151
|
Gámez AL, Han X, Aranjuelo I. Differential Effect of Free-Air CO 2 Enrichment (FACE) in Different Organs and Growth Stages of Two Cultivars of Durum Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:686. [PMID: 36771770 PMCID: PMC9920850 DOI: 10.3390/plants12030686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Wheat is a target crop within the food security context. The responses of wheat plants under elevated concentrations of CO2 (e[CO2]) have been previously studied; however, few of these studies have evaluated several organs at different phenological stages simultaneously under free-air CO2 enrichment (FACE) conditions. The main objective of this study was to evaluate the effect of e[CO2] in two cultivars of wheat (Triumph and Norin), analyzed at three phenological stages (elongation, anthesis, and maturation) and in different organs at each stage, under FACE conditions. Agronomic, biomass, physiological, and carbon (C) and nitrogen (N) dynamics were examined in both ambient CO2 (a[CO2]) fixed at 415 µmol mol-1 CO2 and e[CO2] at 550 µmol mol-1 CO2. We found minimal effect of e[CO2] compared to a[CO2] on agronomic and biomass parameters. Also, while exposure to 550 µmol mol-1 CO2 increased the photosynthetic rate of CO2 assimilation (An), the current study showed a diminishment in the maximum carboxylation (Vc,max) and maximum electron transport (Jmax) under e[CO2] conditions compared to a[CO2] at physiological level in both cultivars. However, even if no significant differences were detected between cultivars on photosynthetic machinery, differential responses between cultivars were detected in C and N dynamics at e[CO2]. Triumph showed starch accumulation in most organs during anthesis and maturation, but a decline in N content was observed. Contrastingly, in Norin, a decrease in starch content during the three stages and an increase in N content was observed. The amino acid content decreased in grain and shells at maturation in both cultivars, which might indicate a minimal translocation from source to sink organs. These results suggest a greater acclimation to e[CO2] enrichment in Triumph than Norin, because both the elongation stage and e[CO2] modified the source-sink relationship. According to the differences between cultivars, future studies should be performed to test genetic variation under FACE technology and explore the potential of cultivars to cope with projected climate scenarios.
Collapse
Affiliation(s)
- Angie L. Gámez
- Agrobiotechnology Institute (IdAB), CSIC—Government of Navarre, 31192 Mutilva Baja, Spain
- NAFOSA Company, 31350 Peralta, Spain
| | - Xue Han
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (IEDA, CAAS), Beijing 100081, China
| | - Iker Aranjuelo
- Agrobiotechnology Institute (IdAB), CSIC—Government of Navarre, 31192 Mutilva Baja, Spain
| |
Collapse
|
152
|
Reyes-Rosales A, Cabrales-Orona G, Martínez-Gallardo NA, Sánchez-Segura L, Padilla-Escamilla JP, Palmeros-Suárez PA, Délano-Frier JP. Identification of genetic and biochemical mechanisms associated with heat shock and heat stress adaptation in grain amaranths. FRONTIERS IN PLANT SCIENCE 2023; 14:1101375. [PMID: 36818889 PMCID: PMC9932720 DOI: 10.3389/fpls.2023.1101375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Heat stress is poised to become a major factor negatively affecting plant performance worldwide. In terms of world food security, increased ambient temperatures are poised to reduce yields in cereals and other economically important crops. Grain amaranths are known to be productive under poor and/or unfavorable growing conditions that significantly affect cereals and other crops. Several physiological and biochemical attributes have been recognized to contribute to this favorable property, including a high water-use efficiency and the activation of a carbon starvation response. This study reports the behavior of the three grain amaranth species to two different stress conditions: short-term exposure to heat shock (HS) conditions using young plants kept in a conditioned growth chamber or long-term cultivation under severe heat stress in greenhouse conditions. The latter involved exposing grain amaranth plants to daylight temperatures that hovered around 50°C, or above, for at least 4 h during the day and to higher than normal nocturnal temperatures for a complete growth cycle in the summer of 2022 in central Mexico. All grain amaranth species showed a high tolerance to HS, demonstrated by a high percentage of recovery after their return to optimal growing conditions. The tolerance observed coincided with increased expression levels of unknown function genes previously shown to be induced by other (a)biotic stress conditions. Included among them were genes coding for RNA-binding and RNA-editing proteins, respectively. HS tolerance was also in accordance with favorable changes in several biochemical parameters usually induced in plants in response to abiotic stresses. Conversely, exposure to a prolonged severe heat stress seriously affected the vegetative and reproductive development of all three grain amaranth species, which yielded little or no seed. The latter data suggested that the usually stress-tolerant grain amaranths are unable to overcome severe heat stress-related damage leading to reproductive failure.
Collapse
Affiliation(s)
- Alejandra Reyes-Rosales
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato, Guanajuato, Mexico
| | - Gabriela Cabrales-Orona
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato, Guanajuato, Mexico
| | - Norma A. Martínez-Gallardo
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato, Guanajuato, Mexico
| | - Lino Sánchez-Segura
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato, Guanajuato, Mexico
| | - Jazmín P. Padilla-Escamilla
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato, Guanajuato, Mexico
| | - Paola A. Palmeros-Suárez
- Departamento de Producción Agrícola, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - John P. Délano-Frier
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato, Guanajuato, Mexico
| |
Collapse
|
153
|
Gojon A, Cassan O, Bach L, Lejay L, Martin A. The decline of plant mineral nutrition under rising CO 2: physiological and molecular aspects of a bad deal. TRENDS IN PLANT SCIENCE 2023; 28:185-198. [PMID: 36336557 DOI: 10.1016/j.tplants.2022.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/13/2022] [Accepted: 09/28/2022] [Indexed: 05/26/2023]
Abstract
The elevation of atmospheric CO2 concentration has a strong impact on the physiology of C3 plants, far beyond photosynthesis and C metabolism. In particular, it reduces the concentrations of most mineral nutrients in plant tissues, posing major threats on crop quality, nutrient cycles, and carbon sinks in terrestrial agro-ecosystems. The causes of the detrimental effect of high CO2 levels on plant mineral status are not understood. We provide an update on the main hypotheses and review the increasing evidence that, for nitrogen, this detrimental effect is associated with direct inhibition of key mechanisms of nitrogen uptake and assimilation. We also mention promising strategies for identifying genotypes that will maintain robust nutrient status in a future high-CO2 world.
Collapse
Affiliation(s)
- Alain Gojon
- Institut des Sciences des Plantes de Montpellier (IPSiM), Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Institut Agro, Montpellier, France
| | - Océane Cassan
- Institut des Sciences des Plantes de Montpellier (IPSiM), Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Institut Agro, Montpellier, France
| | - Liên Bach
- Institut des Sciences des Plantes de Montpellier (IPSiM), Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Institut Agro, Montpellier, France
| | - Laurence Lejay
- Institut des Sciences des Plantes de Montpellier (IPSiM), Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Institut Agro, Montpellier, France
| | - Antoine Martin
- Institut des Sciences des Plantes de Montpellier (IPSiM), Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Institut Agro, Montpellier, France.
| |
Collapse
|
154
|
Dong C, Huang TC, Roberts TH. Genes Encoding Structurally Conserved Serpins in the Wheat Genome: Identification and Expression Profiles during Plant Development and Abiotic and Biotic Stress. Int J Mol Sci 2023; 24:ijms24032707. [PMID: 36769030 PMCID: PMC9917288 DOI: 10.3390/ijms24032707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Serpins constitute a family of proteins with a very wide distribution in nature. Serpins have a well-conserved tertiary structure enabling irreversible protease inhibition or other specific biochemical functions. We examined the 189 putative wheat serpin genes previously identified by Benbow et al. (2019) via analysis of gene annotations (RefSeq v1.0) and combined our previous examinations of wheat ESTs and the 454 genome assembly. We found that 81 of the 189 putative serpin genes, plus two manually annotated genes, encode full-length, structurally conserved serpins. Expression of these serpin genes during wheat development and disease/abiotic stress responses was analysed using a publicly available RNAseq database. Results showed that the wheat LR serpins, homologous to Arabidopsis AtSerpin1 and barley BSZx, are ubiquitously expressed across all tissues throughout the wheat lifecycle, whereas the expression of other wheat serpin genes is tissue-specific, including expression only in the grain, only in the root, and only in the anther and microspore. Nine serpin genes were upregulated in both biotic and abiotic responses. Two genes in particular were highly expressed during disease and abiotic challenges. Our findings provide valuable information for further functional study of the wheat serpins, which in turn may lead to their application as molecular markers in wheat breeding.
Collapse
Affiliation(s)
- Chongmei Dong
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
- Plant Breeding Institute, University of Sydney, Cobbitty, NSW 2570, Australia
| | - Ting-Chun Huang
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Thomas H. Roberts
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
- Correspondence:
| |
Collapse
|
155
|
Testolin R, Dalmonech D, Marano G, Bagnara M, D'Andrea E, Matteucci G, Noce S, Collalti A. Simulating diverse forest management options in a changing climate on a Pinus nigra subsp. laricio plantation in Southern Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159361. [PMID: 36252656 DOI: 10.1016/j.scitotenv.2022.159361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Mediterranean pine plantations provide several ecosystem services but are vulnerable to climate change. Forest management might play a strategic role in the adaptation of Mediterranean forests, but the joint effect of climate change and diverse management options have seldom been investigated together. Here, we simulated the development of a Laricio pine (Pinus nigra subsp. laricio) stand in the Bonis watershed (southern Italy) from its establishment in 1958 up to 2095 using a state-of-the-science process-based forest model. The model was run under three climate scenarios corresponding to increasing levels of atmospheric CO2 concentration and warming, and six management options with different goals, including wood production and renaturalization. We analysed the effect of climate change on annual carbon fluxes (i.e., gross and net primary production) and stocks (i.e., basal area, standing and harvested carbon woody stocks) of the autotrophic compartment, as well as the impact of different management options compared to a no management baseline. Results show that higher temperatures (+3 to +5 °C) and lower precipitation (-20 % to -22 %) will trigger a decrease in net primary productivity in the second half of the century. Compared to no management, the other options had a moderate effect on carbon fluxes over the whole simulation (between -14 % and +11 %). While standing woody biomass was reduced by thinning interventions and the shelterwood system (between -5 % and -41 %), overall carbon stocks including the harvested wood were maximized (between +41 % and +56 %). Results highlight that management exerts greater effects on the carbon budget of Laricio pine plantations than climate change alone, and that climate change and management are largely independent (i.e., no strong interaction effects). Therefore, appropriate silvicultural strategies might enhance potential carbon stocks and improve forest conditions, with cascading positive effects on the provision of ecosystem services in Mediterranean pine plantations.
Collapse
Affiliation(s)
- Riccardo Testolin
- National Research Council of Italy, Forest Modelling Lab., Institute for Agriculture and Forestry Systems in the Mediterranean (CNR-ISAFOM), Via Madonna Alta 128, 06128 Perugia, Italy; BIOME Lab., Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; Centro Interuniversitario per la Biodiversità Vegetale Big Data - PLANT DATA, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; LifeWatch, Italy.
| | - Daniela Dalmonech
- National Research Council of Italy, Forest Modelling Lab., Institute for Agriculture and Forestry Systems in the Mediterranean (CNR-ISAFOM), Via Madonna Alta 128, 06128 Perugia, Italy
| | - Gina Marano
- National Research Council of Italy, Forest Modelling Lab., Institute for Agriculture and Forestry Systems in the Mediterranean (CNR-ISAFOM), Via Madonna Alta 128, 06128 Perugia, Italy; Forest Ecology, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
| | - Maurizio Bagnara
- Senckenberg Biodiversity and Climate Research Centre (SBiKF), Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - Ettore D'Andrea
- National Research Council of Italy, Research Institute on Terrestrial Ecosystems (CNR-IRET), Via G. Marconi n. 2, 05010 Porano, Italy
| | - Giorgio Matteucci
- National Research Council of Italy, Institute of BioEconomy (CNR-IBE), via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Sergio Noce
- Foundation Euro-Mediterranean Centre on Climate Change, Division Impacts on Agriculture, Forests and Ecosystem Services (CMCC-IAFES), 01100 Viterbo, Italy
| | - Alessio Collalti
- National Research Council of Italy, Forest Modelling Lab., Institute for Agriculture and Forestry Systems in the Mediterranean (CNR-ISAFOM), Via Madonna Alta 128, 06128 Perugia, Italy
| |
Collapse
|
156
|
Stoichiometry and environmental change drive dynamical complexity and unpredictable switches in an intraguild predation model. J Math Biol 2023; 86:31. [PMID: 36637536 DOI: 10.1007/s00285-023-01866-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 11/17/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023]
Abstract
We incorporate stoichiometry (the balance of key elements) into an intraguild predation (IGP) model. Theoretical and numerical results show that our system exhibits complex dynamics, including chaos and multiple types of both bifurcations and bistability. Types of bifurcation present include saddle-node, Hopf, and transcritical bifurcations, and types of bistability present include node-node, node-cycle, and cycle-cycle bistability; cycle-cycle bistability has never been observed in IGP ordinary differential equation models. Stoichiometry can stabilize or destabilize the system via the disappearance or appearance of chaos. The species represented in the model can coexist for moderate levels of light intensity and nutrient availability. When the amount of light or nutrients present is extremely high or low, coexistence of the species becomes impossible, potentially harming biodiversity. Interestingly, stoichiometry can facilitate the re-emergence of severely endangered species as light intensity increases. In a temporally changing environment, the system can jump between different unstable states following changes in light intensity, with the trajectory followed depending strongly on initial conditions.
Collapse
|
157
|
He L, Wu Q, Jin Y, Fan Y, Shi H, Wang Y, Yang W. NTR1 is involved in heat stress tolerance through mediating expression regulation and alternative splicing of heat stress genes in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 13:1082511. [PMID: 36704159 PMCID: PMC9871932 DOI: 10.3389/fpls.2022.1082511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
As a common adverse environmental factor, heat stress (HS) not only drastically changes the plant transcriptome at the transcription level but also increases alternative splicing (AS), especially intron retention (IR) events. However, the exact mechanisms are not yet well understood. Here, we reported that NTC-related protein 1 (NTR1), which acts as an accessory component for spliceosome disassembly, is necessary for this process. The mutants of NTR1, both the T-DNA insertion and the point mutation identified through ethyl methanesulfonate (EMS) mutagenesis screening, are vulnerable to HS, indicating that NTR1 is essential for plant HS tolerance. At the molecular level, genes of response to heat and response to temperature stimulus are highly enriched among those of heat-induced but less-expressed ntr1 mutants. Moreover, a large portion of HS response (HSR) genes such as heat shock transcription factors (HSFs) and heat shock proteins (HSPs) are less induced by heat treatment, and more AS events, especially IR events, were found in heat-treated ntr1 mutants. Furthermore, HS suppressed the expression of NTR1 and NTR1-associated complex components. Thus, it is very likely that upon HS, the plant reduces the expression of the NTR1-associated complex to fulfill the fast demands for transcription of HSR genes such as HSFs and HSPs, which in turn results in the accumulation of improperly spliced especially IR products and eventually causes harm to plants.
Collapse
Affiliation(s)
- Lei He
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Qi Wu
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Ye Jin
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Ye Fan
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Huazhong Shi
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Yizhong Wang
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Wannian Yang
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| |
Collapse
|
158
|
Gattmann M, McAdam SAM, Birami B, Link R, Nadal-Sala D, Schuldt B, Yakir D, Ruehr NK. Anatomical adjustments of the tree hydraulic pathway decrease canopy conductance under long-term elevated CO2. PLANT PHYSIOLOGY 2023; 191:252-264. [PMID: 36250901 PMCID: PMC9806622 DOI: 10.1093/plphys/kiac482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
The cause of reduced leaf-level transpiration under elevated CO2 remains largely elusive. Here, we assessed stomatal, hydraulic, and morphological adjustments in a long-term experiment on Aleppo pine (Pinus halepensis) seedlings germinated and grown for 22-40 months under elevated (eCO2; c. 860 ppm) or ambient (aCO2; c. 410 ppm) CO2. We assessed if eCO2-triggered reductions in canopy conductance (gc) alter the response to soil or atmospheric drought and are reversible or lasting due to anatomical adjustments by exposing eCO2 seedlings to decreasing [CO2]. To quantify underlying mechanisms, we analyzed leaf abscisic acid (ABA) level, stomatal and leaf morphology, xylem structure, hydraulic efficiency, and hydraulic safety. Effects of eCO2 manifested in a strong reduction in leaf-level gc (-55%) not caused by ABA and not reversible under low CO2 (c. 200 ppm). Stomatal development and size were unchanged, while stomatal density increased (+18%). An increased vein-to-epidermis distance (+65%) suggested a larger leaf resistance to water flow. This was supported by anatomical adjustments of branch xylem having smaller conduits (-8%) and lower conduit lumen fraction (-11%), which resulted in a lower specific conductivity (-19%) and leaf-specific conductivity (-34%). These adaptations to CO2 did not change stomatal sensitivity to soil or atmospheric drought, consistent with similar xylem safety thresholds. In summary, we found reductions of gc under elevated CO2 to be reflected in anatomical adjustments and decreases in hydraulic conductivity. As these water savings were largely annulled by increases in leaf biomass, we do not expect alleviation of drought stress in a high CO2 atmosphere.
Collapse
Affiliation(s)
- Marielle Gattmann
- Institute of Meteorology and Climate Research – Atmospheric Environmental Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen 82467, Germany
| | - Scott A M McAdam
- Department of Botany and Plant Pathology, Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Benjamin Birami
- Institute of Meteorology and Climate Research – Atmospheric Environmental Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen 82467, Germany
| | - Roman Link
- Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Institute of Biological Sciences, University of Würzburg, Würzburg 97082, Germany
| | - Daniel Nadal-Sala
- Institute of Meteorology and Climate Research – Atmospheric Environmental Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen 82467, Germany
| | - Bernhard Schuldt
- Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Institute of Biological Sciences, University of Würzburg, Würzburg 97082, Germany
| | - Dan Yakir
- Department of Environmental Sciences and Energy Research, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
159
|
Eckardt NA, Ainsworth EA, Bahuguna RN, Broadley MR, Busch W, Carpita NC, Castrillo G, Chory J, DeHaan LR, Duarte CM, Henry A, Jagadish SVK, Langdale JA, Leakey ADB, Liao JC, Lu KJ, McCann MC, McKay JK, Odeny DA, Jorge de Oliveira E, Platten JD, Rabbi I, Rim EY, Ronald PC, Salt DE, Shigenaga AM, Wang E, Wolfe M, Zhang X. Climate change challenges, plant science solutions. THE PLANT CELL 2023; 35:24-66. [PMID: 36222573 PMCID: PMC9806663 DOI: 10.1093/plcell/koac303] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Climate change is a defining challenge of the 21st century, and this decade is a critical time for action to mitigate the worst effects on human populations and ecosystems. Plant science can play an important role in developing crops with enhanced resilience to harsh conditions (e.g. heat, drought, salt stress, flooding, disease outbreaks) and engineering efficient carbon-capturing and carbon-sequestering plants. Here, we present examples of research being conducted in these areas and discuss challenges and open questions as a call to action for the plant science community.
Collapse
Affiliation(s)
- Nancy A Eckardt
- Senior Features Editor, The Plant Cell, American Society of Plant Biologists, USA
| | - Elizabeth A Ainsworth
- USDA ARS Global Change and Photosynthesis Research Unit, Urbana, Illinois 61801, USA
| | - Rajeev N Bahuguna
- Centre for Advanced Studies on Climate Change, Dr Rajendra Prasad Central Agricultural University, Samastipur 848125, Bihar, India
| | - Martin R Broadley
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Nicholas C Carpita
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - Gabriel Castrillo
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Future Food Beacon of Excellence, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Joanne Chory
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | - Carlos M Duarte
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Amelia Henry
- International Rice Research Institute, Rice Breeding Innovations Platform, Los Baños, Laguna 4031, Philippines
| | - S V Krishna Jagadish
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas 79410, USA
| | - Jane A Langdale
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Andrew D B Leakey
- Department of Plant Biology, Department of Crop Sciences, and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - James C Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei 11528, Taiwan
| | - Kuan-Jen Lu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11528, Taiwan
| | - Maureen C McCann
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - John K McKay
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Damaris A Odeny
- The International Crops Research Institute for the Semi-Arid Tropics–Eastern and Southern Africa, Gigiri 39063-00623, Nairobi, Kenya
| | | | - J Damien Platten
- International Rice Research Institute, Rice Breeding Innovations Platform, Los Baños, Laguna 4031, Philippines
| | - Ismail Rabbi
- International Institute of Tropical Agriculture (IITA), PMB 5320 Ibadan, Oyo, Nigeria
| | - Ellen Youngsoo Rim
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
| | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
- Innovative Genomics Institute, Berkeley, California 94704, USA
| | - David E Salt
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Future Food Beacon of Excellence, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Alexandra M Shigenaga
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Marnin Wolfe
- Auburn University, Dept. of Crop Soil and Environmental Sciences, College of Agriculture, Auburn, Alabama 36849, USA
| | - Xiaowei Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
160
|
Bernardi LGP, Boaretto RM, Blain GC, Mattos-Jr D. Particle films improve photosynthesis of citrus trees under excess irradiance by reducing leaf temperature. PHYSIOLOGIA PLANTARUM 2023; 175:e13844. [PMID: 36539940 DOI: 10.1111/ppl.13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/05/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
High irradiance and increased air temperature during extreme weather conditions affect tree crops and impact the yield and quality of fruits. Moreover, flowering and fruit set of Citrus are likely impaired by UV radiation and/or reduced carbon assimilation, which increase reactive oxygen species production and damage the leaf photosynthetic apparatus. Particle coating films sprayed on leaves have been offered as a way to minimize crop losses due to the climate change scenario, even though the extent of leaf protection is not characterized. We evaluated the use of two protective films on the oxidative stress and leaf photosynthesis of sweet orange trees exposed to varying daylight levels. Trees were maintained under full sun light, sprayed or not (control) with kaolin or calcium carbonate, and under reduced irradiance using either aluminum shade cloth 50% or anti-UV transparent plastic. Kaolin or calcium carbonate reflected 20%-30% of the incident light on the leaf surface compared to leaves not sprayed and under full sunlight. Leaves with coating exhibited improved CO2 assimilation and photosystem II efficiency, and lower leaf temperatures over time. In addition, the coating protected leaves against excess irradiance due to dissipation of excess energy into the photosynthetic apparatus (NPQt). Nonenzymatic mechanisms for UV protection, such as carotenoids, were higher in full sun control plants than in leaf-coated plants. Comparable responses were observed on trees maintained covered either by the cloth or the plastic film. Finally, we conclude that the use of suspension particles mitigates the harmful effects of excess UV irradiance and temperature in sweet orange trees.
Collapse
Affiliation(s)
- Lucas G P Bernardi
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico (IAC), Cordeirópolis, SP, Brazil
| | - Rodrigo M Boaretto
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico (IAC), Cordeirópolis, SP, Brazil
| | | | - Dirceu Mattos-Jr
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico (IAC), Cordeirópolis, SP, Brazil
| |
Collapse
|
161
|
Sun Y, Alseekh S, Fernie AR. Plant secondary metabolic responses to global climate change: A meta-analysis in medicinal and aromatic plants. GLOBAL CHANGE BIOLOGY 2023; 29:477-504. [PMID: 36271675 DOI: 10.1111/gcb.16484] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Plant secondary metabolites (SMs) play crucial roles in plant-environment interactions and contribute greatly to human health. Global climate changes are expected to dramatically affect plant secondary metabolism, yet a systematic understanding of such influences is still lacking. Here, we employed medicinal and aromatic plants (MAAPs) as model plant taxa and performed a meta-analysis from 360 publications using 1828 paired observations to assess the responses of different SMs levels and the accompanying plant traits to elevated carbon dioxide (eCO2 ), elevated temperature (eT), elevated nitrogen deposition (eN) and decreased precipitation (dP). The overall results showed that phenolic and terpenoid levels generally respond positively to eCO2 but negatively to eN, while the total alkaloid concentration was increased remarkably by eN. By contrast, dP promotes the levels of all SMs, while eT exclusively exerts a positive influence on the levels of phenolic compounds. Further analysis highlighted the dependence of SM responses on different moderators such as plant functional types, climate change levels or exposure durations, mean annual temperature and mean annual precipitation. Moreover, plant phenolic and terpenoid responses to climate changes could be attributed to the variations of C/N ratio and total soluble sugar levels, while the trade-off supposition contributed to SM responses to climate changes other than eCO2 . Taken together, our results predicted the distinctive SM responses to diverse climate changes in MAAPs and allowed us to define potential moderators responsible for these variations. Further, linking SM responses to C-N metabolism and growth-defence balance provided biological understandings in terms of plant secondary metabolic regulation.
Collapse
Affiliation(s)
- Yuming Sun
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources/The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Memorial Sun Yat-Sen), Nanjing, China
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| |
Collapse
|
162
|
Garcia A, Gaju O, Bowerman AF, Buck SA, Evans JR, Furbank RT, Gilliham M, Millar AH, Pogson BJ, Reynolds MP, Ruan Y, Taylor NL, Tyerman SD, Atkin OK. Enhancing crop yields through improvements in the efficiency of photosynthesis and respiration. THE NEW PHYTOLOGIST 2023; 237:60-77. [PMID: 36251512 PMCID: PMC10100352 DOI: 10.1111/nph.18545] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/15/2022] [Indexed: 06/06/2023]
Abstract
The rate with which crop yields per hectare increase each year is plateauing at the same time that human population growth and other factors increase food demand. Increasing yield potential (Y p ) of crops is vital to address these challenges. In this review, we explore a component ofY p that has yet to be optimised - that being improvements in the efficiency with which light energy is converted into biomass (ε c ) via modifications to CO2 fixed per unit quantum of light (α), efficiency of respiratory ATP production (ε prod ) and efficiency of ATP use (ε use ). For α, targets include changes in photoprotective machinery, ribulose bisphosphate carboxylase/oxygenase kinetics and photorespiratory pathways. There is also potential forε prod to be increased via targeted changes to the expression of the alternative oxidase and mitochondrial uncoupling pathways. Similarly, there are possibilities to improveε use via changes to the ATP costs of phloem loading, nutrient uptake, futile cycles and/or protein/membrane turnover. Recently developed high-throughput measurements of respiration can serve as a proxy for the cumulative energy cost of these processes. There are thus exciting opportunities to use our growing knowledge of factors influencing the efficiency of photosynthesis and respiration to create a step-change in yield potential of globally important crops.
Collapse
Affiliation(s)
- Andres Garcia
- ARC Centre of Excellence in Plant Energy Biology, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
| | - Oorbessy Gaju
- ARC Centre of Excellence in Plant Energy Biology, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
- College of Science, Lincoln Institute for Agri‐Food TechnologyUniversity of LincolnLincolnshireLN2 2LGUK
| | - Andrew F. Bowerman
- ARC Centre of Excellence in Plant Energy Biology, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
| | - Sally A. Buck
- ARC Centre of Excellence in Plant Energy Biology, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
| | - John R. Evans
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
- ARC Centre of Excellence for Translational Photosynthesis, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Robert T. Furbank
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
- ARC Centre of Excellence for Translational Photosynthesis, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Matthew Gilliham
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine & Waite Research InstituteUniversity of AdelaideGlen OsmondSA5064Australia
| | - A. Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences & Institute of AgricultureThe University of Western AustraliaCrawleyWA6009Australia
| | - Barry J. Pogson
- ARC Centre of Excellence in Plant Energy Biology, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
| | - Matthew P. Reynolds
- International Maize and Wheat Improvement Center (CIMMYT)Km. 45, Carretera Mexico, El BatanTexcoco56237Mexico
| | - Yong‐Ling Ruan
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
| | - Nicolas L. Taylor
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences & Institute of AgricultureThe University of Western AustraliaCrawleyWA6009Australia
| | - Stephen D. Tyerman
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine & Waite Research InstituteUniversity of AdelaideGlen OsmondSA5064Australia
| | - Owen K. Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
| |
Collapse
|
163
|
Mulero G, Jiang D, Bonfil DJ, Helman D. Use of thermal imaging and the photochemical reflectance index (PRI) to detect wheat response to elevated CO 2 and drought. PLANT, CELL & ENVIRONMENT 2023; 46:76-92. [PMID: 36289576 PMCID: PMC10098568 DOI: 10.1111/pce.14472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 09/05/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The spectral-based photochemical reflectance index (PRI) and leaf surface temperature (Tleaf ) derived from thermal imaging are two indicative metrics of plant functioning. The relationship of PRI with radiation-use efficiency (RUE) and Tleaf with leaf transpiration could be leveraged to monitor crop photosynthesis and water use from space. Yet, it is unclear how such relationships will change under future high carbon dioxide concentrations ([CO2 ]) and drought. Here we established an [CO2 ] enrichment experiment in which three wheat genotypes were grown at ambient (400 ppm) and elevated (550 ppm) [CO2 ] and exposed to well-watered and drought conditions in two glasshouse rooms in two replicates. Leaf transpiration (Tr ) and latent heat flux (LE) were derived to assess evaporative cooling, and RUE was calculated from assimilation and radiation measurements on several dates along the season. Simultaneous hyperspectral and thermal images were taken at~ $\unicode{x0007E}$ 1.5 m from the plants to derive PRI and the temperature difference between the leaf and its surrounding air (∆ $\unicode{x02206}$ Tleaf-air ). We found significant PRI and RUE and∆ $\unicode{x02206}$ Tleaf-air and Tr correlations, with no significant differences among the genotypes. A PRI-RUE decoupling was observed under drought at ambient [CO2 ] but not at elevated [CO2 ], likely due to changes in photorespiration. For a LE range of 350 W m-2 , the ΔTleaf-air range was~ $\unicode{x0007E}$ 10°C at ambient [CO2 ] and only~ $\unicode{x0007E}$ 4°C at elevated [CO2 ]. Thicker leaves in plants grown at elevated [CO2 ] suggest higher leaf water content and consequently more efficient thermoregulation at high [CO2 ] conditions. In general, Tleaf was maintained closer to the ambient temperature at elevated [CO2 ], even under drought. PRI, RUE, ΔTleaf -air , and Tr decreased linearly with canopy depth, displaying a single PRI-RUE and ΔTleaf -air Tr model through the canopy layers. Our study shows the utility of these sensing metrics in detecting wheat responses to future environmental changes.
Collapse
Affiliation(s)
- Gabriel Mulero
- Department of Soil & Water Sciences, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Duo Jiang
- Department of Soil & Water Sciences, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - David J. Bonfil
- Department of Vegetable and Field Crop ResearchAgricultural Research Organization, Gilat Research CenterGilatIsrael
| | - David Helman
- Department of Soil & Water Sciences, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
- The Advanced School for Environmental StudiesThe Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
164
|
Chen H, Wu YC, Cheng CC, Teng CY. Effect of climate change-induced water-deficit stress on long-term rice yield. PLoS One 2023; 18:e0284290. [PMID: 37068073 PMCID: PMC10109484 DOI: 10.1371/journal.pone.0284290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/28/2023] [Indexed: 04/18/2023] Open
Abstract
The water requirements of crops should be investigated to improve the efficiency of water use in irrigated agriculture. The main objective of the study was to assess the effects of water deficit stress on rice yields throughout the major cropping seasons. We analyzed rice yield data from field experiments in Taiwan over the period 1925-2019 to evaluate the effects of water-deficit stress on the yield of 12 rice cultivars. Weather data, including air temperatures, humidity, wind speed, sunshine duration, and rainfall were used to compute the temporal trends of reference evapotranspiration and crop water status (CWS) during rice growth stages. A negative CWS value indicates that the crop is water deficient, and a smaller value represents a lower water level (greater water-deficit stress) in crop growth. The CWS on rice growth under the initial, crop development, reproductive, and maturity stages declined by 96.9, 58.9, 24.7, and 198.6 mm in the cool cropping season and declined by 63.7, 18.1, 8.6, and 3.8 mm in the warm cropping season during the 95 years. The decreasing trends in the CWSs were used to represent the increases in water-deficit stress. The total yield change related to water-deficit stress on the cultivars from 1925-1944, 1945-1983, and 1996-2019 under the initial, crop development, reproductive, and maturity stages are -56.1 to 37.0, -77.5 to -12.3, 11.2 to 19.8, and -146.4 to 39.1 kg ha-1 in the cool cropping season and -16.5 to 8.2, -12.9 to 8.1, -2.3 to 9.0, and -9.3 to 8.0 in the warm cropping season, respectively. Our results suggest that CWS may be a determining factor for rice to thrive during the developmental stage, but not the reproductive stage. In addition, the effect of water-deficit stress has increasingly affected the growth of rice in recent years.
Collapse
Affiliation(s)
- Hungyen Chen
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Yi-Chien Wu
- Taichung District Agricultural Research and Extension Station, Council of Agriculture, Changhua, Taiwan
| | - Chia-Chi Cheng
- Taichung District Agricultural Research and Extension Station, Council of Agriculture, Changhua, Taiwan
| | - Chih-Yung Teng
- Taichung District Agricultural Research and Extension Station, Council of Agriculture, Changhua, Taiwan
| |
Collapse
|
165
|
Kim TL, Lim H, Chung H, Veerappan K, Oh C. Elevated CO 2 Alters the Physiological and Transcriptome Responses of Pinus densiflora to Long-Term CO 2 Exposure. PLANTS (BASEL, SWITZERLAND) 2022; 11:3530. [PMID: 36559641 PMCID: PMC9781706 DOI: 10.3390/plants11243530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Physiological response and transcriptome changes were observed to investigate the effects on the growth, metabolism and genetic changes of Pinus densiflora grown for a long time in an environment with an elevated atmospheric CO2 concentration. Pine trees were grown at ambient (400 ppm) and elevated (560 ppm and 720 ppm) CO2 concentrations for 10 years in open-top chambers. The content of nonstructural carbohydrates was significantly increased in elevated CO2. It was notable that the contents of chlorophylls significantly decreased at an elevated CO2. The activities of antioxidants were significantly increased at an elevated CO2 concentration of 720 ppm. We analyzed the differences in the transcriptomes of Pinus densiflora at ambient and elevated CO2 concentrations and elucidated the functions of the differentially expressed genes (DEGs). RNA-Seq analysis identified 2415 and 4462 DEGs between an ambient and elevated CO2 concentrations of 560 ppm and 720 ppm, respectively. Genes related to glycolysis/gluconeogenesis and starch/sucrose metabolism were unchanged or decreased at an elevated CO2 concentration of 560 ppm and tended to increase at an elevated CO2 concentration of 720 ppm. It was confirmed that the expression levels of genes related to photosynthesis and antioxidants were increased at an elevated CO2 concentration of 720 ppm.
Collapse
Affiliation(s)
- Tae-Lim Kim
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea
| | - Hyemin Lim
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea
| | - Hoyong Chung
- 3BIGS CO. Ltd., Hwaseong 18469, Republic of Korea
| | | | - Changyoung Oh
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea
| |
Collapse
|
166
|
Ju Y, Wang C, Wang N, Quan X. Transplanting larch trees into warmer areas increases the photosynthesis and its temperature sensitivity. TREE PHYSIOLOGY 2022; 42:2521-2533. [PMID: 35921242 DOI: 10.1093/treephys/tpac084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
To investigate the effects of climate warming on photosynthesis, Dahurian larch (Larix gmelinii Rupr.) trees from four sites (spanning ~ 5.5° in latitude and ~4 °C of warming) within the geographic range in China were transplanted into a common garden close to the warmer border in 2004. Throughout the growing season of 2018, the CO2- and temperature-response curves of the photosynthesis in the common garden and at the original sites were measured. It was discovered that warming treatment considerably increased the maximum net photosynthetic rate (Amax) by 23.4-35.3% depending on the sites, signifying that warming upregulated Amax with respect to the degree of warming. At 25 °C, warming enhanced the maximum Rubisco carboxylation rate (Vcmax), maximum electron transport rate (Jmax), and mass-based leaf nitrogen concentration (Nmass). The climate warming effect (CWE) on Amax was positively associated with the CWEs on Vcmax, Jmax and Nmass, which indicated that warming promoted Amax primarily via increasing carboxylation and photosynthetic electron transport rates and leaf nitrogen supply. The CWE in optimal photosynthetic temperature (Topt) was significant for the trees from the northern sites rather than the southern sites; however, the effect vanished for the trees transplanted to the common garden; this implied that Topt exhibited limited local thermal acclimation. Nevertheless, warming narrowed the temperature-response curve, the effect of which was positively associated with the warming magnitude. These findings implied that trees transplanted into warmer areas changed the photosynthetic optimum temperature and sensitivity. In summary, our results deepen the understanding of the underlying mechanisms of intraspecific responses of photosynthesis to temperature changes, including which of the modeling would improve the prediction of tree growth and forest carbon cycling under climate warming.
Collapse
Affiliation(s)
- Yali Ju
- Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Chuankuan Wang
- Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Nan Wang
- College of Architectural Engineering, Heilongjiang University of Science and Technology, Harbin 150027, China
| | - Xiankui Quan
- Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| |
Collapse
|
167
|
Li Y, Li S, Feng Q, Zhang J, Han X, Zhang L, Yang F, Zhou J. Effects of exogenous Strigolactone on the physiological and ecological characteristics of Pennisetum purpureum Schum. Seedlings under drought stress. BMC PLANT BIOLOGY 2022; 22:578. [PMID: 36510126 PMCID: PMC9743734 DOI: 10.1186/s12870-022-03978-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/03/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND Drought is one of the main environmental factors limiting plant growth and development. Pennisetum purpureum Schum. was used to explore the mitigation effects of exogenous strigolactone (SL) on drought stress during the seedling stage. The effects of different concentrations (1, 3, 5, and 7 μmol·L- 1) of SL on the photosynthesis characteristics, growth performance, and endogenous abscisic acid (ABA) of P. purpureum under drought stress were studied. RESULTS Exogenous SL could effectively alleviate the inhibitory effect of drought stress on P. purpureum growth. Compared with drought stress, the net photosynthesis rate, stomatal conductance, transpiration rate, and water-use efficiency of the leaves of P. purpureum after SL treatment significantly increased, thereby exerting a significant mitigation effect on the decrease in photosystem II maximum photochemical efficiency and the performance index based on light absorption caused by drought. Moreover, the exogenous application of SL can effectively increase the fresh and dry weight of the leaves and roots and the main-root length. After applying SL for 120 h, the ABA content of P. purpureum decreased significantly. The activity of key enzymes of photosynthesis significantly increased after 48 h of external application of SL to P. purpureum. CONCLUSIONS SL treatment can improve the photosynthesis performance of P. purpureum leaves under drought conditions and increase the antioxidant capacity of the leaves, thereby reducing the adverse effects of drought, promoting the growth of P. purpureum, and effectively improving the drought resistance of P. purpureum.
Collapse
Affiliation(s)
- Yan Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- National Engineering Research Center of Juncao Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Sutao Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- National Engineering Research Center of Juncao Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qixian Feng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Juan Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xuelin Han
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lei Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fulin Yang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Jing Zhou
- National Engineering Research Center of Juncao Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
168
|
Wang G, Huang S, Zhang Y, Zhao S, Han C. How Has Climate Change Driven the Evolution of Rice Distribution in China? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16297. [PMID: 36498371 PMCID: PMC9737467 DOI: 10.3390/ijerph192316297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Estimating the impact of climate change risks on rice distribution is one of the most important elements of climate risk management. This paper is based on the GEE (Google Earth Engine) platform and multi-source remote sensing data; the authors quantitatively extracted rice production distribution data in China from 1990 to 2019, analysed the evolution pattern of rice distribution and clusters and explored the driving effects between climatic and environmental conditions on the evolution of rice production distribution using the non-parametric quantile regression model. The results show that: The spatial variation of rice distribution is significant, mainly concentrated in the northeast, south and southwest regions of China; the distribution of rice in the northeast is expanding, while the distribution of rice in the south is extending northward, showing a spatial evolution trend of "north rising and south retreating". The positive effect of precipitation on the spatial distribution of rice has a significant threshold. This shows that when precipitation is greater than 800 mm, there is a significant positive effect on the spatial distribution of rice production, and this effect will increase with precipitation increases. Climate change may lead to a continuous northward shift in the extent of rice production, especially extending to the northwest of China. This paper's results will help implement more spatially targeted climate change adaptation measures for rice to cope with the changes in food production distribution caused by climate change.
Collapse
Affiliation(s)
- Guogang Wang
- Institute of Agricultural Economics and Development, Chinses Academy of Agricultural Sciences, Beijing 100089, China
| | - Shengnan Huang
- Institute of Agricultural Economics and Development, Chinses Academy of Agricultural Sciences, Beijing 100089, China
| | - Yongxiang Zhang
- School of Economics and Management, China Agricultural University, Beijing 100089, China
| | - Sicheng Zhao
- Institute of Agricultural Economics and Development, Chinses Academy of Agricultural Sciences, Beijing 100089, China
| | - Chengji Han
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, China Academy of Sciences, Beijing 100089, China
| |
Collapse
|
169
|
Burgess AJ, Masclaux‐Daubresse C, Strittmatter G, Weber APM, Taylor SH, Harbinson J, Yin X, Long S, Paul MJ, Westhoff P, Loreto F, Ceriotti A, Saltenis VLR, Pribil M, Nacry P, Scharff LB, Jensen PE, Muller B, Cohan J, Foulkes J, Rogowsky P, Debaeke P, Meyer C, Nelissen H, Inzé D, Klein Lankhorst R, Parry MAJ, Murchie EH, Baekelandt A. Improving crop yield potential: Underlying biological processes and future prospects. Food Energy Secur 2022; 12:e435. [PMID: 37035025 PMCID: PMC10078444 DOI: 10.1002/fes3.435] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/07/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022] Open
Abstract
The growing world population and global increases in the standard of living both result in an increasing demand for food, feed and other plant-derived products. In the coming years, plant-based research will be among the major drivers ensuring food security and the expansion of the bio-based economy. Crop productivity is determined by several factors, including the available physical and agricultural resources, crop management, and the resource use efficiency, quality and intrinsic yield potential of the chosen crop. This review focuses on intrinsic yield potential, since understanding its determinants and their biological basis will allow to maximize the plant's potential in food and energy production. Yield potential is determined by a variety of complex traits that integrate strictly regulated processes and their underlying gene regulatory networks. Due to this inherent complexity, numerous potential targets have been identified that could be exploited to increase crop yield. These encompass diverse metabolic and physical processes at the cellular, organ and canopy level. We present an overview of some of the distinct biological processes considered to be crucial for yield determination that could further be exploited to improve future crop productivity.
Collapse
Affiliation(s)
- Alexandra J. Burgess
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | | | - Günter Strittmatter
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf Germany
| | - Andreas P. M. Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf Germany
| | | | - Jeremy Harbinson
- Laboratory for Biophysics Wageningen University and Research Wageningen The Netherlands
| | - Xinyou Yin
- Centre for Crop Systems Analysis, Department of Plant Sciences Wageningen University & Research Wageningen The Netherlands
| | - Stephen Long
- Lancaster Environment Centre Lancaster University Lancaster UK
- Plant Biology and Crop Sciences University of Illinois at Urbana‐Champaign Urbana Illinois USA
| | | | - Peter Westhoff
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf Germany
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences, National Research Council of Italy (CNR), Rome, Italy and University of Naples Federico II Napoli Italy
| | - Aldo Ceriotti
- Institute of Agricultural Biology and Biotechnology National Research Council (CNR) Milan Italy
| | - Vandasue L. R. Saltenis
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Mathias Pribil
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Philippe Nacry
- BPMP, Univ Montpellier, INRAE, CNRS Institut Agro Montpellier France
| | - Lars B. Scharff
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Poul Erik Jensen
- Department of Food Science University of Copenhagen Copenhagen Denmark
| | - Bertrand Muller
- Université de Montpellier ‐ LEPSE – INRAE Institut Agro Montpellier France
| | | | - John Foulkes
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | - Peter Rogowsky
- INRAE UMR Plant Reproduction and Development Lyon France
| | | | - Christian Meyer
- IJPB UMR1318 INRAE‐AgroParisTech‐Université Paris Saclay Versailles France
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - René Klein Lankhorst
- Wageningen Plant Research Wageningen University & Research Wageningen The Netherlands
| | | | - Erik H. Murchie
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | - Alexandra Baekelandt
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| |
Collapse
|
170
|
Desai AR, Murphy BA, Wiesner S, Thom J, Butterworth BJ, Koupaei‐Abyazani N, Muttaqin A, Paleri S, Talib A, Turner J, Mineau J, Merrelli A, Stoy P, Davis K. Drivers of Decadal Carbon Fluxes Across Temperate Ecosystems. JOURNAL OF GEOPHYSICAL RESEARCH. BIOGEOSCIENCES 2022; 127:e2022JG007014. [PMID: 37502709 PMCID: PMC10369927 DOI: 10.1029/2022jg007014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 07/29/2023]
Abstract
Long-running eddy covariance flux towers provide insights into how the terrestrial carbon cycle operates over multiple timescales. Here, we evaluated variation in net ecosystem exchange (NEE) of carbon dioxide (CO2) across the Chequamegon Ecosystem-Atmosphere Study AmeriFlux core site cluster in the upper Great Lakes region of the USA from 1997 to 2020. The tower network included two mature hardwood forests with differing management regimes (US-WCr and US-Syv), two fen wetlands with varying levels of canopy sheltering and vegetation (US-Los and US-ALQ), and a very tall (400 m) landscape-level tower (US-PFa). Together, they provided over 70 site-years of observations. The 19-tower Chequamegon Heterogenous Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of Detectors 2019 campaign centered around US-PFa provided additional information on the spatial variation of NEE. Decadal variability was present in all long-term sites, but cross-site coherence in interannual NEE in the earlier part of the record became weaker with time as non-climatic factors such as local disturbances likely dominated flux time series. Average decadal NEE at the tall tower transitioned from carbon source to sink to near neutral over 24 years. Respiration had a greater effect than photosynthesis on driving variations in NEE at all sites. Declining snowfall offset potential increases in assimilation from warmer springs, as less-insulated soils delayed start of spring green-up. Higher CO2 increased maximum net assimilation parameters but not total gross primary productivity. Stand-scale sites were larger net sinks than the landscape tower. Clustered, long-term carbon flux observations provide value for understanding the diverse links between carbon and climate and the challenges of upscaling these responses across space.
Collapse
Affiliation(s)
- Ankur R. Desai
- Department of Atmospheric and Oceanic SciencesUniversity of Wisconsin–MadisonMadisonWIUSA
| | - Bailey A. Murphy
- Department of Atmospheric and Oceanic SciencesUniversity of Wisconsin–MadisonMadisonWIUSA
| | - Susanne Wiesner
- Department of Plant and Earth ScienceUniversity of Wisconsin–River FallsRiver FallsWIUSA
| | - Jonathan Thom
- Space Science and Engineering CenterUniversity of Wisconsin–MadisonMadisonWIUSA
| | - Brian J. Butterworth
- Cooperative Institute for Research in Environmental SciencesCU BoulderBoulderCOUSA
- NOAA Physical Sciences LaboratoryBoulderCOUSA
| | | | - Andi Muttaqin
- Department of Atmospheric and Oceanic SciencesUniversity of Wisconsin–MadisonMadisonWIUSA
| | - Sreenath Paleri
- Department of Atmospheric and Oceanic SciencesUniversity of Wisconsin–MadisonMadisonWIUSA
| | - Ammara Talib
- Department of Civil and Environmental EngineeringUniversity of Wisconsin–MadisonMadisonWIUSA
| | - Jess Turner
- Freshwater & Marine SciencesUniversity of Wisconsin–MadisonMadisonWIUSA
| | - James Mineau
- Department of Atmospheric and Oceanic SciencesUniversity of Wisconsin–MadisonMadisonWIUSA
| | - Aronne Merrelli
- Department of Climate and Space Sciences and EngineeringUniversity of MichiganAnn ArborMIUSA
| | - Paul Stoy
- Department of Plant and Earth ScienceUniversity of Wisconsin–River FallsRiver FallsWIUSA
| | - Ken Davis
- Department of MeteorologyPennsylvania State UniversityUniversity ParkPAUSA
| |
Collapse
|
171
|
Response of Terrestrial Net Primary Production to Quadrupled CO 2 Forcing: A Comparison between the CAS-ESM2 and CMIP6 Models. BIOLOGY 2022; 11:biology11121693. [PMID: 36552203 PMCID: PMC9774443 DOI: 10.3390/biology11121693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/12/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022]
Abstract
Terrestrial net primary production (NPP) is a key carbon flux that changes with rising atmospheric CO2 and CO2-induced climate change. Earth system models are commonly used to investigate these NPP changes because of their fundamentally trustworthy ability to simulate physical climate systems and terrestrial biogeochemical processes. However, many uncertainties remain in projecting NPP responses, due to their complex processes and divergent model characteristics. This study estimated NPP responses to elevated CO2 and CO2-induced climate change using the Chinese Academy of Sciences Earth System Model version 2 (CAS-ESM2), as well as 22 CMIP6 models. Based on CMIP6 pre-industrial and abruptly quadrupled CO2 experiments, the analysis focused on a comparison of the CAS-ESM2 with the multi-model ensemble (MME), and on a detection of underlying causes of their differences. We found that all of the models showed an overall enhancement in NPP, and that CAS-ESM2 projected a slightly weaker NPP enhancement than MME. This weaker NPP enhancement was the net result of much weaker NPP enhancement over the tropics, and a little stronger NPP enhancement over northern high latitudes. We further report that these differences in NPP responses between the CAS-ESM2 and MME resulted from their different behaviors in simulating NPP trends with modeling time, and are attributed to their different projections of CO2-induced climatic anomalies and different climate sensitivities. These results are favorable for understanding and further improving the performance of the CAS-ESM2 in projecting the terrestrial carbon cycle, and point towards a need for greater understanding and improvements for both physical climatic processes and the terrestrial carbon cycle.
Collapse
|
172
|
Matos IF, Morales LMM, Santana DB, Silva GMC, Gomes MMDA, Ayub RA, Costa JH, de Oliveira JG. Ascorbate synthesis as an alternative electron source for mitochondrial respiration: Possible implications for the plant performance. FRONTIERS IN PLANT SCIENCE 2022; 13:987077. [PMID: 36507441 PMCID: PMC9727407 DOI: 10.3389/fpls.2022.987077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/31/2022] [Indexed: 06/01/2023]
Abstract
The molecule vitamin C, in the chemical form of ascorbic acid (AsA), is known to be essential for the metabolism of humans and animals. Humans do not produce AsA, so they depend on plants as a source of vitamin C for their food. The AsA synthesis pathway occurs partially in the cytosol, but the last oxidation step is physically linked to the respiratory chain of plant mitochondria. This oxidation step is catalyzed by l-galactono-1,4-lactone dehydrogenase (l-GalLDH). This enzyme is not considered a limiting step for AsA production; however, it presents a distinguishing characteristic: the l-GalLDH can introduce electrons directly into the respiratory chain through cytochrome c (Cytc) and therefore can be considered an extramitochondrial electron source that bypasses the phosphorylating Complex III. The use of Cytc as electron acceptor has been debated in terms of its need for AsA synthesis, but little has been said in relation to its impact on the functioning of the respiratory chain. This work seeks to offer a new view about the possible changes that result of the link between AsA synthesis and the mitochondrial respiration. We hypothesized that some physiological alterations related to low AsA may be not only explained by the deficiency of this molecule but also by the changes in the respiratory function. We discussed some findings showing that respiratory mutants contained changes in AsA synthesis. Besides, recent works that also indicate that the excessive electron transport via l-GalLDH enzyme may affect other respiratory pathways. We proposed that Cytc reduction by l-GalLDH may be part of an alternative respiratory pathway that is active during AsA synthesis. Also, it is proposed that possible links of this pathway with other pathways of alternative electron transport in plant mitochondria may exist. The review suggests potential implications of this relationship, particularly for situations of stress. We hypothesized that this pathway of alternative electron input would serve as a strategy for adaptation of plant respiration to changing conditions.
Collapse
Affiliation(s)
- Isabelle Faria Matos
- Plant Genetic Breeding Laboratory, Center for Agricultural Sciences and Technologies, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | | | - Diederson Bortolini Santana
- Plant Genetic Breeding Laboratory, Center for Agricultural Sciences and Technologies, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Gláucia Michelle Cosme Silva
- Plant Genetic Breeding Laboratory, Center for Agricultural Sciences and Technologies, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Mara Menezes de Assis Gomes
- Plant Genetic Breeding Laboratory, Center for Agricultural Sciences and Technologies, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Ricardo Antônio Ayub
- Laboratory of Biotechnology Applied to Fruit Growing, Department of Phytotechny and Phytosanitary, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - José Hélio Costa
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Universidade Federal do Ceará, Fortaleza, CE, Brazil
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Jurandi Gonçalves de Oliveira
- Plant Genetic Breeding Laboratory, Center for Agricultural Sciences and Technologies, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| |
Collapse
|
173
|
Zhang C, Li Y, Yu Z, Wang G, Liu X, Liu J, Liu J, Zhang X, Yin K, Jin J. Co-elevation of atmospheric [CO 2] and temperature alters photosynthetic capacity and instantaneous water use efficiency in rice cultivars in a cold-temperate region. FRONTIERS IN PLANT SCIENCE 2022; 13:1037720. [PMID: 36507439 PMCID: PMC9727307 DOI: 10.3389/fpls.2022.1037720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Crop photosynthetic capacity in response to climate change likely constrains crop productivity and adaptability to changing environments, which requests the investigation on the dynamics of photosynthetic parameters over growth season among varieties, especially in cold-temperate regions. Three Japonica rice cultivars i.e., Shoubaimao (SH), Hejiang 19 (HJ); Longjing 31, (LJ). were planted under the control, e[CO2] (700 μmol mol-1), warming (2°C above the air temperature) and the co-elevation of [CO2] and temperature in open-top chambers (OTC). The objective of this study is to examine the rice photosynthetic parameters, water use efficiency (WUE) and yield formation in responses to the co-elevation of [CO2] and temperature which is the main predicted features of future climate. e[CO2] significantly increased An of SH, HJ and LJ by 37%, 39% and 23% in comparison to 34%, 34% and 27% under elevated [CO2] plus warming, respectively. However, An had a weak response to warming for three cultivars. [CO2] and temperature co-elevation significantly decreased the stomatal conductance, resulting in a significant increase of the WUE. e[CO2] significantly increased Vc, max , Jmax and Jmax /Vc, max . e[CO2] significantly increased grain yield and grain number of all cultivars. The positive effect of co-elevation of [CO2] and temperature on grain yield was less than e[CO2]. Warming is likely to partially offset the increased photosynthetic rate caused by e[CO2]. The [CO2] and temperature co-elevation may be favorable to rice crop with increasing the photosynthetic ability of rice crop and improving water use efficiency. The present study provided evidence that the rice genotypic difference in photosynthetic potential under [CO2] and temperature co-elevation. Therefore, it is crucial to explore a broader range of phenotypes and cultivars to be applied to climate change response research, advancing the knowledge that climate change impacts rice crop under the cold-temperate climate region.
Collapse
Affiliation(s)
- Chunyu Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Yansheng Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Zhenhua Yu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Guanghua Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Xiaobing Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Junjie Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Judong Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Xingmei Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Kuide Yin
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jian Jin
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Centre for AgriBioscience, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
174
|
Solarte ME, Solarte Erazo Y, Ramírez Cupacán E, Enríquez Paz C, Melgarejo LM, Lasso E, Flexas J, Gulias J. Photosynthetic Traits of Páramo Plants Subjected to Short-Term Warming in OTC Chambers. PLANTS (BASEL, SWITZERLAND) 2022; 11:3110. [PMID: 36432839 PMCID: PMC9695496 DOI: 10.3390/plants11223110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Global warming and changes in land use are some of the main threats to high mountain species. Both can interact in ways not yet assessed. In this study, we evaluated the photosynthetic responses of six common páramo species within a warming experiment using open-top chambers (OTC) in conserved páramo areas with different land use histories. We did not find significant differences in the photochemical performance of the species as measured through Fv/Fm, ETR, and NPQ in response to passive warming, indicating that warmed plants are not stressed. However, NPQ values were higher in recovering areas, especially in the driest and warmest months. Leaf transpiration, stomatal conductance, and Ci were not affected by the OTC or the land use history. The photosynthetic capacity, maximum photosynthetic capacity, and carboxylation rate of RuBisCO increased in response to warming but only in the area with no anthropogenic intervention. These results suggest that species will respond differently to warming depending on the history of páramo use, and therefore not all páramo communities will respond equally to climate change. In disturbed sites with altered soil conditions, plants could have a lower breadth of physiological response to warming.
Collapse
Affiliation(s)
- María Elena Solarte
- Laboratorio de Ecofisiología Vegetal, Grupo de Investigación Biología de Páramos y Ecosistemas Andinos, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Nariño, Pasto 52001, Colombia
| | - Yisela Solarte Erazo
- Laboratorio de Ecofisiología Vegetal, Grupo de Investigación Biología de Páramos y Ecosistemas Andinos, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Nariño, Pasto 52001, Colombia
| | - Elizabeth Ramírez Cupacán
- Laboratorio de Ecofisiología Vegetal, Grupo de Investigación Biología de Páramos y Ecosistemas Andinos, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Nariño, Pasto 52001, Colombia
| | - Camila Enríquez Paz
- Laboratorio de Ecofisiología Vegetal, Grupo de Investigación Biología de Páramos y Ecosistemas Andinos, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Nariño, Pasto 52001, Colombia
| | - Luz Marina Melgarejo
- Laboratorio de Fisiología y Bioquímica Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Bogotá, Bogota 111321, Colombia
| | - Eloisa Lasso
- Grupo de Ecología y Fisiología Vegetal EcoFiv, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogota 111711, Colombia
| | - Jaume Flexas
- Grupo de Investigación en Biología Vegetal en Condiciones Mediterráneas, Departamento de Biología, Universitat de Les Illes Balears (UIB), 07122 Palma, Spain
| | - Javier Gulias
- Grupo de Investigación en Biología Vegetal en Condiciones Mediterráneas, Departamento de Biología, Universitat de Les Illes Balears (UIB), 07122 Palma, Spain
| |
Collapse
|
175
|
Jiang Y, Wang Z, Du H, Dong R, Yuan Y, Hua J. Assessment of functional relevance of genes associated with local temperature variables in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2022; 45:3290-3304. [PMID: 35943206 DOI: 10.1111/pce.14417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
How likely genetic variations associated with environment identified in silico from genome wide association study are functionally relevant to environmental adaptation has been largely unexplored experimentally. Here we analyzed top 29 genes containing polymorphisms associated with local temperature variation (minimum, mean, maximum) among 1129 natural accessions of Arabidopsis thaliana. Their loss-of-function mutants were assessed for growth and stress tolerance at five temperatures. Twenty genes were found to affect growth or tolerance at one or more of these temperatures. Significantly, genes associated with maximum temperature more likely have a detect a function at higher temperature, while genes associated with minimum temperature more likely have a function at lower temperature. In addition, gene variants are distributed more frequently at geographic locations where they apparently offer an enhanced growth or tolerance for five genes tested. Furthermore, variations in a large proportion of the in silico identified genes associated with minimum or mean-temperatures exhibited a significant association with growth phenotypes experimentally assessed at low temperature for a small set of natural accessions. This study shows a functional relevance of gene variants associated with environmental variables and supports the feasibility of the use of local temperature factors in investigating the genetic basis of temperature adaptation.
Collapse
Affiliation(s)
- Yuan Jiang
- Jilin Engineering Research Center of Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Zhixue Wang
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Hui Du
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Runlong Dong
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Yaping Yuan
- Jilin Engineering Research Center of Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
| | - Jian Hua
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
176
|
AbdElgawad H, Sheteiwy MS, Saleh AM, Mohammed AE, Alotaibi MO, Beemster GTS, Madany MMY, van Dijk JR. Elevated CO 2 differentially mitigates chromium (VI) toxicity in two rice cultivars by modulating mineral homeostasis and improving redox status. CHEMOSPHERE 2022; 307:135880. [PMID: 35964713 DOI: 10.1016/j.chemosphere.2022.135880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/05/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Chromium (Cr) contamination reduces crop productivity worldwide. On the other hand, the expected increase in the future CO2 levels (eCO2) would improve plant growth under diverse growth conditions. However, the synergetic effect of eCO2 has not been investigated at both physiological and biochemical levels in Cr-contaminated soil. This study aims to analyze the mitigating effect of eCO2 on Cr VI phytotoxicity in two rice cultivars (Giza 181 and Sakha 106). Plants are exposed to different Cr concentrations (0, 200 and 400 mg Cr/kg Soil) at ambient (aCO2) and eCO2 (410 and 620 ppm, respectively). Unlike the stress parameters (MDA, H2O2 and protein oxidation), growth and photosynthetic reactions significantly dropped with increasing Cr concentration. However, in eCO2 conditions, plants were able to mitigate the Cr stress by inducing antioxidants as well as higher concentrations of phytochelatins to detoxify Cr. Notably, the expression levels of the genes involved in mineral nutrition i.e., OsNRAMP1, OsRT1, OsHMA3, OsLCT1 and iron chelate reductase were upregulated in Cr-stressed Giza 181 plants grown under eCO2. Mainly in Sakha 106, eCO2 induced ascorbate-glutathione (ASC/GSH)-mediated antioxidative defense system. The present study brings the first ever comprehensive assessment of how future eCO2 differentially mitigated Cr toxicity in rice.
Collapse
Affiliation(s)
- Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium; Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Mohamed S Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt.
| | - Ahmed M Saleh
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Afrah E Mohammed
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| | - Modhi O Alotaibi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Gerrit T S Beemster
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Mahmoud M Y Madany
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Jesper R van Dijk
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium; Geobiology, Department of Biology, University of Antwerp, Antwerp, Universiteitsplein 1, Wilrijk, B-2610, Belgium
| |
Collapse
|
177
|
Phillips AL, Scafaro AP, Atwell BJ. Photosynthetic traits of Australian wild rice (Oryza australiensis) confer tolerance to extreme daytime temperatures. PLANT MOLECULAR BIOLOGY 2022; 110:347-363. [PMID: 34997897 PMCID: PMC9646608 DOI: 10.1007/s11103-021-01210-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/27/2021] [Indexed: 05/08/2023]
Abstract
A wild relative of rice from the Australian savannah was compared with cultivated rice, revealing thermotolerance in growth and photosynthetic processes and a more robust carbon economy in extreme heat. Above ~ 32 °C, impaired photosynthesis compromises the productivity of rice. We compared leaf tissues from heat-tolerant wild rice (Oryza australiensis) with temperate-adapted O. sativa after sustained exposure to heat, as well as diurnal heat shock. Leaf elongation and shoot biomass in O. australiensis were unimpaired at 45 °C, and soluble sugar concentrations trebled during 10 h of a 45 °C shock treatment. By contrast, 45 °C slowed growth strongly in O. sativa. Chloroplastic CO2 concentrations eliminated CO2 supply to chloroplasts as the basis of differential heat tolerance. This directed our attention to carboxylation and the abundance of the heat-sensitive chaperone Rubisco activase (Rca) in each species. Surprisingly, O. australiensis leaves at 45 °C had 50% less Rca per unit Rubisco, even though CO2 assimilation was faster than at 30 °C. By contrast, Rca per unit Rubisco doubled in O. sativa at 45 °C while CO2 assimilation was slower, reflecting its inferior Rca thermostability. Plants grown at 45 °C were simultaneously exposed to 700 ppm CO2 to enhance the CO2 supply to Rubisco. Growth at 45 °C responded to CO2 enrichment in O. australiensis but not O. sativa, reflecting more robust carboxylation capacity and thermal tolerance in the wild rice relative.
Collapse
Affiliation(s)
- Aaron L Phillips
- Waite Research Institute and School of Agriculture, Food, and Wine, University of Adelaide, Adelaide, SA, Australia
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food, and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Andrew P Scafaro
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Brian J Atwell
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
178
|
Adler L, Díaz-Ramos A, Mao Y, Pukacz KR, Fei C, McCormick AJ. New horizons for building pyrenoid-based CO2-concentrating mechanisms in plants to improve yields. PLANT PHYSIOLOGY 2022; 190:1609-1627. [PMID: 35961043 PMCID: PMC9614477 DOI: 10.1093/plphys/kiac373] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/06/2022] [Indexed: 05/06/2023]
Abstract
Many photosynthetic species have evolved CO2-concentrating mechanisms (CCMs) to improve the efficiency of CO2 assimilation by Rubisco and reduce the negative impacts of photorespiration. However, the majority of plants (i.e. C3 plants) lack an active CCM. Thus, engineering a functional heterologous CCM into important C3 crops, such as rice (Oryza sativa) and wheat (Triticum aestivum), has become a key strategic ambition to enhance yield potential. Here, we review recent advances in our understanding of the pyrenoid-based CCM in the model green alga Chlamydomonas reinhardtii and engineering progress in C3 plants. We also discuss recent modeling work that has provided insights into the potential advantages of Rubisco condensation within the pyrenoid and the energetic costs of the Chlamydomonas CCM, which, together, will help to better guide future engineering approaches. Key findings include the potential benefits of Rubisco condensation for carboxylation efficiency and the need for a diffusional barrier around the pyrenoid matrix. We discuss a minimal set of components for the CCM to function and that active bicarbonate import into the chloroplast stroma may not be necessary for a functional pyrenoid-based CCM in planta. Thus, the roadmap for building a pyrenoid-based CCM into plant chloroplasts to enhance the efficiency of photosynthesis now appears clearer with new challenges and opportunities.
Collapse
Affiliation(s)
- Liat Adler
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Aranzazú Díaz-Ramos
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Yuwei Mao
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Krzysztof Robin Pukacz
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Chenyi Fei
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Alistair J McCormick
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|
179
|
Javaid MM, Florentine S, Mahmood A, Wasaya A, Javed T, Sattar A, Sarwar N, Kalaji HM, Ahmad HB, Worbel J, Ahmed MAA, Telesiński A, Mojski J. Interactive effect of elevated CO 2 and drought on physiological traits of Datura stramonium. FRONTIERS IN PLANT SCIENCE 2022; 13:929378. [PMID: 36388510 PMCID: PMC9644026 DOI: 10.3389/fpls.2022.929378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Rising atmospheric CO2 concentrations are known to influence the response of many plants under drought. This paper aimed to measure the leaf gas exchange, water use efficiency, carboxylation efficiency, and photosystem II (PS II) activity of Datura stramonium under progressive drought conditions, along with ambient conditions of 400 ppm (aCO2) and elevated conditions of 700 ppm (eCO2). Plants of D. stramonium were grown at 400 ppm and 700 ppm under 100 and 60% field capacity in a laboratory growth chamber. For 10 days at two-day intervals, photosynthesis rate, stomatal conductance, transpiration rate, intercellular CO2 concentration, water use efficiency, intrinsic water use efficiency, instantaneous carboxylation efficiency, PSII activity, electron transport rate, and photochemical quenching were measured. While drought stress had generally negative effects on the aforementioned physiological traits of D. stramonium, it was found that eCO2 concentration mitigated the adverse effects of drought and most of the physiological parameters were sustained with increasing drought duration when compared to that with aCO2. D. stramonium, which was grown under drought conditions, was re-watered on day 8 and indicated a partial recovery in all the parameters except maximum fluorescence, with this recovery being higher with eCO2 compared to aCO2. These results suggest that elevated CO2 mitigates the adverse growth effects of drought, thereby enhancing the adaptive mechanism of this weed by improving its water use efficiency. It is concluded that this weed has the potential to take advantage of climate change by increasing its competitiveness with other plants in drought-prone areas, suggesting that it could expand into new localities.
Collapse
Affiliation(s)
| | - Singarayer Florentine
- Future Regions Research Centre, Federation University Australia, Mount Helen, VIC, Australia
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Allah Wasaya
- College of Agriculture, BZU, Bahadur Sub Campus, Layyah, Pakistan
| | - Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Abdul Sattar
- College of Agriculture, BZU, Bahadur Sub Campus, Layyah, Pakistan
| | - Naeem Sarwar
- Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, Warsaw, Poland
- Institute of Technology and Life Sciences, National Research Institute, Raszyn, Poland
| | - Hafiz Bashir Ahmad
- Department of Forestry, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Jacek Worbel
- Department of Bioenegineering, West Pomerania, University of Technology Szczecin, Szczecin, Poland
| | - Mohammed A. A. Ahmed
- Plant Production Department (Horticulture-Medicinal and Aromatic Plants), Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Arkadiusz Telesiński
- Department of Bioenegineering, West Pomerania, University of Technology Szczecin, Szczecin, Poland
| | - Jacek Mojski
- Twój Swiat Jacek Mojski, Lukow, Poland
- Fundacja Zielona Infrastruktura, Lukow, Poland
| |
Collapse
|
180
|
Vinci G, Marques I, Rodrigues AP, Martins S, Leitão AE, Semedo MC, Silva MJ, Lidon FC, DaMatta FM, Ribeiro-Barros AI, Ramalho JC. Protective Responses at the Biochemical and Molecular Level Differ between a Coffea arabica L. Hybrid and Its Parental Genotypes to Supra-Optimal Temperatures and Elevated Air [CO 2]. PLANTS (BASEL, SWITZERLAND) 2022; 11:2702. [PMID: 36297726 PMCID: PMC9610391 DOI: 10.3390/plants11202702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Climate changes with global warming associated with rising atmospheric [CO2] can strongly impact crop performance, including coffee, which is one of the most world's traded agricultural commodities. Therefore, it is of utmost importance to understand the mechanisms of heat tolerance and the potential role of elevated air CO2 (eCO2) in the coffee plant response, particularly regarding the antioxidant and other protective mechanisms, which are crucial for coffee plant acclimation. For that, plants of Coffea arabica cv. Geisha 3, cv. Marsellesa and their hybrid (Geisha 3 × Marsellesa) were grown for 2 years at 25/20 °C (day/night), under 400 (ambient CO2, aCO2) or 700 µL (elevated CO2, eCO2) CO2 L-1, and then gradually submitted to a temperature increase up to 42/30 °C, followed by recovery periods of 4 (Rec4) and 14 days (Rec14). Heat (37/28 °C and/or 42/30 °C) was the major driver of the response of the studied protective molecules and associated genes in all genotypes. That was the case for carotenoids (mostly neoxanthin and lutein), but the maximal (α + β) carotenes pool was found at 37/28 °C only in Marsellesa. All genes (except VDE) encoding for antioxidative enzymes (catalase, CAT; superoxide dismutases, CuSODs; ascorbate peroxidases, APX) or other protective proteins (HSP70, ELIP, Chape20, Chape60) were strongly up-regulated at 37/28 °C, and, especially, at 42/30 °C, in all genotypes, but with maximal transcription in Hybrid plants. Accordingly, heat greatly stimulated the activity of APX and CAT (all genotypes) and glutathione reductase (Geisha3, Hybrid) but not of SOD. Notably, CAT activity increased even at 42/30 °C, concomitantly with a strongly declined APX activity. Therefore, increased thermotolerance might arise through the reinforcement of some ROS-scavenging enzymes and other protective molecules (HSP70, ELIP, Chape20, Chape60). Plants showed low responsiveness to single eCO2 under unstressed conditions, while heat promoted changes in aCO2 plants. Only eCO2 Marsellesa plants showed greater contents of lutein, the pool of the xanthophyll cycle components (V + A + Z), and β-carotene, compared to aCO2 plants at 42/30 °C. This, together with a lower CAT activity, suggests a lower presence of H2O2, likely also associated with the higher photochemical use of energy under eCO2. An incomplete heat stress recovery seemed evident, especially in aCO2 plants, as judged by the maintenance of the greater expression of all genes in all genotypes and increased levels of zeaxanthin (Marsellesa and Hybrid) relative to their initial controls. Altogether, heat was the main response driver of the addressed protective molecules and genes, whereas eCO2 usually attenuated the heat response and promoted a better recovery. Hybrid plants showed stronger gene expression responses, especially at the highest temperature, when compared to their parental genotypes, but altogether, Marsellesa showed a greater acclimation potential. The reinforcement of antioxidative and other protective molecules are, therefore, useful biomarkers to be included in breeding and selection programs to obtain coffee genotypes to thrive under global warming conditions, thus contributing to improved crop sustainability.
Collapse
Affiliation(s)
- Gabriella Vinci
- Department of Biological, Geological and Environmental Sciences (BiGeA), Alma Mater Studiorum, The University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras, 2784-505 Lisboa, Portugal
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Isabel Marques
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras, 2784-505 Lisboa, Portugal
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Ana P. Rodrigues
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras, 2784-505 Lisboa, Portugal
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Sónia Martins
- Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516 Caparica, Portugal
| | - António E. Leitão
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras, 2784-505 Lisboa, Portugal
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516 Caparica, Portugal
| | - Magda C. Semedo
- Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516 Caparica, Portugal
| | - Maria J. Silva
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras, 2784-505 Lisboa, Portugal
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516 Caparica, Portugal
| | - Fernando C. Lidon
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516 Caparica, Portugal
| | - Fábio M. DaMatta
- Departamento de Biologia Vegetal, Universidade Federal Viçosa (UFV), Viçosa 36570-900, MG, Brazil
| | - Ana I. Ribeiro-Barros
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras, 2784-505 Lisboa, Portugal
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516 Caparica, Portugal
| | - José C. Ramalho
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras, 2784-505 Lisboa, Portugal
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
181
|
Wilschut RA, De Long JR, Geisen S, Hannula SE, Quist CW, Snoek B, Steinauer K, Wubs ERJ, Yang Q, Thakur MP. Combined effects of warming and drought on plant biomass depend on plant woodiness and community type: a meta-analysis. Proc Biol Sci 2022; 289:20221178. [PMID: 36196543 PMCID: PMC9533002 DOI: 10.1098/rspb.2022.1178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Global warming and precipitation extremes (drought or increased precipitation) strongly affect plant primary production and thereby terrestrial ecosystem functioning. Recent syntheses show that combined effects of warming and precipitation extremes on plant biomass are generally additive, while individual experiments often show interactive effects, indicating that combined effects are more negative or positive than expected based on the effects of single factors. Here, we examined whether variation in biomass responses to single and combined effects of warming and precipitation extremes can be explained by plant growth form and community type. We performed a meta-analysis of 37 studies, which experimentally crossed warming and precipitation treatments, to test whether biomass responses to combined effects of warming and precipitation extremes depended on plant woodiness and community type (monocultures versus mixtures). Our results confirmed that the effects of warming and precipitation extremes were overall additive. However, combined effects of warming and drought on above- and belowground biomass were less negative in woody- than in herbaceous plant systems and more negative in plant mixtures than in monocultures. We further show that drought effects on plant biomass were more negative in greenhouse- than in field studies, suggesting that greenhouse experiments may overstate drought effects in the field. Our results highlight the importance of plant system characteristics to better understand plant responses to climate change.
Collapse
Affiliation(s)
- Rutger A Wilschut
- Ecology, Department of Biology, University of Konstanz, Universitätsstraße 10, Konstanz 78464, Germany.,Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 6708 PB, The Netherlands
| | - Jonathan R De Long
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 6708 PB, The Netherlands.,Louis Bolk Institute, Kosterijland 3-5, Bunnik 3981 AJ, The Netherlands
| | - Stefan Geisen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 6708 PB, The Netherlands.,Laboratory of Nematology, Wageningen University, Wageningen 6708 PB, The Netherlands
| | - S Emilia Hannula
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 6708 PB, The Netherlands.,Institute of Environmental Sciences, Leiden University, Einsteinweg 2, Leiden 2333CC, The Netherlands
| | - Casper W Quist
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 6708 PB, The Netherlands.,Biosystematics Group, Wageningen University, Wageningen 6708 PB, The Netherlands
| | - Basten Snoek
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 6708 PB, The Netherlands.,Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Katja Steinauer
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 6708 PB, The Netherlands
| | - E R Jasper Wubs
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 6708 PB, The Netherlands.,Sustainable Agroecosystems Group, Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 2, Zürich 8092, Switzerland
| | - Qiang Yang
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 6708 PB, The Netherlands.,State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Madhav P Thakur
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 6708 PB, The Netherlands.,Institute of Ecology and Evolution and Oeschger Centre for Climate Change Research, University of Bern, Bern 3012, Switzerland
| |
Collapse
|
182
|
Quan J, Zheng W, Tan J, Li Z, Wu M, Hong SB, Zhao Y, Zhu Z, Zang Y. Glutamic Acid and Poly-γ-glutamic Acid Enhanced the Heat Resistance of Chinese Cabbage ( Brassica rapa L. ssp. pekinensis) by Improving Carotenoid Biosynthesis, Photosynthesis, and ROS Signaling. Int J Mol Sci 2022; 23:11671. [PMID: 36232971 PMCID: PMC9570168 DOI: 10.3390/ijms231911671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Heat stress is one of the most common agrometeorological risks in crop production in the middle and lower reaches of the Yangtze River in China. This study aimed to investigate whether glutamic acid (Glu) or poly-γ-glutamic acid (γ-PGA) biostimulants can improve the thermotolerance of a cool-season Chinese cabbage (Brassica rapa L. ssp. pekinensis) crop. Priming with Glu (2.0 mM) or γ-PGA (20 mg·L-1) was conducted at the third leaf stage by applying as daily foliar sprays for 5 days before 5 days of heat stress (45 °C in 16-h light/35 °C in 8-h dark). Coupled with morpho-physiological and biochemical analyses, transcriptomes of Glu or γ-PGA-primed Chinese cabbage under heat stress were examined by RNA-seq analysis. The results showed that the thermotolerance conferred by Glu and γ-PGA priming was associated with the increased parameters of vegetative growth, gas exchange, and chlorophyll fluorescence. Compared with the control, the dry weights of plants treated with Glu and γ-PGA increased by 51.52% and 39.39%, respectively. Glu and γ-PGA application also significantly increased the contents of total chlorophyll by 42.21% and 23.12%, and carotenoid by 32.00% and 24.00%, respectively. In addition, Glu- and γ-PGA-primed plants markedly inhibited the levels of malondialdehyde, electrolyte leakage, and super-oxide anion radical, which was accompanied by enhanced activity levels of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and peroxidase (POD). Enrichment analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) categories within the differentially expressed genes (DEGs) functional clusters of RNA-seq data indicated that the expression levels of the genes for DNA replication, DNA repair system, linoleic acid metabolism, cysteine and methionine metabolism, glutathione metabolism, purine and pyrimidine metabolism, carotenoid biosynthesis, and plant-pathogen interaction were commonly up-regulated by both Glu and γ-PGA priming. Glu treatment enhanced the expression levels of the genes involved in aliphatic glucosinolate and 2-oxocarboxylic acid, while γ-PGA treatment activated carotenoid cleavage reaction to synthesize abscisic acid. Taken together, both Glu and γ-PGA have great potential for the preadaptation of Chinese cabbage seedlings to heat stress, with Glu being more effective than γ-PGA.
Collapse
Affiliation(s)
- Jin Quan
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Weiwei Zheng
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Jingru Tan
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Zewei Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Meifang Wu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Seung-Beom Hong
- Department of Biotechnology, University of Houston Clear Lake, Houston, TX 77058-1098, USA
| | - Yanting Zhao
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhujun Zhu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yunxiang Zang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
183
|
Zheng T, Yu Y, Kang H. Short-term elevated temperature and CO 2 promote photosynthetic induction in the C 3 plant Glycine max, but not in the C 4 plant Amaranthus tricolor. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:995-1007. [PMID: 35908799 DOI: 10.1071/fp21363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
The continuous increases of atmospheric temperature and CO2 concentration will impact global photosynthesis. However, there are few studies considering the interaction of elevated temperature (eT) and elevated CO2 (eCO2 ) on dynamic photosynthesis, particularly for C4 species. We examine dynamic photosynthesis under four different temperature and [CO2 ] treatments: (1) 400ppm×28°C (CT); (2) 400ppm×33°C (CT+); (3) 800ppm×28°C (C+T); and (4) 800ppm×33°C (C+T+). In Glycine max L., the time required to reach 50% (T 50%A ) and 90% (T 90%A ) of full photosynthetic induction was smaller under the CT+, C+T, and C+T+ treatments than those under the CT treatment. In Amaranthus tricolor L., however, neither T 50%A nor T 90%A was not significantly affected by eT or eCO2 . In comparison with the CT treatment, the achieved carbon gain was increased by 58.3% (CT+), 112% (C+T), and 136.6% (C+T+) in G. max and was increased by 17.1% (CT+), 2.6% (C+T) and 56.9% (C+T+) in A. tricolor . The increases of achieved carbon gain in G. max were attributable to both improved photosynthetic induction efficiency (IE) and enhanced steady-state photosynthesis, whereas those in A. tricolor were attributable to enhanced steady-state photosynthesis.
Collapse
Affiliation(s)
- Tianyu Zheng
- Department of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Yuan Yu
- Department of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Huixing Kang
- Department of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| |
Collapse
|
184
|
Lim YK, Kim JH, Ro H, Baek SH. Thermotaxic diel vertical migration of the harmful dinoflagellate Cochlodinium (Margalefidinium) polykrikoides: Combined field and laboratory studies. HARMFUL ALGAE 2022; 118:102315. [PMID: 36195428 DOI: 10.1016/j.hal.2022.102315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/25/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
The harmful dinoflagellate Cochlodinium polykrikoides, a species that causes mass mortality of farmed fish, uses diel vertical migration (DVM) as an ecological strategy. In summer 2018, a bloom of C. polykrikoides occurred on the southern coast of Korea when the surface water temperature exceeded 29 °C, as a result of a marine heatwave. To understand the effect of high temperature conditions on the DVM of C. polykrikoides, vertical profiles of environmental variables and the occurrence of the dinoflagellate were investigated through a 48 h field survey. In addition, a thermally stratified environment (6-12 °C difference between the surface and bottom layers) was established in a laboratory study to investigate the effect of temperature difference between water layers on the DVM of C. polykrikoides. In the field, most of the C. polykrikoides population was at a depth of 3-6 m during the day, where the water temperature was significantly lower (p < 0.01; Chi square = 57.98; Kruskal-Wallis test) than in the surface layer (0 m), and only the water temperature at 0 m was not correlated with weighted mean depth of C. polykrikoides, suggesting the usage of DVM to avoid high temperature stress. According to our field and laboratory results, there was a trend of greater DVM velocity by thermotaxis when moving from "unfavorable" water temperature (30 °C hot and 12 °C cold) to "favorable" water temperature for growth (optimal 24 °C) of C. polykrikoides. Our findings suggest that thermotaxic DVM is an important ecological strategy used by C. polykrikoides to optimize environmental conditions for growth through vertical positioning and changing migration velocity.
Collapse
Affiliation(s)
- Young Kyun Lim
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jin Ho Kim
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Earth and Marine Science, College of Ocean Sciences, Jeju University, Jeju 63243, Republic of Korea
| | - Hyejoo Ro
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Seung Ho Baek
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
185
|
Didion‐Gency M, Gessler A, Buchmann N, Gisler J, Schaub M, Grossiord C. Impact of warmer and drier conditions on tree photosynthetic properties and the role of species interactions. THE NEW PHYTOLOGIST 2022; 236:547-560. [PMID: 35842790 PMCID: PMC9804646 DOI: 10.1111/nph.18384] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/07/2022] [Indexed: 06/01/2023]
Abstract
Increased temperature and prolonged soil moisture reduction have distinct impacts on tree photosynthetic properties. Yet, our knowledge of their combined effect is limited. Moreover, how species interactions alter photosynthetic responses to warming and drought remains unclear. Using mesocosms, we studied how photosynthetic properties of European beech and downy oak were impacted by multi-year warming and soil moisture reduction alone or combined, and how species interactions (intra- vs inter-specific interactions) modulated these effects. Warming of +5°C enhanced photosynthetic properties in oak but not beech, while moisture reduction decreased them in both species. Combined warming and moisture reduction reduced photosynthetic properties for both species, but no exacerbated effects were observed. Oak was less impacted by combined warming and limited moisture when interacting with beech than in intra-specific stands. For beech, species interactions had no impact on the photosynthetic responses to warming and moisture reduction, alone or combined. Warming had either no or beneficial effects on the photosynthetic properties, while moisture reduction and their combined effects strongly reduced photosynthetic responses. However, inter-specific interactions mitigated the adverse impacts of combined warming and drought in oak, thereby highlighting the need to deepen our understanding of the role of species interactions under climate change.
Collapse
Affiliation(s)
- Margaux Didion‐Gency
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape WSLCH‐8903BirmensdorfSwitzerland
| | - Arthur Gessler
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape WSLCH‐8903BirmensdorfSwitzerland
- Institute of Terrestrial Ecosystems, ETH ZurichCH‐8092ZurichSwitzerland
| | - Nina Buchmann
- Institute of Agricultural Sciences, ETH ZurichCH‐8092ZurichSwitzerland
| | - Jonas Gisler
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape WSLCH‐8903BirmensdorfSwitzerland
| | - Marcus Schaub
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape WSLCH‐8903BirmensdorfSwitzerland
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental EngineeringEPFLCH‐1015LausanneSwitzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSLCH‐1015LausanneSwitzerland
| |
Collapse
|
186
|
Russo SE, Ledder G, Muller EB, Nisbet RM. Dynamic Energy Budget models: fertile ground for understanding resource allocation in plants in a changing world. CONSERVATION PHYSIOLOGY 2022; 10:coac061. [PMID: 36128259 PMCID: PMC9477497 DOI: 10.1093/conphys/coac061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/08/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Climate change is having dramatic effects on the diversity and distribution of species. Many of these effects are mediated by how an organism's physiological patterns of resource allocation translate into fitness through effects on growth, survival and reproduction. Empirically, resource allocation is challenging to measure directly and so has often been approached using mathematical models, such as Dynamic Energy Budget (DEB) models. The fact that all plants require a very similar set of exogenous resources, namely light, water and nutrients, integrates well with the DEB framework in which a small number of variables and processes linked through pathways represent an organism's state as it changes through time. Most DEB theory has been developed in reference to animals and microorganisms. However, terrestrial vascular plants differ from these organisms in fundamental ways that make resource allocation, and the trade-offs and feedbacks arising from it, particularly fundamental to their life histories, but also challenging to represent using existing DEB theory. Here, we describe key features of the anatomy, morphology, physiology, biochemistry, and ecology of terrestrial vascular plants that should be considered in the development of a generic DEB model for plants. We then describe possible approaches to doing so using existing DEB theory and point out features that may require significant development for DEB theory to accommodate them. We end by presenting a generic DEB model for plants that accounts for many of these key features and describing gaps that would need to be addressed for DEB theory to predict the responses of plants to climate change. DEB models offer a powerful and generalizable framework for modelling resource allocation in terrestrial vascular plants, and our review contributes a framework for expansion and development of DEB theory to address how plants respond to anthropogenic change.
Collapse
Affiliation(s)
- Sabrina E Russo
- School of Biological Sciences, University of Nebraska, 1104 T Street Lincoln, Nebraska 68588-0118, USA
- Center for Plant Science Innovation, University of Nebraska, 1901 Vine Street, N300 Beadle Center, Lincoln, Nebraska 68588-0660, USA
| | - Glenn Ledder
- Department of Mathematics, University of Nebraska, 203 Avery Hall, Lincoln, Nebraska 68588-0130, USA
| | - Erik B Muller
- Marine Science Institute, University of California, Santa Barbara, California 93106, USA
- Institut für Biologische Analytik und Consulting IBACON GmbH, Arheilger Weg 17 Roß dorf, Hesse D-64380, Germany
| | - Roger M Nisbet
- Marine Science Institute, University of California, Santa Barbara, California 93106, USA
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
187
|
Shi Z, Han X, Wang G, Qiu J, Zhou LJ, Chen S, Fang W, Chen F, Jiang J. Transcriptome analysis reveals chrysanthemum flower discoloration under high-temperature stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1003635. [PMID: 36186082 PMCID: PMC9515547 DOI: 10.3389/fpls.2022.1003635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Temperature is an important environmental factor affecting plant anthocyanin synthesis. High temperatures are associated with decreased anthocyanin pigmentation in chrysanthemum. To reveal the effects of high temperature on anthocyanin biosynthesis in chrysanthemum, ray florets of the heat-sensitive cultivar "Nannong Ziyunying" (ZYY) were subjected to RNA sequencing. A total of 18,286 unigenes were differentially expressed between the control and treatment groups. Functional annotation and enrichment analyses of these unigenes revealed that the heat shock response and flavonoid pathways were significantly enriched, suggesting that the expression of these genes in response to high temperature is associated with the fading of chrysanthemum flower color. In addition, genes related to anthocyanin synthesis and heat shock response were differentially expressed under high-temperature stress. Finally, to further investigate the molecular mechanism of discoloration under high-temperature stress and facilitate the use of marker-assisted breeding for developing novel heat-tolerant cultivars, these results were used to mine candidate genes by analyzing changes in their transcription levels in chrysanthemum.
Collapse
|
188
|
Shanker AK, Gunnapaneni D, Bhanu D, Vanaja M, Lakshmi NJ, Yadav SK, Prabhakar M, Singh VK. Elevated CO 2 and Water Stress in Combination in Plants: Brothers in Arms or Partners in Crime? BIOLOGY 2022; 11:biology11091330. [PMID: 36138809 PMCID: PMC9495351 DOI: 10.3390/biology11091330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/17/2022] [Indexed: 04/30/2023]
Abstract
The changing dynamics in the climate are the primary and important determinants of agriculture productivity. The effects of this changing climate on overall productivity in agriculture can be understood when we study the effects of individual components contributing to the changing climate on plants and crops. Elevated CO2 (eCO2) and drought due to high variability in rainfall is one of the important manifestations of the changing climate. There is a considerable amount of literature that addresses climate effects on plant systems from molecules to ecosystems. Of particular interest is the effect of increased CO2 on plants in relation to drought and water stress. As it is known that one of the consistent effects of increased CO2 in the atmosphere is increased photosynthesis, especially in C3 plants, it will be interesting to know the effect of drought in relation to elevated CO2. The potential of elevated CO2 ameliorating the effects of water deficit stress is evident from literature, which suggests that these two agents are brothers in arms protecting the plant from stress rather than partners in crime, specifically for water deficit when in isolation. The possible mechanisms by which this occurs will be discussed in this minireview. Interpreting the effects of short-term and long-term exposure of plants to elevated CO2 in the context of ameliorating the negative impacts of drought will show us the possible ways by which there can be effective adaption to crops in the changing climate scenario.
Collapse
|
189
|
Roitsch T, Himanen K, Chawade A, Jaakola L, Nehe A, Alexandersson E. Functional phenomics for improved climate resilience in Nordic agriculture. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5111-5127. [PMID: 35727101 PMCID: PMC9440434 DOI: 10.1093/jxb/erac246] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/06/2022] [Indexed: 05/26/2023]
Abstract
The five Nordic countries span the most northern region for field cultivation in the world. This presents challenges per se, with short growing seasons, long days, and a need for frost tolerance. Climate change has additionally increased risks for micro-droughts and water logging, as well as pathogens and pests expanding northwards. Thus, Nordic agriculture demands crops that are adapted to the specific Nordic growth conditions and future climate scenarios. A focus on crop varieties and traits important to Nordic agriculture, including the unique resource of nutritious wild crops, can meet these needs. In fact, with a future longer growing season due to climate change, the region could contribute proportionally more to global agricultural production. This also applies to other northern regions, including the Arctic. To address current growth conditions, mitigate impacts of climate change, and meet market demands, the adaptive capacity of crops that both perform well in northern latitudes and are more climate resilient has to be increased, and better crop management systems need to be built. This requires functional phenomics approaches that integrate versatile high-throughput phenotyping, physiology, and bioinformatics. This review stresses key target traits, the opportunities of latitudinal studies, and infrastructure needs for phenotyping to support Nordic agriculture.
Collapse
Affiliation(s)
- Thomas Roitsch
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Department of Adaptive Biotechnologies, Global Change Research Institute, Czech Academy of Sciences, Brno, Czechia
| | - Kristiina Himanen
- National Plant Phenotyping Infrastructure, HiLIFE, University of Helsinki, Finland
- Organismal and Evolutionary Biology Research Program, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Laura Jaakola
- Climate laboratory Holt, Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, Norway
- NIBIO, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Ajit Nehe
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | | |
Collapse
|
190
|
Kohonen KM, Dewar R, Tramontana G, Mauranen A, Kolari P, Kooijmans LMJ, Papale D, Vesala T, Mammarella I. Intercomparison of methods to estimate gross primary production based on CO 2 and COS flux measurements. BIOGEOSCIENCES (ONLINE) 2022; 19:4067-4088. [PMID: 36171741 PMCID: PMC7613647 DOI: 10.5194/bg-19-4067-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Separating the components of ecosystem-scale carbon exchange is crucial in order to develop better models and future predictions of the terrestrial carbon cycle. However, there are several uncertainties and unknowns related to current photosynthesis estimates. In this study, we evaluate four different methods for estimating photosynthesis at a boreal forest at the ecosystem scale, of which two are based on carbon dioxide (CO2) flux measurements and two on carbonyl sulfide (COS) flux measurements. The CO2-based methods use traditional flux partitioning and artificial neural networks to separate the net CO2 flux into respiration and photosynthesis. The COS-based methods make use of a unique 5-year COS flux data set and involve two different approaches to determine the leaf-scale relative uptake ratio of COS and CO2 (LRU), of which one (LRUCAP) was developed in this study. LRUCAP was based on a previously tested stomatal optimization theory (CAP), while LRUPAR was based on an empirical relation to measured radiation. For the measurement period 2013-2017, the artificial neural network method gave a GPP estimate very close to that of traditional flux partitioning at all timescales. On average, the COS-based methods gave higher GPP estimates than the CO2-based estimates on daily (23% and 7% higher, using LRUPAR and LRUCAP, respectively) and monthly scales (20% and 3% higher), as well as a higher cumulative sum over 3 months in all years (on average 25% and 3% higher). LRUCAP was higher than LRU estimated from chamber measurements at high radiation, leading to underestimation of midday GPP relative to other GPP methods. In general, however, use of LRUCAP gave closer agreement with CO2-based estimates of GPP than use of LRUPAR. When extended to other sites, LRUCAP may be more robust than LRUPAR because it is based on a physiological model whose parameters can be estimated from simple measurements or obtained from the literature. In contrast, the empirical radiation relation in LRUPAR may be more site-specific. However, this requires further testing at other measurement sites.
Collapse
Affiliation(s)
- Kukka-Maaria Kohonen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Roderick Dewar
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Gianluca Tramontana
- Image Processing Laboratory (IPL), Parc Científic Universitat de València, Universitat de València, Paterna, Spain
- Terrasystem s.r.l, Viterbo, Italy
| | - Aleksanteri Mauranen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Pasi Kolari
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Linda M. J. Kooijmans
- Meteorology and Air Quality, Wageningen University and Research, Wageningen, the Netherlands
| | - Dario Papale
- DIBAF, Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy
- IAFES, Euro-Mediterranean Center for Climate Change (CMCC), Viterbo, Italy
| | - Timo Vesala
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Ivan Mammarella
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
191
|
Pierroz G. Shady deals: how Setaria viridis compensates for smaller bundle sheaths in low light. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1221-1222. [PMID: 36045544 DOI: 10.1111/tpj.15940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
|
192
|
Liu L, Hao L, Zhang Y, Zhou H, Ma B, Cheng Y, Tian Y, Chang Z, Zheng Y. The CO 2 fertilization effect on leaf photosynthesis of maize ( Zea mays L.) depends on growth temperatures with changes in leaf anatomy and soluble sugars. FRONTIERS IN PLANT SCIENCE 2022; 13:890928. [PMID: 36061776 PMCID: PMC9437643 DOI: 10.3389/fpls.2022.890928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Understanding the potential mechanisms and processes of leaf photosynthesis in response to elevated CO2 concentration ([CO2]) and temperature is critical for estimating the impacts of climatic change on the growth and yield in crops such as maize (Zea mays L.), which is a widely cultivated C4 crop all over the world. We examined the combined effect of elevated [CO2] and temperature on plant growth, leaf photosynthesis, stomatal traits, and biochemical compositions of maize with six environmental growth chambers controlling two CO2 levels (400 and 800 μmol mol-1) and three temperature regimes (25/19°C, 31/25°C, and 37/31°C). We found that leaf photosynthesis was significantly enhanced by increasing growth temperature from 25/19°C to 31/25°C independent of [CO2]. However, leaf photosynthesis drastically declined when the growth temperature was continually increased to 37/31°C at both ambient CO2 concentration (400 μmol mol-1, a[CO2]) and elevated CO2 concentration (800 μmol mol-1, e[CO2]). Meanwhile, we also found strong CO2 fertilization effect on maize plants grown at the highest temperature (37/31°C), as evidenced by the higher leaf photosynthesis at e[CO2] than that at a[CO2], although leaf photosynthesis was similar between a[CO2] and e[CO2] under the other two temperature regimes of 25/19°C and 31/25°C. Furthermore, we also found that e[CO2] resulted in an increase in leaf soluble sugar, which was positively related with leaf photosynthesis under the high temperature regime of 37/31°C (R 2 = 0.77). In addition, our results showed that e[CO2] substantially decreased leaf transpiration rates of maize plants, which might be partially attributed to the reduced stomatal openness as demonstrated by the declined stomatal width and stomatal area. These results suggest that the CO2 fertilization effect on plant growth and leaf photosynthesis of maize depends on growth temperatures through changing stomatal traits, leaf anatomy, and soluble sugar contents.
Collapse
Affiliation(s)
- Liang Liu
- School of Water Conservancy and Hydropower, Hebei University of Engineering, Handan, China
| | - Lihua Hao
- School of Water Conservancy and Hydropower, Hebei University of Engineering, Handan, China
| | - Yunxin Zhang
- School of Water Conservancy and Hydropower, Hebei University of Engineering, Handan, China
| | - Haoran Zhou
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Baoguo Ma
- School of Water Conservancy and Hydropower, Hebei University of Engineering, Handan, China
| | - Yao Cheng
- School of Water Conservancy and Hydropower, Hebei University of Engineering, Handan, China
| | - Yinshuai Tian
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Zhijie Chang
- School of Water Conservancy and Hydropower, Hebei University of Engineering, Handan, China
| | - Yunpu Zheng
- School of Water Conservancy and Hydropower, Hebei University of Engineering, Handan, China
| |
Collapse
|
193
|
Poggi GM, Aloisi I, Corneti S, Esposito E, Naldi M, Fiori J, Piana S, Ventura F. Climate change effects on bread wheat phenology and grain quality: A case study in the north of Italy. FRONTIERS IN PLANT SCIENCE 2022; 13:936991. [PMID: 36017264 PMCID: PMC9396297 DOI: 10.3389/fpls.2022.936991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Increasing temperatures, heat waves, and reduction of annual precipitation are all the expressions of climate change (CC), strongly affecting bread wheat (Triticum aestivum L.) grain yield in Southern Europe. Being temperature the major driving force of plants' phenological development, these variations also have effects on wheat phenology, with possible consequences on grain quality, and gluten protein accumulation. Here, through a case study in the Bolognese Plain (North of Italy), we assessed the effects of CC in the area, the impacts on bread wheat phenological development, and the consequences on grain gluten quality. The increasing trend in mean annual air temperature in the area since 1952 was significant, with a breakpoint identified in 1989, rising from 12.7 to 14.1°C, accompanied by the signals of increasing aridity, i.e., increase in water table depth. Bread wheat phenological development was compared in two 15-year periods before and after the breakpoint, i.e., 1952-1966 (past period), and 2006-2020 (present period), the latest characterized by aridity and increased temperatures. A significant shortening of the chronological time necessary to reach the main phenological phases was observed for the present period compared to the past period, finally shortening the whole life cycle. This reduction, as well as the higher temperature regime, affected gluten accumulation during the grain-filling process, as emerged analyzing gluten composition in grain samples of the same variety harvested in the area both before and after the breakpoint in temperature. In particular, the proportion of gluten polymers (i.e., gliadins, high and low molecular weight glutenins, and their ratio) showed a strong and significant correlation with cumulative growing degree days (CGDDs) accumulated during the grain filling. Higher CGDD values during the period, typical of CC in Southern Europe, accounting for higher temperature and faster grain filling, correlated with gliadins, high molecular weight glutenins, and their proportion with low molecular weight glutenins. In summary, herein reported, data might contribute to assessing the effects of CC on wheat phenology and quality, representing a tool for both predictive purposes and decision supporting systems for farmers, as well as can guide future breeding choices for varietal innovation.
Collapse
Affiliation(s)
- Giovanni Maria Poggi
- Department of Biological, Geological and Environmental Sciences (BiGeA), Alma Mater Studiorum—University of Bologna, Bologna, Italy
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Iris Aloisi
- Department of Biological, Geological and Environmental Sciences (BiGeA), Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Simona Corneti
- Department of Biological, Geological and Environmental Sciences (BiGeA), Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Erika Esposito
- Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Institute of Neurological Sciences of Bologna (ISNB), Bologna, Italy
| | - Marina Naldi
- Department of Pharmacy and Biotechnology (FaBit), Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Jessica Fiori
- Department of Chemistry “G. Ciamician”, Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Stefano Piana
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Francesca Ventura
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—University of Bologna, Bologna, Italy
| |
Collapse
|
194
|
Rehschuh R, Ruehr NK. Diverging responses of water and carbon relations during and after heat and hot drought stress in Pinus sylvestris. TREE PHYSIOLOGY 2022; 42:1532-1548. [PMID: 34740258 PMCID: PMC9366868 DOI: 10.1093/treephys/tpab141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Forests are increasingly affected by heatwaves, often co-occurring with drought, with consequences for water and carbon (C) cycling. However, our ability to project tree resilience to more intense hot droughts remains limited. Here, we used single tree chambers (n = 18) to investigate transpiration (E), net assimilation (Anet), root respiration (Rroot) and stem diameter change in Scots pine seedlings in a control treatment and during gradually intensifying heat or drought-heat stress (max. 42 °C), including recovery. Alongside this, we assessed indicators of stress impacts and recovery capacities. In the heat treatment, excessive leaf heating was mitigated via increased E, while under drought-heat, E ceased and leaf temperatures reached 46 °C. However, leaf electrolyte leakage was negligible, while light-adapted quantum yield of photosystem II (F'v/F'm) declined alongside Anet moderately in heat, but strongly in drought-heat seedlings, in which respiration exceeded C uptake. Drought-heat largely affected the hydraulic system as apparent in stem diameter shrinkage, declining relative needle water content (RWCNeedle) and water potential (ΨNeedle) reaching -2.7 MPa, alongside a 90% decline of leaf hydraulic conductance (KLeaf). Heat alone resulted in low functional impairment and all measured parameters recovered quickly. Contrary, following drought-heat, the recovery of KLeaf was incomplete and stem hydraulic conductivity (KS) was 25% lower than the control. However, F'v/F'm recovered and the tree net C balance reached control values 2 days post-stress, with stem increment rates accelerating during the second recovery week. This indicates a new equilibrium of C uptake and release in drought-heat seedlings independent of hydraulic impairment, which may slowly contribute to the repair of damaged tissues. In summary, Scots pine recovered rapidly following moderate heat stress, while combined with drought, hydraulic and thermal stress intensified, resulting in functional damage and slow recovery of hydraulic conductance. This incomplete hydraulic recovery could critically limit evaporative cooling capacities and C uptake under repeated heatwaves.
Collapse
Affiliation(s)
| | - Nadine K Ruehr
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research-Atmospheric Environmental Research (KIT/IMK-IFU), Kreuzeckbahnstraße 19, 82467 Garmisch-Partenkirchen, Germany
| |
Collapse
|
195
|
Frisk CA, Xistris-Songpanya G, Osborne M, Biswas Y, Melzer R, Yearsley JM. Phenotypic variation from waterlogging in multiple perennial ryegrass varieties under climate change conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:954478. [PMID: 35991411 PMCID: PMC9387306 DOI: 10.3389/fpls.2022.954478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Identifying how various components of climate change will influence ecosystems and vegetation subsistence will be fundamental to mitigate negative effects. Climate change-induced waterlogging is understudied in comparison to temperature and CO2. Grasslands are especially vulnerable through the connection with global food security, with perennial ryegrass dominating many flood-prone pasturelands in North-western Europe. We investigated the effect of long-term waterlogging on phenotypic responses of perennial ryegrass using four common varieties (one diploid and three tetraploid) grown in atmospherically controlled growth chambers during two months of peak growth. The climate treatments compare ambient climatological conditions in North-western Europe to the RCP8.5 climate change scenario in 2050 (+2°C and 550 ppm CO2). At the end of each month multiple phenotypic plant measurements were made, the plants were harvested and then allowed to grow back. Using image analysis and principal component analysis (PCA) methodologies, we assessed how multiple predictors (phenotypic, environmental, genotypic, and temporal) influenced overall plant performance, productivity and phenotypic responses. Long-term waterlogging was found to reduce leaf-color intensity, with younger plants having purple hues indicative of anthocyanins. Plant performance and yield was lower in waterlogged plants, with tetraploid varieties coping better than the diploid one. The climate change treatment was found to reduce color intensities further. Flooding was found to reduce plant productivity via reductions in color pigments and root proliferation. These effects will have negative consequences for global food security brought on by increased frequency of extreme weather events and flooding. Our imaging analysis approach to estimate effects of waterlogging can be incorporated into plant health diagnostics tools via remote sensing and drone-technology.
Collapse
Affiliation(s)
- Carl A. Frisk
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Earth Institute, University College Dublin, Dublin, Ireland
| | | | - Matthieu Osborne
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Yastika Biswas
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Rainer Melzer
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Earth Institute, University College Dublin, Dublin, Ireland
| | - Jon M. Yearsley
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Earth Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
196
|
Kong RS, Way DA, Henry HAL, Smith NG. Stomatal conductance, not biochemistry, drives low temperature acclimation of photosynthesis in Populus balsamifera, regardless of nitrogen availability. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:766-779. [PMID: 35398958 DOI: 10.1111/plb.13428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Low-temperature thermal acclimation may require adjustments to N and water use to sustain photosynthesis because of slow enzyme functioning and high water viscosity. However, understanding of photosynthetic acclimation to temperatures below 11 °C is limited. We acclimated Populus balsamifera to 6 °C and 10 °C (6A and 10A, respectively) and provided the trees with either high or low N fertilizer. We measured net CO2 assimilation (Anet ), stomatal conductance (gs ), maximum rates of Rubisco carboxylation (Vcmax ), electron transport (Jmax ) and dark respiration (Rd ) at leaf temperatures of 2, 6, 10, 14 and 18 °C, along with leaf N concentrations. The 10A trees had higher Anet than the 6A trees at warmer leaf temperatures, which was correlated with higher gs in the 10A trees. The instantaneous temperature responses of Vcmax , Jmax and Rd were similar for trees from both acclimation temperatures. While soil N availability increased leaf N concentrations, this had no effect on acclimation of photosynthesis or respiration. Our results indicate that acclimation below 11 °C occurred primarily through changes in stomatal conductance, not photosynthetic biochemistry, and was unaffected by short-term N supply. Thermal acclimation of stomatal conductance should therefore be a priority for future carbon cycle model development.
Collapse
Affiliation(s)
- R S Kong
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - D A Way
- Department of Biology, The University of Western Ontario, London, ON, Canada
- Duke University, Nicholas School of the Environment, Durham, NC, USA
- Brookhaven National Laboratory, Environmental and Climate Sciences Department, Upton, NY, USA
| | - H A L Henry
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - N G Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
197
|
Wieloch T. High atmospheric CO 2 concentration causes increased respiration by the oxidative pentose phosphate pathway in chloroplasts. THE NEW PHYTOLOGIST 2022; 235:1310-1314. [PMID: 35575022 PMCID: PMC9546095 DOI: 10.1111/nph.18226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Thomas Wieloch
- Department of Medical Biochemistry and BiophysicsUmeå UniversityUmeå90187Sweden
| |
Collapse
|
198
|
Chandregowda MH, Tjoelker MG, Power SA, Pendall E. Drought and warming alter gross primary production allocation and reduce productivity in a widespread pasture grass. PLANT, CELL & ENVIRONMENT 2022; 45:2271-2291. [PMID: 35419849 DOI: 10.1111/pce.14334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/26/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Carbon allocation determines plant growth, fitness and reproductive success. However, climate warming and drought impacts on carbon allocation patterns in grasses are not well known, particularly following grazing or clipping. A widespread C3 pasture grass, Festuca arundinacea, was grown at 26 and 30°C in controlled environment chambers and subjected to drought (65% reduction relative to well-watered controls). Leaf, root and whole-plant carbon fluxes were measured and linked to growth before and after clipping. Both drought and warming reduced gross primary production and plant biomass. Drought reduced net leaf photosynthesis but increased the leaf respiratory fraction of assimilated carbon. Warming increased root respiration but did not affect either net leaf photosynthesis or leaf respiration. There was no evidence of thermal acclimation. Moreover, root respiratory carbon loss was amplified in the combined drought and warming treatment and, in addition to a negative carbon balance aboveground, explained an enhanced reduction in plant biomass. Plant regrowth following clipping was strongly suppressed by drought, reflecting increased tiller mortality and exacerbated respiratory carbon loss. These findings emphasize the importance of considering carbon allocation patterns in response to grazing or clipping and interactions with climatic factors for sustainable pasture production in a future climate.
Collapse
Affiliation(s)
- Manjunatha H Chandregowda
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Sally A Power
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Elise Pendall
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
199
|
Rodríguez-Calcerrada J, Chano V, Matías L, Hidalgo-Galvez MD, Cambrollé J, Pérez-Ramos IM. Three years of warming and rainfall reduction alter leaf physiology but not relative abundance of an annual species in a Mediterranean savanna. JOURNAL OF PLANT PHYSIOLOGY 2022; 275:153761. [PMID: 35803049 DOI: 10.1016/j.jplph.2022.153761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Increasing air temperatures and decreasing rainfall can alter Mediterranean ecosystems, where summer heat and drought already limit plant regeneration. Manipulative field studies can help to understand and anticipate community responses to climate changes. In a Mediterranean oak wooded pasture, we have investigated the effects of warming (W, via open-top chambers increasing 1.4 °C mean air temperature), reduced rainfall (D, via gutters removing 33% of rainfall) and the combination of both factors (WD) on the winter-annual Geranium dissectum L. We measured reproductive phenology and output, leaf physiology during the reproductive phase, and plant relative abundance. Warming had a positive effect on plant height and little effects on leaf physiology. Rainfall reduction enhanced leaf water use efficiency. However, the most noticeable effects occurred in WD plants, which exhibited lower leaf predawn water potential and earlier flowering phenology in the first year of treatment, and a higher ratio of leaf dark respiration (R) to net CO2 assimilation (Pn) at comparable temperatures in the third year, compared to control plants. Leaf R at ambient temperature was similar across climatic treatments. The relative abundance of G. dissectum decreased by 23% over three years, but similarly across treatments. A short life cycle helps G. dissectum to escape severe late-spring heat and drought stress. Moreover, stomata closure and thermal acclimation of R can attenuate plant stress impact on reproduction. Adaptability of the short-lived annual G. dissectum could mitigate climate change impact on community composition over short periods (e.g. three years); however, a reduction in net carbon gain could eventually affect its reproductive success and persistence in the community.
Collapse
Affiliation(s)
- Jesús Rodríguez-Calcerrada
- Research Group Functioning of Forest Systems in a Changing Environment. Department of Natural Systems and Resources. Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| | - Víctor Chano
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
| | - Luis Matías
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Apdo.1095, 41080, Sevilla, Spain
| | - Maria Dolores Hidalgo-Galvez
- Research group "Sistemas Forestales Mediterráneos", Instituto de Recursos Naturales y Agrobiología de Sevilla. Dpto. Biogeoquímica, Ecología Vegetal y Microbiana, Consejo Superior de Investigaciones Científicas, Av. Reina Mercedes 10, 41012, Sevilla, Spain
| | - Jesús Cambrollé
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Apdo.1095, 41080, Sevilla, Spain
| | - Ignacio Manuel Pérez-Ramos
- Research group "Sistemas Forestales Mediterráneos", Instituto de Recursos Naturales y Agrobiología de Sevilla. Dpto. Biogeoquímica, Ecología Vegetal y Microbiana, Consejo Superior de Investigaciones Científicas, Av. Reina Mercedes 10, 41012, Sevilla, Spain
| |
Collapse
|
200
|
Lobo AKM, Catarino ICA, Silva EA, Centeno DC, Domingues DS. Physiological and Molecular Responses of Woody Plants Exposed to Future Atmospheric CO2 Levels under Abiotic Stresses. PLANTS 2022; 11:plants11141880. [PMID: 35890514 PMCID: PMC9322912 DOI: 10.3390/plants11141880] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022]
Abstract
Climate change is mainly driven by the accumulation of carbon dioxide (CO2) in the atmosphere in the last century. Plant growth is constantly challenged by environmental fluctuations including heat waves, severe drought and salinity, along with ozone accumulation in the atmosphere. Food security is at risk in an increasing world population, and it is necessary to face the current and the expected effects of global warming. The effects of the predicted environment scenario of elevated CO2 concentration (e[CO2]) and more severe abiotic stresses have been scarcely investigated in woody plants, and an integrated view involving physiological, biochemical and molecular data is missing. This review highlights the effects of elevated CO2 in the metabolism of woody plants and the main findings of its interaction with abiotic stresses, including a molecular point of view, aiming to improve the understanding of how woody plants will face the predicted environmental conditions. Overall, e[CO2] stimulates photosynthesis and growth and attenuates mild to moderate abiotic stress in woody plants if root growth and nutrients are not limited. Moreover, e[CO2] does not induce acclimation in most tree species. Some high-throughput analyses involving omics techniques were conducted to better understand how these processes are regulated. Finally, knowledge gaps in the understanding of how the predicted climate condition will affect woody plant metabolism were identified, with the aim of improving the growth and production of this plant species.
Collapse
Affiliation(s)
- Ana Karla M. Lobo
- Department of Biodiversity, Institute of Biosciences, São Paulo State University, UNESP, Rio Claro 13506-900, Brazil;
- Correspondence: (A.K.M.L.); (D.S.D.)
| | - Ingrid C. A. Catarino
- Department of Biodiversity, Institute of Biosciences, São Paulo State University, UNESP, Rio Claro 13506-900, Brazil;
| | - Emerson A. Silva
- Institute of Environmental Research, São Paulo 04301-002, Brazil;
| | - Danilo C. Centeno
- Centre for Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo 09606-045, Brazil;
| | - Douglas S. Domingues
- Department of Biodiversity, Institute of Biosciences, São Paulo State University, UNESP, Rio Claro 13506-900, Brazil;
- Correspondence: (A.K.M.L.); (D.S.D.)
| |
Collapse
|