151
|
Zhou Y, Ma W, Zeng Y, Yan C, Zhao Y, Wang P, Shi H, Lu W, Zhang Y. Intrauterine antibiotic exposure affected neonatal gut bacteria and infant growth speed. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117901. [PMID: 34371267 DOI: 10.1016/j.envpol.2021.117901] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/29/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Although abundant evidence has suggested that early-life antibiotic exposure was associated with adipogenesis later in life, limited data were available on the effect of intrauterine antibiotic exposure on infant growth and growth speed. Additionally, few studies have investigated the role of the neonatal gut microbiota in the above association. In this study, we examined the association between intrauterine cumulative antibiotic exposure and infant growth and explored the potential role of the neonatal gut microbiota in the association. 295 mother-child pairs from the Shanghai Maternal-Child Pairs Cohort (MCPC) study were included, and meconium samples and infant growth measurements were assessed. Z-scores of length-for-age, weight-for-age (weight-for-age), and body mass index (BMI)-for-age (BMI-for-age) were calculated. Eighteen common antibiotics were measured in meconium. Multivariable linear regression models were applied to test the interrelationships between antibiotic exposure, diversity indicators, and the relative abundance of selected bacterial taxa from phylum to genus levels from least absolute shrinkage and selection operator (LASSO) and infant growth indicators. The detection rates of the 18 antibiotics, except for chlortetracycline, penicillin, and chloramphenicol, were below 10 %. Penicillin was found to be positively associated with infant growth at birth and with growth speed from 2 to 6 months. The Pielou and Simpson indexes were negatively associated with meconium penicillin. Nominally significant associations between penicillin and the relative abundances of several bacterial taxa from the phyla Proteobacteria, Bacteroidetes, and Firmicutes were found. The Pielou and Simpson indexes were also found to be negatively associated with infant growth. Among taxa selected from LASSO regression, the relative abundances of the phyla Actinobacteria and Firmicutes and order Bifidobacteriales were found to be significantly associated with weight and BMI growth speeds from 2 to 6 months. In conclusion, intrauterine antibiotic exposure can affect infant growth. The neonatal gut microbiota might play a role in the abovementioned association.
Collapse
Affiliation(s)
- Yuhan Zhou
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai, 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Wenjuan Ma
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; School of Nursing and Health Management, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Yu Zeng
- Department of Pathology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Chonghuai Yan
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yingya Zhao
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Pengpeng Wang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Huijing Shi
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Wenwei Lu
- School of Science and Technology, Jiangnan University, Jiangsu, 214122, China
| | - Yunhui Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai, 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
152
|
Probiotics Treatment of Leg Diseases in Broiler Chickens: a Review. Probiotics Antimicrob Proteins 2021; 14:415-425. [PMID: 34757604 DOI: 10.1007/s12602-021-09869-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 12/12/2022]
Abstract
Normal development and growth of bones are critical for poultry. With the rapid growth experienced by broiler chickens, higher incidences of leg weakness and lameness are common problems in adolescent meat-type poultry that present huge economic and welfare issues. Leg disorders such as angular bone deformities and tibial dyschondroplasia have become common in broilers and are associated with poor growth, high mortality rates, increased carcass condemnation, and downgrading at slaughter. Probiotics have shown promise for a variety of health purposes, including preventing diarrhea, elevating carcass quality, and promoting growth of the poultry. In addition, recent studies have indicated that probiotics can maintain the homeostasis of the gut microbiota and improve the health of the gastrointestinal tract, which confers a potentially beneficial effect on bone health. This review mainly describes the occurrence of broiler leg disease and the role of probiotics in bone health through regulating the gut microbiota and improving intestinal function, thus providing a relevant theoretical basis for probiotics to hinder the development of skeletal disorders in broiler chickens.
Collapse
|
153
|
Nabwera HM, Espinoza JL, Worwui A, Betts M, Okoi C, Sesay AK, Bancroft R, Agbla SC, Jarju S, Bradbury RS, Colley M, Jallow AT, Liu J, Houpt ER, Prentice AM, Antonio M, Bernstein RM, Dupont CL, Kwambana-Adams BA. Interactions between fecal gut microbiome, enteric pathogens, and energy regulating hormones among acutely malnourished rural Gambian children. EBioMedicine 2021; 73:103644. [PMID: 34695658 PMCID: PMC8550991 DOI: 10.1016/j.ebiom.2021.103644] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The specific roles that gut microbiota, known pathogens, and host energy-regulating hormones play in the pathogenesis of non-edematous severe acute malnutrition (marasmus SAM) and moderate acute malnutrition (MAM) during outpatient nutritional rehabilitation are yet to be explored. METHODS We applied an ensemble of sample-specific (intra- and inter-modality) association networks to gain deeper insights into the pathogenesis of acute malnutrition and its severity among children under 5 years of age in rural Gambia, where marasmus SAM is most prevalent. FINDINGS Children with marasmus SAM have distinct microbiome characteristics and biologically-relevant multimodal biomarkers not observed among children with moderate acute malnutrition. Marasmus SAM was characterized by lower microbial richness and biomass, significant enrichments in Enterobacteriaceae, altered interactions between specific Enterobacteriaceae and key energy regulating hormones and their receptors. INTERPRETATION Our findings suggest that marasmus SAM is characterized by the collapse of a complex system with nested interactions and key associations between the gut microbiome, enteric pathogens, and energy regulating hormones. Further exploration of these systems will help inform innovative preventive and therapeutic interventions. FUNDING The work was supported by the UK Medical Research Council (MRC; MC-A760-5QX00) and the UK Department for International Development (DFID) under the MRC/DFID Concordat agreement; Bill and Melinda Gates Foundation (OPP 1066932) and the National Institute of Medical Research (NIMR), UK. This network analysis was supported by NIH U54GH009824 [CLD] and NSF OCE-1558453 [CLD].
Collapse
Affiliation(s)
- Helen M Nabwera
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Josh L Espinoza
- J. Craig Venture Institute, 4120 Capricorn Ln, La Jolla, CA 92037, USA; Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Archibald Worwui
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, Banjul, PO Box 273, The Gambia
| | - Modupeh Betts
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Catherine Okoi
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, Banjul, PO Box 273, The Gambia
| | - Abdul K Sesay
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, Banjul, PO Box 273, The Gambia
| | - Rowan Bancroft
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, Banjul, PO Box 273, The Gambia
| | - Schadrac C Agbla
- Department of Health Data Science, University of Liverpool, Liverpool, UK
| | - Sheikh Jarju
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, Banjul, PO Box 273, The Gambia
| | | | - Mariama Colley
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, Banjul, PO Box 273, The Gambia
| | - Amadou T Jallow
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, Banjul, PO Box 273, The Gambia
| | - Jie Liu
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Eric R Houpt
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Andrew M Prentice
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, Banjul, PO Box 273, The Gambia
| | - Martin Antonio
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, Banjul, PO Box 273, The Gambia; Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Robin M Bernstein
- Growth and Development Lab, Department of Anthropology, University of Colorado, Boulder, CO, United States of America
| | | | - Brenda A Kwambana-Adams
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London, United Kingdom.
| |
Collapse
|
154
|
Wan C, Chen S, Zhao K, Ren Z, Peng L, Xia H, Wei H, Yu B. Serum Untargeted Metabolism Reveals the Mechanism of L. plantarum ZDY2013 in Alleviating Kidney Injury Induced by High-Salt Diet. Nutrients 2021; 13:nu13113920. [PMID: 34836175 PMCID: PMC8620752 DOI: 10.3390/nu13113920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 12/24/2022] Open
Abstract
A high-salt diet (HSD) is one of the key risk factors for hypertension and kidney injury. In this study, a HSD C57BL/6J mice model was established with 4% NaCl, and then different concentrations of Lactobacillus plantarum ZDY2013 were intragastrically administered for 2 weeks to alleviate HSD-induced renal injury. For the study, 16S rRNA gene sequencing, non-targeted metabonomics, real-time fluorescent quantitative PCR, and Masson’s staining were used to investigate the mechanism of L. plantarum ZDY2013 in alleviating renal damage. Results showed that HSD caused intestinal inflammation and changed the intestinal permeability of mice, disrupted the balance of intestinal flora, and increased toxic metabolites (tetrahydrocorticosteron (THB), 3-methyhistidine (3-MH), creatinine, urea, and L-kynurenine), resulting in serious kidney damage. Interestingly, L. plantarum ZDY2013 contributed to reconstructing the intestinal flora of mice by increasing the level of Lactobacillus and Bifidobacterium and decreasing that of Prevotella and Bacteroides. Moreover, the reconstructed intestinal microbiota significantly changed the concentration of the metabolites of hosts through metabolic pathways, including TCA cycle, ABC transport, purine metabolism, and histidine metabolism. The content of uremic toxins such as L-kynurenine, creatinine, and urea in the serum of mice was found to be decreased by L. plantarum ZDY2013, which resulted in renal injury alleviation. Our data suggest that L. plantarum ZDY2013 can indeed improve chronic kidney injury by regulating intestinal flora, strengthening the intestinal barrier, limiting inflammatory response, and reducing uremic toxins.
Collapse
Affiliation(s)
- Cuixiang Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (C.W.); (S.C.); (K.Z.); (Z.R.); (L.P.); (H.W.)
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China;
| | - Shufang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (C.W.); (S.C.); (K.Z.); (Z.R.); (L.P.); (H.W.)
| | - Kui Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (C.W.); (S.C.); (K.Z.); (Z.R.); (L.P.); (H.W.)
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China;
| | - Zhongyue Ren
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (C.W.); (S.C.); (K.Z.); (Z.R.); (L.P.); (H.W.)
| | - Lingling Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (C.W.); (S.C.); (K.Z.); (Z.R.); (L.P.); (H.W.)
| | - Huiling Xia
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China;
| | - Hua Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (C.W.); (S.C.); (K.Z.); (Z.R.); (L.P.); (H.W.)
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China;
| | - Bo Yu
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China;
- Correspondence: ; Tel.: +86-791-8833-4578
| |
Collapse
|
155
|
Cao RR, He P, Lei SF. Novel microbiota-related gene set enrichment analysis identified osteoporosis associated gut microbiota from autoimmune diseases. J Bone Miner Metab 2021; 39:984-996. [PMID: 34338852 DOI: 10.1007/s00774-021-01247-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Gut microbiota is now considered to be a hidden organ that interacts bidirectionally with cellular responses in numerous organs belonged to the immune, bone, and nervous systems. Here, we aimed to investigate the relationships between gut microbiota and complex diseases by utilizing multiple publicly available genome-wide association. MATERIALS AND METHODS We applied a novel microbiota-related gene set enrichment analysis approach to detect the associations between gut microbiota and complex diseases by processing genome-wide association studies (GWASs) data sets of six autoimmune diseases (including celiac disease (CeD), inflammatory bowel diseases (IBD), multiple sclerosis (MS), primary biliary cirrhosis (PBC), type 1 diabetes (T1D) and primary sclerosing cholangitis (PSC)) and osteoporosis (OP). RESULTS The family Oxalobacteraceae and genus Candidatus_Soleaferrea were found to be correlated with all of the six autoimmune diseases (FDR adjusted P < 0.05). Moreover, we observed that the six autoimmune diseases except PBC shared 3 overlapping features (including family Peptostreptococcaceae, order Gastranaerophilales and genus Romboutsia). For all of the six autoimmune diseases and BMDs (LS-BMD and TB-BMD), an association signal was observed for genus Candidatus_Soleaferrea (FDR adjusted P < 0.05). Notably, FA / FN-BMD shared the maximum number of overlapping microbial features (e.g., genus Ruminococcaceae_UCG009, Erysipelatoclostridium and Ruminococcaceae_UCG013). CONCLUSION Our study found that part of the gut microbiota could be novel regulators of BMDs and autoimmune diseases via the effects of its metabolites and may lead to a better understanding of the role played by gut microbiota in the communication of the microbiota-skeletal/immune-gut axis.
Collapse
Affiliation(s)
- Rong-Rong Cao
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Pei He
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Shu-Feng Lei
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China.
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, People's Republic of China.
| |
Collapse
|
156
|
Chabert É. [Interaction between intestinal bacteria compensates the deleterious effects of undernutrition in Drosophila]. Med Sci (Paris) 2021; 37:942-944. [PMID: 34647885 DOI: 10.1051/medsci/2021158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Émilie Chabert
- École normale supérieure de Lyon, Département de biologie, Master Biosciences, Lyon, France
| |
Collapse
|
157
|
Zhang H, Majdeddin M, Gaublomme D, Taminiau B, Boone M, Elewaut D, Daube G, Josipovic I, Zhang K, Michiels J. 25-hydroxycholecalciferol reverses heat induced alterations in bone quality in finisher broilers associated with effects on intestinal integrity and inflammation. J Anim Sci Biotechnol 2021; 12:104. [PMID: 34620220 PMCID: PMC8499578 DOI: 10.1186/s40104-021-00627-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/05/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Alterations in ambient temperature have been associated with multiple detrimental effects on broilers such as intestinal barrier disruption and dysbiosis resulting in systemic inflammation. Inflammation and 25-hydroxycholecalciferol (25-OH-D3) have shown to play a negative and positive role, respectively, in the regulation of bone mass. Hence the potential of 25-OH-D3 in alleviating heat induced bone alterations and its mechanisms was studied. RESULTS Heat stress (HS) directly induced a decrease in tibia material properties and bone mass, as demonstrated by lower mineral content, and HS caused a notable increase in intestinal permeability. Treatment with dietary 25-OH-D3 reversed the HS-induced bone loss and barrier leak. Broilers suffering from HS exhibited dysbiosis and increased expression of inflammatory cytokines in the ileum and bone marrow, as well as increased osteoclast number and activity. The changes were prevented by dietary 25-OH-D3 administration. Specifically, dietary 25-OH-D3 addition decreased abundance of B- and T-cells in blood, and the expression of inflammatory cytokines, especially TNF-α, in both the ileum and bone marrow, but did not alter the diversity and population or composition of major bacterial phyla. With regard to bone remodeling, dietary 25-OH-D3 supplementation was linked to a decrease in serum C-terminal cross-linked telopeptide of type I collagen reflecting bone resorption and a concomitant decrement in osteoclast-specific marker genes expression (e.g. cathepsin K), whereas it did not apparently change serum bone formation markers during HS. CONCLUSIONS These data underscore the damage of HS to intestinal integrity and bone health, as well as that dietary 25-OH-D3 supplementation was identified as a potential therapy for preventing these adverse effects.
Collapse
Affiliation(s)
- Huaiyong Zhang
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000, Ghent, Belgium.,Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, 611130, Sichuan, China
| | - Maryam Majdeddin
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000, Ghent, Belgium
| | - Djoere Gaublomme
- Unit Molecular Immunology and Inflammation, VIB Center for Inflammation Research, Ghent University and Department of Rheumatology, Ghent University Hospital, 9000, Ghent, Belgium
| | - Bernard Taminiau
- Department of Food Sciences - Microbiology, University of Liège, 4000, Liège, Belgium
| | - Matthieu Boone
- Ghent University Centre for X-ray Tomography (UGCT), Ghent University, 9000, Ghent, Belgium.,Department of Physics and Astronomy, Radiation Physics Research Group, Ghent University, 9000, Ghent, Belgium
| | - Dirk Elewaut
- Unit Molecular Immunology and Inflammation, VIB Center for Inflammation Research, Ghent University and Department of Rheumatology, Ghent University Hospital, 9000, Ghent, Belgium
| | - George Daube
- Department of Food Sciences - Microbiology, University of Liège, 4000, Liège, Belgium
| | - Iván Josipovic
- Ghent University Centre for X-ray Tomography (UGCT), Ghent University, 9000, Ghent, Belgium
| | - Keying Zhang
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, 611130, Sichuan, China
| | - Joris Michiels
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
158
|
Abstract
INTRODUCTION Obesity is a major public health concern with an increasing prevalence. Recent studies suggest an influence of gastrointestinal microbiota on obesity. Consequently, microbiota restoration therapies are being considered as potential management. We present data on microbiome markers and the future of microbiota therapeutics for obesity. AREAS COVERED We summarize the pathogenesis of obesity, relationship between gut microbiota and obesity, use of microbiota-based therapies. Data were gathered by a literature search of articles in PubMed from the date of inception till August 2020. Keywords used were 'gut microbiota,' 'gut microbiome,' 'microbiota,' 'microbiome,' 'obesity,' and 'obesity and fecal microbiota transplantation' as MeSH terms. EXPERT OPINION The direct relationship of gut microbiota in causing obesity needs exploration. Because of the scarcity of human studies, the utility of microbiota-based therapies as treatment remains uncertain and the use of microbiome restoration for obesity should be restricted to research settings. To evaluate the efficacy of microbiota restoration, studies using these therapies as an adjunct with diet and lifestyle should be conducted. Once relationships between bacterial strains and the human metabolic profile are determined, these strains could be cultured for transfer to obese patients. Such advancement could help in tailoring personalized therapies for obese persons.
Collapse
Affiliation(s)
- Kanika Sehgal
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sahil Khanna
- Mayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| |
Collapse
|
159
|
The "Adipo-Cerebral" Dialogue in Childhood Obesity: Focus on Growth and Puberty. Physiopathological and Nutritional Aspects. Nutrients 2021; 13:nu13103434. [PMID: 34684432 PMCID: PMC8539184 DOI: 10.3390/nu13103434] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 01/08/2023] Open
Abstract
Overweight and obesity in children and adolescents are overwhelming problems in western countries. Adipocytes, far from being only fat deposits, are capable of endocrine functions, and the endocrine activity of adipose tissue, resumable in adipokines production, seems to be a key modulator of central nervous system function, suggesting the existence of an “adipo-cerebral axis.” This connection exerts a key role in children growth and puberty development, and it is exemplified by the leptin–kisspeptin interaction. The aim of this review was to describe recent advances in the knowledge of adipose tissue endocrine functions and their relations with nutrition and growth. The peculiarities of major adipokines are briefly summarized in the first paragraph; leptin and its interaction with kisspeptin are focused on in the second paragraph; the third paragraph deals with the regulation of the GH-IGF axis, with a special focus on the model represented by growth hormone deficiency (GHD); finally, old and new nutritional aspects are described in the last paragraph.
Collapse
|
160
|
Glowacki RWP, Engelhart MJ, Ahern PP. Controlled Complexity: Optimized Systems to Study the Role of the Gut Microbiome in Host Physiology. Front Microbiol 2021; 12:735562. [PMID: 34646255 PMCID: PMC8503645 DOI: 10.3389/fmicb.2021.735562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/24/2021] [Indexed: 12/26/2022] Open
Abstract
The profound impact of the gut microbiome on host health has led to a revolution in biomedical research, motivating researchers from disparate fields to define the specific molecular mechanisms that mediate host-beneficial effects. The advent of genomic technologies allied to the use of model microbiomes in gnotobiotic mouse models has transformed our understanding of intestinal microbial ecology and the impact of the microbiome on the host. However, despite incredible advances, our understanding of the host-microbiome dialogue that shapes host physiology is still in its infancy. Progress has been limited by challenges associated with developing model systems that are both tractable enough to provide key mechanistic insights while also reflecting the enormous complexity of the gut ecosystem. Simplified model microbiomes have facilitated detailed interrogation of transcriptional and metabolic functions of the microbiome but do not recapitulate the interactions seen in complex communities. Conversely, intact complex communities from mice or humans provide a more physiologically relevant community type, but can limit our ability to uncover high-resolution insights into microbiome function. Moreover, complex microbiomes from lab-derived mice or humans often do not readily imprint human-like phenotypes. Therefore, improved model microbiomes that are highly defined and tractable, but that more accurately recapitulate human microbiome-induced phenotypic variation are required to improve understanding of fundamental processes governing host-microbiome mutualism. This improved understanding will enhance the translational relevance of studies that address how the microbiome promotes host health and influences disease states. Microbial exposures in wild mice, both symbiotic and infectious in nature, have recently been established to more readily recapitulate human-like phenotypes. The development of synthetic model communities from such "wild mice" therefore represents an attractive strategy to overcome the limitations of current approaches. Advances in microbial culturing approaches that allow for the generation of large and diverse libraries of isolates, coupled to ever more affordable large-scale genomic sequencing, mean that we are now ideally positioned to develop such systems. Furthermore, the development of sophisticated in vitro systems is allowing for detailed insights into host-microbiome interactions to be obtained. Here we discuss the need to leverage such approaches and highlight key challenges that remain to be addressed.
Collapse
Affiliation(s)
- Robert W. P. Glowacki
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Morgan J. Engelhart
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Philip P. Ahern
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
161
|
Horizontal gene transfer-mediated bacterial strain variation affects host fitness in Drosophila. BMC Biol 2021; 19:187. [PMID: 34565363 PMCID: PMC8474910 DOI: 10.1186/s12915-021-01124-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023] Open
Abstract
Background How microbes affect host fitness and environmental adaptation has become a fundamental research question in evolutionary biology. To better understand the role of microbial genomic variation for host fitness, we tested for associations of bacterial genomic variation and Drosophila melanogaster offspring number in a microbial Genome Wide Association Study (GWAS). Results We performed a microbial GWAS, leveraging strain variation in the genus Gluconobacter, a genus of bacteria that are commonly associated with Drosophila under natural conditions. We pinpoint the thiamine biosynthesis pathway (TBP) as contributing to differences in fitness conferred to the fly host. While an effect of thiamine on fly development has been described, we show that strain variation in TBP between bacterial isolates from wild-caught D. melanogaster contributes to variation in offspring production by the host. By tracing the evolutionary history of TBP genes in Gluconobacter, we find that TBP genes were most likely lost and reacquired by horizontal gene transfer (HGT). Conclusion Our study emphasizes the importance of strain variation and highlights that HGT can add to microbiome flexibility and potentially to host adaptation. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01124-y.
Collapse
|
162
|
Gut microbiome depletion and repetitive mild traumatic brain injury differentially modify bone development in male and female adolescent rats. Bone Rep 2021; 15:101123. [PMID: 34553007 PMCID: PMC8441164 DOI: 10.1016/j.bonr.2021.101123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/14/2021] [Accepted: 08/27/2021] [Indexed: 11/21/2022] Open
Abstract
Dysregulation of the gut microbiome has been shown to disrupt both bone formation and bone resorption in several preclinical and clinical models. However, the role of microbiome in adolescent bone development remains poorly understood. This effect of disrupted bone development may be more pronounced during adolescence, when bone development is vulnerable to environmental stimuli and external insults (e.g., antibiotic treatment and traumatic brain injury), as this is a critical window of development. Therefore, in this study, we sought to investigate the effect of repetitive mild traumatic brain injury (RmTBI) and gut microbiome depletion by antibiotic treatment on femur length and bone density in male and female adolescent Sprague Dawley rats. Rats were randomly assigned to receive standard or antibiotic autoclaved drinking water and to receive sham or RmTBIs injuries. Using micro-computed tomography (μCT), we found sexually dimorphic changes in adolescent bone development in response to microbiome depletion and RmTBI. Specifically, gut microbiome depletion stunted femur growth in males and altered cross sectional bone area (CSA), bone area fraction, and the bone volume of low and mid density bone in the distal metaphyseal region of the femur. Conversely, RmTBI and antibiotic treatment individually disrupted bone growth, bone area fraction, and bone volume of high-density bone within the distal metaphyseal region of the femur in females, but not when combined. Therefore, findings from this study indicate that gut microbiome and RmTBI may alter bone development in a sex-dependent manner during adolescence.
Collapse
|
163
|
Coley EJL, Hsiao EY. Malnutrition and the microbiome as modifiers of early neurodevelopment. Trends Neurosci 2021; 44:753-764. [PMID: 34303552 DOI: 10.1016/j.tins.2021.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/23/2021] [Accepted: 06/11/2021] [Indexed: 01/16/2023]
Abstract
Malnutrition refers to a dearth, excess, or altered differential ratios of calories, macronutrients, or micronutrients. Malnutrition, particularly during early life, is a pressing global health and socioeconomic burden that is increasingly associated with neurodevelopmental impairments. Understanding how perinatal malnutrition influences brain development is crucial to uncovering fundamental mechanisms for establishing behavioral neurocircuits, with the potential to inform public policy and clinical interventions for neurodevelopmental conditions. Recent studies reveal that the gut microbiome can mediate dietary effects on host physiology and that the microbiome modulates the development and function of the nervous system. This review discusses evidence that perinatal malnutrition alters brain development and examines the maternal and neonatal microbiome as a potential contributing factor.
Collapse
Affiliation(s)
- Elena J L Coley
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Elaine Y Hsiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
164
|
Hernandez CJ. Musculoskeletal Microbiology: The Microbiome in Orthopaedic Biomechanics. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 19:100290. [PMID: 34151053 PMCID: PMC8211101 DOI: 10.1016/j.cobme.2021.100290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Orthopaedic biomechanics and bioengineering is a founding discipline of biomedical engineering that focuses on the effects of mechanical stress and strain on musculoskeletal tissues during growth, function and repair. In the past decade the gut microbiome has emerged as a contributor to disease processes throughout the body, but only recently has been shown to influence orthopaedic biomechanics. Here I review emergent findings showing that the gut microbiome can regulate important aspects of the musculoskeletal system including growth and development; tissue failure and disease; and orthopaedic surgery. These early findings suggest that the microbiome may help answer questions in orthopaedic biomechanics that are not well addressed by current interventions, and highlights the promise of the emerging field of "Musculoskeletal Microbiology".
Collapse
Affiliation(s)
- Christopher J Hernandez
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
- Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
165
|
Arshad MA, Hassan FU, Rehman MS, Huws SA, Cheng Y, Din AU. Gut microbiome colonization and development in neonatal ruminants: Strategies, prospects, and opportunities. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:883-895. [PMID: 34632119 PMCID: PMC8484983 DOI: 10.1016/j.aninu.2021.03.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 01/23/2021] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
Colonization and development of the gut microbiome is a crucial consideration for optimizing the health and performance of livestock animals. This is mainly attributed to the fact that dietary and management practices greatly influence the gut microbiota, subsequently leading to changes in nutrient utilization and immune response. A favorable microbiome can be implanted through dietary or management interventions of livestock animals, especially during early life. In this review, we explore all the possible factors (for example gestation, colostrum, and milk feeding, drinking water, starter feed, inoculation from healthy animals, prebiotics/probiotics, weaning time, essential oil and transgenesis), which can influence rumen microbiome colonization and development. We discuss the advantages and disadvantages of potential strategies used to manipulate gut development and microbial colonization to improve the production and health of newborn calves at an early age when they are most susceptible to enteric disease. Moreover, we provide insights into possible interventions and their potential effects on rumen development and microbiota establishment. Prospects of latest techniques like transgenesis and host genetics have also been discussed regarding their potential role in modulation of rumen microbiome and subsequent effects on gut development and performance in neonatal ruminants.
Collapse
Affiliation(s)
- Muhammad A Arshad
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, 38040, Pakistan
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Faiz-Ul Hassan
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, 38040, Pakistan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Muhammad S Rehman
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Sharon A Huws
- School of Biological Sciences, Institute for Global Food Security, Queen's University of Belfast, Belfast, BT9 5DL, GB-NIR, UK
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ahmad U Din
- Drug Discovery Research Center, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
166
|
Luna M, Guss JD, Vasquez-Bolanos LS, Castaneda M, Rojas MV, Strong JM, Alabi DA, Dornevil SD, Nixon JC, Taylor EA, Donnelly E, Fu X, Shea MK, Booth SL, Bicalho R, Hernandez CJ. Components of the Gut Microbiome That Influence Bone Tissue-Level Strength. J Bone Miner Res 2021; 36:1823-1834. [PMID: 33999456 PMCID: PMC8793322 DOI: 10.1002/jbmr.4341] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 12/19/2022]
Abstract
Modifications to the constituents of the gut microbiome influence bone density and tissue-level strength, but the specific microbial components that influence tissue-level strength in bone are not known. Here, we selectively modify constituents of the gut microbiota using narrow-spectrum antibiotics to identify components of the microbiome associated with changes in bone mechanical and material properties. Male C57BL/6J mice (4 weeks) were divided into seven groups (n = 7-10/group) and had taxa within the gut microbiome removed through dosing with: (i) ampicillin; (ii) neomycin; (iii) vancomycin; (iv) metronidazole; (v) a cocktail of all four antibiotics together (with zero-calorie sweetener to ensure intake); (vi) zero-calorie sweetener only; or (vii) no additive (untreated) for 12 weeks. Individual antibiotics remove only some taxa from the gut, while the cocktail of all four removes almost all microbes. After accounting for differences in geometry, whole bone strength was reduced in animals with gut microbiome modified by neomycin (-28%, p = 0.002) and was increased in the group in which the gut microbiome was altered by sweetener alone (+39%, p < 0.001). Analysis of the fecal microbiota detected seven lower-ranked taxa differentially abundant in animals with impaired tissue-level strength and 14 differentially abundant taxa associated with increased tissue-level strength. Histological and serum markers of bone turnover and trabecular bone volume per tissue volume (BV/TV) did not differ among groups. These findings demonstrate that modifications to the taxonomic components of the gut microbiome have the potential to decrease or increase tissue-level strength of bone independent of bone quantity and without noticeable changes in bone turnover. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Marysol Luna
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Jason D Guss
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | | | - Macy Castaneda
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Manuela Vargas Rojas
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Jasmin M Strong
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Denise A Alabi
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Sophie D Dornevil
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Jacob C Nixon
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Erik A Taylor
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Eve Donnelly
- Material Science and Engineering, Cornell University, Ithaca, NY, USA.,Hospital for Special Surgery, New York, NY, USA
| | - Xueyan Fu
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - M Kyla Shea
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Sarah L Booth
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Rodrigo Bicalho
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Christopher J Hernandez
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA.,Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
167
|
Seely KD, Kotelko CA, Douglas H, Bealer B, Brooks AE. The Human Gut Microbiota: A Key Mediator of Osteoporosis and Osteogenesis. Int J Mol Sci 2021; 22:9452. [PMID: 34502371 PMCID: PMC8431678 DOI: 10.3390/ijms22179452] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/14/2022] Open
Abstract
An expanding body of research asserts that the gut microbiota has a role in bone metabolism and the pathogenesis of osteoporosis. This review considers the human gut microbiota composition and its role in osteoclastogenesis and the bone healing process, specifically in the case of osteoporosis. Although the natural physiologic processes of bone healing and the pathogenesis of osteoporosis and bone disease are now relatively well known, recent literature suggests that a healthy microbiome is tied to bone homeostasis. Nevertheless, the mechanism underlying this connection is still somewhat enigmatic. Based on the literature, a relationship between the microbiome, osteoblasts, osteoclasts, and receptor activator of nuclear factor-kappa-Β ligand (RANKL) is contemplated and explored in this review. Studies have proposed various mechanisms of gut microbiome interaction with osteoclastogenesis and bone health, including micro-RNA, insulin-like growth factor 1, and immune system mediation. However, alterations to the gut microbiome secondary to pharmaceutical and surgical interventions cannot be discounted and are discussed in the context of clinical therapeutic consideration. The literature on probiotics and their mechanisms of action is examined in the context of bone healing. The known and hypothesized interactions of common osteoporosis drugs and the human gut microbiome are examined. Since dysbiosis in the gut microbiota can function as a biomarker of bone metabolic activity, it may also be a pharmacological and nutraceutical (i.e., pre- and probiotics) therapeutic target to promote bone homeostasis.
Collapse
Affiliation(s)
- Kevin D. Seely
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (C.A.K.); (H.D.); (B.B.); (A.E.B.)
| | - Cody A. Kotelko
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (C.A.K.); (H.D.); (B.B.); (A.E.B.)
| | - Hannah Douglas
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (C.A.K.); (H.D.); (B.B.); (A.E.B.)
| | - Brandon Bealer
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (C.A.K.); (H.D.); (B.B.); (A.E.B.)
| | - Amanda E. Brooks
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (C.A.K.); (H.D.); (B.B.); (A.E.B.)
- Department of Research and Scholarly Activity, Rocky Vista University, Ivins, UT 84738, USA
| |
Collapse
|
168
|
Kong Y, Wang L, Jiang B. The Role of Gut Microbiota in Aging and Aging Related Neurodegenerative Disorders: Insights from Drosophila Model. Life (Basel) 2021; 11:life11080855. [PMID: 34440599 PMCID: PMC8399269 DOI: 10.3390/life11080855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023] Open
Abstract
Aging is characterized by a time dependent impairment of physiological function and increased susceptibility to death. It is the major risk factor for neurodegeneration. Neurodegenerative disorders including Alzheimer's disease (AD) and Parkinson's disease (PD) are the main causes of dementia in the old population. Gut microbiota is a community of microorganisms colonized in the gastrointestinal (GI) tract. The alteration of gut microbiota has been proved to be associated with aging and aging related neurodegeneration. Drosophila is a powerful tool to study microbiota-mediated physiological and pathological functions. Here, we summarize the recent advances using Drosophila as model organisms to clarify the molecular mechanisms and develop a therapeutic method targeting microbiota in aging and aging-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Yan Kong
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing 210009, China;
- Correspondence:
| | - Liyuan Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing 210009, China;
| | - Baichun Jiang
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan 250012, China;
| |
Collapse
|
169
|
Yang K, He S, Dong W. Gut microbiota and bronchopulmonary dysplasia. Pediatr Pulmonol 2021; 56:2460-2470. [PMID: 34077996 DOI: 10.1002/ppul.25508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/02/2021] [Accepted: 05/16/2021] [Indexed: 12/20/2022]
Abstract
Bronchopulmonary dysplasia is a relatively common and severe complication of prematurity, and its pathogenesis remains ambiguous. Revolutionary advances in microbiological analysis techniques, together with the growing sophistication of the gut-lung axis hypothesis, have resulted in more studies linking gut microbiota dysbiosis to the occurrence and development of bronchopulmonary dysplasia. The present article builds on current findings to examine the intrinsic associations between gut microbiota and bronchopulmonary dysplasia. Gut microbiota dysbiosis may insult the intestinal barrier, triggering inflammation, metabolic disturbances, and malnutrition, consequences of which might impact bronchopulmonary dysplasia by altering the gut-lung axis. By evaluating the potential mechanisms, new therapeutic targets and potential therapeutic modalities for bronchopulmonary dysplasia can be identified from a microecological perspective.
Collapse
Affiliation(s)
- Kun Yang
- Department of Pediatrics, Division of Neonatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shasha He
- Department of Pediatrics, Division of Neonatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wenbin Dong
- Department of Pediatrics, Division of Neonatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
170
|
Hacioglu A, Gundogdu A, Nalbantoglu U, Karaca Z, Urhan ME, Sahin S, Dokmetas HS, Kadioglu P, Kelestimur F. Gut microbiota in patients with newly diagnosed acromegaly: a pilot cross-sectional study. Pituitary 2021; 24:600-610. [PMID: 33721175 DOI: 10.1007/s11102-021-01137-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Microbiota has crucial biological importance for human well-being. Bidirectional interaction exists between microbiota and the host, and there have been no studies investigating this interaction in patients with acromegaly. We aimed to analyze the composition of microbiota in patients with newly diagnosed acromegaly. METHOD Stool samples were obtained from the patients with newly diagnosed acromegaly in the Endocrinology Clinic of Erciyes University Medical School. The composition of microbiota was analyzed, and the results were compared to healthy volunteers matched to the patients in terms of age, gender and body mass index. RESULTS Seven patients (three male, four female) with a mean age of 48 ± 17.6 years were included in the study. The stool analysis revealed a significantly lower bacterial diversity in the patients with acromegaly. Bacteroidetes phylum was predominating in the patient group, and Firmicutes/Bacteroidetes ratio was altered significantly. Bifidobacterium, Collinsella, Bacteroides, Butyricimonas, Clostridium, Oscillospira, and Dialister were predominating in the control group. CONCLUSION The gut microbiota is significantly altered in patients with newly diagnosed acromegaly. Further prospective studies are needed to elucidate the causative relationship between acromegaly, colorectal pathologies, and microbial alterations.
Collapse
Affiliation(s)
- Aysa Hacioglu
- Department of Endocrinology, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Aycan Gundogdu
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Genome and Stem Cell Center (GenKok), Erciyes University, Kayseri, Turkey
| | - Ufuk Nalbantoglu
- Genome and Stem Cell Center (GenKok), Erciyes University, Kayseri, Turkey
- Department of Computer Engineering, Erciyes University, Kayseri, Turkey
| | - Zuleyha Karaca
- Department of Endocrinology, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Muhammed Emre Urhan
- Department of Endocrinology, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Serdar Sahin
- Department of Endocrinology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Hatice Sebile Dokmetas
- Department of Endocrinology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Pinar Kadioglu
- Department of Endocrinology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Fahrettin Kelestimur
- Department of Endocrinology, School of Medicine, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
171
|
Rendina DN, Lubach GR, Lyte M, Phillips GJ, Gosain A, Pierre JF, Vlasova RM, Styner MA, Coe CL. Proteobacteria abundance during nursing predicts physical growth and brain volume at one year of age in young rhesus monkeys. FASEB J 2021; 35:e21682. [PMID: 34042210 DOI: 10.1096/fj.202002162r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 01/01/2023]
Abstract
Over the last decade, multiple studies have highlighted the essential role of gut microbiota in normal infant development. However, the sensitive periods during which gut bacteria are established and become associated with physical growth and maturation of the brain are still poorly defined. This study tracked the assembly of the intestinal microbiota during the initial nursing period, and changes in community structure after transitioning to solid food in infant rhesus monkeys (Macaca mulatta). Anthropometric measures and rectal swabs were obtained at 2-month intervals across the first year of life and bacterial taxa identified by 16S rRNA gene sequencing. At 12 months of age, total brain and cortical regions volumes were quantified through structural magnetic resonance imaging. The bacterial community structure was dynamic and characterized by discrete maturational phases, reflecting an early influence of breast milk and the later transition to solid foods. Commensal microbial taxa varied with diet similar to findings in other animals and human infants; however, monkeys differ in the relative abundances of Lactobacilli and Bifidobacteria, two taxa predominant in breastfed human infants. Higher abundances of taxa in the phylum Proteobacteria during nursing were predictive of slower growth trajectories and smaller brain volumes at one year of age. Our findings define discrete phases of microbial succession in infant monkeys and suggest there may be a critical period during nursing when endogenous differences in certain taxa can shift the community structure and influence the pace of physical growth and the maturational trajectory of the brain.
Collapse
Affiliation(s)
- Danielle N Rendina
- Harlow Center, University of Wisconsin, Madison, WI, USA.,Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | | | - Mark Lyte
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Gregory J Phillips
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Ankush Gosain
- Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, USA.,Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Joseph F Pierre
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, USA.,Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Roza M Vlasova
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA.,Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Martin A Styner
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA.,Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | | |
Collapse
|
172
|
Lu L, Chen X, Liu Y, Yu X. Gut microbiota and bone metabolism. FASEB J 2021; 35:e21740. [PMID: 34143911 DOI: 10.1096/fj.202100451r] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/05/2023]
Abstract
Osteoporosis is the most common metabolic skeletal disease. It is characterized by the deterioration of the skeletal microarchitecture and bone loss, leading to ostealgia, and even bone fractures. Accumulating evidence has indicated that there is an inextricable relationship between the gut microbiota (GM) and bone homeostasis involving host-microbiota crosstalk. Any perturbation of the GM can play an initiating and reinforcing role in disrupting the bone remodeling balance during the development of osteoporosis. Although the GM is known to influence bone metabolism, the mechanisms associated with these effects remain unclear. Herein, we review the current knowledge of how the GM affects bone metabolism in health and disease, summarize the correlation between pathogen-associated molecular patterns of GM structural components and bone metabolism, and discuss the potential mechanisms underlying how GM metabolites regulate bone turnover. Deciphering the complicated relationship between the GM and bone health will provide new insights into the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Lingyun Lu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxuan Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
173
|
Huang S, Jiang S, Huo D, Allaband C, Estaki M, Cantu V, Belda-Ferre P, Vázquez-Baeza Y, Zhu Q, Ma C, Li C, Zarrinpar A, Liu YY, Knight R, Zhang J. Candidate probiotic Lactiplantibacillus plantarum HNU082 rapidly and convergently evolves within human, mice, and zebrafish gut but differentially influences the resident microbiome. MICROBIOME 2021; 9:151. [PMID: 34193290 PMCID: PMC8247228 DOI: 10.1186/s40168-021-01102-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/24/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Improving probiotic engraftment in the human gut requires a thorough understanding of the in vivo adaptive strategies of probiotics in diverse contexts. However, for most probiotic strains, these in vivo genetic processes are still poorly characterized. Here, we investigated the effects of gut selection pressures from human, mice, and zebrafish on the genetic stability of a candidate probiotic Lactiplantibacillus plantarum HNU082 (Lp082) as well as its ecological and evolutionary impacts on the indigenous gut microbiota using shotgun metagenomic sequencing in combination with isolate resequencing methods. RESULTS We combined both metagenomics and isolate whole genome sequencing approaches to systematically study the gut-adaptive evolution of probiotic L. plantarum and the ecological and evolutionary changes of resident gut microbiomes in response to probiotic ingestion in multiple host species. Independent of host model, Lp082 colonized and adapted to the gut by acquiring highly consistent single-nucleotide mutations, which primarily modulated carbohydrate utilization and acid tolerance. We cultivated the probiotic mutants and validated that these gut-adapted mutations were genetically stable for at least 3 months and improved their fitness in vitro. In turn, resident gut microbial strains, especially competing strains with Lp082 (e.g., Bacteroides spp. and Bifidobacterium spp.), actively responded to Lp082 engraftment by accumulating 10-70 times more evolutionary changes than usual. Human gut microbiota exhibited a higher ecological and genetic stability than that of mice. CONCLUSIONS Collectively, our results suggest a highly convergent adaptation strategy of Lp082 across three different host environments. In contrast, the evolutionary changes within the resident gut microbes in response to Lp082 were more divergent and host-specific; however, these changes were not associated with any adverse outcomes. This work lays a theoretical foundation for leveraging animal models for ex vivo engineering of probiotics to improve engraftment outcomes in humans. Video abstract.
Collapse
Affiliation(s)
- Shi Huang
- School of Food Science and Engineering, Hainan University, Haikou, China
- UCSD Health Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Shuaiming Jiang
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Dongxue Huo
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Celeste Allaband
- Biomedical Sciences Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Mehrbod Estaki
- UCSD Health Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Victor Cantu
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Pedro Belda-Ferre
- UCSD Health Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Yoshiki Vázquez-Baeza
- UCSD Health Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Qiyun Zhu
- UCSD Health Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Chenchen Ma
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Congfa Li
- School of Food Science and Engineering, Hainan University, Haikou, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, 570228, China
| | - Amir Zarrinpar
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- UCSD Division of Gastroenterology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- VA San Diego Healthcare, 3350 La Jolla Village Dr, San Diego, CA, 92161, USA
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Rob Knight
- UCSD Health Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
- Biomedical Sciences Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
- Department of Computer Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Jiachao Zhang
- School of Food Science and Engineering, Hainan University, Haikou, China.
- UCSD Health Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, 570228, China.
| |
Collapse
|
174
|
Li J, Zhu S, Lv Z, Dai H, Wang Z, Wei Q, Hamdard E, Mustafa S, Shi F, Fu Y. Drinking Water with Saccharin Sodium Alters the Microbiota-Gut-Hypothalamus Axis in Guinea Pig. Animals (Basel) 2021; 11:1875. [PMID: 34201842 PMCID: PMC8300211 DOI: 10.3390/ani11071875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 01/22/2023] Open
Abstract
The effects of saccharin, as a type of sweetener additive, on the metabolism and development of mammals are still controversial. Our previous research revealed that saccharin sodium (SS) promoted the feed intake and growth of guinea pigs. In this experiment, we used the guinea pig model to study the physiological effect of SS in the microbiota-gut-hypothalamus axis. Adding 1.5 mM SS to drinking water increased the serum level of glucose, followed by the improvement in the morphology and barrier function of the ileal villus, such as SS supplementation which increased the villus height and villus height/crypt depth ratio. Saccharin sodium (SS) treatment activated the sweet receptor signaling in the ileum and altered GHRP hormone secretion. In the hypothalamus of SS and control (CN) group, RNA-seq identified 1370 differently expressed genes (796 upregulated, 574 downregulated), enriching into the taste signaling transduction, and neuroactive ligand-receptor interaction. LEfSe analysis suggested that Lactobacillaceae-Lactobacillus was the microbe with significantly increased abundance of ileum microorganisms in the SS-treated group, while Brevinema-Andersonii and Erysipelotrichaceae-Ilebacterium were the microbes with significantly increased abundance of the control. Furthermore, SS treatment significantly enhanced the functions of chemoheterotrophy and fermentation of ileal microflora compared to the CN group. Accordingly, SS treatment increased levels of lactic acid and short-chain fatty acids (acetic acid, propionic acid and N-valeric acid) in the ileal digesta. In summary, drinking water with 1.5 mM SS activated sweet receptor signaling in the gut and altered GHRP hormone secretion, followed by the taste signaling transduction in the hypothalamus.
Collapse
Affiliation(s)
- Junrong Li
- College of Animal Science, Zhejiang University, Hangzhou 310058, China;
- College of Agriculture, Jinhua Polytechnic, Jinhua 321000, China;
| | - Shanli Zhu
- College of Agriculture, Jinhua Polytechnic, Jinhua 321000, China;
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.L.); (H.D.); (Z.W.); (Q.W.); (E.H.); (S.M.)
| | - Zengpeng Lv
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.L.); (H.D.); (Z.W.); (Q.W.); (E.H.); (S.M.)
| | - Hongjian Dai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.L.); (H.D.); (Z.W.); (Q.W.); (E.H.); (S.M.)
| | - Zhe Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.L.); (H.D.); (Z.W.); (Q.W.); (E.H.); (S.M.)
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.L.); (H.D.); (Z.W.); (Q.W.); (E.H.); (S.M.)
| | - Enayatullah Hamdard
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.L.); (H.D.); (Z.W.); (Q.W.); (E.H.); (S.M.)
| | - Sheeraz Mustafa
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.L.); (H.D.); (Z.W.); (Q.W.); (E.H.); (S.M.)
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.L.); (H.D.); (Z.W.); (Q.W.); (E.H.); (S.M.)
| | - Yan Fu
- College of Animal Science, Zhejiang University, Hangzhou 310058, China;
| |
Collapse
|
175
|
Romero-Márquez JM, Varela-López A, Navarro-Hortal MD, Badillo-Carrasco A, Forbes-Hernández TY, Giampieri F, Domínguez I, Madrigal L, Battino M, Quiles JL. Molecular Interactions between Dietary Lipids and Bone Tissue during Aging. Int J Mol Sci 2021; 22:ijms22126473. [PMID: 34204176 PMCID: PMC8233828 DOI: 10.3390/ijms22126473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 01/06/2023] Open
Abstract
Age-related bone disorders such as osteoporosis or osteoarthritis are a major public health problem due to the functional disability for millions of people worldwide. Furthermore, fractures are associated with a higher degree of morbidity and mortality in the long term, which generates greater financial and health costs. As the world population becomes older, the incidence of this type of disease increases and this effect seems notably greater in those countries that present a more westernized lifestyle. Thus, increased efforts are directed toward reducing risks that need to focus not only on the prevention of bone diseases, but also on the treatment of persons already afflicted. Evidence is accumulating that dietary lipids play an important role in bone health which results relevant to develop effective interventions for prevent bone diseases or alterations, especially in the elderly segment of the population. This review focuses on evidence about the effects of dietary lipids on bone health and describes possible mechanisms to explain how lipids act on bone metabolism during aging. Little work, however, has been accomplished in humans, so this is a challenge for future research.
Collapse
Affiliation(s)
- Jose M. Romero-Márquez
- Department of Physiology, Institute of Nutrition and Food Technology ‘‘José Mataix”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain; (J.M.R.-M.); (A.V.-L.); (M.D.N.-H.); (A.B.-C.)
| | - Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology ‘‘José Mataix”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain; (J.M.R.-M.); (A.V.-L.); (M.D.N.-H.); (A.B.-C.)
| | - María D. Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology ‘‘José Mataix”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain; (J.M.R.-M.); (A.V.-L.); (M.D.N.-H.); (A.B.-C.)
| | - Alberto Badillo-Carrasco
- Department of Physiology, Institute of Nutrition and Food Technology ‘‘José Mataix”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain; (J.M.R.-M.); (A.V.-L.); (M.D.N.-H.); (A.B.-C.)
| | - Tamara Y. Forbes-Hernández
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain;
| | - Francesca Giampieri
- Department of Clinical Sicences, Università Politecnica delle Marche, 60131 Ancona, Italy; (F.G.); (M.B.)
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Irma Domínguez
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain;
- Universidad Internacional Iberoamericana, Calle 15 Num. 36, Entre 10 y 12 IMI III, Campeche 24560, Mexico;
| | - Lorena Madrigal
- Universidad Internacional Iberoamericana, Calle 15 Num. 36, Entre 10 y 12 IMI III, Campeche 24560, Mexico;
| | - Maurizio Battino
- Department of Clinical Sicences, Università Politecnica delle Marche, 60131 Ancona, Italy; (F.G.); (M.B.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - José L. Quiles
- Department of Physiology, Institute of Nutrition and Food Technology ‘‘José Mataix”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain; (J.M.R.-M.); (A.V.-L.); (M.D.N.-H.); (A.B.-C.)
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain;
- Correspondence:
| |
Collapse
|
176
|
Yu Y, Li Q, Zhang H, Wu Y, Zhang R, Yue M, Yang C, Cao G. Clostridium butyricum alone or combined with 1, 25-dihydroxyvitamin D 3 improved early-stage broiler health by modulating intestinal flora. J Appl Microbiol 2021; 132:155-166. [PMID: 34133828 DOI: 10.1111/jam.15180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/22/2021] [Accepted: 05/30/2021] [Indexed: 12/01/2022]
Abstract
AIM This study was conducted to investigate the effects of Clostridium butyricum in isolation or in combination with 1, 25-dihydroxyvitamin D3 in early-stage broilers. METHODS AND RESULTS A total of 360 half male and half female Cobb broilers (1 day old) were randomly divided into four groups: Con (basal diet), Anti (basal diet+75 mg/kg chlortetracycline), Cb (basal diet+109 CFU per kg C. butyricum) and CD (basal diet+109 CFU per kg C. butyricum+25 μg/kg 1,25(OH)2 D3 ). The results were as follows: (1) Compared with Con, CD significantly increased ADG (p < 0.05). (2) Contrast with Con and Anti, Cb and CD significantly increased glutathione peroxidase and SOD in the serum and liver, and decreased malondialdehyde content in serum (p < 0.05). (3) In addition, the content of immunoglobulin (IgA, IgY and IgM) in Cb and CD birds was higher than that in Con birds (p < 0.05); the Cb supplementation decreased (p < 0.05) the contents of IL-8, IL-1β and TNF-α than those in Con. (4) Cb and CD had lower caecal acetic and propionic content than the Anti group (p < 0.05). (5) The community richness of Con was significantly higher than that of Anti (p < 0.05). The relative abundance of Alistipes and Ruminococcaceae-UCG-014 in Cb and CD supplemented birds were lower than those in Con (p < 0.05). The relative abundant of Escherichia-Shigella in CD was higher than Con and Anti (p < 0.05). CONCLUSIONS These data indicated that dietary C. butyricum and 1, 25-dihydroxyvitamin D3 can improve the growth performance, immunity responses, antioxidation, bone development and intestinal microflora in early-stage broilers. SIGNIFICANCE AND IMPACT OF THE STUDY Oral administration of C. butyricum or C. butyricum combined with 1,25-dihydroxyvitamin D3 enhanced immunity and antioxidant activity in early-stage birds.
Collapse
Affiliation(s)
- Yang Yu
- Key Laboratory of Applied Technology on Green-Eco-Health Animal Husbandry of Zhejiang Province, Zhejiang Province Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Qing Li
- Key Laboratory of Applied Technology on Green-Eco-Health Animal Husbandry of Zhejiang Province, Zhejiang Province Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Haoran Zhang
- Key Laboratory of Applied Technology on Green-Eco-Health Animal Husbandry of Zhejiang Province, Zhejiang Province Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Yanping Wu
- Key Laboratory of Applied Technology on Green-Eco-Health Animal Husbandry of Zhejiang Province, Zhejiang Province Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Ruiqiang Zhang
- Key Laboratory of Applied Technology on Green-Eco-Health Animal Husbandry of Zhejiang Province, Zhejiang Province Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Min Yue
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Health Animal Husbandry of Zhejiang Province, Zhejiang Province Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Guangtian Cao
- College of Standardization, China Jiliang University, Hangzhou, China
| |
Collapse
|
177
|
Reactive Oxygen Species-Dependent Innate Immune Mechanisms Control Methicillin-Resistant Staphylococcus aureus Virulence in the Drosophila Larval Model. mBio 2021; 12:e0027621. [PMID: 34126772 PMCID: PMC8262968 DOI: 10.1128/mbio.00276-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Antibiotic-resistant Staphylococcus aureus strains constitute a major public health concern worldwide and are responsible for both health care- and community-associated infections. Here, we establish a robust and easy-to-implement model of oral S. aureus infection using Drosophila melanogaster larvae that allowed us to follow the fate of S. aureus at the whole-organism level as well as the host immune responses. Our study demonstrates that S. aureus infection triggers H2O2 production by the host via the Duox enzyme, thereby promoting antimicrobial peptide production through activation of the Toll pathway. Staphylococcal catalase mediates H2O2 neutralization, which not only promotes S. aureus survival but also minimizes the host antimicrobial response, hence reducing bacterial clearance in vivo. We show that while catalase expression is regulated in vitro by the accessory gene regulatory system (Agr) and the general stress response regulator sigma B (SigB), it no longer depends on these two master regulators in vivo. Finally, we confirm the versatility of this model by demonstrating the colonization and host stimulation capabilities of S. aureus strains belonging to different sequence types (CC8 and CC5) as well as of two other bacterial pathogens, Salmonella enterica serovar Typhimurium and Shigella flexneri. Thus, the Drosophila larva can be a general model to follow in vivo the innate host immune responses triggered during infection by human pathogens.
Collapse
|
178
|
Abstract
Individuals who are minoritized as a result of race, sexual identity, gender, or socioeconomic status experience a higher prevalence of many diseases. Understanding the biological processes that cause and maintain these socially driven health inequities is essential for addressing them. The gut microbiome is strongly shaped by host environments and affects host metabolic, immune, and neuroendocrine functions, making it an important pathway by which differences in experiences caused by social, political, and economic forces could contribute to health inequities. Nevertheless, few studies have directly integrated the gut microbiome into investigations of health inequities. Here, we argue that accounting for host-gut microbe interactions will improve understanding and management of health inequities, and that health policy must begin to consider the microbiome as an important pathway linking environments to population health.
Collapse
|
179
|
Abstract
PURPOSE OF THE REVIEW The human gut harbors a complex community of microbes that influence many processes regulating musculoskeletal development and homeostasis. This review gives an update on the current knowledge surrounding the impact of the gut microbiota on musculoskeletal health, with an emphasis on research conducted over the last three years. RECENT FINDINGS The gut microbiota and their metabolites are associated with sarcopenia, osteoporosis, osteoarthritis, and rheumatoid arthritis. The field is moving fast from describing simple correlations to pursue establishing causation through clinical trials. The gut microbiota and their microbial-synthesized metabolites hold promise for offering new potential alternatives for the prevention and treatment of musculoskeletal diseases given its malleability and response to environmental stimuli.
Collapse
Affiliation(s)
- R Li
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - C G Boer
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - L Oei
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
180
|
Matsushita M, Fujita K, Hayashi T, Kayama H, Motooka D, Hase H, Jingushi K, Yamamichi G, Yumiba S, Tomiyama E, Koh Y, Hayashi Y, Nakano K, Wang C, Ishizuya Y, Kato T, Hatano K, Kawashima A, Ujike T, Uemura M, Imamura R, Rodriguez Pena MDC, Gordetsky JB, Netto GJ, Tsujikawa K, Nakamura S, Takeda K, Nonomura N. Gut Microbiota-Derived Short-Chain Fatty Acids Promote Prostate Cancer Growth via IGF1 Signaling. Cancer Res 2021; 81:4014-4026. [PMID: 34039634 DOI: 10.1158/0008-5472.can-20-4090] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/08/2021] [Accepted: 05/25/2021] [Indexed: 12/09/2022]
Abstract
Excessive intake of animal fat and resultant obesity are major risk factors for prostate cancer. Because the composition of the gut microbiota is known to change with dietary composition and body type, we used prostate-specific Pten knockout mice as a prostate cancer model to investigate whether there is a gut microbiota-mediated connection between animal fat intake and prostate cancer. Oral administration of an antibiotic mixture (Abx) in prostate cancer-bearing mice fed a high-fat diet containing a large proportion of lard drastically altered the composition of the gut microbiota including Rikenellaceae and Clostridiales, inhibited prostate cancer cell proliferation, and reduced prostate Igf1 expression and circulating insulin-like growth factor-1 (IGF1) levels. In prostate cancer tissue, MAPK and PI3K activities, both downstream of the IGF1 receptor, were suppressed by Abx administration. IGF1 directly promoted the proliferation of prostate cancer cell lines DU145 and 22Rv1 in vitro. Abx administration also reduced fecal levels of short-chain fatty acids (SCFA) produced by intestinal bacteria. Supplementation with SCFAs promoted tumor growth by increasing IGF1 levels. In humans, IGF1 was found to be highly expressed in prostate cancer tissue from obese patients. In conclusion, IGF1 production stimulated by SCFAs from gut microbes influences the growth of prostate cancer via activating local prostate MAPK and PI3K signaling, indicating the existence of a gut microbiota-IGF1-prostate axis. Disrupting this axis by modulating the gut microbiota may aid in prostate cancer prevention and treatment. SIGNIFICANCE: These results suggest that intestinal bacteria, acting through short-chain fatty acids, regulate systemic and local prostate IGF1 in the host, which can promote proliferation of prostate cancer cells.
Collapse
Affiliation(s)
- Makoto Matsushita
- Department of Urology, Osaka University, Graduate School of Medicine, Suita, Japan
| | - Kazutoshi Fujita
- Department of Urology, Osaka University, Graduate School of Medicine, Suita, Japan. .,Department of Urology, Kindai University, Faculty of Medicine, Osakasayama, Japan
| | - Takuji Hayashi
- Department of Urology, Osaka University, Graduate School of Medicine, Suita, Japan
| | - Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University, Graduate School of Medicine, Suita, Japan.,WPI Immunology Frontier Research Center, Osaka University, Suita, Japan.,Institute for Advanced Co-Creation Studies, Osaka University, Suita, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Hiroaki Hase
- Laboratory of Cell Biology and Physiology, Osaka University, Graduate School of Pharmaceutical Sciences, Suita, Japan
| | - Kentaro Jingushi
- Laboratory of Cell Biology and Physiology, Osaka University, Graduate School of Pharmaceutical Sciences, Suita, Japan
| | - Gaku Yamamichi
- Department of Urology, Osaka University, Graduate School of Medicine, Suita, Japan
| | - Satoru Yumiba
- Department of Urology, Osaka University, Graduate School of Medicine, Suita, Japan
| | - Eisuke Tomiyama
- Department of Urology, Osaka University, Graduate School of Medicine, Suita, Japan
| | - Yoko Koh
- Department of Urology, Osaka University, Graduate School of Medicine, Suita, Japan
| | - Yujiro Hayashi
- Department of Urology, Osaka University, Graduate School of Medicine, Suita, Japan
| | - Kosuke Nakano
- Department of Urology, Osaka University, Graduate School of Medicine, Suita, Japan
| | - Cong Wang
- Department of Urology, Osaka University, Graduate School of Medicine, Suita, Japan
| | - Yu Ishizuya
- Department of Urology, Osaka University, Graduate School of Medicine, Suita, Japan
| | - Taigo Kato
- Department of Urology, Osaka University, Graduate School of Medicine, Suita, Japan
| | - Koji Hatano
- Department of Urology, Osaka University, Graduate School of Medicine, Suita, Japan
| | - Atsunari Kawashima
- Department of Urology, Osaka University, Graduate School of Medicine, Suita, Japan
| | - Takeshi Ujike
- Department of Urology, Osaka University, Graduate School of Medicine, Suita, Japan
| | - Motohide Uemura
- Department of Urology, Osaka University, Graduate School of Medicine, Suita, Japan
| | - Ryoichi Imamura
- Department of Urology, Osaka University, Graduate School of Medicine, Suita, Japan
| | | | - Jennifer B Gordetsky
- Departments of Pathology and Urology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - George J Netto
- Department of Pathology, UAB School of Medicine, Birmingham, Alabama
| | - Kazutake Tsujikawa
- Laboratory of Cell Biology and Physiology, Osaka University, Graduate School of Pharmaceutical Sciences, Suita, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University, Graduate School of Medicine, Suita, Japan.,WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University, Graduate School of Medicine, Suita, Japan
| |
Collapse
|
181
|
Li C, Fan Y, Li S, Zhou X, Park KY, Zhao X, Liu H. Antioxidant Effect of Soymilk Fermented by Lactobacillus plantarum HFY01 on D-Galactose-Induced Premature Aging Mouse Model. Front Nutr 2021; 8:667643. [PMID: 34079813 PMCID: PMC8165163 DOI: 10.3389/fnut.2021.667643] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/16/2021] [Indexed: 01/26/2023] Open
Abstract
The antioxidant effect of soymilk fermented by Lactobacillus plantarum HFY01 (screened from yak yogurt) was investigated on mice with premature aging induced by D-galactose. In vitro antioxidant results showed that L. plantarum HFY01-fermented soymilk (LP-HFY01-DR) had better ability to scavenge the free radicals 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) diammonium salt (ABTS) than unfermented soymilk and Lactobacillus bulgaricus-fermented soymilk. Histopathological observation showed that LP-HFY01-DR could protect the skin, spleen and liver, reduce oxidative damage and inflammation. Biochemical results showed that LP-HFY01-DR could effectively upregulate glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) levels and decrease malondialdehyde (MDA) content in the liver, brain, and serum. Real-time quantitative reverse transcription polymerase chain reaction further showed that LP-HFY01-DR could promote the relative expression levels of the genes encoding for cuprozinc superoxide dismutase (Cu/Zn-SOD, SOD1), manganese superoxide dismutase (Mn-SOD, SOD2), CAT, GSH, and GSH-Px in the liver, spleen, and skin. High-performance liquid chromatography results revealed daidzin, glycitin, genistin, daidzein, glycitein, and genistein in LP-HFY01-DR. In conclusion, LP-HFY01-DR could improve the antioxidant capacity in mice with premature aging induced by D-galactose.
Collapse
Affiliation(s)
- Chong Li
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Yang Fan
- Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shuang Li
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
- College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Xianrong Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Kun-Young Park
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Huazhi Liu
- First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
182
|
Borella F, Carosso AR, Cosma S, Preti M, Collemi G, Cassoni P, Bertero L, Benedetto C. Gut Microbiota and Gynecological Cancers: A Summary of Pathogenetic Mechanisms and Future Directions. ACS Infect Dis 2021; 7:987-1009. [PMID: 33848139 DOI: 10.1021/acsinfecdis.0c00839] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the past 20 years, important relationships between the microbiota and human health have emerged. A link between alterations of microbiota composition (dysbiosis) and cancer development has been recently demonstrated. In particular, the composition and the oncogenic role of intestinal bacterial flora has been extensively investigated in preclinical and clinical studies focusing on gastrointestinal tumors. Overall, the development of gastrointestinal tumors is favored by dysbiosis as it leads to depletion of antitumor substances (e.g., short-chain fatty acids) produced by healthy microbiota. Moreover, dysbiosis leads to alterations of the gut barrier, promotes a chronic inflammatory status through activation of toll-like receptors, and causes metabolic and hormonal dysregulations. However, the effects of these imbalances are not limited to the gastrointestinal tract and they can influence gynecological tumor carcinogenesis as well. The purpose of this Review is to provide a synthetic update about the mechanisms of interaction between gut microbiota and the female reproductive tract favoring the development of neoplasms. Furthermore, novel therapeutic approaches based on the modulation of microbiota and their role in gynecological oncology are discussed.
Collapse
Affiliation(s)
- Fulvio Borella
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Andrea Roberto Carosso
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Stefano Cosma
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Mario Preti
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Giammarco Collemi
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | | | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Chiara Benedetto
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| |
Collapse
|
183
|
Guimarães KSDL, Braga VDA, Noronha SISRD, Costa WKAD, Makki K, Cruz JDC, Brandão LR, Chianca Junior DA, Meugnier E, Leulier F, Vidal H, Magnani M, de Brito Alves JL. Lactiplantibacillus plantarum WJL administration during pregnancy and lactation improves lipid profile, insulin sensitivity and gut microbiota diversity in dyslipidemic dams and protects male offspring against cardiovascular dysfunction in later life. Food Funct 2021; 11:8939-8950. [PMID: 33000822 DOI: 10.1039/d0fo01718c] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIM Maternal dyslipidemia is recognized as a risk factor for the development of arterial hypertension (AH) and cardiovascular dysfunction in offspring. Here we evaluated the effects of probiotic administration of a specific strain of Lactiplantibacillus plantarum (WJL) during pregnancy and lactation on gut microbiota and metabolic profile in dams fed with a high-fat and high-cholesterol (HFHC) diet and its long-term effects on the cardiovascular function in male rat offspring. METHODS AND RESULTS Pregnant Wistar rats were allocated into three groups: dams fed a control diet (CTL = 5), dams fed a HFHC diet (DLP = 5) and dams fed a HFHC diet and receiving L. plantarum WJL during pregnancy and lactation (DLP-LpWJL). L. plantarum WJL (1 × 109 CFU) or vehicle (NaCl, 0.9%) was administered daily by oral gavage for 6 weeks, covering the pregnancy and lactation periods. After weaning, male offspring received a standard diet up to 90 days of life. Biochemical measurements and gut microbiota were evaluated in dams. In male offspring, blood pressure (BP), heart rate (HR) and vascular reactivity were evaluated at 90 days of age. Dams fed with a HFHC diet during pregnancy and lactation had increased lipid profile and insulin resistance and showed dysbiotic gut microbiota. Administration of L. plantarum WJL to dams having maternal dyslipidemia improved gut microbiota composition, lipid profile and insulin resistance in them. Blood pressure was augmented and vascular reactivity was impaired with a higher contractile response and a lower response to endothelium-dependent vasorelaxation in DLP male offspring. In contrast, male offspring of DLP-LpWJL dams had reduced blood pressure and recovered vascular function in later life. CONCLUSION Administration of L. plantarum WJL during pregnancy and lactation in dams improved gut microbiota diversity, reduced maternal dyslipidemia and prevented cardiovascular dysfunction in male rat offspring.
Collapse
Affiliation(s)
| | - Valdir de Andrade Braga
- Department of Biotechnology, Biotechnology Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Sylvana I S Rendeiro de Noronha
- Department of Biological Science, Laboratory of Cardiovascular Physiology, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | | | - Kassem Makki
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Josiane de Campos Cruz
- Department of Biotechnology, Biotechnology Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Larissa Ramalho Brandão
- Department of Nutrition, Health Sciences Center, Federal University of Paraiba, Joao Pessoa, Brazil.
| | - Deoclecio Alves Chianca Junior
- Department of Biological Science, Laboratory of Cardiovascular Physiology, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Emmanuelle Meugnier
- Univ-Lyon, CarMeN (Cardio, Metabolism, Diabetes and Nutrition) Laboratory, INSERM, INRAE, Université Claude Bernard Lyon 1, INSA Lyon, Oullins, France
| | - François Leulier
- Univ-Lyon, Institut de Génomique Fonctionnelle de Lyon (IGFL), Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Lyon, France
| | - Hubert Vidal
- Univ-Lyon, CarMeN (Cardio, Metabolism, Diabetes and Nutrition) Laboratory, INSERM, INRAE, Université Claude Bernard Lyon 1, INSA Lyon, Oullins, France
| | - Marciane Magnani
- Department of Food Engineering, Technology Center, Federal University of Paraiba, Joao Pessoa, Brazil
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraiba, Joao Pessoa, Brazil.
| |
Collapse
|
184
|
Liu J, Chen C, Liu Z, Luo Z, Rao S, Jin L, Wan T, Yue T, Tan Y, Yin H, Yang F, Huang F, Guo J, Wang Y, Xia K, Cao J, Wang Z, Hong C, Luo M, Hu X, Liu Y, Du W, Luo J, Hu Y, Zhang Y, Huang J, Li H, Wu B, Liu H, Chen T, Qian Y, Li Y, Feng S, Chen Y, Qi L, Xu R, Tang S, Xie H. Extracellular Vesicles from Child Gut Microbiota Enter into Bone to Preserve Bone Mass and Strength. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004831. [PMID: 33977075 PMCID: PMC8097336 DOI: 10.1002/advs.202004831] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Indexed: 05/02/2023]
Abstract
Recently, the gut microbiota (GM) has been shown to be a regulator of bone homeostasis and the mechanisms by which GM modulates bone mass are still being investigated. Here, it is found that colonization with GM from children (CGM) but not from the elderly (EGM) prevents decreases in bone mass and bone strength in conventionally raised, ovariectomy (OVX)-induced osteoporotic mice. 16S rRNA gene sequencing reveals that CGM reverses the OVX-induced reduction of Akkermansia muciniphila (Akk). Direct replenishment of Akk is sufficient to correct the OVX-induced imbalanced bone metabolism and protect against osteoporosis. Mechanistic studies show that the secretion of extracellular vesicles (EVs) is required for the CGM- and Akk-induced bone protective effects and these nanovesicles can enter and accumulate into bone tissues to attenuate the OVX-induced osteoporotic phenotypes by augmenting osteogenic activity and inhibiting osteoclast formation. The study identifies that gut bacterium Akk mediates the CGM-induced anti-osteoporotic effects and presents a novel mechanism underlying the exchange of signals between GM and host bone.
Collapse
|
185
|
Wei M, Li C, Dai Y, Zhou H, Cui Y, Zeng Y, Huang Q, Wang Q. High-Throughput Absolute Quantification Sequencing Revealed Osteoporosis-Related Gut Microbiota Alterations in Han Chinese Elderly. Front Cell Infect Microbiol 2021; 11:630372. [PMID: 33996619 PMCID: PMC8120270 DOI: 10.3389/fcimb.2021.630372] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/19/2021] [Indexed: 12/06/2022] Open
Abstract
Objective Accumulative evidence suggests that gut microbiota play an important role in bone remodeling and hence bone health maintenance. This study aimed to explore the association of gut microbiota with the risk of osteoporosis and to identify potential disease-related taxa, which may be promising targets in osteoporosis prevention and treatment in the future. Methods Absolute quantification 16S ribosomal RNA gene sequencing was used to detect absolute and relative abundances of gut microbiota in 44 patients with osteoporosis and 64 controls. In combination with one of our previous studies, a total of 175 samples were involved in the relative abundance analysis. Results Compared with the controls, the patients with osteoporosis had higher absolute and relative abundances of Bacteroidetes phylum, and Bacteroides and Eisenbergiella genera. The absolute abundances of Clostridium_XlVa, Coprococcus, Lactobacillus, and Eggerthella genera increased, and that of the Veillonella genus decreased in the osteoporosis group. As for relative abundance, that of the Parabacteroides and Flavonifractor genera increased, whereas that of the Raoultella genus decreased in the osteoporosis group. Controlling for potential confounders, the associations of Clostridium_XlVa, Coprococcus, and Veillonella genera with the risk of osteoporosis did not maintain significance. Ridge regression analysis suggested that Bacteroides is associated with reduced bone mineral density (BMD) and T-score at lumbar spines, and Anaerovorax is associated with increased BMD at the femoral neck. Functional predictions revealed that 10 Kyoto Encyclopedia of Genes and Genomes pathways were enriched in the osteoporosis group. Conclusions Gut microbiota compositions may contribute to the risk of osteoporosis. Several specific taxa and functional pathways are identified to associate with reduced bone density, thus providing epidemiologic evidence for the potential role of aberrant gut microbiota in osteoporosis pathogenesis.
Collapse
Affiliation(s)
- Muhong Wei
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Can Li
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Dai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haolong Zhou
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Cui
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Zeng
- Department of Medical Record Statistics, Wuhan NO.1 Hospital, Wuhan, China
| | - Qin Huang
- Department of Rehabilitation Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Wang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
186
|
Tu Y, Yang R, Xu X, Zhou X. The microbiota-gut-bone axis and bone health. J Leukoc Biol 2021; 110:525-537. [PMID: 33884666 DOI: 10.1002/jlb.3mr0321-755r] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/16/2021] [Accepted: 04/05/2021] [Indexed: 02/05/2023] Open
Abstract
The gastrointestinal tract is colonized by trillions of microorganisms, consisting of bacteria, fungi, and viruses, known as the "second gene pool" of the human body. In recent years, the microbiota-gut-bone axis has attracted increasing attention in the field of skeletal health/disorders. The involvement of gut microbial dysbiosis in multiple bone disorders has been recognized. The gut microbiota regulates skeletal homeostasis through its effects on host metabolism, immune function, and hormonal secretion. Owing to the essential role of the gut microbiota in skeletal homeostasis, novel gut microbiota-targeting therapeutics, such as probiotics and prebiotics, have been proven effective in preventing bone loss. However, more well-controlled clinical trials are still needed to evaluate the long-term efficacy and safety of these ecologic modulators in the treatment of bone disorders.
Collapse
Affiliation(s)
- Ye Tu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Ran Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Xin Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
187
|
Fulci V, Stronati L, Cucchiara S, Laudadio I, Carissimi C. Emerging Roles of Gut Virome in Pediatric Diseases. Int J Mol Sci 2021; 22:4127. [PMID: 33923593 PMCID: PMC8073368 DOI: 10.3390/ijms22084127] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
In the last decade, the widespread application of shotgun metagenomics provided extensive characterization of the bacterial "dark matter" of the gut microbiome, propelling the development of dedicated, standardized bioinformatic pipelines and the systematic collection of metagenomic data into comprehensive databases. The advent of next-generation sequencing also unravels a previously underestimated viral population (virome) present in the human gut. Despite extensive efforts to characterize the human gut virome, to date, little is known about the childhood gut virome. However, alterations of the gut virome in children have been linked to pathological conditions such as inflammatory bowel disease, type 1 diabetes, malnutrition, diarrhea and celiac disease.
Collapse
Affiliation(s)
- Valerio Fulci
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.F.); (L.S.)
| | - Laura Stronati
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.F.); (L.S.)
| | - Salvatore Cucchiara
- Department of Women’s and Children’s Health, Sapienza University of Rome, 00161 Rome, Italy;
| | - Ilaria Laudadio
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.F.); (L.S.)
| | - Claudia Carissimi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.F.); (L.S.)
| |
Collapse
|
188
|
van den Elsen LWJ, Verhasselt V. Human Milk Drives the Intimate Interplay Between Gut Immunity and Adipose Tissue for Healthy Growth. Front Immunol 2021; 12:645415. [PMID: 33912171 PMCID: PMC8071867 DOI: 10.3389/fimmu.2021.645415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/22/2021] [Indexed: 01/04/2023] Open
Abstract
As the physiological food for the developing child, human milk is expected to be the diet that is best adapted for infant growth needs. There is also accumulating evidence that breastfeeding influences long-term metabolic outcomes. This review covers the potential mechanisms by which human milk could regulate healthy growth. We focus on how human milk may act on adipose tissue development and its metabolic homeostasis. We also explore how specific human milk components may influence the interplay between the gut microbiota, gut mucosa immunity and adipose tissue. A deeper understanding of these interactions may lead to new preventative and therapeutic strategies for both undernutrition and other metabolic diseases and deserves further exploration.
Collapse
Affiliation(s)
| | - Valerie Verhasselt
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
189
|
Le Magueresse-Battistoni B. Endocrine disrupting chemicals and metabolic disorders in the liver: What if we also looked at the female side? CHEMOSPHERE 2021; 268:129212. [PMID: 33359838 DOI: 10.1016/j.chemosphere.2020.129212] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 05/07/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are linked to the worldwide epidemic incidence of metabolic disorders and fatty liver diseases, which affects quality of life and represents a high economic cost to society. Energy homeostasis exhibits strong sexual dimorphic traits, and metabolic organs respond to EDCs depending on sex, such as the liver, which orchestrates both drug elimination and glucose and lipid metabolism. In addition, fatty liver diseases show a strong sexual bias, which in part could also originate from sex differences observed in gut microbiota. The aim of this review is to highlight significant differences in endocrine and metabolic aspects of the liver, between males and females throughout development and into adulthood. It is also to illustrate how the male and female liver differently cope with exposure to various EDCs such as bisphenols, phthalates and persistent organic chemicals in order to draw attention to the need to include both sexes in experimental studies. Interesting data come from analyses of the composition and diversity of the gut microbiota in males exposed to the mentioned EDCs showing significant correlations with hepatic lipid accumulation and metabolic disorders but information on females is lacking or incomplete. As industrialization increases, the list of anthropogenic chemicals to which humans will be exposed will also likely increase. In addition to strengthening existing regulations, encouraging populations to protect themselves and promoting the substitution of harmful chemicals with safe products, innovative strategies based on sex differences in the gut microbiota and in the gut-liver axis could be optimistic outlook.
Collapse
|
190
|
Peng J, Yu XJ, Yu LL, Tian FW, Zhao JX, Zhang H, Chen W, Zhai QX. The influence of gut microbiome on bone health and related dietary strategies against bone dysfunctions. Food Res Int 2021; 144:110331. [PMID: 34053534 DOI: 10.1016/j.foodres.2021.110331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
The link between the gut microbiome and bone health has begun to attract widespread interest in recent years. The gut microbiome are vital in many diseases involving bone loss. Probiotics, prebiotics, and dietary supplements have been suggested to protect bone health by altering the composition of the gut microbiota. Notably, studying the relationship between the gut microbiome and bone health can provide a basis for the prevention and treatment of bone diseases. This review focuses on the link between the gut microbiome and bone diseases, exploring current knowledge of the mechanisms by which gut bacteria affect bone health. In addition, the influences of dietary supplements on the interactions between the gut microbiome and bone health are discussed. This knowledge will promote new ideas for gut microbiota-mediated dietary interventions in patients with bone diseases.
Collapse
Affiliation(s)
- Jiang Peng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xin-Jie Yu
- Hwa Chong Institution (College), 661 Bukit Timah Road, Singapore
| | - Lei-Lei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Feng-Wei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jian-Xin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China; Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Qi-Xiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
191
|
Li C, Pi G, Li F. The Role of Intestinal Flora in the Regulation of Bone Homeostasis. Front Cell Infect Microbiol 2021; 11:579323. [PMID: 33777828 PMCID: PMC7994858 DOI: 10.3389/fcimb.2021.579323] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/09/2021] [Indexed: 12/16/2022] Open
Abstract
Intestinal flora located within the intestinal tract comprises a large number of cells, which are referred to as the second gene pool of the human body and form a complex symbiotic relationship with the host. The knowledge of the complex interaction between the intestinal flora and various life activities of the host is a novel and rapidly expanding field. Recently, many studies are being conducted on the relationship between the intestinal flora and bone homeostasis and indicate that the intestinal flora can regulate bone homeostasis via the host immune, metabolic, and endocrine systems. What’s more, based on several clinical and preclinical pieces of evidence, changing the composition and function of the host intestinal flora through the application of probiotics, prebiotics, and fecal microbiota transplantation is being considered to be a potential novel target for the regulation of bone homeostasis. Here, we searched relevant literature and reviewed the role of the intestinal flora in the regulation of bone homeostasis and its modulating interventions.
Collapse
Affiliation(s)
- Chengxiang Li
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guofu Pi
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Li
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
192
|
Abstract
Exposed surfaces of mammals are colonized with 100 trillion indigenous bacteria, fungi, and viruses, creating a diverse ecosystem known as the human microbiome. The gut microbiome is the richest microbiome and is now known to regulate postnatal skeletal development and the activity of the major endocrine regulators of bone. Parathyroid hormone (PTH) is one of the bone-regulating hormone that requires elements of the gut microbiome to exert both its bone catabolic and its bone anabolic effects. How the gut microbiome regulates the skeletal response to PTH is object of intense research. Involved mechanisms include absorption and diffusion of bacterial metabolites, such as short-chain fatty acids, and trafficking of immune cells from the gut to the bone marrow. This review will focus on how the gut microbiome communicates and regulates bone marrow cells in order to modulate the skeletal effects of PTH.
Collapse
Affiliation(s)
- Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
- Emory Microbiome Research Center, Emory University, Atlanta, GA, USA
- Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, GA, USA
| |
Collapse
|
193
|
Watson MD, Cross BL, Grosicki GJ. Evidence for the Contribution of Gut Microbiota to Age-Related Anabolic Resistance. Nutrients 2021; 13:706. [PMID: 33672207 PMCID: PMC7926629 DOI: 10.3390/nu13020706] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
Globally, people 65 years of age and older are the fastest growing segment of the population. Physiological manifestations of the aging process include undesirable changes in body composition, declines in cardiorespiratory fitness, and reductions in skeletal muscle size and function (i.e., sarcopenia) that are independently associated with mortality. Decrements in muscle protein synthetic responses to anabolic stimuli (i.e., anabolic resistance), such as protein feeding or physical activity, are highly characteristic of the aging skeletal muscle phenotype and play a fundamental role in the development of sarcopenia. A more definitive understanding of the mechanisms underlying this age-associated reduction in anabolic responsiveness will help to guide promyogenic and function promoting therapies. Recent studies have provided evidence in support of a bidirectional gut-muscle axis with implications for aging muscle health. This review will examine how age-related changes in gut microbiota composition may impact anabolic response to protein feeding through adverse changes in protein digestion and amino acid absorption, circulating amino acid availability, anabolic hormone production and responsiveness, and intramuscular anabolic signaling. We conclude by reviewing literature describing lifestyle habits suspected to contribute to age-related changes in the microbiome with the goal of identifying evidence-informed strategies to preserve microbial homeostasis, anabolic sensitivity, and skeletal muscle with advancing age.
Collapse
Affiliation(s)
| | | | - Gregory J. Grosicki
- Biodynamics and Human Performance Center, Georgia Southern University (Armstrong Campus), Savannah, GA 31419, USA; (M.D.W.); (B.L.C.)
| |
Collapse
|
194
|
Sarate PJ, Srutkova D, Geissler N, Schwarzer M, Schabussova I, Inic-Kanada A, Kozakova H, Wiedermann U. Pre- and Neonatal Imprinting on Immunological Homeostasis and Epithelial Barrier Integrity by Escherichia coli Nissle 1917 Prevents Allergic Poly-Sensitization in Mice. Front Immunol 2021; 11:612775. [PMID: 33679699 PMCID: PMC7927790 DOI: 10.3389/fimmu.2020.612775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/31/2020] [Indexed: 12/29/2022] Open
Abstract
A steady rise in the number of poly-sensitized patients has increased the demand for effective prophylactic strategies against multi-sensitivities. Probiotic bacteria have been successfully used in clinics and experimental models to prevent allergic mono-sensitization. In the present study, we have investigated whether probiotic bacteria could prevent poly-sensitization by imprinting on the immune system early in life. We used two recombinant variants of probiotic Escherichia coli Nissle 1917 (EcN): i) EcN expressing birch and grass pollen, poly-allergen chimera construct (EcN-Chim), and ii) an “empty” EcN without allergen expression (EcN-Ctrl). Conventional mice (CV) were treated with either EcN-Chim or EcN-Ctrl in the last week of the gestation and lactation period. Gnotobiotic mice received one oral dose of either EcN-Chim or EcN-Ctrl before mating. The offspring from both models underwent systemic allergic poly-sensitization and intranasal challenge with recombinant birch and grass pollen allergens (rBet v 1, rPhl p 1, and rPhl p 5). In the CV setting, the colonization of offspring via treatment of mothers reduced allergic airway inflammation (AAI) in offspring compared to poly-sensitized controls. Similarly, in a gnotobiotic model, AAI was reduced in EcN-Chim and EcN-Ctrl mono-colonized offspring. However, allergy prevention was more pronounced in the EcN-Ctrl mono-colonized offspring as compared to EcN-Chim. Mono-colonization with EcN-Ctrl was associated with a shift toward mixed Th1/Treg immune responses, increased expression of TLR2 and TLR4 in the lung, and maintained levels of zonulin-1 in lung epithelial cells as compared to GF poly-sensitized and EcN-Chim mono-colonized mice. This study is the first one to establish the model of allergic poly-sensitization in gnotobiotic mice. Using two different settings, gnotobiotic and conventional mice, we demonstrated that an early life intervention with the EcN without expressing an allergen is a powerful strategy to prevent poly-sensitization later in life.
Collapse
Affiliation(s)
- Priya J Sarate
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Dagmar Srutkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Nora Geissler
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Irma Schabussova
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Aleksandra Inic-Kanada
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Hana Kozakova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
195
|
Qi M, Tan B, Wang J, Liao S, Deng Y, Ji P, Song T, Zha A, Yin Y. The microbiota-gut-brain axis: A novel nutritional therapeutic target for growth retardation. Crit Rev Food Sci Nutr 2021; 62:4867-4892. [PMID: 33523720 DOI: 10.1080/10408398.2021.1879004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Growth retardation (GR), which commonly occurs in childhood, is a major health concern globally. However, the specific mechanism remains unclear. It has been increasingly recognized that changes in the gut microbiota may lead to GR through affecting the microbiota-gut-brain axis. Microbiota interacts with multiple factors such as birth to affect the growth of individuals. Microbiota communicates with the nerve system through chemical signaling (direct entry into the circulation system or stimulation of enteroendocrine cells) and nervous signaling (interaction with enteric nerve system and vagus nerve), which modulates appetite and immune response. Besides, they may also influence the function of enteric glial cells or lymphocytes and levels of systemic inflammatory cytokines. Environmental stress may cause leaky gut through perturbing the hypothalamic-pituitary-adrenal axis to further result in GR. Nutritional therapies involving probiotics and pre-/postbiotics are being investigated for helping the patients to overcome GR. In this review, we summarize the role of microbiota in GR with human and animal models. Then, existing and potential regulatory mechanisms are reviewed, especially the effect of microbiota-gut-brain axis. Finally, we propose nutritional therapeutic strategies for GR by the intervention of microbiota-gut-brain axis, which may provide novel perspectives for the treatment of GR in humans and animals.
Collapse
Affiliation(s)
- Ming Qi
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bie Tan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jing Wang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Simeng Liao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuankun Deng
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Peng Ji
- Department of Nutrition, University of California, Davis, California, USA
| | - Tongxing Song
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Andong Zha
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
196
|
Bosch TCG, McFall-Ngai M. Animal development in the microbial world: Re-thinking the conceptual framework. Curr Top Dev Biol 2021; 141:399-427. [PMID: 33602495 PMCID: PMC8214508 DOI: 10.1016/bs.ctdb.2020.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Animals have evolved within the framework of the microbes and are constantly exposed to diverse microbiota. This dominance of the microbial world is forcing all fields of biology to question some of their most basic premises, with developmental biology being no exception. While animals under laboratory conditions can develop and live without microbes, they are far from normal, and would not survive under natural conditions, where their fitness would be strongly compromised. Since much of the undescribed biodiversity on Earth is microbial, any consideration of animal development in the absence of the recognition of microbes will be incomplete. Here, we show that animal development may never have been autonomous, rather it requires transient or persistent interactions with the microbial world. We propose that to formulate a comprehensive understanding of embryogenesis and post-embryonic development, we must recognize that symbiotic microbes provide important developmental signals and contribute in significant ways to phenotype production. This offers limitless opportunities for the field of developmental biology to expand.
Collapse
Affiliation(s)
- Thomas C G Bosch
- Zoological Institute, Christian-Albrechts-University Kiel, Kiel, Germany.
| | - Margaret McFall-Ngai
- Pacific Biosciences Research Center, Kewalo Marine Laboratory, University of Hawai'i at Mānoa, Honolulu, HI, United States
| |
Collapse
|
197
|
Tan H, Nie S. Functional hydrocolloids, gut microbiota and health: picking food additives for personalized nutrition. FEMS Microbiol Rev 2021; 45:6123724. [PMID: 33512498 DOI: 10.1093/femsre/fuaa065] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022] Open
Abstract
The human gut microbiota respond to particular food components, interact with intestinal mucosa and thereby contribute to health and diseases. Key microbiome features are under comprehensive investigation and are likely to be developed as reliable evidences for clinical diagnosis. And the underlying mechanisms lay the foundation of assembling bespoke nutritional ingredients including functional food additives that may lead to favorable outcomes in facilitating amelioration of host dysfunctions. Functional hydrocolloids serve as multiple food additives with promising application prospects and outstanding adjunctive beneficial characteristics. Therefore, in this review, we introduce the latest advances in food additives-gut microbiota-host axis by summarizing the physiochemical and physiological properties of a collection of functional hydrocolloids from various sources, describing the functional hydrocolloids-related intestinal commensal markers, and deciphering the underlying mechanisms of their beneficial effects, and propose the feasibilities and guidelines for further developments of gut microbiota-oriented personalized nutrition.
Collapse
Affiliation(s)
- Huizi Tan
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, China
| |
Collapse
|
198
|
Tyagi AM, Darby TM, Hsu E, Yu M, Pal S, Dar H, Li JY, Adams J, Jones RM, Pacifici R. The gut microbiota is a transmissible determinant of skeletal maturation. eLife 2021; 10:e64237. [PMID: 33432923 PMCID: PMC7803376 DOI: 10.7554/elife.64237] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Genetic factors account for the majority of the variance of human bone mass, but the contribution of non-genetic factors remains largely unknown. By utilizing maternal/offspring transmission, cohabitation, or fecal material transplantation (FMT) studies, we investigated the influence of the gut microbiome on skeletal maturation. We show that the gut microbiome is a communicable regulator of bone structure and turnover in mice. In addition, we found that the acquisition of a specific bacterial strain, segmented filamentous bacteria (SFB), a gut microbe that induces intestinal Th17 cell expansion, was sufficient to negatively impact skeletal maturation. These findings have significant translational implications, as the identification of methods or timing of microbiome transfer may lead to the development of bacteriotherapeutic interventions to optimize skeletal maturation in humans. Moreover, the transfer of SFB-like microbes capable of triggering the expansion of human Th17 cells during therapeutic FMT procedures could lead to significant bone loss in fecal material recipients.
Collapse
Affiliation(s)
- Abdul Malik Tyagi
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory UniversityAtlantaUnited States
- Emory Microbiome Research Center, Emory UniversityAtlantaUnited States
| | - Trevor M Darby
- Emory Microbiome Research Center, Emory UniversityAtlantaUnited States
- Department of Pediatrics, Emory UniversityAtlantaUnited States
| | - Emory Hsu
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory UniversityAtlantaUnited States
- Emory Microbiome Research Center, Emory UniversityAtlantaUnited States
| | - Mingcan Yu
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory UniversityAtlantaUnited States
- Emory Microbiome Research Center, Emory UniversityAtlantaUnited States
| | - Subhashis Pal
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory UniversityAtlantaUnited States
- Emory Microbiome Research Center, Emory UniversityAtlantaUnited States
| | - Hamid Dar
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory UniversityAtlantaUnited States
- Emory Microbiome Research Center, Emory UniversityAtlantaUnited States
| | - Jau-Yi Li
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory UniversityAtlantaUnited States
- Emory Microbiome Research Center, Emory UniversityAtlantaUnited States
| | - Jonathan Adams
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory UniversityAtlantaUnited States
- Emory Microbiome Research Center, Emory UniversityAtlantaUnited States
| | - Rheinallt M Jones
- Emory Microbiome Research Center, Emory UniversityAtlantaUnited States
- Department of Pediatrics, Emory UniversityAtlantaUnited States
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory UniversityAtlantaUnited States
- Emory Microbiome Research Center, Emory UniversityAtlantaUnited States
- Immunology and Molecular Pathogenesis Program, Emory UniversityAtlantaUnited States
| |
Collapse
|
199
|
Gizard F, Fernandez A, De Vadder F. Interactions between gut microbiota and skeletal muscle. Nutr Metab Insights 2021; 13:1178638820980490. [PMID: 33402830 PMCID: PMC7745561 DOI: 10.1177/1178638820980490] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
The gut microbiota is now recognized as a major contributor to the host’s nutrition, metabolism, immunity, and neurological functions. Imbalanced microbiota (ie, dysbiosis) is linked to undernutrition-induced stunting, inflammatory and metabolic diseases, and cancers. Skeletal muscle also takes part in the interorgan crosstalk regulating substrate metabolism, immunity, and health. Here, we review the reciprocal influence of gut microbiota and skeletal muscle in relation to juvenile growth, performance, aging, and chronic diseases. Several routes involving the vascular system and organs such as the liver and adipose tissue connect the gut microbiota and skeletal muscle, with effects on fitness and health. Therapeutic perspectives arise from the health benefits observed with changes in gut microbiota and muscle activity, further encouraging multimodal therapeutic strategies.
Collapse
Affiliation(s)
- Florence Gizard
- Mammalian Cell Biology Group, Institute of Human Genetics UMR9002, CNRS-University of Montpellier, Montpellier, France
| | - Anne Fernandez
- Mammalian Cell Biology Group, Institute of Human Genetics UMR9002, CNRS-University of Montpellier, Montpellier, France
| | - Filipe De Vadder
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, UMR5242, Lyon, France
| |
Collapse
|
200
|
Tang M, Matz KL, Berman LM, Davis KN, Melanson EL, Frank DN, Hendricks AE, Krebs NF. Effects of Complementary Feeding With Different Protein-Rich Foods on Infant Growth and Gut Health: Study Protocol. Front Pediatr 2021; 9:793215. [PMID: 35096709 PMCID: PMC8793676 DOI: 10.3389/fped.2021.793215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/06/2021] [Indexed: 11/21/2022] Open
Abstract
Background: An urgent need exists for evidence-based dietary guidance early in life, particularly regarding protein intake. However, a significant knowledge gap exists in the effects of protein-rich foods on growth and development during early complementary feeding. Methods: This is a randomized controlled trial of infant growth and gut health (primary outcomes). We directly compare the effects of dietary patterns with common protein-rich foods (meat, dairy, plant) on infant growth trajectories and gut microbiota development (monthly assessments) during early complementary feeding in both breast- and formula-fed infants. Five-month-old infants (up to n = 300) are randomized to a meat-, dairy-, plant-based complementary diet or a reference group (standard of care) from 5 to 12 months of age, with a 24-month follow-up assessment. Infants are matched for sex, mode of delivery and mode of feeding using stratified randomization. Growth assessments include length, weight, head circumference and body composition. Gut microbiota assessments include both 16S rRNA profiling and metagenomics sequencing. The primary analyses will evaluate the longitudinal effects of the different diets on both anthropometric measures and gut microbiota. The secondary analysis will evaluate the potential associations between gut microbiota and infant growth. Discussion: Findings are expected to have significant scientific and health implications for identifying beneficial gut microbial changes and dietary patterns and for informing dietary interventions to prevent the risk of overweight and later obesity, and promote optimal health. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT05012930.
Collapse
Affiliation(s)
- Minghua Tang
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kinzie L Matz
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lillian M Berman
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kathryn N Davis
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Edward L Melanson
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Daniel N Frank
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Audrey E Hendricks
- Department of Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO, United States
| | - Nancy F Krebs
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|