151
|
Peterhoff D, Thalhauser S, Sobczak JM, Mohsen MO, Voigt C, Seifert N, Neckermann P, Hauser A, Ding S, Sattentau Q, Bachmann MF, Breunig M, Wagner R. Augmenting the Immune Response against a Stabilized HIV-1 Clade C Envelope Trimer by Silica Nanoparticle Delivery. Vaccines (Basel) 2021; 9:642. [PMID: 34208059 PMCID: PMC8230641 DOI: 10.3390/vaccines9060642] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/19/2022] Open
Abstract
The delivery of HIV-1 envelope (Env) trimer-based immunogens on the surface of nanoparticles holds promise to promote immunogenicity with the aim of inducing a potent, durable and broad neutralizing antibody (bnAb) response. Towards that goal, we examined the covalent conjugation of Env to 100 nm and 200 nm silica nanoparticles (SiNPs) to optimize conjugation density and attachment stability. Env was redesigned to enable site-specific cysteine-mediated covalent conjugation while maintaining its structural integrity and antigenicity. Env was anchored to different sized SiNPs with a calculated spacing of 15 nm between adjacent trimers. Both particle sizes exhibited high in vitro stability over a seven-day period. After attachment, 100 nm particles showed better colloidal stability compared to 200 nm particles. Importantly, the antigenic profile of Env was not impaired by surface attachment, indicating that the quaternary structure was maintained. In vitro Env uptake by dendritic cells was significantly enhanced when Env was delivered on the surface of nanoparticles compared to soluble Env. Furthermore, multivalent Env displayed efficiently activated B cells even at Env concentrations in the low nanomolar range. In mice, antibody responses to nanoparticle-coupled Env were stronger compared to the free protein and had equivalent effects at lower doses and without adjuvant.
Collapse
Affiliation(s)
- David Peterhoff
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, 93053 Regensburg, Germany; (C.V.); (N.S.); (P.N.); (A.H.)
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Stefanie Thalhauser
- Institute of Pharmaceutical Technology, University of Regensburg, 93053 Regensburg, Germany; (S.T.); (M.B.)
| | - Jan M. Sobczak
- Department for BioMedical Research, University of Bern, 3010 Bern, Switzerland; (J.M.S.); (M.O.M.); (M.F.B.)
- Department of Immunology RI, University Hospital Bern, 3010 Bern, Switzerland
| | - Mona O. Mohsen
- Department for BioMedical Research, University of Bern, 3010 Bern, Switzerland; (J.M.S.); (M.O.M.); (M.F.B.)
- Department of Immunology RI, University Hospital Bern, 3010 Bern, Switzerland
| | - Christoph Voigt
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, 93053 Regensburg, Germany; (C.V.); (N.S.); (P.N.); (A.H.)
| | - Nicole Seifert
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, 93053 Regensburg, Germany; (C.V.); (N.S.); (P.N.); (A.H.)
| | - Patrick Neckermann
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, 93053 Regensburg, Germany; (C.V.); (N.S.); (P.N.); (A.H.)
| | - Alexandra Hauser
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, 93053 Regensburg, Germany; (C.V.); (N.S.); (P.N.); (A.H.)
| | - Song Ding
- EuroVacc Foundation, 1002 Lausanne, Switzerland;
| | - Quentin Sattentau
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK;
| | - Martin F. Bachmann
- Department for BioMedical Research, University of Bern, 3010 Bern, Switzerland; (J.M.S.); (M.O.M.); (M.F.B.)
- Department of Immunology RI, University Hospital Bern, 3010 Bern, Switzerland
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Miriam Breunig
- Institute of Pharmaceutical Technology, University of Regensburg, 93053 Regensburg, Germany; (S.T.); (M.B.)
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, 93053 Regensburg, Germany; (C.V.); (N.S.); (P.N.); (A.H.)
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
152
|
Mucosal Priming with a Recombinant Influenza A Virus-Vectored Vaccine Elicits T-Cell and Antibody Responses to HIV-1 in Mice. J Virol 2021; 95:JVI.00059-21. [PMID: 33789991 DOI: 10.1128/jvi.00059-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/21/2021] [Indexed: 12/11/2022] Open
Abstract
Recombinant influenza A viral (IAV) vectors are potential to stimulate systemic and mucosal immunity, but the packaging capacity is limited and only one or a few epitopes can be carried. Here, we report the generation of a replication-competent IAV vector that carries a full-length HIV-1 p24 gene linked to the 5'-terminal coding region of the neuraminidase segment via a protease cleavage sequence (IAV-p24). IAV-p24 was successfully rescued and stably propagated, and P24 protein was efficiently expressed in infected mammalian cells. In BALB/c mice, IAV-p24 showed attenuated pathogenicity compared to that of the parental A/PR/8/34 (H1N1) virus. An intranasal inoculation with IAV-p24 elicited moderate HIV-specific cell-mediated immune (CMI) responses in the airway and vaginal tracts and in the spleen, and an intranasal boost with a replication-incompetent adenovirus type 2 vector expressing the HIV-1 gag gene (Ad2-gag) greatly improved these responses. Importantly, compared to an Ad2-gag prime plus IAV-p24 boost regimen, the IAV-p24 prime plus Ad2-gag boost regimen had a greater efficacy in eliciting HIV-specific CMI responses. P24-specific CD8+ T cells and antibodies were robustly provoked both systemically and in mucosal sites and showed long-term durability, revealing that IAV-p24 may be used as a mucosa-targeted priming vaccine. Our results illustrate that IAV-p24 is able to prime systemic and mucosal immunity against HIV-1 and warrants further evaluation in nonhuman primates.IMPORTANCE An effective HIV-1 vaccine remains elusive despite nearly 40 years of research. CD8+ T cells and protective antibodies may both be desirable for preventing HIV-1 infection in susceptible mucosal sites. Recombinant influenza A virus (IAV) vector has the potential to stimulate these immune responses, but the packaging capacity is extremely limited. Here, we describe a replication-competent IAV vector expressing the HIV-1 p24 gene (IAV-p24). Unlike most other IAV vectors that carried one or several antigenic epitopes, IAV-p24 stably expressed the full-length P24 protein, which contains multiple epitopes and is highly conserved among all known HIV-1 sequences. Compared to the parental A/PR/8/34 (H1N1) virus, IAV-p24 showed an attenuated pathogenicity in BALB/c mice. When combined with an adenovirus vector expressing the HIV-1 gag gene, IAV-p24 was able to prime P24-specific systemic and mucosal immune responses. IAV-p24 as an alternative priming vaccine against HIV-1 warrants further evaluation in nonhuman primates.
Collapse
|
153
|
Elsner RA, Shlomchik MJ. Germinal Center and Extrafollicular B Cell Responses in Vaccination, Immunity, and Autoimmunity. Immunity 2021; 53:1136-1150. [PMID: 33326765 DOI: 10.1016/j.immuni.2020.11.006] [Citation(s) in RCA: 262] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/19/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
Activated B cells participate in either extrafollicular (EF) or germinal center (GC) responses. Canonical responses are composed of a short wave of plasmablasts (PBs) arising from EF sites, followed by GC producing somatically mutated memory B cells (MBC) and long-lived plasma cells. However, somatic hypermutation (SHM) and affinity maturation can take place at both sites, and a substantial fraction of MBC are produced prior to GC formation. Infection responses range from GC responses that persist for months to persistent EF responses with dominant suppression of GCs. Here, we review the current understanding of the functional output of EF and GC responses and the molecular switches promoting them. We discuss the signals that regulate the magnitude and duration of these responses, and outline gaps in knowledge and important areas of inquiry. Understanding such molecular switches will be critical for vaccine development, interpretation of vaccine efficacy and the treatment for autoimmune diseases.
Collapse
Affiliation(s)
- Rebecca A Elsner
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Mark J Shlomchik
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15216, USA.
| |
Collapse
|
154
|
Gao H, Ozantürk AN, Wang Q, Harlan GH, Schmitz AJ, Presti RM, Deng K, Shan L. Evaluation of HIV-1 latency reversal and antibody-dependent viral clearance by quantification of singly spliced HIV-1 vpu/ env mRNA. J Virol 2021; 95:JVI.02124-20. [PMID: 33762408 PMCID: PMC8139706 DOI: 10.1128/jvi.02124-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/13/2021] [Indexed: 11/20/2022] Open
Abstract
The latent reservoir of HIV-1 is a major barrier for viral eradication. Potent HIV-1 broadly neutralizing antibodies (bNabs) have been used to prevent and treat HIV-1 infections in animal models and clinical trials. Combination of bNabs and latency-reversing agents (LRAs) is considered a promising approach for HIV-1 eradication. PCR-based assays that can rapidly and specifically measure singly spliced HIV-1 vpu/env mRNA are needed to evaluate the induction of the viral envelope production at the transcription level and bNab-mediated reservoir clearance. Here we reported a PCR-based method to accurately quantify the production of intracellular HIV-1 vpu/env mRNA. With the vpu/env assay, we determined the LRA combinations that could effectively induce vpu/env mRNA production in CD4+ T cells from ART-treated individuals. None of the tested LRAs were effective alone. A comparison between the quantitative viral outgrowth assay (Q-VOA) and the vpu/env assay showed that vpu/env mRNA production was closely associated with the reactivation of replication-competent HIV-1, suggesting that vpu/env mRNA was mainly produced by intact viruses. Finally, antibody-mediated in vitro killing in HIV-1-infected humanized mice demonstrated that the vpu/env assay could be used to measure the reduction of infected cells in tissues and was more accurate than the commonly used gag-based PCR assay which measured unspliced viral genomic RNA. In conclusion, the vpu/env assay allows convenient and accurate assessment of HIV-1 latency reversal and bNab-mediated therapeutic strategies.ImportanceHIV-1 persists in individuals on antiretroviral therapy (ART) due to the long-lived cellular reservoirs that contain dormant viruses. Recent discoveries of HIV-1-specific broadly neutralizing antibodies (bNabs) targeting HIV-1 Env protein rekindled the interest in antibody-mediated elimination of latent HIV-1. Latency-reversing agents (LRAs) together with HIV-1 bNabs is a possible strategy to clear residual viral reservoirs, which makes the evaluation of HIV-1 Env expression upon LRA treatment critical. We developed a PCR-based assay to quantify the production of intracellular HIV-1 vpu/env mRNA. Using patient CD4+ T cells, we found that induction of HIV-1 vpu/env mRNA required a combination of different LRAs. Using in vitro, ex vivo and humanized mouse models, we showed that the vpu/env assay could be used to measure antibody efficacy in clearing HIV-1 infection. These results suggest that the vpu/env assay can accurately evaluate HIV-1 reactivation and bNab-based therapeutic interventions.
Collapse
Affiliation(s)
- Hongbo Gao
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ayşe N Ozantürk
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Qiankun Wang
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Gray H Harlan
- Department of Chemistry, Washington University, St Louis, MO, USA
| | - Aaron J Schmitz
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Rachel M Presti
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kai Deng
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Liang Shan
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
155
|
Anderluh M, Berti F, Bzducha-Wróbel A, Chiodo F, Colombo C, Compostella F, Durlik K, Ferhati X, Holmdahl R, Jovanovic D, Kaca W, Lay L, Marinovic-Cincovic M, Marradi M, Ozil M, Polito L, Reina JJ, Reis CA, Sackstein R, Silipo A, Švajger U, Vaněk O, Yamamoto F, Richichi B, van Vliet SJ. Recent advances on smart glycoconjugate vaccines in infections and cancer. FEBS J 2021; 289:4251-4303. [PMID: 33934527 PMCID: PMC9542079 DOI: 10.1111/febs.15909] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/09/2021] [Accepted: 04/30/2021] [Indexed: 01/01/2023]
Abstract
Vaccination is one of the greatest achievements in biomedical research preventing death and morbidity in many infectious diseases through the induction of pathogen-specific humoral and cellular immune responses. Currently, no effective vaccines are available for pathogens with a highly variable antigenic load, such as the human immunodeficiency virus or to induce cellular T-cell immunity in the fight against cancer. The recent SARS-CoV-2 outbreak has reinforced the relevance of designing smart therapeutic vaccine modalities to ensure public health. Indeed, academic and private companies have ongoing joint efforts to develop novel vaccine prototypes for this virus. Many pathogens are covered by a dense glycan-coat, which form an attractive target for vaccine development. Moreover, many tumor types are characterized by altered glycosylation profiles that are known as "tumor-associated carbohydrate antigens". Unfortunately, glycans do not provoke a vigorous immune response and generally serve as T-cell-independent antigens, not eliciting protective immunoglobulin G responses nor inducing immunological memory. A close and continuous crosstalk between glycochemists and glycoimmunologists is essential for the successful development of efficient immune modulators. It is clear that this is a key point for the discovery of novel approaches, which could significantly improve our understanding of the immune system. In this review, we discuss the latest advancements in development of vaccines against glycan epitopes to gain selective immune responses and to provide an overview on the role of different immunogenic constructs in improving glycovaccine efficacy.
Collapse
Affiliation(s)
- Marko Anderluh
- Faculty of Pharmacy, Faculty of Pharmacy, Chair of Pharmaceutical Chemistry, University of Ljubljana, Slovenia
| | | | - Anna Bzducha-Wróbel
- Department of Biotechnology and Food Microbiology, Warsaw University of Life Sciences-SGGW, Warszawa, Poland
| | - Fabrizio Chiodo
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands.,Institute of Biomolecular Chemistry (ICB), Italian National Research Council (CNR), Pozzuoli, Italy
| | - Cinzia Colombo
- Department of Chemistry and CRC Materiali Polimerici (LaMPo), University of Milan, Italy
| | - Federica Compostella
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Katarzyna Durlik
- Department of Microbiology and Parasitology, Jan Kochanowski University, Kielce, Poland
| | - Xhenti Ferhati
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Dragana Jovanovic
- Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Serbia
| | - Wieslaw Kaca
- Department of Microbiology and Parasitology, Jan Kochanowski University, Kielce, Poland
| | - Luigi Lay
- Department of Chemistry and CRC Materiali Polimerici (LaMPo), University of Milan, Italy
| | - Milena Marinovic-Cincovic
- Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Serbia
| | - Marco Marradi
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Musa Ozil
- Faculty of Arts and Sciences, Department of Chemistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Laura Polito
- National Research Council, CNR-SCITEC, Milan, Italy
| | - Josè Juan Reina
- Departamento de Química Orgánica, Universidad de Málaga-IBIMA, Spain.,Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Parque Tecnológico de Andalucía, Málaga, Spain
| | - Celso A Reis
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Portugal
| | - Robert Sackstein
- Department of Translational Medicine, Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Napoli, Italy
| | - Urban Švajger
- Blood Transfusion Center of Slovenia, Ljubljana, Slovenia
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Fumiichiro Yamamoto
- Immunohematology & Glycobiology Laboratory, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Barbara Richichi
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands
| |
Collapse
|
156
|
Seydoux E, Wan YH, Feng J, Wall A, Aljedani S, Homad LJ, MacCamy AJ, Weidle C, Gray MD, Brumage L, Taylor JJ, Pancera M, Stamatatos L, McGuire AT. Development of a VRC01-class germline targeting immunogen derived from anti-idiotypic antibodies. Cell Rep 2021; 35:109084. [PMID: 33951425 PMCID: PMC8127986 DOI: 10.1016/j.celrep.2021.109084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/08/2021] [Accepted: 04/13/2021] [Indexed: 10/27/2022] Open
Abstract
An effective HIV-1 vaccine will likely need to elicit broadly neutralizing antibodies (bNAbs). Broad and potent VRC01-class bNAbs have been isolated from multiple infected individuals, suggesting that they could be reproducibly elicited by vaccination. Several HIV-1 envelope-derived germline-targeting immunogens have been designed to engage naive VRC01-class precursor B cells. However, they also present off-target epitopes that could hinder development of VRC01-class bNAbs. We characterize a panel of anti-idiotypic monoclonal antibodies (ai-mAbs) raised against inferred-germline (iGL) VRC01-class antibodies. By leveraging binding, structural, and B cell sorting data, we engineered a bispecific molecule derived from two ai-mAbs; one specific for VRC01-class heavy chains and one specific for VRC01-class light chains. The bispecific molecule preferentially activates iGL-VRC01 B cells in vitro and induces specific antibody responses in a murine adoptive transfer model with a diverse polyclonal B cell repertoire. This molecule represents an alternative non-envelope-derived germline-targeting immunogen that can selectively activate VRC01-class precursors in vivo.
Collapse
Affiliation(s)
- Emilie Seydoux
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Yu-Hsin Wan
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Junli Feng
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Abigail Wall
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Safia Aljedani
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Leah J Homad
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Anna J MacCamy
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Connor Weidle
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Matthew D Gray
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Lauren Brumage
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Justin J Taylor
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA; University of Washington, Department of Global Health, Seattle, WA 98195, USA; University of Washington, Department of Immunology, Seattle, WA 98109, USA
| | - Marie Pancera
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Leonidas Stamatatos
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA; University of Washington, Department of Global Health, Seattle, WA 98195, USA.
| | - Andrew T McGuire
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA; University of Washington, Department of Global Health, Seattle, WA 98195, USA.
| |
Collapse
|
157
|
Ganti RS, Chakraborty AK. Mechanisms underlying vaccination protocols that may optimally elicit broadly neutralizing antibodies against highly mutable pathogens. Phys Rev E 2021; 103:052408. [PMID: 34134229 DOI: 10.1103/physreve.103.052408] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 04/01/2021] [Indexed: 01/16/2023]
Abstract
Effective prophylactic vaccines usually induce the immune system to generate potent antibodies that can bind to an antigen and thus prevent it from infecting host cells. B cells produce antibodies by a Darwinian evolutionary process called affinity maturation (AM). During AM, the B cell population evolves in response to the antigen to produce antibodies that bind specifically and strongly to the antigen. Highly mutable pathogens pose a major challenge to the development of effective vaccines because antibodies that are effective against one strain of the virus may not protect against a mutant strain. Antibodies that can protect against diverse strains of a mutable pathogen have high "breadth" and are called broadly neutralizing antibodies (bnAbs). In spite of extensive studies, an effective vaccination strategy that can generate bnAbs in humans does not exist for any highly mutable pathogen. Here we study a minimal model to explore the mechanisms underlying how the selection forces imposed by antigens can be optimally chosen to guide AM to maximize the evolution of bnAbs. For logistical reasons, only a finite number of antigens can be administered in a finite number of vaccinations; that is, guiding the nonequilibrium dynamics of AM to produce bnAbs must be accomplished nonadiabatically. The time-varying Kullback-Leibler divergence (KLD) between the existing B cell population distribution and the fitness landscape imposed by antigens is a quantitative metric of the thermodynamic force acting on B cells. If this force is too small, adaptation is minimal. If the force is too large, contrary to expectations, adaptation is not faster; rather, the B cell population is extinguished for reasons that we describe. We define the conditions necessary for the force to be set optimally such that the flux of B cells from low to high breadth states is maximized. Even in this case we show why the dynamics of AM prevent perfect adaptation. If two shots of vaccination are allowed, the optimal protocol is characterized by a relatively low optimal KLD during the first shot that appropriately increases the diversity of the B cell population so that the surviving B cells have a high chance of evolving into bnAbs upon subsequently increasing the KLD during the second shot. Phylogenetic tree analysis further reveals the evolutionary pathways that lead to bnAbs. The connections between the mechanisms revealed by our analyses and recent simulation studies of bnAb evolution, the problem of generalist versus specialist evolution, and learning theory are discussed.
Collapse
Affiliation(s)
- Raman S Ganti
- Institute of Medical Engineering and Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Arup K Chakraborty
- Institute of Medical Engineering and Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, USA
- Department of Chemical Engineering, Department of Physics, and Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
158
|
Landais E, Sok D. Nature or nurture: Factors that influence bnAb development. Cell Host Microbe 2021; 29:540-542. [PMID: 33857415 DOI: 10.1016/j.chom.2021.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The stochastic development of broadly neutralizing antibodies (bnAbs) to HIV-1 is influenced by complex viral and host interactions. In this issue of Cell Host & Microbe, Townsley et al. reveal that early B cell and virus interactions during acute infection are predictive for developing bnAb responses later in infection.
Collapse
Affiliation(s)
- Elise Landais
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI, New York, NY 10004, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Devin Sok
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI, New York, NY 10004, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
159
|
Vekemans J, Schellenberg D, Benns S, O'Brien K, Alonso P. Meeting report: WHO consultation on malaria vaccine development, Geneva, 15-16 July 2019. Vaccine 2021; 39:2907-2916. [PMID: 33931251 DOI: 10.1016/j.vaccine.2021.03.093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 01/25/2023]
Abstract
Considerable progress has been made in malaria control in the last two decades, but progress has stalled in the last few years. New tools are needed to achieve public health goals in malaria control and elimination. A first generation vaccine, RTS,S/AS01, is currently being evaluated as it undergoes pilot implementation through routine health systems in parts of three African countries. The development of this vaccine took over 30 years and has been full of uncertainties. Even now, important unknowns remain as to its future role in public health. Lessons need to be learnt for second generation and future vaccines, including how to facilitate early planning of investments, streamlining of development, regulatory and policy pathways. A number of candidate vaccines populate the current development pipeline, some of which have the potential to contribute to burden reduction if efficacy is confirmed in conditions of natural exposure, and if they are amenable to affordable supply and programmatic implementation. New, innovative technologies will be needed if future malaria vaccines are to overcome important scientific hurdles and induce durable, high level protection. WHO convened a stakeholder consultation on the status of malaria vaccine research and development to inform the recently reconstituted Malaria Vaccine Advisory Committee (MALVAC) which will assist WHO in updating its current guidance and recommendations about priorities and product preferences for malaria vaccines.
Collapse
Affiliation(s)
- Johan Vekemans
- World Health Organization, 20 Av Appia, 1211 Geneva 27, Switzerland
| | | | | | - Kate O'Brien
- World Health Organization, 20 Av Appia, 1211 Geneva 27, Switzerland
| | - Pedro Alonso
- World Health Organization, 20 Av Appia, 1211 Geneva 27, Switzerland
| |
Collapse
|
160
|
Lin YR, Parks KR, Weidle C, Naidu AS, Khechaduri A, Riker AO, Takushi B, Chun JH, Borst AJ, Veesler D, Stuart A, Agrawal P, Gray M, Pancera M, Huang PS, Stamatatos L. HIV-1 VRC01 Germline-Targeting Immunogens Select Distinct Epitope-Specific B Cell Receptors. Immunity 2021; 53:840-851.e6. [PMID: 33053332 DOI: 10.1016/j.immuni.2020.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/12/2020] [Accepted: 09/10/2020] [Indexed: 01/23/2023]
Abstract
Activating precursor B cell receptors of HIV-1 broadly neutralizing antibodies requires specifically designed immunogens. Here, we compared the abilities of three such germline-targeting immunogens against the VRC01-class receptors to activate the targeted B cells in transgenic mice expressing the germline VH of the VRC01 antibody but diverse mouse light chains. Immunogen-specific VRC01-like B cells were isolated at different time points after immunization, their VH and VL genes were sequenced, and the corresponding antibodies characterized. VRC01 B cell sub-populations with distinct cross-reactivity properties were activated by each immunogen, and these differences correlated with distinct biophysical and biochemical features of the germline-targeting immunogens. Our study indicates that the design of effective immunogens to activate B cell receptors leading to protective HIV-1 antibodies will require a better understanding of how the biophysical properties of the epitope and its surrounding surface on the germline-targeting immunogen influence its interaction with the available receptor variants in vivo.
Collapse
Affiliation(s)
- Yu-Ru Lin
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - K Rachael Parks
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA; University of Washington, Department of Global Health, Seattle, WA, USA
| | - Connor Weidle
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - Anika S Naidu
- Stanford University, Department of Bioengineering, Stanford, CA, USA
| | - Arineh Khechaduri
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - Andrew O Riker
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - Brittany Takushi
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - Jung-Ho Chun
- University of Washington, Department of Biochemistry, Seattle, WA, USA
| | - Andrew J Borst
- University of Washington, Department of Biochemistry, Seattle, WA, USA
| | - David Veesler
- University of Washington, Department of Biochemistry, Seattle, WA, USA
| | - Andrew Stuart
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - Parul Agrawal
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - Matthew Gray
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - Marie Pancera
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA; Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA.
| | - Po-Ssu Huang
- Stanford University, Department of Bioengineering, Stanford, CA, USA.
| | - Leonidas Stamatatos
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA; University of Washington, Department of Global Health, Seattle, WA, USA.
| |
Collapse
|
161
|
Cizmeci D, Lofano G, Rossignol E, Dugast AS, Kim D, Cavet G, Nguyen N, Tan YC, Seaman MS, Alter G, Julg B. Distinct clonal evolution of B-cells in HIV controllers with neutralizing antibody breadth. eLife 2021; 10:62648. [PMID: 33843586 PMCID: PMC8041465 DOI: 10.7554/elife.62648] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/02/2021] [Indexed: 01/16/2023] Open
Abstract
A minor subset of individuals infected with HIV-1 develop antibody neutralization breadth during the natural course of the infection, often linked to chronic, high-level viremia. Despite significant efforts, vaccination strategies have been unable to induce similar neutralization breadth and the mechanisms underlying neutralizing antibody induction remain largely elusive. Broadly neutralizing antibody responses can also be found in individuals who control HIV to low and even undetectable plasma levels in the absence of antiretroviral therapy, suggesting that high antigen exposure is not a strict requirement for neutralization breadth. We therefore performed an analysis of paired heavy and light chain B-cell receptor (BCR) repertoires in 12,591 HIV-1 envelope-specific single memory B-cells to determine alterations in the BCR immunoglobulin gene repertoire and B-cell clonal expansions that associate with neutralizing antibody breadth in 22 HIV controllers. We found that the frequency of genomic mutations in IGHV and IGLV was directly correlated with serum neutralization breadth. The repertoire of the most mutated antibodies was dominated by a small number of large clones with evolutionary signatures suggesting that these clones had reached peak affinity maturation. These data demonstrate that even in the setting of low plasma HIV antigenemia, similar to what a vaccine can potentially achieve, BCR selection for extended somatic hypermutation and clonal evolution can occur in some individuals suggesting that host-specific factors might be involved that could be targeted with future vaccine strategies.
Collapse
Affiliation(s)
- Deniz Cizmeci
- Ragon Institute of MGH, MIT and Harvard, Cambridge, United States
| | - Giuseppe Lofano
- Ragon Institute of MGH, MIT and Harvard, Cambridge, United States
| | - Evan Rossignol
- Ragon Institute of MGH, MIT and Harvard, Cambridge, United States
| | | | | | - Guy Cavet
- Atreca Inc, Redwood City, United States
| | | | | | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, United States
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, United States
| | - Boris Julg
- Ragon Institute of MGH, MIT and Harvard, Cambridge, United States
| |
Collapse
|
162
|
Virus Evolution and Neutralization Sensitivity in an HIV-1 Subtype B' Infected Plasma Donor with Broadly Neutralizing Activity. Vaccines (Basel) 2021; 9:vaccines9040311. [PMID: 33805985 PMCID: PMC8064334 DOI: 10.3390/vaccines9040311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
We sought to analyze the evolutionary characteristics and neutralization sensitivity of viruses in a human immunodeficiency virus type 1 (HIV-1) subtype B′ infected plasma donor with broadly neutralizing activity, which may provide information for new broadly neutralizing antibodies (bNAbs) isolation and immunogen design. A total of 83 full-length envelope genes were obtained by single-genome amplification (SGA) from the patient’s plasma at three consecutive time points (2005, 2006, and 2008) spanning four years. In addition, 28 Env-pseudotyped viruses were constructed and their neutralization sensitivity to autologous plasma and several representative bNAbs were measured. Phylogenetic analysis showed that these env sequences formed two evolutionary clusters (Cluster I and II). Cluster I viruses vanished in 2006 and then appeared as recombinants two years later. In Cluster II viruses, the V1 length and N-glycosylation sites increased over the four years of the study period. Most viruses were sensitive to concurrent and subsequent autologous plasma, and to bNAbs, including 10E8, PGT121, VRC01, and 12A21, but all viruses were resistant to PGT135. Overall, 90% of Cluster I viruses were resistant to 2G12, while 94% of Cluster II viruses were sensitive to 2G12. We confirmed that HIV-1 continued to evolve even in the presence of bNAbs, and two virus clusters in this donor adopted different escape mechanisms under the same humoral immune pressure.
Collapse
|
163
|
Conti S, Kaczorowski KJ, Song G, Porter K, Andrabi R, Burton DR, Chakraborty AK, Karplus M. Design of immunogens to elicit broadly neutralizing antibodies against HIV targeting the CD4 binding site. Proc Natl Acad Sci U S A 2021; 118:e2018338118. [PMID: 33637649 PMCID: PMC7936365 DOI: 10.1073/pnas.2018338118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A vaccine which is effective against the HIV virus is considered to be the best solution to the ongoing global HIV/AIDS epidemic. In the past thirty years, numerous attempts to develop an effective vaccine have been made with little or no success, due, in large part, to the high mutability of the virus. More recent studies showed that a vaccine able to elicit broadly neutralizing antibodies (bnAbs), that is, antibodies that can neutralize a high fraction of global virus variants, has promise to protect against HIV. Such a vaccine has been proposed to involve at least three separate stages: First, activate the appropriate precursor B cells; second, shepherd affinity maturation along pathways toward bnAbs; and, third, polish the Ab response to bind with high affinity to diverse HIV envelopes (Env). This final stage may require immunization with a mixture of Envs. In this paper, we set up a framework based on theory and modeling to design optimal panels of antigens to use in such a mixture. The designed antigens are characterized experimentally and are shown to be stable and to be recognized by known HIV antibodies.
Collapse
Affiliation(s)
- Simone Conti
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Kevin J Kaczorowski
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ge Song
- Scripps Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037
| | - Katelyn Porter
- Scripps Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037
| | - Raiees Andrabi
- Scripps Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037
| | - Dennis R Burton
- Scripps Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139
| | - Arup K Chakraborty
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139;
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Martin Karplus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138;
- Laboratoire de Chimie Biophysique, Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
164
|
Alfageme-Abello O, Porret R, Perreau M, Perez L, Muller YD. Chimeric antigen receptor T-cell therapy for HIV cure. Curr Opin HIV AIDS 2021; 16:88-97. [PMID: 33560017 DOI: 10.1097/coh.0000000000000665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Cell-based immunotherapies have made enormous progress over the last decade with the approval of several anti-CD19-chimeric antigen receptor (CAR)-T cell therapies for haemato-oncological diseases. CARs are synthetic receptors comprising an antigen-specific extracellular domain fused to a hinge, transmembrane and intracellular signalling domains. The success obtained with CD19 CAR-T cells rekindled interest in using CAR-T cells to treat HIV seropositive patients. The purpose of this review is to discuss historical and recent developments of anti-HIV CARs. RECENT FINDINGS Since the first description of CD4+-based CARs in the early 90s, new generations of anti-HIV CARs were developed. They target the hetero-trimeric glycoprotein gp120/gp41 and consist of either a CD4+ extracellular domain or a VH/VL segment derived from broadly neutralizing antibodies. Recent efforts were employed in multiplexing CAR specificities, intracellular signalling domains and T cells resistance to HIV. SUMMARY Several new-anti HIV CAR-T cells were successfully tested in preclinical mice models and are now waiting to be evaluated in clinical trials. One of the key parameters to successfully using CAR-T cells in HIV treatment will depend on their capacity to control the HIV reservoir without causing off-targeting activities.
Collapse
Affiliation(s)
- Oscar Alfageme-Abello
- Lausanne University Hospital (CHUV), Department of Medicine, Division of Immunology and Allergy, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
165
|
Lee CCD, Watanabe Y, Wu NC, Han J, Kumar S, Pholcharee T, Seabright GE, Allen JD, Lin CW, Yang JR, Liu MT, Wu CY, Ward AB, Crispin M, Wilson IA. A cross-neutralizing antibody between HIV-1 and influenza virus. PLoS Pathog 2021; 17:e1009407. [PMID: 33750987 PMCID: PMC8016226 DOI: 10.1371/journal.ppat.1009407] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 04/01/2021] [Accepted: 02/17/2021] [Indexed: 11/19/2022] Open
Abstract
Incessant antigenic evolution enables the persistence and spread of influenza virus in the human population. As the principal target of the immune response, the hemagglutinin (HA) surface antigen on influenza viruses continuously acquires and replaces N-linked glycosylation sites to shield immunogenic protein epitopes using host-derived glycans. Anti-glycan antibodies, such as 2G12, target the HIV-1 envelope protein (Env), which is even more extensively glycosylated and contains under-processed oligomannose-type clusters on its dense glycan shield. Here, we illustrate that 2G12 can also neutralize human seasonal influenza A H3N2 viruses that have evolved to present similar oligomannose-type clusters on their HAs from around 20 years after the 1968 pandemic. Using structural biology and mass spectrometric approaches, we find that two N-glycosylation sites close to the receptor binding site (RBS) on influenza hemagglutinin represent the oligomannose cluster recognized by 2G12. One of these glycan sites is highly conserved in all human H3N2 strains and the other emerged during virus evolution. These two N-glycosylation sites have also become crucial for fitness of recent H3N2 strains. These findings shed light on the evolution of the glycan shield on influenza virus and suggest 2G12-like antibodies can potentially act as broad neutralizers to target human enveloped viruses.
Collapse
Affiliation(s)
- Chang-Chun D. Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Yasunori Watanabe
- School of Biological Sciences, University of Southampton, Southampton, England, United Kingdom
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, England, United Kingdom
- Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford, England, United Kingdom
| | - Nicholas C. Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Sonu Kumar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Tossapol Pholcharee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Gemma E. Seabright
- School of Biological Sciences, University of Southampton, Southampton, England, United Kingdom
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, England, United Kingdom
| | - Joel D. Allen
- School of Biological Sciences, University of Southampton, Southampton, England, United Kingdom
| | - Chih-Wei Lin
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ji-Rong Yang
- Centers for Disease Control, Taipei City, Taiwan
| | | | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, Taipei City, Taiwan
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, England, United Kingdom
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| |
Collapse
|
166
|
Ripoll DR, Chaudhury S, Wallqvist A. Using the antibody-antigen binding interface to train image-based deep neural networks for antibody-epitope classification. PLoS Comput Biol 2021; 17:e1008864. [PMID: 33780441 PMCID: PMC8032195 DOI: 10.1371/journal.pcbi.1008864] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 04/08/2021] [Accepted: 03/10/2021] [Indexed: 12/05/2022] Open
Abstract
High-throughput B-cell sequencing has opened up new avenues for investigating complex mechanisms underlying our adaptive immune response. These technological advances drive data generation and the need to mine and analyze the information contained in these large datasets, in particular the identification of therapeutic antibodies (Abs) or those associated with disease exposure and protection. Here, we describe our efforts to use artificial intelligence (AI)-based image-analyses for prospective classification of Abs based solely on sequence information. We hypothesized that Abs recognizing the same part of an antigen share a limited set of features at the binding interface, and that the binding site regions of these Abs share share common structure and physicochemical property patterns that can serve as a "fingerprint" to recognize uncharacterized Abs. We combined large-scale sequence-based protein-structure predictions to generate ensembles of 3-D Ab models, reduced the Ab binding interface to a 2-D image (fingerprint), used pre-trained convolutional neural networks to extract features, and trained deep neural networks (DNNs) to classify Abs. We evaluated this approach using Ab sequences derived from human HIV and Ebola viral infections to differentiate between two Abs, Abs belonging to specific B-cell family lineages, and Abs with different epitope preferences. In addition, we explored a different type of DNN method to detect one class of Abs from a larger pool of Abs. Testing on Ab sets that had been kept aside during model training, we achieved average prediction accuracies ranging from 71-96% depending on the complexity of the classification task. The high level of accuracies reached during these classification tests suggests that the DNN models were able to learn a series of structural patterns shared by Abs belonging to the same class. The developed methodology provides a means to apply AI-based image recognition techniques to analyze high-throughput B-cell sequencing datasets (repertoires) for Ab classification.
Collapse
Affiliation(s)
- Daniel R. Ripoll
- DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. (HJF), Bethesda, Maryland, United States of America
| | - Sidhartha Chaudhury
- DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Maryland, United States of America
- Center for Enabling Capabilities, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Anders Wallqvist
- DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Maryland, United States of America
| |
Collapse
|
167
|
Fahad AS, Timm MR, Madan B, Burgomaster KE, Dowd KA, Normandin E, Gutiérrez-González MF, Pennington JM, De Souza MO, Henry AR, Laboune F, Wang L, Ambrozak DR, Gordon IJ, Douek DC, Ledgerwood JE, Graham BS, Castilho LR, Pierson TC, Mascola JR, DeKosky BJ. Functional Profiling of Antibody Immune Repertoires in Convalescent Zika Virus Disease Patients. Front Immunol 2021; 12:615102. [PMID: 33732238 PMCID: PMC7959826 DOI: 10.3389/fimmu.2021.615102] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/07/2021] [Indexed: 01/10/2023] Open
Abstract
The re-emergence of Zika virus (ZIKV) caused widespread infections that were linked to Guillain-Barré syndrome in adults and congenital malformation in fetuses, and epidemiological data suggest that ZIKV infection can induce protective antibody responses. A more detailed understanding of anti-ZIKV antibody responses may lead to enhanced antibody discovery and improved vaccine designs against ZIKV and related flaviviruses. Here, we applied recently-invented library-scale antibody screening technologies to determine comprehensive functional molecular and genetic profiles of naturally elicited human anti-ZIKV antibodies in three convalescent individuals. We leveraged natively paired antibody yeast display and NGS to predict antibody cross-reactivities and coarse-grain antibody affinities, to perform in-depth immune profiling of IgM, IgG, and IgA antibody repertoires in peripheral blood, and to reveal virus maturation state-dependent antibody interactions. Repertoire-scale comparison of ZIKV VLP-specific and non-specific antibodies in the same individuals also showed that mean antibody somatic hypermutation levels were substantially influenced by donor-intrinsic characteristics. These data provide insights into antiviral antibody responses to ZIKV disease and outline systems-level strategies to track human antibody immune responses to emergent viral infections.
Collapse
Affiliation(s)
- Ahmed S. Fahad
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
| | - Morgan R. Timm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Bharat Madan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
| | - Katherine E. Burgomaster
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Kimberly A. Dowd
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Erica Normandin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | | | - Joseph M. Pennington
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
| | | | - Amy R. Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Farida Laboune
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - David R. Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Ingelise J. Gordon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Daniel C. Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Julie E. Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Leda R. Castilho
- Federal University of Rio de Janeiro, COPPE, Cell Culture Engineering Laboratory, Rio de Janeiro, Brazil
| | - Theodore C. Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Brandon J. DeKosky
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
- Department of Chemical Engineering, The University of Kansas, Lawrence, KS, United States
| |
Collapse
|
168
|
Brouwer PJM, Antanasijevic A, de Gast M, Allen JD, Bijl TPL, Yasmeen A, Ravichandran R, Burger JA, Ozorowski G, Torres JL, LaBranche C, Montefiori DC, Ringe RP, van Gils MJ, Moore JP, Klasse PJ, Crispin M, King NP, Ward AB, Sanders RW. Immunofocusing and enhancing autologous Tier-2 HIV-1 neutralization by displaying Env trimers on two-component protein nanoparticles. NPJ Vaccines 2021; 6:24. [PMID: 33563983 PMCID: PMC7873233 DOI: 10.1038/s41541-021-00285-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/07/2021] [Indexed: 01/09/2023] Open
Abstract
The HIV-1 envelope glycoprotein trimer is poorly immunogenic because it is covered by a dense glycan shield. As a result, recombinant Env glycoproteins generally elicit inadequate antibody levels that neutralize clinically relevant, neutralization-resistant (Tier-2) HIV-1 strains. Multivalent antigen presentation on nanoparticles is an established strategy to increase vaccine-driven immune responses. However, due to nanoparticle instability in vivo, the display of non-native Env structures, and the inaccessibility of many neutralizing antibody (NAb) epitopes, the effects of nanoparticle display are generally modest for Env trimers. Here, we generate two-component self-assembling protein nanoparticles presenting twenty SOSIP trimers of the clade C Tier-2 genotype 16055. We show in a rabbit immunization study that these nanoparticles induce 60-fold higher autologous Tier-2 NAb titers than the corresponding SOSIP trimers. Epitope mapping studies reveal that the presentation of 16055 SOSIP trimers on these nanoparticle focuses antibody responses to an immunodominant apical epitope. Thus, these nanoparticles are a promising platform to improve the immunogenicity of Env trimers with apex-proximate NAb epitopes.
Collapse
Affiliation(s)
- Philip J M Brouwer
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - Aleksandar Antanasijevic
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Marlon de Gast
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Tom P L Bijl
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - Anila Yasmeen
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Rashmi Ravichandran
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Judith A Burger
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Celia LaBranche
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | | | - Rajesh P Ringe
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
- Institute of Microbial Technology, Chandigarh, India
| | - Marit J van Gils
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Per Johan Klasse
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands.
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
169
|
Mu Z, Haynes BF, Cain DW. HIV mRNA Vaccines-Progress and Future Paths. Vaccines (Basel) 2021; 9:134. [PMID: 33562203 PMCID: PMC7915550 DOI: 10.3390/vaccines9020134] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
The SARS-CoV-2 pandemic introduced the world to a new type of vaccine based on mRNA encapsulated in lipid nanoparticles (LNPs). Instead of delivering antigenic proteins directly, an mRNA-based vaccine relies on the host's cells to manufacture protein immunogens which, in turn, are targets for antibody and cytotoxic T cell responses. mRNA-based vaccines have been the subject of research for over three decades as a platform to protect against or treat a variety of cancers, amyloidosis and infectious diseases. In this review, we discuss mRNA-based approaches for the generation of prophylactic and therapeutic vaccines to HIV. We examine the special immunological hurdles for a vaccine to elicit broadly neutralizing antibodies and effective T cell responses to HIV. Lastly, we outline an mRNA-based HIV vaccination strategy based on the immunobiology of broadly neutralizing antibody development.
Collapse
Affiliation(s)
- Zekun Mu
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; (Z.M.); (B.F.H.)
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; (Z.M.); (B.F.H.)
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Derek W. Cain
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; (Z.M.); (B.F.H.)
| |
Collapse
|
170
|
Lee JH, Hu JK, Georgeson E, Nakao C, Groschel B, Dileepan T, Jenkins MK, Seumois G, Vijayanand P, Schief WR, Crotty S. Modulating the quantity of HIV Env-specific CD4 T cell help promotes rare B cell responses in germinal centers. J Exp Med 2021; 218:e20201254. [PMID: 33355623 PMCID: PMC7769167 DOI: 10.1084/jem.20201254] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/23/2020] [Accepted: 11/13/2020] [Indexed: 01/17/2023] Open
Abstract
Immunodominance to nonneutralizing epitopes is a roadblock in designing vaccines against several diseases of high interest. One hypothetical possibility is that limited CD4 T cell help to B cells in a normal germinal center (GC) response results in selective recruitment of abundant, immunodominant B cells. This is a central issue in HIV envelope glycoprotein (Env) vaccine designs, because precursors to broadly neutralizing epitopes are rare. Here, we sought to elucidate whether modulating the quantity of T cell help can influence recruitment and competition of broadly neutralizing antibody precursor B cells at a physiological precursor frequency in response to Env trimer immunization. To do so, two new Env-specific CD4 transgenic (Tg) T cell receptor (TCR) mouse lines were generated, carrying TCR pairs derived from Env-protein immunization. Our results suggest that CD4 T cell help quantitatively regulates early recruitment of rare B cells to GCs.
Collapse
Affiliation(s)
- Jeong Hyun Lee
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA
| | - Joyce K. Hu
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA
| | - Erik Georgeson
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Catherine Nakao
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA
| | - Bettina Groschel
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Thamotharampillai Dileepan
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
| | - Marc K. Jenkins
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
| | - Gregory Seumois
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA
| | - Pandurangan Vijayanand
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA
- Clinical and Experimental Sciences, National Institute for Health Research Southampton, Respiratory Biomedical Research Unit, University of Southampton, Southampton, UK
| | - William R. Schief
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA
| |
Collapse
|
171
|
Abstract
Even after more than 30 years since its discovery, there is no cure for HIV-1 infection. Combination antiretroviral therapy (cART) is currently the only HIV-1 infection management option in clinics. Despite its success in suppressing viral replication and converting HIV-1 from a lethal infection to a chronic and manageable disease, cART treatment is life long and long-term use can result in major drawbacks such as high cost, multiple side effects, and an increase in the development of multidrug-resistant escape mutants. Recently, antibody-based anti-HIV-1 treatment has emerged as a potential alternative therapeutic modality for HIV-1 treatment and cure strategies. These antibody-based anti-HIV-1 treatments comprising either receptor-targeting antibodies or broad neutralizing antibodies (bNAbs) are currently being developed and evaluated in clinical trials. These antibodies have demonstrated potent antiviral effects against multiple strains of HIV-1, and shown promise for prevention, maintenance, and prolonged remission of HIV-1 infection. This review gives an update on the current status of these antibody-based treatments for HIV-1, discusses their mechanism of action and the challenges in developing them, providing insight for their development as novel clinical therapies against HIV-1 infection.
Collapse
Affiliation(s)
- Wanwisa Promsote
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Megan E DeMouth
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cassandra G Almasri
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
172
|
Xu H, Han G, Lu Y, Liu Z, Tao L, He F. Broad neutralization of CSFV with novel monoclonal antibodies in vivo. Int J Biol Macromol 2021; 173:513-523. [PMID: 33493566 DOI: 10.1016/j.ijbiomac.2021.01.142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Classical swine fever is a highly contagious disease in China. Although vaccination against Classical swine fever virus (CSFV) has been widely carried out in China, CSFV cases still emerge in an endless stream. Therefore, it is necessary to take new antiviral measures to eliminate CSFV. Glycoprotein E2 of CSFV is the major vaccine candidate that confers protective immunity. Thus, in this study, a batch of neutralizing monoclonal antibodies (mAbs) against E2, as alternative antiviral strategies, were produced. Among them, mAbs 6D10, 8D8 and 3C12 presented neutralizing reactivity against CSFV in a dose-dependent manner. Based on truncated overlapping fragments of E2 and mutants, three linear neutralizing epitopes were identified highly conserved in various CSFV strains. Epitopes 8YRYAIS13 and 254HECLIG259 were reported for the first time. All the three epitopes are involved in virus internalization and attachment as shown in pre- or post-attachment neutralization. Recombinant polypeptides carrying epitopes successfully inhibit virus infection in PK-15 cells, indicating epitopes were located in receptor-binding domain (RBD). Further, both prophylactic and therapeutic functions of neutralizing antibody were evaluated in rabbits upon CSFV challenge, confirming the efficacy in vivo. These findings provide alternative antiviral strategies against CSFV and deepen the understanding in E2 function during virus entry.
Collapse
Affiliation(s)
- Huiling Xu
- Institute of Preventive Veterinary Medicine, College of Animal Science, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Guangwei Han
- Institute of Preventive Veterinary Medicine, College of Animal Science, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Ying Lu
- Institute of Preventive Veterinary Medicine, College of Animal Science, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Zehui Liu
- Institute of Preventive Veterinary Medicine, College of Animal Science, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Lina Tao
- Institute of Preventive Veterinary Medicine, College of Animal Science, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Fang He
- Institute of Preventive Veterinary Medicine, College of Animal Science, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China.
| |
Collapse
|
173
|
Semmes EC, Chen JL, Goswami R, Burt TD, Permar SR, Fouda GG. Understanding Early-Life Adaptive Immunity to Guide Interventions for Pediatric Health. Front Immunol 2021; 11:595297. [PMID: 33552052 PMCID: PMC7858666 DOI: 10.3389/fimmu.2020.595297] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 12/04/2020] [Indexed: 01/16/2023] Open
Abstract
Infants are capable of mounting adaptive immune responses, but their ability to develop long-lasting immunity is limited. Understanding the particularities of the neonatal adaptive immune system is therefore critical to guide the design of immune-based interventions, including vaccines, in early life. In this review, we present a thorough summary of T cell, B cell, and humoral immunity in early life and discuss infant adaptive immune responses to pathogens and vaccines. We focus on the differences between T and B cell responses in early life and adulthood, which hinder the generation of long-lasting adaptive immune responses in infancy. We discuss how knowledge of early life adaptive immunity can be applied when developing vaccine strategies for this unique period of immune development. In particular, we emphasize the use of novel vaccine adjuvants and optimization of infant vaccine schedules. We also propose integrating maternal and infant immunization strategies to ensure optimal neonatal protection through passive maternal antibody transfer while avoiding hindering infant vaccine responses. Our review highlights that the infant adaptive immune system is functionally distinct and uniquely regulated compared to later life and that these particularities should be considered when designing interventions to promote pediatric health.
Collapse
Affiliation(s)
- Eleanor C. Semmes
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States
- Medical Scientist Training Program, Duke University, Durham, NC, United States
- Children’s Health and Discovery Initiative, Department of Pediatrics, Duke University, Durham, NC, United States
| | - Jui-Lin Chen
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States
| | - Ria Goswami
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States
| | - Trevor D. Burt
- Children’s Health and Discovery Initiative, Department of Pediatrics, Duke University, Durham, NC, United States
- Division of Neonatology, Department of Pediatrics, Duke University, Durham, NC, United States
| | - Sallie R. Permar
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States
- Children’s Health and Discovery Initiative, Department of Pediatrics, Duke University, Durham, NC, United States
| | - Genevieve G. Fouda
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States
- Children’s Health and Discovery Initiative, Department of Pediatrics, Duke University, Durham, NC, United States
| |
Collapse
|
174
|
Abstract
B cell subsets differ in development, tissue distribution, and mechanisms of activation. In response to infections, however, all can differentiate into extrafollicular plasmablasts that rapidly provide highly protective antibodies, indicating that these plasmablasts are the main humoral immune response effectors. Yet, the effectiveness of this response type depends on the presence of antigen-specific precursors in the circulating mature B cell pool, a pool that is generated initially through the stochastic processes of B cell receptor assembly. Importantly, germinal centers then mold the repertoire of this B cell pool to be increasingly responsive to pathogens by generating a broad array of antimicrobial memory B cells that act as highly effective precursors of extrafollicular plasmablasts. Such B cell repertoire molding occurs in two ways: continuously via the chronic germinal centers of mucosal lymphoid tissues, driven by the presence of the microbiome, and via de novo generated germinal centers following acute infections. For effectively evaluating humoral immunity as a correlate of immune protection, it might be critical to measure memory B cell pools in addition to antibody titers.
Collapse
Affiliation(s)
- Nicole Baumgarth
- Center for Immunology and Infectious Diseases and Department of Pathology, Microbiology and Immunology, University of California, Davis, California 95616, USA;
| |
Collapse
|
175
|
[Isolation of anti-SARS-CoV-2 neutralizing monoclonal antibodies cross effective to variants aiming at antibody therapy]. Uirusu 2021; 71:163-168. [PMID: 37245978 DOI: 10.2222/jsv.71.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We isolated five mAbs with potent neutralizing activities against SARS-CoV-2 from two convalescent COVID-19 patients infected with prototype virus. Among them, the 9-105 antibody that have a highest affinity for the receptor-binding domain (RBD), cross-neutralize variants, such as B.1.1.7 (alfa), mink cluster 5 variant, B.1.351 (beta), P.1 (gamma), C.37 (lambda), B.1.617.1 (kappa), B.1.617.2 (delta) and B.1.621 (mu). A single amino acid mutation at K417 of RBD decreased neutralization sensitivity of 9-105. A 9-105 homology model revealed that 9-105 light chain binds to RBD including K417 by the same angle as ACE2.
Collapse
|
176
|
Mendoza P, Lorenzi JCC, Gaebler C. COVID-19 antibody development fueled by HIV-1 broadly neutralizing antibody research. Curr Opin HIV AIDS 2021; 16:25-35. [PMID: 33229949 PMCID: PMC11366771 DOI: 10.1097/coh.0000000000000657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW The coronavirus disease 2019 (COVID-19) pandemic has caught the world unprepared, with no prevention or treatment strategies in place. In addition to the efforts to develop an effective vaccine, alternative approaches are essential to control this pandemic, which will most likely require multiple readily available solutions. Among them, monoclonal anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies have been isolated by multiple laboratories in record time facilitated by techniques that were first pioneered for HIV-1 antibody discovery. Here, we summarize how lessons learned from anti-HIV-1 antibody discovery have provided fundamental knowledge for the rapid development of anti-SARS-CoV-2 antibodies. RECENT FINDINGS Research laboratories that successfully identified potent broadly neutralizing antibodies against HIV-1 have harnessed their antibody discovery techniques to isolate novel potent anti-SARS-CoV-2 antibodies, which have efficacy in animal models. These antibodies represent promising clinical candidates for treatment or prevention of COVID-19. SUMMARY Passive transfer of antibodies is a promising approach when the elicitation of protective immune responses is difficult, as in the case of HIV-1 infection. Antibodies can also play a significant role in post-exposure prophylaxis, in high-risk populations that may not mount robust immune responses after vaccination, and in therapy. We provide a review of the recent approaches used for anti-SARS-CoV-2 antibody discovery and upcoming challenges in the field.
Collapse
Affiliation(s)
- Pilar Mendoza
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | | | | |
Collapse
|
177
|
Abstract
HIV is a virus that remains a major health concern and results in an infection that has no cure even after over 30 years since its discovery. As such, HIV vaccine discovery continues to be an area of intensive research. In this review, we summarize the most recent HIV vaccine efficacy trials, clinical trials initiated within the last 3 years, and discuss prominent improvements that have been made in prophylactic HIV vaccine designs.
Collapse
Affiliation(s)
- Jeong Hyun Lee
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA; Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA.
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA; Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA.
| |
Collapse
|
178
|
Gorai B, Sahoo AK, Srivastava A, Dixit NM, Maiti PK. Concerted Interactions between Multiple gp41 Trimers and the Target Cell Lipidome May Be Required for HIV-1 Entry. J Chem Inf Model 2020; 61:444-454. [PMID: 33373521 DOI: 10.1021/acs.jcim.0c01291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The HIV-1 envelope glycoprotein gp41 mediates the fusion between viral and host cell membranes leading to virus entry and target cell infection. Despite years of research, important aspects of this process such as the number of gp41 trimers involved and how they orchestrate the rearrangement of the lipids in the apposed membranes along the fusion pathway remain obscure. To elucidate these molecular underpinnings, we performed coarse-grained molecular dynamics simulations of HIV-1 virions pinned to the CD4 T cell membrane by different numbers of gp41 trimers. We built realistic cell and viral membranes by mimicking their respective lipid compositions. We found that a single gp41 was inadequate for mediating fusion. Lipid mixing between membranes, indicating the onset of fusion, was efficient when three or more gp41 trimers pinned the membranes. The gp41 trimers interacted strongly with many different lipids in the host cell membrane, triggering lipid configurational rearrangements, exchange, and mixing. Simpler membranes, comprising fewer lipid types, displayed strong resistance to fusion, revealing the crucial role of the lipidomes in HIV-1 entry. Performing simulations at different temperatures, we estimated the free energy barrier to lipid mixing, and hence membrane stalk formation, with three and four tethering gp41 trimers to be ∼6.2 kcal/mol, a >4-fold reduction over estimates without gp41. Together, these findings present molecular-level, quantitative insights into the early stages of gp41-mediated HIV-1 entry. Preventing the requisite gp41 molecules from tethering the membranes or altering membrane lipid compositions may be potential intervention strategies.
Collapse
Affiliation(s)
- Biswajit Gorai
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore-560012, India
| | - Anil Kumar Sahoo
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore-560012, India
| | - Anand Srivastava
- Molecular Biophysics Unit, Biological Sciences Division, Indian Institute of Science, Bangalore-560012, India
| | - Narendra M Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bangalore-560012, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore-560012, India
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
179
|
Abstract
The importance of post-translational glycosylation in protein structure and function has gained significant clinical relevance recently. The latest developments in glycobiology, glycochemistry, and glycoproteomics have made the field more manageable and relevant to disease progression and immune-response signaling. Here, we summarize the current progress in glycoscience, including the new methodologies that have led to the introduction of programmable and automatic as well as large-scale enzymatic synthesis, and the development of glycan array, glycosylation probes, and inhibitors of carbohydrate-associated enzymes or receptors. These novel methodologies and tools have facilitated our understanding of the significance of glycosylation and development of carbohydrate-derived medicines that bring the field to the next level of scientific and medical significance.
Collapse
Affiliation(s)
- Sachin S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
180
|
Wang X, Ray R, Kratochvil S, Melzi E, Lin YC, Giguere S, Xu L, Warner J, Cheon D, Liguori A, Groschel B, Phelps N, Adachi Y, Tingle R, Wu L, Crotty S, Kirsch KH, Nair U, Schief WR, Batista FD. Multiplexed CRISPR/CAS9-mediated engineering of pre-clinical mouse models bearing native human B cell receptors. EMBO J 2020; 40:e105926. [PMID: 33258500 PMCID: PMC7809789 DOI: 10.15252/embj.2020105926] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/13/2020] [Accepted: 10/23/2020] [Indexed: 12/21/2022] Open
Abstract
B‐cell receptor (BCR) knock‐in (KI) mouse models play an important role in vaccine development and fundamental immunological studies. However, the time required to generate them poses a bottleneck. Here we report a one‐step CRISPR/Cas9 KI methodology to combine the insertion of human germline immunoglobulin heavy and light chains at their endogenous loci in mice. We validate this technology with the rapid generation of three BCR KI lines expressing native human precursors, instead of computationally inferred germline sequences, to HIV broadly neutralizing antibodies. We demonstrate that B cells from these mice are fully functional: upon transfer to congenic, wild type mice at controlled frequencies, such B cells can be primed by eOD‐GT8 60mer, a germline‐targeting immunogen currently in clinical trials, recruited to germinal centers, secrete class‐switched antibodies, undergo somatic hypermutation, and differentiate into memory B cells. KI mice expressing functional human BCRs promise to accelerate the development of vaccines for HIV and other infectious diseases.
Collapse
Affiliation(s)
- Xuesong Wang
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Rashmi Ray
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Sven Kratochvil
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Eleonora Melzi
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Ying-Cing Lin
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Sophie Giguere
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Liling Xu
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - John Warner
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Diane Cheon
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Alessia Liguori
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.,Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Bettina Groschel
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.,Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Nicole Phelps
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.,Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Yumiko Adachi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.,Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Ryan Tingle
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.,Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Lin Wu
- Genome Modification Facility, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Shane Crotty
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.,Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kathrin H Kirsch
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Usha Nair
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - William R Schief
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.,Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.,Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Facundo D Batista
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.,Department of Immunology, Harvard Medical School, Boston, MA, USA.,Department of Microbiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
181
|
Ali MG, Zhang Z, Gao Q, Pan M, Rowan EG, Zhang J. Recent advances in therapeutic applications of neutralizing antibodies for virus infections: an overview. Immunol Res 2020; 68:325-339. [PMID: 33161557 PMCID: PMC7648849 DOI: 10.1007/s12026-020-09159-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022]
Abstract
Antibodies are considered as an excellent foundation to neutralize pathogens and as highly specific therapeutic agents. Antibodies are generated in response to a vaccine but little use as immunotherapy to combat virus infections. A new generation of broadly cross-reactive and highly potent antibodies has led to a unique chance for them to be used as a medical intervention. Neutralizing antibodies (monoclonal and polyclonal antibodies) are desirable for pharmaceutical products because of their ability to target specific epitopes with their variable domains by precise neutralization mechanisms. The isolation of neutralizing antiviral antibodies has been achieved by Phage displayed antibody libraries, transgenic mice, B cell approaches, and hybridoma technology. Antibody engineering technologies have led to efficacy improvements, to further boost antibody in vivo activities. "Although neutralizing antiviral antibodies have some limitations that hinder their full development as therapeutic agents, the potential for prevention and treatment of infections, including a range of viruses (HIV, Ebola, MERS-COV, CHIKV, SARS-CoV, and SARS-CoV2), are being actively pursued in human clinical trials."
Collapse
Affiliation(s)
- Manasik Gumah Ali
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Zhening Zhang
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Qi Gao
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Mingzhu Pan
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Edward G Rowan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University Strathclyde, Glasgow, UK
| | - Juan Zhang
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
182
|
Huang D, Tran JT, Olson A, Vollbrecht T, Tenuta M, Guryleva MV, Fuller RP, Schiffner T, Abadejos JR, Couvrette L, Blane TR, Saye K, Li W, Landais E, Gonzalez-Martin A, Schief W, Murrell B, Burton DR, Nemazee D, Voss JE. Vaccine elicitation of HIV broadly neutralizing antibodies from engineered B cells. Nat Commun 2020; 11:5850. [PMID: 33203876 PMCID: PMC7673113 DOI: 10.1038/s41467-020-19650-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/15/2020] [Indexed: 01/12/2023] Open
Abstract
HIV broadly neutralizing antibodies (bnAbs) can suppress viremia and protect against HIV infection. However, their elicitation is made difficult by low frequencies of appropriate precursor B cell receptors and the complex maturation pathways required to generate bnAbs from these precursors. Antibody genes can be engineered into B cells for expression as both a functional antigen receptor on cell surfaces and as secreted antibody. Here, we show that HIV bnAb-engineered primary mouse B cells can be adoptively transferred and vaccinated in immunocompetent mice resulting in the expansion of durable bnAb memory and long-lived plasma cells. Somatic hypermutation after immunization indicates that engineered cells have the capacity to respond to an evolving pathogen. These results encourage further exploration of engineered B cell vaccines as a strategy for durable elicitation of HIV bnAbs to protect against infection and as a contributor to a functional HIV cure.
Collapse
Affiliation(s)
- Deli Huang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jenny Tuyet Tran
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Alex Olson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Thomas Vollbrecht
- Department of Medicine, The University of California San Diego, La Jolla, CA, USA
| | - Mary Tenuta
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Mariia V Guryleva
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Faculty of Bioengineering and Bioinformatics, Moscow Lomonosov State University, Moscow, Russia
| | - Roberta P Fuller
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center (IAVI), The Scripps Research Institute, La Jolla, CA, USA
| | - Torben Schiffner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center (IAVI), The Scripps Research Institute, La Jolla, CA, USA
| | - Justin R Abadejos
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Lauren Couvrette
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Faculty of Science, University of Ottawa, Ottawa, Canada
| | - Tanya R Blane
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Karen Saye
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center (IAVI), The Scripps Research Institute, La Jolla, CA, USA
| | - Wenjuan Li
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Elise Landais
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Alicia Gonzalez-Martin
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
| | - William Schief
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center (IAVI), The Scripps Research Institute, La Jolla, CA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA, USA
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
- Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.
- IAVI Neutralizing Antibody Center (IAVI), The Scripps Research Institute, La Jolla, CA, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA, USA.
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| | - James E Voss
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
183
|
Heiss K, Heidepriem J, Fischer N, Weber LK, Dahlke C, Jaenisch T, Loeffler FF. Rapid Response to Pandemic Threats: Immunogenic Epitope Detection of Pandemic Pathogens for Diagnostics and Vaccine Development Using Peptide Microarrays. J Proteome Res 2020; 19:4339-4354. [PMID: 32892628 PMCID: PMC7640972 DOI: 10.1021/acs.jproteome.0c00484] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 12/18/2022]
Abstract
Emergence and re-emergence of pathogens bearing the risk of becoming a pandemic threat are on the rise. Increased travel and trade, growing population density, changes in urbanization, and climate have a critical impact on infectious disease spread. Currently, the world is confronted with the emergence of a novel coronavirus SARS-CoV-2, responsible for yet more than 800 000 deaths globally. Outbreaks caused by viruses, such as SARS-CoV-2, HIV, Ebola, influenza, and Zika, have increased over the past decade, underlining the need for a rapid development of diagnostics and vaccines. Hence, the rational identification of biomarkers for diagnostic measures on the one hand, and antigenic targets for vaccine development on the other, are of utmost importance. Peptide microarrays can display large numbers of putative target proteins translated into overlapping linear (and cyclic) peptides for a multiplexed, high-throughput antibody analysis. This enabled for example the identification of discriminant/diagnostic epitopes in Zika or influenza and mapping epitope evolution in natural infections versus vaccinations. In this review, we highlight synthesis platforms that facilitate fast and flexible generation of high-density peptide microarrays. We further outline the multifaceted applications of these peptide array platforms for the development of serological tests and vaccines to quickly encounter pandemic threats.
Collapse
Affiliation(s)
- Kirsten Heiss
- PEPperPRINT
GmbH, Rischerstrasse
12, 69123 Heidelberg, Germany
| | - Jasmin Heidepriem
- Max
Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Nico Fischer
- Section
Clinical Tropical Medicine, Department of Infectious Diseases, Heidelberg University Hospital, INF 324, 69120 Heidelberg, Germany
| | - Laura K. Weber
- PEPperPRINT
GmbH, Rischerstrasse
12, 69123 Heidelberg, Germany
- Institute
of Microstructure Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Christine Dahlke
- Division
of Infectious Diseases, First Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department
of Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German
Center for Infection Research, Partner Site
Hamburg-Lübeck-Borstel-Riems, 38124 Braunschweig, Germany
| | - Thomas Jaenisch
- Heidelberg
Institute of Global Health (HIGH), Heidelberg
University Hospital, Im Neuenheimer Feld 130, 69120 Heidelberg, Germany
- Center
for Global Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado 80045, United States
- Department
of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colorado 80045, United States
| | - Felix F. Loeffler
- Max
Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Muehlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
184
|
Kaw S, Ananth S, Tsopoulidis N, Morath K, Coban BM, Hohenberger R, Bulut OC, Klein F, Stolp B, Fackler OT. HIV-1 infection of CD4 T cells impairs antigen-specific B cell function. EMBO J 2020; 39:e105594. [PMID: 33146906 PMCID: PMC7737609 DOI: 10.15252/embj.2020105594] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Failures to produce neutralizing antibodies upon HIV‐1 infection result in part from B‐cell dysfunction due to unspecific B‐cell activation. How HIV‐1 affects antigen‐specific B‐cell functions remains elusive. Using an adoptive transfer mouse model and ex vivo HIV infection of human tonsil tissue, we found that expression of the HIV‐1 pathogenesis factor NEF in CD4 T cells undermines their helper function and impairs cognate B‐cell functions including mounting of efficient specific IgG responses. NEF interfered with T cell help via a specific protein interaction motif that prevents polarized cytokine secretion at the T‐cell–B‐cell immune synapse. This interference reduced B‐cell activation and proliferation and thus disrupted germinal center formation and affinity maturation. These results identify NEF as a key component for HIV‐mediated dysfunction of antigen‐specific B cells. Therapeutic targeting of the identified molecular surface in NEF will facilitate host control of HIV infection.
Collapse
Affiliation(s)
- Sheetal Kaw
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Swetha Ananth
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany.,German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Nikolaos Tsopoulidis
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Katharina Morath
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Bahar M Coban
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany.,German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Ralph Hohenberger
- Department of Otorhinolaryngology, University Hospital Heidelberg, Heidelberg, Germany
| | - Olcay C Bulut
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, SLK Klinikum Am Gesundbrunnen, Heilbronn, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, University Hospital of Cologne, Cologne, Germany.,German Centre for Infection Research (DZIF), Partner Site Köln, Köln, Germany
| | - Bettina Stolp
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Oliver T Fackler
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany.,German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
185
|
Sherrill-Mix S, Connors K, Aldrovandi GM, Brenchley JM, Boucher C, Bushman FD, Collman RG, Dandekar S, Klatt NR, Lagenaur LA, Paredes R, Tachedjian G, Turpin JA, Landay AL, Ghosh M. A Summary of the Fifth Annual Virology Education HIV Microbiome Workshop. AIDS Res Hum Retroviruses 2020; 36:886-895. [PMID: 32777940 PMCID: PMC7869876 DOI: 10.1089/aid.2020.0121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In October of 2019, researchers and community members from around the world met at the NIH for the fifth annual International Workshop on Microbiome in HIV. New research was presented on the role of the microbiome on chronic inflammation and vaccine design, interactions of genetics, environment, sexual practice and HIV infection with the microbiome and the development and clinical trials of microbiome-based therapeutic approaches intended to decrease the probability of HIV acquisition/transmission or ameliorate sequelae of HIV. The keynote address by Dr. Jacques Ravel focused on his work on the vaginal microbiome and efforts to improve the analysis and resolution of microbiome data.
Collapse
Affiliation(s)
- Scott Sherrill-Mix
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kaleigh Connors
- Department of Epidemiology, The George Washington University, Washington, District of Columbia, USA
| | - Grace M. Aldrovandi
- Department of Pediatrics, University of California, Los Angeles, Los Angeles, California, USA
| | | | - Charles Boucher
- Department of Virosciences, Erasmus Medical Center, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ronald G. Collman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Satya Dandekar
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, California, USA
| | - Nichole R. Klatt
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Roger Paredes
- Institut de Recerca de la SIDA IrsiCaixa i Unitat VIH, Universitat Autònoma de Barcelona, Universitat de Vic, Vic, Spain
| | | | - Jim A. Turpin
- Divison of AIDS, NIAID, NIH, Bethesda, Maryland, USA
| | - Alan L. Landay
- Division of Gerontology, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Mimi Ghosh
- Department of Epidemiology, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
186
|
Ng'uni T, Chasara C, Ndhlovu ZM. Major Scientific Hurdles in HIV Vaccine Development: Historical Perspective and Future Directions. Front Immunol 2020; 11:590780. [PMID: 33193428 PMCID: PMC7655734 DOI: 10.3389/fimmu.2020.590780] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022] Open
Abstract
Following the discovery of HIV as a causative agent of AIDS, the expectation was to rapidly develop a vaccine; but thirty years later, we still do not have a licensed vaccine. Progress has been hindered by the extensive genetic variability of HIV and our limited understanding of immune responses required to protect against HIV acquisition. Nonetheless, valuable knowledge accrued from numerous basic and translational science research studies and vaccine trials has provided insight into the structural biology of the virus, immunogen design and novel vaccine delivery systems that will likely constitute an effective vaccine. Furthermore, stakeholders now appreciate the daunting scientific challenges of developing an effective HIV vaccine, hence the increased advocacy for collaborative efforts among academic research scientists, governments, pharmaceutical industry, philanthropy, and regulatory entities. In this review, we highlight the history of HIV vaccine development efforts, highlighting major challenges and future directions.
Collapse
Affiliation(s)
- Tiza Ng'uni
- KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Caroline Chasara
- KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Zaza M Ndhlovu
- KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, United States
| |
Collapse
|
187
|
Yan L, Wang S. Shaping Polyclonal Responses via Antigen-Mediated Antibody Interference. iScience 2020; 23:101568. [PMID: 33083735 PMCID: PMC7530306 DOI: 10.1016/j.isci.2020.101568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/29/2020] [Accepted: 09/14/2020] [Indexed: 12/05/2022] Open
Abstract
Broadly neutralizing antibodies (bnAbs) recognize conserved features of rapidly mutating pathogens and confer universal protection, but they emerge rarely in natural infection. Increasing evidence indicates that seemingly passive antibodies may interfere with natural selection of B cells. Yet, how such interference modulates polyclonal responses is unknown. Here we provide a framework for understanding the role of antibody interference—mediated by multi-epitope antigens—in shaping B cell clonal makeup and the fate of bnAb lineages. We find that, under heterogeneous interference, clones with different intrinsic fitness can collectively persist. Furthermore, antagonism among fit clones (specific for variable epitopes) promotes expansion of unfit clones (targeting conserved epitopes), at the cost of repertoire potency. This trade-off, however, can be alleviated by synergy toward the unfit. Our results provide a physical basis for antigen-mediated clonal interactions, stress system-level impacts of molecular synergy and antagonism, and offer principles to amplify naturally rare clones. Multi-epitope antigens mediate antibody interference that couples B cell lineages Trade-off exists between repertoire potency and persistence of broad lineages Antigen-mediated synergy toward intrinsically unfit clones alleviates the trade-off Amplifying rare clones by leveraging molecular interference structure
Collapse
Affiliation(s)
- Le Yan
- Chan Zuckerberg Biohub, 499 Illinois Street, San Francisco, CA 94158, USA
| | - Shenshen Wang
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
188
|
Wang Z, Barnes CO, Gautam R, Cetrulo Lorenzi JC, Mayer CT, Oliveira TY, Ramos V, Cipolla M, Gordon KM, Gristick HB, West AP, Nishimura Y, Raina H, Seaman MS, Gazumyan A, Martin M, Bjorkman PJ, Nussenzweig MC, Escolano A. A broadly neutralizing macaque monoclonal antibody against the HIV-1 V3-Glycan patch. eLife 2020; 9:e61991. [PMID: 33084569 PMCID: PMC7577740 DOI: 10.7554/elife.61991] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/09/2020] [Indexed: 12/22/2022] Open
Abstract
A small fraction of HIV-1- infected humans develop broadly neutralizing antibodies (bNAbs) against HIV-1 that protect macaques from simian immunodeficiency HIV chimeric virus (SHIV). Similarly, a small number of macaques infected with SHIVs develop broadly neutralizing serologic activity, but less is known about the nature of simian antibodies. Here, we report on a monoclonal antibody, Ab1485, isolated from a macaque infected with SHIVAD8 that developed broadly neutralizing serologic activity targeting the V3-glycan region of HIV-1 Env. Ab1485 neutralizes 38.1% of HIV-1 isolates in a 42-pseudovirus panel with a geometric mean IC50 of 0.055 µg/mLl and SHIVAD8 with an IC50 of 0.028 µg/mLl. Ab1485 binds the V3-glycan epitope in a glycan-dependent manner. A 3.5 Å cryo-electron microscopy structure of Ab1485 in complex with a native-like SOSIP Env trimer showed conserved contacts with the N332gp120 glycan and gp120 GDIR peptide motif, but in a distinct Env-binding orientation relative to human V3/N332gp120 glycan-targeting bNAbs. Intravenous infusion of Ab1485 protected macaques from a high dose challenge with SHIVAD8. We conclude that macaques can develop bNAbs against the V3-glycan patch that resemble human V3-glycan bNAbs.
Collapse
Affiliation(s)
- Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller UniversityNew YorkUnited States
| | - Christopher O Barnes
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Rajeev Gautam
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | | | - Christian T Mayer
- Laboratory of Molecular Immunology, The Rockefeller UniversityNew YorkUnited States
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller UniversityNew YorkUnited States
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller UniversityNew YorkUnited States
| | - Melissa Cipolla
- Laboratory of Molecular Immunology, The Rockefeller UniversityNew YorkUnited States
| | - Kristie M Gordon
- Laboratory of Molecular Immunology, The Rockefeller UniversityNew YorkUnited States
| | - Harry B Gristick
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Yoshiaki Nishimura
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Henna Raina
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical CenterBostonUnited States
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller UniversityNew YorkUnited States
| | - Malcolm Martin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical Institute. The Rockefeller UniversityNew YorkUnited States
| | - Amelia Escolano
- Laboratory of Molecular Immunology, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
189
|
Rossini S, Noé R, Daventure V, Lecerf M, Justesen S, Dimitrov JD. V Region of IgG Controls the Molecular Properties of the Binding Site for Neonatal Fc Receptor. THE JOURNAL OF IMMUNOLOGY 2020; 205:2850-2860. [PMID: 33077645 DOI: 10.4049/jimmunol.2000732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/17/2020] [Indexed: 01/09/2023]
Abstract
Neonatal Fc receptor (FcRn) has a key role in the homeostasis of IgG. Despite its physiological and clinical importance, the interaction of IgG and FcRn remains not completely comprehended. Thus, IgG molecules with identical constant portions but with minor differences in their V regions have been demonstrated to interact with FcRn with a considerable heterogeneity in the binding affinity. To understand this discrepancy, we dissected the physicochemical mechanism of the interaction of 10 human IgG1 to human FcRn. The interactions of two Abs in the presence of their cognate Ags were also examined. Data from activation and equilibrium thermodynamics analyses as well as pH dependence of the kinetics revealed that the V region of IgG could modulate a degree of conformational changes and binding energy of noncovalent contacts at the FcRn binding interface. These results suggest that the V domains modulate FcRn binding site in Fc by allosteric effects. These findings contribute for a deeper understanding of the mechanism of IgG-FcRn interaction. They might also be of relevance for rational engineering of Abs for optimizing their pharmacokinetic properties.
Collapse
Affiliation(s)
- Sofia Rossini
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; and
| | - Rémi Noé
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; and
| | - Victoria Daventure
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; and
| | - Maxime Lecerf
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; and
| | | | - Jordan D Dimitrov
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; and
| |
Collapse
|
190
|
Fallet B, Hao Y, Florova M, Cornille K, de Los Aires AV, Girelli Zubani G, Ertuna YI, Greiff V, Menzel U, Hammad K, Merkler D, Reddy ST, Weill JC, Reynaud CA, Pinschewer DD. Chronic Viral Infection Promotes Efficient Germinal Center B Cell Responses. Cell Rep 2020; 30:1013-1026.e7. [PMID: 31995746 PMCID: PMC6996002 DOI: 10.1016/j.celrep.2019.12.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/20/2019] [Accepted: 12/06/2019] [Indexed: 12/31/2022] Open
Abstract
Persistent viral infections subvert key elements of adaptive immunity. To compare germinal center (GC) B cell responses in chronic and acute lymphocytic choriomeningitis virus infection, we exploit activation-induced deaminase (AID) fate-reporter mice and perform adoptive B cell transfer experiments. Chronic infection yields GC B cell responses of higher cellularity than acute infections do, higher memory B cell and antibody secreting cell output for longer periods of time, a better representation of the late B cell repertoire in serum immunoglobulin, and higher titers of protective neutralizing antibodies. GC B cells of chronically infected mice are similarly hypermutated as those emerging from acute infection. They efficiently adapt to viral escape variants and even in hypermutation-impaired AID mutant mice, chronic infection selects for GC B cells with hypermutated B cell receptors (BCRs) and neutralizing antibody formation. These findings demonstrate that, unlike for CD8+ T cells, chronic viral infection drives a functional, productive, and protective GC B cell response. Chronic viral infection elicits potent and sustained germinal center (GC) responses Chronic infection triggers prolonged plasma cell and memory B cell output from GCs GC B cells hypermutate efficiently and are potently selected in chronic infection
Collapse
Affiliation(s)
- Bénédict Fallet
- Department of Biomedicine, Division of Experimental Virology, University of Basel, Haus Petersplatz, 4009 Basel, Switzerland
| | - Yi Hao
- Development of the Immune System, Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale, U1151-Centre National de la Recherche Scientifique, UMR 8253, Faculté de Médecine Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Marianna Florova
- Department of Biomedicine, Division of Experimental Virology, University of Basel, Haus Petersplatz, 4009 Basel, Switzerland
| | - Karen Cornille
- Department of Biomedicine, Division of Experimental Virology, University of Basel, Haus Petersplatz, 4009 Basel, Switzerland
| | - Alba Verge de Los Aires
- Development of the Immune System, Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale, U1151-Centre National de la Recherche Scientifique, UMR 8253, Faculté de Médecine Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Giulia Girelli Zubani
- Development of the Immune System, Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale, U1151-Centre National de la Recherche Scientifique, UMR 8253, Faculté de Médecine Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Yusuf I Ertuna
- Department of Biomedicine, Division of Experimental Virology, University of Basel, Haus Petersplatz, 4009 Basel, Switzerland
| | - Victor Greiff
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland; Department of Immunology, University of Oslo, Oslo, Norway
| | - Ulrike Menzel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Karim Hammad
- Department of Pathology and Immunology, Division of Clinical Pathology, University & University Hospital of Geneva, Geneva, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, University & University Hospital of Geneva, Geneva, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Jean-Claude Weill
- Development of the Immune System, Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale, U1151-Centre National de la Recherche Scientifique, UMR 8253, Faculté de Médecine Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Claude-Agnès Reynaud
- Development of the Immune System, Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale, U1151-Centre National de la Recherche Scientifique, UMR 8253, Faculté de Médecine Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Daniel D Pinschewer
- Department of Biomedicine, Division of Experimental Virology, University of Basel, Haus Petersplatz, 4009 Basel, Switzerland.
| |
Collapse
|
191
|
Abstract
Protective vaccines for hypervariable pathogens are urgently needed. It has been proposed that amputating highly variable epitopes from vaccine antigens would induce the production of broadly protective antibodies targeting conserved epitopes. However, so far, these approaches have failed, partially because conserved epitopes are occluded in vivo and partially because co-localizing patterns of immunodominance and antigenic variability render variable epitopes the primary target for antibodies in natural infection. In this Perspective, to recast the challenge of vaccine development for hypervariable pathogens, I evaluate convergent mechanisms of adaptive variation, such as intrahost immune-mediated diversification, spatiotemporally defined antigenic space, and infection-enhancing cross-immunoreactivity. The requirements of broadly protective immune responses targeting variable pathogens are formulated in terms of cross-immunoreactivity, stoichiometric thresholds for neutralization, and the elicitation of antibodies targeting physicochemically conserved signatures within sequence variable domains.
Collapse
Affiliation(s)
- Alexander I Mosa
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
192
|
Moser BA, Steinhardt RC, Escalante-Buendia Y, Boltz DA, Barker KM, Cassaidy BJ, Rosenberger MG, Yoo S, McGonnigal BG, Esser-Kahn AP. Increased vaccine tolerability and protection via NF-κB modulation. SCIENCE ADVANCES 2020; 6:eaaz8700. [PMID: 32917696 PMCID: PMC11206472 DOI: 10.1126/sciadv.aaz8700] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 07/24/2020] [Indexed: 05/20/2023]
Abstract
Improving adjuvant responses is a promising pathway to develop vaccines against some pathogens (e.g., HIV or dengue). One challenge in adjuvant development is modulating the inflammatory response, which can cause excess side effects, while maintaining immune activation and protection. No approved adjuvants yet have the capability to independently modulate inflammation and protection. Here, we demonstrate a method to limit inflammation while retaining and often increasing the protective responses. To accomplish this goal, we combined a partial selective nuclear factor kappa B (NF-kB) inhibitor with several current adjuvants. The resulting vaccines reduce systemic inflammation and boost protective responses. In an influenza challenge model, we demonstrate that this approach enhances protection. This method was tested across a broad range of adjuvants and antigens. We anticipate these studies will lead to an alternative approach to vaccine formulation design that may prove broadly applicable to a wide range of adjuvants and vaccines.
Collapse
Affiliation(s)
- B A Moser
- Pritzker School for Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA
| | - R C Steinhardt
- Pritzker School for Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA
| | - Y Escalante-Buendia
- Pritzker School for Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA
| | - D A Boltz
- Division of Microbiology and Molecular Biology, IIT Research Institute, Illinois Institute of Technology, 10W. 35th Street, Chicago, IL 60616, USA
| | - K M Barker
- Division of Microbiology and Molecular Biology, IIT Research Institute, Illinois Institute of Technology, 10W. 35th Street, Chicago, IL 60616, USA
| | - B J Cassaidy
- Pritzker School for Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA
| | - M G Rosenberger
- Pritzker School for Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA
| | - S Yoo
- Department of Chemistry, Chemical Engineering & Materials Science, Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | - B G McGonnigal
- Department of Chemistry, Chemical Engineering & Materials Science, Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | - A P Esser-Kahn
- Pritzker School for Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA.
| |
Collapse
|
193
|
Milewska A, Ner‐Kluza J, Dabrowska A, Bodzon‐Kulakowska A, Pyrc K, Suder P. MASS SPECTROMETRY IN VIROLOGICAL SCIENCES. MASS SPECTROMETRY REVIEWS 2020; 39:499-522. [PMID: 31876329 PMCID: PMC7228374 DOI: 10.1002/mas.21617] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/15/2019] [Indexed: 05/24/2023]
Abstract
Virology, as a branch of the life sciences, discovered mass spectrometry (MS) to be the pivotal tool around two decades ago. The technique unveiled the complex network of interactions between the living world of pro- and eukaryotes and viruses, which delivered "a piece of bad news wrapped in protein" as defined by Peter Medawar, Nobel Prize Laureate, in 1960. However, MS is constantly evolving, and novel approaches allow for a better understanding of interactions in this micro- and nanoworld. Currently, we can investigate the interplay between the virus and the cell by analyzing proteomes, interactomes, virus-cell interactions, and search for the compounds that build viral structures. In addition, by using MS, it is possible to look at the cell from the broader perspective and determine the role of viral infection on the scale of the organism, for example, monitoring the crosstalk between infected tissues and the immune system. In such a way, MS became one of the major tools for the modern virology, allowing us to see the infection in the context of the whole cell or the organism. © 2019 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Aleksandra Milewska
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7A30‐387KrakowPoland
| | - Joanna Ner‐Kluza
- Department of Biochemistry and Neurobiology, Faculty of Materials Sciences and CeramicsAGH University of Science and TechnologyMickiewicza 30 Ave.30‐059KrakowPoland
| | - Agnieszka Dabrowska
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7A30‐387KrakowPoland
- Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityGronostajowa 730‐387KrakowPoland
| | - Anna Bodzon‐Kulakowska
- Department of Biochemistry and Neurobiology, Faculty of Materials Sciences and CeramicsAGH University of Science and TechnologyMickiewicza 30 Ave.30‐059KrakowPoland
| | - Krzysztof Pyrc
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7A30‐387KrakowPoland
| | - Piotr Suder
- Department of Biochemistry and Neurobiology, Faculty of Materials Sciences and CeramicsAGH University of Science and TechnologyMickiewicza 30 Ave.30‐059KrakowPoland
| |
Collapse
|
194
|
Bontempo A, Garcia MM, Rivera N, Cayabyab MJ. A Systematic Approach to HIV-1 Vaccine Immunogen Selection. AIDS Res Hum Retroviruses 2020; 36:762-770. [PMID: 32056466 DOI: 10.1089/aid.2019.0239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A tremendous loss of financial and human resources from seven large-scale HIV vaccine efficacy trials suggest a need for a systematic approach to vaccine selection. We conducted a systematic analysis of three important envelope glycoprotein (Env) vaccine candidates: BG505 SOSIP.664, 1086.C gp140, and 1086.C gp120 to determine the most promising by comparing their structure and antigenicity. We found that the BG505 SOSIP trimer and 1086.C gp140 clearly outperformed the 1086.C gp120 monomer. BG505 SOSIP.664 bound the strongest to the most potent and broadest broadly neutralizing antibodies (bnAbs) PG9, PGT145, VRC01, and PGT121. Of interest, although BG505 SOSIP.664 did not bind to the CH58 mAb, 1086.C gp140 bound strongly to this mAb, which belongs to a class of non-neutralizing antibodies that may be protective based on correlates of protection studies of the RV144 HIV vaccine trial. The 1086.C gp120 monomer was the least antigenic of the three vaccine immunogens, binding the weakest to bnAbs and CH58 mAb. Taken together, the evidence provided here combined with previous preclinical immunogenicity and efficacy data strongly argue that the BG505 SOSIP.664 trimer and 1086.C gp140 are likely to be better vaccine immunogens than the monomeric 1086.C gp120, which was just recently tested and shown to be nonefficacious in a phase IIb/III trial. Thus, to best utilize our financial and valuable human resources, we propose a systematic approach by not only comparing structure and antigenicity, but also immunogenicity and efficacy of Env vaccine candidates in the preclinical phase to the selection of only the most promising vaccine candidates for clinical testing.
Collapse
Affiliation(s)
- Alexander Bontempo
- Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Maria M. Garcia
- Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, Massachusetts, USA
| | - Naylene Rivera
- Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, Massachusetts, USA
| | - Mark J. Cayabyab
- Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
195
|
The influence of proline isomerization on potency and stability of anti-HIV antibody 10E8. Sci Rep 2020; 10:14313. [PMID: 32868832 PMCID: PMC7458915 DOI: 10.1038/s41598-020-71184-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/27/2020] [Indexed: 12/22/2022] Open
Abstract
Monoclonal antibody (mAb) 10E8 recognizes a highly conserved epitope on HIV and is capable of neutralizing > 95% of circulating viral isolates making it one of the most promising Abs against HIV. Solution instability and biochemical heterogeneity of 10E8 has hampered its development for clinical use. We identify the source of 10E8 heterogeneity being linked to cis/trans isomerization at two prolines within the YPP motif in the CRD3 loop that exists as two predominant conformers that interconvert on a slow timescale. The YtransP conformation conformer can bind the HIV gp41 epitope, while the YcisP is not binding competent and shows a higher aggregation propensity. The high barrier of isomerization and propensity to adopt non-binding competent proline conformers provides novel insight into the slow binding kinetics, low potency, and poor solubility of 10E8. This study highlights how proline isomerization should be considered a critical quality attribute for biotherapeutics with paratopes containing potential cis proline amide bonds.
Collapse
|
196
|
Xu Z, Chokkalingam N, Tello-Ruiz E, Walker S, Kulp DW, Weiner DB. Incorporation of a Novel CD4+ Helper Epitope Identified from Aquifex aeolicus Enhances Humoral Responses Induced by DNA and Protein Vaccinations. iScience 2020; 23:101399. [PMID: 32763137 PMCID: PMC7409978 DOI: 10.1016/j.isci.2020.101399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/25/2020] [Accepted: 07/20/2020] [Indexed: 01/12/2023] Open
Abstract
CD4+ T cells play an important role in the maturation of the antibody responses. Conjugation of identified CD4+ T cell helper epitope to the target antigen has been developed as a strategy to enhance vaccine-induced humoral immunity. In this work, we reported the identification of a novel HLA-IAb helper epitope LS-3 from Aquifex aeolicus. In silico analysis predicted this epitope to have high binding affinity to common human HLA alleles and have complementary binding coverage to the established PADRE epitope. Introduction of HLA-IAb knockout mutations to the LS-3 epitope significantly attenuated humoral responses induced by a vaccine containing this epitope. Finally, engineered fusion of the epitope to a model antigen, influenza hemagglutinin, significantly improved both binding and hemagglutination inhibition antibody responses in mice receiving DNA or protein vaccines. In summary, LS-3 and additional identified CD4+ helper epitopes may be further explored to improve vaccine responses in translational studies. Identification of a novel CD4+ helper epitope, LS-3, from Aquifex aeolicus In silico analysis predicts high binding affinity of LS-3 to human HLA-DR alleles Fusing LS-3 to antigen enhances humoral response by vaccinations
Collapse
Affiliation(s)
- Ziyang Xu
- The Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104, USA; Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Neethu Chokkalingam
- The Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104, USA
| | - Edgar Tello-Ruiz
- The Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104, USA
| | - Susanne Walker
- The Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104, USA
| | - Daniel W Kulp
- The Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104, USA.
| | - David B Weiner
- The Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|
197
|
Optimizing immunization protocols to elicit broadly neutralizing antibodies. Proc Natl Acad Sci U S A 2020; 117:20077-20087. [PMID: 32747563 DOI: 10.1073/pnas.1919329117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Natural infections and vaccination with a pathogen typically stimulate the production of potent antibodies specific for the pathogen through a Darwinian evolutionary process known as affinity maturation. Such antibodies provide protection against reinfection by the same strain of a pathogen. A highly mutable virus, like HIV or influenza, evades recognition by these strain-specific antibodies via the emergence of new mutant strains. A vaccine that elicits antibodies that can bind to many diverse strains of the virus-known as broadly neutralizing antibodies (bnAbs)-could protect against highly mutable pathogens. Despite much work, the mechanisms by which bnAbs emerge remain uncertain. Using a computational model of affinity maturation, we studied a wide variety of vaccination strategies. Our results suggest that an effective strategy to maximize bnAb evolution is through a sequential immunization protocol, wherein each new immunization optimally increases the pressure on the immune system to target conserved antigenic sites, thus conferring breadth. We describe the mechanisms underlying why sequentially driving the immune system increasingly further from steady state, in an optimal fashion, is effective. The optimal protocol allows many evolving B cells to become bnAbs via diverse evolutionary paths.
Collapse
|
198
|
Pecetta S, Finco O, Seubert A. Quantum leap of monoclonal antibody (mAb) discovery and development in the COVID-19 era. Semin Immunol 2020; 50:101427. [PMID: 33277154 PMCID: PMC7670927 DOI: 10.1016/j.smim.2020.101427] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/16/2020] [Accepted: 11/16/2020] [Indexed: 01/08/2023]
Abstract
In recent years the global market for monoclonal antibodies (mAbs) became a multi-billion-dollar business. This success is mainly driven by treatments in the oncology and autoimmune space. Instead, development of effective mAbs against infectious diseases has been lagging behind. For years the high production cost and limited efficacy have blocked broader application of mAbs in the infectious disease space, which instead has been dominated for almost a century by effective and cheap antibiotics and vaccines. Only very few mAbs against RSV, anthrax, Clostridium difficile or rabies have reached the market. This is about to change. The development of urgently needed and highly effective mAbs as preventive and therapeutic treatments against a variety of pathogens is gaining traction. Vast advances in mAb isolation, engineering and production have entirely shifted the cost-efficacy balance. MAbs against devastating diseases like Ebola, HIV and other complex pathogens are now within reach. This trend is further accelerated by ongoing or imminent health crises like COVID-19 and antimicrobial resistance (AMR), where antibodies could be the last resort. In this review we will retrace the history of antibodies from the times of serum therapy to modern mAbs and lay out how the current run for effective treatments against COVID-19 will lead to a quantum leap in scientific, technological and health care system innovation around mAb treatments for infectious diseases.
Collapse
|
199
|
Cottrell CA, van Schooten J, Bowman CA, Yuan M, Oyen D, Shin M, Morpurgo R, van der Woude P, van Breemen M, Torres JL, Patel R, Gross J, Sewall LM, Copps J, Ozorowski G, Nogal B, Sok D, Rakasz EG, Labranche C, Vigdorovich V, Christley S, Carnathan DG, Sather DN, Montefiori D, Silvestri G, Burton DR, Moore JP, Wilson IA, Sanders RW, Ward AB, van Gils MJ. Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. PLoS Pathog 2020; 16:e1008753. [PMID: 32866207 PMCID: PMC7485981 DOI: 10.1371/journal.ppat.1008753] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/11/2020] [Accepted: 06/26/2020] [Indexed: 11/29/2022] Open
Abstract
The induction of broad and potent immunity by vaccines is the key focus of research efforts aimed at protecting against HIV-1 infection. Soluble native-like HIV-1 envelope glycoproteins have shown promise as vaccine candidates as they can induce potent autologous neutralizing responses in rabbits and non-human primates. In this study, monoclonal antibodies were isolated and characterized from rhesus macaques immunized with the BG505 SOSIP.664 trimer to better understand vaccine-induced antibody responses. Our studies reveal a diverse landscape of antibodies recognizing immunodominant strain-specific epitopes and non-neutralizing neo-epitopes. Additionally, we isolated a subset of mAbs against an epitope cluster at the gp120-gp41 interface that recognize the highly conserved fusion peptide and the glycan at position 88 and have characteristics akin to several human-derived broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Christopher A. Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, California, United States of America
| | - Jelle van Schooten
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Charles A. Bowman
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - David Oyen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Mia Shin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Robert Morpurgo
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Patricia van der Woude
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mariëlle van Breemen
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jonathan L. Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Raj Patel
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Justin Gross
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Leigh M. Sewall
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, California, United States of America
| | - Bartek Nogal
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, California, United States of America
| | - Devin Sok
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, California, United States of America
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Eva G. Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Celia Labranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Vladimir Vigdorovich
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Scott Christley
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Diane G. Carnathan
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, California, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - D. Noah Sather
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - David Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Guido Silvestri
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, California, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Dennis R. Burton
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, California, United States of America
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of America
| | - John P. Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, California, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Rogier W. Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, California, United States of America
| | - Marit J. van Gils
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
200
|
Yang R, Lan J, Huang B, A R, Lu M, Wang W, Wang W, Li W, Deng Y, Wong G, Tan W. Lack of antibody-mediated cross-protection between SARS-CoV-2 and SARS-CoV infections. EBioMedicine 2020; 58:102890. [PMID: 32707445 PMCID: PMC7372296 DOI: 10.1016/j.ebiom.2020.102890] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/25/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The novel coronavirus (SARS-CoV-2) shares approximately 80% whole genome sequence identity and 66% spike (S) protein identity with that of SARS-CoV. The cross-neutralization between these viruses is currently not well-defined. METHODS Here, by using the live SARS-CoV-2 virus infection assay as well as HIV-1 based pseudotyped-virus carrying the spike (S) gene of the SARS-CoV-2 (ppSARS-2) and SARS-CoV (ppSARS), we examined whether infections with SARS-CoV and SARS-CoV-2 can induce cross-neutralizing antibodies. FINDINGS We confirmed that SARS-CoV-2 infects cells via angiotensin converting enzyme 2 (ACE2), the functional receptor for SARS-CoV, and we also found that the recombinant receptor binding domain (RBD) of the S protein of SARS-CoV effectively inhibits ppSARS-2 entry in Huh7.5 cells. However, convalescent sera from SARS-CoV and SARS-CoV-2 patients showed high neutralizing activity only against the homologous virus, with no or limited cross-neutralization activity against the other pseudotyped virus. Similar results were also observed in vaccination studies in mice. INTERPRETATION Our study demonstrates that although both SARS-CoV and SARS-CoV-2 use ACE2 as a cellular receptor, the neutralization epitopes are not shared by these two closely-related viruses, highlighting challenges towards developing a universal vaccine against SARS-CoV related viruses. FUNDING This work was supported by the National Key Research and Development Program of China, the National Major Project for Control and Prevention of Infectious Disease in China, and the One Belt and One Road Major Project for infectious diseases.
Collapse
Affiliation(s)
- Ren Yang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China
| | - Jiaming Lan
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Baoying Huang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China
| | - Ruhan A
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China
| | - Mingqing Lu
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wen Wang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China
| | - Wenling Wang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China
| | - Wenhui Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yao Deng
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China.
| | - Gary Wong
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; Department of Microbiology-Infectiology and Immunology, Laval University, Quebec City G1V 4G2, Canada.
| | - Wenjie Tan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China.
| |
Collapse
|