151
|
Zorec R, Verkhratsky A, Rodríguez JJ, Parpura V. Astrocytic vesicles and gliotransmitters: Slowness of vesicular release and synaptobrevin2-laden vesicle nanoarchitecture. Neuroscience 2015; 323:67-75. [PMID: 25727638 DOI: 10.1016/j.neuroscience.2015.02.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/01/2015] [Accepted: 02/18/2015] [Indexed: 12/30/2022]
Abstract
Neurotransmitters released at synapses activate neighboring astrocytes, which in turn, modulate neuronal activity by the release of diverse neuroactive substances that include classical neurotransmitters such as glutamate, GABA or ATP. Neuroactive substances are released from astrocytes through several distinct molecular mechanisms, for example, by diffusion through membrane channels, by translocation via plasmalemmal transporters or by vesicular exocytosis. Vesicular release regulated by a stimulus-mediated increase in cytosolic calcium involves soluble N-ethyl maleimide-sensitive fusion protein attachment protein receptor (SNARE)-dependent merger of the vesicle membrane with the plasmalemma. Up to 25 molecules of synaptobrevin 2 (Sb2), a SNARE complex protein, reside at a single astroglial vesicle; an individual neuronal, i.e. synaptic, vesicle contains ∼70 Sb2 molecules. It is proposed that this paucity of Sb2 molecules in astrocytic vesicles may determine the slow secretion. In the present essay we shall overview multiple aspects of vesicular architecture and types of vesicles based on their cargo and dynamics in astroglial cells.
Collapse
Affiliation(s)
- R Zorec
- University of Ljubljana, Institute of Pathophysiology, Laboratory of Neuroendocrinology and Molecular Cell Physiology, Zaloska cesta 4, SI-1000 Ljubljana, Slovenia; Celica, BIOMEDICAL, Technology Park 24, 1000 Ljubljana, Slovenia.
| | - A Verkhratsky
- University of Ljubljana, Institute of Pathophysiology, Laboratory of Neuroendocrinology and Molecular Cell Physiology, Zaloska cesta 4, SI-1000 Ljubljana, Slovenia; Celica, BIOMEDICAL, Technology Park 24, 1000 Ljubljana, Slovenia; Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, UK; Achucarro Center for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain; University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain.
| | - J J Rodríguez
- Achucarro Center for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain; University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain.
| | - V Parpura
- Department of Neurobiology, Civitan International Research Center and Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, Atomic Force Microscopy & Nanotechnology Laboratories, 1719 6th Avenue South, CIRC 429, University of Alabama at Birmingham, Birmingham, AL 35294-0021, USA; Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia.
| |
Collapse
|
152
|
Sica RE. Could astrocytes be the primary target of an offending agent causing the primary degenerative diseases of the human central nervous system? A hypothesis. Med Hypotheses 2015; 84:481-9. [PMID: 25697116 DOI: 10.1016/j.mehy.2015.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/31/2015] [Accepted: 02/04/2015] [Indexed: 12/12/2022]
Abstract
Most of the named primary degenerative diseases of the human central nervous system have been attributed to a direct, primary damage of some particular population of neurons. Within the spectrum of these illnesses there are disorders like amyotrophic lateral sclerosis, fronto-temporal dementia, Alzheimer's dementia, Parkinson's disease, Huntington's dementia and cerebellar ataxias affecting exclusively the human species. In the last years it has been shown that non-neural cells, mainly astrocytes, have a crucial role in the starting and development of these diseases. We suggest that the causative agent of these illnesses gets home first within the astrocytes, rather than the neurons, making them sick by modifying the structure of some proteins; from these cells the abnormal process would start a trip to other astrocytes having the same genetic, metabolic, structural and functional profiles that the originally affected astrocytes have, going through the gap junctions which connect that particular population devoted to a particular set of neurons. This appears to be a likely hypothesis because the astrocytes related to a defined population of neurons have their own, private properties and characteristics needed to support one particular set of neurons performing a defined function, making them a different and unique population, a fact which would limit the spreading of the disease to those astrocytes, sparing other astrocyte populations which do not share those characteristics. If this were the mechanism underlying these illnesses, the neurons, which their health depends on those astrocytes, would be deprived of their patronage and would start all the changes that characterizes a programmed cell death, and the clinical manifestations of a defined pathology would consequently appear.
Collapse
Affiliation(s)
- Roberto E Sica
- Science and Technological Division and Instituto de Investigaciones Cardiológicas, Department of Neurology (ININCA), Medical School, Buenos Aires University, Argentina.
| |
Collapse
|
153
|
Nimmerjahn A, Bergles DE. Large-scale recording of astrocyte activity. Curr Opin Neurobiol 2015; 32:95-106. [PMID: 25665733 DOI: 10.1016/j.conb.2015.01.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 12/17/2022]
Abstract
Astrocytes are highly ramified glial cells found throughout the central nervous system (CNS). They express a variety of neurotransmitter receptors that can induce widespread chemical excitation, placing these cells in an optimal position to exert global effects on brain physiology. However, the activity patterns of only a small fraction of astrocytes have been examined and techniques to manipulate their behavior are limited. As a result, little is known about how astrocytes modulate CNS function on synaptic, microcircuit, or systems levels. Here, we review current and emerging approaches for visualizing and manipulating astrocyte activity in vivo. Deciphering how astrocyte network activity is controlled in different physiological and pathological contexts is crucial for defining their roles in the healthy and diseased CNS.
Collapse
Affiliation(s)
- Axel Nimmerjahn
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Dwight E Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, WBSB 1001, Baltimore, MD 21205, USA.
| |
Collapse
|
154
|
Glutamate mediated astrocytic filtering of neuronal activity. PLoS Comput Biol 2014; 10:e1003964. [PMID: 25521344 PMCID: PMC4270452 DOI: 10.1371/journal.pcbi.1003964] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 10/06/2014] [Indexed: 02/02/2023] Open
Abstract
Neuron-astrocyte communication is an important regulatory mechanism in various brain functions but its complexity and role are yet to be fully understood. In particular, the temporal pattern of astrocyte response to neuronal firing has not been fully characterized. Here, we used neuron-astrocyte cultures on multi-electrode arrays coupled to Ca2+ imaging and explored the range of neuronal stimulation frequencies while keeping constant the amount of stimulation. Our results reveal that astrocytes specifically respond to the frequency of neuronal stimulation by intracellular Ca2+ transients, with a clear onset of astrocytic activation at neuron firing rates around 3-5 Hz. The cell-to-cell heterogeneity of the astrocyte Ca2+ response was however large and increasing with stimulation frequency. Astrocytic activation by neurons was abolished with antagonists of type I metabotropic glutamate receptor, validating the glutamate-dependence of this neuron-to-astrocyte pathway. Using a realistic biophysical model of glutamate-based intracellular calcium signaling in astrocytes, we suggest that the stepwise response is due to the supralinear dynamics of intracellular IP3 and that the heterogeneity of the responses may be due to the heterogeneity of the astrocyte-to-astrocyte couplings via gap junction channels. Therefore our results present astrocyte intracellular Ca2+ activity as a nonlinear integrator of glutamate-dependent neuronal activity.
Collapse
|
155
|
Haydon PG, Nedergaard M. How do astrocytes participate in neural plasticity? Cold Spring Harb Perspect Biol 2014; 7:a020438. [PMID: 25502516 DOI: 10.1101/cshperspect.a020438] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Work over the past 20 years has implicated electrically nonexcitable astrocytes in complex neural functions. Despite controversies, it is increasingly clear that many, if not all, neural processes involve astrocytes. This review critically examines past work to identify the commonalities among the many published studies of neuroglia signaling. Although several studies have shown that astrocytes can impact short-term and long-term synaptic plasticity, further work is required to determine the requirement for astrocytic Ca(2+) and other second messengers in these processes. One of the roadblocks to the field advancing at a rapid pace has been technical. We predict that the novel experimental tools that have emerged in recent years will accelerate the field and likely disclose an entirely novel path of neuroglia signaling within the near future.
Collapse
Affiliation(s)
- Philip G Haydon
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, University of Rochester Medical Center, Rochester, New York 14642
| |
Collapse
|
156
|
Scherf JM, Hu XS, Tepp WH, Ichtchenko K, Johnson EA, Pellett S. Analysis of gene expression in induced pluripotent stem cell-derived human neurons exposed to botulinum neurotoxin A subtype 1 and a type A atoxic derivative. PLoS One 2014; 9:e111238. [PMID: 25337697 PMCID: PMC4206481 DOI: 10.1371/journal.pone.0111238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/19/2014] [Indexed: 11/18/2022] Open
Abstract
Botulinum neurotoxin type A1 (BoNT/A1) is a potent protein toxin responsible for the potentially fatal human illness botulism. Notwithstanding, the long-lasting flaccid muscle paralysis caused by BoNT/A has led to its utility as a powerful and versatile bio-pharmaceutical. The flaccid paralysis is due to specific cleavage of neuronal SNAREs by BoNTs. However, actions of BoNTs on intoxicated neurons besides the cleavage of SNAREs have not been studied in detail. In this study we investigated by microarray analysis the effects of BoNT/A and a catalytically inactive derivative (BoNT/A ad) on the transcriptome of human induced pluripotent stem cell (hiPSC)-derived neurons at 2 days and 2 weeks after exposure. While there were only minor changes in expression levels at 2 days post exposure, at 2 weeks post exposure 492 genes were differentially expressed more than 2-fold in BoNT/A1-exposed cells when compared to non-exposed populations, and 682 genes were differentially expressed in BoNT/A ad-exposed cells. The vast majority of genes were similarly regulated in BoNT/A1 and BoNT/A ad-exposed neurons, and the few genes differentially regulated between BoNT/A1 and BoNT/A ad-exposed neurons were differentially expressed less than 3.5 fold. These data indicate a similar response of neurons to BoNT/A1 and BoNT/A ad exposure. The most highly regulated genes in cells exposed to either BoNT/A1 or BoNT/A ad are involved in neurite outgrowth and calcium channel sensitization.
Collapse
Affiliation(s)
- Jacob M. Scherf
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Xiaoyang Serene Hu
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - William H. Tepp
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Konstantin Ichtchenko
- Department of Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Eric A. Johnson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sabine Pellett
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
157
|
Evidences of endocytosis via caveolae following blood–brain barrier breakdown by Phoneutria nigriventer spider venom. Toxicol Lett 2014; 229:415-22. [DOI: 10.1016/j.toxlet.2014.07.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/12/2014] [Accepted: 07/14/2014] [Indexed: 01/12/2023]
|
158
|
Karki P, Smith K, Johnson J, Aschner M, Lee E. Role of transcription factor yin yang 1 in manganese-induced reduction of astrocytic glutamate transporters: Putative mechanism for manganese-induced neurotoxicity. Neurochem Int 2014; 88:53-9. [PMID: 25128239 DOI: 10.1016/j.neuint.2014.08.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/31/2014] [Accepted: 08/05/2014] [Indexed: 10/24/2022]
Abstract
Astrocytes are the most abundant non-neuronal glial cells in the brain. Once relegated to a mere supportive role for neurons, contemporary dogmas ascribe multiple active roles for these cells in central nervous system (CNS) function, including maintenance of optimal glutamate levels in synapses. Regulation of glutamate levels in the synaptic cleft is crucial for preventing excitotoxic neuronal injury. Glutamate levels are regulated predominantly by two astrocytic glutamate transporters, glutamate transporter 1 (GLT-1) and glutamate aspartate transporter (GLAST). Indeed, the dysregulation of these transporters has been linked to several neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD) and Parkinson's disease (PD), as well as manganism, which is caused by overexposure to the trace metal, manganese (Mn). Although Mn is an essential trace element, its excessive accumulation in the brain as a result of chronic occupational or environmental exposures induces a neurological disorder referred to as manganism, which shares common pathological features with Parkinsonism. Mn decreases the expression and function of both GLAST and GLT-1. Astrocytes are commonly targeted by Mn, and thus reduction in astrocytic glutamate transporter function represents a critical mechanism of Mn-induced neurotoxicity. In this review, we will discuss the role of astrocytic glutamate transporters in neurodegenerative diseases and Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Pratap Karki
- Department of Physiology, Meharry Medical College, Nashville, TN 37208, United States
| | - Keisha Smith
- Department of Physiology, Meharry Medical College, Nashville, TN 37208, United States
| | - James Johnson
- Department of Physiology, Meharry Medical College, Nashville, TN 37208, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Eunsook Lee
- Department of Physiology, Meharry Medical College, Nashville, TN 37208, United States.
| |
Collapse
|
159
|
Orellana JA, Stehberg J. Hemichannels: new roles in astroglial function. Front Physiol 2014; 5:193. [PMID: 24987373 PMCID: PMC4060415 DOI: 10.3389/fphys.2014.00193] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/07/2014] [Indexed: 01/16/2023] Open
Abstract
The role of astrocytes in brain function has evolved over the last decade, from support cells to active participants in the neuronal synapse through the release of "gliotransmitters."Astrocytes express receptors for most neurotransmitters and respond to them through Ca(2+) intracellular oscillations and propagation of intercellular Ca(2+) waves. While such waves are able to propagate among neighboring astrocytes through gap junctions, thereby activating several astrocytes simultaneously, they can also trigger the release of gliotransmitters, including glutamate, d-serine, glycine, ATP, adenosine, or GABA. There are several mechanisms by which gliotransmitter release occurs, including functional hemichannels. These gliotransmitters can activate neighboring astrocytes and participate in the propagation of intercellular Ca(2+) waves, or activate pre- and post-synaptic receptors, including NMDA, AMPA, and purinergic receptors. In consequence, hemichannels could play a pivotal role in astrocyte-to-astrocyte communication and astrocyte-to-neuron cross-talk. Recent evidence suggests that astroglial hemichannels are involved in higher brain functions including memory and glucose sensing. The present review will focus on the role of hemichannels in astrocyte-to-astrocyte and astrocyte-to neuron communication and in brain physiology.
Collapse
Affiliation(s)
- Juan A Orellana
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Jimmy Stehberg
- Laboratorio de Neurobiología, Centro de Investigaciones Médicas, Facultad de Ciencias Biológicas and Facultad de Medicina, Universidad Andrés Bello Santiago, Chile
| |
Collapse
|
160
|
Bain LE, Collazo R, Hsu SH, Latham NP, Manfra MJ, Ivanisevic A. Surface topography and chemistry shape cellular behavior on wide band-gap semiconductors. Acta Biomater 2014; 10:2455-62. [PMID: 24590161 DOI: 10.1016/j.actbio.2014.02.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/17/2014] [Accepted: 02/21/2014] [Indexed: 01/08/2023]
Abstract
The chemical stability and electrical properties of gallium nitride make it a promising material for the development of biocompatible electronics, a range of devices including biosensors as well as interfaces for probing and controlling cellular growth and signaling. To improve the interface formed between the probe material and the cell or biosystem, surface topography and chemistry can be applied to modify the ways in which the device interacts with its environment. PC12 cells are cultured on as-grown planar, unidirectionally polished, etched nanoporous and nanowire GaN surfaces with and without a physisorbed peptide sequence that promotes cell adhesion. While cells demonstrate preferential adhesion to roughened surfaces over as-grown flat surfaces, the topography of that roughness also influences the morphology of cellular adhesion and differentiation in neurotypic cells. Addition of the peptide sequence generally contributes further to cellular adhesion and promotes development of stereotypic long, thin neurite outgrowths over alternate morphologies. The dependence of cell behavior on both the topographic morphology and surface chemistry is thus demonstrated, providing further evidence for the importance of surface modification for modulating bio-inorganic interfaces.
Collapse
|
161
|
Wang CM, Ploia C, Anselmi F, Sarukhan A, Viola A. Adenosine triphosphate acts as a paracrine signaling molecule to reduce the motility of T cells. EMBO J 2014; 33:1354-64. [PMID: 24843045 DOI: 10.15252/embj.201386666] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Organization of immune responses requires exchange of information between cells. This is achieved through either direct cell-cell contacts and establishment of temporary synapses or the release of soluble factors, such as cytokines and chemokines. Here we show a novel form of cell-to-cell communication based on adenosine triphosphate (ATP). ATP released by stimulated T cells induces P2X4/P2X7-mediated calcium waves in the neighboring lymphocytes. Our data obtained in lymph node slices suggest that, during T-cell priming, ATP acts as a paracrine messenger to reduce the motility of lymphocytes and that this may be relevant to allow optimal tissue scanning by T cells.
Collapse
Affiliation(s)
- Chiuhui Mary Wang
- Humanitas Clinical and Research Center, Rozzano, Italy Department of Translational Medicine, University of Milan, Rozzano, Italy
| | | | - Fabio Anselmi
- Humanitas Clinical and Research Center, Rozzano, Italy
| | | | - Antonella Viola
- Humanitas Clinical and Research Center, Rozzano, Italy Department of Translational Medicine, University of Milan, Rozzano, Italy
| |
Collapse
|
162
|
De Bock M, Decrock E, Wang N, Bol M, Vinken M, Bultynck G, Leybaert L. The dual face of connexin-based astroglial Ca(2+) communication: a key player in brain physiology and a prime target in pathology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2211-32. [PMID: 24768716 DOI: 10.1016/j.bbamcr.2014.04.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/11/2014] [Accepted: 04/12/2014] [Indexed: 12/21/2022]
Abstract
For decades, studies have been focusing on the neuronal abnormalities that accompany neurodegenerative disorders. Yet, glial cells are emerging as important players in numerous neurological diseases. Astrocytes, the main type of glia in the central nervous system , form extensive networks that physically and functionally connect neuronal synapses with cerebral blood vessels. Normal brain functioning strictly depends on highly specialized cellular cross-talk between these different partners to which Ca(2+), as a signaling ion, largely contributes. Altered intracellular Ca(2+) levels are associated with neurodegenerative disorders and play a crucial role in the glial responses to injury. Intracellular Ca(2+) increases in single astrocytes can be propagated toward neighboring cells as intercellular Ca(2+) waves, thereby recruiting a larger group of cells. Intercellular Ca(2+) wave propagation depends on two, parallel, connexin (Cx) channel-based mechanisms: i) the diffusion of inositol 1,4,5-trisphosphate through gap junction channels that directly connect the cytoplasm of neighboring cells, and ii) the release of paracrine messengers such as glutamate and ATP through hemichannels ('half of a gap junction channel'). This review gives an overview of the current knowledge on Cx-mediated Ca(2+) communication among astrocytes as well as between astrocytes and other brain cell types in physiology and pathology, with a focus on the processes of neurodegeneration and reactive gliosis. Research on Cx-mediated astroglial Ca(2+) communication may ultimately shed light on the development of targeted therapies for neurodegenerative disorders in which astrocytes participate. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.
Collapse
Affiliation(s)
- Marijke De Bock
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Elke Decrock
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium.
| | - Nan Wang
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Mélissa Bol
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Mathieu Vinken
- Department of Toxicology, Center for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, B-1090 Brussels, Belgium
| | - Geert Bultynck
- Department of Cellular and Molecular Medicine, Laboratory of Molecular and Cellular Signalling, KULeuven, Campus Gasthuisberg O/N-I bus 802, B-3000 Leuven, Belgium
| | - Luc Leybaert
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
163
|
Diversity of astroglial functions alludes to subcellular specialisation. Trends Neurosci 2014; 37:228-42. [PMID: 24631033 DOI: 10.1016/j.tins.2014.02.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 02/12/2014] [Accepted: 02/13/2014] [Indexed: 01/23/2023]
Abstract
Rapid signal exchange between astroglia and neurons has emerged as an essential element of neural circuits of the brain. However, the increasing variety of mechanisms contributing to this signalling appears to be facing a conceptual stalemate. The communication medium of astroglia involves intracellular [Ca(2+)] waves, which until recently have been associated with slow, global [Ca(2+)] rises. How such a uniform trigger could handle fast and diverse molecular messages remains unexplained. Recent studies have, however, revealed a variety of apparently independent Ca(2+) activities within individual astrocytic compartments, also indicating the prevalence of subcellular segregation for some signalling mechanisms. These signs of intracellular compartmentalisation might provide the key to the multitude of adaptive roles played by astroglia.
Collapse
|
164
|
Xu B, Guan XH, Yu JX, Lv J, Zhang HX, Fu QC, Xiang HB, Bu HL, Shi D, Shu B, Qin LS, Manyande A, Tian YK. Activation of spinal phosphatidylinositol 3-kinase/protein kinase B mediates pain behavior induced by plantar incision in mice. Exp Neurol 2014; 255:71-82. [PMID: 24594219 DOI: 10.1016/j.expneurol.2014.02.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 01/25/2014] [Accepted: 02/18/2014] [Indexed: 12/30/2022]
Abstract
The etiology of postoperative pain may be different from antigen-induced inflammatory pain and neuropathic pain. However, central neural plasticity plays a key role in incision pain. It is also known that phosphatidylinositol 3-kinase (PI3K) and protein kinase B/Akt (PKB/Akt) are widely expressed in laminae I-IV of the spinal horn and play a critical role in spinal central sensitization. In the present study, we explored the role of PI3K and Akt in incision pain behaviors. Plantar incision induced a time-dependent activation of spinal PI3K-p110γ and Akt, while activated Akt and PI3K-p110γ were localized in spinal neurons or microglias, but not in astrocytes. Pre-treatment with PI3K inhibitors, wortmannin or LY294002 prevented the activation of Akt brought on by plantar incision in a dose-dependent manner. In addition, inhibition of spinal PI3K signaling pathway prevented pain behaviors (dose-dependent) and spinal Fos protein expression caused by plantar incision. These data demonstrated that PI3K signaling mediated pain behaviors caused by plantar incision in mice.
Collapse
Affiliation(s)
- Bing Xu
- Department of Neurology, Liuzhou Traditional Chinese Medical Hospital, the Third Affiliated Hospital of Guangxi University of Chinese Medicine, 32 Jiefang West Road, Liuzhou 545001, PR China
| | - Xue-Hai Guan
- Department of Anesthesiology, Liuzhou Traditional Chinese Medical Hospital, the Third Affiliated Hospital of Guangxi University of Chinese Medicine, 32 Jiefang West Road, Liuzhou 545001, PR China; Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan 430030, PR China.
| | - Jun-Xiong Yu
- Department of Anesthesiology, the Affiliated Hospital of Guilin Medical College, Guilin 543001, PR China
| | - Jing Lv
- Department of Anesthesiology, the Affiliated Hospital of Guilin Medical College, Guilin 543001, PR China
| | - Hong-Xing Zhang
- The First Clinical College, China Medical University, 155 Nanjing Road, Shenyang 11001, PR China
| | - Qiao-Chu Fu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan 430030, PR China
| | - Hong-Bing Xiang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan 430030, PR China
| | - Hui-Lian Bu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan 430030, PR China
| | - Dai Shi
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan 430030, PR China
| | - Bin Shu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan 430030, PR China
| | - Li-Sheng Qin
- Department of Anesthesiology, Liuzhou Traditional Chinese Medical Hospital, the Third Affiliated Hospital of Guangxi University of Chinese Medicine, 32 Jiefang West Road, Liuzhou 545001, PR China
| | - Anne Manyande
- School of Psychology, Social Work and Human Sciences, University of West London, London, UK
| | - Yu-Ke Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan 430030, PR China.
| |
Collapse
|
165
|
The brain microenvironment negatively regulates miRNA-768-3p to promote K-ras expression and lung cancer metastasis. Sci Rep 2014; 3:2392. [PMID: 23928793 PMCID: PMC3738968 DOI: 10.1038/srep02392] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 07/16/2013] [Indexed: 01/02/2023] Open
Abstract
The brain microenvironment promotes metastasis through mechanisms that remain elusive. Co-culture of lung cancer cells with astrocytes - the most abundant cell type within the metastatic brain niche – lead to downregulation of miRNA-768-3p which drives K-ras expression and key signaling pathways, enhances cell viability and promotes chemotherapeutic resistance. Vector-based forced expression of miRNA-768-3p complementary sequence or a chemically-engineered miRNA-768-3p inhibitor recapitulated the astrocyte effect to increase tumor cell viability. The miRNA-768-3p inhibitor targeted the K-ras 3′-UTR as demonstrated by increased luminescence from a luciferase reporter and strikingly increased the K-ras protein and the downstream effectors ERK1/2 and B-Raf. miRNA-768-3p was reduced in patient brain metastases compared to normal brain tissue and was lower in patient tissue from brain metastases compared to same-patient primary tumour tissue. The brain microenvironment negatively regulates miRNA-768-3p to enhance K-ras and promote metastasis. We propose that therapeutic replacement of the metastasis suppressor miRNA-768-3p holds clinical promise.
Collapse
|
166
|
Photolysis of caged Ca2+ but not receptor-mediated Ca2+ signaling triggers astrocytic glutamate release. J Neurosci 2013; 33:17404-12. [PMID: 24174673 DOI: 10.1523/jneurosci.2178-13.2013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Astrocytes in hippocampal slices can dynamically regulate synaptic transmission in a process mediated by increases in intracellular Ca(2+). However, it is debated whether astrocytic Ca(2+) signals result in release of glutamate. We here compared astrocytic Ca(2+) signaling triggered by agonist exposure versus photolysis side by side. Using transgenic mice in which astrocytes selectively express the MrgA1 receptor, we found that receptor-mediated astrocytic Ca(2+) signaling consistently triggered neuronal hyperpolarization and decreased the frequency of miniature excitatory postsynaptic currents (EPSCs). In contrast, photolysis of caged Ca(2+) (o-nitrophenyl-EGTA) in astrocytes led to neuronal depolarization and increased the frequency of mEPSCs through a metabotropic glutamate receptor-mediated pathway. Analysis of transgenic mice in which astrocytic vesicular release is suppressed (dominant-negative SNARE mice) and pharmacological manipulations suggested that glutamate is primarily released by opening of anion channels rather than exocytosis. Combined, these studies show that photolysis but not by agonists induced astrocytic Ca(2+) signaling triggers glutamate release.
Collapse
|
167
|
Physiological role of hydrogen sulfide and polysulfide in the central nervous system. Neurochem Int 2013; 63:492-7. [DOI: 10.1016/j.neuint.2013.09.003] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 08/27/2013] [Accepted: 09/02/2013] [Indexed: 11/22/2022]
|
168
|
Pirttimaki TM, Parri HR. Astrocyte plasticity: implications for synaptic and neuronal activity. Neuroscientist 2013; 19:604-15. [PMID: 24122819 DOI: 10.1177/1073858413504999] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Astrocytes are increasingly implicated in a range of functions in the brain, many of which were previously ascribed to neurons. Much of the prevailing interest centers on the role of astrocytes in the modulation of synaptic transmission and their involvement in the induction of forms of plasticity such as long-term potentiation and long-term depression. However, there is also an increasing realization that astrocytes themselves can undergo plasticity. This plasticity may be manifest as changes in protein expression which may modify calcium activity within the cells, changes in morphology that affect the environment of the synapse and the extracellular space, or changes in gap junction astrocyte coupling that modify the transfer of ions and metabolites through astrocyte networks. Plasticity in the way that astrocytes release gliotransmitters can also have direct effects on synaptic activity and neuronal excitability. Astrocyte plasticity can potentially have profound effects on neuronal network activity and be recruited in pathological conditions. An emerging principle of astrocyte plasticity is that it is often induced by neuronal activity, reinforcing our emerging understanding of the working brain as a constant interaction between neurons and glial cells.
Collapse
Affiliation(s)
- Tiina M Pirttimaki
- 1A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | |
Collapse
|
169
|
Gao K, Wang CR, Jiang F, Wong AYK, Su N, Jiang JH, Chai RC, Vatcher G, Teng J, Chen J, Jiang YW, Yu ACH. Traumatic scratch injury in astrocytes triggers calcium influx to activate the JNK/c-Jun/AP-1 pathway and switch on GFAP expression. Glia 2013; 61:2063-77. [PMID: 24123203 DOI: 10.1002/glia.22577] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/11/2013] [Accepted: 08/21/2013] [Indexed: 01/25/2023]
Abstract
Astrocyte activation is a hallmark of central nervous system injuries resulting in glial scar formation (astrogliosis). The activation of astrocytes involves metabolic and morphological changes with complex underlying mechanisms, which should be defined to provide targets for astrogliosis intervention. Astrogliosis is usually accompanied by an upregulation of glial fibrillary acidic protein (GFAP). Using an in vitro scratch injury model, we scratched primary cultures of cerebral cortical astrocytes and observed an influx of calcium in the form of waves spreading away from the wound through gap junctions. Using the calcium blocker BAPTA-AM and the JNK inhibitor SP600125, we demonstrated that the calcium wave triggered the activation of JNK, which then phosphorylated the transcription factor c-Jun to facilitate the binding of AP-1 to the GFAP gene promoter to switch on GFAP upregulation. Blocking calcium mobilization with BAPTA-AM in an in vivo stab wound model reduced GFAP expression and glial scar formation, showing that the calcium signal, and the subsequent regulation of downstream signaling molecules, plays an essential role in brain injury response. Our findings demonstrated that traumatic scratch injury to astrocytes triggered a calcium influx from the extracellular compartment and activated the JNK/c-Jun/AP-1 pathway to switch on GFAP expression, identifying a previously unreported signaling cascade that is important in astrogliosis and the physiological response following brain injury.
Collapse
Affiliation(s)
- Kai Gao
- Neuroscience Research Institute, Key Laboratory for Neuroscience (Ministry of Education), Key Laboratory for Neuroscience (National Health and Family Planning Commission), Department of Neurobiology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Liu Y, Li C. Stochastic resonance in feedforward-loop neuronal network motifs in astrocyte field. J Theor Biol 2013; 335:265-75. [DOI: 10.1016/j.jtbi.2013.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/02/2013] [Accepted: 07/07/2013] [Indexed: 10/26/2022]
|
171
|
Block L, Jörneberg P, Björklund U, Westerlund A, Biber B, Hansson E. Ultralow concentrations of bupivacaine exert anti-inflammatory effects on inflammation-reactive astrocytes. Eur J Neurosci 2013; 38:3669-78. [PMID: 24083665 PMCID: PMC4211363 DOI: 10.1111/ejn.12364] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/07/2013] [Accepted: 08/25/2013] [Indexed: 12/11/2022]
Abstract
Bupivacaine is a widely used, local anesthetic agent that blocks voltage-gated Na(+) channels when used for neuro-axial blockades. Much lower concentrations of bupivacaine than in normal clinical use, < 10(-8) m, evoked Ca(2+) transients in astrocytes from rat cerebral cortex, that were inositol trisphosphate receptor-dependent. We investigated whether bupivacaine exerts an influence on the Ca(2+) signaling and interleukin-1β (IL-1β) secretion in inflammation-reactive astrocytes when used at ultralow concentrations, < 10(-8) m. Furthermore, we wanted to determine if bupivacaine interacts with the opioid-, 5-hydroxytryptamine- (5-HT) and glutamate-receptor systems. With respect to the μ-opioid- and 5-HT-receptor systems, bupivacaine restored the inflammation-reactive astrocytes to their normal non-inflammatory levels. With respect to the glutamate-receptor system, bupivacaine, in combination with an ultralow concentration of the μ-opioid receptor antagonist naloxone and μ-opioid receptor agonists, restored the inflammation-reactive astrocytes to their normal non-inflammatory levels. Ultralow concentrations of bupivacaine attenuated the inflammation-induced upregulation of IL-1β secretion. The results indicate that bupivacaine interacts with the opioid-, 5-HT- and glutamate-receptor systems by affecting Ca(2+) signaling and IL-1β release in inflammation-reactive astrocytes. These results suggest that bupivacaine may be used at ultralow concentrations as an anti-inflammatory drug, either alone or in combination with opioid agonists and ultralow concentrations of an opioid antagonist.
Collapse
Affiliation(s)
- Linda Block
- Department of Anesthesiology and Intensive Care Medicine, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
172
|
Ko CY, Wang WL, Wang SM, Chu YY, Chang WC, Wang JM. Glycogen synthase kinase-3β-mediated CCAAT/enhancer-binding protein delta phosphorylation in astrocytes promotes migration and activation of microglia/macrophages. Neurobiol Aging 2013; 35:24-34. [PMID: 23993701 DOI: 10.1016/j.neurobiolaging.2013.07.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 07/17/2013] [Accepted: 07/22/2013] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease is neuropathologically characterized by the accumulation of amyloid-β protein into senile plaques that are sites of chronic inflammation involving reactive microglia, astrocytes, and proinflammatory molecules, such as interleukin-1β and tumor necrosis factor-α. The human CCAAT/enhancer-binding protein (CEBP) delta (CEBPD) is known to be induced in many inflammation-related diseases. In Alzheimer's disease, this protein is responsive to amyloid-β and proinflammatory cytokines in astrocytes. However, the functional role of CEBPD in astrocytes remains largely unclear. In this study, we show that CEBPD is upregulated by interleukin-1β through the mitogen-activated protein kinase p38 (MAPKp38) signaling pathway and phosphorylated by glycogen synthase kinase (GSK)-3β at Ser167 in astrocytes. CEBPD in astrocytes is associated with microglia activation and migration in amyloid precursor protein transgenic mice (AppTg) mice. We further identified that the monocyte chemotactic protein-1, a chemoattractive factor, and migration factors matrix metalloproteinase-1 and -3 are responsive to GSK3β-mediated CEBPD Ser167 phosphorylation. Our results revealed the novel regulation of LiCl on astrocytes and that GSK3β-mediated CEBPD phosphorylation in astrocytes plays an important role in the activation of microglia.
Collapse
Affiliation(s)
- Chiung-Yuan Ko
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
173
|
Abstract
Twenty years ago glial cells were shown to contribute to neuronal information processing, instead of merely supporting neuronal function, thus challenging the century old neuron doctrine. Due to the lack of appropriate experimental models, however, determining the role of glia in higher brain function and disease has been hampered. In a recent paper, Han and colleagues transplanted human glial progenitor cells into mice; not only does this study pave the way for generations of excellent models to study the physiology and pathophysiology of human glial cells, especially in the age of induced pluripotent stem cells, but more importantly it further challenges the neuron doctrine, since the human-glia transplanted mice turned into better learners. So, are glial cells the ones we owe our intelligence to after all?
Collapse
|
174
|
Abstract
What is the biological basis for human cognition? Our understanding why human brains make us smarter than other animals is still in its infancy. In recent years, astrocytes have been shown to be indispensable for neuronal survival, growth, synapse formation, and synapse function. Now, in a new study from Maiken Nedergaard and Steven Goldman's groups (Han et al., 2013), human glia progenitor cells have been transplanted into mouse forebrains. These progenitors survived, migrated widely, and gave rise to astrocytes that displayed the characteristics of human astrocytes in the rodent host brains. Strikingly, the mice with transplanted human cells displayed improved long term potentiation (LTP) and learning, suggesting the potential importance of human astrocytes in the unique cognitive abilities of human brains. This landmark paper is an important first step toward future investigations of whether and how human astrocytes play a role in distinguishing the cognitive abilities of humans from those of other animals.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
175
|
Seifert G, Steinhäuser C. Neuron–astrocyte signaling and epilepsy. Exp Neurol 2013; 244:4-10. [DOI: 10.1016/j.expneurol.2011.08.024] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/16/2011] [Accepted: 08/25/2011] [Indexed: 12/30/2022]
|
176
|
Khademullah CS, Ferguson AV. Depolarizing actions of hydrogen sulfide on hypothalamic paraventricular nucleus neurons. PLoS One 2013; 8:e64495. [PMID: 23691233 PMCID: PMC3656899 DOI: 10.1371/journal.pone.0064495] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/15/2013] [Indexed: 01/23/2023] Open
Abstract
Hydrogen sulfide (H2S) is a novel neurotransmitter that has been shown to influence cardiovascular functions as well and corticotrophin hormone (CRH) secretion. Since the paraventricular nucleus of the hypothalamus (PVN) is a central relay center for autonomic and endocrine functions, we sought to investigate the effects of H2S on the neuronal population of the PVN. Whole cell current clamp recordings were acquired from the PVN neurons and sodium hydrosulfide hydrate (NaHS) was bath applied at various concentrations (0.1, 1, 10, and 50 mM). NaHS (1, 10, and 50 mM) elicited a concentration-response relationship from the majority of recorded neurons, with almost exclusively depolarizing effects following administration. Cells responded and recovered from NaHS administration quickly and the effects were repeatable. Input differences from baseline and during the NaHS-induced depolarization uncovered a biphasic response, implicating both a potassium and non-selective cation conductance. The results from the neuronal population of the PVN shed light on the possible physiological role that H2S has in autonomic and endocrine function.
Collapse
Affiliation(s)
- C Sahara Khademullah
- Department of Biomedical and Molecular Science, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
177
|
Liu Y, Li C. Firing rate propagation through neuronal-astrocytic network. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2013; 24:789-799. [PMID: 24808428 DOI: 10.1109/tnnls.2013.2245678] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Understanding the underlying mechanism of the propagation of neuronal activities within the brain is a fundamental issue in neuroscience. Traditionally, communication and information processing have been exclusively considered as the province of synaptic coupling between neurons. Astrocytes, however, have recently been acknowledged as active partners in neuronal information processing. So, it is more reasonable and accurate to study the nature of neuronal signal propagation with the participation of astrocytes. In this paper, we first propose a feedforward neuronal-astrocytic network (FNAsN), which includes the mutual neuron-astrocyte interaction. Besides, we also consider the unreliability of both the synaptic transmission between neurons and the coupling between neurons and astrocytes. Then, the performance of firing rate propagation through the proposed FNAsN is studied through a series of simulations. Results show that the astrocytes can mediate neuronal activities, and consequently improve the performance of firing rate propagation, especially in a weak and noisy environment. From this point of view, astrocytes can be regarded as a realistic internal source of noise, which collaborates with an externally applied weak noise to prevent synchronous neuron firing within the same layer and thus to ensure reliable transmission.
Collapse
|
178
|
Heinrich A, Andó RD, Túri G, Rózsa B, Sperlágh B. K+ depolarization evokes ATP, adenosine and glutamate release from glia in rat hippocampus: a microelectrode biosensor study. Br J Pharmacol 2013; 167:1003-20. [PMID: 22394324 DOI: 10.1111/j.1476-5381.2012.01932.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE This study was undertaken to characterize the ATP, adenosine and glutamate outflow evoked by depolarization with high K(+) concentrations, in slices of rat hippocampus. EXPERIMENTAL APPROACH We utilized the microelectrode biosensor technique and extracellular electrophysiological recording for the real-time monitoring of the efflux of ATP, adenosine and glutamate. KEY RESULTS ATP, adenosine and glutamate sensors exhibited transient and reversible current during depolarization with 25 mM K(+) , with distinct kinetics. The ecto-ATPase inhibitor ARL67156 enhanced the extracellular level of ATP and inhibited the prolonged adenosine efflux, suggesting that generation of adenosine may derive from the extracellular breakdown of ATP. Stimulation-evoked ATP, adenosine and glutamate efflux was inhibited by tetrodotoxin, while exposure to Ca(2+) -free medium abolished ATP and adenosine efflux from hippocampal slices. Extracellular elevation of ATP and adenosine were decreased in the presence of NMDA receptor antagonists, D-AP-5 and ifenprodil, whereas non-NMDA receptor blockade by CNQX inhibited glutamate but not ATP and adenosine efflux. The gliotoxin fluoroacetate and P2X7 receptor antagonists inhibited the K(+) -evoked ATP, adenosine and glutamate efflux, while carbenoxolone in low concentration and probenecid decreased only the adenosine efflux. CONCLUSIONS AND IMPLICATIONS Our results demonstrated activity-dependent gliotransmitter release in the hippocampus in response to ongoing neuronal activity. ATP and glutamate were released by P2X7 receptor activation into extracellular space. Although the increased extracellular levels of adenosine did derive from released ATP, adenosine might also be released directly via pannexin hemichannels.
Collapse
Affiliation(s)
- A Heinrich
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary Femtonics Ltd, Budapest, Hungary
| | | | | | | | | |
Collapse
|
179
|
Ren Z, Chen X, Yang J, Kress BT, Tong J, Liu H, Takano T, Zhao Y, Nedergaard M. Improved axonal regeneration after spinal cord injury in mice with conditional deletion of ephrin B2 under the GFAP promoter. Neuroscience 2013; 241:89-99. [PMID: 23518227 DOI: 10.1016/j.neuroscience.2013.03.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/03/2013] [Accepted: 03/12/2013] [Indexed: 12/13/2022]
Abstract
Spinal cord injury (SCI) initiates a cascade of processes that ultimately form a nonpermissive environment for axonal regeneration. Emerging evidence suggests that regenerative failure may be due in part to inhibitory factors expressed by reactive spinal cord glial cells and meningeal fibroblasts, such as the Eph receptor protein-tyrosine kinases and their corresponding ligands (ephrins). Here we sought to assess the role of ephrin B2, an inhibitory axonal guidance molecule, as an inhibitor of the recovery process following SCI. To determine the extent of ephrin B2 involvement in axonal regenerative failure, a SCI model was performed on a conditional ephrin B2 knockout mouse strain (ephrin B2(-/-)), in which the ephrin B2 gene was deleted under the GFAP promoter . The expression of ephrin B2 was significantly decreased in astrocytes of injured and uninjured ephrin B2(-/-) mice compared to wild-type mice. Notably, in the ephrin B2(-/-) mice, the deletion of ephrin B2 reduced astrogliosis, and accelerated motor function recovery after SCI. Anterograde axonal tracing on a hemisection model of SCI further showed that ephrin B2(-/-) mice exhibited increased regeneration of injured corticospinal axons and a reduced glial scar, when compared to littermate controls exposed to similar injury. These results were confirmed by an in vitro neurite outgrowth assay and ephrin B2 functional blockage, which showed that ephrin B2 expressed on astrocytes inhibited axonal growth. Combined these findings suggest that ephrin B2 ligands expressed by reactive astrocytes impede the recovery process following SCI.
Collapse
Affiliation(s)
- Z Ren
- Department of Neurosurgery, University of Rochester, Rochester, NY 14642, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Zhang X, Cao B, Wang J, Liu J, Tung VOV, Lam PKS, Chan LL, Li Y. Neurotoxicity and Reactive Astrogliosis in the Anterior Cingulate Cortex in Acute Ciguatera Poisoning. Neuromolecular Med 2013; 15:310-23. [DOI: 10.1007/s12017-013-8220-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 02/04/2013] [Indexed: 12/19/2022]
|
181
|
Mika J, Zychowska M, Popiolek-Barczyk K, Rojewska E, Przewlocka B. Importance of glial activation in neuropathic pain. Eur J Pharmacol 2013; 716:106-19. [PMID: 23500198 DOI: 10.1016/j.ejphar.2013.01.072] [Citation(s) in RCA: 334] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 12/17/2012] [Accepted: 01/09/2013] [Indexed: 12/13/2022]
Abstract
Glia plays a crucial role in the maintenance of neuronal homeostasis in the central nervous system. The microglial production of immune factors is believed to play an important role in nociceptive transmission. Pain may now be considered a neuro-immune disorder, since it is known that the activation of immune and immune-like glial cells in the dorsal root ganglia and spinal cord results in the release of both pro- and anti-inflammatory cytokines, as well as algesic and analgesic mediators. In this review we presented an important role of cytokines (IL-1alfa, IL-1beta, IL-2, IL-4, IL-6, IL-10, IL-15, IL-18, TNFalpha, IFNgamma, TGF-beta 1, fractalkine and CCL2); complement components (C1q, C3, C5); metaloproteinases (MMP-2,-9) and many other factors, which become activated on spinal cord and DRG level under neuropathic pain. We discussed the role of the immune system in modulating chronic pain. At present, unsatisfactory treatment of neuropathic pain will seek alternative targets for new drugs and it is possible that anti-inflammatory factors like IL-10, IL-4, IL-1alpha, TGF-beta 1 would fulfill this role. Another novel approach for controlling neuropathic pain can be pharmacological attenuation of glial and immune cell activation. It has been found that propentofylline, pentoxifylline, minocycline and fluorocitrate suppress the development of neuropathic pain. The other way of pain control can be the decrease of pro-nociceptive agents like transcription factor synthesis (NF-kappaB, AP-1); kinase synthesis (MEK, p38MAPK, JNK) and protease activation (cathepsin S, MMP9, MMP2). Additionally, since it is known that the opioid-induced glial activation opposes opioid analgesia, some glial inhibitors, which are safe and clinically well tolerated, are proposed as potential useful ko-analgesic agents for opioid treatment of neuropathic pain. This review pointed to some important mechanisms underlying the development of neuropathic pain, which led to identify some possible new approaches to the treatment of neuropathic pain, based on the more comprehensive knowledge of the interaction between the nervous system and glial and immune cells.
Collapse
Affiliation(s)
- Joanna Mika
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland.
| | | | | | | | | |
Collapse
|
182
|
Abstract
Astrocytes play an important role in maintaining an optically suited milieu for neuronal functionality, and are involved in the progression and outcome of many neuropathological conditions. It becomes increasingly evident that astrocytes are significant contributors to HIV-1 associated neurological disorders by modulating the microenvironment in the central nervous system and releasing proinflammatory cytokines. Recent studies have revealed direct metabolic interactions between neurons and astrocytes observed particularly in HIV-1-associated neurological disorders by which astrocytic dysfunctions disregulate extracellular K+ homeostasis, intracellular calcium concentration, glutamate clearance, and blood brain barrier integrity and permeability. Such dysfunctions are amplified via gap junctions, directly or indirectly impacting surrounding neurons and significantly contributing to the pathogenesis of HIV-1-associated neuropathology. In this review, we tentatively address recent progresses on the roles astrocytes may play in HIV-1-associated neurotoxicity.
Collapse
Affiliation(s)
- Hoai Ton
- Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Huangui Xiong
- Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| |
Collapse
|
183
|
Verkhratsky A, Reyes RC, Parpura V. TRP channels coordinate ion signalling in astroglia. Rev Physiol Biochem Pharmacol 2013; 166:1-22. [PMID: 23784619 DOI: 10.1007/112_2013_15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Astroglial excitability is based on highly spatio-temporally coordinated fluctuations of intracellular ion concentrations, among which changes in Ca(2+) and Na(+) take the leading role. Intracellular signals mediated by Ca(2+) and Na(+) target numerous molecular cascades that control gene expression, energy production and numerous homeostatic functions of astrocytes. Initiation of Ca(2+) and Na(+) signals relies upon plasmalemmal and intracellular channels that allow fluxes of respective ions down their concentration gradients. Astrocytes express several types of TRP channels of which TRPA1 channels are linked to regulation of functional expression of GABA transporters, whereas TRPV4 channels are activated following osmotic challenges and are up-regulated in ischaemic conditions. Astrocytes also ubiquitously express several isoforms of TRPC channels of which heteromers assembled from TRPC1, 4 and/or 5 subunits that likely act as stretch-activated channels and are linked to store-operated Ca(2+) entry. The TRPC channels mediate large Na(+) fluxes that are associated with the endoplasmic reticulum Ca(2+) signalling machinery and hence coordinate Na(+) and Ca(2+) signalling in astroglia.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK,
| | | | | |
Collapse
|
184
|
Tykocki T, Nauman P, Koziara H, Mandat T. Microlesion Effect as a Predictor of the Effectiveness of Subthalamic Deep Brain Stimulation for Parkinsons Disease. Stereotact Funct Neurosurg 2013; 91:12-7. [DOI: 10.1159/000342161] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 07/26/2012] [Indexed: 11/19/2022]
|
185
|
Tong X, Shigetomi E, Looger LL, Khakh BS. Genetically Encoded Calcium Indicators and Astrocyte Calcium Microdomains. Neuroscientist 2012; 19:274-91. [DOI: 10.1177/1073858412468794] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The discovery of intracellular Ca2+ signals within astrocytes has changed our view of how these ubiquitous cells contribute to brain function. Classically thought merely to serve supportive functions, astrocytes are increasingly thought to respond to, and regulate, neurons. The use of organic Ca2+ indicator dyes such as Fluo-4 and Fura-2 has proved instrumental in the study of astrocyte physiology. However, progress has recently been accelerated by the use of cytosolic and membrane targeted genetically encoded calcium indicators (GECIs). Herein, we review these recent findings, discuss why studying astrocyte Ca2+ signals is important to understand brain function, and summarize work that led to the discovery of TRPA1 channel-mediated near-membrane Ca2+ signals in astrocytes and their indirect neuromodulatory roles at inhibitory synapses in the CA1 stratum radiatum region of the hippocampus. We suggest that the use of membrane-targeted and cytosolic GECIs holds great promise to explore the diversity of Ca2+ signals within single astrocytes and also to study diversity of function for astrocytes in different parts of the brain.
Collapse
Affiliation(s)
- Xiaoping Tong
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Eiji Shigetomi
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Pharmacology, Faculty of Medicine, University of Yamanashi Chuo, Yamanashi, Japan
| | - Loren L. Looger
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Baljit S. Khakh
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
186
|
Liu QS, Xu Q, Kang J, Nedergaard M. Astrocyte activation of presynaptic metabotropic glutamate receptors modulates hippocampal inhibitory synaptic transmission. ACTA ACUST UNITED AC 2012; 1:307-16. [PMID: 16755304 PMCID: PMC1474019 DOI: 10.1017/s1740925x05000190] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the CNS, fine processes of astrocytes often wrap around dendrites, axons and synapses, which provides an interface where neurons and astrocytes might interact. We have reported previously that selective Ca(2+) elevation in astrocytes, by photolysis of caged Ca(2+) by o-nitrophenyl-EGTA (NP-EGTA), causes a kainite receptor-dependent increase in the frequency of spontaneous inhibitory post-synaptic potentials (sIPSCs) in neighboring interneurons in hippocampal slices. However, tetrodotoxin (TTX), which blocks action potentials, reduces the frequency of miniature IPSCs (mIPSCs) in interneurons during Ca(2+) uncaging by an unknown presynaptic mechanism. In this study we investigate the mechanism underlying the presynaptic inhibition. We show that Ca(2+) uncaging in astrocytes is accompanied by a decrease in the amplitude of evoked IPSCs (eIPSCs) in neighboring interneurons. The decreases in eIPSC amplitude and mIPSC frequency are prevented by CPPG, a group II/III metabotropic glutamate receptor (mGluR) antagonist, but not by the AMPA/kainate and NMDA receptor antagonists CNQX/CPP. Application of either the group II mGluR agonist DCG IV or the group III mGluR agonist L-AP4 decreased the amplitude of eIPSCs by a presynaptic mechanism, and both effects are blocked by CPPG. Thus, activation of mGluRs mediates the effects of Ca(2+) uncaging on mIPSCs and eIPSCs. Our results indicate that Ca(2+)-dependent release of glutamate from astrocytes can activate distinct classes of glutamate receptors and differentially modulate inhibitory synaptic transmission in hippocampal interneurons.
Collapse
Affiliation(s)
- Qing-Song Liu
- Center for Aging and Developmental Biology University of Rochester, NY, USA
| | | | | | | |
Collapse
|
187
|
Abstract
Intercellular calcium (Ca(2+)) waves (ICWs) represent the propagation of increases in intracellular Ca(2+) through a syncytium of cells and appear to be a fundamental mechanism for coordinating multicellular responses. ICWs occur in a wide diversity of cells and have been extensively studied in vitro. More recent studies focus on ICWs in vivo. ICWs are triggered by a variety of stimuli and involve the release of Ca(2+) from internal stores. The propagation of ICWs predominately involves cell communication with internal messengers moving via gap junctions or extracellular messengers mediating paracrine signaling. ICWs appear to be important in both normal physiology as well as pathophysiological processes in a variety of organs and tissues including brain, liver, retina, cochlea, and vascular tissue. We review here the mechanisms of initiation and propagation of ICWs, the key intra- and extracellular messengers (inositol 1,4,5-trisphosphate and ATP) mediating ICWs, and the proposed physiological functions of ICWs.
Collapse
Affiliation(s)
- Luc Leybaert
- Department of Basic Medical Sciences, Physiology Group, Faculty of Medicine & Health Sciences, Ghent University, Ghent, Belgium.
| | | |
Collapse
|
188
|
Zhang XM, Zhu J. Kainic Acid-induced neurotoxicity: targeting glial responses and glia-derived cytokines. Curr Neuropharmacol 2012; 9:388-98. [PMID: 22131947 PMCID: PMC3131729 DOI: 10.2174/157015911795596540] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 09/28/2010] [Accepted: 10/18/2010] [Indexed: 01/01/2023] Open
Abstract
Glutamate excitotoxicity contributes to a variety of disorders in the central nervous system, which is triggered primarily by excessive Ca2+ influx arising from overstimulation of glutamate receptors, followed by disintegration of the endoplasmic reticulum (ER) membrane and ER stress, the generation and detoxification of reactive oxygen species as well as mitochondrial dysfunction, leading to neuronal apoptosis and necrosis. Kainic acid (KA), a potent agonist to the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate class of glutamate receptors, is 30-fold more potent in neuro-toxicity than glutamate. In rodents, KA injection resulted in recurrent seizures, behavioral changes and subsequent degeneration of selective populations of neurons in the brain, which has been widely used as a model to study the mechanisms of neurodegenerative pathways induced by excitatory neurotransmitter. Microglial activation and astrocytes proliferation are the other characteristics of KA-induced neurodegeneration. The cytokines and other inflammatory molecules secreted by activated glia cells can modify the outcome of disease progression. Thus, anti-oxidant and anti-inflammatory treatment could attenuate or prevent KA-induced neurodegeneration. In this review, we summarized updated experimental data with regard to the KA-induced neurotoxicity in the brain and emphasized glial responses and glia-oriented cytokines, tumor necrosis factor-α, interleukin (IL)-1, IL-12 and IL-18.
Collapse
Affiliation(s)
- Xing-Mei Zhang
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
189
|
Bradley SJ, Challiss RJ. G protein-coupled receptor signalling in astrocytes in health and disease: A focus on metabotropic glutamate receptors. Biochem Pharmacol 2012; 84:249-59. [DOI: 10.1016/j.bcp.2012.04.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/02/2012] [Accepted: 04/09/2012] [Indexed: 02/03/2023]
|
190
|
Losi G, Cammarota M, Carmignoto G. The role of astroglia in the epileptic brain. Front Pharmacol 2012; 3:132. [PMID: 22807916 PMCID: PMC3395023 DOI: 10.3389/fphar.2012.00132] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 06/23/2012] [Indexed: 11/13/2022] Open
Abstract
Epilepsies comprise a family of multifactorial neurological disorders that affect at least 50 million people worldwide. Despite a long history of neurobiological and clinical studies the mechanisms that lead the brain network to a hyperexcitable state and to the intense, massive neuronal discharges reflecting a seizure episode are only partially defined. Most epilepsies of genetic origin are related to mutations in ionic channels that cause neuronal hyperexcitability. However, idiopathic epilepsies of unclear origin represent the majority of these brain disorders. A large body of evidence suggests that in the epileptic brain neurons are not the only players. Indeed, the glial cell astrocyte is known to be morphologically and functionally altered in different types of epilepsy. Although it is unclear whether these astrocyte dysfunctions can have a causative role in epileptogenesis, the hypothesis that astrocytes contribute to epileptiform activities recently received a considerable experimental support. Notably, currently used antiepileptic drugs, that act mainly on neuronal ion channels, are ineffective in a large group of patients. Clarifying astrocyte functions in the epileptic brain tissue could unveil astrocytes as novel therapeutic targets. In this review we present first a short overview on the role of astrocytes in the epileptic brain starting from the "historical" observations on their fundamental modulation of brain homeostasis, such as the control of water content, ionic equilibrium, and neurotransmitters concentrations. We then focus our review on most recent studies that hint at a distinct contribution of these cells in the generation of focal epileptiform activities.
Collapse
Affiliation(s)
- Gabriele Losi
- Institute of Neuroscience of the National Research Council and Department of Biomedical Sciences, University of Padova Padova, Italy
| | | | | |
Collapse
|
191
|
Theis M, Giaume C. Connexin-based intercellular communication and astrocyte heterogeneity. Brain Res 2012; 1487:88-98. [PMID: 22789907 DOI: 10.1016/j.brainres.2012.06.045] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 06/10/2012] [Accepted: 06/13/2012] [Indexed: 12/21/2022]
Abstract
This review gives an overview of the current knowledge on connexin-mediated communication in astrocytes, covering gap junction and hemichannel functions mediated by connexins. Astroglia is the main brain cell type that expresses the largest amount of connexin and exhibits high level of gap junctional communication compared to neurons and oligodendrocytes. However, in certain developmental and regional situations, astrocytes are also coupled with oligodendrocytes and neurons. This heterotypic coupling is infrequent and minor in terms of extent of the coupling area, which does not mean that it is not important in terms of cell interaction. Here, we present an update on heterogeneity of connexin expression and function at the molecular, subcellular, cellular and networking levels. Interestingly, while astrocytes were initially considered as a homogenous population, there is now increasing evidence for morphological, developmental, molecular and physiological heterogeneity of astrocytes. Consequently, the specificity of gap junction channel- and hemichannel-mediated communication, which tends to synchronize cell populations, is also a parameter to take into account when neuroglial interactions are investigated. This article is part of a Special Issue entitled Electrical Synapses.
Collapse
Affiliation(s)
- Martin Theis
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Sigmund-Freud-Straße 25, D-53105 Bonn, Germany.
| | | |
Collapse
|
192
|
Devor A, Sakadžić S, Srinivasan VJ, Yaseen MA, Nizar K, Saisan PA, Tian P, Dale AM, Vinogradov SA, Franceschini MA, Boas DA. Frontiers in optical imaging of cerebral blood flow and metabolism. J Cereb Blood Flow Metab 2012; 32:1259-76. [PMID: 22252238 PMCID: PMC3390808 DOI: 10.1038/jcbfm.2011.195] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In vivo optical imaging of cerebral blood flow (CBF) and metabolism did not exist 50 years ago. While point optical fluorescence and absorption measurements of cellular metabolism and hemoglobin concentrations had already been introduced by then, point blood flow measurements appeared only 40 years ago. The advent of digital cameras has significantly advanced two-dimensional optical imaging of neuronal, metabolic, vascular, and hemodynamic signals. More recently, advanced laser sources have enabled a variety of novel three-dimensional high-spatial-resolution imaging approaches. Combined, as we discuss here, these methods are permitting a multifaceted investigation of the local regulation of CBF and metabolism with unprecedented spatial and temporal resolution. Through multimodal combination of these optical techniques with genetic methods of encoding optical reporter and actuator proteins, the future is bright for solving the mysteries of neurometabolic and neurovascular coupling and translating them to clinical utility.
Collapse
Affiliation(s)
- Anna Devor
- Department of Neurosciences, UCSD, La Jolla, CA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Kirischuk S, Parpura V, Verkhratsky A. Sodium dynamics: another key to astroglial excitability? Trends Neurosci 2012; 35:497-506. [PMID: 22633141 DOI: 10.1016/j.tins.2012.04.003] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 04/06/2012] [Accepted: 04/10/2012] [Indexed: 11/19/2022]
Abstract
Astroglial excitability is largely mediated by fluctuations in intracellular ion concentrations. In addition to generally acknowledged Ca²⁺ excitability of astroglia, recent studies have demonstrated that neuronal activity triggers transient increases in the cytosolic Na⁺ concentration ([Na⁺](i)) in perisynaptic astrocytes. These [Na⁺](i) transients are controlled by multiple Na⁺-permeable channels and Na⁺-dependent transporters; spatiotemporally organized [Na⁺](i) dynamics in turn regulate diverse astroglial homeostatic responses such as metabolic/signaling utilization of lactate and glutamate, transmembrane transport of neurotransmitters and K⁺ buffering. In particular, near-membrane [Na⁺](i) transients determine the rate and the direction of the transmembrane transport of GABA and Ca²⁺. We discuss here the role of Na⁺ in the regulation of various systems that mediate fast bidirectional communication between neurones and glia at the single synapse level.
Collapse
Affiliation(s)
- Sergei Kirischuk
- Institute of Physiology and Pathophysiology, Universal Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | |
Collapse
|
194
|
Exocytosis in astrocytes: transmitter release and membrane signal regulation. Neurochem Res 2012; 37:2351-63. [PMID: 22528833 DOI: 10.1007/s11064-012-0773-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/28/2012] [Accepted: 03/29/2012] [Indexed: 12/14/2022]
Abstract
Astrocytes, a type of glial cells in the brain, are eukaryotic cells, and a hallmark of these are subcellular organelles, such as secretory vesicles. In neurons vesicles play a key role in signaling. Upon a stimulus-an increase in cytosolic concentration of free Ca(2+) ([Ca(2+)](i))-the membrane of vesicle fuses with the presynaptic plasma membrane, allowing the exit of neurotransmitters into the extracellular space and their diffusion to the postsynaptic receptors. For decades it was thought that such vesicle-based mechanisms of gliotransmitter release were not present in astrocytes. However, in the last 30 years experimental evidence showed that astrocytes are endowed with mechanisms for vesicle- and non-vesicle-based gliotransmitter release mechanisms. The aim of this review is to focus on exocytosis, which may play a role in gliotransmission and also in other forms of cell-to-cell communication, such as the delivery of transporters, ion channels and antigen presenting molecules to the cell surface.
Collapse
|
195
|
Wang F, Smith NA, Xu Q, Fujita T, Baba A, Matsuda T, Takano T, Bekar L, Nedergaard M. Astrocytes modulate neural network activity by Ca²+-dependent uptake of extracellular K+. Sci Signal 2012; 5:ra26. [PMID: 22472648 DOI: 10.1126/scisignal.2002334] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Astrocytes are electrically nonexcitable cells that display increases in cytosolic calcium ion (Ca²+) in response to various neurotransmitters and neuromodulators. However, the physiological role of astrocytic Ca²+ signaling remains controversial. We show here that astrocytic Ca²+ signaling ex vivo and in vivo stimulated the Na+,K+-ATPase (Na+- and K+-dependent adenosine triphosphatase), leading to a transient decrease in the extracellular potassium ion (K+) concentration. This in turn led to neuronal hyperpolarization and suppressed baseline excitatory synaptic activity, detected as a reduced frequency of excitatory postsynaptic currents. Synaptic failures decreased in parallel, leading to an increase in synaptic fidelity. The net result was that astrocytes, through active uptake of K+, improved the signal-to-noise ratio of synaptic transmission. Active control of the extracellular K+ concentration thus provides astrocytes with a simple yet powerful mechanism to rapidly modulate network activity.
Collapse
Affiliation(s)
- Fushun Wang
- Division of Glia Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical School, Rochester, NY 14640, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Miguel TT, Gomes KS, Nunes-de-Souza RL. Contrasting effects of nitric oxide and corticotropin- releasing factor within the dorsal periaqueductal gray on defensive behavior and nociception in mice. Braz J Med Biol Res 2012; 45:299-307. [PMID: 22450373 PMCID: PMC3854172 DOI: 10.1590/s0100-879x2012007500043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 03/14/2012] [Indexed: 01/28/2024] Open
Abstract
The anxiogenic and antinociceptive effects produced by glutamate N-methyl-D-aspartate receptor activation within the dorsal periaqueductal gray (dPAG) matter have been related to nitric oxide (NO) production, since injection of NO synthase (NOS) inhibitors reverses these effects. dPAG corticotropin-releasing factor receptor (CRFr) activation also induces anxiety-like behavior and antinociception, which, in turn, are selectively blocked by local infusion of the CRF type 1 receptor (CRFr1) antagonist, NBI 27914 [5-chloro-4-(N-(cyclopropyl)methyl-N-propylamino)-2-methyl-6-(2,4,6-trichlorophenyl)aminopyridine]. Here, we determined whether i) the blockade of the dPAG by CRFr1 attenuates the anxiogenic/antinociceptive effects induced by local infusion of the NO donor, NOC-9 [6-(2-hydroxy-1-methyl-2-nitrosohydrazino)-N-methyl-1-hexanamine], and ii) the anxiogenic/antinociceptive effects induced by intra-dPAG CRF are prevented by local infusion of N(ω)-propyl-L-arginine (NPLA), a neuronal NOS inhibitor, in mice. Male Swiss mice (12 weeks old, 25-35 g, N = 8-14/group) were stereotaxically implanted with a 7-mm cannula aimed at the dPAG. Intra-dPAG NOC-9 (75 nmol) produced defensive-like behavior (jumping and running) and antinociception (assessed by the formalin test). Both effects were reversed by prior local infusion of NBI 27914 (2 nmol). Conversely, intra-dPAG NPLA (0.4 nmol) did not modify the anxiogenic/antinociceptive effects of CRF (150 pmol). These results suggest that CRFr1 plays an important role in the defensive behavior and antinociception produced by NO within the dPAG. In contrast, the anxiogenic and antinociceptive effects produced by intra-dPAG CRF are not related to NO synthesis in this limbic midbrain structure.
Collapse
Affiliation(s)
- T T Miguel
- Programa Interinstitucional de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de São Carlos, Araraquara, SP, Brasil
| | | | | |
Collapse
|
197
|
Abstract
Astroglial cells, due to their passive electrical properties, were long considered subservient to neurons and to merely provide the framework and metabolic support of the brain. Although astrocytes do play such structural and housekeeping roles in the brain, these glial cells also contribute to the brain's computational power and behavioural output. These more active functions are endowed by the Ca2+-based excitability displayed by astrocytes. An increase in cytosolic Ca2+ levels in astrocytes can lead to the release of signalling molecules, a process termed gliotransmission, via the process of regulated exocytosis. Dynamic components of astrocytic exocytosis include the vesicular-plasma membrane secretory machinery, as well as the vesicular traffic, which is governed not only by general cytoskeletal elements but also by astrocyte-specific IFs (intermediate filaments). Gliotransmitters released into the ECS (extracellular space) can exert their actions on neighbouring neurons, to modulate synaptic transmission and plasticity, and to affect behaviour by modulating the sleep homoeostat. Besides these novel physiological roles, astrocytic Ca2+ dynamics, Ca2+-dependent gliotransmission and astrocyte–neuron signalling have been also implicated in brain disorders, such as epilepsy. The aim of this review is to highlight the newer findings concerning Ca2+ signalling in astrocytes and exocytotic gliotransmission. For this we report on Ca2+ sources and sinks that are necessary and sufficient for regulating the exocytotic release of gliotransmitters and discuss secretory machinery, secretory vesicles and vesicle mobility regulation. Finally, we consider the exocytotic gliotransmission in the modulation of synaptic transmission and plasticity, as well as the astrocytic contribution to sleep behaviour and epilepsy.
Collapse
|
198
|
Nualart-Marti A, Solsona C, Fields RD. Gap junction communication in myelinating glia. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:69-78. [PMID: 22326946 DOI: 10.1016/j.bbamem.2012.01.024] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 01/17/2012] [Accepted: 01/26/2012] [Indexed: 10/14/2022]
Abstract
Gap junction communication is crucial for myelination and axonal survival in both the peripheral nervous system (PNS) and central nervous system (CNS). This review examines the different types of gap junctions in myelinating glia of the PNS and CNS (Schwann cells and oligodendrocytes respectively), including their functions and involvement in neurological disorders. Gap junctions mediate intercellular communication among Schwann cells in the PNS, and among oligodendrocytes and between oligodendrocytes and astrocytes in the CNS. Reflexive gap junctions mediating transfer between different regions of the same cell promote communication between cellular compartments of myelinating glia that are separated by layers of compact myelin. Gap junctions in myelinating glia regulate physiological processes such as cell growth, proliferation, calcium signaling, and participate in extracellular signaling via release of neurotransmitters from hemijunctions. In the CNS, gap junctions form a glial network between oligodendrocytes and astrocytes. This transcellular communication is hypothesized to maintain homeostasis by facilitating restoration of membrane potential after axonal activity via electrical coupling and the re-distribution of potassium ions released from axons. The generation of transgenic mice for different subsets of connexins has revealed the contribution of different connexins in gap junction formation and illuminated new subcellular mechanisms underlying demyelination and cognitive defects. Alterations in metabolic coupling have been reported in animal models of X-linked Charcot-Marie-Tooth disease (CMTX) and Pelizaeus-Merzbarcher-like disease (PMLD), which are caused by mutations in the genes encoding for connexin 32 and connexin 47 respectively. Future research identifying the expression and regulation of gap junctions in myelinating glia is likely to provide a better understanding of myelinating glia in nervous system function, plasticity, and disease. This article is part of a Special Issue entitled: The Communicating junctions, roles and dysfunctions.
Collapse
Affiliation(s)
- Anna Nualart-Marti
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.
| | | | | |
Collapse
|
199
|
Nedergaard M, Verkhratsky A. Artifact versus reality--how astrocytes contribute to synaptic events. Glia 2012; 60:1013-23. [PMID: 22228580 DOI: 10.1002/glia.22288] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 12/05/2011] [Indexed: 11/11/2022]
Abstract
The neuronal doctrine, developed a century ago regards neuronal networks as the sole substrate of higher brain function. Recent advances in glial physiology have promoted an alternative hypothesis, which places information processing in the brain into integrated neuronal-glial networks utilizing both binary (neuronal action potentials) and analogue (diffusional propagation of second messengers/metabolites through gap junctions or transmitters through the interstitial space) signal encoding. It has been proposed that the feed-forward and feed-back communication between these two types of neural cells, which underlies information transfer and processing, is accomplished by the release of neurotransmitters from neuronal terminals as well as from astroglial processes. Understanding of this subject, however, remains incomplete and important questions and controversies require resolution. Here we propose that the primary function of perisynaptic glial processes is to create an "astroglial cradle" that shields the synapse from a multitude of extrasynaptic signaling events and provides for multifaceted support and long-term plasticity of synaptic contacts through variety of mechanisms, which may not necessarily involve the release of "glio" transmitters.
Collapse
Affiliation(s)
- Maiken Nedergaard
- Division of Glia Disease and Therapeutics, Department of Neurosurgery, Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY 14580, USA.
| | | |
Collapse
|
200
|
Calcium signaling in cerebral vasoregulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:833-58. [PMID: 22453972 DOI: 10.1007/978-94-007-2888-2_37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The tight coupling of regional neurometabolic activity with synaptic activity and regional cerebral blood perfusion constitutes a single functional unit, described generally as a neurovascular unit. This is central to any discussion of haemodynamic response linked to any neuronal activation. In normal as well as in pathologic conditions, neurons, astrocytes and endothelial cells of the vasculature interact to generate the complex activity-induced cerebral haemodynamic responses, with astrocytes not only partaking in the signaling but actually controlling it in many cases. Neurons and astrocytes have highly integrated signaling mechanisms, yet they form two separate networks. Bidirectional neuron-astrocyte interactions are crucial for the function and survival of the central nervous system. The primary purpose of such regulation is the homeostasis of the brain's microenvironment. In the maintenance of such homeostasis, astrocytic calcium response is a crucial variable in determining neurovascular control. Future work will be directed towards resolving the nature and extent of astrocytic calcium-mediated mechanisms for gene transcription, in modelling neurovascular control, and in determining calcium sensitive imaging assays that can capture disease variables.
Collapse
|