151
|
Intestinal permeability in irritable bowel syndrome patients: effects of NSAIDs. Dig Dis Sci 2010; 55:716-23. [PMID: 19255843 DOI: 10.1007/s10620-009-0765-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 02/03/2009] [Indexed: 12/14/2022]
Abstract
Intestinal permeability and the effect of NSAIDs on permeability were investigated in 14 irritable bowel syndrome (IBS) patients and 15 healthy subjects. In the study, 24-h urinary recoveries of orally administered polyethylene glycols (PEGs 400, 1500, and 4000) were not significantly different in healthy subjects and IBS patients before or after NSAID ingestion. Lactulose mannitol ratios in healthy subjects and IBS patients were not significantly different. Only time-dependent monitoring of PEG excretion showed that NSAIDs enhanced intestinal permeability for PEG 4000 in healthy subjects (P = 0.050) and for PEGs 400, 1500, and 4000 in IBS patients (P = 0.012, P = 0.041, and P = 0.012, respectively). These results show that intestinal permeability in IBS patients is not different from that in healthy subjects; NSAIDs compromise intestinal permeability in IBS patients to a greater extent than in healthy subjects, which suggests that IBS is associated with an altered response of the intestinal barrier to noxious agents.
Collapse
|
152
|
Peripheral relays in stress-induced activation of visceral afferents in the gut. Auton Neurosci 2010; 153:99-105. [DOI: 10.1016/j.autneu.2009.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Revised: 07/06/2009] [Accepted: 07/07/2009] [Indexed: 12/23/2022]
|
153
|
Infection, inflammation, and the irritable bowel syndrome. Dig Liver Dis 2009; 41:844-9. [PMID: 19716778 DOI: 10.1016/j.dld.2009.07.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 07/09/2009] [Indexed: 12/11/2022]
Abstract
Gastrointestinal infection is ubiquitous worldwide though the pattern of infection varies widely. Poor hygiene and lack of piped water is associated with a high incidence of childhood infection, both viral and bacterial. However in developed countries bacterial infection is commoner in young adults. Studies of bacterial infections in developed countries suggest 75% of adults fully recover, however around 25% have long lasting changes in bowel habit and a smaller number develop the irritable bowel syndrome (IBS). Whether the incidence is similar in developing countries is unknown. Post-infective IBS (PI-IBS) shares many features with unselected IBS but by having a defined onset allows better definition of risk factors. These are in order of importance: severity of initial illness, smoking, female gender and adverse psychological factors. Symptoms may last many years for reasons which are unclear. They are likely to include genetic factors controlling the immune response, alterations in serotonin signaling, low grade mucosal inflammation maintained by psychological stressors and alterations in gut microbiota. As yet there are no proven specific treatments, though 5HT(3) receptor antagonists, anti-inflammatory agents and probiotics are all logical treatments which should be examined in large well-designed randomised placebo controlled trials.
Collapse
|
154
|
Larauche M, Kiank C, Tache Y. Corticotropin releasing factor signaling in colon and ileum: regulation by stress and pathophysiological implications. JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY : AN OFFICIAL JOURNAL OF THE POLISH PHYSIOLOGICAL SOCIETY 2009; 60 Suppl 7:33-46. [PMID: 20388944 PMCID: PMC3295842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 12/11/2009] [Indexed: 05/29/2023]
Abstract
It is well established that central corticotropin releasing factor (CRF) signaling mediates the gastrointestinal responses to stress. However, as shown in the brain, both CRF receptors and ligands are also widely expressed in the colon and the ileum of humans and rodents, and stress modulates their expression. Several functional studies documented that peripheral injection of CRF or urocortin stimulates colonic transit, motility, Fos expression in myenteric neurons, and defecation through activation of CRF(1) receptors, whereas it decreases ileal contractility via CRF(2) receptors. Additionally, intraperitoneal administration of CRF induces colonic mast cells degranulation via both CRF(1) and CRF(2) receptors and increases ion secretion and mucosal permeability to macromolecules, which can in turn promote intestinal inflammation and alter visceral sensitivity. Most peripheral CRF-induced alterations of colonic and ileal functions mimic effects which are observed after stress exposure, and CRF receptor antagonists given peripherally prevent stress-induced GI dysfunction. Furthermore, CRF peptides can reproduce secretomotor and mucosal alterations in vitro. Therefore, accumulated clinical and preclinical evidence supports in addition to the brain, a role for peripheral CRF signaling in mediating stress-induced effects on gastrointestinal sensorimotor, mucosal and immune functions, that may be components of underlying mechanisms involved in stress-related impact on inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS).
Collapse
Affiliation(s)
- M Larauche
- CURE, Digestive Diseases Research Center and Center for Neurobiology of Stress; Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine UCLA and VA Greater Los Angeles Healthcare System, Angeles, California, USA.
| | | | | |
Collapse
|
155
|
van den Wijngaard RM, Klooker TK, Welting O, Stanisor OI, Wouters MM, van der Coelen D, Bulmer DC, Peeters PJ, Aerssens J, de Hoogt R, Lee K, de Jonge WJ, Boeckxstaens GE. Essential role for TRPV1 in stress-induced (mast cell-dependent) colonic hypersensitivity in maternally separated rats. Neurogastroenterol Motil 2009; 21:1107-e94. [PMID: 19523146 DOI: 10.1111/j.1365-2982.2009.01339.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Irritable bowel syndrome is in part characterized by an increased sensitivity to colonic distension. Stress is an important trigger factor for symptom generation. We hypothesized that stress induces visceral hypersensitivity via mast cell degranulation and transient receptor ion channel 1 (TRPV1) modulation. We used the rat model of neonatal maternal separation (MS) to investigate this hypothesis. The visceromotor response to colonic distention was assessed in adult MS and non-handled (NH) rats before and after acute water avoidance (WA) stress. We evaluated the effect of the mast cell stabilizer doxantrazole, neutralizing antiserum against the mast cell mediator nerve growth factor (NGF) and two different TRPV1 antagonists; capsazepine (non-specific) and SB-705498 (TRPV1-specific). Immunohistochemistry was used to assess post-WA TRPV1 expression in dorsal root ganglia and the presence of immunocytes in proximal and distal colon. Retrograde labelled and microdissected dorsal root ganglia sensory neurons were used to evaluate TRPV1 gene transcription. Results showed that acute stress induces colonic hypersensitivity in MS but not in NH rats. Hypersensitivity was prevented by prestress administration of doxantrazole and anti-NGF. Capsazepine inhibited and SB-705498 reversed poststress hypersensitivity. In MS rats, acute stress induced a slight increase in colonic mast cell numbers without further signs of inflammation. Post-WA TRPV1 transcription and expression was not higher in MS than NH rats. In conclusion, the present data on stress-induced visceral hypersensitivity confirm earlier reports on the essential role of mast cells and NGF. Moreover, the results also suggest that TRPV1 modulation (in the absence of overt inflammation) is involved in this response. Thus, mast cells and TRPV1 are potential targets to treat stress-induced visceral hypersensitivity.
Collapse
Affiliation(s)
- R M van den Wijngaard
- Division of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Bähler C, Regula G, Stoffel MH, Steiner A, von Rotz A. Effects of the two production programs 'Naturafarm' and 'conventional' on the prevalence of non-perforating abomasal lesions in Swiss veal calves at slaughter. Res Vet Sci 2009; 88:352-60. [PMID: 19793601 DOI: 10.1016/j.rvsc.2009.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 04/26/2009] [Accepted: 08/26/2009] [Indexed: 01/21/2023]
Abstract
Non-perforating abomasal lesions are a considerable problem affecting more than half the population of veal calves. The objective of the present study was to assess the prevalence of pyloric and fundic abomasal lesions in Swiss veal calves at slaughter and to compare the occurrence of non-perforating abomasal lesions between two different production programs ('Naturafarm' and 'conventional'). 'Conventional'-production settings met the minimal standards as defined by the Swiss animal welfare legislation, whereas 'Naturafarm' production complied with increased animal welfare requirements. In order to identify risk factors for the development of abomasal lesions, information on management, housing, and feeding was obtained by a questionnaire. A total of 125 abomasa were randomly selected in one large abattoir. They were examined macroscopically, and the occurence of lesions in either the fundic or pyloric region of the abomasum was recorded separately. Animals raised in the 'conventional'-production setting revealed a significantly higher prevalence of lesions in the fundic part. Factors significantly affecting the prevalence of non-perforating lesions in the fundic part were the 'conventional'-production environment, including missing access to an outside pen, missing access to water and straw as the only roughage, feeding by bucket and the liquid milk by-product Protofit in combination with the powder Sprayfit.
Collapse
Affiliation(s)
- C Bähler
- Clinic for Ruminants and Swiss Bovine Health Service, University of Bern, Vetsuisse Faculty, Bremgartenstrasse 109a, CH-3012 Bern, Switzerland.
| | | | | | | | | |
Collapse
|
157
|
Yang PC, Tu YH, Perdue MH, Oluwole C, Struiksma S. Regulatory effect of heat shock protein 70 in stress-induced rat intestinal epithelial barrier dysfunction. NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2009; 1:9-15. [PMID: 22666665 PMCID: PMC3364627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Psychological stress is one of the factors associated with many human diseases; the mechanisms need to be further understood. METHODS Rats were subjected to chronic water avoid stress. Intestinal epithelial heat shock protein (HSP) 70 was evaluated. The intestinal epithelial permeability was examined with Ussing chamber technique. RESULTS HSP70 was detected in normal intestinal epithelial cells. Psychological stress decreased HSP70 in the intestinal epithelial cells that correlated with the stress-induced intestinal epithelial hyperpermeability. Pretreatment with HSP70 abrogated stress-induced intestinal barrier dysfunction. CONCLUSIONS Chronic stress inhibits HSP70 activity in rat intestinal epithelial layer that is associated with intestinal epithelial barrier dysfunction, which can be prevented by pretreatment with HSP70 protein. (Yang PC, Tu YH, Perdue MH, Oluwole C, Struiksma S. Regulatory effect of heat shock protein 70 in stress-induced rat intestinal epithelial barrier dysfunction.
Collapse
Affiliation(s)
- Ping-Chang Yang
- The McMaster Brain-Body Institute, St. Joseph Healthcare and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada,Correspondence to: Dr. Ping-Chang Yang, BBI-T3330, 50 Charlton Ave East, St. Joseph Hospital, Hamilton, ON, Canada L8N 4A6, Tel: (905) 522-1155 ext. 35828. Fax: (905) 540-6593.
| | - Ya-Hong Tu
- The McMaster Brain-Body Institute, St. Joseph Healthcare and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Mary H. Perdue
- The McMaster Brain-Body Institute, St. Joseph Healthcare and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Christine Oluwole
- The McMaster Brain-Body Institute, St. Joseph Healthcare and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Stevie Struiksma
- The McMaster Brain-Body Institute, St. Joseph Healthcare and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
158
|
Ait-Belgnaoui A, Eutamene H, Houdeau E, Bueno L, Fioramonti J, Theodorou V. Lactobacillus farciminis treatment attenuates stress-induced overexpression of Fos protein in spinal and supraspinal sites after colorectal distension in rats. Neurogastroenterol Motil 2009; 21:567-73, e18-9. [PMID: 19309441 DOI: 10.1111/j.1365-2982.2009.01280.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Abstract Irritable bowel syndrome (IBS), frequently associated with psychological distress, is characterized by hypersensitivity to gut wall distension. Some probiotics are able to alleviate IBS symptoms and reduce visceromotor response to mechanical stimuli in animals. Moreover, we have previously shown that Lactobacillus farciminis treatment abolished the hyperalgesia to colorectal distension (CRD) induced by acute stress. The aims of the present study were to determine whether (i) stress-induced visceral hyperalgesia modifies the expression of Fos, a marker of general neuronal activation, induced by CRD, (ii) this activation can be modulated by L. farciminis treatment. Female rats were treated by L. farciminis and CRD was performed after partial restraint stress (PRS) or sham-PRS. The expression of Fos protein was measured by immunohistochemistry. After CRD or PRS, Fos expression was increased in spinal cord section (S1), nucleus tractus solitarius (NTS), paraventricular nucleus (PVN) of the hypothalamus, and in the medial nucleus of the amygdala (MeA). The combination of both stimuli, PRS and CRD, markedly increased this Fos overexpression in the sacral spinal cord section, PVN and MeA, but not in NTS. By contrast, a pretreatment with L. farciminis significantly reduced the number of Fos positive cells in these area. This study shows that PRS enhances Fos protein expression induced by CRD at the spinal and supraspinal levels in rats. Lactobacillus farciminis treatment inhibited this enhancing effect, suggesting that the antinociceptive effect of this probiotic strain results from a decrease of the stress-induced activation/sensitization of sensory neurons at the spinal and supraspinal level.
Collapse
Affiliation(s)
- A Ait-Belgnaoui
- Neuro-Gastroenterology and Nutrition Unit, UMR INRA/EI-Purpan, Toulouse, France
| | | | | | | | | | | |
Collapse
|
159
|
Demaude J, Levêque M, Chaumaz G, Eutamène H, Fioramonti J, Bueno L, Ferrier L. Acute stress increases colonic paracellular permeability in mice through a mast cell-independent mechanism: involvement of pancreatic trypsin. Life Sci 2009; 84:847-52. [PMID: 19345697 DOI: 10.1016/j.lfs.2009.03.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 03/23/2009] [Accepted: 03/28/2009] [Indexed: 12/14/2022]
Abstract
AIMS Increased colonic paracellular permeability (CPP) is a key feature of gastro-intestinal disorders as irritable bowel syndrome and inflammatory bowel diseases. Stress stimulates exocrine pancreatic secretion through cholinergic pathways, and trypsin is known to increase CPP. Consequently we have investigated in this work whether trypsin released into the gut lumen following an acute stress may participate to the short-term increase in CPP. MAIN METHODS Mice were treated with atropine or a non-selective CRF (corticotropin-releasing factor) receptor antagonist (alpha-helical CRF (9-41)), before being submitted to a 2-h stress session. Then, CPP and protease activity in colonic contents (total proteolytic, trypsin activity, and mouse mast cell protease (MMCP)-1 levels) were determined. The effects of colonic contents from sham-stressed or stressed animals on CPP were evaluated in mice colonic tissues mounted in Ussing chambers, in presence or not of soybean trypsin inhibitor (SBTI) or FSLLRY, a protease-activated receptor-2 (PAR2) antagonist. KEY FINDINGS Acute stress significantly increased CPP, proteolytic and trypsin activities, and MMCP-1 levels. Atropine inhibited stress-induced impairment of CPP and strongly diminished total proteolytic and trypsin activities in stressed animals, but not MMCP-1 levels. Colonic contents from stressed animals increased CPP in mice tissues, this effect being inhibited by SBTI and PAR2 antagonist. SIGNIFICANCE Acute stress activates cholinergic pathways, to trigger exocrine pancreatic secretion. Trypsin, released in these conditions, may be responsible for colonic barrier alterations through the activation of PAR2.
Collapse
Affiliation(s)
- Julien Demaude
- INRA, EI-Purpan, UMR 1054 Neuro-Gastroenterology & Nutrition, F-31000 Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
160
|
Silva MA. Intestinal dendritic cells and epithelial barrier dysfunction in Crohn's disease. Inflamm Bowel Dis 2009; 15:436-53. [PMID: 18821596 DOI: 10.1002/ibd.20660] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Crohn's disease (CD) is a chronic gastrointestinal inflammatory disorder considered to be the result of an inappropriate and exaggerated mucosal immune reaction to yet undefined triggers from the gut flora in genetically predisposed individuals. This inflammatory phenomenon has been characterized by an adaptive T-cell response in addition to an abnormal function of the innate immune system. Dendritic cells (DCs) are constituents of this innate system, inducing T-cell activation via antigen presentation. In the gut, mucosal DCs are separated from the luminal milieu by a monolayer of cylindrical epithelial cells that forms an anatomical and physiological barrier that controls the normal traffic of antigens between both compartments. An imbalance of colonic and ileal DC distribution in tissues from CD patients as well as functional differences between DCs isolated from normal and diseased intestinal samples have been demonstrated. Moreover, a gut barrier defect in the para- and transepithelial routes in addition to a significant reduction in the intestinal secretion of epithelial products involved in barrier function has been well documented in CD. Therefore, this may expose the diseased mucosa to overwhelming amounts of antigens, resulting in abnormal DC activation and a subsequent imbalance in their distribution. In conclusion, this review provides a summary of relevant progress in CD, intestinal epithelial permeability, and DCs highlighting a potential relationship between increased epithelial permeability and abnormal DC distribution during the pathogenesis of intestinal inflammation.
Collapse
Affiliation(s)
- Manuel A Silva
- Department of Pathology and Molecular Medicine, Intestinal Disease Research Programme, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
161
|
Santos J, Yates D, Guilarte M, Vicario M, Alonso C, Perdue MH. Stress neuropeptides evoke epithelial responses via mast cell activation in the rat colon. Psychoneuroendocrinology 2008; 33:1248-56. [PMID: 18691825 DOI: 10.1016/j.psyneuen.2008.07.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 06/11/2008] [Accepted: 07/01/2008] [Indexed: 12/13/2022]
Abstract
BACKGROUND Previously, we showed that corticotropin-releasing factor (CRF) injected i.p. mimicked epithelial responses to stress, both stimulating ion secretion and enhancing permeability in the rat colon, and mast cells were involved. However, the ability of CRF-sensitive mucosal/submucosal loops to regulate intestinal barrier and the participation of resident mast cells are unclear. METHODS We examined colonic epithelial responses to stress-like peptides in Wistar-Kyoto (WKY), and mast cell-deficient (Ws/Ws) and their +/+ littermate control rats in distal segments mounted in Ussing chambers. Short-circuit current (ion secretion), flux of horseradish peroxidase (macromolecular permeability), and the release of rat mast cell protease II were measured in response to CRF [10(-6) to 10(-8)M] or sauvagine [10(-8) to 10(-10)M] in tissues pretreated with astressin, doxantrazole, or vehicle. RESULTS Stress-like peptides (sauvagine > CRF) induced a dose-dependent increase in short-circuit current (maximal at 30 min), and significantly enhanced horseradish peroxidase flux and protease II release in WKY. Epithelial responses were inhibited by both astressin and doxantrazole, and significantly reduced in tissues from Ws/Ws rats. CONCLUSION The stress mediators CRF and sauvagine modulate barrier function in the rat colon acting on mucosal/submucosal CRF receptor-bearing cells, through mast cell-dependent pathways.
Collapse
Affiliation(s)
- Javier Santos
- Digestive Diseases Research Unit, Institut de Recerça Vall d'Hebron, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Department of Medicine, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
162
|
Moretó M, Pérez-Bosque A. Dietary plasma proteins, the intestinal immune system, and the barrier functions of the intestinal mucosa. J Anim Sci 2008; 87:E92-100. [PMID: 18820151 PMCID: PMC7109928 DOI: 10.2527/jas.2008-1381] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The intestinal mucosa contributes to homeostasis by preventing the entrance of biological and chemical agents across the epithelium that could alter the stability of the system. This protective function is especially important at the time of weaning, when animals are exposed to infectious agents and to numerous stresses such as the change of environment and diet. Diets supplemented with spray-dried plasma or plasma protein fractions have been shown to improve growth performance of farm animals and have been proposed as an alternative to antibiotics. In this review, we summarize our findings on the mechanism of action of dietary plasma proteins using a rat model of intestinal inflammation, based on the administration of Staphylococcus aureus enterotoxin B (SEB). Staphylococcal enterotoxin B activates the gut-associated lymphoid tissue (GALT), increasing T-lymphocytes in Peyer's patches and the number of activated T lymphocytes in mesenteric lymph nodes (organized GALT). In the lamina propria SEB increased cytotoxic T δγ and natural killer cell populations of the diffuse GALT. Staphyloccocal enterotoxin B significantly increased proinflammatory cytokines in Peyer's patches and mucosa. Plasma protein supplements modulated the mucosal immune response in organized and diffuse GALT, protecting GALT from possible excessive activation by the SEB challenge. These effects are accompanied by a reduction of proinflammatory cytokine production, supporting the view that changes in cytokine production mediate the effects of dietary plasma proteins during intestinal inflammation. The increase in mucosal permeability and intestinal secretion induced by SEB was associated with decreased expression of mucosal tight-junction and adherent-junction proteins. Both plasma and plasma protein fractions prevented the effects of SEB on intestinal permeability, thus reducing the exposure of the host to microbial and food antigens across the interstitial space. These findings indicate that dietary plasma proteins modulate functional and structural properties of the intestinal mucosa.
Collapse
Affiliation(s)
- M Moretó
- Grup de Fisiologia i Nutrició Experimental, Departament de Fisiologia, Facultat de Farmàcia, Institut de Recerca en Nutrició i Seguretat Alimentària, Universitat de Barcelona, Spain.
| | | |
Collapse
|
163
|
Teitelbaum AA, Gareau MG, Jury J, Yang PC, Perdue MH. Chronic peripheral administration of corticotropin-releasing factor causes colonic barrier dysfunction similar to psychological stress. Am J Physiol Gastrointest Liver Physiol 2008; 295:G452-9. [PMID: 18635602 DOI: 10.1152/ajpgi.90210.2008] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chronic psychological stress causes intestinal barrier dysfunction and impairs host defense mechanisms mediated by corticotrophin-releasing factor (CRF) and mast cells; however, the exact pathways involved are unclear. Here we investigated the effect of chronic CRF administration on colonic permeability and ion transport functions in rats and the role of mast cells in maintaining the abnormalities. CRF was delivered over 12 days via osmotic minipumps implanted subcutaneously in wild-type (+/+) and mast cell-deficient (Ws/Ws) rats. Colonic segments were excised for ex vivo functional studies in Ussing chambers [short-circuit current (Isc), conductance (G), and macromolecular permeability (horseradish peroxidase flux)], and analysis of morphological changes (mast cell numbers and bacterial host-interactions) was determined by light and electron microscopy. Chronic CRF treatment resulted in colonic mucosal dysfunction with increased Isc, G, and horseradish peroxidase flux in+/+but not in Ws/Ws rats. Furthermore, CRF administration caused mast cell hyperplasia and abnormal bacterial attachment and/or penetration into the mucosa only in+/+rats. Finally, selective CRF agonist/antagonist studies revealed that stimulation of CRF-R1 and CRF-R2 receptors induced the elevated secretory state and permeability dysfunction, respectively. Chronic CRF causes colonic barrier dysfunction in rats, which is mediated, at least in part, via mast cells. This information may be useful in designing novel treatment strategies for stress-related gastrointestinal disorders.
Collapse
Affiliation(s)
- Aaron A Teitelbaum
- Intestinal Disease Research Program, Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
164
|
Prospective evaluation of the relationship between stress and relapse in ulcerative colitis. J Clin Gastroenterol 2008; 42:963-4. [PMID: 18645524 DOI: 10.1097/mcg.0b013e318178d1ba] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
165
|
Abstract
BACKGROUND The human gut harbours a complex community of bacteria whose relationship with their host is normally mutually beneficial. Recent studies suggest a disturbance of this relationship in irritable bowel syndrome (IBS) and the potential to correct this using prebiotics and probiotics. AIM To review the mechanisms of action of probiotics and prebiotics in IBS and to assess their performance in clinical trials. METHODS Articles relating to modes of action and randomized control trials of treatment were reviewed by searching PubMed using terms 'probiotic', 'prebiotic' and 'irritable bowel'. Small uncontrolled studies in IBS were excluded. RESULTS Probiotics can enhance gut barrier function, inhibit pathogen binding and modulate gut inflammatory response. They can also reduce visceral hypersensitivity associated with both inflammation and psychological stress. Probiotics can alter colonic fermentation and stabilize the colonic microbiota. Several large randomized, placebo-controlled trials of adequate design have shown an improvement in flatulence and abdominal distension with a reduction in composite IBS symptoms scores. CONCLUSIONS Each probiotic has unique features and IBS patients are heterogeneous. Future efforts should be directed to identifying biomarkers of responsiveness to facilitate better targeting of treatment and hence improved efficacy.
Collapse
Affiliation(s)
- R Spiller
- Wolfson Digestive Diseases Centre, University Hospital, University of Nottingham, Nottinghamshire, UK.
| |
Collapse
|
166
|
Farhadi A, Gundlapalli S, Shaikh M, Frantzides C, Harrell L, Kwasny MM, Keshavarzian A. Susceptibility to gut leakiness: a possible mechanism for endotoxaemia in non-alcoholic steatohepatitis. Liver Int 2008; 28:1026-33. [PMID: 18397235 PMCID: PMC4303249 DOI: 10.1111/j.1478-3231.2008.01723.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION One of the proposed second hit mechanisms in the pathophysiology of non-alcoholic steatohepatitis (NASH) is hepatic oxidative stress triggered by elevated levels of endotoxin. We investigated one possible mechanism for the endotoxaemia--disruption of intestinal barrier integrity. METHODS We enrolled 16 subjects with fatty liver (10 NASH; 6 steatosis) and 12 healthy subjects. Steatosis and NASH were diagnosed by liver biopsy using the Brunt criteria. Gastrointestinal permeability was measured using urinary excretion of 5-h lactulose/mannitol (L/M) ratio and 24-h sucralose. Permeability testing was repeated after aspirin challenge. RESULTS Groups had similar baseline urinary 0-5 h L/M ratio (small bowel permeability) and 0-24 h sucralose (whole-gut permeability). Aspirin increased 0-5 h urinary L/M in most subjects. In contrast, aspirin significantly increased whole-gut permeability only in NASH subjects. In fact, the major increase in the urinary sucralose occurred in the 6-24 h samples, which points towards the colon as the major site responsible for aspirin-induced leakiness in NASH patients. Serum endotoxin levels were significantly higher in NASH subjects. DISCUSSION Our findings suggest that aspirin acts on the colon to unmask a susceptibility to gut leakiness in patients with NASH. This effect may be the underlying mechanism for increased serum endotoxin, which is the second hit (after altered lipid metabolism) that is required to initiate a necroinflammatory cascade in hepatocytes which are already primed with obesity-induced abnormal lipid homoeostasis.
Collapse
Affiliation(s)
- Ashkan Farhadi
- Department of Medicine, Division of Digestive Diseases and Nutrition, Rush University, Chicago, IL 60612, USA.
| | - Sushama Gundlapalli
- Department of Medicine, Division of Digestive Diseases and Nutrition, Rush University, Chicago, IL, USA
| | - Maliha Shaikh
- Department of Medicine, Division of Digestive Diseases and Nutrition, Rush University, Chicago, IL, USA
| | | | - Laura Harrell
- Department of Gastroenterology, University of Chicago, Chicago, IL, USA
| | - Mary M. Kwasny
- Department of Community and Mental Health Nursing, Rush University, Chicago, IL, USA,Department of Health Systems Management, Rush University, Chicago, IL, USA
| | - Ali Keshavarzian
- Department of Medicine, Division of Digestive Diseases and Nutrition, Rush University, Chicago, IL, USA,Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL, USA,Department of Pharmacology, Rush University, Chicago, IL, USA
| |
Collapse
|
167
|
Abstract
Functional gastrointestinal disorders (FGIDs) commonly affect children and are associated with short- and long-term morbidity. Although the pathogenesis of pain-related FGIDs remains incompletely understood, most investigators agree on a multifactorial etiology and the presence of an altered brain-gut interaction. A continuous interplay of genetic and environmental factors appears to shape the development of the central and enteric nervous systems. The biopsychosocial model is the current operational framework for children with FGIDs, as it recognizes the interaction between social and environmental influences and psychological and physiologic processes. The biopsychosocial model proposes that specific permutations of genetic susceptibility, early life experiences, sociocultural issues, and coping mechanisms could explain the variability in clinical presentation and outcome among individuals.
Collapse
Affiliation(s)
- Ashis V Barad
- Children's Memorial Hospital, Northwestern University, 700 West Fullerton Avenue, Box 57, Chicago, IL 60614, USA.
| | | |
Collapse
|
168
|
Abstract
Digestive tract proteases are best known for their proteolytic activity in the digestion of alimentary proteins. However, during the last decade, a possible role of proteases as signalling molecules has been emphasized with the discovery of a novel class of G-protein coupled receptors located on cell membranes that may be activated by proteolytic cleavage of their N-terminal extracellular domain. Type 2 protease-activated receptors (PAR-2) are cleaved by serine-proteases such as trypsin and tryptase. PAR-2 is present in many intestinal cell types and particularly on epithelial cells. Multiple functions have been demonstrated in the gut for PAR-2, including epithelial permeability, mainly the intercellular permeability that is of paramount importance in the equilibrium between the external milieu (digestive contents) and the submucosal immune system. Alterations of both tissue and luminal levels of proteases or serine-protease activity may affect gut permeability and subsequently the immune status of the mucosa. Activation of PAR-2 on epithelial cells may directly affect cytoskeleton contraction by triggering phosphorylation of myosin light chain with subsequent changes in tight junction permeability. Enhanced fecal protease level has been recently reported in both organic (ulcerative colitis) and functional (irritable bowel syndrome) intestinal disorders and may play a role in the pathogenesis of such diseases.
Collapse
Affiliation(s)
- L Bueno
- Neurogastroenterology and Nutrition Unit, INRA, Toulouse, France.
| | | |
Collapse
|
169
|
Amano H, Negishi I, Akiyama H, Ishikawa O. Psychological stress can trigger atopic dermatitis in NC/Nga mice: an inhibitory effect of corticotropin-releasing factor. Neuropsychopharmacology 2008; 33:566-73. [PMID: 17460609 DOI: 10.1038/sj.npp.1301435] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Atopic dermatitis (AD) is one of the most common inflammatory diseases of the skin and is usually associated with a family history of atopic diathesis. It has been well established that many environmental or psychological factors aggravate AD. However, it is not clear whether psychological stress by itself can trigger AD. We examined the effect of psychological stress on the onset of AD, using an animal model, the NC/Nga mouse. The animals were exposed to the water avoidance stress (WAS) test to induce psychological stress. Additionally, we examined how corticotropin-releasing factor (CRF) affected the development of AD induced by psychological stress. Under specific pathogen-free (SPF) conditions, NC/Nga mice did not develop AD-like skin lesions. In contrast, NC/Nga mice exposed to psychological stress developed AD-like skin lesions along with elevated levels of serum immunoglobulin E even when kept under SPF conditions. The AD-like skin lesions induced by WAS were completely blocked by pretreating the animals with CRF. Our data indicate that a psychological factor is capable of eliciting AD-like skin lesions in NC/Nga mice. It is possible that the inhibitory effect of CRF may be mediated by the functional modification of various cells that have CRF receptors.
Collapse
Affiliation(s)
- Hiroo Amano
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
| | | | | | | |
Collapse
|
170
|
Farhadi A, Keshavarzian A, Fields JZ, Jakate S, Shaikh M, Banan A. Reduced immunostaining for c-kit receptors in mucosal mast cells in inflammatory bowel disease. J Gastroenterol Hepatol 2007; 22:2338-43. [PMID: 17645464 DOI: 10.1111/j.1440-1746.2007.05011.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM The deleterious effects of stress in inflammatory bowel disease (IBD) have been attributed to activation of the brain-gut axis (BGA) and its end effectors, mast cells (MC). We previously showed that cold pressor stress test (CPT) results in increased activation and degranulation (but not increased proliferation) of mucosal MC, mitochondrial damage to epithelial cells and mucosal protein oxidation in both healthy controls and IBD patients. These changes are more marked in IBD patients. This increased activation of MC in IBD could be due to (i) greater activation of the BGA or (ii) inherited or acquired abnormalities in mucosal MC. In the current study we investigated the latter possibility. METHODS To assess the effects of stress on mucosal MC in patients with IBD, seven controls and 15 subjects with inactive IBD underwent 5 consecutive days of CPT to activate the BGA. Endoscopic mucosal biopsies of the distal sigmoid colon were taken during unprepared sigmoidoscopy before the first CPT and after the last CPT, and formalin-fixed samples were stained for both MC granules (MCg) and for the c-kit receptor, which is present on MC membranes (MCm). Mast cell degranulation was assessed using electron microscopy. RESULTS Mast cell granule staining suggested that IBD subjects do not have a significantly different number of MC compared with controls, either before or after stress. Mast cell membrane staining, in contrast, suggested that MC c-kit immunostaining was significantly reduced - at both baseline (P = 0.01) and post stress (P = 0.04) samples - in IBD patients compared to controls. MC c-kit immunostaining was independent of stress-induced MC degranulation. There was no significant change in MC number as a result of the stress intervention using either staining method in both groups. CONCLUSION These data support our previous report that the size of the mucosal MC population in patients with inactive IBD is not altered by disease or by stress, yet MC in IBD are different (fewer c-kit receptors) and respond differently (greater activation) than MC in control subjects. It remains to be seen whether this abnormality is an inherited or acquired one and to identify its role and mechanism in tissue injury in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Ashkan Farhadi
- Section of Gastroenterology and Nutrition, and Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois 60612, USA.
| | | | | | | | | | | |
Collapse
|
171
|
Moriez R, Leveque M, Salvador-Cartier C, Barreau F, Theodorou V, Fioramonti J, Bueno L, Eutamene H. Mucosal mast cell proteases are involved in colonic permeability alterations and subsequent bacterial translocation in endotoxemic rats. Shock 2007; 28:118-24. [PMID: 17510603 DOI: 10.1097/shk.0b013e3180315ba9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
LPS-induced endotoxemia is associated with gut immune stimulation, mucosal inflammation, colonic paracellular permeability (CPP) alteration, and it promotes bacterial translocation (BT). Gut permeability increase linked to LPS promotes mucosal barrier dysfunction resulting to BT. However, the mechanisms involved in these alterations remain unknown. We aimed to evaluate the role of colonic mucosal mast cells and luminal serine protease activity (PA) in the alterations of CPP and BT induced by LPS. Rats receiving doxantrazole, a mast cell stabilizer, combined or not with LPS from Escherichia coli and CPP as well as BT were evaluated after each treatment. Mucosal mast cell activation was assessed by histological methods and by rat mast cell protease 2 level measurement in colonic content. Colonic luminal PA and mucosal inflammation (myeloperoxidase activity) were biochemically determined. In addition, the ability of luminal contents to act on CPP was evaluated in vitro in Ussing chambers. Peripheral administration of LPS promoted mast cell degranulation and increased CPP, BT, mucosal myeloperoxidase activity as well as rat mast cell protease 2 levels, and PA in colonic content. LPS-induced CPP increase and BT were prevented by doxantrazole. In vitro, exposure of the apical side of colonic tissues with supernatants from colonic contents of LPS-treated rats increased CPP. This effect was blocked by the serine protease inhibitor soybean trypsin inhibitor. Our data bring evidence of a key role of mucosal mast cells in LPS-induced increase of CPP and BT through the release of serine proteases into the colonic lumen.
Collapse
Affiliation(s)
- Raphaël Moriez
- 4MR 1054, INRA, Neuro-Gastroenterology and Nutrition Unit, ESA-Purpan, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
172
|
Barreau F, Ferrier L, Fioramonti J, Bueno L. New insights in the etiology and pathophysiology of irritable bowel syndrome: contribution of neonatal stress models. Pediatr Res 2007; 62:240-5. [PMID: 17622962 DOI: 10.1203/pdr.0b013e3180db2949] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Irritable bowel syndrome (IBS) is one of the most common gastrointestinal disorders, characterized by abdominal pain and disturbed defecation that cannot be explained by structural abnormalities. Although IBS symptoms (visceral pain, increased gut permeability, motility alterations) are clearly established, the etiology of this pathology is loosely understood. Nevertheless, clinical studies have reported that some early abuse (physical and psychological) is often associated with IBS development. Thus, loss and separation in the family during childhood may contribute to the IBS development. The recent development of animal models has pointed out the importance of early traumatic experiences in favoring the occurrence of IBS in adult life. Among these different models, neonatal maternal deprivation (NMD), neonatal colonic irritation (inflammatory stimuli), and neonatal colonic pain (rectal distension) have been described to mimic some cardinal features of IBS. The purpose of this review is 3-fold. First, to present the different neonatal stress models. Second, to review the literature on the influence of these early traumatic experiences on the gastrointestinal tract disturbances observed in adult life. Finally, we will also present the mediators and mechanisms involved in gut dysfunction triggered by NMD and probably in IBS.
Collapse
Affiliation(s)
- Frederick Barreau
- INSERM U843, Inflammation intestinale chez l'enfant, Université Paris 7, Hôpital Robert Debré, F-75019 Paris, France.
| | | | | | | |
Collapse
|
173
|
Söderholm JD. Stress-related changes in oesophageal permeability: filling the gaps of GORD? Gut 2007; 56:1177-80. [PMID: 17449634 PMCID: PMC1954954 DOI: 10.1136/gut.2007.120691] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 04/08/2007] [Accepted: 04/12/2007] [Indexed: 12/30/2022]
Abstract
Albeit remaining a controversial issue, it has become increasingly recognised that psychological stress has a major impact on gut mucosal function and affects the course of gastrointestinal disorders. Research during the last decade has shown that stress causes barrier dysfunction of the gastrointestinal mucosa by mechanisms that mainly involve neuropeptides and mast cells. Moreover, accumulating evidence implicates increased permeability as a pathogenic factor in gastroesophageal reflux disease (GORD). Recent data demonstrating that psychological stress may induce a permeability defect in stratified epithelia, including the oesophagus, shed new light on the pathophysiological events leading to heartburn and GORD.
Collapse
Affiliation(s)
- Johan D Söderholm
- Department of Clinical and Experimental Medicine, Linköping University, Faculty of Health Sciences, SE-581 85 Linköping, Sweden.
| |
Collapse
|
174
|
Róka R, Ait-Belgnaoui A, Salvador-Cartier C, Garcia-Villar R, Fioramonti J, Eutamène H, Bueno L. Dexamethasone prevents visceral hyperalgesia but not colonic permeability increase induced by luminal protease-activated receptor-2 agonist in rats. Gut 2007; 56:1072-8. [PMID: 17309885 PMCID: PMC1955509 DOI: 10.1136/gut.2006.115352] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Low-grade inflammation may play a role in the pathogenesis of irritable bowel syndrome (IBS). Although corticosteroids are potent inhibitors of inflammatory processes, only one study with corticosteroids in patients with postinfectious IBS exists, which suggests that prednisolone is not an effective treatment for IBS symptoms. AIM To evaluate whether dexamethasone treatment prevents protease-activated receptor-2 (PAR-2) activation-induced visceral hyperalgesia and increased permeability in rats, and to determine whether the effects involve colonic mast cells. METHODS Abdominal contractions provoked by rectal distension were recorded in rats equipped with intramuscular electrodes. Changes in visceral hypersensitivity provoked by intracolonic administration of PAR-2-activating peptide (SLIGRL; H-serine-leucine-isoleucine-glycine-arginine-leucine-OH), changes in colonic mucosal rat mast cell protease-II (RMCP-II) content, mast cell count and PAR-2 expression were measured after a 4-day treatment with dexamethasone (1 mg/day/rat intraperitoneally) or its vehicle (water). The effect of mast cell stabiliser (doxantrazole, 1 mg/kg intraperitoneally, 2 h before and 6 h after intracolonic infusion of SLIGRL) on SLIGRL-induced visceral hyperalgesia was also assessed. The effects of SLIGRL and a mast cell degranulator (compound 48/80) on the permeability of colonic strips from vehicle- or dexamethasone-treated rats were investigated in Ussing chambers. RESULTS 4 days of dexamethasone as well as doxantrazole diminished the SLIGRL-induced hyperalgesia for all volumes of distension. This effect of dexamethasone was accompanied by a reduced responsiveness of colonic permeability to compound 48/80, and decreased RMCP-II content and mast cell number. Dexamethasone treatment did not influence colonic mucosal PAR-2 expression and permeability responsiveness to SLIGRL. CONCLUSIONS Dexamethasone treatment improves PAR-2 agonist-induced visceral hypersensitivity but does not prevent PAR-2 agonist-induced increase in colonic permeability in rats. This effect is coupled with a reduction of colonic mast cell number and RMCP-II contents.
Collapse
Affiliation(s)
- Richard Róka
- INRA Neuro-Gastroenterology & Nutrition Unit, 180 Chemin de Tournefeuille, BP 3, 31931 Toulouse Cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
175
|
|
176
|
Moeser AJ, Ryan KA, Nighot PK, Blikslager AT. Gastrointestinal dysfunction induced by early weaning is attenuated by delayed weaning and mast cell blockade in pigs. Am J Physiol Gastrointest Liver Physiol 2007; 293:G413-21. [PMID: 17525151 DOI: 10.1152/ajpgi.00304.2006] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Our previous work has demonstrated that weaning at 19 days of age has deleterious effects on mucosal barrier function in piglet intestine that are mediated through peripheral CRF receptor signaling pathways. The objectives of the present study were to assess the impact of piglet age on weaning-associated intestinal dysfunction and to determine the role that mast cells play in weaning-induced breakdown of mucosal barrier function. Nursing Yorkshire-cross piglets were either weaned at 19 days of age (early-weaned, n = 8) or 28 days of age (late-weaned, n = 8) and housed in nursery pens. Twenty-four hours postweaning, segments of midjejunum and ascending colon from piglets within each weaning age group were harvested and mounted on Ussing chambers for measurements of transepithelial electrical resistance and serosal-to-mucosal [(3)H]mannitol fluxes. Early weaning resulted in reductions in transepithelial electrical resistance and increases in mucosal permeability to [(3)H]mannitol in the jejunum and colon (P < 0.01). In contrast, postweaning reductions in intestinal barrier function were not observed in piglets weaned at 28 days of age. Early-weaned piglet intestinal mucosa had increased expression of CRF receptor 1 protein, increased mucosal mast cell tryptase levels, and evidence of enhanced mast cell degranulation compared with late-weaned intestinal mucosa. Pretreatment of piglets with the mast cell stabilizer drug cromolyn, injected intraperitoneally 30 min prior to weaning, abolished the early-weaning-induced intestinal barrier disturbances. Our results indicate that early-weaning stress induces mucosal dysfunction mediated by intestinal mast cell activation and can be prevented by delaying weaning.
Collapse
Affiliation(s)
- Adam J Moeser
- Center for Comparative Translational and Molecular Research, College of Veterinary Medicine, North Carolina State Univ., 4700 Hillsborough St., Raleigh, NC 27606, USA.
| | | | | | | |
Collapse
|
177
|
Abstract
Based on a systematic PubMed search, this short review addresses why intestinal permeability may be important in the pathobiology of irritable bowel syndrome (IBS), the evidence of abnormal permeability in patients with IBS, and the pros and cons of the different probe molecules available to assess intestinal permeability. While a subgroup of patients with IBS appears to have evidence of increased intestinal permeability, improvements in the methods and validation are key to further research in this field in order to better understand intestinal barrier functions in IBS.
Collapse
Affiliation(s)
- M Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research Group, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | |
Collapse
|
178
|
Farhadi A, Fields JZ, Keshavarzian A. Mucosal mast cells are pivotal elements in inflammatory bowel disease that connect the dots: Stress, intestinal hyperpermeability and inflammation. World J Gastroenterol 2007; 13:3027-30. [PMID: 17589915 PMCID: PMC4172606 DOI: 10.3748/wjg.v13.i22.3027] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mast cells (MC) are pivotal elements in several physiological and immunological functions of the gastro-intestinal (GI) tract. MC translate the stress signals that has been transmitted through brain gut axis into release of proinflammatory mediators that can cause stimulation of nerve endings that could affect afferent nerve terminals and change their perception, affect intestinal motility, increase intestinal hyperpermeability and, in susceptible individuals, modulate the inflammation. Thus, it is not surprising that MC are an important element in the pathogenesis of inflammatory bowel disease and non inflammatory GI disorders such as IBS and mast cell enterocolitis.
Collapse
|
179
|
Wu L, Feng BS, He SH, Zheng PY, Croitoru K, Yang PC. Bacterial peptidoglycan breaks down intestinal tolerance via mast cell activation: the role of TLR2 and NOD2. Immunol Cell Biol 2007; 85:538-45. [PMID: 17563761 DOI: 10.1038/sj.icb.7100079] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Intestinal microbes are believed to be involved in the pathogenesis of inflammatory bowel disease. Microbes and their products are generally well tolerated by intestinal epithelial cells in the intestinal tract of healthy individuals. It is of significance to understand what breaks down the established tolerance leading to intestinal barrier dysfunction and intestinal inflammation. T84 monolayer transported peptidoglycan (PGN) was determined by enzyme-linked immune assay. Mast cell line HMC-1 cell activation in response to PGN stimulation was observed with electron microscopy and measurement of histamine release. T84 monolayer barrier function was determined by recording the transepithelial electric resistance (TER) and measuring the permeability in response to PGN-induced HMC-1 cell activation. Expression of Toll-like receptor (TLR) 2 and nucleotide-binding oligomerization domain (NOD) 2 were determined by immunocytochemistry, real-time reverse transcription (RT)-PCR and Western blot. Exposure to PGN alone did not alter TER and permeability of T84 monolayers. T84 monolayers transported PGN from the apical chamber to the basal chamber of transwell system. TLR2 expressed on the surface of HMC-1 cells. HMC-1 cells absorbed PGN. HMC-1 cells released histamine in response to the PGN stimulation, which was blocked by pretreatment with antibodies or small interfering RNA against TLR2 or NOD2. In a co-culture system, T84 monolayer transported PGN activated HMC-1 cells and increased the horseradish peroxidase flux. TLR2 mediated the PGN-absorption in HMC-1 cells. Blockade of TLR2 or NOD2 abolished PGN-induced HMC-1 cell activation and T84 monolayer barrier dysfunction. T84 monolayer transported PGN activates HMC-1 cells to release chemical mediators to induce T84 monolayer dysfunction that are mediated by TLR2 and NOD2.
Collapse
Affiliation(s)
- Linda Wu
- Pathology & Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | |
Collapse
|
180
|
Ramos L, Vicario M, Santos J. [Stress-mast cell axis and regulation of gut mucosal inflammation: from intestinal health to an irritable bowel]. Med Clin (Barc) 2007; 129:61-9. [PMID: 17588364 DOI: 10.1157/13106939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The functional gastrointestinal disorders and the irritable bowel syndrome, in particular, represent one of the commonest causes of medical consultation and the most frequent diagnosis raised by the gastroenterologists. Despite their high prevalence, the aetiology and pathophysiology of these functional digestive disorders remains unclear and specific diagnostic markers and clearly effective therapeutic options are lacking as well. These factors generate an important impairment in the quality of life in these patients and a growing sanitary burden. Recent studies showing the presence of low grade intestinal mucosal inflammation along with mast cell hyperplasia may contribute to the development and perpetuation of visceral hypersensitivity and dismotility patterns and epithelial barrier abnormalities, characteristic of the irritable bowel syndrome. In this article we will review the role of the stress-mast cell axis in the modulation of the gut mucosal inflammation and in the pathophysiology of the irritable bowel syndrome.
Collapse
Affiliation(s)
- Laura Ramos
- Unidad de Investigación en Enfermedades Digestivas, Servicio de Aparato Digestivo, Hospital Universitari Vall d'Hebron, Departamento de Medicina, Universitat Autònoma de Barcelona, Barcelona, España
| | | | | |
Collapse
|
181
|
Liu CY, Mueller MH, Grundy D, Kreis ME. Vagal modulation of intestinal afferent sensitivity to systemic LPS in the rat. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1213-20. [PMID: 17204546 DOI: 10.1152/ajpgi.00267.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The central nervous system modulates inflammation in the gastrointestinal tract via efferent vagal pathways. We hypothesized that these vagal efferents receive synaptic input from vagal afferents, representing an autonomic feedback mechanism. The consequence of this vagovagal reflex for afferent signal generation in response to LPS was examined in the present study. Different modifications of the vagal innervation or sham procedures were performed in anesthetized rats. Extracellular mesenteric afferent nerve discharge and systemic blood pressure were recorded in vivo before and after systemic administration of LPS (6 mg/kg iv). Mesenteric afferent nerve discharge increased dramatically following LPS, which was unchanged when vagal efferent traffic was eliminated by acute vagotomy. In chronically vagotomized animals, to eliminate both vagal afferent and efferent traffic, the increase in afferent firing 3.5 min after LPS was reduced to 3.2 +/- 2.5 impulses/s above baseline compared with 42.2 +/- 2.0 impulses/s in controls (P < 0.001). A similar effect was observed following perivagal capsaicin, which was used to eliminate vagal afferent traffic only. LPS also caused a transient hypotension (<10 min), a partial recovery, and then persistent hypertension that was exacerbated by all three procedures. Mechanosensitivity was increased 15 min following LPS but had recovered at 30 min in all subgroups except for the chronic vagotomy group. In conclusion, discharge in capsaicin-sensitive mesenteric vagal afferents is augmented following systemic LPS. This activity, through a vagovagal pathway, helps to attenuate the effects of septic shock. The persistent hypersensitivity to mechanical stimulation after chronic vagal denervation suggests that the vagus exerts a regulatory influence on spinal afferent sensitization following LPS.
Collapse
Affiliation(s)
- C Y Liu
- Institute of Physiology, School of Medicine, Shandong University, Shandong, China
| | | | | | | |
Collapse
|
182
|
Boudry G, Jury J, Yang PC, Perdue MH. Chronic psychological stress alters epithelial cell turn-over in rat ileum. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1228-32. [PMID: 17272512 DOI: 10.1152/ajpgi.00358.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dysregulated epithelial cell kinetics associated with mucosal barrier dysfunction may be involved in certain intestinal disorders. We previously showed that chronic psychological stress, in the form of repetitive sessions of water avoidance stress (WAS), has a major detrimental impact on ileal barrier function. We hypothesized that these changes were related to a disturbance in enterocyte kinetics. Rats were submitted to WAS (1 h/day) for 5 or 10 days. As previously shown, permeability to macromolecules was enhanced in rats stressed for 5 and 10 days compared with controls. WAS induced a decrease in crypt depth at day 5 associated with an increased number of apoptotic cells. Cell proliferation was significantly increased at days 5 and 10. Villus height and the specific activity of sucrase were significantly reduced at day 10. We concluded that WAS induces a disturbance of epithelial cell kinetics, with the pattern depending on the duration of the stress period. These findings help to explain the mechanism underlying altered epithelial barrier function resulting from exposure to chronic psychological stress.
Collapse
Affiliation(s)
- Gaëlle Boudry
- Intestinal Disease Research Program, Department of Pathology and Molecular Medicine, Faculty of Health Science, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | |
Collapse
|
183
|
Boerma M, Fiser WP, Hoyt G, Berry GJ, Joseph L, Joseph J, Wang J, Crew MD, Robbins RC, Hauer-Jensen M. Influence of mast cells on outcome after heterotopic cardiac transplantation in rats. Transpl Int 2007; 20:256-65. [PMID: 17291219 DOI: 10.1111/j.1432-2277.2006.00420.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Correlative data suggest that mast cells adversely affect cardiac transplantation. This study uses a mast cell-deficient rat model to directly address the role of mast cells in cardiac allotransplantation. Standardized cardiac heterotopic transplantation with cyclosporine immunosuppression was performed in mast cell-deficient and mast cell-competent rats. Rejection, ischemia, fibrosis, fibrin deposition, numbers of T-cell receptor alpha/beta positive cells, expression of transforming growth factor-beta (TGF-beta), and of endothelin-1 (ET-1) and its receptors ETA and ETB were assessed. Differences in baseline cardiac gene expression were quantified by real-time PCR in a separate group of untransplanted animals. Baseline cardiac gene expression levels of all investigated growth factors, cytokines, ET-1, ETA, and ETB were similar in mast cell-deficient and mast cell-competent rats. Surprisingly, upon heterotopic transplantation, donor heart survival was significantly reduced in mast cell-deficient rats. Moreover, in mast cell-deficient donor hearts rejection was more severe, although nonsignificant, and extracellular matrix associated TGF-beta immunoreactivity was significantly lower than in mast cell-competent donor hearts. Fibrin immunoreactive area, on the other hand, was only increased in mast cell-deficient donor hearts, but not in mast cell-competent donor hearts. Histopathological changes in all donor hearts were accompanied by increased immunoreactivity for ET-1. In conclusion, this study shows that mast cells play a protective role after cardiac transplantation.
Collapse
Affiliation(s)
- Marjan Boerma
- Department of Surgery, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Keita AV, Stertman L, Sun YQ, Larhed A, Sjöholm I, Söderholm JD. Effects of chronic stress on the immune response to oral human serum albumin-conjugated starch microparticles in rats. J Neuroimmunol 2007; 183:33-42. [PMID: 17174407 DOI: 10.1016/j.jneuroim.2006.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 11/01/2006] [Accepted: 11/01/2006] [Indexed: 12/21/2022]
Abstract
Uptake of antigens and bacteria over the follicle-associated epithelium (FAE) is increased after chronic psychological stress. We investigated whether stress affects the immune response to particle-conjugated antigens taken up via the FAE. Rats were submitted to two 10-day periods of water avoidance stress and orally immunized during these periods. Stressed immunized rats displayed altered cell populations and a Th1-skewed immune response within the lymphoid follicles, together with enhanced delayed-type hypersensitivity. We conclude that chronic stress affects the cell-mediated immune response after oral immunization, which may have implications for the understanding of allergic and autoimmune diseases and development of oral vaccines.
Collapse
Affiliation(s)
- Asa V Keita
- Department of Biomedicine and Surgery, Division of Surgery, Faculty of Health Sciences, Linköping University, Sweden
| | | | | | | | | | | |
Collapse
|
185
|
Guilarte M, Santos J, de Torres I, Alonso C, Vicario M, Ramos L, Martínez C, Casellas F, Saperas E, Malagelada JR. Diarrhoea-predominant IBS patients show mast cell activation and hyperplasia in the jejunum. Gut 2007; 56:203-9. [PMID: 17005763 PMCID: PMC1856785 DOI: 10.1136/gut.2006.100594] [Citation(s) in RCA: 287] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Increased numbers of mast cells and mast cell activation in distal gut segments are associated with symptom onset and severity in irritable bowel syndrome (IBS). Although upper gut symptoms are common, mast cells have not been thoroughly evaluated in proximal gut in IBS patients. METHODS Jejunal biopsies obtained by Watson's capsule, aspiration of intestinal fluid and one blood sample were obtained in 20 diarrhoea-predominant patients with IBS (D-IBS) and 14 healthy volunteers (H). Psychological stress (Holmes-Rahe Scale) and depression (Beck's Depression Inventory) were evaluated at baseline and food and respiratory allergy excluded. Biopsies were processed for H&E staining and microscopic inflammation assessed by counting intraepithelial lymphocytes. Mast cells in lamina propria were counted by immunohistochemistry with CD117 (c-kit). Tryptase concentration was measured in intestinal fluid and serum. RESULTS D-IBS patients showed higher psychological stress than healthy volunteers (D-IBS: 203 (SD 114) v H: 112 (SD 99); p = 0.019). Immunohistochemical staining of jejunal mucosa revealed mild increase in intraepithelial CD3+ cells in D-IBS patients (D-IBS: 15.3 (SD 5.5; 95% CI 12.7 to 17.9) v H: 10.3 (SD 3.9; 95% CI 8.0 to 12.5); p = 0.006). Moreover, D-IBS patients showed marked increase in mast cells numbers (D-IBS: 34 (SD 9.3); H: 15.3 (SD 4.4) mast cells/hpf; p<0.001) and higher tryptase concentration in jejunal fluid (D-IBS: 0.45 (SD 0.38); H: 0.09 (SD 0.10) microg/l; p = 0.005). Upper gut symptoms were not associated with gender, mast cell counts, jejunal tryptase or basal stress. CONCLUSION This jejunal mucosal inflammatory profile may help identify diarrhoea-predominant IBS, a stress-related disorder.
Collapse
Affiliation(s)
- Mar Guilarte
- Department of Medicine, Hospital Universitari General Vall d'Hebron, 08035 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Barreau F, Cartier C, Leveque M, Ferrier L, Moriez R, Laroute V, Rosztoczy A, Fioramonti J, Bueno L. Pathways involved in gut mucosal barrier dysfunction induced in adult rats by maternal deprivation: corticotrophin-releasing factor and nerve growth factor interplay. J Physiol 2007; 580:347-56. [PMID: 17234701 PMCID: PMC2075424 DOI: 10.1113/jphysiol.2006.120907] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neonatal maternal deprivation (NMD) increases gut paracellular permeability (GPP) through mast cells and nerve growth factor (NGF), and modifies corticotrophin-releasing factor (CRF) and corticosterone levels. CRF, corticosterone and mast cells are involved in stress-induced mucosal barrier impairment. Consequently, this study aimed to specify whether corticosteronaemia and colonic expression of both preproCRF and CRF are modified by NMD, and to determine if altered expression may participate in the elevated GPP in connection with NGF and mast cells. Male Wistar rat pups were either separated from postnatal days 2-14, or left undisturbed with their dam. At 12 weeks of age, adult rats were treated with mifepristone (an antagonist of corticoid receptors), alpha-helical CRF((9-41)) (a non-specific CRF receptor antagonist), or SSR-125543 (CRF-R(1) receptor antagonist). We also determined corticosteronaemia and both colonic preproCRF and CRF expression. Then, control rats were treated by CRF, doxantrazole (mast cell stabilizer), BRX-537A (a mast cell activator) and anti-NGF antibody. NMD did not modify colonic CRF level but increased colonic preproCRF expression and corticosteronaemia. Peripheral CRF, via CRF-R(1) receptor, but not corticosterone, was involved in the elevated GPP observed in these rats, through a mast-cell-mediated mechanism, since the increase of GPP induced by exogenous CRF was abolished by doxantrazole. Anti-NGF antibody treatment also reduced the elevated GPP induced by CRF or BRX-537A. CRF acts through CRF-R(1) receptors to stimulate NGF release from mast cells, which participates in the elevated GPP observed in NMD adult rats. This suggests that early traumatic experience induced neuro-endocrine dysfunction, involved in alterations of gut mucosal barrier.
Collapse
Affiliation(s)
- Frederick Barreau
- Neuro-Gastroenterology and Nutrition Unit, INRA, 180 chemin de Tournefeuille, BP.3, 31931 Toulouse Cedex 9, France
| | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Moeser AJ, Klok CV, Ryan KA, Wooten JG, Little D, Cook VL, Blikslager AT. Stress signaling pathways activated by weaning mediate intestinal dysfunction in the pig. Am J Physiol Gastrointest Liver Physiol 2007; 292:G173-81. [PMID: 16901995 DOI: 10.1152/ajpgi.00197.2006] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Weaning in the piglet is a stressful event associated with gastrointestinal disorders and increased disease susceptibility. Although stress is thought to play a role in postweaning intestinal disease, the mechanisms by which stress influences intestinal pathophysiology in the weaned pig are not understood. The objectives of these experiments were to investigate the impact of weaning on gastrointestinal health in the pig and to assess the role of stress signaling pathways in this response. Nineteen-day-old pigs were weaned, and mucosal barrier function and ion transport were assessed in jejunal and colonic tissues mounted on Ussing chambers. Weaning caused marked disturbances in intestinal barrier function, as demonstrated by significant (P < 0.01) reductions in transepithelial electrical resistance and increases in intestinal permeability to [3H]mannitol in both the jejunum and colon compared with intestinal tissues from age-matched, unweaned control pigs. Weaned intestinal tissues exhibited increased intestinal secretory activity, as demonstrated by elevated short-circuit current that was sensitive to treatment with tetrodotoxin and indomethacin, suggesting activation of enteric neural and prostaglandin synthesis pathways in weaned intestinal tissues. Western blot analyses of mucosal homogenates showed increased expression of corticotrophin-releasing factor (CRF) receptor 1 in the jejunum and colon of weaned intestinal tissues. Pretreatment of pigs with the CRF receptor antagonist alpha-helical CRF(9-41), which was injected intraperitoneally 30 min prior to weaning, abolished the stress-induced mucosal changes. Our results indicate that weaning stress induces mucosal dysfunction mediated by intestinal CRF receptors and activated by enteric nerves and prostanoid pathways.
Collapse
Affiliation(s)
- Adam J Moeser
- Center for Comparative Translational and Molecular Research, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | | | | | | | | | | | | |
Collapse
|
188
|
Serna H, Porras M, Vergara P. Mast cell stabilizer ketotifen [4-(1-methyl-4-piperidylidene)-4h-benzo[4,5]cyclohepta[1,2-b]thiophen-10(9H)-one fumarate] prevents mucosal mast cell hyperplasia and intestinal dysmotility in experimental Trichinella spiralis inflammation in the rat. J Pharmacol Exp Ther 2006; 319:1104-11. [PMID: 16988056 DOI: 10.1124/jpet.106.104620] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Trichinella spiralis infection in rats induces hypermotility and an abnormal response to cholecystokinin (CCK) similar to motor disturbances observed in irritable bowel syndrome. Mast cell hyperplasia is also characteristic of this experimental model. The aim of our study was to correlate mast cell activity with the development of dysmotility and to demonstrate whether the mast cell stabilizer ketotifen [4-(1-methyl-4-piperidylidene)-4H-benzo[4,5]cyclohepta[1,2-b]thiophen-10(9H)-one fumarate] could prevent the development of intestine hypermotility. Sprague-Dawley rats were infected with T. spiralis and, 5 days after infection, treated with the mast-cell stabilizer ketotifen (10 mg/kg/day). Twelve days after infection, intestinal spontaneous motor activity and response to CCK were evaluated by means of strain-gauge transducers. Immunohistochemistry for rat mast cell protease II (RMCPII), cyclooxygenase (COX)-2, and inducible nitric-oxide synthase (iNOS) was performed in intestinal specimens. In addition, RMCPII and myeloperoxidase were determined in serum. Infected control rats showed hypermotility, mast cell hyperplasia, increased RMCPII levels, increased myeloperoxidase, and overexpression of COX-2 and iNOS. In contrast, ketotifen-treated rats showed spontaneous intestinal motility and CCK response similar to the noninfected control rats. Mast cell hyperplasia and RMCPII were reduced in ketotifen-treated rats. Inflammatory parameters were less modified by ketotifen, but those animals that received the longest ketotifen treatment showed a slight amelioration in these parameters. These results indicate that mast cells are implicated in the development of hypermotility. The treatment with ketotifen prevented hypermotility and mast cell hyperplasia and diminished mucosal mast cell activity.
Collapse
Affiliation(s)
- H Serna
- Unidad de Fisiologia, Facultad de Veterinaria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | |
Collapse
|
189
|
Pérez-Bosque A, Amat C, Polo J, Campbell JM, Crenshaw J, Russell L, Moretó M. Spray-dried animal plasma prevents the effects of Staphylococcus aureus enterotoxin B on intestinal barrier function in weaned rats. J Nutr 2006; 136:2838-43. [PMID: 17056810 DOI: 10.1093/jn/136.11.2838] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, we investigated intestinal barrier function during inflammation as well as the effects of dietary supplementation with porcine spray-dried animal plasma (SDAP) proteins and porcine immunoglobulin concentrate (IC). Wistar Lewis rats were fed from d 21 (weaning) until d 34 or 35 either a control diet or a diet containing SDAP or IC. On d 30 and d 33, rats received an intraperitoneal dose of Staphylococcus aureus enterotoxin B (SEB; 0.5 mg/kg body wt; groups SEB, SEB-SDAP, and SEB-IC). SEB reduced the potential difference across the jejunum by 60%, the short-circuit current by 70%, and Na-K-ATPase activity in intestinal mucosa (all P < 0.05). The fluxes of dextran flux (4 kDa) and horseradish peroxidase (HRP, 40 kDa) across the intestinal wall also increased in SEB-treated rats (P < 0.01, P = 0.068, respectively). SEB also increased HRP flux across the paracellular space (P < 0.05). Moreover, SEB-treated rats had a reduced expression of tight junction proteins, such as ZO-1 (10% reduction; P < 0.05) and beta-catenin (20% reduction; P < 0.05). Dietary supplementation with SDAP or IC prevented dextran (P < 0.05) and HRP (P < 0.05) paracellular flux across the intestinal epithelium. SDAP supplementation also prevented SEB effects on Na-K-ATPase activity (P < 0.05). In our model of SEB-induced intestinal inflammation, the increased permeability across the intestinal mucosa was due to the lower expression of tight junction proteins, an effect that can be prevented by both SDAP and IC supplementation.
Collapse
Affiliation(s)
- Anna Pérez-Bosque
- Grup de Fisiologia i Nutrició Experimental, Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
190
|
Affiliation(s)
- M C Arrieta
- Department of Medicine, University of Alberta, Alberta, Canada
| | | | | |
Collapse
|
191
|
Dunlop SP, Hebden J, Campbell E, Naesdal J, Olbe L, Perkins AC, Spiller RC. Abnormal intestinal permeability in subgroups of diarrhea-predominant irritable bowel syndromes. Am J Gastroenterol 2006; 101:1288-94. [PMID: 16771951 DOI: 10.1111/j.1572-0241.2006.00672.x] [Citation(s) in RCA: 346] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Irritable bowel syndrome (IBS) is a heterogeneous condition and defined according to symptoms. Low-grade inflammation has been associated with IBS, particularly that following infection, but whether altered intestinal permeability profiles relate to irritable bowel subtype or onset is uncertain. Our aim was to compare small and large intestinal permeability in various subtypes of IBS to healthy controls. METHODS Intestinal permeability was measured using 1.8 MBq of 51Cr-EDTA and collecting urine over 24 h; Study 1: patients with diarrhea-predominant postinfectious IBS (N=15), constipation-predominant IBS (N=15), and healthy controls (N=15); Study 2: two groups of diarrhea-predominant IBS (D-IBS), one with a history of onset after acute gastroenteritis (postinfectious) (N=15) and the other without such a history (nonpostinfectious) (N=15) both compared with healthy controls (N=12). RESULTS Permeability expressed as percentage of total dose excreted in urine (median [inter-quartile range]). Study 1: Proximal small intestinal permeability was increased in postinfectious IBS (0.19 [0.12-0.23]) in contrast to constipated IBS (0.085 [0.043-0.13]) and controls (0.07 [0.035-0.19]) (p=0.02). IBS patients with eczema, asthma, or hayfever had increased proximal small intestinal permeability compared with IBS patients without atopy (p=0.02). Study 2: Small intestinal permeability was greater in nonpostinfectious diarrhea-predominant IBS (0.84 [0.69-1.49]) compared with postinfectious IBS (0.43 [0.29-0.63], p=0.028) or controls (0.27 [0.2-0.39]), p=0.001). CONCLUSIONS Small intestinal permeability is frequently abnormal in diarrhea-predominant IBS. Those without a history of infectious onset appear to have a more severe defect.
Collapse
Affiliation(s)
- Simon P Dunlop
- Wolfson Digestive Diseases Centre and Division of Medical Physics, University Hospital, Nottingham, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
192
|
Ferrier L, Bérard F, Debrauwer L, Chabo C, Langella P, Buéno L, Fioramonti J. Impairment of the intestinal barrier by ethanol involves enteric microflora and mast cell activation in rodents. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:1148-54. [PMID: 16565490 PMCID: PMC1606551 DOI: 10.2353/ajpath.2006.050617] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Alcohol hepatic toxicity in heavy drinkers is associated with high endotoxin blood levels and increased intestinal permeability. Because endotoxins can cross damaged mucosa, we investigated the mechanisms through which ethanol impairs the colonic epithelium of rats submitted to acute alcohol intake. Colonic permeability to (51)Cr-ethylenediamintetraacetic acid was increased 24 hours after 3.0 g/kg ethanol intake (3.2 +/- 0.2% versus 2.2 +/- 0.2%) and was associated with significant endotoxemia. Antibiotics and doxantrazole (a mast cell membrane stabilizer) significantly inhibited the effect of ethanol. Two hours after intake, plasma concentrations of ethanol were twofold higher in antibiotic-treated rats than in controls (155.8 +/- 9.3 mg/dl versus 75.7 +/- 7.6 mg/dl, P < 0.001). Lumenal concentrations of acetaldehyde were markedly increased after ethanol intake (132.6 +/- 31.6 micromol/L versus 20.8 +/- 1.4 micromol/L, P < 0.05) and antibiotics diminished this increase (86.2 +/- 10.9 micromol/L). In colonic samples mounted in Ussing chambers, acetaldehyde but not ethanol increased dextran flux across the mucosa by 54%. Doxantrazole inhibited the effect of acetaldehyde. This study demonstrates that an acute and moderate ethanol intake alters the epithelial barrier through ethanol oxidation into acetaldehyde by the colonic microflora and downstream mast cell activation. Such alterations that remain for longer periods could result in excessive endotoxin passage, which could explain the subsequent endotoxemia frequently observed in patients with alcoholic liver disease.
Collapse
Affiliation(s)
- Laurent Ferrier
- Unité de Neuro-Gastroentérologie et Nutrition, Institut National de la Recherche Agronomique, 180 Chemin de Tournefeuille, B.P. 3, 31931 Toulouse Cedex 9, France.
| | | | | | | | | | | | | |
Collapse
|
193
|
Demaude J, Salvador-Cartier C, Fioramonti J, Ferrier L, Bueno L. Phenotypic changes in colonocytes following acute stress or activation of mast cells in mice: implications for delayed epithelial barrier dysfunction. Gut 2006; 55:655-61. [PMID: 16299034 PMCID: PMC1856132 DOI: 10.1136/gut.2005.078675] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS Stressful life events are known to modulate the development or relapse of disease in both inflammatory bowel disease and irritable bowel disease patients but underlying mechanisms remain unclear. Stress is known to effect mast cells, interferon gamma (IFN-gamma), and myosin light chain phosphorylation to trigger colonic epithelial barrier dysfunction. The aim of this study was to investigate whether acute stress induced or chemical mast cell activation impaired expression and function of epithelial tight junctions, and altered colonocyte differentiation in mice. METHODS Colonic paracellular permeability was assessed as the in vivo lumen to blood ratio of 51Cr-EDTA in different groups of mice (controls, stressed, mast cell degranulator BrX-537A treated), pretreated or not with the mast cell stabiliser doxantrazole. Involvement of mast cells and IFN-gamma was evaluated in wild-type and IFN-gamma deficient mice. Tight junction alteration was assessed by histology, transmission electron microscopy, and real time reverse transcription-polymerase chain reaction. Colonocyte differentiation was determined by protein kinase C zeta (PKCzeta) immunofluorescence and western blotting, and alkaline phosphatase activity assay. RESULTS Acute stress induced a three day delayed increase in colonic paracellular permeability which involved mast cell degranulation and overproduction of IFN-gamma. The colonic epithelial barrier was morphologically altered and expression of mRNA encoding tight junction proteins ZO-2 and occludin was decreased. Moreover, three days after acute stress, colonocyte differentiation was reduced, as shown by decreased expression of both PKCzeta isotype and alkaline phosphatase. CONCLUSION These data highlight new mechanisms whereby an acute stress acts on the gastrointestinal tract by inducing alterations in colonocyte differentiation and decreased expression of mRNA encoding tight junction proteins. Thus phenotypic changes in colonocytes could pave the way for stress related intestinal disorders.
Collapse
Affiliation(s)
- J Demaude
- Neuro-Gastroenterology and Nutrition Unit, Institut National de la Recherche Agronomique, Toulouse, France
| | | | | | | | | |
Collapse
|
194
|
Kuge T, Greenwood-Van Meerveld B, Sokabe M. Stress-induced breakdown of intestinal barrier function in the rat: reversal by wood creosote. Life Sci 2006; 79:913-8. [PMID: 16643959 DOI: 10.1016/j.lfs.2006.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Revised: 01/25/2006] [Accepted: 03/06/2006] [Indexed: 10/24/2022]
Abstract
Our previous studies demonstrated that wood creosote (Seirogan) inhibits intestinal secretion and normalizes the transport of electrolytes and water in rats subjected to restraint stress. The goal of the present study was to examine whether wood creosote has a protective effect against stress-induced breakdown of intestinal barrier function. F-344 rats were subjected to 90-min water avoidance stress (WAS) with wood creosote (30 mg/kg) or vehicle administered intragastrically 30 min prior to WAS. Sham stressed rats received wood creosote or vehicle treatment but did not experience the WAS. All rats were euthanized at the end of the WAS or sham-stress and the jejunum and colon were isolated. Epithelial transport was studied in modified Ussing chambers. Spontaneous secretion was assessed by electrophysiological measurement of the short circuit current (I(sc)) while electrical conductance (G) was calculated from the potential difference (PD) and I(sc) using Ohm's law. Intestinal permeability was defined by the mucosal-to-serosal flux of horseradish peroxidase (HRP). WAS significantly elevated basal I(sc) and G and increased epithelial permeability to HRP in the jejunum but not in the colon. Wood creosote resulted in a significant reduction of the stress-induced increase in I(sc), G and the mucosal-to-serosal flux of HRP compared to the vehicle-treated group. Wood creosote caused no significant effects in sham-stressed rats. The results suggest that oral administration of wood creosote may prevent stress-induced diarrhea by preventing aversive effects on small intestinal secretion and barrier function.
Collapse
Affiliation(s)
- Tomoo Kuge
- Taiko Pharmaceutical Co., Ltd., Suita, Osaka 564-0032, Japan
| | | | | |
Collapse
|
195
|
Kellow JE, Azpiroz F, Delvaux M, Gebhart GF, Mertz HR, Quigley EMM, Smout AJPM. Applied principles of neurogastroenterology: physiology/motility sensation. Gastroenterology 2006; 130:1412-20. [PMID: 16678555 DOI: 10.1053/j.gastro.2005.08.061] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Accepted: 08/10/2005] [Indexed: 12/16/2022]
Abstract
Many of the symptoms prominent in the functional gastrointestinal disorders (FGIDs) are consistent with dysfunction of the sensory and/or motor apparatus of the digestive tract. Assessment of these phenomena in man can be undertaken by using a wide variety of invasive and noninvasive techniques, some well established and others requiring further validation. By using such techniques, alterations in both sensory and motor function have been reported in the FGIDs; various combinations of such dysfunction occur in different regions of the digestive tract in the FGIDs. Our understanding of the origins of this gut sensorimotor dysfunction is gradually increasing. Thus, inflammatory, immunologic, and other processes, as well as psychosocial factors such as stress, can alter the normal patterns of sensitivity and motility through alterations in local reflex activity or via altered neural processing along the brain-gut axis. In this context, a potential role of genetic factors, early-life influences, enteric flora, dietary components, and autonomic dysfunction also should be considered in the disease model. A firm relationship between sensorimotor dysfunction and the production of symptoms, however, has been difficult to show, and so the clinical relevance of the former requires continuing exploration. Based on the conceptual framework established to date, a number of recommendations for further progress can be made.
Collapse
Affiliation(s)
- John E Kellow
- Department of Medicine, Royal North Shore Hospital, University of Sydney, Sydney, Australia.
| | | | | | | | | | | | | |
Collapse
|
196
|
Barbara G, Stanghellini V, De Giorgio R, Corinaldesi R. Functional gastrointestinal disorders and mast cells: implications for therapy. Neurogastroenterol Motil 2006; 18:6-17. [PMID: 16371078 DOI: 10.1111/j.1365-2982.2005.00685.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pathophysiology of functional gastrointestinal disorders is poorly understood. Accepted common mechanisms include psychosocial factors, abnormal gastrointestinal motility and disturbed visceral sensory perception, but the underlying causes remain unclear. Mast cells (MCs) are immunocytes widely distributed throughout the gastrointestinal tract. Several stimuli (e.g. allergens, neuropeptides and stress) lead to MC activation with consequent mediator release (e.g. histamine, tryptase and prostanoids). The MC mediators interact with nerves supplying the gut leading to altered gut physiology and increased sensory perception. The intestinal mucosa of irritable bowel syndrome patients contains on average an increased number of MCs. These cells release an increased amount of mediators in close vicinity to mucosal innervation. The MC activation and their close proximity to nerve fibres is correlated with the severity of perceived abdominal painful sensations. These data provide a strong basis for considering MCs as important participants in visceral hypersensitivity and pain perception in irritable bowel syndrome. Inhibition of MC function may ameliorate irritable bowel symptoms. Novel drugs with an increased potential in the control of MC function (e.g., anti-IgE antibodies, the intracellular protein tyrosine kinase inhibitor Syk) and mediator release (e.g., second generation antihistamines, proteinase-activated receptor antagonists) may be useful pharmacological tools for these common disorders.
Collapse
Affiliation(s)
- G Barbara
- Department of Internal Medicine and Gastroenterology, University of Bologna, Bologna, Italy.
| | | | | | | |
Collapse
|
197
|
Bischoff SC, Gebhardt T. Role of Mast Cells and Eosinophils in Neuroimmune Interactions Regulating Mucosal Inflammation in Inflammatory Bowel Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 579:177-208. [PMID: 16620019 DOI: 10.1007/0-387-33778-4_12] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Stephan C Bischoff
- Division of Clinical Nutrition/Prevention and Immunology, University of Hohenheim, Stuttgart, Germany
| | | |
Collapse
|
198
|
Berstad A, Arslan G, Lind R, Florvaag E. Food hypersensitivity-immunologic (peripheral) or cognitive (central) sensitisation? Psychoneuroendocrinology 2005; 30:983-9. [PMID: 15979811 DOI: 10.1016/j.psyneuen.2005.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Revised: 03/30/2005] [Accepted: 04/01/2005] [Indexed: 01/01/2023]
Abstract
Patients with food hypersensitivity suffer poor quality of life and several unexplained health complaints, both abdominal and extra-abdominal. Part of the suffering is due to healthcare providers' neglect and poor insight, allowing a strong position for alternative medicine. Distinguishing food allergy from functional and organic disorders can be extremely difficult. We have found examination of faecal calprotectin and gut permeability to be useful for excluding organic disease, whilst conventional provocation tests for positive diagnosis of food hypersensitivity are cumbersome. Our new ultrasound provocation test has been promising, but we acknowledge that much work remains to be done before its sensitivity and specificity can be finally established. The majority of patients with self-reported food hypersensitivity have a non-allergic hypersensitivity disorder. We suggest that cognitive-emotional sensitisation at the brain level, and not peripheral (immunological) sensitisation, is a major pathogenetic mechanism by which the patients' various abdominal and extra-abdominal health complaints are generated. Extensive activation of cognitive networks might be triggered by peripheral sensory mechanisms, often misinterpreted as 'food allergy'. Clearly, the approach to patients with food hypersensitivity should be interdisciplinary.
Collapse
Affiliation(s)
- Arnold Berstad
- Division of Gastroenterology, Institute of Medicine, Haukeland University Hospital, 5021 Bergen, Norway.
| | | | | | | |
Collapse
|
199
|
Bailey MT, Engler H, Sheridan JF. Stress induces the translocation of cutaneous and gastrointestinal microflora to secondary lymphoid organs of C57BL/6 mice. J Neuroimmunol 2005; 171:29-37. [PMID: 16253348 DOI: 10.1016/j.jneuroim.2005.09.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Accepted: 09/13/2005] [Indexed: 12/22/2022]
Abstract
Mammals are colonized by a vast array of bacteria that reside as part of the host's microflora. Despite their enormous levels, these microorganisms tend to be restricted to cutaneous and mucosal surfaces. In the current experiment, only a small percentage of non-stressed mice exhibited detectable levels of bacteria in their inguinal lymph nodes (ILN), spleen, liver, or mesenteric lymph nodes (MLN). However, after experiencing repeated social disruption (SDR), a significant increase in the number of animals having bacteria in their ILN and MLN was found. Since SDR involves fighting in which bite wounds on the skin could provide a portal of entry into the host, it was determined whether experimental wounding (full-thickness skin biopsy), chronic restraint (which is a potent stressor that does not disrupt the skin barrier), or wounding combined with restraint would increase the occurrence of bacteria in secondary lymphoid tissues and liver. Wounding did not significantly increase the prevalence of bacteria in the ILN, MLN, or liver. Interestingly, a larger percentage of restrained and restrained plus wounded mice, in comparison to controls, had bacteria in the ILN, MLN, and liver. Although the stressors increased the number of animals that became colonized, the levels of bacteria in the stressed mice were similar to the levels found in the few non-stressed mice that did become colonized. Our results indicate that psychological components of social stress facilitate the translocation of indigenous bacteria into the host, thus identifying an additional facet through which stressors may impact health.
Collapse
Affiliation(s)
- Michael T Bailey
- Laboratory of Neuroendocrine Immunology, Section of Oral Biology, College of Dentistry, The Ohio State University, 305 W. 12th Ave., Columbus, OH 43210, USA.
| | | | | |
Collapse
|
200
|
Abstract
Mast cells (MCs) are major effector cells of immunoglobulin E (IgE)-mediated allergic inflammation. However, it has become increasingly clear that they also play important roles in diverse physiological and pathological processes. Recent advances have focused on the importance of MCs in both innate and adaptive immune responses and have fostered studies of MCs beyond the myopic focus on allergic reactions. MCs possess a variety of surface receptors and may be activated by inflammatory mediators, IgE, IgG, light chains, complement fragments, proteases, hormones, neuropeptides, and microbial products. Following activation, they produce a plethora of pro-inflammatory mediators and participate in inflammatory reactions in many organs. This review focuses on the role of MCs in inflammatory reactions in mucosal surfaces with particular emphasis on their role in respiratory and gastrointestinal inflammatory conditions.
Collapse
Affiliation(s)
- Harissios Vliagoftis
- Department of Medicine, Pulmonary Research Group, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|