151
|
Li J, Meng X, Zong Y, Chen K, Zhang H, Liu J, Li J, Gao C. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9. NATURE PLANTS 2016; 2:16139. [PMID: 27618611 DOI: 10.1038/nplants.2016.139] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 08/09/2016] [Indexed: 05/20/2023]
Abstract
Sequence-specific nucleases have been exploited to create targeted gene knockouts in various plants(1), but replacing a fragment and even obtaining gene insertions at specific loci in plant genomes remain a serious challenge. Here, we report efficient intron-mediated site-specific gene replacement and insertion approaches that generate mutations using the non-homologous end joining (NHEJ) pathway using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system. Using a pair of single guide RNAs (sgRNAs) targeting adjacent introns and a donor DNA template including the same pair of sgRNA sites, we achieved gene replacements in the rice endogenous gene 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) at a frequency of 2.0%. We also obtained targeted gene insertions at a frequency of 2.2% using a sgRNA targeting one intron and a donor DNA template including the same sgRNA site. Rice plants harbouring the OsEPSPS gene with the intended substitutions were glyphosate-resistant. Furthermore, the site-specific gene replacements and insertions were faithfully transmitted to the next generation. These newly developed approaches can be generally used to replace targeted gene fragments and to insert exogenous DNA sequences into specific genomic sites in rice and other plants.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangbing Meng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuan Zong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kunling Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Huawei Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jinxing Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
152
|
Mishra RC, Grover A. Constitutive over-expression of rice ClpD1 protein enhances tolerance to salt and desiccation stresses in transgenic Arabidopsis plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 250:69-78. [PMID: 27457985 DOI: 10.1016/j.plantsci.2016.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/04/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
Caseinolytic proteases (Clps) perform the important role of removing protein aggregates from cells, which can otherwise prove to be highly toxic. ClpD system is a two-component protease complex composed of a regulatory ATPase module ClpD and a proteolytic component ClpP. Under desiccation stress condition, rice ClpD1 (OsClpD1) gene encoding for the regulatory subunit, was represented by four variant transcripts differing mainly in the expanse of their N-terminal amino acids. These transcripts were expressed in a differential manner in response to salt, mannitol and polyethylene glycol stresses in rice. Purified OsClpD1.3 protein exhibited intrinsic chaperone activity, shown using citrate synthase as substrate. Arabidopsis (Col-0) plants over-expressing OsClpD1.3 open reading frame downstream to CaMV35S promoter (ClpD1.3 plants) showed higher tolerance to salt and desiccation stresses as compared to wild type plants. ClpD1.3 seedlings also showed enhanced growth during the early stages of seed germination under unstressed, control conditions. The free proline levels and starch breakdown activities were higher in the ClpD1.3 seedlings as compared to the wild type Arabidopsis seedlings. It thus emerges that increasing the potential of ClpD1 chaperoning activity may be of advantage in protection against abiotic stresses.
Collapse
Affiliation(s)
- Ratnesh Chandra Mishra
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
153
|
iTRAQ-based quantitative proteomic analysis reveals new metabolic pathways responding to chilling stress in maize seedlings. J Proteomics 2016; 146:14-24. [DOI: 10.1016/j.jprot.2016.06.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 05/30/2016] [Accepted: 06/10/2016] [Indexed: 12/23/2022]
|
154
|
Abdel-Ghany SE, Hamilton M, Jacobi JL, Ngam P, Devitt N, Schilkey F, Ben-Hur A, Reddy ASN. A survey of the sorghum transcriptome using single-molecule long reads. Nat Commun 2016; 7:11706. [PMID: 27339290 PMCID: PMC4931028 DOI: 10.1038/ncomms11706] [Citation(s) in RCA: 343] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 04/20/2016] [Indexed: 12/31/2022] Open
Abstract
Alternative splicing and alternative polyadenylation (APA) of pre-mRNAs greatly contribute to transcriptome diversity, coding capacity of a genome and gene regulatory mechanisms in eukaryotes. Second-generation sequencing technologies have been extensively used to analyse transcriptomes. However, a major limitation of short-read data is that it is difficult to accurately predict full-length splice isoforms. Here we sequenced the sorghum transcriptome using Pacific Biosciences single-molecule real-time long-read isoform sequencing and developed a pipeline called TAPIS (Transcriptome Analysis Pipeline for Isoform Sequencing) to identify full-length splice isoforms and APA sites. Our analysis reveals transcriptome-wide full-length isoforms at an unprecedented scale with over 11,000 novel splice isoforms. Additionally, we uncover APA of ∼11,000 expressed genes and more than 2,100 novel genes. These results greatly enhance sorghum gene annotations and aid in studying gene regulation in this important bioenergy crop. The TAPIS pipeline will serve as a useful tool to analyse Iso-Seq data from any organism. Alternative splicing and alternative polyadenylation (APA) contribute to mRNA diversity but are difficult to assess using short read RNA-seq data. Here, the authors use single molecule long-read isoform sequencing and develop a computational pipeline to identify full-length splice isoforms and APA sites in sorghum.
Collapse
Affiliation(s)
- Salah E Abdel-Ghany
- Department of Biology, Program in Molecular Plant Biology, Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Michael Hamilton
- Department of Computer Science, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Jennifer L Jacobi
- National Center for Genome Resources, 2935 Rodeo Park Dr East, Santa Fe, New Mexico 87505, USA
| | - Peter Ngam
- National Center for Genome Resources, 2935 Rodeo Park Dr East, Santa Fe, New Mexico 87505, USA
| | - Nicholas Devitt
- National Center for Genome Resources, 2935 Rodeo Park Dr East, Santa Fe, New Mexico 87505, USA
| | - Faye Schilkey
- National Center for Genome Resources, 2935 Rodeo Park Dr East, Santa Fe, New Mexico 87505, USA
| | - Asa Ben-Hur
- Department of Computer Science, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Anireddy S N Reddy
- Department of Biology, Program in Molecular Plant Biology, Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
155
|
Ma J, Gao S, Jiang QT, Yang Q, Sun M, Wang JR, Qi PF, Liu YX, Li W, Pu ZE, Lan XJ, Wei YM, Liu C, Zheng YL. Structure and expression of phosphoglucan phosphatase genes of Like Sex Four1 and Like Sex Four2 in barley. Genetica 2016; 144:313-23. [PMID: 27154345 DOI: 10.1007/s10709-016-9900-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 04/27/2016] [Indexed: 10/21/2022]
Abstract
Phosphoglucan phosphatases (Like-SEX4 1 and 2; LSF1 and LSF2) were reported to play roles in starch metabolism in leaves of Arabidopsis. In this study, we identified and mapped the LSF1 and LSF2 genes in barley (HvLSF1 and HvLSF2), characterized their gene and protein structures, predicted the cis-elements of their promoters, and analysed their expression patterns. HvLSF1 and HvLSF2 were mapped on the long arm of chromosome 1H (1HL) and 5H (5HL), respectively. Our results revealed varied exon-intron structures and conserved exon-intron junctions in both LSF1 and LSF2 from a range of analysed species. Alignment of protein sequences indicated that cTP and CT domains are much less varied than the functional domains (PDZ, DPS and CBM48). LSF2 was mainly expressed in anthers of barley and rice, and in leaf of Arabidopsis. LSF1 was mainly expressed in endosperm of barley and leaf of Arabidopsis and rice. The expression of LSF1 exhibited a diurnal pattern in rice only and that of LSF2 in both rice and Arabidopsis. Of the investigated stresses, only cold stress significantly reduced expression level of LSF1 and LSF2 in barley and LSF2 in Arabidopsis at late stages of the treatments. While heat treatment significantly decreased expression levels of LSF1 at middle stage (4 h) of a treatment in Arabidopsis only. The strong relationships detected between LSF2 and starch excess4 (SEX4), glucan, water dikinases or phosphoglucan, water dikinases were identified and discussed. Taken together, these results provide information of genetic manipulation of LSF1 and LSF2, especially in monocotyledon and further elucidate their regulatory mechanism in plant development.
Collapse
Affiliation(s)
- Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shang Gao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qian-Tao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Qiang Yang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Min Sun
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ji-Rui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Peng-Fei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ya-Xi Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wei Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhi-En Pu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiu-Jin Lan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yu-Ming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Chunji Liu
- CSIRO Agriculture Flagship, 306 Carmody Road, St Lucia, Brisbane, QLD, 4067, Australia
| | - You-Liang Zheng
- Key Laboratory of Southwestern Crop Germplasm Utilization, Ministry of Agriculture, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China.
| |
Collapse
|
156
|
Tang W, Zheng Y, Dong J, Yu J, Yue J, Liu F, Guo X, Huang S, Wisniewski M, Sun J, Niu X, Ding J, Liu J, Fei Z, Liu Y. Comprehensive Transcriptome Profiling Reveals Long Noncoding RNA Expression and Alternative Splicing Regulation during Fruit Development and Ripening in Kiwifruit (Actinidia chinensis). FRONTIERS IN PLANT SCIENCE 2016; 7:335. [PMID: 27594858 PMCID: PMC5007456 DOI: 10.3389/fpls.2016.00335] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 03/04/2016] [Indexed: 05/18/2023]
Abstract
Genomic and transcriptomic data on kiwifruit (Actinidia chinensis) in public databases are very limited despite its nutritional and economic value. Previously, we have constructed and sequenced nine fruit RNA-Seq libraries of A. chinensis "Hongyang" at immature, mature, and postharvest ripening stages of fruit development, and generated over 66.2 million paired-end and 24.4 million single-end reads. From this dataset, here we have identified 7051 long noncoding RNAs (lncRNAs), 29,327 alternative splicing (AS) events and 2980 novel protein-coding genes that were not annotated in the draft genome of "Hongyang." AS events were demonstrated in genes involved in the synthesis of nutritional metabolites in fruit, such as ascorbic acids, carotenoids, anthocyanins, and chlorophylls, and also in genes in the ethylene signaling pathway, which plays an indispensable role in fruit ripening. Additionally, transcriptome profiles and the contents of sugars, organic and main amino acids were compared between immature, mature, and postharvest ripening stages in kiwifruits. A total of 5931 differentially expressed genes were identified, including those associated with the metabolism of sugar, organic acid, and main amino acids. The data generated in this study provide a foundation for further studies of fruit development and ripening in kiwifruit, and identify candidate genes and regulatory elements that could serve as targets for improving important agronomic traits through marker assisted breeding and biotechnology.
Collapse
Affiliation(s)
- Wei Tang
- Department of Biological Sciences, School of Biotechnology and Food Engineering, Hefei University of TechnologyHefei, China
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan UniversityChengdu, China
| | - Yi Zheng
- Section of Plant Biology, Boyce Thompson Institute for Plant Research, Cornell UniversityIthaca, NY, USA
| | - Jing Dong
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan UniversityChengdu, China
| | - Jia Yu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan UniversityChengdu, China
| | - Junyang Yue
- Department of Biological Sciences, School of Biotechnology and Food Engineering, Hefei University of TechnologyHefei, China
| | - Fangfang Liu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan UniversityChengdu, China
| | - Xiuhong Guo
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan UniversityChengdu, China
| | - Shengxiong Huang
- Department of Biological Sciences, School of Biotechnology and Food Engineering, Hefei University of TechnologyHefei, China
| | - Michael Wisniewski
- U.S. Department of Agriculture – Agricultural Research ServiceKearneysville, WV, USA
| | - Jiaqi Sun
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan UniversityChengdu, China
| | - Xiangli Niu
- Department of Biological Sciences, School of Biotechnology and Food Engineering, Hefei University of TechnologyHefei, China
| | - Jian Ding
- Sichuan Technical Exchange CenterChengdu, China
| | - Jia Liu
- Department of Biological Sciences, School of Biotechnology and Food Engineering, Hefei University of TechnologyHefei, China
| | - Zhangjun Fei
- Section of Plant Biology, Boyce Thompson Institute for Plant Research, Cornell UniversityIthaca, NY, USA
| | - Yongsheng Liu
- Department of Biological Sciences, School of Biotechnology and Food Engineering, Hefei University of TechnologyHefei, China
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan UniversityChengdu, China
| |
Collapse
|
157
|
Sewelam N, Kazan K, Schenk PM. Global Plant Stress Signaling: Reactive Oxygen Species at the Cross-Road. FRONTIERS IN PLANT SCIENCE 2016; 7:187. [PMID: 26941757 PMCID: PMC4763064 DOI: 10.3389/fpls.2016.00187] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/04/2016] [Indexed: 05/18/2023]
Abstract
Current technologies have changed biology into a data-intensive field and significantly increased our understanding of signal transduction pathways in plants. However, global defense signaling networks in plants have not been established yet. Considering the apparent intricate nature of signaling mechanisms in plants (due to their sessile nature), studying the points at which different signaling pathways converge, rather than the branches, represents a good start to unravel global plant signaling networks. In this regard, growing evidence shows that the generation of reactive oxygen species (ROS) is one of the most common plant responses to different stresses, representing a point at which various signaling pathways come together. In this review, the complex nature of plant stress signaling networks will be discussed. An emphasis on different signaling players with a specific attention to ROS as the primary source of the signaling battery in plants will be presented. The interactions between ROS and other signaling components, e.g., calcium, redox homeostasis, membranes, G-proteins, MAPKs, plant hormones, and transcription factors will be assessed. A better understanding of the vital roles ROS are playing in plant signaling would help innovate new strategies to improve plant productivity under the circumstances of the increasing severity of environmental conditions and the high demand of food and energy worldwide.
Collapse
Affiliation(s)
- Nasser Sewelam
- Botany Department, Faculty of Science, Tanta UniversityTanta, Egypt
| | - Kemal Kazan
- Commonwealth Scientific and Industrial Research Organization Agriculture, Queensland Bioscience Precinct, St LuciaQLD, Australia
- Queensland Alliance for Agriculture & Food Innovation, The University of Queensland, BrisbaneQLD, Australia
| | - Peer M. Schenk
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, BrisbaneQLD, Australia
| |
Collapse
|
158
|
Cilano K, Mazanek Z, Khan M, Metcalfe S, Zhang XN. A New Mutation, hap1-2, Reveals a C Terminal Domain Function in AtMago Protein and Its Biological Effects in Male Gametophyte Development in Arabidopsis thaliana. PLoS One 2016; 11:e0148200. [PMID: 26867216 PMCID: PMC4750992 DOI: 10.1371/journal.pone.0148200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 01/14/2016] [Indexed: 01/02/2023] Open
Abstract
The exon-exon junction complex (EJC) is a conserved eukaryotic multiprotein complex that examines the quality of and determines the availability of messenger RNAs (mRNAs) posttranscriptionally. Four proteins, MAGO, Y14, eIF4AIII and BTZ, function as core components of the EJC. The mechanisms of their interactions and the biological indications of these interactions are still poorly understood in plants. A new mutation, hap1-2. leads to premature pollen death and a reduced seed production in Arabidopsis. This mutation introduces a viable truncated transcript AtMagoΔC. This truncation abolishes the interaction between AtMago and AtY14 in vitro, but not the interaction between AtMago and AteIF4AIII. In addition to a strong nuclear presence of AtMago, both AtMago and AtMagoΔC exhibit processing-body (P-body) localization. This indicates that AtMagoΔC may replace AtMago in the EJC when aberrant transcripts are to be degraded. When introducing an NMD mutation, upf3-1, into the existing HAP1/hap1-2 mutant, plants showed a severely reduced fertility. However, the change of splicing pattern of a subset of SR protein transcripts is mostly correlated with the sr45-1 and upf3-1 mutations, not the hap1-2 mutation. These results imply that the C terminal domain (CTD) of AtMago is required for the AtMago-AtY14 heterodimerization during EJC assembly, UPF3-mediated NMD pathway and the AtMago-AtY14 heterodimerization work synergistically to regulate male gametophyte development in plants.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Arabidopsis/genetics
- Arabidopsis/physiology
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/physiology
- Base Sequence
- Cloning, Molecular
- Crosses, Genetic
- DNA Primers/genetics
- DNA, Complementary/metabolism
- Dimerization
- Exons
- Genes, Plant
- Germ Cells, Plant
- Humans
- Microscopy, Confocal
- Molecular Sequence Data
- Mutation
- Nuclear Proteins/genetics
- Nuclear Proteins/physiology
- Plants, Genetically Modified
- Pollen/physiology
- Protein Structure, Secondary
- Protein Structure, Tertiary
- RNA Processing, Post-Transcriptional
- RNA Splicing
- RNA Stability
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins/metabolism
- Seeds/metabolism
- Sequence Alignment
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Kevin Cilano
- Department of Biology, Saint Bonaventure University, Saint Bonaventure, New York, United States of America
| | - Zachary Mazanek
- Biochemistry Program, Saint Bonaventure University, Saint Bonaventure, New York, United States of America
| | - Mahmuda Khan
- Department of Biology, Saint Bonaventure University, Saint Bonaventure, New York, United States of America
| | - Sarah Metcalfe
- Biochemistry Program, Saint Bonaventure University, Saint Bonaventure, New York, United States of America
| | - Xiao-Ning Zhang
- Department of Biology, Saint Bonaventure University, Saint Bonaventure, New York, United States of America
- Biochemistry Program, Saint Bonaventure University, Saint Bonaventure, New York, United States of America
- * E-mail:
| |
Collapse
|
159
|
Fang J, Lin A, Qiu W, Cai H, Umar M, Chen R, Ming R. Transcriptome Profiling Revealed Stress-Induced and Disease Resistance Genes Up-Regulated in PRSV Resistant Transgenic Papaya. FRONTIERS IN PLANT SCIENCE 2016; 7:855. [PMID: 27379138 PMCID: PMC4909764 DOI: 10.3389/fpls.2016.00855] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/31/2016] [Indexed: 05/18/2023]
Abstract
Papaya is a productive and nutritious tropical fruit. Papaya Ringspot Virus (PRSV) is the most devastating pathogen threatening papaya production worldwide. Development of transgenic resistant varieties is the most effective strategy to control this disease. However, little is known about the genome-wide functional changes induced by particle bombardment transformation. We conducted transcriptome sequencing of PRSV resistant transgenic papaya SunUp and its PRSV susceptible progenitor Sunset to compare the transcriptional changes in young healthy leaves prior to infection with PRSV. In total, 20,700 transcripts were identified, and 842 differentially expressed genes (DEGs) randomly distributed among papaya chromosomes. Gene ontology (GO) category analysis revealed that microtubule-related categories were highly enriched among these DEGs. Numerous DEGs related to various transcription factors, transporters and hormone biosynthesis showed clear differences between the two cultivars, and most were up-regulated in transgenic papaya. Many known and novel stress-induced and disease-resistance genes were most highly expressed in SunUp, including MYB, WRKY, ERF, NAC, nitrate and zinc transporters, and genes involved in the abscisic acid, salicylic acid, and ethylene signaling pathways. We also identified 67,686 alternative splicing (AS) events in Sunset and 68,455 AS events in SunUp, mapping to 10,994 and 10,995 papaya annotated genes, respectively. GO enrichment for the genes displaying AS events exclusively in Sunset was significantly different from those in SunUp. Transcriptomes in Sunset and transgenic SunUp are very similar with noteworthy differences, which increased PRSV-resistance in transgenic papaya. No detrimental pathways and allergenic or toxic proteins were induced on a genome-wide scale in transgenic SunUp. Our results provide a foundation for unraveling the mechanism of PRSV resistance in transgenic papaya.
Collapse
Affiliation(s)
- Jingping Fang
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry UniversityFuzhou, China
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Aiting Lin
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Weijing Qiu
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Hanyang Cai
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Muhammad Umar
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Rukai Chen
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Ray Ming
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Department of Plant Biology, University of Illinois at Urbana-ChampaignUrbana, IL, USA
- *Correspondence: Ray Ming
| |
Collapse
|
160
|
Fu D, Mason AS, Xiao M, Yan H. Effects of genome structure variation, homeologous genes and repetitive DNA on polyploid crop research in the age of genomics. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 242:37-46. [PMID: 26566823 DOI: 10.1016/j.plantsci.2015.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 09/10/2015] [Accepted: 09/22/2015] [Indexed: 06/05/2023]
Abstract
Compared to diploid species, allopolyploid crop species possess more complex genomes, higher productivity, and greater adaptability to changing environments. Next generation sequencing techniques have produced high-density genetic maps, whole genome sequences, transcriptomes and epigenomes for important polyploid crops. However, several problems interfere with the full application of next generation sequencing techniques to these crops. Firstly, different types of genomic variation affect sequence assembly and QTL mapping. Secondly, duplicated or homoeologous genes can diverge in function and then lead to emergence of many minor QTL, which increases difficulties in fine mapping, cloning and marker assisted selection. Thirdly, repetitive DNA sequences arising in polyploid crop genomes also impact sequence assembly, and are increasingly being shown to produce small RNAs to regulate gene expression and hence phenotypic traits. We propose that these three key features should be considered together when analyzing polyploid crop genomes. It is apparent that dissection of genomic structural variation, elucidation of the function and mechanism of interaction of homoeologous genes, and investigation of the de novo roles of repeat sequences in agronomic traits are necessary for genomics-based crop breeding in polyploids.
Collapse
Affiliation(s)
- Donghui Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Annaliese S Mason
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Meili Xiao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hui Yan
- Key Laboratory of Poyang Lake Basin Agricultural Resources and Ecology of Jiangxi Province, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
161
|
Nakabayashi K, Bartsch M, Ding J, Soppe WJJ. Seed Dormancy in Arabidopsis Requires Self-Binding Ability of DOG1 Protein and the Presence of Multiple Isoforms Generated by Alternative Splicing. PLoS Genet 2015; 11:e1005737. [PMID: 26684465 PMCID: PMC4686169 DOI: 10.1371/journal.pgen.1005737] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/23/2015] [Indexed: 11/18/2022] Open
Abstract
The Arabidopsis protein DELAY OF GERMINATION 1 (DOG1) is a key regulator of seed dormancy, which is a life history trait that determines the timing of seedling emergence. The amount of DOG1 protein in freshly harvested seeds determines their dormancy level. DOG1 has been identified as a major dormancy QTL and variation in DOG1 transcript levels between accessions contributes to natural variation for seed dormancy. The DOG1 gene is alternatively spliced. Alternative splicing increases the transcriptome and proteome diversity in higher eukaryotes by producing transcripts that encode for proteins with altered or lost function. It can also generate tissue specific transcripts or affect mRNA stability. Here we suggest a different role for alternative splicing of the DOG1 gene. DOG1 produces five transcript variants encoding three protein isoforms. Transgenic dog1 mutant seeds expressing single DOG1 transcript variants from the endogenous DOG1 promoter did not complement because they were non-dormant and lacked DOG1 protein. However, transgenic plants overexpressing single DOG1 variants from the 35S promoter could accumulate protein and showed complementation. Simultaneous expression of two or more DOG1 transcript variants from the endogenous DOG1 promoter also led to increased dormancy levels and accumulation of DOG1 protein. This suggests that single isoforms are functional, but require the presence of additional isoforms to prevent protein degradation. Subsequently, we found that the DOG1 protein can bind to itself and that this binding is required for DOG1 function but not for protein accumulation. Natural variation for DOG1 binding efficiency was observed among Arabidopsis accessions and contributes to variation in seed dormancy.
Collapse
Affiliation(s)
- Kazumi Nakabayashi
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Melanie Bartsch
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jia Ding
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Wim J. J. Soppe
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- * E-mail:
| |
Collapse
|
162
|
Syed NH, Prince SJ, Mutava RN, Patil G, Li S, Chen W, Babu V, Joshi T, Khan S, Nguyen HT. Core clock, SUB1, and ABAR genes mediate flooding and drought responses via alternative splicing in soybean. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:7129-49. [PMID: 26314767 DOI: 10.1093/jxb/erv407] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Circadian clocks are a great evolutionary innovation and provide competitive advantage during the day/night cycle and under changing environmental conditions. The circadian clock mediates expression of a large proportion of genes in plants, achieving a harmonious relationship between energy metabolism, photosynthesis, and biotic and abiotic stress responses. Here it is shown that multiple paralogues of clock genes are present in soybean (Glycine max) and mediate flooding and drought responses. Differential expression of many clock and SUB1 genes was found under flooding and drought conditions. Furthermore, natural variation in the amplitude and phase shifts in PRR7 and TOC1 genes was also discovered under drought and flooding conditions, respectively. PRR3 exhibited flooding- and drought-specific splicing patterns and may work in concert with PRR7 and TOC1 to achieve energy homeostasis under flooding and drought conditions. Higher expression of TOC1 also coincides with elevated levels of abscisic acid (ABA) and variation in glucose levels in the morning and afternoon, indicating that this response to abiotic stress is mediated by ABA, endogenous sugar levels, and the circadian clock to fine-tune photosynthesis and energy utilization under stress conditions. It is proposed that the presence of multiple clock gene paralogues with variation in DNA sequence, phase, and period could be used to screen exotic germplasm to find sources for drought and flooding tolerance. Furthermore, fine tuning of multiple clock gene paralogues (via a genetic engineering approach) should also facilitate the development of flooding- and drought-tolerant soybean varieties.
Collapse
Affiliation(s)
- Naeem H Syed
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, UK
| | - Silvas J Prince
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Raymond N Mutava
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Gunvant Patil
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | - Wei Chen
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Valliyodan Babu
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Trupti Joshi
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, UK
| | - Saad Khan
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Henry T Nguyen
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
163
|
Panahi B, Mohammadi SA, Khaksefidi RE, Fallah Mehrabadi J, Ebrahimie E. Genome-wide analysis of alternative splicing events inHordeum vulgare: Highlighting retention of intron-based splicing and its possible function through network analysis. FEBS Lett 2015; 589:3564-75. [DOI: 10.1016/j.febslet.2015.09.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/15/2015] [Accepted: 09/23/2015] [Indexed: 11/29/2022]
|
164
|
Capovilla G, Pajoro A, Immink RGH, Schmid M. Role of alternative pre-mRNA splicing in temperature signaling. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:97-103. [PMID: 26190743 DOI: 10.1016/j.pbi.2015.06.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/18/2015] [Accepted: 06/20/2015] [Indexed: 05/20/2023]
Abstract
Developmental plasticity enables plants to respond rapidly to changing environmental conditions, such as temperature fluctuations. Understanding how plants measure temperature and integrate this information into developmental programs at the molecular level will be essential to breed thermo-tolerant crop varieties. Recent studies identified alternative splicing (AS) as a possible 'molecular thermometer', allowing plants to quickly adjust the abundance of functional transcripts to environmental perturbations. In this review, recent advances regarding the effects of temperature-responsive AS on plant development will be discussed, with emphasis on the circadian clock and flowering time control. The challenge for the near future will be to understand the molecular mechanisms by which temperature can influence AS regulation.
Collapse
Affiliation(s)
- Giovanna Capovilla
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72074 Tübingen, Germany
| | - Alice Pajoro
- Plant Research International, Bioscience, 6708 PB Wageningen, The Netherlands; Laboratory of Molecular Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Richard G H Immink
- Plant Research International, Bioscience, 6708 PB Wageningen, The Netherlands; Laboratory of Molecular Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Markus Schmid
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72074 Tübingen, Germany; Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, S-901 87 Umea, Sweden.
| |
Collapse
|
165
|
Ling Z, Zhou W, Baldwin IT, Xu S. Insect herbivory elicits genome-wide alternative splicing responses in Nicotiana attenuata. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:228-43. [PMID: 26306554 DOI: 10.1111/tpj.12997] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/04/2015] [Accepted: 08/11/2015] [Indexed: 05/06/2023]
Abstract
Changes in gene expression and alternative splicing (AS) are involved in many responses to abiotic and biotic stresses in eukaryotic organisms. In response to attack and oviposition by insect herbivores, plants elicit rapid changes in gene expression which are essential for the activation of plant defenses; however, the herbivory-induced changes in AS remain unstudied. Using mRNA sequencing, we performed a genome-wide analysis on tobacco hornworm (Manduca sexta) feeding-induced AS in both leaves and roots of Nicotiana attenuata. Feeding by M. sexta for 5 h reduced total AS events by 7.3% in leaves but increased them in roots by 8.0% and significantly changed AS patterns in leaves and roots of existing AS genes. Feeding by M. sexta also resulted in increased (in roots) and decreased (in leaves) transcript levels of the serine/arginine-rich (SR) proteins that are involved in the AS machinery of plants and induced changes in SR gene expression that were jasmonic acid (JA)-independent in leaves but JA-dependent in roots. Changes in AS and gene expression elicited by M. sexta feeding were regulated independently in both tissues. This study provides genome-wide evidence that insect herbivory induces changes not only in the levels of gene expression but also in their splicing, which might contribute to defense against and/or tolerance of herbivory.
Collapse
Affiliation(s)
- Zhihao Ling
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Wenwu Zhou
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Shuqing Xu
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| |
Collapse
|
166
|
Potenza E, Racchi ML, Sterck L, Coller E, Asquini E, Tosatto SCE, Velasco R, Van de Peer Y, Cestaro A. Exploration of alternative splicing events in ten different grapevine cultivars. BMC Genomics 2015; 16:706. [PMID: 26380971 PMCID: PMC4574008 DOI: 10.1186/s12864-015-1922-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 09/11/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The complex dynamics of gene regulation in plants are still far from being fully understood. Among many factors involved, alternative splicing (AS) in particular is one of the least well documented. For many years, AS has been considered of less relevant in plants, especially when compared to animals, however, since the introduction of next generation sequencing techniques the number of plant genes believed to be alternatively spliced has increased exponentially. RESULTS Here, we performed a comprehensive high-throughput transcript sequencing of ten different grapevine cultivars, which resulted in the first high coverage atlas of the grape berry transcriptome. We also developed findAS, a software tool for the analysis of alternatively spliced junctions. We demonstrate that at least 44% of multi-exonic genes undergo AS and a large number of low abundance splice variants is present within the 131.622 splice junctions we have annotated from Pinot noir. CONCLUSIONS Our analysis shows that ~70% of AS events have relatively low expression levels, furthermore alternative splice sites seem to be enriched near the constitutive ones in some extent showing the noise of the splicing mechanisms. However, AS seems to be extensively conserved among the 10 cultivars.
Collapse
Affiliation(s)
- Emilio Potenza
- Fondazione Edmund Mach, Via E. Mach 1, 38010 S., Michele all'Adige, TN, Italy. .,Department of Agri-Food Production and Environmental Sciences, Università degli Studi di Firenze, Firenze, 50121, Italy. .,Department of Plant Systems Biology, VIB, Ghent, Belgium. .,Department of Biomedical Sciences, Università degli Studi di Padova, Padova, 35131, Italy.
| | - Milvia Luisa Racchi
- Department of Agri-Food Production and Environmental Sciences, Università degli Studi di Firenze, Firenze, 50121, Italy.
| | - Lieven Sterck
- Department of Plant Systems Biology, VIB, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
| | - Emanuela Coller
- Fondazione Edmund Mach, Via E. Mach 1, 38010 S., Michele all'Adige, TN, Italy.
| | - Elisa Asquini
- Fondazione Edmund Mach, Via E. Mach 1, 38010 S., Michele all'Adige, TN, Italy.
| | - Silvio C E Tosatto
- Department of Biomedical Sciences, Università degli Studi di Padova, Padova, 35131, Italy.
| | - Riccardo Velasco
- Fondazione Edmund Mach, Via E. Mach 1, 38010 S., Michele all'Adige, TN, Italy.
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium. .,Department of Genetics, Genomics Research Institute, University of Pretoria, Pretoria, South Africa.
| | - Alessandro Cestaro
- Fondazione Edmund Mach, Via E. Mach 1, 38010 S., Michele all'Adige, TN, Italy.
| |
Collapse
|
167
|
Abstract
Alternative pre-messenger RNA splicing in higher plants emerges as an important layer of regulation upon exposure to exogenous and endogenous cues. Accordingly, mutants defective in RNA-binding proteins predicted to function in the splicing process show severe phenotypic alterations. Among those are developmental defects, impaired responses to pathogen threat or abiotic stress factors, and misregulation of the circadian timing system. A suite of splicing factors has been identified in the model plant Arabidopsis thaliana. Here we summarize recent insights on how defects in these splicing factors impair plant performance.
Collapse
|
168
|
Vakilian H, Mirzaei M, Sharifi Tabar M, Pooyan P, Habibi Rezaee L, Parker L, Haynes PA, Gourabi H, Baharvand H, Salekdeh GH. DDX3Y, a Male-Specific Region of Y Chromosome Gene, May Modulate Neuronal Differentiation. J Proteome Res 2015; 14:3474-83. [PMID: 26144214 DOI: 10.1021/acs.jproteome.5b00512] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although it is apparent that chromosome complement mediates sexually dimorphic expression patterns of some proteins that lead to functional differences, there has been insufficient evidence following the manipulation of the male-specific region of the Y chromosome (MSY) gene expression during neural development. In this study, we profiled the expression of 23 MSY genes and 15 of their X-linked homologues during neural cell differentiation of NTERA-2 human embryonal carcinoma cell line (NT2) cells in three different developmental stages using qRT-PCR, Western blotting, and immunofluorescence. The expression level of 12 Y-linked genes significantly increased over neural differentiation, including RBMY1, EIF1AY, DDX3Y, HSFY1, BPY2, PCDH11Y, UTY, RPS4Y1, USP9Y, SRY, PRY, and ZFY. We showed that siRNA-mediated knockdown of DDX3Y, a DEAD box RNA helicase enzyme, in neural progenitor cells impaired cell cycle progression and increased apoptosis, consequently interrupting differentiation. Label-free quantitative shotgun proteomics based on a spectral counting approach was then used to characterize the proteomic profile of the cells after DDX3Y knockdown. Among 917 reproducibly identified proteins detected, 71 proteins were differentially expressed following DDX3Y siRNA treatment compared with mock treated cells. Functional grouping indicated that these proteins were involved in cell cycle, RNA splicing, and apoptosis, among other biological functions. Our results suggest that MSY genes may play an important role in neural differentiation and demonstrate that DDX3Y could play a multifunctional role in neural cell development, probably in a sexually dimorphic manner.
Collapse
Affiliation(s)
- Haghighat Vakilian
- Department of Stem Cells Biology & Technology, Royan Institute , Banihashem Sq., Banihashem St., Ressalat highway, Tehran, Iran
| | - Mehdi Mirzaei
- Department of Chemistry and Biomolecular Sciences, Macquarie University , Sydney, New South Wales 2109, Australia
| | - Mehdi Sharifi Tabar
- Department of Stem Cells Biology & Technology, Royan Institute , Banihashem Sq., Banihashem St., Ressalat highway, Tehran, Iran
| | - Paria Pooyan
- Department of Stem Cells Biology & Technology, Royan Institute , Banihashem Sq., Banihashem St., Ressalat highway, Tehran, Iran
| | - Lida Habibi Rezaee
- Department of Stem Cells Biology & Technology, Royan Institute , Banihashem Sq., Banihashem St., Ressalat highway, Tehran, Iran
| | - Lindsay Parker
- Department of Chemistry and Biomolecular Sciences, Macquarie University , Sydney, New South Wales 2109, Australia
| | - Paul A Haynes
- Department of Chemistry and Biomolecular Sciences, Macquarie University , Sydney, New South Wales 2109, Australia
| | - Hamid Gourabi
- Department of Genetics at Reproductive Biomedicine Research Center, Royan Institute , Banihashem Sq., Banihashem St., Ressalat highway, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells Biology & Technology, Royan Institute , Banihashem Sq., Banihashem St., Ressalat highway, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture , Sharif Esfahani Blvd, Park Street, Tehran, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Stem Cells Biology & Technology, Royan Institute , Banihashem Sq., Banihashem St., Ressalat highway, Tehran, Iran.,Seed and Plant Improvement Institute's Campus, Agricultural Biotechnology Research Institute of Iran , Mahdasht Road, Karaj, Iran
| |
Collapse
|
169
|
Bouton C, Geldreich A, Ramel L, Ryabova LA, Dimitrova M, Keller M. Cauliflower mosaic virus Transcriptome Reveals a Complex Alternative Splicing Pattern. PLoS One 2015; 10:e0132665. [PMID: 26162084 PMCID: PMC4498817 DOI: 10.1371/journal.pone.0132665] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/18/2015] [Indexed: 12/23/2022] Open
Abstract
The plant pararetrovirus Cauliflower mosaic virus (CaMV) uses alternative splicing to generate several isoforms from its polycistronic pregenomic 35S RNA. This pro-cess has been shown to be essential for infectivity. Previous works have identified four splice donor sites and a single splice acceptor site in the 35S RNA 5' region and suggested that the main role of CaMV splicing is to downregulate expression of open reading frames (ORFs) I and II. In this study, we show that alternative splicing is a conserved process among CaMV isolates. In Cabb B-JI and Cabb-S isolates, splicing frequently leads to different fusion between ORFs, particularly between ORF I and II. The corresponding P1P2 fusion proteins expressed in E. coli interact with viral proteins P2 and P3 in vitro. However, they are detected neither during infection nor upon transient expression in planta, which suggests rapid degradation after synthesis and no important biological role in the CaMV infectious cycle. To gain a better understanding of the functional relevance of 35S RNA alternative splicing in CaMV infectivity, we inactivated the previously described splice sites. All the splicing mutants were as pathogenic as the corresponding wild-type isolate. Through RT-PCR-based analysis we demonstrate that CaMV 35S RNA exhibits a complex splicing pattern, as we identify new splice donor and acceptor sites whose selection leads to more than thirteen 35S RNA isoforms in infected turnip plants. Inactivating splice donor or acceptor sites is not lethal for the virus, since disrupted sites are systematically rescued by the activation of cryptic and/or seldom used splice sites. Taken together, our data depict a conserved, complex and flexible process, involving multiple sites, that ensures splicing of 35S RNA.
Collapse
Affiliation(s)
- Clément Bouton
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - Angèle Geldreich
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - Laëtitia Ramel
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - Lyubov A. Ryabova
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - Maria Dimitrova
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
- * E-mail: (MD); (MK)
| | - Mario Keller
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
- * E-mail: (MD); (MK)
| |
Collapse
|
170
|
Shahzad K, Rauf M, Ahmed M, Malik ZA, Habib I, Ahmed Z, Mahmood K, Ali R, Masmoudi K, Lemtiri-Chlieh F, Gehring C, Berkowitz GA, Saeed NA. Functional characterisation of an intron retaining K(+) transporter of barley reveals intron-mediated alternate splicing. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:840-51. [PMID: 25631371 DOI: 10.1111/plb.12290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/19/2014] [Indexed: 06/04/2023]
Abstract
Intron retention in transcripts and the presence of 5' and 3' splice sites within these introns mediate alternate splicing, which is widely observed in animals and plants. Here, functional characterisation of the K(+) transporter, HvHKT2;1, with stably retained introns from barley (Hordeum vulgare) in yeast (Saccharomyces cerevisiae), and transcript profiling in yeast and transgenic tobacco (Nicotiana tabacum) is presented. Expression of intron-retaining HvHKT2;1 cDNA (HvHKT2;1-i) in trk1, trk2 yeast strain defective in K(+) uptake restored growth in medium containing hygromycin in the presence of different concentrations of K(+) and mediated hypersensitivity to Na(+) . HvHKT2;1-i produces multiple transcripts via alternate splicing of two regular introns and three exons in different compositions. HKT isoforms with retained introns and exon skipping variants were detected in relative expression analysis of (i) HvHKT2;1-i in barley under native conditions, (ii) in transgenic tobacco plants constitutively expressing HvHKT2;1-i, and (iii) in trk1, trk2 yeast expressing HvHKT2;1-i under control of an inducible promoter. Mixed proportions of three HKT transcripts: HvHKT2;1-e (first exon region), HvHKT2;1-i1 (first intron) and HvHKT2;1-i2 (second intron) were observed. The variation in transcript accumulation in response to changing K(+) and Na(+) concentrations was observed in both heterologous and plant systems. These findings suggest a link between intron-retaining transcripts and different splice variants to ion homeostasis, and their possible role in salt stress.
Collapse
Affiliation(s)
- K Shahzad
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - M Rauf
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - M Ahmed
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Z A Malik
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - I Habib
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Z Ahmed
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - K Mahmood
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - R Ali
- Agricultural Biotechnology Laboratory, Department of Plant Science, University of Connecticut, Storrs, CT, USA
| | - K Masmoudi
- International Centre for Biosaline Agriculture (ICBA), Dubai, UAE
| | - F Lemtiri-Chlieh
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - C Gehring
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - G A Berkowitz
- Agricultural Biotechnology Laboratory, Department of Plant Science, University of Connecticut, Storrs, CT, USA
| | - N A Saeed
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| |
Collapse
|
171
|
Feng J, Li J, Gao Z, Lu Y, Yu J, Zheng Q, Yan S, Zhang W, He H, Ma L, Zhu Z. SKIP Confers Osmotic Tolerance during Salt Stress by Controlling Alternative Gene Splicing in Arabidopsis. MOLECULAR PLANT 2015; 8:1038-52. [PMID: 25617718 DOI: 10.1016/j.molp.2015.01.011] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 05/18/2023]
Abstract
Deciphering the mechanisms underlying plant responses to abiotic stress is key for improving plant stress resistance. Much is known about the regulation of gene expression in response to salt stress at the transcriptional level; however, little is known about this process at the posttranscriptional level. Recently, we demonstrated that SKIP is a component of spliceosome that interacts with clock gene pre-mRNAs and is essential for regulating their alternative splicing and mRNA maturation. In this study, we found that skip-1 plants are hypersensitive to both salt and osmotic stresses, and that SKIP is required for the alternative splicing and mRNA maturation of several salt-tolerance genes, including NHX1, CBL1, P5CS1, RCI2A, and PAT10. A genome-wide analysis revealed that SKIP mediates the alternative splicing of many genes under salt-stress conditions, and that most of the alternative splicing events in skip-1 involve intron retention and can generate a premature termination codon in the transcribed mRNA. SKIP also controls alternative splicing by modulating the recognition or cleavage of 5' and 3' splice donor and acceptor sites under salt-stress conditions. Therefore, this study addresses the fundamental question of how the mRNA splicing machinery in plants contributes to salt-stress responses at the posttranscriptional level, and provides a link between alternative splicing and salt tolerance.
Collapse
Affiliation(s)
- Jinlin Feng
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050021, China; College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jingjing Li
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050021, China
| | - Zhaoxu Gao
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050021, China; College of Life Sciences, Peking University, Beijing 100871, China
| | - Yaru Lu
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050021, China
| | - Junya Yu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Qian Zheng
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050021, China
| | - Shuning Yan
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050021, China
| | - Wenjiao Zhang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050021, China
| | - Hang He
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Ligeng Ma
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Zhengge Zhu
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050021, China.
| |
Collapse
|
172
|
Chen H, Chen X, Chen D, Li J, Zhang Y, Wang A. A comparison of the low temperature transcriptomes of two tomato genotypes that differ in freezing tolerance: Solanum lycopersicum and Solanum habrochaites. BMC PLANT BIOLOGY 2015; 15:132. [PMID: 26048292 PMCID: PMC4458020 DOI: 10.1186/s12870-015-0521-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 05/11/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Solanum lycopersicum and Solanum habrochaites are closely related plant species; however, their cold tolerance capacities are different. The wild species S. habrochaites is more cold tolerant than the cultivated species S. lycopersicum. RESULTS The transcriptomes of S. lycopersicum and S. habrochaites leaf tissues under cold stress were studied using Illumina high-throughput RNA sequencing. The results showed that more than 200 million reads could be mapped to identify genes, microRNAs (miRNAs), and alternative splicing (AS) events to confirm the transcript abundance under cold stress. The results indicated that 21% and 23% of genes were differentially expressed in the cultivated and wild tomato species, respectively, and a series of changes in S. lycopersicum and S. habrochaites transcriptomes occur when plants are moved from warm to cold conditions. Moreover, the gene expression patterns for S. lycopersicum and S. habrochaites were dissimilar; however, there were some overlapping genes that were regulated by low temperature in both tomato species. An AS analysis identified 75,885 novel splice junctions among 172,910 total splice junctions, which suggested that the relative abundance of alternative intron isoforms in S. lycopersicum and S. habrochaites shifted significantly under cold stress. In addition, we identified 89 miRNA sequences that may regulate relevant target genes. Our data indicated that some miRNAs (e.g., miR159, miR319, and miR6022) play roles in the response to cold stress. CONCLUSIONS Differences in gene expression, AS events, and miRNAs under cold stress may contribute to the observed differences in cold tolerance of these two tomato species.
Collapse
Affiliation(s)
- Hongyu Chen
- Heilongjiang Provincial Key University Laboratory of Agricultural Functional Genes, College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Xiuling Chen
- College of Horticulture, Northeast Agricultural University, Harbin, 150030, China.
| | | | - Jingfu Li
- College of Horticulture, Northeast Agricultural University, Harbin, 150030, China.
| | - Yi Zhang
- ABLife, Inc, Wuhan, 430075, China.
| | - Aoxue Wang
- Heilongjiang Provincial Key University Laboratory of Agricultural Functional Genes, College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
- College of Horticulture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
173
|
Nota F, Cambiagno DA, Ribone P, Alvarez ME. Expression and function of AtMBD4L, the single gene encoding the nuclear DNA glycosylase MBD4L in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 235:122-9. [PMID: 25900572 DOI: 10.1016/j.plantsci.2015.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/13/2015] [Accepted: 03/15/2015] [Indexed: 05/21/2023]
Abstract
DNA glycosylases recognize and excise damaged or incorrect bases from DNA initiating the base excision repair (BER) pathway. Methyl-binding domain protein 4 (MBD4) is a member of the HhH-GPD DNA glycosylase superfamily, which has been well studied in mammals but not in plants. Our knowledge on the plant enzyme is limited to the activity of the Arabidopsis recombinant protein MBD4L in vitro. To start evaluating MBD4L in its biological context, we here characterized the structure, expression and effects of its gene, AtMBD4L. Phylogenetic analysis indicated that AtMBD4L belongs to one of the seven families of HhH-GPD DNA glycosylase genes existing in plants, and is unique on its family. Two AtMBD4L transcripts coding for active enzymes were detected in leaves and flowers. Transgenic plants expressing the AtMBD4L:GUS gene confined GUS activity to perivascular leaf tissues (usually adjacent to hydathodes), flowers (anthers at particular stages of development), and the apex of immature siliques. MBD4L-GFP fusion proteins showed nuclear localization in planta. Interestingly, overexpression of the full length MBD4L, but not a truncated enzyme lacking the DNA glycosylase domain, induced the BER gene LIG1 and enhanced tolerance to oxidative stress. These results suggest that endogenous MBD4L acts on particular tissues, is capable of activating BER, and may contribute to repair DNA damage caused by oxidative stress.
Collapse
Affiliation(s)
- Florencia Nota
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, CONICET-UNC), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Damián A Cambiagno
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, CONICET-UNC), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Pamela Ribone
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, CONICET-UNC), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - María E Alvarez
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, CONICET-UNC), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Córdoba, Argentina.
| |
Collapse
|
174
|
Li Z, Long Y, Zhong L, Song G, Zhang X, Yuan L, Cui Z, Dai H. RNA sequencing provides insights into the toxicogenomic response of ZF4 cells to methyl methanesulfonate. J Appl Toxicol 2015; 36:94-104. [DOI: 10.1002/jat.3147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/10/2015] [Accepted: 02/10/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Zhouquan Li
- State Key Laboratory of Fresh water Ecology and Biotechnology; Institute of Hydrobiology, Chinese Academy of Sciences; 7 Southern East Lake Road Wuhan 430072 People's Republic of China
- University of Chinese Academy of Sciences; Yuquan Road 19A Beijing 100039 People's Republic of China
| | - Yong Long
- State Key Laboratory of Fresh water Ecology and Biotechnology; Institute of Hydrobiology, Chinese Academy of Sciences; 7 Southern East Lake Road Wuhan 430072 People's Republic of China
| | - Liqiao Zhong
- State Key Laboratory of Fresh water Ecology and Biotechnology; Institute of Hydrobiology, Chinese Academy of Sciences; 7 Southern East Lake Road Wuhan 430072 People's Republic of China
- University of Chinese Academy of Sciences; Yuquan Road 19A Beijing 100039 People's Republic of China
| | - Guili Song
- State Key Laboratory of Fresh water Ecology and Biotechnology; Institute of Hydrobiology, Chinese Academy of Sciences; 7 Southern East Lake Road Wuhan 430072 People's Republic of China
| | - Xiaohua Zhang
- State Key Laboratory of Fresh water Ecology and Biotechnology; Institute of Hydrobiology, Chinese Academy of Sciences; 7 Southern East Lake Road Wuhan 430072 People's Republic of China
| | - Li Yuan
- State Key Laboratory of Fresh water Ecology and Biotechnology; Institute of Hydrobiology, Chinese Academy of Sciences; 7 Southern East Lake Road Wuhan 430072 People's Republic of China
| | - Zongbin Cui
- State Key Laboratory of Fresh water Ecology and Biotechnology; Institute of Hydrobiology, Chinese Academy of Sciences; 7 Southern East Lake Road Wuhan 430072 People's Republic of China
| | - Heping Dai
- State Key Laboratory of Fresh water Ecology and Biotechnology; Institute of Hydrobiology, Chinese Academy of Sciences; 7 Southern East Lake Road Wuhan 430072 People's Republic of China
| |
Collapse
|
175
|
Browning KS, Bailey-Serres J. Mechanism of cytoplasmic mRNA translation. THE ARABIDOPSIS BOOK 2015; 13:e0176. [PMID: 26019692 PMCID: PMC4441251 DOI: 10.1199/tab.0176] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Protein synthesis is a fundamental process in gene expression that depends upon the abundance and accessibility of the mRNA transcript as well as the activity of many protein and RNA-protein complexes. Here we focus on the intricate mechanics of mRNA translation in the cytoplasm of higher plants. This chapter includes an inventory of the plant translational apparatus and a detailed review of the translational processes of initiation, elongation, and termination. The majority of mechanistic studies of cytoplasmic translation have been carried out in yeast and mammalian systems. The factors and mechanisms of translation are for the most part conserved across eukaryotes; however, some distinctions are known to exist in plants. A comprehensive understanding of the complex translational apparatus and its regulation in plants is warranted, as the modulation of protein production is critical to development, environmental plasticity and biomass yield in diverse ecosystems and agricultural settings.
Collapse
Affiliation(s)
- Karen S. Browning
- Department of Molecular Biosciences and Institute for Cell and Molecular Biology, University of Texas at Austin, Austin TX 78712-0165
- Both authors contributed equally to this work
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences and Center for Plant Cell Biology, University of California, Riverside, CA, 92521 USA
- Both authors contributed equally to this work
| |
Collapse
|
176
|
Sestili F, Palombieri S, Botticella E, Mantovani P, Bovina R, Lafiandra D. TILLING mutants of durum wheat result in a high amylose phenotype and provide information on alternative splicing mechanisms. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 233:127-133. [PMID: 25711820 DOI: 10.1016/j.plantsci.2015.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/15/2015] [Accepted: 01/18/2015] [Indexed: 05/20/2023]
Abstract
The amylose/amylopectin ratio has a major influence over the properties of starch and determines its optimal end use. Here, high amylose durum wheat has been bred by combining knock down alleles at the two homoelogous genes encoding starch branching enzyme IIa (SBEIIa-A and SBEIIa-B). The complete silencing of these genes had a number of pleiotropic effects on starch synthesis: it affected the transcriptional activity of SBEIIb, ISA1 (starch debranching enzyme) and all of the genes encoding starch synthases (SSI, SSIIa, SSIII and GBSSI). The starch produced by grain of the double SBEIIa mutants was high in amylose (up to ∼1.95 fold that of the wild type) and contained up to about eight fold more resistant starch. A single nucleotide polymorphism adjacent to the splice site at the end of exon 10 of the G364E mutant copies of both SBEIIa-A and SBEIIa-B resulted in the loss of a conserved exonic splicing silencer element. Its starch was similar to that of the SBEIIa double mutant. G364E SBEIIa pre-mRNA was incorrectly processed, resulting in the formation of alternative, but non-functional splicing products.
Collapse
Affiliation(s)
- Francesco Sestili
- Department of Agriculture, Forestry, Nature & Energy, University of Tuscia, Via S Camillo de Lellis SNC, 01100 Viterbo, Italy.
| | - Samuela Palombieri
- Department of Agriculture, Forestry, Nature & Energy, University of Tuscia, Via S Camillo de Lellis SNC, 01100 Viterbo, Italy.
| | - Ermelinda Botticella
- Department of Agriculture, Forestry, Nature & Energy, University of Tuscia, Via S Camillo de Lellis SNC, 01100 Viterbo, Italy.
| | - Paola Mantovani
- Società Produttori Sementi Spa, Via Macero 1, 40050 Argelato, Bologna, Italy.
| | - Riccardo Bovina
- Società Produttori Sementi Spa, Via Macero 1, 40050 Argelato, Bologna, Italy; Department of Agricultural Science (DipSA), University of Bologna, Viale Fanin 44, 40127 Bologna, Italy.
| | - Domenico Lafiandra
- Department of Agriculture, Forestry, Nature & Energy, University of Tuscia, Via S Camillo de Lellis SNC, 01100 Viterbo, Italy.
| |
Collapse
|
177
|
Chamala S, Feng G, Chavarro C, Barbazuk WB. Genome-wide identification of evolutionarily conserved alternative splicing events in flowering plants. Front Bioeng Biotechnol 2015; 3:33. [PMID: 25859541 PMCID: PMC4374538 DOI: 10.3389/fbioe.2015.00033] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/02/2015] [Indexed: 11/13/2022] Open
Abstract
Alternative splicing (AS) plays important roles in many plant functions, but its conservation across the plant kingdom is not known. We describe a methodology to identify AS events and identify conserved AS events across large phylogenetic distances using RNA-Seq datasets. We applied this methodology to transcriptome data from nine angiosperms including Amborella, the single sister species to all other extant flowering plants. AS events within 40–70% of the expressed multi-exonic genes per species were found, 27,120 of which are conserved among two or more of the taxa studied. While many events are species specific, many others are shared across long evolutionary distances suggesting they have functional significance. Conservation of AS event data provides an estimate of the number of ancestral AS events present at each node of the tree representing the nine species studied. Furthermore, the presence or absence of AS isoforms between species with different whole genome duplication (WGD) histories provides the opportunity to examine the impact of WDG on AS potential. Examining AS in gene families identifies those with high rates of AS, and conservation can distinguish ancient events vs. recent or species specific adaptations. The MADS-box and SR protein families are found to represent families with low and high occurrences of AS, respectively, yet their AS events were likely present in the MRCA of angiosperms.
Collapse
Affiliation(s)
- Srikar Chamala
- Department of Biology, University of Florida , Gainesville, FL , USA
| | - Guanqiao Feng
- Graduate Program in Plant Molecular and Cellular Biology, University of Florida , Gainesville, FL , USA
| | - Carolina Chavarro
- Center for Applied Genetic Technologies, University of Georgia , Athens, GA , USA
| | - W Brad Barbazuk
- Department of Biology, University of Florida , Gainesville, FL , USA ; Genetics Institute, University of Florida , Gainesville, FL , USA
| |
Collapse
|
178
|
Burkhardt A, Buchanan A, Cumbie JS, Savory EA, Chang JH, Day B. Alternative Splicing in the Obligate Biotrophic Oomycete Pathogen Pseudoperonospora cubensis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:298-309. [PMID: 25372122 DOI: 10.1094/mpmi-09-14-0300-fi] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pseudoperonospora cubensis is an obligate pathogen and causative agent of cucurbit downy mildew. To help advance our understanding of the pathogenicity of P. cubensis, we used RNA-Seq to improve the quality of its reference genome sequence. We also characterized the RNA-Seq dataset to inventory transcript isoforms and infer alternative splicing during different stages of its development. Almost half of the original gene annotations were improved and nearly 4,000 previously unannotated genes were identified. We also demonstrated that approximately 24% of the expressed genome and nearly 55% of the intron-containing genes from P. cubensis had evidence for alternative splicing. Our analyses revealed that intron retention is the predominant alternative splicing type in P. cubensis, with alternative 5'- and alternative 3'-splice sites occurring at lower frequencies. Representatives of the newly identified genes and predicted alternatively spliced transcripts were experimentally validated. The results presented herein highlight the utility of RNA-Seq for improving draft genome annotations and, through this approach, we demonstrate that alternative splicing occurs more frequently than previously predicted. In total, the current study provides evidence that alternative splicing plays a key role in transcriptome regulation and proteome diversification in plant-pathogenic oomycetes.
Collapse
|
179
|
Guerra D, Crosatti C, Khoshro HH, Mastrangelo AM, Mica E, Mazzucotelli E. Post-transcriptional and post-translational regulations of drought and heat response in plants: a spider's web of mechanisms. FRONTIERS IN PLANT SCIENCE 2015; 6:57. [PMID: 25717333 PMCID: PMC4324062 DOI: 10.3389/fpls.2015.00057] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/22/2015] [Indexed: 05/14/2023]
Abstract
Drought and heat tolerance are complex quantitative traits. Moreover, the adaptive significance of some stress-related traits is more related to plant survival than to agronomic performance. A web of regulatory mechanisms fine-tunes the expression of stress-related traits and integrates both environmental and developmental signals. Both post-transcriptional and post-translational modifications contribute substantially to this network with a pivotal regulatory function of the transcriptional changes related to cellular and plant stress response. Alternative splicing and RNA-mediated silencing control the amount of specific transcripts, while ubiquitin and SUMO modify activity, sub-cellular localization and half-life of proteins. Interactions across these modification mechanisms ensure temporally and spatially appropriate patterns of downstream-gene expression. For key molecular components of these regulatory mechanisms, natural genetic diversity exists among genotypes with different behavior in terms of stress tolerance, with effects upon the expression of adaptive morphological and/or physiological target traits.
Collapse
Affiliation(s)
- Davide Guerra
- Genomics Research Centre, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Fiorenzuola d’Arda, Piacenza, Italy
| | - Cristina Crosatti
- Genomics Research Centre, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Fiorenzuola d’Arda, Piacenza, Italy
| | - Hamid H. Khoshro
- Department of Agronomy and Plant Breeding, Ilam University, Ilam, Iran
| | - Anna M. Mastrangelo
- Cereal Research Centre, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Foggia, Italy
| | - Erica Mica
- Genomics Research Centre, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Fiorenzuola d’Arda, Piacenza, Italy
| | - Elisabetta Mazzucotelli
- Genomics Research Centre, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Fiorenzuola d’Arda, Piacenza, Italy
| |
Collapse
|
180
|
Chuang TJ, Yang MY, Lin CC, Hsieh PH, Hung LY. Comparative genomics of grass EST libraries reveals previously uncharacterized splicing events in crop plants. BMC PLANT BIOLOGY 2015; 15:39. [PMID: 25652661 PMCID: PMC4323234 DOI: 10.1186/s12870-015-0431-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/20/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Crop plants such as rice, maize and sorghum play economically-important roles as main sources of food, fuel, and animal feed. However, current genome annotations of crop plants still suffer false-positive predictions; a more comprehensive registry of alternative splicing (AS) events is also in demand. Comparative genomics of crop plants is largely unexplored. RESULTS We performed a large-scale comparative analysis (ExonFinder) of the expressed sequence tag (EST) library from nine grass plants against three crop genomes (rice, maize, and sorghum) and identified 2,879 previously-unannotated exons (i.e., novel exons) in the three crops. We validated 81% of the tested exons by RT-PCR-sequencing, supporting the effectiveness of our in silico strategy. Evolutionary analysis reveals that the novel exons, comparing with their flanking annotated ones, are generally under weaker selection pressure at the protein level, but under stronger pressure at the RNA level, suggesting that most of the novel exons also represent novel alternatively spliced variants (ASVs). However, we also observed the consistency of evolutionary rates between certain novel exons and their flanking exons, which provided further evidence of their co-occurrence in the transcripts, suggesting that previously-annotated isoforms might be subject to erroneous predictions. Our validation showed that 54% of the tested genes expressed the newly-identified isoforms that contained the novel exons, rather than the previously-annotated isoforms that excluded them. The consistent results were steadily observed across cultivated (Oryza sativa and O. glaberrima) and wild (O. rufipogon and O. nivara) rice species, asserting the necessity of our curation of the crop genome annotations. Our comparative analyses also inferred the common ancestral transcriptome of grass plants and gain- and loss-of-ASV events. CONCLUSIONS We have reannotated the rice, maize, and sorghum genomes, and showed that evolutionary rates might serve as an indicator for determining whether the identified exons were alternatively spliced. This study not only presents an effective in silico strategy for the improvement of plant annotations, but also provides further insights into the role of AS events in the evolution and domestication of crop plants. ExonFinder and the novel exons/ASVs identified are publicly accessible at http://exonfinder.sourceforge.net/ .
Collapse
Affiliation(s)
| | - Min-Yu Yang
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| | - Chuang-Chieh Lin
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| | - Ping-Hung Hsieh
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| | - Li-Yuan Hung
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
181
|
Wang HLV, Dinwiddie BL, Lee H, Chekanova JA. Stress-induced endogenous siRNAs targeting regulatory intron sequences in Brachypodium. RNA (NEW YORK, N.Y.) 2015; 21:145-63. [PMID: 25480817 PMCID: PMC4338343 DOI: 10.1261/rna.047662.114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Exposure to abiotic stresses triggers global changes in the expression of thousands of eukaryotic genes at the transcriptional and post-transcriptional levels. Small RNA (smRNA) pathways and splicing both function as crucial mechanisms regulating stress-responsive gene expression. However, examples of smRNAs regulating gene expression remain largely limited to effects on mRNA stability, translation, and epigenetic regulation. Also, our understanding of the networks controlling plant gene expression in response to environmental changes, and examples of these regulatory pathways intersecting, remains limited. Here, to investigate the role of smRNAs in stress responses we examined smRNA transcriptomes of Brachypodium distachyon plants subjected to various abiotic stresses. We found that exposure to different abiotic stresses specifically induced a group of novel, endogenous small interfering RNAs (stress-induced, UTR-derived siRNAs, or sutr-siRNAs) that originate from the 3' UTRs of a subset of coding genes. Our bioinformatics analyses predicted that sutr-siRNAs have potential regulatory functions and that over 90% of sutr-siRNAs target intronic regions of many mRNAs in trans. Importantly, a subgroup of these sutr-siRNAs target the important intron regulatory regions, such as branch point sequences, that could affect splicing. Our study indicates that in Brachypodium, sutr-siRNAs may affect splicing by masking or changing accessibility of specific cis-elements through base-pairing interactions to mediate gene expression in response to stresses. We hypothesize that this mode of regulation of gene expression may also serve as a general mechanism for regulation of gene expression in plants and potentially in other eukaryotes.
Collapse
Affiliation(s)
- Hsiao-Lin V Wang
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA
| | - Brandon L Dinwiddie
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA
| | - Herman Lee
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA
| | - Julia A Chekanova
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA
| |
Collapse
|
182
|
Mandadi KK, Scholthof KBG. Genomic architecture and functional relationships of intronless, constitutively- and alternatively-spliced genes in Brachypodium distachyon. PLANT SIGNALING & BEHAVIOR 2015; 10:e1042640. [PMID: 26156297 PMCID: PMC4622930 DOI: 10.1080/15592324.2015.1042640] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 04/06/2015] [Accepted: 04/12/2015] [Indexed: 06/04/2023]
Abstract
Splicing and alternative splicing (AS) are widespread co- and post-transcriptional regulatory processes in plants. Recently, we characterized genome-wide AS landscapes and virus-induced AS patterns in Brachypodium distachyon (Brachypodium), a C3 model grass. Brachypodium plants infected with Panicum mosaic virus (PMV) alone or in mixed infections with its satellite virus (SPMV) were used for high-throughput, paired-end RNA sequencing. Here, using gene attributes of ∼5,655 intronless genes, ∼13,302 constitutively spliced, and ∼7,564 alternatively spliced genes, we analyzed the influence of genomic features on splicing incidence and AS frequency. In Brachypodium, gene length, coding sequence length, and exon and intron number were positively correlated to splicing incidence and AS frequency. In contrast, exon length and the percentage composition of GC (%GC) content were inversely correlated with splicing incidence and AS frequency. Although gene expression status had little correlation with splicing occurrence per se, it negatively correlated to AS frequency: i.e., genes with ≥5 alternatively spliced transcripts were significantly less expressed compared to genes encoding <5 alternative transcripts. Further gene set enrichment analysis uncovered unique functional relationships among nonspliced, constitutively spliced and alternatively spliced genes.
Collapse
Affiliation(s)
- Kranthi K Mandadi
- Department of Plant Pathology and Microbiology; Texas A&M University; College Station, TX USA
- Texas A&M AgriLife Research & Extension Center; Weslaco, TX USA
| | - Karen-Beth G Scholthof
- Department of Plant Pathology and Microbiology; Texas A&M University; College Station, TX USA
| |
Collapse
|
183
|
Kianianmomeni A, Ong CS, Rätsch G, Hallmann A. Genome-wide analysis of alternative splicing in Volvox carteri. BMC Genomics 2014; 15:1117. [PMID: 25516378 PMCID: PMC4378016 DOI: 10.1186/1471-2164-15-1117] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 12/11/2014] [Indexed: 11/15/2022] Open
Abstract
Background Alternative splicing is an essential mechanism for increasing transcriptome and proteome diversity in eukaryotes. Particularly in multicellular eukaryotes, this mechanism is involved in the regulation of developmental and physiological processes like growth, differentiation and signal transduction. Results Here we report the genome-wide analysis of alternative splicing in the multicellular green alga Volvox carteri. The bioinformatic analysis of 132,038 expressed sequence tags (ESTs) identified 580 alternative splicing events in a total of 426 genes. The predominant type of alternative splicing in Volvox is intron retention (46.5%) followed by alternative 5′ (17.9%) and 3′ (21.9%) splice sites and exon skipping (9.5%). Our analysis shows that in Volvox at least ~2.9% of the intron-containing genes are subject to alternative splicing. Considering the total number of sequenced ESTs, the Volvox genome seems to provide more favorable conditions (e.g., regarding length and GC content of introns) for the occurrence of alternative splicing than the genome of its close unicellular relative Chlamydomonas. Moreover, many randomly chosen alternatively spliced genes of Volvox do not show alternative splicing in Chlamydomonas. Since the Volvox genome contains about the same number of protein-coding genes as the Chlamydomonas genome (~14,500 protein-coding genes), we assumed that alternative splicing may play a key role in generation of genomic diversity, which is required to evolve from a simple one-cell ancestor to a multicellular organism with differentiated cell types (Mol Biol Evol 31:1402-1413, 2014). To confirm the alternative splicing events identified by bioinformatic analysis, several genes with different types of alternatively splicing have been selected followed by experimental verification of the predicted splice variants by RT-PCR. Conclusions The results show that our approach for prediction of alternative splicing events in Volvox was accurate and reliable. Moreover, quantitative real-time RT-PCR appears to be useful in Volvox for analyses of relationships between the appearance of specific alternative splicing variants and different kinds of physiological, metabolic and developmental processes as well as responses to environmental changes. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1117) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Arash Kianianmomeni
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Universitätsstr, 25, D-33615 Bielefeld, Germany.
| | | | | | | |
Collapse
|
184
|
Liu R, Loraine AE, Dickerson JA. Comparisons of computational methods for differential alternative splicing detection using RNA-seq in plant systems. BMC Bioinformatics 2014; 15:364. [PMID: 25511303 PMCID: PMC4271460 DOI: 10.1186/s12859-014-0364-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 10/29/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Alternative Splicing (AS) as a post-transcription regulation mechanism is an important application of RNA-seq studies in eukaryotes. A number of software and computational methods have been developed for detecting AS. Most of the methods, however, are designed and tested on animal data, such as human and mouse. Plants genes differ from those of animals in many ways, e.g., the average intron size and preferred AS types. These differences may require different computational approaches and raise questions about their effectiveness on plant data. The goal of this paper is to benchmark existing computational differential splicing (or transcription) detection methods so that biologists can choose the most suitable tools to accomplish their goals. RESULTS This study compares the eight popular public available software packages for differential splicing analysis using both simulated and real Arabidopsis thaliana RNA-seq data. All software are freely available. The study examines the effect of varying AS ratio, read depth, dispersion pattern, AS types, sample sizes and the influence of annotation. Using a real data, the study looks at the consistences between the packages and verifies a subset of the detected AS events using PCR studies. CONCLUSIONS No single method performs the best in all situations. The accuracy of annotation has a major impact on which method should be chosen for AS analysis. DEXSeq performs well in the simulated data when the AS signal is relative strong and annotation is accurate. Cufflinks achieve a better tradeoff between precision and recall and turns out to be the best one when incomplete annotation is provided. Some methods perform inconsistently for different AS types. Complex AS events that combine several simple AS events impose problems for most methods, especially for MATS. MATS stands out in the analysis of real RNA-seq data when all the AS events being evaluated are simple AS events.
Collapse
Affiliation(s)
- Ruolin Liu
- Department of Electrical and Computational Engineering, Iowa State University, Howe Hall, Ames, 50011-3060, USA.
| | - Ann E Loraine
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, North Carolina Research Campus, 600 Laureate Way, Kannapolis, 28081, NC, USA.
| | - Julie A Dickerson
- Department of Electrical and Computational Engineering, Iowa State University, Howe Hall, Ames, 50011-3060, USA.
| |
Collapse
|
185
|
Irar S, González EM, Arrese-Igor C, Marino D. A proteomic approach reveals new actors of nodule response to drought in split-root grown pea plants. PHYSIOLOGIA PLANTARUM 2014; 152:634-45. [PMID: 24754352 DOI: 10.1111/ppl.12214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/12/2014] [Accepted: 03/19/2014] [Indexed: 05/21/2023]
Abstract
Drought is considered the more harmful abiotic stress resulting in crops yield loss. Legumes in symbiosis with rhizobia are able to fix atmospheric nitrogen. Biological nitrogen fixation (SNF) is a very sensitive process to drought and limits legumes agricultural productivity. Several factors are known to regulate SNF including oxygen availability to bacteroids, carbon and nitrogen metabolisms; but the signaling pathways leading to SNF inhibition are largely unknown. In this work, we have performed a proteomic approach of pea plants grown in split-root system where one half of the root was well-irrigated and the other was subjected to drought. Water stress locally provoked nodule water potential decrease that led to SNF local inhibition. The proteomic approach revealed 11 and 7 nodule proteins regulated by drought encoded by Pisum sativum and Rhizobium leguminosarum genomes respectively. Among these 18 proteins, 3 proteins related to flavonoid metabolism, 2 to sulfur metabolism and 3 RNA-binding proteins were identified. These proteins could be molecular targets for future studies focused on the improvement of legumes tolerance to drought. Moreover, this work also provides new hints for the deciphering of SNF regulation machinery in nodules.
Collapse
Affiliation(s)
- Sami Irar
- Servicio de Proteómica y Metabolómica, CRAG - Centre de Recerca en Agrigenòmica - CSIC IRTA UAB UB, Campus UAB, Edifici CRAG, Bellaterra (Cerdenyola del Valles), 08193, Barcelona, Spain
| | | | | | | |
Collapse
|
186
|
Xu W, Li R, Zhang N, Ma F, Jiao Y, Wang Z. Transcriptome profiling of Vitis amurensis, an extremely cold-tolerant Chinese wild Vitis species, reveals candidate genes and events that potentially connected to cold stress. PLANT MOLECULAR BIOLOGY 2014; 86:527-41. [PMID: 25190283 DOI: 10.1007/s11103-014-0245-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 08/20/2014] [Indexed: 05/20/2023]
Abstract
Vitis amurensis Rupr. is an exceptional wild-growing Vitis (grape) species that can safely survive a wide range of cold conditions, but the underlying cold-adaptive mechanism associated with gene regulation is poorly investigated. We have analyzed the physiochemical and transcriptomic changes caused by cold stress in a cold-tolerant accession, 'Heilongjiang seedling', of Chinese wild V. amurensis. We statistically determined that a total of 6,850 cold-regulated transcripts were involved in cold regulation, including 3,676 up-regulated and 3,174 down-regulated transcripts. A global survey of messenger RNA revealed that skipped exon is the most prevalent form of alternative spicing event. Importantly, we found that the total splicing events increased with the prolonged cold stress. We also identified thirty-eight major TF families that were involved in cold regulation, some of which were previously unknown. Moreover, a large number of candidate pathways for the metabolism or biosynthesis of secondary metabolites were found to be regulated by cold, which is of potential importance in coordinating cold tolerance with growth and development. Several heat shock proteins and heat shock factors were also detected to be intensively cold-regulated. Furthermore, we validated the expression profiles of 16 candidates using qRT-PCR to further confirm the accuracy of the RNA-seq data. Our results provide a genome-wide view of the dynamic changes in the transcriptome of V. amurensis, in which it is evident that various structural and regulatory genes are crucial for cold tolerance/adaptation. Moreover, our robust dataset advances our knowledge of the genes involved in the complex regulatory networks of cold stress and leads to a better understanding of cold tolerance mechanisms in this extremely cold-tolerant Vitis species.
Collapse
Affiliation(s)
- Weirong Xu
- School of Agronomy, Ningxia University, Yinchuan, 750021, Ningxia, People's Republic of China
| | | | | | | | | | | |
Collapse
|
187
|
Guo G, Dondup D, Yuan X, Gu F, Wang D, Jia F, Lin Z, Baum M, Zhang J. Rare allele of HvLox-1 associated with lipoxygenase activity in barley (Hordeum vulgare L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:2095-103. [PMID: 25212109 PMCID: PMC4180031 DOI: 10.1007/s00122-014-2362-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 07/13/2014] [Indexed: 05/28/2023]
Abstract
KEY MESSAGE Identification and allele-specific marker development of a functional SNP of HvLox - 1 which associated with barley lipoxygenase activity. Improving the stability of the flavor of beer is one of the main objectives in breeding barley for malting, and lipoxygenase-1 (LOX-1) is a key enzyme controlling this trait. In this study, a modified LOX activity assay was used for null LOX-1 mutant screening. Four barley landraces with no detected level of LOX-1 activity were screened from 1,083 barley germplasm accessions from China. The genomic sequence diversity of the HvLox-1 gene of the four null LOX-1 Chinese landraces was compared with that of a further 76 accessions. A total of 104 nucleotide polymorphisms were found, which contained 83 single-nucleotide polymorphisms (SNPs), 7 multiple-nucleotide polymorphisms, and 14 insertions and deletions. Most notably, we found a rare C/G mutation (SNP-61) in the second intron which led to null LOX-1 activity through an altered splicing acceptor site. In addition, an allele-specific polymerase chain reaction marker was developed for the genotyping of SNP-61, which could be used in breeding programs for barley to be used for malting. The objective was to improve beer quality.
Collapse
Affiliation(s)
- Ganggang Guo
- Key Laboratory of Crop Germplasm Resources and Utilization (Ministry of Agriculture), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Dawa Dondup
- Key Laboratory of Crop Germplasm Resources and Utilization (Ministry of Agriculture), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850032 China
| | - Xingmiao Yuan
- Key Laboratory of Crop Germplasm Resources and Utilization (Ministry of Agriculture), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Fanghong Gu
- China National Research Institute of Food and Fermentation Industries, Beijing, 100027 China
| | - Deliang Wang
- China National Research Institute of Food and Fermentation Industries, Beijing, 100027 China
| | - Fengchao Jia
- Technical Research Center of Beijing Yanjing Brewery Group Co. Ltd, Beijing, 101300 China
| | - Zhiping Lin
- Technical Research Center of Beijing Yanjing Brewery Group Co. Ltd, Beijing, 101300 China
| | - Michael Baum
- International Center for Agricultural Research in the Dry Areas, Amman, 11195 Jordan
| | - Jing Zhang
- Key Laboratory of Crop Germplasm Resources and Utilization (Ministry of Agriculture), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
188
|
Abscisic acid (ABA) regulation of Arabidopsis SR protein gene expression. Int J Mol Sci 2014; 15:17541-64. [PMID: 25268622 PMCID: PMC4227177 DOI: 10.3390/ijms151017541] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 09/13/2014] [Accepted: 09/23/2014] [Indexed: 11/21/2022] Open
Abstract
Serine/arginine-rich (SR) proteins are major modulators of alternative splicing, a key generator of proteomic diversity and flexible means of regulating gene expression likely to be crucial in plant environmental responses. Indeed, mounting evidence implicates splicing factors in signal transduction of the abscisic acid (ABA) phytohormone, which plays pivotal roles in the response to various abiotic stresses. Using real-time RT-qPCR, we analyzed total steady-state transcript levels of the 18 SR and two SR-like genes from Arabidopsis thaliana in seedlings treated with ABA and in genetic backgrounds with altered expression of the ABA-biosynthesis ABA2 and the ABA-signaling ABI1 and ABI4 genes. We also searched for ABA-responsive cis elements in the upstream regions of the 20 genes. We found that members of the plant-specific SC35-Like (SCL) Arabidopsis SR protein subfamily are distinctively responsive to exogenous ABA, while the expression of seven SR and SR-related genes is affected by alterations in key components of the ABA pathway. Finally, despite pervasiveness of established ABA-responsive promoter elements in Arabidopsis SR and SR-like genes, their expression is likely governed by additional, yet unidentified cis-acting elements. Overall, this study pinpoints SR34, SR34b, SCL30a, SCL28, SCL33, RS40, SR45 and SR45a as promising candidates for involvement in ABA-mediated stress responses.
Collapse
|
189
|
Mining whole genomes and transcriptomes of Jatropha (Jatropha curcas) and Castor bean (Ricinus communis) for NBS-LRR genes and defense response associated transcription factors. Mol Biol Rep 2014; 41:7683-95. [DOI: 10.1007/s11033-014-3661-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/27/2014] [Indexed: 01/22/2023]
|
190
|
Panahi B, Abbaszadeh B, Taghizadeghan M, Ebrahimie E. Genome-wide survey of Alternative Splicing in Sorghum Bicolor. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2014; 20:323-329. [PMID: 25049459 PMCID: PMC4101146 DOI: 10.1007/s12298-014-0245-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/09/2014] [Indexed: 05/29/2023]
Abstract
Sorghum bicolor is a member of grass family which is an attractive model plant for genome study due to interesting genome features like low genome size. In this research, we performed comprehensive investigation of Alternative Splicing and ontology aspects of genes those have undergone these events in sorghum bicolor. We used homology based alignments between gene rich transcripts, represented by tentative consensus (TC) transcript sequences, and genomic scaffolds to deduce the structure of genes and identify alternatively spliced transcripts in sorghum. Using homology mapping of assembled expressed sequence tags with genomics data, we identified 2,137 Alternative Splicing events in S. bicolor. Our study showed that complex events and intron retention are the main types of Alternative Splicing events in S. bicolor and highlights the prevalence of splicing site recognition for definition of introns in this plant. Annotations of the alternatively spliced genes revealed that they represent diverse biological process and molecular functions, suggesting a fundamental role for Alternative Splicing in affecting the development and physiology of S. bicolor.
Collapse
Affiliation(s)
- Bahman Panahi
- />Department of Biotechnology and Plant Breeding, University of Tabriz, Tabriz, Iran
| | - Bahram Abbaszadeh
- />Meshgin shahr Branch, Islamic Azad University, Meshgin Shahr, Iran
| | - Mehdi Taghizadeghan
- />Department of Biotechnology and Plant Breeding, University of Tabriz, Tabriz, Iran
| | - Esmaeil Ebrahimie
- />School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
191
|
Simpson CG, Lewandowska D, Liney M, Davidson D, Chapman S, Fuller J, McNicol J, Shaw P, Brown JWS. Arabidopsis PTB1 and PTB2 proteins negatively regulate splicing of a mini-exon splicing reporter and affect alternative splicing of endogenous genes differentially. THE NEW PHYTOLOGIST 2014; 203:424-436. [PMID: 24749484 DOI: 10.1111/nph.12821] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/14/2013] [Indexed: 06/03/2023]
Abstract
This paper examines the function of Arabidopsis thaliana AtPTB1 and AtPTB2 as plant splicing factors. The effect on splicing of overexpression of AtPTB1 and AtPTB2 was analysed in an in vivo protoplast transient expression system with a novel mini-exon splicing reporter. A range of mutations in pyrimidine-rich sequences were compared with and without AtPTB and NpU2AF65 overexpression. Splicing analyses of constructs in protoplasts and RNA from overexpression lines used high-resolution reverse transcription polymerase chain reaction (RT-PCR). AtPTB1 and AtPTB2 reduced inclusion/splicing of the potato invertase mini-exon splicing reporter, indicating that these proteins can repress plant intron splicing. Mutation of the polypyrimidine tract and closely associated Cytosine and Uracil-rich (CU-rich) sequences, upstream of the mini-exon, altered repression by AtPTB1 and AtPTB2. Coexpression of a plant orthologue of U2AF65 alleviated the splicing repression of AtPTB1. Mutation of a second CU-rich upstream of the mini-exon 3' splice site led to a decline in mini-exon splicing, indicating the presence of a splicing enhancer sequence. Finally, RT-PCR of AtPTB overexpression lines with c. 90 known alternative splicing (AS) events showed that AtPTBs significantly altered AS of over half the events. AtPTB1 and AtPTB2 are splicing factors that influence alternative splicing. This occurs in the potato invertase mini-exon via the polypyrimidine tract and associated pyrimidine-rich sequence.
Collapse
Affiliation(s)
- Craig G Simpson
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Dominika Lewandowska
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Michele Liney
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Diane Davidson
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Sean Chapman
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - John Fuller
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Jim McNicol
- Biomathematics and Statistics Scotland, Invergowrie, Dundee, DD2 5DA, UK
| | - Paul Shaw
- Information and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - John W S Brown
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Division of Plant Sciences, University of Dundee at JHI, Invergowrie, Dundee, DD2 5DA, UK
| |
Collapse
|
192
|
Alternative splicing in plant immunity. Int J Mol Sci 2014; 15:10424-45. [PMID: 24918296 PMCID: PMC4100160 DOI: 10.3390/ijms150610424] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/12/2014] [Accepted: 05/14/2014] [Indexed: 12/01/2022] Open
Abstract
Alternative splicing (AS) occurs widely in plants and can provide the main source of transcriptome and proteome diversity in an organism. AS functions in a range of physiological processes, including plant disease resistance, but its biological roles and functional mechanisms remain poorly understood. Many plant disease resistance (R) genes undergo AS, and several R genes require alternatively spliced transcripts to produce R proteins that can specifically recognize pathogen invasion. In the finely-tuned process of R protein activation, the truncated isoforms generated by AS may participate in plant disease resistance either by suppressing the negative regulation of initiation of immunity, or by directly engaging in effector-triggered signaling. Although emerging research has shown the functional significance of AS in plant biotic stress responses, many aspects of this topic remain to be understood. Several interesting issues surrounding the AS of R genes, especially regarding its functional roles and regulation, will require innovative techniques and additional research to unravel.
Collapse
|
193
|
Kosiorek M, Podszywalow-Bartnicka P, Zylinska L, Pikula S. NFAT1 and NFAT3 cooperate with HDAC4 during regulation of alternative splicing of PMCA isoforms in PC12 cells. PLoS One 2014; 9:e99118. [PMID: 24905014 PMCID: PMC4048221 DOI: 10.1371/journal.pone.0099118] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/10/2014] [Indexed: 02/07/2023] Open
Abstract
Background The bulk of human genes undergo alternative splicing (AS) upon response to physiological stimuli. AS is a great source of protein diversity and biological processes and is associated with the development of many diseases. Pheochromocytoma is a neuroendocrine tumor, characterized by an excessive Ca2+-dependent secretion of catecholamines. This underlines the importance of balanced control of calcium transport via regulation of gene expression pattern, including different calcium transport systems, such as plasma membrane Ca2+-ATPases (PMCAs), abundantly expressed in pheochromocytoma chromaffin cells (PC12 cells). PMCAs are encoded by four genes (Atp2b1, Atp2b2, Atp2b3, Atp2b4), whose transcript products undergo alternative splicing giving almost 30 variants. Results In this scientific report, we propose a novel mechanism of regulation of PMCA alternative splicing in PC12 cells through cooperation of the nuclear factor of activated T-cells (NFAT) and histone deacetylases (HDACs). Luciferase assays showed increased activity of NFAT in PC12 cells, which was associated with altered expression of PMCA. RT-PCR experiments suggested that inhibition of the transcriptional activity of NFAT might result in the rearrangement of PMCA splicing variants in PC12 cells. NFAT inhibition led to dominant expression of 2x/c, 3x/a and 4x/a PMCA variants, while in untreated cells the 2w,z/b, 3z,x/b,c,e,f, and 4x/b variants were found as well. Furthermore, chromatin immunoprecipitation experiments showed that NFAT1-HDAC4 or NFAT3-HDAC4 complexes might be involved in regulation of PMCA2x splicing variant generation. Conclusions We suggest that the influence of NFAT/HDAC on PMCA isoform composition might be important for altered dopamine secretion by PC12 cells.
Collapse
Affiliation(s)
- Michalina Kosiorek
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre PAS, Warsaw, Poland
| | | | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Medical University, Lodz, Poland
| | - Slawomir Pikula
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
- * E-mail:
| |
Collapse
|
194
|
Genome-wide analysis of alternative splicing of pre-mRNA under salt stress in Arabidopsis. BMC Genomics 2014; 15:431. [PMID: 24897929 PMCID: PMC4079960 DOI: 10.1186/1471-2164-15-431] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 05/29/2014] [Indexed: 02/05/2023] Open
Abstract
Background Alternative splicing (AS) of precursor mRNA (pre-mRNA) is an important gene regulation process that potentially regulates many physiological processes in plants, including the response to abiotic stresses such as salt stress. Results To analyze global changes in AS under salt stress, we obtained high-coverage (~200 times) RNA sequencing data from Arabidopsis thaliana seedlings that were treated with different concentrations of NaCl. We detected that ~49% of all intron-containing genes were alternatively spliced under salt stress, 10% of which experienced significant differential alternative splicing (DAS). Furthermore, AS increased significantly under salt stress compared with under unstressed conditions. We demonstrated that most DAS genes were not differentially regulated by salt stress, suggesting that AS may represent an independent layer of gene regulation in response to stress. Our analysis of functional categories suggested that DAS genes were associated with specific functional pathways, such as the pathways for the responses to stresses and RNA splicing. We revealed that serine/arginine-rich (SR) splicing factors were frequently and specifically regulated in AS under salt stresses, suggesting a complex loop in AS regulation for stress adaptation. We also showed that alternative splicing site selection (SS) occurred most frequently at 4 nucleotides upstream or downstream of the dominant sites and that exon skipping tended to link with alternative SS. Conclusions Our study provided a comprehensive view of AS under salt stress and revealed novel insights into the potential roles of AS in plant response to salt stress. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-431) contains supplementary material, which is available to authorized users.
Collapse
|
195
|
Li Y, Li P, Wang Y, Dong R, Yu H, Hou B. Genome-wide identification and phylogenetic analysis of Family-1 UDP glycosyltransferases in maize (Zea mays). PLANTA 2014; 239:1265-79. [PMID: 24647682 DOI: 10.1007/s00425-014-2050-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 02/19/2014] [Indexed: 05/02/2023]
Abstract
Family-1 UDP glycosyltransferases (UGTs) from plants transfer sugar moieties from activated sugar donors to a wide range of small molecules, and control many metabolic processes during plant growth and development. Here, we report a genome-wide analysis of maize that identified 147 Family-1 glycosyltransferases based on their conserved PSPG motifs. Phylogenetic analysis of these genes with 18 Arabidopsis UGTs and two rice UGTs clustered them into 17 groups (A-Q). The patterns of intron gain/loss events, as well as their positions within UGTs from the same group, further aided elucidation of their divergence and evolutionary relationships between UGTs. Expression analysis of the maize UGT genes using both online microarray data and quantitative real-time PCR verification indicates that UGT genes are widely expressed in various tissues and likely play important roles in plant growth and development. Our study provides useful information on the Family-1 UGTs in maize, and will facilitate their further characterization to better understand their functions.
Collapse
Affiliation(s)
- Yanjie Li
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Education Ministry of China, Jinan, 250100, Shandong, People's Republic of China,
| | | | | | | | | | | |
Collapse
|
196
|
Chang CY, Lin WD, Tu SL. Genome-Wide Analysis of Heat-Sensitive Alternative Splicing in Physcomitrella patens. PLANT PHYSIOLOGY 2014; 165:826-840. [PMID: 24777346 PMCID: PMC4044832 DOI: 10.1104/pp.113.230540] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plant growth and development are constantly influenced by temperature fluctuations. To respond to temperature changes, different levels of gene regulation are modulated in the cell. Alternative splicing (AS) is a widespread mechanism increasing transcriptome complexity and proteome diversity. Although genome-wide studies have revealed complex AS patterns in plants, whether AS impacts the stress defense of plants is not known. We used heat shock (HS) treatments at nondamaging temperature and messenger RNA sequencing to obtain HS transcriptomes in the moss Physcomitrella patens. Data analysis identified a significant number of novel AS events in the moss protonema. Nearly 50% of genes are alternatively spliced. Intron retention (IR) is markedly repressed under elevated temperature but alternative donor/acceptor site and exon skipping are mainly induced, indicating differential regulation of AS in response to heat stress. Transcripts undergoing heat-sensitive IR are mostly involved in specific functions, which suggests that plants regulate AS with transcript specificity under elevated temperature. An exonic GAG-repeat motif in these IR regions may function as a regulatory cis-element in heat-mediated AS regulation. A conserved AS pattern for HS transcription factors in P. patens and Arabidopsis (Arabidopsis thaliana) reveals that heat regulation for AS evolved early during land colonization of green plants. Our results support that AS of specific genes, including key HS regulators, is fine-tuned under elevated temperature to modulate gene regulation and reorganize metabolic processes.
Collapse
Affiliation(s)
- Chiung-Yun Chang
- Institute of Plant and Microbial Biology (C.-Y.C., W.-D.L., S.-L.T.) and Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program (C.-Y.C., S.-L.T.), Academia Sinica, Taipei 11529, Taiwan; andGraduate Institute of Biotechnology (C.-Y.C.) and Biotechnology Center (S.-L.T.), National Chung-Hsing University, Taichung 402, Taiwan
| | - Wen-Dar Lin
- Institute of Plant and Microbial Biology (C.-Y.C., W.-D.L., S.-L.T.) and Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program (C.-Y.C., S.-L.T.), Academia Sinica, Taipei 11529, Taiwan; andGraduate Institute of Biotechnology (C.-Y.C.) and Biotechnology Center (S.-L.T.), National Chung-Hsing University, Taichung 402, Taiwan
| | - Shih-Long Tu
- Institute of Plant and Microbial Biology (C.-Y.C., W.-D.L., S.-L.T.) and Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program (C.-Y.C., S.-L.T.), Academia Sinica, Taipei 11529, Taiwan; andGraduate Institute of Biotechnology (C.-Y.C.) and Biotechnology Center (S.-L.T.), National Chung-Hsing University, Taichung 402, Taiwan
| |
Collapse
|
197
|
Cui Z, Xu Q, Wang X. Regulation of the circadian clock through pre-mRNA splicing in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1973-80. [PMID: 24604736 DOI: 10.1093/jxb/eru085] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Alternative splicing plays an important role in regulating gene functions and enhancing the diversity of the proteome in plants. Most of the genes are interrupted by introns in Arabidopsis. More than half of the intron-split genes involved in multiple biological processes including the circadian clock are alternatively spliced. In this review, we focus on the involvement of alternative splicing in the regulation of the circadian clock.
Collapse
Affiliation(s)
- Zhibo Cui
- Rice Research Institute; Key Laboratory of Northeast Rice Biology and Breeding, Ministry of Agriculture; Key Laboratory of Northern Japonica Super Rice Breeding, Ministry of Education; Shenyang Agricultural University, Shenyang 110866, China
| | | | | |
Collapse
|
198
|
Alzohairy AM, Sabir JSM, Gyulai GB, Younis RAA, Jansen RK, Bahieldin A. Environmental stress activation of plant long-terminal repeat retrotransposons. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:557-567. [PMID: 32481013 DOI: 10.1071/fp13339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/23/2014] [Indexed: 06/11/2023]
Abstract
Genomic retrotransposons (RTs) are major components of most plant genomes. They spread throughout the genomes by a process termed retrotransposition, which consists of reverse transcription and reinsertion of the copied element into a new genomic location (a copy-and-paste system). Abiotic and biotic stresses activate long-terminal repeat (LTR) RTs in photosynthetic eukaryotes from algae to angiosperms. LTR RTs could represent a threat to the integrity of host genomes because of their activity and mutagenic potential by epigenetic regulation. Host genomes have developed mechanisms to control the activity of the retroelements and their mutagenic potential. Some LTR RTs escape these defense mechanisms, and maintain their ability to be activated and transpose as a result of biotic or abiotic stress stimuli. These stimuli include pathogen infection, mechanical damage, in vitro tissue culturing, heat, drought and salt stress, generation of doubled haploids, X-ray irradiation and many others. Reactivation of LTR RTs differs between different plant genomes. The expression levels of reactivated RTs are influenced by the transcriptional and post-transcriptional gene silencing mechanisms (e.g. DNA methylation, heterochromatin formation and RNA interference). Moreover, the insertion of RTs (e.g. Triticum aestivum L. Wis2-1A) into or next to coding regions of the host genome can generate changes in the expression of adjacent host genes of the host. In this paper, we review the ways that plant genomic LTR RTs are activated by environmental stimuli to affect restructuring and diversification of the host genome.
Collapse
Affiliation(s)
- Ahmed M Alzohairy
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Jamal S M Sabir
- King Abdulaziz University, Faculty of Science, Department of Biological Sciences, Genomics and Biotechnology Section, Jeddah 21589, Saudi Arabia
| | - G Bor Gyulai
- Institute of Genetics and Biotechnology, St. Stephanus University, Gödöll? H-2103, Hungary
| | - Rania A A Younis
- Genetics Department, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Robert K Jansen
- King Abdulaziz University, Faculty of Science, Department of Biological Sciences, Genomics and Biotechnology Section, Jeddah 21589, Saudi Arabia
| | - Ahmed Bahieldin
- King Abdulaziz University, Faculty of Science, Department of Biological Sciences, Genomics and Biotechnology Section, Jeddah 21589, Saudi Arabia
| |
Collapse
|
199
|
Yu J, Saiardi A, Greenwood JS, Bewley JD. Molecular and biochemical identification of inositol 1,3,4,5,6-pentakisphosphate 2-kinase encoding mRNA variants in castor bean (Ricinus communis L.) seeds. PLANTA 2014; 239:965-77. [PMID: 24463774 DOI: 10.1007/s00425-014-2028-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/09/2014] [Indexed: 06/03/2023]
Abstract
During seed development, phytic acid (PA) associated with mineral cations is stored as phytin and mobilized following germination in support of seedling growth. Two parallel biosynthetic pathways for PA have been proposed; yet the pathway is still poorly understood in terms of its regulation and the enzymes involved. Here, the castor bean (Ricinus communis L.) gene for inositol 1,3,4,5,6-pentakisphosphate 2-kinase (RcIPK1) has been identified. This encodes the enzyme implicated in catalyzing the final reaction in PA biosynthesis, and its expression is enhanced in isolated germinated embryos by application of phosphate and myo-inositol (Ins). Even though only one copy of the RcIPK1 gene is present in the genome, numerous RNA variants are present, most likely due to alternative splicing. These are translated into six closely related protein isoforms according to in silico analysis. Functional analyses using yeast ipk1Δ revealed that only three of the mRNA variants can rescue a temperature-sensitive growth phenotype of this strain. High-performance liquid chromatography (HPLC) analysis of the synthesized inositol phosphates demonstrated that the ability to complement the missing yeast IPK1 enzyme is associated with the production of enzyme activity. The three active isoforms possess unique conserved motifs important for IPK1 catalytic activity.
Collapse
MESH Headings
- Base Sequence
- Blotting, Southern
- Ricinus communis/enzymology
- Ricinus communis/genetics
- Ricinus communis/growth & development
- Chromatography, High Pressure Liquid
- Cloning, Molecular
- Computer Simulation
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Genes, Plant
- Genetic Complementation Test
- Molecular Sequence Data
- Mutation/genetics
- Phenotype
- Phosphotransferases (Alcohol Group Acceptor)/chemistry
- Phosphotransferases (Alcohol Group Acceptor)/genetics
- Phosphotransferases (Alcohol Group Acceptor)/metabolism
- Phytic Acid/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Saccharomyces cerevisiae/metabolism
- Seeds/enzymology
- Seeds/genetics
- Seeds/growth & development
- Sequence Alignment
- Sequence Analysis, DNA
- Structural Homology, Protein
- Substrate Specificity
- Temperature
Collapse
Affiliation(s)
- Jaeju Yu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | | | | |
Collapse
|
200
|
Jang YH, Park HY, Lee KC, Thu MP, Kim SK, Suh MC, Kang H, Kim JK. A homolog of splicing factor SF1 is essential for development and is involved in the alternative splicing of pre-mRNA in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:591-603. [PMID: 24580679 DOI: 10.1111/tpj.12491] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 02/13/2014] [Accepted: 02/19/2014] [Indexed: 05/20/2023]
Abstract
During initial spliceosome assembly, SF1 binds to intron branch points and interacts with U2 snRNP auxiliary factor 65 (U2AF65). Here, we present evidence indicating that AtSF1, the Arabidopsis SF1 homolog, interacts with AtU2AF65a and AtU2AF65b, the Arabidopsis U2AF65 homologs. A mutant allele of AtSF1 (At5g51300) that contains a T-DNA insertion conferred pleiotropic developmental defects, including early flowering and abnormal sensitivity to abscisic acid. An AtSF1 promoter-driven GUS reporter assay showed that AtSF1 promoter activity was temporally and spatially altered, and that full AtSF1 promoter activity required a significant proportion of the coding region. DNA chip analyses showed that only a small proportion of the transcriptome was altered by more than twofold in either direction in the AtSF1 mutant. Expression of the mRNAs of many heat shock proteins was more than fourfold higher in the mutant strain; these mRNAs were among those whose expression was increased most in the mutant strain. An RT-PCR assay revealed an altered alternative splicing pattern for heat shock transcription factor HsfA2 (At2g26150) in the mutant; this altered splicing is probably responsible for the increased expression of the target genes induced by HsfA2. Altered alternative splicing patterns were also detected for the transcripts of other genes in the mutant strain. These results suggest that AtSF1 has functional similarities to its yeast and metazoan counterparts.
Collapse
Affiliation(s)
- Yun Hee Jang
- Plant Signaling Network Research Center, School of Life Sciences and Biotechnology, Korea University, Seoul, 136-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|