151
|
Muñoz-Pinedo C, Robledo G, López-Rivas A. Thymidylate synthase inhibition triggers glucose-dependent apoptosis in p53-negative leukemic cells. FEBS Lett 2004; 570:205-10. [PMID: 15251465 DOI: 10.1016/j.febslet.2004.06.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Revised: 05/30/2004] [Accepted: 06/23/2004] [Indexed: 11/19/2022]
Abstract
Chemotherapeutic drugs that inhibit the synthesis of DNA precursor thymidine triphosphate cause apoptosis, although the mechanism underlying this process remains rather unknown. Here, we describe thymineless death of human myeloid leukemia U937 cells treated with the thymidylate-synthase inhibitor 5'-fluoro- 2'-deoxyuridine (FUdR). This apoptotic process was shown to be independent of p53, reactive oxygen species generation and CD95 activation. Caspases were activated downstream of cytochrome c but upstream of mitochondrial depolarization. Furthermore, FUdR-induced apoptosis required the presence of glucose in the culture medium at a step upstream of the release of cytochrome c from mitochondria.
Collapse
Affiliation(s)
- Cristina Muñoz-Pinedo
- Instituto de Parasitología y Biomedicina, Consejo Superior de Investigaciones Científicas, calle Ventanilla 11, 18001 Granada, Spain.
| | | | | |
Collapse
|
152
|
Orr JG, Leel V, Cameron GA, Marek CJ, Haughton EL, Elrick LJ, Trim JE, Hawksworth GM, Halestrap AP, Wright MC. Mechanism of action of the antifibrogenic compound gliotoxin in rat liver cells. Hepatology 2004; 40:232-42. [PMID: 15239107 DOI: 10.1002/hep.20254] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Gliotoxin has been shown to promote a reversal of liver fibrosis in an animal model of the disease although its mechanism of action in the liver is poorly defined. The effects of gliotoxin on activated hepatic stellate cells (HSCs) and hepatocytes have therefore been examined. Addition of gliotoxin (1.5 microM) to culture-activated HSCs resulted in its rapid accumulation, resulting in increased levels of glutathione and apoptosis without any evidence of oxidative stress. In contrast, although hepatocytes also rapidly sequestered gliotoxin, cell death only occurred at high (50-microM) concentrations of gliotoxin and by necrosis. At high concentrations, gliotoxin was metabolized by hepatocytes to a reduced (dithiol) metabolite and glutathione was rapidly oxidized. Fluorescent dye loading experiments showed that gliotoxin caused oxidative stress in hepatocytes. Antioxidants--but not thiol redox active compounds--inhibited both oxidative stress and necrosis in hepatocytes. In contrast, HSC apoptosis was not affected by antioxidants but was potently abrogated by thiol redox active compounds. The adenine nucleotide transporter (ANT) is implicated in mitochondrial-dependent apoptosis. HSCs expressed predominantly nonliver ANT isoform 1, and gliotoxin treatment resulted in a thiol redox-dependent alteration in ANT mobility in HSC extracts, but not hepatocyte extracts. In conclusion, these data suggest that gliotoxin stimulates the apoptosis of HSCs through a specific thiol redox-dependent interaction with the ANT. Further understanding of this mechanism of cell death will aid in finding therapeutics that specifically stimulate HSC apoptosis in the liver, a promising approach to antifibrotic therapy.
Collapse
Affiliation(s)
- James G Orr
- Department of Molecular and Cell Biology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Whiteman M, Armstrong JS, Cheung NS, Siau JL, Rose P, Schantz JT, Jones DP, Halliwell B. Peroxynitrite mediates calcium-dependent mitochondrial dysfunction and cell death via activation of calpains. FASEB J 2004; 18:1395-7. [PMID: 15240564 DOI: 10.1096/fj.03-1096fje] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Chondrocyte cell death is a hallmark of inflammatory and degenerative joint diseases such as rheumatoid arthritis (RA) and osteoarthritis (OA), but the molecular and cellular mechanisms involved have yet to be elucidated. Because 3-nitrotyrosine, a marker for reactive nitrogen species such as peroxynitrite, has been observed in OA and RA cartilage and has been associated with chondrocyte cell death, we investigated the mechanisms by which peroxynitrite induces cell death in human articular chondrocytes. The earliest biochemical event observed, subsequent to treatment with either peroxynitrite or the peroxynitrite generator SIN-1, was a rapid rise in intracellular calcium that lead to mitochondrial dysfunction and cell death. Although, chondrocyte death exhibited several classical hallmarks of apoptosis, including annexin V labeling, increased fraction of cells with subG1 DNA content and DNA condensation, we did not find evidence for caspase involvement either by Western blotting, fluorimetric assays, or caspase inhibition. Additionally, peroxynitrite did not inhibit cellular caspase activity. Furthermore, using other established assays of cell viability, including the MTT assay and release of lactate dehydrogenase, we found that the predominant mode of cell death involved calcium-dependent cysteine proteases, otherwise known as calpains. Our data show, for the first time, that peroxynitrite induces mitochondrial dysfunction in cells via a calcium-dependent process that leads to caspase-independent apoptosis mediated by calpains.
Collapse
Affiliation(s)
- Matthew Whiteman
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, 8 Medical Dr., Republic of Singapore 117597.
| | | | | | | | | | | | | | | |
Collapse
|
154
|
Abstract
Apoptosis can be defined as the regulated death of a cell and is conducted by conserved pathways. Apoptosis of neurons after injury or disease differs from programed cell death, in the sense that neurons in an adult brain are not "meant" to die and results in a loss of function. Thus apoptosis is an honorable process by a neuron, a cell with limited potential to replace itself, choosing instead to commit suicide to save neighboring cells from release of cellular components that cause injury directly or trigger secondary injury resulting from inflammatory reactions. The excess of apoptosis of neuronal cells underlies the progressive loss of neuronal populations in neurodegenerative disorders and thus is harmful. Mitochondria are the primary source for energy in neurons but are also poised, through the "mitochondrial apoptosis pathway," to signal the demise of cells. This duplicity of mitochondria is discussed, with particular attention given to the specialized case of pathological neuronal cell death.
Collapse
|
155
|
Schoemaker MH, Moshage H. Defying death: the hepatocyte's survival kit. Clin Sci (Lond) 2004; 107:13-25. [PMID: 15104533 DOI: 10.1042/cs20040090] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Accepted: 04/23/2004] [Indexed: 01/18/2023]
Abstract
Acute liver injury can develop as a consequence of viral hepatitis, drug- or toxin-induced toxicity or rejection after liver transplantation, whereas chronic liver injury can be due to long-term exposure to alcohol, chemicals, chronic viral hepatitis, metabolic or cholestatic disorders. During liver injury, liver cells are exposed to increased levels of cytokines, bile acids and oxidative stress. This results in death of hepatocytes. In contrast, stellate cells become active and are resistant against cell death. Eventually, acute and chronic liver injury is followed by loss of liver function for which no effective therapies are available. Hepatocytes are well equipped with protective mechanisms to prevent cell death. As long as these protective mechanisms can be activated, the balance will be in favour of cell survival. However, the balance between cell survival and cell death is delicate and can be easily tipped towards cell death during liver injury. Therefore understanding the cellular mechanisms controlling death of liver cells is of clinical and scientific importance and can lead to the identification of novel intervention targets. This review describes some of the mechanisms that determine the balance between cell death and cell survival during liver diseases. The strict regulation of apoptotic cell death allows therapeutic intervention strategies. In this light, receptor-mediated apoptosis and mitochondria-mediated cell death are discussed and strategies are provided to selectively interfere with these processes.
Collapse
Affiliation(s)
- Marieke H Schoemaker
- Center for Liver, Digestive and Metabolic Diseases, University Hospital Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands.
| | | |
Collapse
|
156
|
Black D, Bird MA, Hayden M, Schrum LW, Lange P, Samson C, Hatano E, Rippe RA, Brenner DA, Behrns KE. TNFα-induced hepatocyte apoptosis is associated with alterations of the cell cycle and decreased stem loop binding protein. Surgery 2004; 135:619-28. [PMID: 15179368 DOI: 10.1016/j.surg.2003.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Inhibition of nuclear factor kappa B (NF kappa B) during liver regeneration induces hepatocyte apoptosis associated with normal DNA synthesis but decreased mitosis, suggesting that inhibition of NF kappa B impairs progression from S-phase through the G(2)/M phase of the cell cycle. Our aim was to determine if inhibition of NF kappa B alters cell cycle characteristics in hepatocytes treated with tumor necrosis factor alpha (TNF alpha). METHODS Primary hepatocytes from BALB/c mice were infected with adenoviruses expressing luciferase (control; AdLuc) or the I kappa B super-repressor (AdI kappa B) and treated with or without TNF alpha (30 ng/ml). Flow cytometry was performed (0 to 40 hours) to determine apoptosis and cell cycle progression. Reverse transcriptase-polymerase chain reaction and immunoblots assessed changes in cell cycle mediators and antiapoptotic factors. RESULTS Primary hepatocytes treated with AdI kappa B and TNF alpha demonstrated significantly more S-phase cells (14% +/- 3% vs 6% +/- 2%, P<.05) at 14 hours compared with controls. Inhibition of NF kappa B with or without TNFalpha was associated with decreased expression of stem loop bind protein, a marker of cell cycle progression through S-phase. The NF kappa B-induced antiapoptotic proteins, iNOS and TRAF2, had decreased message at 9 and 12 hours, respectively, in TNF alpha- and AdI kappa B-treated cells. CONCLUSION Inhibition of NF kappa B in TNF alpha-treated primary mouse hepatocytes is associated with increased S-phase cell cycle retention and decreased stem loop bind protein.
Collapse
Affiliation(s)
- Dalliah Black
- Department of Surgery, University of North Carolina at Chapel Hill, 27599, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Ma Y, Liu H, Tu-Rapp H, Thiesen HJ, Ibrahim SM, Cole SM, Pope RM. Fas ligation on macrophages enhances IL-1R1–Toll-like receptor 4 signaling and promotes chronic inflammation. Nat Immunol 2004; 5:380-7. [PMID: 15004557 DOI: 10.1038/ni1054] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Accepted: 01/23/2004] [Indexed: 01/24/2023]
Abstract
The nonapoptotic functions of Fas ligation are incompletely characterized. In contrast to expectations, we show here that Fas-deficient mice developed less-severe collagen-induced arthritis than did control mice. Despite having milder arthritis, Fas-deficient mice had more of the critical pro-inflammatory mediator interleukin-1 beta (IL-1 beta) in their joints, suggesting inefficient activation through IL-1 receptor 1 (IL-1R1) when Fas signaling is deficient. In primary human macrophages and macrophages from Fas- or Fas ligand (FasL)-deficient mice, interruption of Fas-FasL signaling suppressed nuclear factor-kappa B activation and cytokine expression induced by IL-1 beta and lipopolysaccharide. This cross-talk was mediated by the Fas-associated death domain through interaction with myeloid differentiation factor 88. These observations document a unique mechanism whereby Fas-FasL interactions enhance activation through the IL-1R1 or Toll-like receptor 4 pathway, which may contribute to the pathogenesis of chronic arthritis.
Collapse
Affiliation(s)
- Yingyu Ma
- Northwestern University Feinberg School of Medicine and Veteran's Administration Medical Center, Chicago, Lakeside Division, Department of Medicine, Division of Rheumatology, 300 E. Superior Avenue, Tarry 3-713, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | |
Collapse
|
158
|
Bhattacharya S, Ray RM, Johnson LR. Prevention of TNF-alpha-induced apoptosis in polyamine-depleted IEC-6 cells is mediated through the activation of ERK1/2. Am J Physiol Gastrointest Liver Physiol 2004; 286:G479-90. [PMID: 14563673 DOI: 10.1152/ajpgi.00342.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
It has been documented that polyamines play a critical role in the regulation of apoptosis in intestinal epithelial cells. We have recently reported that protection from TNF-alpha/cycloheximide (CHX)-induced apoptosis in epithelial cells depleted of polyamines is mediated through the inactivation of a proapoptotic mediator, JNK. In this study, we addressed the involvement of the MAPK pathway in the regulation of apoptosis after polyamine depletion of IEC-6 cells. Polyamine depletion by alpha-difluromethylornithine (DFMO) resulted in the sustained activation of ERK in response to TNF-alpha/CHX treatment. Pretreatment of polyamine-depleted IEC-6 cells with a cell membrane-permeable MEK1/2 inhibitor, U-0126, significantly inhibited TNF-alpha/CHX-induced ERK phosphorylation and significantly increased DNA fragmentation, JNK activity, and caspase-3 activity in response to TNF-alpha/CHX. Moreover, the dose dependency of U-0126-mediated inhibition of TNF-alpha/ CHX-induced ERK phosphorylation correlated with the reversal of the antiapoptotic effect of DFMO. IEC-6 cells expressing constitutively active MEK1 had decreased TNF-alpha/CHX-induced JNK phosphorylation and were significantly protected from apoptosis. Conversely, a dominant-negative MEK1 resulted in high basal activation of JNK, cytochrome c release, and spontaneous apoptosis. Polyamine depletion of the dominant-negative MEK1 cells did not prevent JNK activation or cytochrome c release and failed to confer protection from both TNF-alpha/CHX and camptothecin-induced apoptosis. Finally, expression of a dominant-negative mutant of JNK significantly protected IEC-6 cells from TNF-alpha/CHX-induced apoptosis. These data indicate that polyamine depletion results in the activation of ERK, which inhibits JNK activation and protects cells from apoptosis.
Collapse
Affiliation(s)
- Sujoy Bhattacharya
- Department of Physiology, The Univesity of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | |
Collapse
|
159
|
Finotto S, Siebler J, Hausding M, Schipp M, Wirtz S, Klein S, Protschka M, Doganci A, Lehr HA, Trautwein C, Khosravi-Far R, Strand D, Lohse A, Galle PR, Blessing M, Neurath MF, Khosravi-Fahr R. Severe hepatic injury in interleukin 18 (IL-18) transgenic mice: a key role for IL-18 in regulating hepatocyte apoptosis in vivo. Gut 2004; 53:392-400. [PMID: 14960523 PMCID: PMC1773961 DOI: 10.1136/gut.2003.018572] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Interleukin 18 (IL-18) is a cytokine with pleiotropic activity that augments T helper 1 responses and cytotoxic activity of natural killer cells. METHODS To assess the function of IL-18 in vivo, we generated IL-18 transgenic (IL-18 Tg) mice under the control of a CD2 promoter/enhancer construct. RESULTS Macroscopically, IL-18 Tg mice showed reduced relative liver weight compared with wild-type littermates. TUNEL assays demonstrated increased hepatocyte apoptosis, and primary hepatocytes isolated from IL-18 Tg mice exhibited an increased spontaneous apoptosis rate. Furthermore, cross linking of Fas increased significantly the apoptosis rate in hepatocytes isolated from wild- type mice but to a much lesser extent in IL-18 Tg mice, suggesting spontaneous activation of the Fas pathway in the latter mice. In fact, in vivo blockade of Fas signal transduction by an adenovirus overexpressing the dominant negative form of the Fas associated death domain rescued hepatocytes from undergoing apoptosis. Finally, adoptive transfer of CD4(+) T cells from IL-18 Tg mice but not from wild-type littermates in SCID mice resulted in severe liver failure with massive periportal fibrosis due to hepatocyte apoptosis. CONCLUSION IL-18 plays a fundamental role in regulating hepatocyte apoptosis. Furthermore, our transgenic model provides a novel tool to study the mechanisms of IL-18 dependent liver injury in vivo.
Collapse
Affiliation(s)
- S Finotto
- Laboratory of Immunology, I Medical Clinic, University of Mainz, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Schwabe RF, Uchinami H, Qian T, Bennett BL, Lemasters JJ, Brenner DA. Differential requirement for c-Jun NH2-terminal kinase in TNFalpha- and Fas-mediated apoptosis in hepatocytes. FASEB J 2004; 18:720-2. [PMID: 14766793 DOI: 10.1096/fj.03-0771fje] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The c-Jun NH2-terminal kinase (JNK) is involved in the regulation of cell death, but its role in tumor necrosis factor (TNF)-alpha- and Fas-mediated apoptosis in primary cells is not well defined. In primary rat hepatocytes expressing an IkappaB superrepressor, the JNK inhibitor SP600125 strongly decreased TNF-alpha-induced cell death, caspase 3 activation, and DNA laddering. In contrast, SP600125 did not rescue mouse hepatocytes from Fas-induced apoptosis. Apoptosis in mouse hepatocytes, induced by human TNF-alpha, was blocked by SP600125, indicating that TNF-receptor (TNF-R) 1-mediated JNK activation is important for TNF-alpha-induced death. However, mouse TNF-alpha was more efficient than human TNF-alpha in activating JNK and killing mouse hepatocytes, suggesting that TNF-R1 and TNF-R2 cooperate in JNK activation and apoptosis. SP600125 rescued actinomycin D-pretreated hepatocytes and hepatocytes expressing a dominant negative c-Jun from TNF-alpha, indicating that JNK exerts its proapoptotic effect independently of transcription and c-Jun. SP600125 delayed the mitochondrial permeability transition, inhibited cytochrome c release and prevented bid degradation after TNF-alpha, suggesting that JNK-regulated proapoptotic factors act upstream of the mitochondria. Moreover, overexpression of JNK1 activated a mitochondrial death pathway in hepatocytes, albeit less efficiently than TNF-alpha. This study demonstrates that JNK augments TNF-alpha-induced apoptosis in hepatocytes through a signaling pathway that is distinct from the pathway by which it regulates proliferation.
Collapse
Affiliation(s)
- Robert F Schwabe
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA.
| | | | | | | | | | | |
Collapse
|
161
|
Crouser ED, Julian MW, Huff JE, Joshi MS, Bauer JA, Gadd ME, Wewers MD, Pfeiffer DR. Abnormal permeability of inner and outer mitochondrial membranes contributes independently to mitochondrial dysfunction in the liver during acute endotoxemia*. Crit Care Med 2004; 32:478-88. [PMID: 14758167 DOI: 10.1097/01.ccm.0000109449.99160.81] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This study was designed to determine the role played by the mitochondrial permeability transition in the pathogenesis of mitochondrial damage and dysfunction in a representative systemic organ during the acute phase of endotoxemia. DESIGN A well-established, normotensive feline model was employed to determine whether pretreatment with cyclosporine A, a potent inhibitor of the mitochondrial permeability transition, normalizes mitochondrial ultrastructural injury and dysfunction in the liver during acute endotoxemia. SETTING The Ohio State University Medical Center research laboratory. SUBJECTS Random source, adult, male conditioned cats. INTERVENTIONS Hemodynamic resuscitation and maintenance of acid-base balance and tissue oxygen availability were provided, as needed, to minimize the potentially confounding effects of tissue hypoxia and/or acidosis on the experimental results. Treatment groups received isotonic saline vehicle (control; n = 6), lipopolysaccharide (3.0 mg/kg, intravenously; n = 8), or cyclosporine A (6.0 mg/kg, intravenously; n = 6) or tacrolimus (FK506, 0.1 mg/kg, intravenously; n = 4) followed in 30 mins by lipopolysaccharide (3.0 mg/kg, intravenously). Liver samples were obtained 4 hrs posttreatment, and mitochondrial ultrastructure, function, and cytochrome c, Bax, and ceramide contents were assessed. MEASUREMENTS AND MAIN RESULTS As expected, significant mitochondrial injury was apparent in the liver 4 hrs after lipopolysaccharide treatment, despite maintenance of regional tissue oxygen availability. Namely, mitochondria demonstrated high-amplitude swelling and exhibited altered respiratory function. Cyclosporine A pretreatment attenuated lipopolysaccharide-induced mitochondrial ultrastructural abnormalities and normalized mitochondrial respiratory control, reflecting protection against inner mitochondrial membrane damage. However, an abnormal permeability of outer mitochondrial membranes to cytochrome c was observed in all lipopolysaccharide-treated groups and was associated with increased mitochondrial concentrations of Bax and ceramide. CONCLUSIONS These studies confirm that liver mitochondria are early targets of injury during endotoxemia and that inner and outer mitochondrial membrane damage occurs through different mechanisms. Inner mitochondrial membrane damage appears to relate to the mitochondrial permeability transition, whereas outer mitochondrial membrane damage can occur independent of the mitochondrial permeability transition. Preliminary evidence suggests that Bax may participate in lipopolysaccharide-induced outer mitochondrial membrane damage, but further investigations are needed to confirm this.
Collapse
Affiliation(s)
- Elliott D Crouser
- Division of Pulmonary and Critical Care Medicine, The Ohio State University Medical Center, Columbus, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
162
|
Jeong SH, Koo SJ, Ha JH, Ryu SY, Park HJ, Lee KT. Induction of Apoptosis by Yomogin in Human Promyelocytic Leukemic HL-60 Cells. Biol Pharm Bull 2004; 27:1106-11. [PMID: 15256749 DOI: 10.1248/bpb.27.1106] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Yomogin is an active compound isolated from Artemisia princep, a traditional Oriental medicinal herb, which has been shown to inhibit tumor cell proliferation. In this study, we investigated the effects of yomogin on the cytotoxicity, induction of apoptosis, and putative pathways of its actions in human promyelocytic leukemia cells. Yomogin-treated HL-60 cells displayed several features of apoptosis, including DNA fragmentation, formation of DNA ladders in agarose gel electrophoresis, and externalization of annexin-V targeted phosphatidylserine residues. We observed that yomogin caused activation of caspase-8, caspase-9, and caspase-3. A general caspase inhibitor (z-VAD-fmk), caspase-8 inhibitor (z-IETD-fmk) and caspase-3 inhibitor (z-DEVD-fmk), almost completely suppressed the yomogin-induced DNA fragmentation. We further demonstrated that yomogin induced Bid cleavage, mitochondrial translocation of Bax from the cytosol, and cytochrome c release from mitochondria in a caspase-8-dependent manner. Taken together, our data indicate that yomogin is a potent inducer of apoptosis and facilitates its activity via caspase-8 activation, Bid cleavage, Bax translocation to mitochondria, and subsequent release of cytochrome c into the cytoplasm, providing a potential mechanism for the anticancer activity of yomogin.
Collapse
Affiliation(s)
- Seoung-Hee Jeong
- College of Pharmacy, Kyung Hee University, Hoegi-dong, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
163
|
Yokota S. Effective Application of Anti-IL-6-monoclonal Antibody for Children with Systemic-onset Juvenile Idiopathic Arthritis. ACTA ACUST UNITED AC 2004; 27:22-7. [PMID: 15045812 DOI: 10.2177/jsci.27.22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Shumpei Yokota
- Department of Pediatrics, Yokohama City University School of Medicine
| |
Collapse
|
164
|
Feng H, Zeng Y, Graner MW, Whitesell L, Katsanis E. Evidence for a Novel, Caspase-8-Independent, Fas Death Domain-Mediated Apoptotic Pathway. J Biomed Biotechnol 2004; 2004:41-51. [PMID: 15123887 PMCID: PMC545657 DOI: 10.1155/s1110724304308041] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Certain caspase-8 null cell lines demonstrate resistance to
Fas-induced apoptosis, indicating that the Fas/FasL apoptotic
pathway may be caspase-8-dependent. Some reports, however, have
shown that Fas induces cell death independent of caspase-8. Here
we provide evidence for an alternative, caspase-8-independent,
Fas death domain-mediated apoptotic pathway. Murine 12B1-D1 cells
express procaspase-3, -8, and -9, which were activated upon the
dimerization of Fas death domain. Bid was cleaved and
mitochondrial transmembrane potential was disrupted in this
apoptotic process. All apoptotic events were completely blocked
by the broad-spectrum caspase inhibitor Z-VAD-FMK, but not by
other peptide caspase inhibitors. Cyclosporin A (CsA), which
inhibits mitochondrial transition pore permeability, blocked
neither pore permeability disruption nor caspase activation.
However, CsA plus caspase-8 inhibitor blocked all apoptotic
events of 12B1-D1 induced by Fas death domain dimerization. Our
data therefore suggest that there is a novel,
caspase-8-independent, Z-VAD-FMK-inhibitable, apoptotic pathway in
12B1-D1 cells that targets mitochondria directly.
Collapse
Affiliation(s)
- Hanping Feng
- The Center for Blood Research, Harvard Medical School, 800 Huntington
Avenue, Boston, MA 02115, USA
| | - Yi Zeng
- Department of Pediatrics, Steele Memorial Children’s
Research Center, University of Arizona, Tucson, AZ 85724, USA
| | - Michael W. Graner
- Department of Pediatrics, Steele Memorial Children’s
Research Center, University of Arizona, Tucson, AZ 85724, USA
| | - Luke Whitesell
- Department of Pediatrics, Steele Memorial Children’s
Research Center, University of Arizona, Tucson, AZ 85724, USA
| | - Emmanuel Katsanis
- Department of Pediatrics, Steele Memorial Children’s
Research Center, University of Arizona, Tucson, AZ 85724, USA
- *Emmanuel Katsanis:
| |
Collapse
|
165
|
Huang HM, Ou HC, Xu H, Chen HL, Fowler C, Gibson GE. Inhibition of alpha-ketoglutarate dehydrogenase complex promotes cytochrome c release from mitochondria, caspase-3 activation, and necrotic cell death. J Neurosci Res 2003; 74:309-17. [PMID: 14515360 DOI: 10.1002/jnr.10756] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mitochondrial dysfunction has been implicated in cell death in many neurodegenerative diseases. Diminished activity of the alpha-ketoglutarate dehydrogenase complex (KGDHC), a key and arguably rate-limiting enzyme of the Krebs cycle, occurs in these disorders and may underlie decreased brain metabolism. The present studies used alpha-keto-beta-methyl-n-valeric acid (KMV), a structural analogue of alpha-ketoglutarate, to inhibit KGDHC activity to test effects of reduced KGDHC on mitochondrial function and cell death cascades in PC12 cells. KMV decreased in situ KGDHC activity by 52 +/- 7% (1 hr) or 65 +/- 4% (2 hr). Under the same conditions, KMV did not alter the mitochondrial membrane potential (MMP), as assessed with a method that detects changes as small as 5%. KMV also did not alter production of reactive oxygen species (ROS). However, KMV increased lactate dehydrogenase (LDH) release from cells by 100 +/- 4.7%, promoted translocation of mitochondrial cytochrome c to the cytosol, and activated caspase-3. Inhibition of the mitochondrial permeability transition pore (MPTP) by cyclosporin A (CsA) partially blocked this KMV-induced change in cytochrome c (-40%) and LDH (-15%) release, and prevented necrotic cell death. Thus, impairment of this key mitochondrial enzyme in PC12 cells may lead to cytochrome c release and caspase-3 activation by partial opening of the MPTP before the loss of mitochondrial membrane potentials.
Collapse
Affiliation(s)
- Hsueh-Meei Huang
- Weill Medical College of Cornell University, Burke Medical Research Institute, White Plains, New York 10605, USA.
| | | | | | | | | | | |
Collapse
|
166
|
Armstrong JS, Whiteman M, Rose P, Jones DP. The Coenzyme Q10 analog decylubiquinone inhibits the redox-activated mitochondrial permeability transition: role of mitcohondrial [correction mitochondrial] complex III. J Biol Chem 2003; 278:49079-84. [PMID: 12949071 DOI: 10.1074/jbc.m307841200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The mitochondrial permeability transition (MPT) is a key event in apoptotic and necrotic cell death and is controlled by the cellular redox state. To further investigate the mechanism(s) involved in regulation of the MPT, we used diethylmaleate to deplete GSH in HL60 cells and increase mitochondrial reactive oxygen species (ROS) production. The site of mitochondrial ROS production was determined to be mitochondrial respiratory complex III (cytochrome bc1), because 1). stigmatellin, a Qo site inhibitor, blocked ROS production and prevented the MPT and cell death and 2). cytochrome bc1 activity was abolished in cells protected from the redox-dependent MPT by stigmatellin. We next investigated the effect of pretreating cells with coenzyme Q10 analogs decylubiquinone (dUb) and ubiquinone 0 (Ub0) on the redox-dependent MPT. Pretreatment of HL60 cells with dUb blocked ROS production induced by GSH depletion and prevented activation of the MPT and cell death, whereas Ub0 did not. Since we also found that dUb did not inhibit cytochrome bc1 activity, the mechanism of protection against redox-dependent MPT by dUb may depend on its ability to scavenge ROS generated by cytochrome bc1. These results indicate that dUb, like the clinically used ubiquinone analog idebenone, may serve as a candidate antioxidant compound for the development of pharmacological agents to treat diseases where there is an oxidative stress component.
Collapse
Affiliation(s)
- Jeffrey S Armstrong
- Department of Biochemistry, National University of Singapore, Singapore 117597, Singapore
| | | | | | | |
Collapse
|
167
|
Bhattacharya S, Ray RM, Viar MJ, Johnson LR. Polyamines are required for activation of c-Jun NH2-terminal kinase and apoptosis in response to TNF-alpha in IEC-6 cells. Am J Physiol Gastrointest Liver Physiol 2003; 285:G980-91. [PMID: 12869386 DOI: 10.1152/ajpgi.00206.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intracellular polyamine homeostasis is important for the regulation of cell proliferation and apoptosis and is necessary for the balanced growth of cells and tissues. Polyamines have been shown to play a role in the regulation of apoptosis in many cell types, including IEC-6 cells, but the mechanism is not clear. In this study, we analyzed the mechanism by which polyamines regulate the process of apoptosis in response to tumor necrosis factor-alpha (TNF-alpha). TNF-alpha or cycloheximide (CHX) alone did not induce apoptosis in IEC-6 cells. Significant apoptosis was observed when CHX was given along with TNF-alpha, as indicated by a significant increase in the detachment of cells, caspase-3 activity, and DNA fragmentation. Polyamine depletion by treatment with alpha-difluoromethylornithine significantly reduced the level of apoptosis, as judged by DNA fragmentation and the caspase-3 activity of attached cells. Apoptosis in IEC-6 cells was accompanied by the activation of upstream caspases-6, -8, and -9 and NH2-terminal c-Jun kinase (JNK). Inhibition of JNK activation prevented caspase-9 activation. Polyamine depletion prevented the activation of JNK and of caspases-6, -8, -9, and -3. SP-600125, a specific inhibitor of JNK activation, prevented cytochrome c release from mitochondria, JNK activation, DNA fragmentation, and caspase-9 activation in response to TNF-alpha/CHX. In conclusion, we have shown that polyamine depletion delays and decreases TNF-alpha-induced apoptosis in IEC-6 cells and that apoptosis is accompanied by the release of cytochrome c, the activation of JNK, and of upstream caspases as well as caspase-3. Polyamine depletion prevented JNK activation, which may confer protection against apoptosis by modulation of upstream caspase-9 activation.
Collapse
Affiliation(s)
- Sujoy Bhattacharya
- Dept. of Physiology, The Univ. of Tennessee Health Science Center, 894 Union Ave., Memphis, TN 38163, USA
| | | | | | | |
Collapse
|
168
|
Abstract
Warm and cold hepatic ischemia followed by reperfusion leads to necrotic cell death (oncosis), which often occurs within minutes of reperfusion. Recent studies also suggest a large component of apoptosis after ischemia/reperfusion. Here, we review the mechanisms underlying adenosine triphosphate depletion-dependent oncotic necrosis and caspase-dependent apoptosis, with emphasis on shared features and pathways. Although apoptosis causes internucleosomal DNA degradation that can be detected by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling and related assays, DNA degradation also occurs after oncotic necrosis and leads to pervasive terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling staining far in excess of that for apoptosis. Similarly, although apoptosis can occur in a physiological setting without inflammation, in pathophysiological settings apoptosis frequently induces inflammation because of the onset of secondary necrosis and stimulation of cytokine and chemokine formation. In liver, the mitochondrial permeability transition represents a shared pathway that leads to both oncotic necrosis and apoptosis. When the mitochondrial permeability transition causes severe adenosine triphosphate depletion, plasma membrane failure and necrosis ensue. If adenosine triphosphate is preserved, at least in part, cytochrome c release after the mitochondrial permeability transition activates caspase-dependent apoptosis. Mitochondrial permeability transition-dependent cell death illustrates the concept of necrapoptosis, whereby common pathways lead to both necrosis and apoptosis. In conclusion, oncotic necrosis and apoptosis can share features and mechanisms, which sometimes makes discrimination between the 2 forms of cell death difficult. However, elucidation of critical cell death pathways under clinically relevant conditions will show potentially important therapeutic intervention strategies in hepatic ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Liver Research Institute, University of Arizona, College of Medicine, Room 6309, 1501 N. Campbell Avenue, Tucson, Arizona, USA.
| | | |
Collapse
|
169
|
Yaglom JA, Ekhterae D, Gabai VL, Sherman MY. Regulation of necrosis of H9c2 myogenic cells upon transient energy deprivation. Rapid deenergization of mitochondria precedes necrosis and is controlled by reactive oxygen species, stress kinase JNK, HSP72 and ARC. J Biol Chem 2003; 278:50483-96. [PMID: 14523009 DOI: 10.1074/jbc.m306903200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Subjecting myogenic H9c2 cells to transient energy deprivation leads to a caspase-independent death with typical features of necrosis. Here we show that the rupture of cytoplasmic membrane, the terminal event in necrosis, is shortly preceded by rapid depolarization of mitochondrial membranes. The rapid deenergization of mitochondria critically depended upon prior generation of reactive oxygen species (ROS) during ATP depletion stage. Accordingly, expression of catalase prevented mitochondrial depolarization and averted subsequent necrosis. Interestingly, trifluoperazine, a compound that protects cells from ischemic insults, prevented necrosis of H9c2 cells through inhibition of ROS production. Other factors that regulated the mitochondrial membrane depolarization and subsequent loss of plasma membrane integrity include a stress kinase JNK activated at early steps of recovery from ATP depletion, as well as an apoptotic inhibitory protein ARC. Accordingly, inhibition of JNK or overexpression of ARC prevented mitochondrial depolarization and rescued H9c2 cells from necrosis. ROS and JNK affected mitochondrial deenergization and necrosis independently of each other since inhibition of ROS production did not prevent activation of JNK, whereas inhibition of JNK did not suppress ROS accumulation. Therefore, JNK activation and ROS production represent two independent pathways that control mitochondrial depolarization and subsequent necrosis of cells subjected to transient energy deprivation. Overexpression of ARC, although preventing mitochondrial depolarization, did not affect either JNK activation or production of ROS. The major heat shock protein Hsp72 inhibited JNK-related steps of necrotic pathway but did not affect ROS accumulation. Interestingly, mitochondrial depolarization and subsequent necrosis can be suppressed by an Hsp72 mutant Hsp72DeltaEEVD, which lacks chaperone function but can efficiently suppress JNK activation. Thus, Hsp72 is directly implicated in a signaling pathway, which leads to necrotic death.
Collapse
Affiliation(s)
- Julia A Yaglom
- Department of Biochemistry, Boston University School of Medicine Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
170
|
Nieminen AL. Apoptosis and necrosis in health and disease: role of mitochondria. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 224:29-55. [PMID: 12722948 DOI: 10.1016/s0074-7696(05)24002-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mitochondria play an important role in both the life and death of cells. Mitochondria are the powerhouse of the cell, providing over 90% of adenosine triphosphate (ATP) consumed by the cell. Mitochondrial energy production, however, is disrupted in various pathological situations leading to cellular Injury. The mechanisms causing the injury are turning out to be more complex than originally expected. For instance, calcium, oxidant chemicals, ischemia/ reperfusion, and a range of other agents promote onset of the mitochondrial permeability transition in mitochondria from liver, heart, and other tissues. Often the consequence of this event is ATP depletion, ion deregulation, mitochondrial and cellular swelling, activation of degradative enzymes, plasma membrane failure, and cell lysis. This is referred to as necrotic cell death. The mitochondrial permeability transition is also involved in apoptotic cell death. In this mode of death, the role of the permeability transition is to release proapoptotic proteins from mitochondria into the cytosol where with the aid of cellular ATP they complete the apoptotic cascade. Therefore, mitochondria contribute to both apoptotic and necrotic death.
Collapse
Affiliation(s)
- Anna-Liisa Nieminen
- Department of Anatomy, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
171
|
Kim GT, Chun YS, Park JW, Kim MS. Role of apoptosis-inducing factor in myocardial cell death by ischemia-reperfusion. Biochem Biophys Res Commun 2003; 309:619-24. [PMID: 12963035 DOI: 10.1016/j.bbrc.2003.08.045] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although apoptosis contributes to myocardial cell death in the ischemia-reperfused heart, the molecular basis of apoptosis is poorly understood. Apoptosis-inducing factor (AIF) has been characterized as a caspase-independent death effector. Upon the induction of apoptosis, mitochondrial AIF is released to the cytoplasm and then enters the nucleus, in which it induces chromatin condensation and 50 kbp DNA fragmentation. In the present study, we examined the role of AIF in ischemia-reperfusion injury in isolated rat hearts. AIF was detected in the cytosolic and nuclear fractions of hearts subjected to ischemia-reperfusion, whereas it was detected only in the mitochondria of control hearts. Moreover, AIF release increased in a reperfusion time-dependent manner. Pulse field gel electrophoresis revealed that 50 kbp DNA fragments were produced by ischemia/reperfusion. In contrast, cytochrome c release and the activation of caspase-3 did not occur to a significant extent. Moreover, ischemic preconditioning attenuated the AIF release and the 50 kbp DNA fragmentation. These results suggest that AIF-dependent apoptosis is likely to attribute to myocardial cell death in the ischemia-reperfused heart and that it is related with the protective effect of ischemic preconditioning.
Collapse
Affiliation(s)
- Gi-Tae Kim
- Department of Pharmacology, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul 110-799, South Korea
| | | | | | | |
Collapse
|
172
|
Abstract
PURPOSE OF REVIEW Systemic-onset juvenile idiopathic arthritis is a severe and steroid-dependent disease that sometimes progresses to a fatal disease, macrophage activation syndrome. The investigation of proinflammatory cytokine levels revealed the increases of interleukin 6 in serum of systemic-onset disease. To avoid the disease progression and the adverse events of high-dose corticosteroids, it might be a reasonable treatment strategy to inhibit the formation of interleukin 6/interleukin 6 receptor complex to block the binding to gp130 receptor, a biologically active receptor for interleukin 6. RECENT FINDINGS Continuously elevated levels of interleukin 6 in serum may play an important role in manifesting the clinical symptoms and signs of systemic-onset juvenile idiopathic arthritis, including spiking fever, rash, arthritis, and serositis. The characteristic fever spikes parallel interleukin 6 levels. A long-term exposure of high levels of interleukin 6 brings children severe growth impairment, which was strongly suggested by the recent establishment of interleukin 6 transgenic mice. SUMMARY This review will provide the evidences of the relation between the imbalance of interleukin 6 homeostasis and systemic-onset juvenile idiopathic arthritis. Also reviewed will be the author's recent trials of anti interleukin 6 receptor antibody, named temporally as MRA, for children with acute systemic disease intractable to long-term, high-dose, corticosteroid therapy. MRA would be a therapeutic modality for children with systemic-onset juvenile idiopathic arthritis intractable to high-dose corticosteroids.
Collapse
Affiliation(s)
- Shumpei Yokota
- Department of Pediatrics, Yokohama City University School of Medicine, Kanagawa, Japan.
| |
Collapse
|
173
|
Zhao Y, Ding WX, Qian T, Watkins S, Lemasters JJ, Yin XM. Bid activates multiple mitochondrial apoptotic mechanisms in primary hepatocytes after death receptor engagement. Gastroenterology 2003; 125:854-67. [PMID: 12949730 DOI: 10.1016/s0016-5085(03)01066-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Activation of Fas or tumor necrosis factor receptor 1 (TNF-R1) on hepatocytes leads to apoptosis, which requires mitochondria activation. The pro-death Bcl-2 family protein, Bid, mediates this pathway by inducing mitochondrial releases of cytochrome c and other apoptotic factors. How Bid activates mitochondria has been studied in vitro with isolated mitochondria. We intended to study the mechanisms in intact hepatocytes so that findings could be made in a proper cellular context and would be more physiologically relevant. METHODS Hepatocytes were isolated from wild-type and bid-deficient mice and treated with anti-Fas or TNF-alpha. Mechanisms of mitochondria activation were dissected with genetic, biochemical, and morphologic approaches. RESULTS bid-deficient hepatocytes were much more resistant to apoptosis. Bid was required for permeability transition and mitochondria depolarization in addition to the previously defined release of cytochrome c. Permeability transition inhibitors cyclosporin A and aristolochic acid could inhibit mitochondria activation effectively, but not as much as the deletion of the bid gene, and they could not inhibit Bak oligomerization. In addition, mitochondria depolarization also could be induced by caspases, whose activation was mainly dependent on Bid. CONCLUSIONS Bid may activate mitochondria by 2 mechanisms, one is related to permeability transition and the other is related to Bak oligomerization. Bid can further affect mitochondria potentials by indirectly regulating caspase activity. This in vivo study provides novel findings not previously disclosed by in vitro studies, and indicates the importance of several mechanisms in contributing Bid-mediated mitochondria dysfunction that could be potential cellular targets of intervention.
Collapse
Affiliation(s)
- Yongge Zhao
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|
174
|
Abstract
Viral-induced apoptosis is recognized as a common method utilized by viruses to overcome the host. Recent evidence indicates that infection by rhabdoviruses such as vesicular stomatitis virus (VSV), spring viremia of carp virus (SVCV), and rabies virus results in apoptotic cell death. Similar morphological changes and host cell proteins are induced in cells infected with these different viruses; however, the viral proteins responsible for these changes vary. In addition, the molecular mechanism(s) utilized by these viruses to induce apoptosis are on the brink of discovery. This article serves to summarize our current understanding of the apoptotic process during rhabdovirus infection and to illustrate forthcoming areas of study in the field
Collapse
Affiliation(s)
- Jillian M Licata
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6049, USA
| | | |
Collapse
|
175
|
Vasilieva GI, Kozlovsky VN, Kiseleva AK, Mishankin MB, Mishankin BN. Role of apoptosis of phagocytic cells in the development of immunodeficiency in plague. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 529:181-3. [PMID: 12756755 DOI: 10.1007/0-306-48416-1_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
- Galina I Vasilieva
- Research Institute for Plague Control, Department of Immunology, Rostov-on-Don, Russia
| | | | | | | | | |
Collapse
|
176
|
Klöhn PC, Soriano ME, Irwin W, Penzo D, Scorrano L, Bitsch A, Neumann HG, Bernardi P. Early resistance to cell death and to onset of the mitochondrial permeability transition during hepatocarcinogenesis with 2-acetylaminofluorene. Proc Natl Acad Sci U S A 2003; 100:10014-9. [PMID: 12907702 PMCID: PMC187745 DOI: 10.1073/pnas.1633614100] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A hallmark of tumorigenesis is resistance to apoptosis. To explore whether resistance to cell death precedes tumor formation, we have studied the short-term effects of the hepatocarcinogen 2-acetylaminofluorene (AAF) on liver mitochondria, on hepatocytes, and on the response to bacterial endotoxin lipopolysaccharide (LPS) in albino Wistar rats. We show that after as early as two weeks of AAF feeding liver mitochondria developed an increased resistance to opening of the permeability transition pore (PTP), an inner membrane channel that is involved in various forms of cell death. Consistent with a mitochondrial adaptive response in vivo, (i) AAF feeding increased the expression of BCL-2 in mitochondria, and (ii) hepatocytes isolated from AAF-fed rats became resistant to PTP-dependent depolarization, cytochrome c release, and cell death, which were instead observed in hepatocytes from rats fed a control diet. AAF-fed rats were fully protected from the hepatotoxic effects of the injection of 20-30 microg of LPS plus 700 mg of d-galactosamine (d-GalN) x kg-1 of body weight, a treatment that in control rats readily caused a large increase of terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling-positive cells in liver cryosections and release of alanine and aspartate aminotransferase into the bloodstream. Treatment with LPS and d-GalN triggered cleavage of BID, a BCL-2 family member, in the livers of both control- and AAF-fed animals, whereas caspase 3 was cleaved only in control-fed animals, indicating that the mitochondrial proapoptotic pathway had been selectively suppressed during AAF feeding. Phenotypic reversion was observed after stopping the carcinogenic diet. These results underscore a key role of mitochondria in apoptosis and demonstrate that regulation of the mitochondrial PTP is altered early during AAF carcinogenesis, which matches, and possibly causes, the increased resistance of hepatocytes to death stimuli in vivo. Both events precede tumor formation, suggesting that suppression of apoptosis may contribute to the selection of a resistant phenotype, eventually increasing the probability of cell progression to the transformed state.
Collapse
Affiliation(s)
- Peter-Christian Klöhn
- Department of Biomedical Sciences, University of Padua, Viale Giuseppe Colombo 3, I-35121 Padua, Italy
| | | | | | | | | | | | | | | |
Collapse
|
177
|
Abstract
Alcoholic liver disease (ALD) remains a major cause of morbidity and mortality worldwide. For example, the Veterans Administration Cooperative Studies reported that patients with cirrhosis and superimposed alcoholic hepatitis had a 4-year mortality of >60%. Interactions between acetaldehyde, reactive oxygen and nitrogen species, inflammatory mediators and genetic factors appear to play prominent roles in the development of ALD. The cornerstone of therapy for ALD is lifestyle modification, including drinking and smoking cessation and losing weight, if appropriate. Nutrition intervention has been shown to play a positive role on both an inpatient and outpatient basis. Corticosteroids are effective in selected patients with alcoholic hepatitis and pentoxifylline appears to be a promising anti-inflammatory therapy. Some complementary and alternative medicine agents, such as milk thistle and S-adenosylmethionine, may be effective in alcoholic cirrhosis. Treatment of the complications of ALD can improve quality of life and, in some cases, decrease short-term mortality.
Collapse
Affiliation(s)
- Gavin Arteel
- University of Louisville Medical Center, Building A, Room 1319, Louisville, KY 40292, USA
| | | | | | | | | |
Collapse
|
178
|
Ben-Ari Z, Schmilovotz-Weiss H, Belinki A, Pappo O, Sulkes J, Neuman MG, Kaganovsky E, Kfir B, Tur-Kaspa R, Klein T. Circulating soluble cytochrome c in liver disease as a marker of apoptosis. J Intern Med 2003; 254:168-75. [PMID: 12859698 DOI: 10.1046/j.1365-2796.2003.01171.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVES To measure levels of soluble cytochrome c, a clinical marker of apoptosis in patients with liver disease; determine whether soluble cytochrome c is derived from the liver; and correlate soluble cytochrome c level with histology and disease activity. DESIGN Laboratory research study with comparison group. SETTING Liver Institute, at the Rabin Medical Center, Israel, and In Vitro Toxicology Laboratory, Canada. SUBJECTS A total of 108 patients with liver disease and 30 healthy controls. INTERVENTIONS Paired hepatic and portal vein samples were taken via the transjugular vein in patients after liver biopsy and transjugular intrahepatic portacaval shunt, and bile from patients with external biliary drainage. Soluble cytochrome c was measured with an enzyme-linked immunosorbent assay in peripheral blood. Apoptotic cells in liver tissue were identified by morphological criteria and quantitated with the dUTP nick-end-labelling (TUNEL) assay. MAIN OUTCOME MEASURES Soluble cytochrome c level by type of liver disease by clinical and histological findings. RESULTS Soluble cytochrome c concentration (mean 187.1 +/- 219.5 ng x mL(-1)) was significantly higher in patients with liver disease than in controls (39.8 +/- 35.1 ng x mL(-1); P = 0.0001), with highest levels in the primary sclerosing cholangitis group (mean 1041.0 +/- 2844.8 ng x mL(-1); P = 0.001). Cytochrome c levels were correlated with serum bilirubin, alkaline phosphatase, creatinine levels, necroinflammatory score and apoptotic index, but not with serum alanine aminotransferase and synthetic liver function tests. In the 16 paired samples, soluble cytochrome c level was higher in the hepatic (mean 267.9 +/- 297.0 ng x mL(-1)) than the portal vein (mean 169.2 +/- 143.3 ng x mL(-1)), and it was highly detectable in bile (mean 2288.0 +/-4596.0 ng x mL(-1)) (P = 0.001). Untreated patients with chronic viral hepatitis (B and C) had significantly higher levels (mean 282.8 +/-304.3 ng x mL(-1)) than treated patients (77.9 +/- 35.8 ng x mL(-1); P = 0.001). CONCLUSIONS Soluble cytochrome c levels are increased in different types of liver disease. Soluble cytochrome c is probably derived from the liver and secreted into the bile. Levels correlate with the apoptotic index and are affected by antiviral treatment. Soluble cytochrome c may serve as a serum marker of apoptosis.
Collapse
Affiliation(s)
- Z Ben-Ari
- Liver Institute and Department of Medicine D, Beilinson Campus, Rabin Medical Center, Petah Tiqva, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Ka H, Park HJ, Jung HJ, Choi JW, Cho KS, Ha J, Lee KT. Cinnamaldehyde induces apoptosis by ROS-mediated mitochondrial permeability transition in human promyelocytic leukemia HL-60 cells. Cancer Lett 2003; 196:143-52. [PMID: 12860272 DOI: 10.1016/s0304-3835(03)00238-6] [Citation(s) in RCA: 239] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cinnamaldehyde is an active compound isolated from the stem bark of Cinnamomum cassia, a traditional oriental medicinal herb, which has been shown to inhibit tumor cell proliferation. In this study, we investigated the effects of cinnamaldehyde on the cytotoxicity, induction of apoptosis and the putative pathways of its actions in human promyelocytic leukemia cells. Using apoptosis analysis, measurement of reactive oxygen species (ROS), and assessment of mitochondrial membrane potentials (DeltaPsim), we show that cinnamaldehyde is a potent inducer of apoptosis and that it transduces the apoptotic signal via ROS generation, thereby inducing mitochondrial permeability transition (MPT) and cytochrome c release to the cytosol. ROS production, mitochondrial alteration, and subsequent apoptotic cell death in cinnamaldehyde-treated cells were blocked by the antioxidant N-acetylcystein. Taken together, our data indicate that cinnamaldehyde induces the ROS-mediated mitochondrial permeability transition and resultant cytochrome c release. This is the first report on the mechanism of the anticancer effect of cinnamaldehyde.
Collapse
Affiliation(s)
- Hyeon Ka
- College of Pharmacy, Kyung-Hee University, Hoegi-Dong, Dongdaemun-Ku, Seoul 130-701, South Korea
| | | | | | | | | | | | | |
Collapse
|
180
|
Kweon YO, Paik YH, Schnabl B, Qian T, Lemasters JJ, Brenner DA. Gliotoxin-mediated apoptosis of activated human hepatic stellate cells. J Hepatol 2003; 39:38-46. [PMID: 12821042 DOI: 10.1016/s0168-8278(03)00178-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND Activated hepatic stellate cells (HSCs) play a central role in liver fibrogenesis, and apoptosis of activated HSCs might be essential to clear HSCs from injured liver. Gliotoxin induces apoptosis of activated human and rat HSCs by an unknown mechanism. AIM This study investigated the role of reactive oxygen species (ROS) and membrane permeability transition (MPT) in gliotoxin-induced apoptosis of activated human HSCs. METHODS Primary and immortalized human HSCs were analyzed using confocal microscopy for ROS with dichlorodihdrofluorescence diacetate (DCFH-DA) fluorophore and for the mitochondrial membrane potential (MMP) using tetramethylrhodamine methylester (TMRM). RESULTS Gliotoxin at higher concentrations (> or =7.5 microM) markedly increased ROS formation, and ROS production was also evident at concentrations of gliotoxin causing necrotic cell death (> or =32.5 microM). Gliotoxin rapidly (begins about 20 min at 1.5 microM and 10 min at 7.5 microM) disrupts MMP at a concentration as low as 300nM. MMP disruption was followed by cytochrome c release and caspase-3 activation. The MPT inhibitors, cyclosporine A (5 microM) plus trifluoperazine (12.5 microM), blocked depolarization of the mitochondrial membrane and release of cytochrome c, but did not block apoptosis in HSCs. CONCLUSIONS Gliotoxin (0.3-7.5 microM) induces apoptosis of activated human HSCs with induction of MPT, cytochrome c release and caspase-3 activation, whereas at higher doses (>32.5 microM), it induces necrosis. However, gliotoxin also activates a mitochondrial independent pathway.
Collapse
Affiliation(s)
- Young-Oh Kweon
- Division of Digestive Diseases and Nutrition, Department of Medicine, CB# 7038, Glaxo Research Bldg. Rm. 156, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
181
|
Jones DC, Prabhakaran K, Li L, Gunasekar PG, Shou Y, Borowitz JL, Isom GE. Cyanide enhancement of dopamine-induced apoptosis in mesencephalic cells involves mitochondrial dysfunction and oxidative stress. Neurotoxicology 2003; 24:333-42. [PMID: 12782099 DOI: 10.1016/s0161-813x(03)00042-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Dopamine (DA)-induced neurotoxicity is potentiated when cellular metabolism is compromised. Since cyanide is a neurotoxin that produces mitochondrial dysfunction and stimulates intracellular generation of reactive oxygen species (ROS), KCN was used to study DA-induced apoptosis in primary cultured mesencephalon cells. Treatment of neurons with DA (300 microM) for 24h produced apoptosis as determined by TUNEL staining, DNA fragmentation and increased caspase activity. Pretreatment with KCN (100 microM) 30min prior to DA increased the number of cells undergoing apoptosis. When added to the cells alone, this concentration of KCN did not induce apoptosis. DA stimulated intracellular generation of ROS, and treatment with KCN enhanced ROS generation. Treatment of cells with glutathione or uric acid (antioxidants/scavengers) attenuated both the increase in ROS generation and the apoptosis, demonstrating that ROS are initiators of the cytotoxicity. Studies on the sequence of events mediating the response showed that DA-induced depolarization of the mitochondrial membrane was dependent on ROS generation and KCN enhanced this action of DA. Following changes in mitochondrial membrane potential, cytochrome c was released from mitochondria, leading to caspase activation and eventually cell death. These results demonstrate that oxidative stress and mitochondrial dysfunction are initiators of DA-induced apoptosis. Subsequent cytochrome c release activates the caspase effector component of apoptosis. Cyanide potentiates the neurotoxicity of DA by enhancing the generation of ROS and impairing mitochondrial function.
Collapse
Affiliation(s)
- Douglas C Jones
- Neurotoxicology Laboratory, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 47907-1333, West Lafayette, IN, USA
| | | | | | | | | | | | | |
Collapse
|
182
|
Czaja MJ. The future of GI and liver research: editorial perspectives. III. JNK/AP-1 regulation of hepatocyte death. Am J Physiol Gastrointest Liver Physiol 2003; 284:G875-9. [PMID: 12736142 DOI: 10.1152/ajpgi.00549.2002] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Activation of the JNK/activator protein-1 (AP-1)-signaling pathway is a common mediator of hepatocyte death from a variety of stimuli. Although the mechanism by which JNK or AP-1 promotes death is unknown, it results when activation of this signaling pathway is unusually prolonged. Although JNK/AP-1 mediates TNF-induced cell death at or above the level of the mitochondria, the ability of JNK/AP-1 to promote death from necrosis as well as apoptosis suggests that JNK/AP-1 may induce death by several mechanisms. Recognition of JNK/AP-1 signaling as a critical promoter of hepatocyte death raises the possibility that the therapeutic manipulation of this pathway may be effective in the treatment of human liver disease.
Collapse
Affiliation(s)
- Mark J Czaja
- Marion Bessin Liver Research Center and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| |
Collapse
|
183
|
Abstract
BACKGROUND The intense inflammatory reaction following reperfusion of ischemic myocardium has been implicated as a factor in the extension of myocardial injury. One of the therapeutic goals of modern cardiology is to design strategies to limit the infarct size following myocardial infarction. A sound understanding of the inflammatory cascade that involves the release of various proinflammatory mediators from cardiac cells is necessary before a specific intervention is pursued. OBSERVATION Summarized is the role of resident cardiac mast cells, which are noted to release inflammatory mediators, in ischemia-reperfusion-induced myocardial injury. Various pharmacologic interventions, such as disodium cromoglycate and ketotifen, that stabilize cardiac mast cells, or agents such as chlorpheniramine and cetirizine that prevent their degranulation during ischemia and reperfusion, may prove to be potential therapeutic agents to limit or salvage ischemia-reperfusion-induced injury. CONCLUSION On the basis of the effects of histamine H1 antagonists, adrenoceptor blockers, cellular calcium and nitric oxide modulators, as well as inhibitors of phosphodiesterase and mitogen-activated protein kinase on mast cells, cardiac resident mast cells may represent a novel target for the development of cardioprotective agents.
Collapse
Affiliation(s)
- Manjeet Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India.
| | | |
Collapse
|
184
|
Abstract
Chronic neurodegenerative diseases, including Parkinson's disease, are characterized by a selective loss of specific subsets of neuronal populations over a period of years or even decades. While the underlying causes of the various neurodegenerative diseases are not clear, the death of neurons and the loss of neuronal contacts are key pathological features. Pinpointing molecular events that control neuronal cell death is critical for the development of new strategies to prevent and treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Kim A Heidenreich
- Department of Pharmacology and Neuroscience Program, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| |
Collapse
|
185
|
Abstract
OBJECTIVES To characterize cell surface receptors, their ligands, and their proteins in the 2 major pathways of apoptosis; the components that promote/suppress these interactions; the noninflammatory removal of apoptotic bodies by dendritic cells; and methods of assay in studies of cell death. To describe: how deregulation of apoptosis may contribute to autoimmunity, cancer, and neurodegenerative disorders and strategies some viruses have evolved that interfere with the host's apoptotic pathways. METHODS The authors reviewed and compiled literature on the extrinsic (tumor necrosis factor [TNF] receptor superfamily and ligands) and intrinsic (mitochondria-associated) apoptotic pathways, the pro- and antiapoptotic proteins of the B-cell follicular lymphoma (Bcl)-2 family, the nuclear factor (NF)-kappaB family of proteins, commonly used laboratory methods to distinguish apoptosis from necrosis, the recognition and removal by phagocytosis of apoptotic cells by dendritic cells, and viral strategies to avoid a host's apoptotic response. RESULTS The 2 major pathways of apoptosis are (1). FasL and other TNF superfamily ligands induce trimerization of cell-surface death receptors and (2). perturbated mitochondria release cytochrome c, the flavoprotein apoptosis-inducing factor, and second mitochondria-derived activator of caspases/DIABLO (a protein that directly neutralizes inhibitors of apoptotic proteins and activates proteases). Catalytically inactive cysteine proteases, called caspases, and other proteases are activated, ultimately leading to cell death with characteristic cellular chromatin condensation and DNA cleavage to fragments of approximately 180 bp. The inhibitory/promoting action of Bcl-2 family members is involved in the release of cytochrome c, an essential factor for the mitochondrial-associated pathway. A balance between inhibition/promotion determines a cell's fate. The NF-kappaB family in the cytoplasm of cells activates various genes carrying the NF-kappaB response element, such as members of the inhibitor of apoptotic proteins family. A few of the more common methods to detect apoptotic cell death are described, which use immunochemical, morphologic and flow cytometric methods, and genetic markers. Exposed phosphatidylserine at the outer leaflet of the plasma membrane of the apoptotic cell serves as a possible receptor for phagocytosis by immature dendritic cells. These cells phagocytize both apoptotic and necrotic cells, but only the latter induce maturation to become fully functional antigen-presenting cells. Viral inhibitors of apoptosis allow increased virus replication in cells, possibly resulting in their oncogenicity. CONCLUSIONS Balanced apoptosis is crucial in development and homeostasis, and all multicellular organisms have a physiologically programmed continuum of pathways to apoptotic cell death. Further studies of the control at the molecular level of key components and promoters/suppressors of apoptosis may provide better approaches to treatment of autoimmune diseases, malignancies, and neurodegenerative disorders. Many important questions remain regarding the advantages of modifying apoptotic programs in clinical situations.
Collapse
Affiliation(s)
- Duane R Schultz
- Department of Medicine, University of Miami School of Medicine, Miami, FL 33101, USA
| | | |
Collapse
|
186
|
Pratt MAC, Niu MY. Bcl-2 controls caspase activation following a p53-dependent cyclin D1-induced death signal. J Biol Chem 2003; 278:14219-29. [PMID: 12480939 DOI: 10.1074/jbc.m209650200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
MCF-7 and ZR-75 breast cancer cells infected with an adenovirus constitutively expressing high levels of cyclin D1 demonstrated widespread mitochondrial translocation of Bax and cytochrome c release that was approximately doubled after the addition of all-trans retinoic acid (RA) or Bcl-2 antisense oligonucleotide. By comparison, the percentage of cells in Lac Z virus-infected cultures containing translocated Bax and cytoplasmic cytochrome c was markedly less even after RA treatment. Despite this, RA-treated Lac Z and untreated cyclin D1 virus-infected cultures contained similarly low proportions of cells with active caspase or cells that were permeable to propidium iodide. Bax activation was p53-dependent and accompanied by arrest in G(2) phase. Although constitutive Bcl-2 expression prevented Bax activation, it did not alter cyclin D1-induced cell cycle arrest, illustrating the independence of these events. Both RA and antisense Bcl-2 oligonucleotide decreased Bcl-2 protein levels and markedly increased caspase activity and apoptosis in cyclin D1-infected cells. Thus amplified cyclin D1 expression initiates an apoptotic signal inhibited by different levels of cellular Bcl-2 at two points. Whereas high cellular levels of Bcl-2 prevent mitochondrial Bax translocation, lower levels can prevent apoptosis by inhibition of caspase activation.
Collapse
Affiliation(s)
- M A Christine Pratt
- Department of Cellular and Molecular Medicine, University of Ottawa, Ontario, K1H 8M5, Canada.
| | | |
Collapse
|
187
|
Muñoz-Pinedo C, Ruiz-Ruiz C, Ruiz de Almodóvar C, Palacios C, López-Rivas A. Inhibition of glucose metabolism sensitizes tumor cells to death receptor-triggered apoptosis through enhancement of death-inducing signaling complex formation and apical procaspase-8 processing. J Biol Chem 2003; 278:12759-68. [PMID: 12556444 DOI: 10.1074/jbc.m212392200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumors display a high rate of glucose uptake and glycolysis. We investigated how inhibition of glucose metabolism could affect death receptor-mediated apoptosis in human tumor cells of diverse origin. We show that both substitution of glucose for pyruvate and treatment with 2-deoxyglucose enhanced apoptosis induced by tumor necrosis factor (TNF)-alpha, CD95 agonistic antibody, and TNF-related apoptosis-inducing ligand (TRAIL). Inhibition of glucose metabolism enhanced killing of myeloid leukemia U937, cervical carcinoma HeLa, and breast carcinoma MCF-7 cells upon death receptor ligation. Caspase activation, mitochondrial depolarization, and cytochrome c release were increased under these conditions. Glucose deprivation-mediated sensitization to apoptosis was prevented in MCF-7 cells overexpressing BCL-2. Interestingly, the human B-lymphoblastoid cell line SKW6.4, a prototype for mitochondria-independent death receptor-induced apoptosis, was also sensitized to anti-CD95 and TRAIL-induced apoptosis under glucose-free conditions. Changes in c-FLIP(L) and cFLIPs levels were observed in some but not all the cell lines studied following glucose deprivation. Glucose deprivation enhanced death receptor-triggered formation of death-inducing signaling complex and early processing of procaspase-8. Altogether, these results suggest that the glycolytic pathway may be an important target for therapeutic intervention to sensitize tumor cells to selectively toxic soluble death ligands or death ligand-expressing cells of the immune system by facilitating the activation of initiator caspase-8.
Collapse
Affiliation(s)
- Cristina Muñoz-Pinedo
- Instituto de Parasitologia y Biomedicina, Consejo Superior de Investigaciones Cientificas, Calle Ventanilla 11, 18001 Granada, Spain
| | | | | | | | | |
Collapse
|
188
|
Hockenbery DM, Giedt CD, O'Neill JW, Manion MK, Banker DE. Mitochondria and apoptosis: new therapeutic targets. Adv Cancer Res 2003; 85:203-42. [PMID: 12374287 DOI: 10.1016/s0065-230x(02)85007-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- David M Hockenbery
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | | | |
Collapse
|
189
|
Lambert JC, Zhou Z, Kang YJ. Suppression of Fas-mediated signaling pathway is involved in zinc inhibition of ethanol-induced liver apoptosis. Exp Biol Med (Maywood) 2003; 228:406-12. [PMID: 12671185 DOI: 10.1177/153537020322800411] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Apoptosis is critically involved in hepatic pathogenesis induced by acute alcohol exposure. This study was undertaken to test the hypothesis that zinc interferes with an important Fas ligand-mediated pathway in the liver, leading to the inhibition of ethanol-induced apoptosis. Male 129/Sv(PC)J mice were injected subcutaneously with ZnSO4 (5 mg of Zn ion/kg) in 12-hr intervals for 24 hr before intragastric administration of ethanol (5 g/kg) in 12-hr intervals for 36 hr. Ethanol-induced apoptosis in the liver was detected by a terminal deoxynucleotidyl transferase nick-end labeling assay and was further confirmed by electron microscopy. The number of apoptotic cells in the livers pretreated with zinc was significantly decreased, being only 15% of that found in the animals treated with ethanol only. Characteristic apoptotic morphological changes observed by electron microscopy were also inhibited by zinc. Importantly, zinc inhibited ethanol-induced activation of caspase-3, the primary executioner protease responsible for alcohol-induced liver apoptosis, and caspase-8 as determined by enzymatic assay. Immunohistochemical analysis revealed that zinc inhibited ethanol-induced endogenous Fas ligand activation, which is a key component in signaling pathways leading to hepatic caspase-8 and subsequent caspase-3 activation and apoptosis. These results demonstrate that zinc is a potent inhibitor of acute ethanol-induced liver apoptosis, and this effect occurs primarily through zinc interference with Fas ligand pathway and the suppression of caspase-3.
Collapse
Affiliation(s)
- Jason C Lambert
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | | | | |
Collapse
|
190
|
Ding WX, Nam Ong C. Role of oxidative stress and mitochondrial changes in cyanobacteria-induced apoptosis and hepatotoxicity. FEMS Microbiol Lett 2003; 220:1-7. [PMID: 12644220 DOI: 10.1016/s0378-1097(03)00100-9] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Microcystins produced by cyanobacteria are potent and specific hepatotoxins; however, the mechanisms of microcystin-induced hepatotoxicity have not been fully elucidated. The induction of free radical formation and mitochondrial alterations are two major events found in microcystin-treated cultured rat hepatocytes. The mitochondrial alterations, i.e. loss of mitochondrial membrane potential and mitochondria permeability transition are now recognized as key steps in apoptosis. The activation of calpain and Ca(2+)/calmodulin-dependent protein kinase II is believed to be critical in the microcystin-induced apoptotic process.
Collapse
Affiliation(s)
- Wen-Xing Ding
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
191
|
Abstract
Although there are numerous experimental data indicating that oxidative stress plays a role in the initiation and progression of alcohol-induced liver disease (ALD), this work has yet to translate into an accepted antioxidant therapy for ALD in humans. With a better understanding of the mechanisms by which oxidative stress leads to liver damage during alcohol exposure, therapies that are more targeted at the cellular/molecular level may be applied in the clinic with potentially greater success. This article discusses the general concepts of oxidative stress and how it relates to current hypotheses in alcohol-induced liver injury, as well as lists several key questions that remain to be addressed in this field: (1) Which prooxidants are involved in ALD? (2) What are the sources of prooxidants in the liver during alcohol exposure? (3) How are oxidants involved in alcohol-induced liver injury? (4) Can a rational and effective antioxidant therapy against ALD be developed?
Collapse
Affiliation(s)
- Gavin E Arteel
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, Kentucky, USA.
| |
Collapse
|
192
|
Stoica BA, Movsesyan VA, Lea PM, Faden AI. Ceramide-induced neuronal apoptosis is associated with dephosphorylation of Akt, BAD, FKHR, GSK-3beta, and induction of the mitochondrial-dependent intrinsic caspase pathway. Mol Cell Neurosci 2003; 22:365-82. [PMID: 12691738 DOI: 10.1016/s1044-7431(02)00028-3] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Neuronal apoptosis has been implicated as an important mechanism of cell death in acute and chronic neurodegenerative disorders. Ceramide is a product of sphingolipid metabolism which induces neuronal apoptosis in culture, and ceramide levels increase in neurons during various conditions associated with cell death. In this study we investigate the mechanism of ceramide-induced apoptosis in primary cortical neuronal cells. We show that ceramide treatment initiates a cascade of biochemical alterations associated with cell death: earliest signal transduction changes involve Akt dephosphorylation and inactivation followed by dephosphorylation of proapoptotic regulators such as BAD (proapoptotic Bcl-2 family member), Forkhead family transcription factors, glycogen synthase kinase 3-beta, mitochondrial depolarization and permeabilization, release of cytochrome c into the cytosol, and caspase-3 activation. Bongkrekic acid, an agent that inhibits mitochondrial depolarization, significantly reduces ceramide-induced cell death and correlated caspase-3 activation. Together, these data demonstrate the importance of the mitochondrial-dependent intrinsic pathway of caspase activation for ceramide-induced neuronal apoptosis.
Collapse
Affiliation(s)
- Bogdan A Stoica
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | |
Collapse
|
193
|
Abstract
For a long time necrosis was considered as an alternative to programmed cell death, apoptosis. Indeed, necrosis has distinct morphological features and it is accompanied by rapid permeabilization of plasma membrane. However, recent data indicate that, in contrast to necrosis caused by very extreme conditions, there are many examples when this form of cell death may be a normal physiological and regulated (programmed) event. Various stimuli (e.g., cytokines, ischemia, heat, irradiation, pathogens) can cause both apoptosis and necrosis in the same cell population. Furthermore, signaling pathways, such as death receptors, kinase cascades, and mitochondria, participate in both processes, and by modulating these pathways, it is possible to switch between apoptosis and necrosis. Moreover, antiapoptotic mechanisms (e.g., Bcl-2/Bcl-x proteins, heat shock proteins) are equally effective in protection against apoptosis and necrosis. Therefore, necrosis, along with apoptosis, appears to be a specific form of execution phase of programmed cell death, and there are several examples of necrosis during embryogenesis, a normal tissue renewal, and immune response. However, the consequences of necrotic and apoptotic cell death for a whole organism are quite different. In the case of necrosis, cytosolic constituents that spill into extracellular space through damaged plasma membrane may provoke inflammatory response; during apoptosis these products are safely isolated by membranes and then are consumed by macrophages. The inflammatory response caused by necrosis, however, may have obvious adaptive significance (i.e., emergence of a strong immune response) under some pathological conditions (such as cancer and infection). On the other hand, disturbance of a fine balance between necrosis and apoptosis may be a key element in development of some diseases.
Collapse
|
194
|
García-Ruiz C, Colell A, Marí M, Morales A, Calvo M, Enrich C, Fernández-Checa JC. Defective TNF-alpha-mediated hepatocellular apoptosis and liver damage in acidic sphingomyelinase knockout mice. J Clin Invest 2003; 111:197-208. [PMID: 12531875 PMCID: PMC151862 DOI: 10.1172/jci16010] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This study addressed the contribution of acidic sphingomyelinase (ASMase) in TNF-alpha-mediated hepatocellular apoptosis. Cultured hepatocytes depleted of mitochondrial glutathione (mGSH) became sensitive to TNF-alpha, undergoing a time-dependent apoptotic cell death preceded by mitochondrial membrane depolarization, cytochrome c release, and caspase activation. Cyclosporin A treatment rescued mGSH-depleted hepatocytes from TNF-alpha-induced cell death. In contrast, mGSH-depleted hepatocytes deficient in ASMase were resistant to TNF-alpha-mediated cell death but sensitive to exogenous ASMase. Furthermore, although in vivo administration of TNF-alpha or LPS to galactosamine-pretreated ASMase(+/+) mice caused liver damage, ASMase(-/-) mice exhibited minimal hepatocellular injury. To analyze the requirement of ASMase, we assessed the effect of glucosylceramide synthetase inhibition on TNF-alpha-mediated apoptosis. This approach, which blunted glycosphingolipid generation by TNF-alpha, protected mGSH-depleted ASMase(+/+) hepatocytes from TNF-alpha despite enhancement of TNF-alpha-stimulated ceramide formation. To further test the involvement of glycosphingolipids, we focused on ganglioside GD3 (GD3) because of its emerging role in apoptosis through interaction with mitochondria. Analysis of the cellular redistribution of GD3 by laser scanning confocal microscopy revealed the targeting of GD3 to mitochondria in ASMase(+/+) but not in ASMase(-/-) hepatocytes. However, treatment of ASMase(-/-) hepatocytes with exogenous ASMase induced the colocalization of GD3 and mitochondria. Thus, ASMase contributes to TNF-alpha-induced hepatocellular apoptosis by promoting the mitochondrial targeting of glycosphingolipids.
Collapse
Affiliation(s)
- Carmen García-Ruiz
- Liver Unit, Instituto de Malalties Digestives, Hospital Clinic i Provincial, Instituto de Investigaciones Biomédicas August Pi Suñer, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
195
|
Abstract
Tumor necrosis factor (TNF) is arguably the most potent inducer of several intracellular signals, including apoptosis, cell differentiation, and gene transcription. It does so through the activation of caspases, specific kinases including mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK), transcription factors Activated protein 1 (AP-1), and nuclear factor kappa-B (NF-kappaB). By activating these signals, TNF mediates pro-apoptotic and pro-survival mechanisms in the cell. It has also been suggested that TNF mediates its intracellular signaling by adjusting the redox potential of the cell, specifically through reactive oxygen intermediates (also known as reactive oxygen species). Here we review the evidence linking ROI to TNF-induced signaling and propose that ROI mediate both pro-apoptotic and pro-survival signals. How these antagonistic signals are balanced to maintain homeostasis is still not clear.
Collapse
Affiliation(s)
- Amit K Garg
- Department of Bioimmunotherapy, The Cytokine Research Laboratory, Box 143, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | |
Collapse
|
196
|
Kim YS, Schwabe RF, Qian T, Lemasters JJ, Brenner DA. TRAIL-mediated apoptosis requires NF-kappaB inhibition and the mitochondrial permeability transition in human hepatoma cells. Hepatology 2002; 36:1498-508. [PMID: 12447876 DOI: 10.1053/jhep.2002.36942] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis in a wide range of malignant cells. However, several cancers, including human hepatoma, are resistant to TRAIL. In this study, we analyzed TRAIL-induced pro- and antiapoptotic signaling pathways in human hepatoma cells. Nuclear factor kappa B (NF-kappaB) was found to be a critical TRAIL-induced antiapoptotic factor in the PLC/PRF/5, HepG2, and Hep3B cell lines. TRAIL-induced NF-kappaB activation was preceded by IkappaBalpha kinase (IKK) activation and IkappaBalpha degradation and depended on TRAF2, NF-kappaB-inducing kinase (NIK), IKK1, and IKK2. Accordingly, inhibition of NF-kappaB by adenoviral dominant negative (dn) TRAF2, NIKdn, IKK1dn, IKK2dn, or IkappaBsr sensitized PLC/PRF/5 cells to rhTRAIL, resulting in 40% to 50% cell death after 48 hours as compared with <10% with rhTRAIL alone. Agonistic anti-TRAIL receptor 1 and anti-TRAIL receptor 2 antibodies or combinations of both were equally efficient in inducing apoptosis as rhTRAIL, indicating that decoy receptors did not contribute to resistance toward TRAIL under the conditions of our study. TRAIL-mediated apoptosis depended on FADD, caspase 8 and 3 as demonstrated by the ability of FADDdn, CrmA, and pharmacologic caspase inhibitors to prevent apoptosis. Confocal microscopy showed the onset of the mitochondrial permeability transition (MPT) 5 hours after rhTRAIL plus actinomycin D, which was followed by cytochrome c release. The MPT was critical for TRAIL-induced apoptosis as demonstrated by the ability of pharmacologic MPT inhibitors to completely protect PLC/PRF/5 cells. In conclusion, NF-kappaB prevents TRAIL-induced apoptosis in human hepatoma through a TRAIL-activated TRAF2-NIK-IKK pathway. Inhibition of NF-kappaB unmasks a TRAIL-induced apoptotic signaling cascade that involves FADD, caspase 8, the MPT, and caspase 3.
Collapse
Affiliation(s)
- Young-Soo Kim
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | |
Collapse
|
197
|
Shchepina LA, Pletjushkina OY, Avetisyan AV, Bakeeva LE, Fetisova EK, Izyumov DS, Saprunova VB, Vyssokikh MY, Chernyak BV, Skulachev VP. Oligomycin, inhibitor of the F0 part of H+-ATP-synthase, suppresses the TNF-induced apoptosis. Oncogene 2002; 21:8149-57. [PMID: 12444550 DOI: 10.1038/sj.onc.1206053] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2002] [Revised: 09/16/2002] [Accepted: 09/17/2002] [Indexed: 11/08/2022]
Abstract
The release of cytochrome c from the intermembrane space of mitochondria into the cytosol is one of the critical events in apoptotic cell death. In the present study, it is shown that release of cytochrome c and apoptosis induced by tumor necrosis factor alpha (TNF) in HeLa cells can be inhibited by (i) overexpression of an oncoprotein Bcl-2, (ii) Cyclosporin A, an inhibitor of the mitochondrial permeability transition pore (PTP) or (iii) oligomycin, an inhibitor of H+- ATP-synthase. Staurosporine-induced apoptosis is sensitive to Bcl-2 but insensitive to Cyclosporin A and oligomycin. The effect of oligomycin is not due to changes in mitochondrial membrane potential or to inhibition of ATP synthesis/hydrolysis since (a) uncouplers (CCCP, DNP) which discharge the membrane potential fail to abolish the protective action of oligomycin and (b) aurovertin B (another inhibitor of H+-ATP-synthase, affecting its F1 component) do not affect apoptosis. A role of oligomycin-sensitive F0 component of H+-ATP-synthase in the TNF-induced PTP opening and apoptosis is suggested.
Collapse
Affiliation(s)
- Liarisa A Shchepina
- AN Belozersky Institute, MV Lomonosov Moscow State University, 4 Khokhlova str., Bldg, A, Moscow 119992, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Prabhakaran K, Li L, Borowitz JL, Isom GE. Cyanide induces different modes of death in cortical and mesencephalon cells. J Pharmacol Exp Ther 2002; 303:510-9. [PMID: 12388630 DOI: 10.1124/jpet.102.039453] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A comparative study was conducted in rat primary cortical (CX) and mesencephalic (MC) neurons to investigate intracellular cascades activated during cyanide-induced injury and to determine the point at which the cascades diverge to produce either apoptosis or necrosis. Cyanide treatment (400 microM) for 24 h produced primarily apoptosis in CX cells, whereas the same concentration of cyanide induced predominantly necrosis in MC cells as indicated by increased propidium iodide staining and cellular lactate dehydrogenase efflux. Cyanide increased generation of cellular reactive oxygen species (ROS) in both CX and MC cells, but the rate of formation and nature of the oxidative species varied with cell type. Catalase decreased cyanide-induced ROS generation in CX but not in MC cells. Nitric oxide generation was more prominent after cyanide treatment of MC compared with CX cells. N-Methyl-D-aspartate receptors were more involved in CX apoptosis than in MC necrosis. Mitochondrial membrane potential decreased moderately in CX cells on exposure to cyanide, whereas MC cells responded with a more pronounced reduction in potential. In CX cells cyanide produced a concentration-dependent release of cytochrome c from mitochondria and increased caspase activity, whereas little change was seen in MC neurons. Thus, cyanide-induced necrosis of MC cells involved generation of excessive amounts of nitric oxide and superoxide accompanied by mitochondrial depolarization. In contrast cyanide causes a lower level of oxidative stress in CX cells, involving mainly hydrogen peroxide and superoxide, and a moderate change in mitochondrial membrane potential that lead to cytochrome c release, caspase activation, and apoptosis.
Collapse
Affiliation(s)
- K Prabhakaran
- Neurotoxicology Laboratory, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907-1333, USA
| | | | | | | |
Collapse
|
199
|
Condorelli G, Morisco C, Latronico MVG, Claudio PP, Dent P, Tsichlis P, Condorelli G, Frati G, Drusco A, Croce CM, Napoli C. TNF-alpha signal transduction in rat neonatal cardiac myocytes: definition of pathways generating from the TNF-alpha receptor. FASEB J 2002; 16:1732-7. [PMID: 12409315 DOI: 10.1096/fj.02-0419com] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cardiomyocyte hypertrophy and apoptosis have been implicated in the loss of contractile function during heart failure (HF). Moreover, patients with HF have been shown to exhibit increased levels of tumor necrosis factor alpha (TNF-alpha) in the myocardium. However, the multiple signal transduction pathways generating from the TNF-alpha receptor in cardiomyocytes and leading preferentially to apoptosis or hypertrophy are still unknown. Here we demonstrate in neonatal rat cardiomyocytes that 1) TNF-alpha induces phosphorylation of AKT, activation of NF-kappaB, and the phosphorylation of JUN kinase; 2) blocking AKT activity prevents NF-kappaB activation, suggesting a role for AKT in regulating NF-kappaB function; 3) AKT and JUN are both critical for the hypertrophic effects of TNF-alpha, since dominant-negative mutants of these genes are capable of inhibiting TNF-alpha-induced ANF-promoter up-regulation and increase in cardiomyocyte cell size, and 4) blocking NF-kappaB, AKT, or JUN alone or in combination does not sensitize cardiomyocytes to the proapoptotic effects of TNF-alpha, in contrast to other cell types, suggesting a cardiac-specific pathway regulating the anti-apoptotic events induced by TNF-alpha. Altogether, the data presented evidence the role of AKT and JUN in TNF-alpha-induced cardiomyocyte hypertrophy and apoptosis.
Collapse
Affiliation(s)
- Gianluigi Condorelli
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Abstract
Reactive oxygen intermediates (ROI) have been implicated in the induction of hepatocyte apoptosis that results from a variety of forms of liver injury. Exogenous oxidants induce hepatocyte apoptosis and may mediate death during inflammatory liver injury. Lethal levels of intracellularly generated ROI resulting from hepatotoxin metabolism, or the induction of enzymes in the cytochrome P450 family, are also important inducers of apoptosis. In addition, ROI production may mediate death from a number of diverse factors, including tumor necrosis factor-alpha, bile acids, ischemia, and transforming growth factor-beta1. Oxidants alter many redox-sensitive cellular signaling pathways, including mitogen-activated protein kinases and transcription factors such as activator protein-1 and nuclear factor-kappaB. The mechanisms of oxidant-induced hepatocyte apoptosis remain unclear, but probably involve effects on cell signaling, as well as direct chemical interactions. The delineation of stimulus-specific mechanisms of oxidant-dependent hepatocyte apoptosis is important to the design of effective therapies for a number of forms of liver injury.
Collapse
Affiliation(s)
- Mark J Czaja
- Department of Medicine, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|