Biotechnological production of these peptides in plants can be severely impaired due to the toxicity exerted on the host by high-level expression. This can be overcome by using inducible promoters with extremely low activity throughout plant development, although the yields are limited. We examined the use of modified atmospheres using the increased levels of [CO2], commonly used in the food industry, as the inductor agent to biotechnologically produce phytotoxic compounds with higher yields. Here we show that 30% [CO2] triggered a profound transcriptional response in rice leaves, including a change in the energy provision from photosynthesis to glycolysis, and the activation of stress defense mechanisms. Five genes with central roles in up-regulated pathways were initially selected and their promoters successfully used to drive the expression of phytotoxic BP100 in genetically modified (GM) rice. GM plants had a normal phenotype on development and seed production in non-induction conditions. Treatment with 30 % [CO2] led to recombinant peptide accumulation of up to 1 % total soluble protein when the Os.hb2 promoter was used. This is within the range of biotechnological production of other peptides in plants. Using BP100 as a proof-of-concept we demonstrate that very high [CO2] can be considered an economically viable strategy to drive production of recombinant phytotoxic antimicrobial peptides in plant biofactories.
Collapse
Affiliation(s)
- Cristina Ruiz
- Institute for Agricultural and Food Technology (INTEA), University of Girona, Campus Montilivi s/n, 17071, Girona, Spain
| | - Maria Pla
- Institute for Agricultural and Food Technology (INTEA), University of Girona, Campus Montilivi s/n, 17071, Girona, Spain
| | - Nuri Company
- Institute for Agricultural and Food Technology (INTEA), University of Girona, Campus Montilivi s/n, 17071, Girona, Spain
| | - Jordi Riudavets
- Institute for Agrifood Research and Technology (IRTA), Ctra. de Cabrils Km 2, 08348, Cabrils, Barcelona, Spain
| | - Anna Nadal
- Institute for Agricultural and Food Technology (INTEA), University of Girona, Campus Montilivi s/n, 17071, Girona, Spain.
| |
Collapse
|
169
|
Eremina M, Rozhon W, Poppenberger B. Hormonal control of cold stress responses in plants. Cell Mol Life Sci 2016; 73:797-810. [PMID: 26598281 PMCID: PMC11108489 DOI: 10.1007/s00018-015-2089-6] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/20/2015] [Accepted: 11/05/2015] [Indexed: 10/22/2022]
Abstract
Cold stress responses in plants are highly sophisticated events that alter the biochemical composition of cells for protection from damage caused by low temperatures. In addition, cold stress has a profound impact on plant morphologies, causing growth repression and reduced yields. Complex signalling cascades are utilised to induce changes in cold-responsive gene expression that enable plants to withstand chilling or even freezing temperatures. These cascades are governed by the activity of plant hormones, and recent research has provided a better understanding of how cold stress responses are integrated with developmental pathways that modulate growth and initiate other events that increase cold tolerance. Information on the hormonal control of cold stress signalling is summarised to highlight the significant progress that has been made and indicate gaps that still exist in our understanding.
Collapse
Affiliation(s)
- Marina Eremina
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technische Universität München, 85354, Freising, Germany
| | - Wilfried Rozhon
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technische Universität München, 85354, Freising, Germany
| | - Brigitte Poppenberger
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technische Universität München, 85354, Freising, Germany.
| |
Collapse
|
170
|
Garg R, Shankar R, Thakkar B, Kudapa H, Krishnamurthy L, Mantri N, Varshney RK, Bhatia S, Jain M. Transcriptome analyses reveal genotype- and developmental stage-specific molecular responses to drought and salinity stresses in chickpea. Sci Rep 2016; 6:19228. [PMID: 26759178 PMCID: PMC4725360 DOI: 10.1038/srep19228] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/09/2015] [Indexed: 01/31/2023] Open
Abstract
Drought and salinity are the major factors that limit chickpea production worldwide. We performed whole transcriptome analyses of chickpea genotypes to investigate the molecular basis of drought and salinity stress response/adaptation. Phenotypic analyses confirmed the contrasting responses of the chickpea genotypes to drought or salinity stress. RNA-seq of the roots of drought and salinity related genotypes was carried out under control and stress conditions at vegetative and/or reproductive stages. Comparative analysis of the transcriptomes revealed divergent gene expression in the chickpea genotypes at different developmental stages. We identified a total of 4954 and 5545 genes exclusively regulated in drought-tolerant and salinity-tolerant genotypes, respectively. A significant fraction (~47%) of the transcription factor encoding genes showed differential expression under stress. The key enzymes involved in metabolic pathways, such as carbohydrate metabolism, photosynthesis, lipid metabolism, generation of precursor metabolites/energy, protein modification, redox homeostasis and cell wall component biogenesis, were affected by drought and/or salinity stresses. Interestingly, transcript isoforms showed expression specificity across the chickpea genotypes and/or developmental stages as illustrated by the AP2-EREBP family members. Our findings provide insights into the transcriptome dynamics and components of regulatory network associated with drought and salinity stress responses in chickpea.
Collapse
Affiliation(s)
- Rohini Garg
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Rama Shankar
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Bijal Thakkar
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Himabindu Kudapa
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Lakshmanan Krishnamurthy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Nitin Mantri
- School of Applied Sciences, RMIT University, Victoria, Australia
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Sabhyata Bhatia
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Mukesh Jain
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India.,School of Computational &Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
171
|
Bhattacharjee A, Khurana JP, Jain M. Characterization of Rice Homeobox Genes, OsHOX22 and OsHOX24, and Over-expression of OsHOX24 in Transgenic Arabidopsis Suggest Their Role in Abiotic Stress Response. FRONTIERS IN PLANT SCIENCE 2016; 7:627. [PMID: 27242831 PMCID: PMC4862318 DOI: 10.3389/fpls.2016.00627] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 04/25/2016] [Indexed: 05/21/2023]
Abstract
Homeobox transcription factors are well known regulators of plant growth and development. In this study, we carried out functional analysis of two candidate stress-responsive HD-ZIP I class homeobox genes from rice, OsHOX22, and OsHOX24. These genes were highly up-regulated under various abiotic stress conditions at different stages of rice development, including seedling, mature and reproductive stages. The transcript levels of these genes were enhanced significantly in the presence of plant hormones, including abscisic acid (ABA), auxin, salicylic acid, and gibberellic acid. The recombinant full-length and truncated homeobox proteins were found to be localized in the nucleus. Electrophoretic mobility shift assay established the binding of these homeobox proteins with specific DNA sequences, AH1 (CAAT(A/T)ATTG) and AH2 (CAAT(C/G)ATTG). Transactivation assays in yeast revealed the transcriptional activation potential of full-length OsHOX22 and OsHOX24 proteins. Homo- and hetero-dimerization capabilities of these proteins have also been demonstrated. Further, we identified putative novel interacting proteins of OsHOX22 and OsHOX24 via yeast-two hybrid analysis. Over-expression of OsHOX24 imparted higher sensitivity to stress hormone, ABA, and abiotic stresses in the transgenic Arabidopsis plants as revealed by various physiological and phenotypic assays. Microarray analysis revealed differential expression of several stress-responsive genes in transgenic lines as compared to wild-type. Many of these genes were found to be involved in transcriptional regulation and various metabolic pathways. Altogether, our results suggest the possible role of OsHOX22/OsHOX24 homeobox proteins as negative regulators in abiotic stress responses.
Collapse
Affiliation(s)
| | - Jitendra P. Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South CampusNew Delhi, India
| | - Mukesh Jain
- National Institute of Plant Genome ResearchNew Delhi, India
- School of Computational and Integrative Sciences, Jawaharlal Nehru UniversityNew Delhi, India
- *Correspondence: Mukesh Jain,
| |
Collapse
|
172
|
Pi E, Qu L, Hu J, Huang Y, Qiu L, Lu H, Jiang B, Liu C, Peng T, Zhao Y, Wang H, Tsai SN, Ngai S, Du L. Mechanisms of Soybean Roots' Tolerances to Salinity Revealed by Proteomic and Phosphoproteomic Comparisons Between Two Cultivars. Mol Cell Proteomics 2016; 15:266-88. [PMID: 26407991 PMCID: PMC4762511 DOI: 10.1074/mcp.m115.051961] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/15/2015] [Indexed: 12/23/2022] Open
Abstract
Understanding molecular mechanisms underlying plant salinity tolerance provides valuable knowledgebase for effective crop improvement through genetic engineering. Current proteomic technologies, which support reliable and high-throughput analyses, have been broadly used for exploring sophisticated molecular networks in plants. In the current study, we compared phosphoproteomic and proteomic changes in roots of different soybean seedlings of a salt-tolerant cultivar (Wenfeng07) and a salt-sensitive cultivar (Union85140) induced by salt stress. The root samples of Wenfeng07 and Union85140 at three-trifoliate stage were collected at 0 h, 0.5 h, 1 h, 4 h, 12 h, 24 h, and 48 h after been treated with 150 mm NaCl. LC-MS/MS based phosphoproteomic analysis of these samples identified a total of 2692 phosphoproteins and 5509 phosphorylation sites. Of these, 2344 phosphoproteins containing 3744 phosphorylation sites were quantitatively analyzed. Our results showed that 1163 phosphorylation sites were differentially phosphorylated in the two compared cultivars. Among them, 10 MYB/MYB transcription factor like proteins were identified with fluctuating phosphorylation modifications at different time points, indicating that their crucial roles in regulating flavonol accumulation might be mediated by phosphorylated modifications. In addition, the protein expression profiles of these two cultivars were compared using LC MS/MS based shotgun proteomic analysis, and expression pattern of all the 89 differentially expressed proteins were independently confirmed by qRT-PCR. Interestingly, the enzymes involved in chalcone metabolic pathway exhibited positive correlations with salt tolerance. We confirmed the functional relevance of chalcone synthase, chalcone isomerase, and cytochrome P450 monooxygenase genes using soybean composites and Arabidopsis thaliana mutants, and found that their salt tolerance were positively regulated by chalcone synthase, but was negatively regulated by chalcone isomerase and cytochrome P450 monooxygenase. A novel salt tolerance pathway involving chalcone metabolism, mostly mediated by phosphorylated MYB transcription factors, was proposed based on our findings. (The mass spectrometry raw data are available via ProteomeXchange with identifier PXD002856).
Collapse
Affiliation(s)
- Erxu Pi
- From the ‡College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China;
| | - Liqun Qu
- From the ‡College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China
| | - Jianwen Hu
- §Shanghai Applied Protein Technology Co. Ltd, Shanghai, 200233, PR China
| | - Yingying Huang
- From the ‡College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China
| | - Lijuan Qiu
- ¶The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Hongfei Lu
- ‖College of Life Science, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Bo Jiang
- **College of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, PR China
| | - Cong Liu
- From the ‡College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China
| | - Tingting Peng
- From the ‡College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China
| | - Ying Zhao
- From the ‡College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China
| | - Huizhong Wang
- From the ‡College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China
| | - Sau-Na Tsai
- ‡‡Centre for Soybean Research of Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Saiming Ngai
- ‡‡Centre for Soybean Research of Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Liqun Du
- From the ‡College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China;
| |
Collapse
|
173
|
Li Z, Hu G, Liu X, Zhou Y, Li Y, Zhang X, Yuan X, Zhang Q, Yang D, Wang T, Zhang Z. Transcriptome Sequencing Identified Genes and Gene Ontologies Associated with Early Freezing Tolerance in Maize. FRONTIERS IN PLANT SCIENCE 2016; 7:1477. [PMID: 27774095 PMCID: PMC5054024 DOI: 10.3389/fpls.2016.01477] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/16/2016] [Indexed: 05/04/2023]
Abstract
Originating in a tropical climate, maize has faced great challenges as cultivation has expanded to the majority of the world's temperate zones. In these zones, frost and cold temperatures are major factors that prevent maize from reaching its full yield potential. Among 30 elite maize inbred lines adapted to northern China, we identified two lines of extreme, but opposite, freezing tolerance levels-highly tolerant and highly sensitive. During the seedling stage of these two lines, we used RNA-seq to measure changes in maize whole genome transcriptome before and after freezing treatment. In total, 19,794 genes were expressed, of which 4550 exhibited differential expression due to either treatment (before or after freezing) or line type (tolerant or sensitive). Of the 4550 differently expressed genes, 948 exhibited differential expression due to treatment within line or lines under freezing condition. Analysis of gene ontology found that these 948 genes were significantly enriched for binding functions (DNA binding, ATP binding, and metal ion binding), protein kinase activity, and peptidase activity. Based on their enrichment, literature support, and significant levels of differential expression, 30 of these 948 genes were selected for quantitative real-time PCR (qRT-PCR) validation. The validation confirmed our RNA-Seq-based findings, with squared correlation coefficients of 80% and 50% in the tolerance and sensitive lines, respectively. This study provided valuable resources for further studies to enhance understanding of the molecular mechanisms underlying maize early freezing response and enable targeted breeding strategies for developing varieties with superior frost resistance to achieve yield potential.
Collapse
Affiliation(s)
- Zhao Li
- Agronomy College of Northeast Agricultural UniversityHarbin, China
- Department of Crop and Soil Sciences, Washington State UniversityPullman, WA, USA
| | - Guanghui Hu
- Agronomy College of Northeast Agricultural UniversityHarbin, China
- Department of Crop and Soil Sciences, Washington State UniversityPullman, WA, USA
- Institute of Maize Research, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Xiangfeng Liu
- Agronomy College of Northeast Agricultural UniversityHarbin, China
| | - Yao Zhou
- Agronomy College of Northeast Agricultural UniversityHarbin, China
| | - Yu Li
- Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Xu Zhang
- Department of Crop and Soil Sciences, Washington State UniversityPullman, WA, USA
| | - Xiaohui Yuan
- Department of Crop and Soil Sciences, Washington State UniversityPullman, WA, USA
- Department of Computer Science, Wuhan University of TechnologyWuhan, China
| | - Qian Zhang
- Agronomy College of Northeast Agricultural UniversityHarbin, China
| | - Deguang Yang
- Agronomy College of Northeast Agricultural UniversityHarbin, China
- *Correspondence: Deguang Yang
| | - Tianyu Wang
- Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
- Tianyu Wang
| | - Zhiwu Zhang
- Agronomy College of Northeast Agricultural UniversityHarbin, China
- Department of Crop and Soil Sciences, Washington State UniversityPullman, WA, USA
- Zhiwu Zhang
| |
Collapse
|
174
|
Jangam AP, Pathak RR, Raghuram N. Microarray Analysis of Rice d1 (RGA1) Mutant Reveals the Potential Role of G-Protein Alpha Subunit in Regulating Multiple Abiotic Stresses Such as Drought, Salinity, Heat, and Cold. FRONTIERS IN PLANT SCIENCE 2016; 7:11. [PMID: 26858735 PMCID: PMC4729950 DOI: 10.3389/fpls.2016.00011] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/07/2016] [Indexed: 05/18/2023]
Abstract
The genome-wide role of heterotrimeric G-proteins in abiotic stress response in rice has not been examined from a functional genomics perspective, despite the availability of mutants and evidences involving individual genes/processes/stresses. Our rice whole transcriptome microarray analysis (GSE 20925 at NCBI GEO) using the G-alpha subunit (RGA1) null mutant (Daikoku 1 or d1) and its corresponding wild type (Oryza sativa Japonica Nipponbare) identified 2270 unique differentially expressed genes (DEGs). Out of them, we mined for all the potentially abiotic stress-responsive genes using Gene Ontology terms, STIFDB2.0 and Rice DB. The first two approaches produced smaller subsets of the 1886 genes found at Rice DB. The GO approach revealed similar regulation of several families of stress-responsive genes in RGA1 mutant. The Genevestigator analysis of the stress-responsive subset of the RGA1-regulated genes from STIFDB revealed cold and drought-responsive clusters. Meta data analysis at Rice DB revealed large stress-response categories such as cold (878 up/810 down), drought (882 up/837 down), heat (913 up/777 down), and salt stress (889 up/841 down). One thousand four hundred ninety-eight of them are common to all the four abiotic stresses, followed by fewer genes common to smaller groups of stresses. The RGA1-regulated genes that uniquely respond to individual stresses include 111 in heat stress, eight each in cold only and drought only stresses, and two genes in salt stress only. The common DEGs (1498) belong to pathways such as the synthesis of polyamine, glycine-betaine, proline, and trehalose. Some of the common DEGs belong to abiotic stress signaling pathways such as calcium-dependent pathway, ABA independent and dependent pathway, and MAP kinase pathway in the RGA1 mutant. Gene ontology of the common stress responsive DEGs revealed 62 unique molecular functions such as transporters, enzyme regulators, transferases, hydrolases, carbon and protein metabolism, binding to nucleotides, carbohydrates, receptors and lipids, morphogenesis, flower development, and cell homeostasis. We also mined 63 miRNAs that bind to the stress responsive transcripts identified in this study, indicating their post-transcriptional regulation. Overall, these results indicate the potentially extensive role of RGA1 in the regulation of multiple abiotic stresses in rice for further validation.
Collapse
|
175
|
Ou C, Jiang S, Wang F, Tang C, Hao N. An RNA-Seq analysis of the pear (Pyrus communis L.) transcriptome, with a focus on genes associated with dwarf. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.plgene.2015.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
176
|
Liu H, Searle IR, Watson-Haigh NS, Baumann U, Mather DE, Able AJ, Able JA. Genome-Wide Identification of MicroRNAs in Leaves and the Developing Head of Four Durum Genotypes during Water Deficit Stress. PLoS One 2015; 10:e0142799. [PMID: 26562166 PMCID: PMC4643036 DOI: 10.1371/journal.pone.0142799] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/27/2015] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in plant development and abiotic stress responses. The miRNA transcriptome (miRNAome) under water deficit stress has been investigated in many plant species, but is poorly characterised in durum wheat (Triticum turgidum L. ssp. durum). Water stress during early reproductive stages can result in significant yield loss in durum wheat and this study describes genotypic differences in the miRNAome between water deficit tolerant and sensitive durum genotypes. Small RNA libraries (96 in total) were constructed from flag leaf and developing head tissues of four durum genotypes, with or without water stress to identify differentially abundant miRNAs. Illumina sequencing detected 110 conserved miRNAs and 159 novel candidate miRNA hairpins with 66 conserved miRNAs and five novel miRNA hairpins differentially abundant under water deficit stress. Ten miRNAs (seven conserved, three novel) were validated through qPCR. Several conserved and novel miRNAs showed unambiguous inverted regulatory profiles between the durum genotypes. Several miRNAs also showed differential abundance between two tissue types regardless of treatment. Predicted mRNA targets (130) of four novel durum miRNAs were characterised using Gene Ontology (GO) which revealed functions common to stress responses and plant development. Negative correlation was observed between several target genes and the corresponding miRNA under water stress. For the first time, we present a comprehensive study of the durum miRNAome under water deficit stress. The identification of differentially abundant miRNAs provides molecular evidence that miRNAs are potential determinants of water stress tolerance in durum wheat. GO analysis of predicted targets contributes to the understanding of genotypic physiological responses leading to stress tolerance capacity. Further functional analysis of specific stress responsive miRNAs and their interaction with targets is ongoing and will assist in developing future durum wheat varieties with enhanced water deficit stress tolerance.
Collapse
Affiliation(s)
- Haipei Liu
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Iain R. Searle
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- The University of Adelaide-Shanghai Jiao Tong University Joint International Centre for Agriculture & Health, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Nathan S. Watson-Haigh
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, South Australia, Australia
| | - Ute Baumann
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, South Australia, Australia
| | - Diane E. Mather
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Amanda J. Able
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Jason A. Able
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
- * E-mail:
| |
Collapse
|
177
|
Miao Z, Xu W, Li D, Hu X, Liu J, Zhang R, Tong Z, Dong J, Su Z, Zhang L, Sun M, Li W, Du Z, Hu S, Wang T. De novo transcriptome analysis of Medicago falcata reveals novel insights about the mechanisms underlying abiotic stress-responsive pathway. BMC Genomics 2015; 16:818. [PMID: 26481731 PMCID: PMC4615886 DOI: 10.1186/s12864-015-2019-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 10/07/2015] [Indexed: 11/21/2022] Open
Abstract
Background The entire world is facing a deteriorating environment. Understanding the mechanisms underlying plant responses to external abiotic stresses is important for breeding stress-tolerant crops and herbages. Phytohormones play critical regulatory roles in plants in the response to external and internal cues to regulate growth and development. Medicago falcata is one of the stress-tolerant candidate leguminous species and is able to fix atmospheric nitrogen. This ability allows leguminous plants to grow in nitrogen deficient soils. Methods We performed Illumina sequencing of cDNA prepared from abiotic stress treated M. falcata. Sequencedreads were assembled to provide a transcriptome resource. Transcripts were annotated using BLASTsearches against the NCBI non-redundant database and gene ontology definitions were assigned. Acomparison among the three abiotic stress treated samples was carried out. The expression of transcriptswas confirmed with qRT-PCR. Results We present an abiotic stress-responsive M. falcata transcriptome using next-generation sequencing data from samples grown under standard, dehydration, high salinity, and cold conditions. We combined reads from all samples and de novo assembled 98,515 transcripts to build the M. falcata gene index. A comprehensive analysis of the transcriptome revealed abiotic stress-responsive mechanisms underlying the metabolism and core signalling components of major phytohormones. We identified nod factor signalling pathways during early symbiotic nodulation that are modified by abiotic stresses. Additionally, a global comparison of homology between the M. falcata and M. truncatula transcriptomes, along with five other leguminous species, revealed a high level of global sequence conservation within the family. Conclusions M. falcata is shown to be a model candidate for studying abiotic stress-responsive mechanisms in legumes. This global gene expression analysis provides new insights into the biochemical and molecular mechanisms involved in the acclimation to abiotic stresses. Our data provides many gene candidates that might be used for herbage and crop breeding. Additionally, FalcataBase (http://bioinformatics.cau.edu.cn/falcata/) was built for storing these data. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2019-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhenyan Miao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China. .,Present address: Department of Agronomy, Purdue University, West Lafayette, IN, USA.
| | - Wei Xu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029, China.
| | - Daofeng Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China. .,Present address: Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Xiaona Hu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Jiaxing Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Rongxue Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Zongyong Tong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Liwei Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Min Sun
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029, China.
| | - Wenjie Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029, China.
| | - Zhenglin Du
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029, China.
| | - Songnian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029, China.
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
178
|
Rai A, Singh R, Shirke PA, Tripathi RD, Trivedi PK, Chakrabarty D. Expression of Rice CYP450-Like Gene (Os08g01480) in Arabidopsis Modulates Regulatory Network Leading to Heavy Metal and Other Abiotic Stress Tolerance. PLoS One 2015; 10:e0138574. [PMID: 26401987 PMCID: PMC4581635 DOI: 10.1371/journal.pone.0138574] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/01/2015] [Indexed: 01/07/2023] Open
Abstract
Heavy metal (HM) toxicity has become a grave problem in the world since it leads to hazardous effects on living organisms. Transcriptomic/proteomic studies in plants have identified a large number of metal-responsive gene families. Of these, cytochrome-P450 (CYPs) family members are composed of enzymes carrying out detoxification of exogenous molecules. Here, we report a CYP-like protein encoded by Os08g01480 locus in rice that helps the plant to combat HM and other abiotic stresses. To functionally characterize CYP-like gene, cDNA and promoter were isolated from rice to develop Arabidopsis transgenic lines. Heterologous expression of Os08g01480 in Arabidopsis provided significant tolerance towards abiotic stresses. In silico analysis reveals that Os08g01480 might help plants to combat environmental stress via modulating auxin metabolism. Transgenic lines expressing reporter gene under control of Os08g01480 promoter demonstrated differential promoter activity in different tissues during environmental stresses. These studies indicated that differential expression of Os08g01480 might be modulating response of plants towards environmental stresses as well as in different developmental stages.
Collapse
Affiliation(s)
- Arti Rai
- Council of Scientific and Industrial Research—National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110 001, India
| | - Ruchi Singh
- Council of Scientific and Industrial Research—National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Pramod Arvind Shirke
- Council of Scientific and Industrial Research—National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110 001, India
| | - Rudra Deo Tripathi
- Council of Scientific and Industrial Research—National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110 001, India
| | - Prabodh Kumar Trivedi
- Council of Scientific and Industrial Research—National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110 001, India
| | - Debasis Chakrabarty
- Council of Scientific and Industrial Research—National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110 001, India
| |
Collapse
|
179
|
Feng S, Yue R, Tao S, Yang Y, Zhang L, Xu M, Wang H, Shen C. Genome-wide identification, expression analysis of auxin-responsive GH3 family genes in maize (Zea mays L.) under abiotic stresses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:783-95. [PMID: 25557253 DOI: 10.1111/jipb.12327] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/25/2014] [Indexed: 05/08/2023]
Abstract
Auxin is involved in different aspects of plant growth and development by regulating the expression of auxin-responsive family genes. As one of the three major auxin-responsive families, GH3 (Gretchen Hagen3) genes participate in auxin homeostasis by catalyzing auxin conjugation and bounding free indole-3-acetic acid (IAA) to amino acids. However, how GH3 genes function in responses to abiotic stresses and various hormones in maize is largely unknown. Here, the latest updated maize (Zea mays L.) reference genome sequence was used to characterize and analyze the ZmGH3 family genes from maize. The results showed that 13 ZmGH3 genes were mapped on five maize chromosomes (total 10 chromosomes). Highly diversified gene structures and tissue-specific expression patterns suggested the possibility of function diversification for these genes in response to environmental stresses and hormone stimuli. The expression patterns of ZmGH3 genes are responsive to several abiotic stresses (salt, drought and cadmium) and major stress-related hormones (abscisic acid, salicylic acid and jasmonic acid). Various environmental factors suppress auxin free IAA contents in maize roots suggesting that these abiotic stresses and hormones might alter GH3-mediated auxin levels. The responsiveness of ZmGH3 genes to a wide range of abiotic stresses and stress-related hormones suggested that ZmGH3s are involved in maize tolerance to environmental stresses.
Collapse
Affiliation(s)
- Shangguo Feng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Runqing Yue
- Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | | | - Yanjun Yang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Lei Zhang
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Mingfeng Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| |
Collapse
|
180
|
Koc I, Vatansever R, Ozyigit II, Filiz E. Identification of Differentially Expressed Genes in Chilling-Induced Potato (Solanum tuberosum L.); a Data Analysis Study. Appl Biochem Biotechnol 2015; 177:792-811. [PMID: 26260485 DOI: 10.1007/s12010-015-1778-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/21/2015] [Indexed: 11/29/2022]
Abstract
Cold stress, as chilling (<20 °C) or freezing (<0 °C), is one of the frequently exposed stresses in cultivated plants like potato. Under cold stress, plants differentially modulate their gene expression to develop a cold tolerance/acclimation. In the present study, we aimed to identify the overall gene expression profile of chilling-stressed (+4 °C) potato at four time points (4, 8, 12, and 48 h), with a particular emphasis on the genes related with transcription factors (TFs), phytohormones, lipid metabolism, signaling pathway, and photosynthesis. A total of 3504 differentially expressed genes (DEGs) were identified at four time points of chilling-induced potato, of which 1397 were found to be up-regulated while 2107 were down-regulated. Heatmap showed that genes were mainly up-regulated at 4-, 8-, and 12-h time points; however, at 48-h time point, they inclined to down-regulate. Seventy five up-regulated TF genes were identified from 37 different families/groups, including mainly from bHLH, WRKY, CCAAT-binding, HAP3, and bZIP families. Protein kinases and calcium were major signaling molecules in cold-induced signaling pathway. A collaborated regulation of phytohormones was observed in chilling-stressed potato. Lipid metabolisms were regulated in a way, highly probably, to change membrane composition to avoid cold damage and render in signaling. A down-regulated gene expression profile was observed in photosynthesis pathway, probably resulting from chilling-induced reduced enzyme activity or light-triggered ROSs damage. The findings of this study will be a valuable theoretical knowledge in terms of understanding the chilling-induced tolerance mechanisms in cultivated potato plants as well as in other Solanum species.
Collapse
Affiliation(s)
- I Koc
- Department of Molecular Biology and Genetics, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Turkey.,Crop Science, University of Illinois at Urbana-Champaign, Champaign, USA
| | - R Vatansever
- Department of Biology, Faculty of Science and Arts, Marmara University, 34722, Goztepe, Istanbul, Turkey
| | - I I Ozyigit
- Department of Biology, Faculty of Science and Arts, Marmara University, 34722, Goztepe, Istanbul, Turkey
| | - E Filiz
- Department of Crop and Animal Production, Cilimli Vocational School, Duzce University, 81750, Cilimli, Duzce, Turkey.
| |
Collapse
|
181
|
Zhao J, Zhang S, Yang T, Zeng Z, Huang Z, Liu Q, Wang X, Leach J, Leung H, Liu B. Global transcriptional profiling of a cold-tolerant rice variety under moderate cold stress reveals different cold stress response mechanisms. PHYSIOLOGIA PLANTARUM 2015; 154:381-94. [PMID: 25263631 DOI: 10.1111/ppl.12291] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 08/12/2014] [Accepted: 08/29/2014] [Indexed: 05/08/2023]
Abstract
Gene expression profiling under severe cold stress (4°C) has been conducted in plants including rice. However, rice seedlings are frequently exposed to milder cold stresses under natural environments. To understand the responses of rice to milder cold stress, a moderately low temperature (8°C) was used for cold treatment prior to genome-wide profiling of gene expression in a cold-tolerant japonica variety, Lijiangxintuanheigu (LTH). A total of 5557 differentially expressed genes (DEGs) were found at four time points during moderate cold stress. Both the DEGs and differentially expressed transcription factor genes were clustered into two groups based on their expression, suggesting a two-phase response to cold stress and a determinative role of transcription factors in the regulation of stress response. The induction of OsDREB2A under cold stress is reported for the first time in this study. Among the anti-oxidant enzyme genes, glutathione peroxidase (GPX) and glutathione S-transferase (GST) were upregulated, suggesting that the glutathione system may serve as the main reactive oxygen species (ROS) scavenger in LTH. Changes in expression of genes in signal transduction pathways for auxin, abscisic acid (ABA) and salicylic acid (SA) imply their involvement in cold stress responses. The induction of ABA response genes and detection of enriched cis-elements in DEGs suggest that ABA signaling pathway plays a dominant role in the cold stress response. Our results suggest that rice responses to cold stress vary with the specific temperature imposed and the rice genotype.
Collapse
Affiliation(s)
- Junliang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shaohong Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Tifeng Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zichong Zeng
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhanghui Huang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Qing Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xiaofei Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jan Leach
- Bioagricultural Sciences and Pest Management and Program in Plant Molecular Biology, Colorado State University, Fort Collins, CO, 80523-1177, USA
| | - Hei Leung
- Plant Breeding, Genetics, and Biotechnology, International Rice Research Institute, Laguna, 4031, Philippines
| | - Bin Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| |
Collapse
|
182
|
Jung H, Lee DK, Choi YD, Kim JK. OsIAA6, a member of the rice Aux/IAA gene family, is involved in drought tolerance and tiller outgrowth. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 236:304-12. [PMID: 26025543 DOI: 10.1016/j.plantsci.2015.04.018] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/24/2015] [Accepted: 04/26/2015] [Indexed: 05/20/2023]
Abstract
Auxin signaling is a fundamental part of many plant growth processes and stress responses and operates through Aux/IAA protein degradation and the transmission of the signal via auxin response factors (ARFs). A total of 31 Aux/IAA genes have been identified in rice (Oryza sativa), some of which are induced by drought stress. However, the mechanistic link between Aux/IAA expression and drought responses is not well understood. In this study we found that the rice Aux/IAA gene OsIAA6 is highly induced by drought stress and that its overexpression in transgenic rice improved drought tolerance, likely via the regulation of auxin biosynthesis genes. We observed that OsIAA6 was specifically expressed in the axillary meristem of the basal stem, which is the tissue that gives rise to tillers. A knock-down mutant of OsIAA6 showed abnormal tiller outgrowth, apparently due to the regulation of the auxin transporter OsPIN1 and the rice tillering inhibitor OsTB1. Our results confirm that the OsIAA6 gene is involved in drought stress responses and the control of tiller outgrowth.
Collapse
Affiliation(s)
- Harin Jung
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang 232-916, Republic of Korea.
| | - Dong-Keun Lee
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang 232-916, Republic of Korea.
| | - Yang Do Choi
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang 232-916, Republic of Korea; Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea.
| | - Ju-Kon Kim
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang 232-916, Republic of Korea.
| |
Collapse
|
183
|
Zhou Z, Ma H, Lin K, Zhao Y, Chen Y, Xiong Z, Wang L, Tian B. RNA-seq Reveals Complicated Transcriptomic Responses to Drought Stress in a Nonmodel Tropic Plant, Bombax ceiba L. Evol Bioinform Online 2015; 11:27-37. [PMID: 26157330 PMCID: PMC4479181 DOI: 10.4137/ebo.s20620] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/09/2015] [Accepted: 04/20/2015] [Indexed: 11/05/2022] Open
Abstract
High-throughput transcriptome provides an unbiased approach for understanding the genetic basis and gene functions in response to different conditions. Here we sequenced RNA-seq libraries derived from a Bombax ceiba L. system under a controlled experiment. As a known medicinal and ornamental plant, B. ceiba grows mainly in hot-dry monsoon rainforests in Southeast Asia and Australia. Due to the specific growth environment, it has evolved a unique system that enables a physiologic response to drought stress. To date, few studies have characterized the genome-wide features of drought endurance in B. ceiba. In this study, we first attempted to characterize and identify the most differentially expressed genes and associated functional pathways under drought treatment and normal condition. Using RNA-seq technology, we generated the first transcriptome of B. ceiba and identified 59 differentially expressed genes with greater than 1,000-fold changes under two conditions. The set of upregulated genes implicates interplay among various pathways: plants growth, ubiquitin-mediated proteolysis, polysaccharides hydrolyzation, oxidative phosphorylation and photosynthesis, etc. In contrast, genes associated with stem growth, cell division, fruit ripening senescence, disease resistance, and proline synthesis are repressed. Notably, key genes of high RPKM levels in drought are AUX1, JAZ, and psbS, which are known to regulate the growth of plants, the resistance against abiotic stress, and the photosynthesis process. Furthermore, 16,656 microsatellite markers and 3,071 single-nucleotide polymorphisms (SNPs) were predicted by in silico methods. The identification and functional annotation of differentially expressed genes, microsatellites, and SNPs represent a major step forward and would serve as a valuable resource for understanding the complexity underlying drought endurance and adaptation in B. ceiba.
Collapse
Affiliation(s)
- Zhili Zhou
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of Sciences, Kunming, China
| | - Huancheng Ma
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
| | - Kevin Lin
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Youjie Zhao
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
| | - Yuan Chen
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Zhi Xiong
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Bin Tian
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
184
|
Construction of regulatory networks mediated by small RNAs responsive to abiotic stresses in rice (Oryza sativa). Comput Biol Chem 2015; 58:69-80. [PMID: 26057839 DOI: 10.1016/j.compbiolchem.2015.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 04/16/2015] [Accepted: 05/22/2015] [Indexed: 11/21/2022]
Abstract
Plants have evolved exquisite molecular mechanisms to adapt to diverse abiotic stresses. MicroRNAs play an important role in stress response in plants. However, whether the other small RNAs (sRNAs) possess stress-related roles remains elusive. In this study, thousands of sRNAs responsive to cold, drought and salt stresses were identified in rice seedlings and panicles by using high-throughput sequencing data. These sRNAs were classified into 12 categories, including "Panicle_Cold_Down", "Panicle_Cold_Up", "Panicle_Drought_Down", "Panicle_Drought_Up", "Panicle_Salt_Down", "Panicle_Salt_Up", "Seedling_Cold_Down", "Seedling_Cold_Up", "Seedling_Drought_Down", "Seedling_Drought_Up", "Seedling_Salt_Down" and "Seedling_Salt_Up". The stress-responsive sRNAs enriched in Argonaute 1 were extracted for target prediction and degradome sequencing data-based validation, which enabled network construction. Within certain subnetworks, some target genes were further supported by microarray data. Literature mining indicated that certain targets were potentially involved in stress response. These results demonstrate that the established networks are biologically meaningful. We discovered that in some cases, one sRNA sequence could be assigned to two or more categories. Moreover, within certain target-centered subnetworks, one transcript was regulated by several stress-responsive sRNAs assigned to different categories. It implies that these subnetworks are potentially implicated in stress signal crosstalk. Together, our results could advance the current understanding of the biological role of plant sRNAs in stress signaling.
Collapse
|
185
|
Rudikovskiy AV, Rudikovskaya EG, Dudareva LV, Potemkin ON. Peculiarities of biochemical and morphological adaptation of siberian crabapple (Malus baccata L. Borkh) to the conditions of insufficient humidity on the boundary between forest zone and dry steppe. CONTEMP PROBL ECOL+ 2015. [DOI: 10.1134/s1995425515030105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
186
|
Zheng C, Zhao L, Wang Y, Shen J, Zhang Y, Jia S, Li Y, Ding Z. Integrated RNA-Seq and sRNA-Seq Analysis Identifies Chilling and Freezing Responsive Key Molecular Players and Pathways in Tea Plant (Camellia sinensis). PLoS One 2015; 10:e0125031. [PMID: 25901577 PMCID: PMC4406609 DOI: 10.1371/journal.pone.0125031] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/19/2015] [Indexed: 12/17/2022] Open
Abstract
Tea [Camellia sinensis (L) O. Kuntze, Theaceae] is one of the most popular non-alcoholic beverages worldwide. Cold stress is one of the most severe abiotic stresses that limit tea plants’ growth, survival and geographical distribution. However, the genetic regulatory network and signaling pathways involved in cold stress responses in tea plants remain unearthed. Using RNA-Seq, DGE and sRNA-Seq technologies, we performed an integrative analysis of miRNA and mRNA expression profiling and their regulatory network of tea plants under chilling (4℃) and freezing (-5℃) stress. Differentially expressed (DE) miRNA and mRNA profiles were obtained based on fold change analysis, miRNAs and target mRNAs were found to show both coherent and incoherent relationships in the regulatory network. Furthermore, we compared several key pathways (e.g., ‘Photosynthesis’), GO terms (e.g., ‘response to karrikin’) and transcriptional factors (TFs, e.g., DREB1b/CBF1) which were identified as involved in the early chilling and/or freezing response of tea plants. Intriguingly, we found that karrikins, a new group of plant growth regulators, and β-primeverosidase (BPR), a key enzyme functionally relevant with the formation of tea aroma might play an important role in both early chilling and freezing response of tea plants. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis further confirmed the results from RNA-Seq and sRNA-Seq analysis. This is the first study to simultaneously profile the expression patterns of both miRNAs and mRNAs on a genome-wide scale to elucidate the molecular mechanisms of early responses of tea plants to cold stress. In addition to gaining a deeper insight into the cold resistant characteristics of tea plants, we provide a good case study to analyse mRNA/miRNA expression and profiling of non-model plant species using next-generation sequencing technology.
Collapse
Affiliation(s)
- Chao Zheng
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
- Key Laboratory of Genetic Improvement and Breeding for Horticultural Plants, Qingdao, Shandong, China
| | - Lei Zhao
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
- Key Laboratory of Genetic Improvement and Breeding for Horticultural Plants, Qingdao, Shandong, China
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
- Key Laboratory of Genetic Improvement and Breeding for Horticultural Plants, Qingdao, Shandong, China
| | - Jiazhi Shen
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
- Key Laboratory of Genetic Improvement and Breeding for Horticultural Plants, Qingdao, Shandong, China
| | - Yinfei Zhang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
- Key Laboratory of Genetic Improvement and Breeding for Horticultural Plants, Qingdao, Shandong, China
| | - Sisi Jia
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
- Key Laboratory of Genetic Improvement and Breeding for Horticultural Plants, Qingdao, Shandong, China
| | - Yusheng Li
- Fruit and Tea Technology Extension Station, Jinan, Shandong, China
| | - Zhaotang Ding
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
- Key Laboratory of Genetic Improvement and Breeding for Horticultural Plants, Qingdao, Shandong, China
- * E-mail:
| |
Collapse
|
187
|
Sun R, Wang K, Guo T, Jones DC, Cobb J, Zhang B, Wang Q. Genome-wide identification of auxin response factor (ARF) genes and its tissue-specific prominent expression in Gossypium raimondii. Funct Integr Genomics 2015; 15:481-93. [PMID: 25809690 DOI: 10.1007/s10142-015-0437-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/02/2015] [Accepted: 03/09/2015] [Indexed: 12/17/2022]
Abstract
Auxin response factors (ARFs) are recently discovered transcription factors that bind with auxin response elements (AuxRE, TGTCTC) to regulate the expression of early auxin-responsive genes. To our knowledge, the ARF gene family has never been characterized in cotton, the most important fiber crop in the world. In this study, a total of 35 ARF genes, named as GrARFs, were identified in a diploid cotton species Gossypium raimondii. The 35 ARF genes were located in 12 of the 13 cotton chromosomes; the intron/exon distribution of the GrARF genes was similar among sister pairs, whereas the divergence of some GrARF genes suggests the possibility of functional diversification. Our results show that the middle domains of nine GrARF proteins rich in glutamine (Q) are activators, while 26 other GrARF proteins rich in proline (P), serine (S), and threonine (T) are repressors. Our results also show that the expression of GrARF genes is diverse in different tissues. The expression of GrARF1 was significantly higher in leaves, whereas GrARF2a had higher expression level in shoots, which implicates different roles in the tested tissues. The GrARF11 has a higher expression level in buds than that in leaves, while GrARF19.2 shows contrasting expression patterns, having higher expression in leaves than that in buds. This suggests that they play different roles in leaves and buds. During long-term evolution of G. raimondii, some ARF genes were lost and some arose. The identification and characterization of the ARF genes in G. raimondii elucidate its important role in cotton that ARF genes regulate the development of flower buds, sepals, shoots, and leaves.
Collapse
Affiliation(s)
- Runrun Sun
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
188
|
Genome-wide identification and expression profiling analysis of ZmPIN, ZmPILS, ZmLAX and ZmABCB auxin transporter gene families in maize (Zea mays L.) under various abiotic stresses. PLoS One 2015; 10:e0118751. [PMID: 25742625 PMCID: PMC4351008 DOI: 10.1371/journal.pone.0118751] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/06/2015] [Indexed: 11/30/2022] Open
Abstract
The auxin influx carriers auxin resistant 1/like aux 1 (AUX/LAX), efflux carriers pin-formed (PIN) (together with PIN-like proteins) and efflux/conditional P-glycoprotein (ABCB) are major protein families involved in auxin polar transport. However, how they function in responses to exogenous auxin and abiotic stresses in maize is largely unknown. In this work, the latest updated maize (Zea mays L.) reference genome sequence was used to characterize and analyze the ZmLAX, ZmPIN, ZmPILS and ZmABCB family genes from maize. The results showed that five ZmLAXs, fifteen ZmPINs, nine ZmPILSs and thirty-five ZmABCBs were mapped on all ten maize chromosomes. Highly diversified gene structures, nonconservative transmembrane helices and tissue-specific expression patterns suggested the possibility of function diversification for these genes. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze the expression patterns of ZmLAX, ZmPIN, ZmPILS and ZmABCB genes under exogenous auxin and different environmental stresses. The expression levels of most ZmPIN, ZmPILS, ZmLAX and ZmABCB genes were induced in shoots and were reduced in roots by various abiotic stresses (drought, salt and cold stresses). The opposite expression response patterns indicated the dynamic auxin transport between shoots and roots under abiotic stresses. Analysis of the expression patterns of ZmPIN, ZmPILS, ZmLAX and ZmABCB genes under drought, salt and cold treatment may help us to understand the possible roles of maize auxin transporter genes in responses and tolerance to environmental stresses.
Collapse
|
189
|
Asgher M, Khan MIR, Anjum NA, Khan NA. Minimising toxicity of cadmium in plants--role of plant growth regulators. PROTOPLASMA 2015; 252:399-413. [PMID: 25303855 DOI: 10.1007/s00709-014-0710-4] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/23/2014] [Indexed: 05/20/2023]
Abstract
A range of man-made activities promote the enrichment of world-wide agricultural soils with a myriad of chemical pollutants including cadmium (Cd). Owing to its significant toxic consequences in plants, Cd has been one of extensively studied metals. However, sustainable strategies for minimising Cd impacts in plants have been little explored. Plant growth regulators (PGRs) are known for their role in the regulation of numerous developmental processes. Among major PGRs, plant hormones (such as auxins, gibberellins, cytokinins, abscisic acid, jasmonic acid, ethylene and salicylic acid), nitric oxide (a gaseous signalling molecule), brassinosteroids (steroidal phytohormones) and polyamines (group of phytohormone-like aliphatic amine natural compounds with aliphatic nitrogen structure) have gained attention by agronomist and physiologist as a sustainable media to induce tolerance in abiotic-stressed plants. Considering recent literature, this paper: (a) overviews Cd status in soil and its toxicity in plants, (b) introduces major PGRs and overviews their signalling in Cd-exposed plants, (c) appraises mechanisms potentially involved in PGR-mediated enhanced plant tolerance to Cd and (d) highlights key aspects so far unexplored in the subject area.
Collapse
Affiliation(s)
- Mohd Asgher
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | | | | | | |
Collapse
|
190
|
Hu W, Zuo J, Hou X, Yan Y, Wei Y, Liu J, Li M, Xu B, Jin Z. The auxin response factor gene family in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress. FRONTIERS IN PLANT SCIENCE 2015; 6:742. [PMID: 26442055 PMCID: PMC4569978 DOI: 10.3389/fpls.2015.00742] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/31/2015] [Indexed: 05/18/2023]
Abstract
Auxin signaling regulates various auxin-responsive genes via two types of transcriptional regulators, Auxin Response Factors (ARF) and Aux/IAA. ARF transcription factors act as critical components of auxin signaling that play important roles in modulating various biological processes. However, limited information about this gene family in fruit crops is currently available. Herein, 47 ARF genes were identified in banana based on its genome sequence. Phylogenetic analysis of the ARFs from banana, rice, and Arabidopsis suggested that the ARFs could be divided into four subgroups, among which most ARFs from the banana showed a closer relationship with those from rice than those from Arabidopsis. Conserved motif analysis showed that all identified MaARFs had typical DNA-binding and ARF domains, but 12 members lacked the dimerization domain. Gene structure analysis showed that the number of exons in MaARF genes ranged from 5 to 21, suggesting large variation amongst banana ARF genes. The comprehensive expression profiles of MaARF genes yielded useful information about their involvement in diverse tissues, different stages of fruit development and ripening, and responses to abiotic stresses in different varieties. Interaction networks and co-expression assays indicated the strong transcriptional response of banana ARFs and ARF-mediated networks in early fruit development for different varieties. Our systematic analysis of MaARFs revealed robust tissue-specific, development-dependent, and abiotic stress-responsive candidate MaARF genes for further functional assays in planta. These findings could lead to potential applications in the genetic improvement of banana cultivars, and yield new insights into the complexity of the control of MaARF gene expression at the transcriptional level. Finally, they support the hypothesis that ARFs are a crucial component of the auxin signaling pathway, which regulates a wide range of physiological processes.
Collapse
Affiliation(s)
- Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Jiao Zuo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Xiaowan Hou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Yan Yan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Yunxie Wei
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Juhua Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Meiying Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Biyu Xu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
- *Correspondence: Biyu Xu, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua County, Haikou City, Hainan Province 571101, China
| | - Zhiqiang Jin
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural SciencesHaikou, China
- Zhiqiang Jin, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Yilong W Road 2, Longhua County, Haikou City, Hainan Province 570102, China
| |
Collapse
|
191
|
Singh VK, Jain M. Genome-wide survey and comprehensive expression profiling of Aux/IAA gene family in chickpea and soybean. FRONTIERS IN PLANT SCIENCE 2015; 6:918. [PMID: 26579165 PMCID: PMC4621760 DOI: 10.3389/fpls.2015.00918] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/12/2015] [Indexed: 05/07/2023]
Abstract
Auxin plays a central role in many aspects of plant growth and development. Auxin/Indole-3-Acetic Acid (Aux/IAA) genes cooperate with several other components in the perception and signaling of plant hormone auxin. An investigation of chickpea and soybean genomes revealed 22 and 63 putative Aux/IAA genes, respectively. These genes were classified into six subfamilies on the basis of phylogenetic analysis. Among 63 soybean Aux/IAA genes, 57 (90.5%) were found to be duplicated via whole genome duplication (WGD)/segmental events. Transposed duplication played a significant role in tandem arrangements between the members of different subfamilies. Analysis of Ka/Ks ratio of duplicated Aux/IAA genes revealed purifying selection pressure with restricted functional divergence. Promoter sequence analysis revealed several cis-regulatory elements related to auxin, abscisic acid, desiccation, salt, seed, and endosperm, indicating their role in development and stress responses. Expression analysis of chickpea and soybean Aux/IAA genes in various tissues and stages of development demonstrated tissue/stage specific differential expression. In soybean, at least 16 paralog pairs, duplicated via WGD/segmental events, showed almost indistinguishable expression pattern, but eight pairs exhibited significantly diverse expression patterns. Under abiotic stress conditions, such as desiccation, salinity and/or cold, many Aux/IAA genes of chickpea and soybean revealed differential expression. qRT-PCR analysis confirmed the differential expression patterns of selected Aux/IAA genes in chickpea. The analyses presented here provide insights on putative roles of chickpea and soybean Aux/IAA genes and will facilitate elucidation of their precise functions during development and abiotic stress responses.
Collapse
|
192
|
Genome-wide identification, expression analysis of GH3 family genes in Medicago truncatula under stress-related hormones and Sinorhizobium meliloti infection. Appl Microbiol Biotechnol 2014; 99:841-54. [PMID: 25529315 DOI: 10.1007/s00253-014-6311-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
Abstract
Auxin plays a pivotal role in the regulation of plant growth and development by controlling the expression of auxin response genes rapidly. As one of the major auxin early response gene families, Gretchen Hagen 3 (GH3) genes are involved in auxin homeostasis by conjugating excess auxins to amino acids. However, how GH3 genes function in environmental stresses and rhizobial infection responses in Medicago truncatula are largely unknown. Here, based on the latest updated M. truncatula genome, a comprehensive identification and expression profiling analysis of MtGH3 genes were performed. Our data showed that most of MtGH3 genes were expressed in tissue-specific manner and were responsive to environmental stress-related hormones. To understand the possible roles of MtGH3 genes involved in symbiosis establishment between M. truncatula and symbiotic bacteria, quantitative real-time polymerase chain reaction (qRT-PCR) was used to test the expressions of MtGH3 genes during the early phase of Sinorhizobium meliloti infection. The expression levels of most MtGH3 genes were upregulated in shoots and downregulated in roots by S. meliloti infection. The differences in expression responses to S. meliloti infection between roots and shoots were in agreement with the results of free indoleacetic acid (IAA) content measurements. The identification and expression analysis of MtGH3 genes at the early phase of S. meliloti infection may help us to understand the role of GH3-mediated IAA homeostasis in the regulation of nodule formation in model legumes M. truncatula.
Collapse
|
193
|
Company N, Nadal A, Ruiz C, Pla M. Production of phytotoxic cationic α-helical antimicrobial peptides in plant cells using inducible promoters. PLoS One 2014; 9:e109990. [PMID: 25387106 PMCID: PMC4227650 DOI: 10.1371/journal.pone.0109990] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 09/14/2014] [Indexed: 12/27/2022] Open
Abstract
Synthetic linear antimicrobial peptides with cationic α-helical structures, such as BP100, have potent and specific activities against economically important plant pathogenic bacteria. They are also recognized as valuable therapeutics and preservatives. However, highly active BP100 derivatives are often phytotoxic when expressed at high levels as recombinant peptides in plants. Here we demonstrate that production of recombinant phytotoxic peptides in transgenic plants is possible by strictly limiting transgene expression to certain tissues and conditions, and specifically that minimization of this expression during transformation and regeneration of transgenic plants is essential to obtain viable plant biofactories. On the basis of whole-genome transcriptomic data available online, we identified the Os.hsp82 promoter that fulfilled this requirement and was highly induced in response to heat shock. Using this strategy, we generated transgenic rice lines producing moderate yields of severely phytotoxic BP100 derivatives on exposure to high temperature. In addition, a threshold for gene expression in selected tissues and stages was experimentally established, below which the corresponding promoters should be suitable for driving the expression of recombinant phytotoxic proteins in genetically modified plants. In view of the growing transcriptomics data available, this approach is of interest to assist promoter selection for specific purposes.
Collapse
Affiliation(s)
- Nuri Company
- Institute for Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Anna Nadal
- Institute for Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Cristina Ruiz
- Institute for Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Maria Pla
- Institute for Food and Agricultural Technology, University of Girona, Girona, Spain
- * E-mail:
| |
Collapse
|
194
|
Paupière MJ, van Heusden AW, Bovy AG. The metabolic basis of pollen thermo-tolerance: perspectives for breeding. Metabolites 2014; 4:889-920. [PMID: 25271355 PMCID: PMC4279151 DOI: 10.3390/metabo4040889] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/10/2014] [Accepted: 09/22/2014] [Indexed: 12/20/2022] Open
Abstract
Crop production is highly sensitive to elevated temperatures. A rise of a few degrees above the optimum growing temperature can lead to a dramatic yield loss. A predicted increase of 1-3 degrees in the twenty first century urges breeders to develop thermo-tolerant crops which are tolerant to high temperatures. Breeding for thermo-tolerance is a challenge due to the low heritability of this trait. A better understanding of heat stress tolerance and the development of reliable methods to phenotype thermo-tolerance are key factors for a successful breeding approach. Plant reproduction is the most temperature-sensitive process in the plant life cycle. More precisely, pollen quality is strongly affected by heat stress conditions. High temperature leads to a decrease of pollen viability which is directly correlated with a loss of fruit production. The reduction in pollen viability is associated with changes in the level and composition of several (groups of) metabolites, which play an important role in pollen development, for example by contributing to pollen nutrition or by providing protection to environmental stresses. This review aims to underline the importance of maintaining metabolite homeostasis during pollen development, in order to produce mature and fertile pollen under high temperature. The review will give an overview of the current state of the art on the role of various pollen metabolites in pollen homeostasis and thermo-tolerance. Their possible use as metabolic markers to assist breeding programs for plant thermo-tolerance will be discussed.
Collapse
Affiliation(s)
- Marine J Paupière
- Plant Breeding, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands.
| | - Adriaan W van Heusden
- Plant Research International, Wageningen University Plant Breeding, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands.
| | - Arnaud G Bovy
- Plant Research International, Wageningen University Plant Breeding, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands.
| |
Collapse
|
195
|
Iglesias MJ, Terrile MC, Windels D, Lombardo MC, Bartoli CG, Vazquez F, Estelle M, Casalongué CA. MiR393 regulation of auxin signaling and redox-related components during acclimation to salinity in Arabidopsis. PLoS One 2014; 9:e107678. [PMID: 25222737 PMCID: PMC4164656 DOI: 10.1371/journal.pone.0107678] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 08/15/2014] [Indexed: 02/08/2023] Open
Abstract
One of the most striking aspects of plant plasticity is the modulation of development in response to environmental changes. Plant growth and development largely depend on the phytohormone auxin that exerts its function through a partially redundant family of F-box receptors, the TIR1-AFBs. We have previously reported that the Arabidopsis double mutant tir1 afb2 is more tolerant to salt stress than wild-type plants and we hypothesized that down-regulation of auxin signaling might be part of Arabidopsis acclimation to salinity. In this work, we show that NaCl-mediated salt stress induces miR393 expression by enhancing the transcription of AtMIR393A and leads to a concomitant reduction in the levels of the TIR1 and AFB2 receptors. Consequently, NaCl triggers stabilization of Aux/IAA repressors leading to down-regulation of auxin signaling. Further, we report that miR393 is likely involved in repression of lateral root (LR) initiation, emergence and elongation during salinity, since the mir393ab mutant shows reduced inhibition of emergent and mature LR number and length upon NaCl-treatment. Additionally, mir393ab mutant plants have increased levels of reactive oxygen species (ROS) in LRs, and reduced ascorbate peroxidase (APX) enzymatic activity compared with wild-type plants during salinity. Thus, miR393 regulation of the TIR1 and AFB2 receptors could be a critical checkpoint between auxin signaling and specfic redox-associated components in order to coordinate tissue and time-specific growth responses and tolerance during acclimation to salinity in Arabidopsis.
Collapse
Affiliation(s)
- María José Iglesias
- Instituto de Investigaciones Biológicas, UE-CONICET-UNMDP, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - María Cecilia Terrile
- Instituto de Investigaciones Biológicas, UE-CONICET-UNMDP, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - David Windels
- Instituto de Fisiología Vegetal, Facultad de Ciencias Naturales, Universidad Nacional de La Plata-CCT La Plata CONICET, La Plata, Argentina
| | - María Cristina Lombardo
- Departamento de Biología e Instituto de Investigaciones Biológicas, UE-CONICET-UNMDP, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Carlos Guillermo Bartoli
- Instituto de Fisiología Vegetal, Facultad de Ciencias Naturales, Universidad Nacional de La Plata-CCT La Plata CONICET, La Plata, Argentina
| | - Franck Vazquez
- Botanical Institute of the University of Basel, Zürich-Basel Plant Science Center, Part of the Swiss Plant Science Web, Department of Environmental Sciences, Basel, Switzerland
| | - Mark Estelle
- Section of Cell and Developmental Biology, University of California San Diego, San Diego, California, United States of America
- Howard Hughes Medical Institute, University of California San Diego, San Diego, California, United States of America
| | - Claudia Anahí Casalongué
- Instituto de Investigaciones Biológicas, UE-CONICET-UNMDP, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
- * E-mail:
| |
Collapse
|
196
|
Cao K, Zheng Z, Wang L, Liu X, Zhu G, Fang W, Cheng S, Zeng P, Chen C, Wang X, Xie M, Zhong X, Wang X, Zhao P, Bian C, Zhu Y, Zhang J, Ma G, Chen C, Li Y, Hao F, Li Y, Huang G, Li Y, Li H, Guo J, Xu X, Wang J. Comparative population genomics reveals the domestication history of the peach, Prunus persica, and human influences on perennial fruit crops. Genome Biol 2014; 15:415. [PMID: 25079967 PMCID: PMC4174323 DOI: 10.1186/s13059-014-0415-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 07/15/2014] [Indexed: 12/24/2022] Open
Abstract
Background Recently, many studies utilizing next generation sequencing have investigated
plant evolution and domestication in annual crops. Peach, Prunus persica, is a typical perennial fruit crop that has
ornamental and edible varieties. Unlike other fruit crops, cultivated peach
includes a large number of phenotypes but few polymorphisms. In this study, we
explore the genetic basis of domestication in peach and the influence of humans on
its evolution. Results We perform large-scale resequencing of 10 wild and 74 cultivated peach
varieties, including 9 ornamental, 23 breeding, and 42 landrace lines. We identify
4.6 million SNPs, a large number of which could explain the phenotypic variation
in cultivated peach. Population analysis shows a single domestication event, the
speciation of P. persica from wild peach.
Ornamental and edible peach both belong to P.
persica, along with another geographically separated subgroup,
Prunus ferganensis. We identify 147 and 262 genes under edible and ornamental selection,
respectively. Some of these genes are associated with important biological
features. We perform a population heterozygosity analysis in different plants that
indicates that free recombination effects could affect domestication history. By
applying artificial selection during the domestication of the peach and
facilitating its asexual propagation, humans have caused a sharp decline of the
heterozygote ratio of SNPs. Conclusions Our analyses enhance our knowledge of the domestication history of perennial
fruit crops, and the dataset we generated could be useful for future research on
comparative population genomics. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0415-1) contains supplementary material, which is available to authorized
users.
Collapse
|
197
|
Zou Y, Liu X, Wang Q, Chen Y, Liu C, Qiu Y, Zhang W. OsRPK1, a novel leucine-rich repeat receptor-like kinase, negatively regulates polar auxin transport and root development in rice. Biochim Biophys Acta Gen Subj 2014; 1840:1676-85. [DOI: 10.1016/j.bbagen.2014.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 11/25/2013] [Accepted: 01/02/2014] [Indexed: 12/13/2022]
|
198
|
Zhou J, Liu Q, Zhang F, Wang Y, Zhang S, Cheng H, Yan L, Li L, Chen F, Xie X. Overexpression of OsPIL15, a phytochrome-interacting factor-like protein gene, represses etiolated seedling growth in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:373-87. [PMID: 24279300 DOI: 10.1111/jipb.12137] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/17/2013] [Indexed: 05/22/2023]
Abstract
Phytochrome-interacting factors (PIFs) regulate an array of developmental responses ranging from seed germination to vegetational architecture in Arabidopsis. However, information regarding the functions of the PIF family in monocots has not been widely reported. Here, we investigate the roles of OsPIL15, a member of the rice (Oryza sativa L. cv. Nipponbare) PIF family, in regulating seedling growth. OsPIL15 encodes a basic helix-loop-helix factor localized in the nucleus. OsPIL15-OX seedlings exhibit an exaggerated shorter aboveground part and undeveloped root system relative to wild-type seedlings, suggesting that OsPIL15 represses seedling growth in the dark. Microarray analysis combined with gene ontology analysis revealed that OsPIL15 represses a set of genes involved in auxin pathways and cell wall organization or biogenesis. Given the important roles of the auxin pathway and cell wall properties in controlling plant growth, we speculate that OsPIL15 represses seedling growth likely by regulating the auxin pathway and suppressing cell wall organization in etiolated rice seedlings. Additionally, exposure to red light or far-red light relieved growth retardation and promoted seedling elongation in the OsPIL15-OX lines, despite higher levels of OsPIL15 transcripts under red light and far-red light than in the dark. These results suggest that light regulation of OsPIL15 expression is probably involved in photomorphogenesis in rice.
Collapse
Affiliation(s)
- Jinjun Zhou
- Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Sharma R, Sahoo A, Devendran R, Jain M. Over-expression of a rice tau class glutathione s-transferase gene improves tolerance to salinity and oxidative stresses in Arabidopsis. PLoS One 2014; 9:e92900. [PMID: 24663444 PMCID: PMC3963979 DOI: 10.1371/journal.pone.0092900] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/27/2014] [Indexed: 12/28/2022] Open
Abstract
Glutathione S-transferases (GSTs) are multifunctional proteins encoded by large gene family in plants, which play important role in cellular detoxification of several endobiotic and xenobiotic compounds. Previously, we suggested the diverse roles of rice GST gene family members in plant development and various stress responses based on their differential expression. In this study, we report the functional characterization of a rice tau class GST gene, OsGSTU4. OsGSTU4 fusion protein was found to be localized in nucleus and cytoplasm. The over-expression of OsGSTU4 in E. coli resulted in better growth and higher GST activity under various stress conditions. Further, we raised over-expression transgenic Arabidopsis plants to reveal its in planta function. These transgenic lines showed reduced sensitivity towards plant hormones, auxin and abscisic acid. Various analyses revealed improved tolerance in transgenic Arabidopsis plants towards salinity and oxidative stresses, which may be attributed to the lower accumulation of reactive oxygen species and enhanced GST activity. In addition, microarray analysis revealed up-regulation of several genes involved in stress responses and cellular detoxification processes in the transgenic plants as compared to wild-type. These results suggest that OsGSTU4 can be used as a good candidate for the generation of stress-tolerant crop plants.
Collapse
Affiliation(s)
- Raghvendra Sharma
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Annapurna Sahoo
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Ragunathan Devendran
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Mukesh Jain
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
- * E-mail:
| |
Collapse
|
200
|
Genetic control of rhizomes and genomic localization of a major-effect growth habit QTL in perennial wildrye. Mol Genet Genomics 2014; 289:383-97. [DOI: 10.1007/s00438-014-0817-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 01/22/2014] [Indexed: 12/28/2022]
|