151
|
Ren JM, Zhang SL, Wang XL, Guan ZZ, Qi XL. Expression levels of the α7 nicotinic acetylcholine receptor in the brains of patients with Alzheimer's disease and their effect on synaptic proteins in SH-SY5Y cells. Mol Med Rep 2020; 22:2063-2075. [PMID: 32582986 PMCID: PMC7411404 DOI: 10.3892/mmr.2020.11253] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 06/04/2020] [Indexed: 01/22/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative, and abnormal aggregation of the neurotoxic β amyloid (Aβ) peptide is an early event in AD. The present study aimed to determine the correlation between the nicotinic acetylcholine receptor α7 subunit (α7 nAChR) and Aβ in the brains of patients with AD, and to investigate whether the increased expression levels of the α7 nAChR could alter the neurotoxicity of Aβ. The expression levels of α7 nAChR and Aβ in the brains of patients with AD and healthy brains were analyzed using immunofluorescence. Moreover, SH‑SY5Y cells were used to stably overexpress or silence α7 nAChR expression levels, prior to the treatment with or without 1 µmol/l Aβ1‑42 oligomer (AβO). The mRNA and protein expression levels of α7 nAChR, synaptophysin (SYP), postsynaptic density of 95 kDa (PSD‑95) and synaptosomal‑associated protein of 25 kDa (SNAP‑25) were subsequently analyzed using reverse transcription‑quantitative PCR and western blotting. In addition, the concentration of acetylcholine (ACh) and the activity of acetylcholinesterase (AChE) were analyzed using spectrophotometry, while the cell apoptotic rate was determined using flow cytometry. The expression of Aβ in the brains of patients with AD was found to be significantly increased, whereas the expression of α7 nAChR was significantly decreased compared with the healthy control group. In vitro, the expression levels of α7 nAChR were significantly increased or decreased following the overexpression or silencing of the gene, respectively. Consistent with these observations, the mRNA and protein expression levels of SYP, PSD‑95 and SNAP‑25 were also significantly increased following the overexpression of α7 nAChR and decreased following the genetic silencing of the receptor. In untransfected or negative control cells, the expression levels of these factors and the apoptotic rate were significantly reduced following the exposure to AβO, which was found to be attenuated by α7 nAChR overexpression, but potentiated by α7 nAChR RNA silencing. However, no significant differences were observed in either the ACh concentration or AChE activity following transfection. Collectively, these findings suggested that α7 nAChR may protect the brains of patients with AD against Aβ, as α7 nAChR overexpression increased the expression levels of SYP, SNAP‑25 and PSD‑95, and attenuated the inhibitory effect of Aβ on the expression of these synaptic proteins and cell apoptosis. Overall, this indicated that α7 nAChR may serve an important neuroprotective role in AD.
Collapse
Affiliation(s)
- Jia-Mou Ren
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Department of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Shu-Li Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Chinese People's Liberation Army, Secret Service Center Sanatorium of Xiamen, Xiamen, Fujian 361000, P.R. China
| | - Xiao-Ling Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Zhi-Zhong Guan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Xiao-Lan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
152
|
Zhao D, Wang Q, Zhou WT, Wang LB, Yu H, Zhang KK, Chen LJ, Xie XL. PCB52 exposure alters the neurotransmission ligand-receptors in male offspring and contributes to sex-specific neurodevelopmental toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114715. [PMID: 32402713 DOI: 10.1016/j.envpol.2020.114715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/09/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Polychlorinated biphenyls (PCBs) in the air are predominantly the less chlorinated congeners. Non-dioxin-like (NDL) low-chlorinated PCBs are more neurotoxic, and cause neurodevelopmental and neurobehavioral alterations in humans. However, the underlying mechanisms for this neurodevelopmental toxicity remain unknown. In the present study, Wistar rats were treated by gavage with PCB52 (1 mg/kg body weight) or corn oil from gestational day 7 to postnatal day 21. Both the body lengths and weights of the suckling rats at birth were significantly decreased by PCB52 treatment, suggesting developmental toxicity. Although no obvious histopathological changes were observed in the brain, using RNA-sequencing, 208 differentially expressed genes (DEGs) were identified in the striatum of PCB52-treated male offspring, while just 13 DEGs were identified in female offspring, suggesting sex-specific effects. Furthermore, using Gene Ontology enrichment analysis, neurodevelopmental processes, neurobehavioral alterations, and neurotransmission changes were enriched from the 208 DEGs in male offspring. Similarly, using Kyoto Encyclopedia of Genes and Genomes enrichment analysis, neuroactive ligand receptor interactions and multiple synapse pathways were enriched in male offspring, implying dysfunction of the neurotransmission system. Reductions in the protein expressions of these ligand receptors were also identified in the striatum, cerebral cortex, and hippocampus using western blotting methods. Taken together, our findings indicate that PCB52 exposure during gestation and lactation results in the abnormal expression of neurotransmission ligand-receptors in male offspring with a sex bias, and that this may contribute to neurodevelopmental toxicity.
Collapse
Affiliation(s)
- Dong Zhao
- Key Laboratory of Evidence Science (China University of Political Science and Law), Ministry of Education, Beijing, China
| | - Qi Wang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Wen-Tao Zhou
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Li-Bin Wang
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Hao Yu
- The 2015 Class, 8-Year Program, The First Clinical Medical School, Southern Medical University, No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Kai-Kai Zhang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Li-Jian Chen
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China.
| |
Collapse
|
153
|
Anderson KR, Hoffman KM, Miwa JM. Modulation of cholinergic activity through lynx prototoxins: Implications for cognition and anxiety regulation. Neuropharmacology 2020; 174:108071. [PMID: 32298703 PMCID: PMC7785133 DOI: 10.1016/j.neuropharm.2020.108071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/16/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023]
Affiliation(s)
| | | | - Julie M Miwa
- Department of Biological Sciences, Lehigh University, USA.
| |
Collapse
|
154
|
Arunrungvichian K, Chongruchiroj S, Sarasamkan J, Schüürmann G, Brust P, Vajragupta O. In Silico Finding of Key Interaction Mediated α3β4 and α7 Nicotinic Acetylcholine Receptor Ligand Selectivity of Quinuclidine-Triazole Chemotype. Int J Mol Sci 2020; 21:E6189. [PMID: 32867140 PMCID: PMC7504379 DOI: 10.3390/ijms21176189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
The selective binding of six (S)-quinuclidine-triazoles and their (R)-enantiomers to nicotinic acetylcholine receptor (nAChR) subtypes α3β4 and α7, respectively, were analyzed by in silico docking to provide the insight into the molecular basis for the observed stereospecific subtype discrimination. Homology modeling followed by molecular docking and molecular dynamics (MD) simulations revealed that unique amino acid residues in the complementary subunits of the nAChR subtypes are involved in subtype-specific selectivity profiles. In the complementary β4-subunit of the α3β4 nAChR binding pocket, non-conserved AspB173 through a salt bridge was found to be the key determinant for the α3β4 selectivity of the quinuclidine-triazole chemotype, explaining the 47-327-fold affinity of the (S)-enantiomers as compared to their (R)-enantiomer counterparts. Regarding the α7 nAChR subtype, the amino acids promoting a however significantly lower preference for the (R)-enantiomers were the conserved TyrA93, TrpA149 and TrpB55 residues. The non-conserved amino acid residue in the complementary subunit of nAChR subtypes appeared to play a significant role for the nAChR subtype-selective binding, particularly at the heteropentameric subtype, whereas the conserved amino acid residues in both principal and complementary subunits are essential for ligand potency and efficacy.
Collapse
Affiliation(s)
- Kuntarat Arunrungvichian
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayutthaya Road, Bangkok 10400, Thailand;
| | - Sumet Chongruchiroj
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayutthaya Road, Bangkok 10400, Thailand;
| | - Jiradanai Sarasamkan
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Khon Kaen University, 123 Mittraparp Highway, Khon Kaen 4002, Thailand;
| | - Gerrit Schüürmann
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318 Leipzig, Germany;
- Institute of Organic Chemistry, Technical University Bergakademie Freiberg, Leipziger Strasse 29, 09596 Freiberg, Germany
| | - Peter Brust
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstrasse 15, 04318 Leipzig, Germany;
| | - Opa Vajragupta
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayutthaya Road, Bangkok 10400, Thailand;
- Office of Research Affairs, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand
| |
Collapse
|
155
|
Moerke MJ, McMahon LR, Wilkerson JL. More than Smoke and Patches: The Quest for Pharmacotherapies to Treat Tobacco Use Disorder. Pharmacol Rev 2020; 72:527-557. [PMID: 32205338 DOI: 10.1124/pr.119.018028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tobacco use is a persistent public health issue. It kills up to half its users and is the cause of nearly 90% of all lung cancers. The main psychoactive component of tobacco is nicotine, primarily responsible for its abuse-related effects. Accordingly, most pharmacotherapies for smoking cessation target nicotinic acetylcholine receptors (nAChRs), nicotine's major site of action in the brain. The goal of the current review is twofold: first, to provide a brief overview of the most commonly used behavioral procedures for evaluating smoking cessation pharmacotherapies and an introduction to pharmacokinetic and pharmacodynamic properties of nicotine important for consideration in the development of new pharmacotherapies; and second, to discuss current and potential future pharmacological interventions aimed at decreasing tobacco use. Attention will focus on the potential for allosteric modulators of nAChRs to offer an improvement over currently approved pharmacotherapies. Additionally, given increasing public concern for the potential health consequences of using electronic nicotine delivery systems, which allow users to inhale aerosolized solutions as an alternative to smoking tobacco, an effort will be made throughout this review to address the implications of this relatively new form of nicotine delivery, specifically as it relates to smoking cessation. SIGNIFICANCE STATEMENT: Despite decades of research that have vastly improved our understanding of nicotine and its effects on the body, only a handful of pharmacotherapies have been successfully developed for use in smoking cessation. Thus, investigation of alternative pharmacological strategies for treating tobacco use disorder remains active; allosteric modulators of nicotinic acetylcholine receptors represent one class of compounds currently under development for this purpose.
Collapse
Affiliation(s)
- M J Moerke
- Division of Preclinical Pharmacology, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (M.J.M.) and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (L.R.M., J.L.W.)
| | - L R McMahon
- Division of Preclinical Pharmacology, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (M.J.M.) and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (L.R.M., J.L.W.)
| | - J L Wilkerson
- Division of Preclinical Pharmacology, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (M.J.M.) and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (L.R.M., J.L.W.)
| |
Collapse
|
156
|
Amini R, Sahli M, Ganai S. Cigarette smoking and cognitive function among older adults living in the community. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2020; 28:616-631. [PMID: 32783580 DOI: 10.1080/13825585.2020.1806199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Background. The present study aimed to examine the long-term impact of CS on Executive Function (EF) and memory among older adults living in the community. Methods. Clock Drawing Test (CDT) and Delayed Word Recall Test (DWRT) were used to examine EF and memory, respectively, using four waves of National Health and Aging Trend Study. The respondents were asked whether they have ever smoked, length of smoking, and age of start and quit smoking. Results. CS can have a long-term impact on both EF and memory. However, current smoking can increase the risk of EF impairment compared to former smokers. Lung disease and current smoking can have a synergic effect of impairment in EF. Conclusion. In the long-term, smoking can negatively affect cognitive. Lung diseases and smoking can synergize their impacts on EF. The impact of smoking on cognition varies across ethnic groups; hence, educational programs targeting minorities can reduce discrepancies.
Collapse
Affiliation(s)
- R Amini
- Department of Public Health and Health Sciences, College of Health Sciences, University of Michigan-Flint , Flint, MI, USA
| | - M Sahli
- Department of Public Health and Health Sciences, College of Health Sciences, University of Michigan-Flint , Flint, MI, USA
| | - S Ganai
- Department of Public Health and Health Sciences, College of Health Sciences, University of Michigan-Flint , Flint, MI, USA
| |
Collapse
|
157
|
Xu Y, Cao K, Guo B, Xiang J, Dong YT, Qi XL, Yu WF, Xiao Y, Guan ZZ. Lowered levels of nicotinic acetylcholine receptors and elevated apoptosis in the hippocampus of brains from patients with type 2 diabetes mellitus and db/db mice. Aging (Albany NY) 2020; 12:14205-14218. [PMID: 32701482 PMCID: PMC7425467 DOI: 10.18632/aging.103435] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/25/2020] [Indexed: 02/05/2023]
Abstract
Cognitive impairment caused by diabetes has been gradually recognized. Generally, nicotinic acetylcholine receptors (nAChRs) play an important role in the pathogenesis in dementia disorders including Alzheimer's disease (AD). However, the expression of nAChRs in the brains of type 2 diabetes mellitus (T2DM) is unexplored. This study explored the alterations of nAChRs in the postmortem brains of patients with T2DM and brains of db/db mice. Morris water maze test was used to appraise the ability of spatial learning and memory; Western blotting and RT-qPCR were performed to determine the expressions of target protein and mRNA, respectively; TUNEL was used to detect the apoptosis of neurons. We found that the protein levels of nAChR α7 and α4 subunits were significantly decreased and the apoptosis rates in neurons elevated in the hippocampus of T2DM patients and db/db mice as comparison to controls. Furthermore, the db/db mice exhibited the impaired cognition, the elevated level of pro-apoptotic protein and the reduced level of anti-apoptotic and synaptic proteins. This study shows the lowered level of nAChR α7 and α4 subunits and the elevated apoptosis in the hippocampus of T2DM patients and db/db mice, which might help explain the impaired cognition in T2DM.
Collapse
Affiliation(s)
- Yi Xu
- Departments of Pathology at Guizhou Medical University and the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, P. R. of China.,Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University of the Ministry of Education, Guiyang 550004, P. R. of China
| | - Kun Cao
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University of the Ministry of Education, Guiyang 550004, P. R. of China
| | - Bing Guo
- Department of Pathophysiology, Guizhou Medical University, Guiyang 550004, P. R. of China
| | - Jie Xiang
- Departments of Pathology at Guizhou Medical University and the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, P. R. of China.,Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University of the Ministry of Education, Guiyang 550004, P. R. of China
| | - Yang-Ting Dong
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University of the Ministry of Education, Guiyang 550004, P. R. of China.,Provincial Key Laboratory of Medical Molecular Biology, Guiyang 550004, P. R. of China
| | - Xiao-Lan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University of the Ministry of Education, Guiyang 550004, P. R. of China.,Provincial Key Laboratory of Medical Molecular Biology, Guiyang 550004, P. R. of China
| | - Wen-Feng Yu
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University of the Ministry of Education, Guiyang 550004, P. R. of China.,Provincial Key Laboratory of Medical Molecular Biology, Guiyang 550004, P. R. of China
| | - Yan Xiao
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University of the Ministry of Education, Guiyang 550004, P. R. of China.,Provincial Key Laboratory of Medical Molecular Biology, Guiyang 550004, P. R. of China
| | - Zhi-Zhong Guan
- Departments of Pathology at Guizhou Medical University and the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, P. R. of China.,Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University of the Ministry of Education, Guiyang 550004, P. R. of China.,Provincial Key Laboratory of Medical Molecular Biology, Guiyang 550004, P. R. of China
| |
Collapse
|
158
|
Miller CN, Kamens HM. The role of nicotinic acetylcholine receptors in alcohol-related behaviors. Brain Res Bull 2020; 163:135-142. [PMID: 32707263 DOI: 10.1016/j.brainresbull.2020.07.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/23/2020] [Accepted: 07/17/2020] [Indexed: 12/29/2022]
Abstract
Alcohol use disorder (AUD) causes an alarming economic and health burden in the United States. Unfortunately, this disease does not exist in isolation; AUD is highly comorbid with nicotine use. Results from both human and animal models demonstrate a genetic correlation between alcohol and nicotine behaviors. These data support the idea of shared genetic and neural mechanisms underlying these behaviors. Nicotine acts directly at nicotinic acetylcholine receptors (nAChR) to have its pharmacological effect. Interestingly, alcohol also acts both directly and indirectly at these receptors. Research utilizing genetically engineered rodents and pharmacological manipulations suggest a role for nAChR in several ethanol behaviors. The current manuscript collates this literature and discusses findings that implicate specific nAChR subunits in ethanol phenotypes. These data suggest future directions for targeting nAChR as novel therapeutics for AUD.
Collapse
Affiliation(s)
- C N Miller
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, 16802, United States
| | - H M Kamens
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, 16802, United States.
| |
Collapse
|
159
|
Endogenous neurotoxin-like protein Ly6H inhibits alpha7 nicotinic acetylcholine receptor currents at the plasma membrane. Sci Rep 2020; 10:11996. [PMID: 32686737 PMCID: PMC7371702 DOI: 10.1038/s41598-020-68947-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 07/03/2020] [Indexed: 11/08/2022] Open
Abstract
α7 nicotinic acetylcholine receptors (nAChRs) are widely expressed in the central nervous system and regarded as potential therapeutic targets for neurodegenerative conditions, such as Alzheimer's disease and schizophrenia. Yet, despite the assumed pathophysiological importance of the α7 nAChR, molecular physiological characterization remains poorly advanced because α7 nAChR cannot be properly folded and sorted to the plasma membranes in most mammalian cell lines, thus preventing the analyses in heterologous expression system. Recently, ER-resident membrane protein NACHO was discovered as a strong chaperone for the functional expression of α7 nAChR in non-permissive cells. Ly6H, a brain-enriched GPI-anchored neurotoxin-like protein, was reported as a novel modulator regulating intracellular trafficking of α7 nAChR. In this study, we established cell lines that stably and robustly express surface α7 nAChR by introducing α7 nAChR, Ric-3, and NACHO cDNA into HEK293 cells (Triple α7 nAChR/RIC-3/NACHO cells; TARO cells), and re-evaluated the function of Ly6H. We report here that Ly6H binds with α7 nAChRs on the cell membrane and modulates the channel activity without affecting intracellular trafficking of α7 nAChR.
Collapse
|
160
|
Abstract
Although stem cell therapy has tremendous therapeutic potential, clinical translation of stem cell therapy has yet to be fully realized. Recently, patient comorbidities and lifestyle choices have emerged to be important factors in the efficacy of stem cell therapy. Tobacco usage is an important risk factor for numerous diseases, and nicotine exposure specifically has become increasing more prevalent with the rising use of electronic cigarettes. This review describes the effects of nicotine exposure on the function of various stem cells. We place emphasis on the differential effects of nicotine exposure in vitro and as well as in preclinical models. Further research on the effects of nicotine on stem cells will deepen our understanding of how lifestyle choices can impact the outcome of stem cell therapies.
Collapse
Affiliation(s)
- Alex Hp Chan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA.,Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Ngan F Huang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA.,Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| |
Collapse
|
161
|
Thompson DA, Lehmler HJ, Kolpin DW, Hladik ML, Vargo JD, Schilling KE, LeFevre GH, Peeples TL, Poch MC, LaDuca LE, Cwiertny DM, Field RW. A critical review on the potential impacts of neonicotinoid insecticide use: current knowledge of environmental fate, toxicity, and implications for human health. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1315-1346. [PMID: 32267911 DOI: 10.1039/c9em00586b] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Neonicotinoid insecticides are widely used in both urban and agricultural settings around the world. Historically, neonicotinoid insecticides have been viewed as ideal replacements for more toxic compounds, like organophosphates, due in part to their perceived limited potential to affect the environment and human health. This critical review investigates the environmental fate and toxicity of neonicotinoids and their metabolites and the potential risks associated with exposure. Neonicotinoids are found to be ubiquitous in the environment, drinking water, and food, with low-level exposure commonly documented below acceptable daily intake standards. Available toxicological data from animal studies indicate possible genotoxicity, cytotoxicity, impaired immune function, and reduced growth and reproductive success at low concentrations, while limited data from ecological or cross-sectional epidemiological studies have identified acute and chronic health effects ranging from acute respiratory, cardiovascular, and neurological symptoms to oxidative genetic damage and birth defects. Due to the heavy use of neonicotinoids and potential for cumulative chronic exposure, these insecticides represent novel risks and necessitate further study to fully understand their risks to humans.
Collapse
Affiliation(s)
- Darrin A Thompson
- University of Iowa, College of Public Health, Iowa City, IA, USA. and University of Iowa, Center for Health Effects of Environmental Contamination, Iowa City, IA, USA
| | | | - Dana W Kolpin
- U.S. Geological Survey, Central Midwest Water Science Center, Iowa City, IA, USA
| | - Michelle L Hladik
- U.S. Geological Survey, California Water Science Center, Sacramento, CA, USA
| | - John D Vargo
- State Hygienic Laboratory at the University of Iowa, Iowa City, IA, USA
| | | | - Gregory H LeFevre
- University of Iowa, Department of Civil & Environmental Engineering, Iowa City, IA, USA
| | - Tonya L Peeples
- Department of Chemical Engineering, University Park, PA, USA
| | - Matthew C Poch
- University of Iowa, College of Public Health, Iowa City, IA, USA.
| | - Lauren E LaDuca
- University of Iowa, College of Public Health, Iowa City, IA, USA.
| | - David M Cwiertny
- University of Iowa, Center for Health Effects of Environmental Contamination, Iowa City, IA, USA and University of Iowa, Department of Civil & Environmental Engineering, Iowa City, IA, USA
| | - R William Field
- University of Iowa, College of Public Health, Iowa City, IA, USA.
| |
Collapse
|
162
|
Jackson A, Grobman B, Krishnan-Sarin S. Recent findings in the pharmacology of inhaled nicotine: Preclinical and clinical in vivo studies. Neuropharmacology 2020; 176:108218. [PMID: 32592708 DOI: 10.1016/j.neuropharm.2020.108218] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The rise of vaping in adolescents, the recent entrance of new inhaled nicotine products such as iQOS on the market and e-cigarette or vaping product use-associated lung injury cases has created concern for the use of inhaled non-combustible nicotine products. This narrative review discusses recent experimental in vivo studies that utilize human, rat and mouse models to understand the pharmacological impact of nicotine from non-combustible products. METHODS The search engine PubMed was utilized with the following search terms: inhaled nicotine, nicotine e-cigarette, heated tobacco products, iQOS, electronic cigarette, nicotine inhaler, nicotine vaping. This review highlights recent primary in vivo studies of inhaled nicotine administration experimental paradigms that occurred in laboratory settings using human and rodent (rats and mice) models that have been published from January 2017-December 2019. RESULTS The pharmacokinetics of nicotine via e-cigarettes is influenced by the PG/VG and flavor constituents in e-liquids, the presence of nicotine salts in e-liquids, puff topography of nicotine and tobacco product users and the power of the e-cigarette device. The pharmacodynamic impact of inhaled nicotine has cardiovascular, pulmonary and central nervous system implications. CONCLUSION The articles reviewed here highlight the importance of both animal and human models to fully understand the impact of inhaled nicotine pharmacology There is a need for more rodent pharmacokinetic inhaled nicotine studies to understand the influences of factors such as flavor and nicotine salts. Additionally, consensus on nicotine measurement in both human and rodent studies is greatly needed.
Collapse
Affiliation(s)
- Asti Jackson
- Department of Psychiatry, Yale School of Medicine, United States.
| | - Ben Grobman
- Department of Psychiatry, Yale School of Medicine, United States
| | | |
Collapse
|
163
|
Yang D, Ding C, Qi G, Feldmeyer D. Cholinergic and Adenosinergic Modulation of Synaptic Release. Neuroscience 2020; 456:114-130. [PMID: 32540364 DOI: 10.1016/j.neuroscience.2020.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 01/14/2023]
Abstract
In this review we will discuss the effect of two neuromodulatory transmitters, acetylcholine (ACh) and adenosine, on the synaptic release probability and short-term synaptic plasticity. ACh and adenosine differ fundamentally in the way they are released into the extracellular space. ACh is released mostly from synaptic terminals and axonal bouton of cholinergic neurons in the basal forebrain (BF). Its mode of action on synaptic release probability is complex because it activate both ligand-gated ion channels, so-called nicotinic ACh receptors and G-protein coupled muscarinic ACh receptors. In contrast, adenosine is released from both neurons and glia via nucleoside transporters or diffusion over the cell membrane in a non-vesicular, non-synaptic fashion; its receptors are exclusively G-protein coupled receptors. We show that ACh and adenosine effects are highly specific for an identified synaptic connection and depend mostly on the presynaptic but also on the postsynaptic receptor type and discuss the functional implications of these differences.
Collapse
Affiliation(s)
- Danqing Yang
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany
| | - Chao Ding
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany
| | - Guanxiao Qi
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany
| | - Dirk Feldmeyer
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany; RWTH Aachen University Hospital, Pauwelsstrasse 30, Aachen, Germany; Jülich-Aachen Research Alliance Brain - JARA Brain, Germany.
| |
Collapse
|
164
|
Richardson BD, Sottile SY, Caspary DM. Mechanisms of GABAergic and cholinergic neurotransmission in auditory thalamus: Impact of aging. Hear Res 2020; 402:108003. [PMID: 32703637 DOI: 10.1016/j.heares.2020.108003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/15/2020] [Accepted: 05/23/2020] [Indexed: 12/18/2022]
Abstract
Age-related hearing loss is a complex disorder affecting a majority of the elderly population. As people age, speech understanding becomes a challenge especially in complex acoustic settings and negatively impacts the ability to accurately analyze the auditory scene. This is in part due to an inability to focus auditory attention on a particular stimulus source while simultaneously filtering out other sound stimuli. The present review examines the impact of aging on two neurotransmitter systems involved in accurate temporal processing and auditory gating in auditory thalamus (medial geniculate body; MGB), a critical brain region involved in the coding and filtering of auditory information. The inhibitory neurotransmitter GABA and its synaptic receptors (GABAARs) are key to maintaining accurate temporal coding of complex sounds, such as speech, throughout the central auditory system. In the MGB, synaptic and extrasynaptic GABAARs mediate fast phasic and slow tonic inhibition respectively, which in turn regulate MGB neuron excitability, firing modes, and engage thalamocortical oscillations that shape coding and gating of acoustic content. Acoustic coding properties of MGB neurons are further modulated through activation of tegmental cholinergic afferents that project to MGB to potentially modulate attention and help to disambiguate difficult to understand or novel sounds. Acetylcholine is released onto MGB neurons and presynaptic terminals in MGB activating neuronal nicotinic and muscarinic acetylcholine receptors (nAChRs, mAChRs) at a subset of MGB afferents to optimize top-down and bottom-up information flow. Both GABAergic and cholinergic neurotransmission is significantly altered with aging and this review will detail how age-related changes in these circuits within the MGB may impact coding of acoustic stimuli.
Collapse
Affiliation(s)
- B D Richardson
- WWAMI Medical Education, University of Idaho, Moscow, ID, 83844, USA; Biological Engineering, University of Idaho, Moscow, ID, 83844, USA
| | - S Y Sottile
- Center for Clinical Research Southern Illinois University - School of Medicine, Springfield, IL, 62702, USA
| | - D M Caspary
- Department of Pharmacology Southern Illinois University - School of Medicine, Springfield, IL, 62702, USA.
| |
Collapse
|
165
|
Zhu PK, Zheng WS, Zhang P, Jing M, Borden PM, Ali F, Guo K, Feng J, Marvin JS, Wang Y, Wan J, Gan L, Kwan AC, Lin L, Looger LL, Li Y, Zhang Y. Nanoscopic Visualization of Restricted Nonvolume Cholinergic and Monoaminergic Transmission with Genetically Encoded Sensors. NANO LETTERS 2020; 20:4073-4083. [PMID: 32396366 PMCID: PMC7519949 DOI: 10.1021/acs.nanolett.9b04877] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
How neuromodulatory transmitters diffuse into the extracellular space remains an unsolved fundamental biological question, despite wide acceptance of the volume transmission model. Here, we report development of a method combining genetically encoded fluorescent sensors with high-resolution imaging and analysis algorithms which permits the first direct visualization of neuromodulatory transmitter diffusion at various neuronal and non-neuronal cells. Our analysis reveals that acetylcholine and monoamines diffuse at individual release sites with a spread length constant of ∼0.75 μm. These transmitters employ varied numbers of release sites, and when spatially close-packed release sites coactivate they can spillover into larger subcellular areas. Our data indicate spatially restricted (i.e., nonvolume) neuromodulatory transmission to be a prominent intercellular communication mode, reshaping current thinking of control and precision of neuromodulation crucial for understanding behaviors and diseases.
Collapse
Affiliation(s)
- Paula K. Zhu
- State Key Laboratory of Membrane Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Math, Engineering & Science Academy Class of 2020, Albemarle High School, Charlottesville, VA 22901
- Summer Secondary School Neurobiology Class of 2019, Harvard University, Cambridge, MA 02138
- Current address: Undergraduate Class of 2024, Harvard College, Cambridge, MA 02138
| | - W. Sharon Zheng
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
- Department of Biomedical Engineering Class of 2021, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Peng Zhang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Miao Jing
- State Key Laboratory of Membrane Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Chinese Institute for Brain Research, Beijing 100871, China
| | - Philip M. Borden
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
- Current address: LifeEDIT, Research Triangle Park, NC 27709
| | - Farhan Ali
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511
| | - Kaiming Guo
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jonathan S. Marvin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Yali Wang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Jinxia Wan
- State Key Laboratory of Membrane Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Li Gan
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine College, New York, NY 10065
| | - Alex C. Kwan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Loren L. Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Yulong Li
- State Key Laboratory of Membrane Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yajun Zhang
- State Key Laboratory of Membrane Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
| |
Collapse
|
166
|
Müller TE, Fontana BD, Bertoncello KT, Franscescon F, Mezzomo NJ, Canzian J, Stefanello FV, Parker MO, Gerlai R, Rosemberg DB. Understanding the neurobiological effects of drug abuse: Lessons from zebrafish models. Prog Neuropsychopharmacol Biol Psychiatry 2020; 100:109873. [PMID: 31981718 DOI: 10.1016/j.pnpbp.2020.109873] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 01/01/2023]
Abstract
Drug abuse and brain disorders related to drug comsumption are public health problems with harmful individual and social consequences. The identification of therapeutic targets and precise pharmacological treatments to these neuropsychiatric conditions associated with drug abuse are urgently needed. Understanding the link between neurobiological mechanisms and behavior is a key aspect of elucidating drug abuse-related targets. Due to various molecular, biochemical, pharmacological, and physiological features, the zebrafish (Danio rerio) has been considered a suitable vertebrate for modeling complex processes involved in drug abuse responses. In this review, we discuss how the zebrafish has been successfully used for modeling neurobehavioral phenotypes related to drug abuse and review the effects of opioids, cannabinoids, alcohol, nicotine, and psychedelic drugs on the central nervous system (CNS). Moreover, we summarize recent advances in zebrafish-based studies and outline potential advantages and limitations of the existing zebrafish models to explore the neurochemical bases of drug abuse and addiction. Finally, we discuss how the use of zebrafish models may present fruitful approaches to provide valuable clinically translatable data.
Collapse
Affiliation(s)
- Talise E Müller
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| | - Barbara D Fontana
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Old St Michael's Building, Portsmouth PO1 2DT, UK
| | - Kanandra T Bertoncello
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Francini Franscescon
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Nathana J Mezzomo
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Pharmacology, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Flavia V Stefanello
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Matthew O Parker
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Old St Michael's Building, Portsmouth PO1 2DT, UK
| | - Robert Gerlai
- Department of Psychology, University of Toronto, Mississauga, Canada; Department of Cell and Systems Biology, University of Toronto, Canada
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
167
|
Abbasi F, Baradaran R, Khoshdel-Sarkarizi H, Kargozar S, Hami J, Mohammadipour A, Kheradmand H, Haghir H. Distribution pattern of nicotinic acetylcholine receptors in developing cerebellum of rat neonates born of diabetic mothers. J Chem Neuroanat 2020; 108:101819. [PMID: 32522497 DOI: 10.1016/j.jchemneu.2020.101819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 11/15/2022]
Affiliation(s)
- Faeze Abbasi
- Department of Anatomy and cell Biology, School of Medicine, MashhadUniversity of Medical Sciences, Mashhad, Iran
| | - Raheleh Baradaran
- Department of Anatomy and cell Biology, School of Medicine, MashhadUniversity of Medical Sciences, Mashhad, Iran
| | - Hoda Khoshdel-Sarkarizi
- Department of Anatomy and cell Biology, School of Medicine, MashhadUniversity of Medical Sciences, Mashhad, Iran
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Hami
- Department of Anatomical Sciences, School of Medicine, BirjandUniversity of Medical Sciences, Birjand, Iran
| | - Abbas Mohammadipour
- Department of Anatomy and cell Biology, School of Medicine, MashhadUniversity of Medical Sciences, Mashhad, Iran
| | - Hamed Kheradmand
- Hazrat Rasoul Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Haghir
- Department of Anatomy and cell Biology, School of Medicine, MashhadUniversity of Medical Sciences, Mashhad, Iran; Medical Genetic Research Center (MGRC), School of Medicine, MashhadUniversity of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
168
|
Alzu'bi A, Middleham W, Shoaib M, Clowry GJ. Selective Expression of Nicotinic Receptor Sub-unit mRNA in Early Human Fetal Forebrain. Front Mol Neurosci 2020; 13:72. [PMID: 32670017 PMCID: PMC7326072 DOI: 10.3389/fnmol.2020.00072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/14/2020] [Indexed: 12/22/2022] Open
Abstract
Increasing evidence from animal and human studies indicate that exposure to nicotine during development, separated from the effects of smoking tobacco, can contribute to dysregulation of brain development including behavioral deficits. An RNAseq study of human fetal cerebral cortex demonstrated that 9 out of 16 genes for human nicotinic acetylcholine (ACh) receptor subunits are selectively expressed between 7.5 and 12 post-conceptional weeks (PCW). The most highly expressed subunit genes were CHNRA4 and CHNRB2, whose protein products combine to form the most ubiquitous functional receptor isoform expressed in the adult brain. They exhibited correlated expression in both RNAseq samples, and in tissue sections by in situ hybridization. Co-localization studies with other cortical markers suggest they are pre-dominantly expressed by post-mitotic glutamatergic neuron pre-cursors in both cortical plate and pre-subplate, rather than cortical progenitor cells or GABAergic interneuron pre-cursors. However, GABAergic interneuron progenitor cells in the ganglionic eminences do express these sub-units. CHNRA5 also showed moderate levels of expression and again favored post-mitotic neurons. Other subunits, e.g., CHRNA7, exhibited low but detectable levels of expression. CHRN genes found not to be expressed included genes for subunits usually considered muscle specific, e.g., CHNRA1, although some muscle specific gene expression was detected, for instance CHNRB1. Although there is little or no synthesis of acetylcholine by intrinsic cortical neurons, cholinergic fibers from basal forebrain innervate the cerebral cortex from 12 PCW at the latest. Acetylcholine may have a paracrine effect on radially migrating cortical neurons and GABAergic interneuron progenitors.
Collapse
Affiliation(s)
- Ayman Alzu'bi
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Basic Medical Sciences, Yarmouk University, Irbid, Jordan
| | - William Middleham
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mohammed Shoaib
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gavin J Clowry
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
169
|
Functional characterization of multifunctional ligands targeting acetylcholinesterase and alpha 7 nicotinic acetylcholine receptor. Biochem Pharmacol 2020; 177:114010. [PMID: 32360492 DOI: 10.1016/j.bcp.2020.114010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/28/2020] [Indexed: 11/20/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with cholinergic dysfunction, provoking memory loss and cognitive dysfunction in elderly patients. The cholinergic hypothesis provided over the years with molecular targets for developing palliative treatments for AD, acting on the cholinergic system, namely, acetylcholinesterase and α7 nicotinic acetylcholine receptor (α7 nAChR). In our synthetic work, we used "click-chemistry" to synthesize two Multi Target Directed Ligands (MTDLs) MB105 and MB118 carrying tacrine and quinuclidine scaffolds which are known for their anticholinesterase and α7 nAChR agonist activities, respectively. Both, MB105 and MB118, inhibit human acetylcholinesterase and human butyrylcholinesterase in the nanomolar range. Electrophysiological recordings on Xenopus laevis oocytes expressing human α7 nAChR showed that MB105 and MB118 acted as partial agonists of the referred nicotinic receptor, albeit, with different potencies despite their similar structure. The different substitution at C-3 on the 2,3-disubstituted quinuclidine scaffold may account for the significantly lower potency of MB118 compared to MB105. Electrophysiological recordings also showed that the tacrine precursor MB320 behaved as a competitive antagonist of human α7 nAChR, in the micromolar range, while the quinuclidine synthetic precursor MB099 acted as a partial agonist. Taken all together, MB105 behaved as a partial agonist of α7 nAChR at concentrations where it completely inhibited human acetylcholinesterase activity paving the way for the design of novel MTDLs for palliative treatment of AD.
Collapse
|
170
|
Shan T, Chen C, Ding Q, Chen X, Zhang H, Chen A, Shi X, Gao X. Molecular characterization and expression profiles of nicotinic acetylcholine receptors in Bradysia odoriphaga. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 165:104563. [PMID: 32359542 DOI: 10.1016/j.pestbp.2020.104563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/16/2020] [Accepted: 03/01/2020] [Indexed: 06/11/2023]
Abstract
Bradysia odoriphaga is a destructive insect pest, damaging more than 30 crop species. Nicotinic acetylcholine receptors (nAChRs) mediating fast excitatory transmission in the central nervous system in insects are the molecular targets of some economically important insecticides including imidacloprid, which has been widely used to control B. odoriphaga in China since 2013. However, the clear characterization about nAChRs in B. odoriphaga is still unknown. Hence, our objective is to identify and characterize the nAChR gene family in B. odoriphaga based on the transcriptome database and sequence, phylogenetic and expression profiles analysis. In this study, we cloned seven nAChR subunit genes from B. odoriphaga, including Boα1, Boα2, Boα3, Boα7, Boα8, Boβ1 and Boβ3. Sequence analysis revealed that the seven nAChR subunits of B. odoriphaga shared the typical structural features with Drosophila melanogaster nAChR α1 subunit, including an extracellular N-terminal domain containing six functional loops (loop A-F), a signature Cys-loop with two disulfide bond-forming cysteines separated by 13 amino acid residues, and four typical transmembrane helices (TM1-TM4) in the C-terminal region. Phylogenetic analysis suggested that seven nAChR subunit genes in B. odoriphaga are evolutionarily conserved among four model insects, including D. melanogaster, Bombyx mori, Apis mellifera and Tribolium castaneum. Meanwhile, nAChR α4, α5, α6 and β2 subunit genes may potentially exist in B. odoriphaga, which need further study. Furthermore, quantitative real-time PCR analysis revealed the specific expression pattern of nAChR subunits in three body parts including head, thorax and abdomen, and developmental expression pattern of nAChR subunits throughout the B. odoriphaga life cycle. These results provided necessary information for further investigating the diverse functions of nAChRs in B. odoriphaga.
Collapse
Affiliation(s)
- Tisheng Shan
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Chengyu Chen
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Qian Ding
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xuewei Chen
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Huihui Zhang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Anqi Chen
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xueyan Shi
- Department of Entomology, China Agricultural University, Beijing 100193, China..
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
171
|
Abdelzaher LA, Hussein OA, Ashry IEM. The Novel Potential Therapeutic Utility of Montelukast in Alleviating Autistic Behavior Induced by Early Postnatal Administration of Thimerosal in Mice. Cell Mol Neurobiol 2020; 41:129-150. [PMID: 32303879 DOI: 10.1007/s10571-020-00841-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/01/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM: Thimerosal (THIM) is a mercury-containing preservative widely used in many biological and medical products including many vaccines. It has been accused of being a possible etiological factor for some neurodevelopmental disorders such as autistic spectrum disorders (ASDs). In our study, the potential therapeutic effect of montelukast, a leukotriene receptor antagonist used to treat seasonal allergies and asthma, on THIM mice model (ASDs model) was examined. METHODOLOGY Newborn mice were randomly distributed into three groups: (Group 1) Control (Cont.) group received saline injections. (Group 2) THIM-treated (THIM) group received THIM intramuscular (IM) at a dose of 3000 μg Hg/kg on postnatal days 7, 9, 11, and 15. (Group 3) Montelukast-treated (Monte) group received THIM followed by montelukast sodium (10 mg/kg/day) intraperitoneal (IP) for 3 weeks. Mice were evaluated for growth development, social interactions, anxiety, locomotor activity, and cognitive function. Brain histopathology, alpha 7 nicotinic acetylcholine receptors (α7nAChRs), nuclear factor kappa B p65 (NF-κB p65), apoptotic factor (Bax), and brain injury markers were evaluated as well. RESULTS THIIM significantly impaired social activity and growth development. Montelukast mitigated THIM-induced social deficit probably through α7nAChRs upregulation, NF-κB p65, Bax, and brain injury markers downregulation, thus suppressing THIM-induced neuronal toxicity and inflammation. CONCLUSION Neonatal exposure to THIM can induce growth retardation and abnormal social interactions similar to those observed in ASDs. Some of these abnormalities could be ameliorated by montelukast via upregulation of α7nAChRs that inhibited NF-κB activation and significant suppression of neuronal injury and the associated apoptosis.
Collapse
Affiliation(s)
- Lobna A Abdelzaher
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Ola A Hussein
- Department of Histology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - I E M Ashry
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
172
|
Progress in nicotinic receptor structural biology. Neuropharmacology 2020; 171:108086. [PMID: 32272141 DOI: 10.1016/j.neuropharm.2020.108086] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
Abstract
Here we begin by briefly reviewing landmark structural studies on the nicotinic acetylcholine receptor. We highlight challenges that had to be overcome to push through resolution barriers, then focus on what has been gleaned in the past few years from crystallographic and single particle cryo-EM studies of different nicotinic receptor subunit assemblies and ligand complexes. We discuss insights into ligand recognition, ion permeation, and allosteric gating. We then highlight some foundational aspects of nicotinic receptor structural biology that remain unresolved and are areas ripe for future exploration. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
|
173
|
Kabbani N, Olds JL. Does COVID19 Infect the Brain? If So, Smokers Might Be at a Higher Risk. Mol Pharmacol 2020; 97:351-353. [PMID: 32238438 DOI: 10.1124/molpharm.120.000014] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 03/27/2020] [Indexed: 12/17/2022] Open
Abstract
COVID19 is a devastating global pandemic with epicenters in China, Italy, Spain, and now the United States. While the majority of infected cases appear mild, in some cases, individuals present serious cardiorespiratory complications with possible long-term lung damage. Infected individuals report a range of symptoms from headaches to shortness of breath to taste and smell loss. To that end, less is known about how the virus may impact different organ systems. The SARS-CoV2 virus, which is responsible for COVID19, is highly similar to SARS-CoV. Both viruses have evolved an ability to enter host cells through direct interaction with the angiotensin converting enzyme (ACE) 2 protein at the surface of many cells. Published findings indicate that SARS-CoV can enter the human nervous system with evidence from both postmortem brains and detection in cerebrospinal fluid of infected individuals. Here, we consider the ability of SARS-CoV2 to enter and infect the human nervous system based on the strong expression of the ACE2 target throughout the brain. Moreover, we predict that nicotine exposure through various kinds of smoking (cigarettes, electronic cigarettes, or vape) can increase the risk for COVID19 neuroinfection based on known functional interactions between the nicotinic receptor and ACE2. We advocate for higher surveillance and analysis of neurocomplications in infected cases. SIGNIFICANCE STATEMENT: The COVID19 epidemic has spurred a global public health crisis. While many of the cases requiring hospitalization and intensive medical care center on cardiorespiratory treatment, a growing number of cases present neurological symptoms. Viral entry into the brain now appears a strong possibility with deleterious consequences and an urgent need for addressing.
Collapse
Affiliation(s)
- Nadine Kabbani
- School of Systems Biology, George Mason University, Fairfax, Virginia (N.K.) and Schar School of Policy and Government, George Mason University, Arlington, Virginia (J.L.O.)
| | - James L Olds
- School of Systems Biology, George Mason University, Fairfax, Virginia (N.K.) and Schar School of Policy and Government, George Mason University, Arlington, Virginia (J.L.O.)
| |
Collapse
|
174
|
Baradaran R, Khoshdel‐Sarkarizi H, Kargozar S, Hami J, Mohammadipour A, Sadr‐Nabavi A, Peyvandi Karizbodagh M, Kheradmand H, Haghir H. Developmental regulation and lateralisation of the α7 and α4 subunits of nicotinic acetylcholine receptors in developing rat hippocampus. Int J Dev Neurosci 2020; 80:303-318. [DOI: 10.1002/jdn.10026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/25/2022] Open
Affiliation(s)
- Raheleh Baradaran
- Department of Anatomy and Cell Biology School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Hoda Khoshdel‐Sarkarizi
- Department of Anatomy and Cell Biology School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG) Department of Anatomy and Cell Biology School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Javad Hami
- Department of Anatomical Sciences School of Medicine Birjand University of Medical Sciences Birjand Iran
| | - Abbas Mohammadipour
- Department of Anatomy and Cell Biology School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Ariane Sadr‐Nabavi
- Department of Medical Genetics School of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Medical Genetic Research Center (MGRC) School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | | | - Hamed Kheradmand
- Hazrat Rasoul Hospital Tehran University of Medical Sciences Tehran Iran
| | - Hossein Haghir
- Department of Anatomy and Cell Biology School of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Medical Genetic Research Center (MGRC) School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
175
|
Donat CK, Hansen HH, Hansen HD, Mease RC, Horti AG, Pomper MG, L’Estrade ET, Herth MM, Peters D, Knudsen GM, Mikkelsen JD. In Vitro and In Vivo Characterization of Dibenzothiophene Derivatives [ 125I]Iodo-ASEM and [ 18F]ASEM as Radiotracers of Homo- and Heteromeric α7 Nicotinic Acetylcholine Receptors. Molecules 2020; 25:molecules25061425. [PMID: 32245032 PMCID: PMC7144377 DOI: 10.3390/molecules25061425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/18/2022] Open
Abstract
The α7 nicotinic acetylcholine receptor (α7 nAChR) is involved in several cognitive and physiologic processes; its expression levels and patterns change in neurologic and psychiatric diseases, such as schizophrenia and Alzheimer’s disease, which makes it a relevant drug target. Development of selective radioligands is important for defining binding properties and occupancy of novel molecules targeting the receptor. We tested the in vitro binding properties of [125I]Iodo-ASEM [(3-(1,4-diazabycyclo[3.2.2]nonan-4-yl)-6-(125I-iododibenzo[b,d]thiopentene 5,5-dioxide)] in the mouse, rat and pig brain using autoradiography. The in vivo binding properties of [18F]ASEM were investigated using positron emission tomography (PET) in the pig brain. [125I]Iodo-ASEM showed specific and displaceable high affinity (~1 nM) binding in mouse, rat, and pig brain. Binding pattern overlapped with [125I]α-bungarotoxin, specific binding was absent in α7 nAChR gene-deficient mice and binding was blocked by a range of α7 nAChR orthosteric modulators in an affinity-dependent order in the pig brain. Interestingly, relative to the wild-type, binding in β2 nAChR gene-deficient mice was lower for [125I]Iodo-ASEM (58% ± 2.7%) than [125I]α-bungarotoxin (23% ± 0.2%), potentially indicating different binding properties to heteromeric α7β2 nAChR. [18F]ASEM PET in the pig showed high brain uptake and reversible tracer kinetics with a similar spatial distribution as previously reported for α7 nAChR. Blocking with SSR-180,711 resulted in a significant decrease in [18F]ASEM binding. Our findings indicate that [125I]Iodo-ASEM allows sensitive and selective imaging of α7 nAChR in vitro, with better signal-to-noise ratio than previous tracers. Preliminary data of [18F]ASEM in the pig brain demonstrated principal suitable kinetic properties for in vivo quantification of α7 nAChR, comparable to previously published data.
Collapse
Affiliation(s)
- Cornelius K. Donat
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; (H.H.H.); (H.D.H.); (E.T.L.); (G.M.K.)
- Department of Brain Sciences, Imperial College London, London W12 0 LS, UK
- Correspondence: (C.K.D.); (J.D.M.); Tel.: +45-40205378 (J.D.M)
| | - Henrik H. Hansen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; (H.H.H.); (H.D.H.); (E.T.L.); (G.M.K.)
| | - Hanne D. Hansen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; (H.H.H.); (H.D.H.); (E.T.L.); (G.M.K.)
| | - Ronnie C. Mease
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (R.C.M.); (A.G.H.); (M.G.P.)
| | - Andrew G. Horti
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (R.C.M.); (A.G.H.); (M.G.P.)
| | - Martin G. Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (R.C.M.); (A.G.H.); (M.G.P.)
| | - Elina T. L’Estrade
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; (H.H.H.); (H.D.H.); (E.T.L.); (G.M.K.)
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark;
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Matthias M. Herth
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark;
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | | | - Gitte M. Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; (H.H.H.); (H.D.H.); (E.T.L.); (G.M.K.)
| | - Jens D. Mikkelsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; (H.H.H.); (H.D.H.); (E.T.L.); (G.M.K.)
- Correspondence: (C.K.D.); (J.D.M.); Tel.: +45-40205378 (J.D.M)
| |
Collapse
|
176
|
Ben-David Y, Kagan S, Cohen Ben-Ami H, Rostami J, Mizrahi T, Kulkarni AR, Thakur GA, Vaknin-Dembinsky A, Healy LM, Brenner T, Treinin M. RIC3, the cholinergic anti-inflammatory pathway, and neuroinflammation. Int Immunopharmacol 2020; 83:106381. [PMID: 32179243 DOI: 10.1016/j.intimp.2020.106381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/19/2020] [Accepted: 03/04/2020] [Indexed: 01/16/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels having many functions including inflammation control, as part of the cholinergic anti-inflammatory pathway. Genome wide association studies implicated RIC3, a chaperone of nAChRs, in multiple sclerosis (MS), a neuroinflammatory disease. To understand the involvement of RIC3 in inflammatory diseases we examined its expression, regulation, and function in activated immune cells. Our results show that immune activation leads to dynamic changes in RIC3 expression, in a mouse model of MS and in human lymphocytes and macrophages. We also show similarities in the expression dynamics of RIC3 and CHRNA7, encoding for the α7 nAChR subunit. Homomeric α7 nAChRs were shown to mediate the anti-inflammatory effects of cholinergic agonists. Thus, similarity in expression dynamics between RIC3 and CHRNA7 is suggestive of functional concordance. Indeed, siRNA mediated silencing of RIC3 in a mouse macrophage cell line eliminates the anti-inflammatory effects of cholinergic agonists. Furthermore, we show increased average expression of RIC3 and CHRNA7 in lymphocytes from MS patients, and a strong correlation between expression levels of these two genes in MS patients but not in healthy donors. Together, our results are consistent with a role for RIC3 and for the mechanisms regulating its expression in inflammatory processes and in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Yael Ben-David
- Medical Neurobiology, Hadassah Medical School, Hebrew University, Jerusalem, Israel
| | - Sara Kagan
- Medical Neurobiology, Hadassah Medical School, Hebrew University, Jerusalem, Israel
| | - Hagit Cohen Ben-Ami
- Medical Neurobiology, Hadassah Medical School, Hebrew University, Jerusalem, Israel
| | - Jinar Rostami
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Tehila Mizrahi
- Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital and Hebrew University Medical School, Jerusalem, Israel
| | - Abhijit R Kulkarni
- Pharmaceutical Science, Bouve College of Health Science, Northeastern University, Boston, USA
| | - Ganesh A Thakur
- Pharmaceutical Science, Bouve College of Health Science, Northeastern University, Boston, USA
| | - Adi Vaknin-Dembinsky
- Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital and Hebrew University Medical School, Jerusalem, Israel
| | - Luke M Healy
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Talma Brenner
- Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital and Hebrew University Medical School, Jerusalem, Israel
| | - Millet Treinin
- Medical Neurobiology, Hadassah Medical School, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
177
|
Stone TW. Does kynurenic acid act on nicotinic receptors? An assessment of the evidence. J Neurochem 2020; 152:627-649. [PMID: 31693759 PMCID: PMC7078985 DOI: 10.1111/jnc.14907] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/19/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023]
Abstract
As a major metabolite of kynurenine in the oxidative metabolism of tryptophan, kynurenic acid is of considerable biological and clinical importance as an endogenous antagonist of glutamate in the central nervous system. It is most active as an antagonist at receptors sensitive to N-methyl-D-aspartate (NMDA) which regulate neuronal excitability and plasticity, brain development and behaviour. It is also thought to play a causative role in hypo-glutamatergic conditions such as schizophrenia, and a protective role in several neurodegenerative disorders, notably Huntington's disease. An additional hypothesis, that kynurenic acid could block nicotinic receptors for acetylcholine in the central nervous system has been proposed as an alternative mechanism of action of kynurenate. However, the evidence for this alternative mechanism is highly controversial, partly because at least eight earlier studies concluded that kynurenic acid blocked NMDA receptors but not nicotinic receptors and five subsequent, independent studies designed to repeat the results have failed to do so. Many studies considered to support the alternative 'nicotinic' hypothesis have been based on the use of analogs of kynurenate such as 7-chloro-kynurenic acid, or putatively nicotinic modulators such as galantamine, but a detailed analysis of the pharmacology of these compounds suggests that the results have often been misinterpreted, especially since the pharmacology of galantamine itself has been disputed. This review examines the evidence in detail, with the conclusion that there is no confirmed, reliable evidence for an antagonist activity of kynurenic acid at nicotinic receptors. Therefore, since there is overwhelming evidence for kynurenate acting at ionotropic glutamate receptors, especially NMDAR glutamate and glycine sites, with some activity at GPR35 sites and Aryl Hydrocarbon Receptors, results with kynurenic acid should be interpreted only in terms of these confirmed sites of action.
Collapse
Affiliation(s)
- Trevor W. Stone
- Institute for Neuroscience and PsychologyUniversity of GlasgowGlasgowG12 8QQUK
- Present address:
Kennedy InstituteNDORMSUniversity of OxfordOxfordOX3 7FYUK
| |
Collapse
|
178
|
Singh L, Joshi T, Tewari D, Echeverría J, Mocan A, Sah AN, Parvanov E, Tzvetkov NT, Ma ZF, Lee YY, Poznański P, Huminiecki L, Sacharczuk M, Jóźwik A, Horbańczuk JO, Feder-Kubis J, Atanasov AG. Ethnopharmacological Applications Targeting Alcohol Abuse: Overview and Outlook. Front Pharmacol 2020; 10:1593. [PMID: 32116660 PMCID: PMC7034411 DOI: 10.3389/fphar.2019.01593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
Excessive alcohol consumption is the cause of several diseases and thus is of a major concern for society. Worldwide alcohol consumption has increased by many folds over the past decades. This urgently calls for intervention and relapse counteract measures. Modern pharmacological solutions induce complete alcohol self-restraint and prevent relapse, but they have many side effects. Natural products are most promising as they cause fewer adverse effects. Here we discuss in detail the medicinal plants used in various traditional/folklore medicine systems for targeting alcohol abuse. We also comprehensively describe preclinical and clinical studies done on some of these plants along with the possible mechanisms of action.
Collapse
Affiliation(s)
- Laxman Singh
- Centre for Biodiversity Conservation & Management, G.B. Pant National Institute of Himalayan Environment & Sustainable Development, Almora, India
| | - Tanuj Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University Bhimtal Campus, Nainital, India
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Javier Echeverría
- Department of Environmental Sciences, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Andrei Mocan
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University Bhimtal Campus, Nainital, India
| | - Emil Parvanov
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Division BIOCEV, Prague, Czechia
| | - Nikolay T. Tzvetkov
- Institute of Molecular Biology “Roumen Tsanev”, Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Department Global R&D, NTZ Lab Ltd., Sofia, Bulgaria
| | - Zheng Feei Ma
- Department of Public Health, Xi’an Jiaotong-Liverpool University, Suzhou, China
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Yeong Yeh Lee
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Piotr Poznański
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Lukasz Huminiecki
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Mariusz Sacharczuk
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Artur Jóźwik
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Jarosław O. Horbańczuk
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Joanna Feder-Kubis
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego, Wrocław, Poland
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
179
|
Bertrand D, Wallace TL. A Review of the Cholinergic System and Therapeutic Approaches to Treat Brain Disorders. Curr Top Behav Neurosci 2020; 45:1-28. [PMID: 32451956 DOI: 10.1007/7854_2020_141] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Since its identification over a hundred years ago, the neurotransmitter acetylcholine (ACh) has proven to play an essential role in supporting many diverse functions. Some well-characterized functions include: chemical transmission at the neuromuscular junction; autonomic function in the peripheral nervous system; and, sustained attention, sleep/wake regulation, and learning and memory within the central nervous system. Within the brain, major cholinergic projection pathways from the basal forebrain and the brainstem support these centrally mediated processes, and dysregulation of the cholinergic system is implicated in cognitive decline associated with aging and dementias including Alzheimer's disease. ACh exerts its effects by binding to two different membrane-bound receptor classes: (1) G‑protein coupled muscarinic acetylcholine receptors (mAChRs), and (2) ligand-gated nicotinic acetylcholine receptors (nAChRs). These receptor systems are described in detail within this chapter along with discussion on the successes and failures of synthetic ligands designed to selectively target receptor subtypes for treating brain disorders. New molecular approaches and advances in our understanding of the target biology combined with opportunities to re-purpose existing cholinergic drugs for new indications continue to highlight the exciting opportunities for modulating this system for therapeutic purposes.
Collapse
|
180
|
Mani V, Mohd Azahan N, Ramasamy K, Lim S, Johari James R, Alsharidah M, Alhowail A, Abdul Majeed A. Mahanimbine-induced neuroprotection via cholinergic system and attenuated amyloidogenesis as well as neuroinflammation in lipopolysaccharides-induced mice. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_202_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
181
|
Djemil S, Chen X, Zhang Z, Lee J, Rauf M, Pak DTS, Dzakpasu R. Activation of nicotinic acetylcholine receptors induces potentiation and synchronization within in vitro hippocampal networks. J Neurochem 2019; 153:468-484. [PMID: 31821553 DOI: 10.1111/jnc.14938] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 01/08/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are known to play a role in cognitive functions of the hippocampus, such as memory consolidation. Given that they conduct Ca2+ and are capable of regulating the release of glutamate and γ-aminobutyric acid (GABA) within the hippocampus, thereby shifting the excitatory-inhibitory ratio, we hypothesized that the activation of nAChRs will result in the potentiation of hippocampal networks and alter synchronization. We used nicotine as a tool to investigate the impact of activation of nAChRs on neuronal network dynamics in primary embryonic rat hippocampal cultures prepared from timed-pregnant Sprague-Dawley rats. We perturbed cultured hippocampal networks with increasing concentrations of bath-applied nicotine and performed network extracellular recordings of action potentials using a microelectrode array. We found that nicotine modulated network dynamics in a concentration-dependent manner; it enhanced firing of action potentials as well as facilitated bursting activity. In addition, we used pharmacological agents to determine the contributions of discrete nAChR subtypes to the observed network dynamics. We found that β4-containing nAChRs are necessary for the observed increases in spiking, bursting, and synchrony, while the activation of α7 nAChRs augments nicotine-mediated network potentiation but is not necessary for its manifestation. We also observed that antagonists of N-methyl-D-aspartate receptors (NMDARs) and group I metabotropic glutamate receptors (mGluRs) partially blocked the effects of nicotine. Furthermore, nicotine exposure promoted autophosphorylation of Ca2+ /calmodulin-dependent kinase II (CaMKII) and serine 831 phosphorylation of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunit GluA1. These results suggest that nicotinic receptors induce potentiation and synchronization of hippocampal networks and glutamatergic synaptic transmission. Findings from this work highlight the impact of cholinergic signaling in generating network-wide potentiation in the form of enhanced spiking and bursting dynamics that coincide with molecular correlates of memory such as increased phosphorylation of CaMKII and GluA1. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Sarra Djemil
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - Xin Chen
- Department of Physics, Georgetown University, Washington, DC, USA
| | - Ziyue Zhang
- Department of Physics, Georgetown University, Washington, DC, USA
| | - Jisoo Lee
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - Mikael Rauf
- Department of Human Science, Georgetown University Medical Center, Washington, DC, USA
| | - Daniel T S Pak
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA.,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Rhonda Dzakpasu
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA.,Department of Physics, Georgetown University, Washington, DC, USA.,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
182
|
Dezfuli G, Olson TT, Martin LM, Keum Y, Siegars BA, Desai A, Uitz M, Sahibzada N, Gillis RA, Kellar KJ. α4β2 nicotinic acetylcholine receptors intrinsically influence body weight in mice. Neuropharmacology 2019; 166:107921. [PMID: 31881170 DOI: 10.1016/j.neuropharm.2019.107921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/26/2019] [Accepted: 12/20/2019] [Indexed: 11/29/2022]
Abstract
Desensitization of the nicotinic acetylcholine receptor (nAChR) containing the β2 subunit is a potentially critical mechanism underlying the body weight (BW) reducing effects of nicotine. The purpose of this study was a) to determine the α subunit(s) that partners with the β2 subunit to form the nAChR subtype that endogenously regulates energy balance and b) to probe the extent to which nAChR desensitization could be involved in the regulation of BW. We demonstrate that deletion of either the α4 or the β2, but not the α5, subunit of the nAChR suppresses weight gain in a sex-dependent manner. Furthermore, chronic treatment with the β2-selective nAChR competitive antagonist dihydro-β-erythroidine (DHβE) in mice fed a high-fat diet suppresses weight gain. These results indicate that heteromeric α4β2 nAChRs play a role as intrinsic regulators of energy balance and that desensitizing or inhibiting this nAChR is likely a relevant mechanism and thus could be a strategy for weight loss.
Collapse
Affiliation(s)
- Ghazaul Dezfuli
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Thao T Olson
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Lukas M Martin
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Youngshin Keum
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Byron A Siegars
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Anushka Desai
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Mia Uitz
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Niaz Sahibzada
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Richard A Gillis
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Kenneth J Kellar
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C., USA.
| |
Collapse
|
183
|
Barrenschee M, Cossais F, Böttner M, Egberts JH, Becker T, Wedel T. Impaired Expression of Neuregulin 1 and Nicotinic Acetylcholine Receptor β4 Subunit in Diverticular Disease. Front Cell Neurosci 2019; 13:563. [PMID: 31920561 PMCID: PMC6930903 DOI: 10.3389/fncel.2019.00563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022] Open
Abstract
Neuregulin 1 (NRG1) regulates the expression of the nicotinic acetylcholine receptor (nAChR) and is suggested to promote the survival and maintenance of the enteric nervous system (ENS), since deficiency of its corresponding receptor complex ErbB2/ErbB3 leads to postnatal colonic aganglionosis. As diverticular disease (DD) is associated with intestinal hypoganglionosis, the NRG1-ErbB2/ErbB3 system and the nAChR were studied in patients with DD and controls. Samples of tunica muscularis of the sigmoid colon from patients with DD (n = 8) and controls (n = 11) were assessed for mRNA expression of NRG1, ErbB2, and ErbB3 and the nAChR subunits α3, α5, α7, β2, and β4. Site-specific gene expression levels of the NRG1-ErbB2/3 system were determined in myenteric ganglia harvested by laser microdissection (LMD). Localization studies were performed by immunohistochemistry for the NRG1-ErbB2/3 system and nAChR subunit β4. Rat enteric nerve cell cultures were stimulated with NRG1 or glial-cell line derived neurotrophic factor (GDNF) for 6 days and mRNA expression of the aforementioned nAchR was measured. NRG1, ErbB3, and nAChR subunit β4 expression was significantly down-regulated in both the tunica muscularis and myenteric ganglia of patients with DD compared to controls, whereas mRNA expression of ErbB3 and nAChR subunits β2, α3, α5, and α7 remained unaltered. NRG1, ErbB3, and nAChR subunit β4 immunoreactive signals were reduced in neuronal somata and the neuropil of myenteric ganglia from patients with DD compared to control. nAChR subunit β4 exhibited also weaker immunoreactive signals in the tunica muscularis of patients with DD. NRG1 treatment but not GDNF treatment of enteric nerve cell cultures significantly enhanced mRNA expression of nAchR β4. The down-regulation of NRG1 and ErbB3 in myenteric ganglia of patients with DD supports the hypothesis that intestinal hypoganglionosis observed in DD may be attributed to a lack of neurotrophic factors. Regulation of nAChR subunit β4 by NRG1 and decreased nAChR β4 in patients with DD provide evidence that a lack of NRG1 may affect the composition of enteric neurotransmitter receptor subunits thus contributing to the intestinal motility disorders previously reported in DD.
Collapse
Affiliation(s)
- Martina Barrenschee
- Neurogastroenterology, Institute of Anatomy, Christian-Albrechts University of Kiel, Kiel, Germany
| | - François Cossais
- Neurogastroenterology, Institute of Anatomy, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Martina Böttner
- Neurogastroenterology, Institute of Anatomy, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Jan-Hendrik Egberts
- Department of General, Visceral-, Thoracic-, Transplantation-, and Pediatric Surgery, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Thomas Becker
- Department of General, Visceral-, Thoracic-, Transplantation-, and Pediatric Surgery, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Thilo Wedel
- Neurogastroenterology, Institute of Anatomy, Christian-Albrechts University of Kiel, Kiel, Germany
| |
Collapse
|
184
|
Gil SM, Metherate R. Enhanced Sensory-Cognitive Processing by Activation of Nicotinic Acetylcholine Receptors. Nicotine Tob Res 2019; 21:377-382. [PMID: 30137439 DOI: 10.1093/ntr/nty134] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Activation of nicotinic acetylcholine receptors (nAChRs) enhances sensory-cognitive function in human subjects and animal models, yet the neural mechanisms are not fully understood. This review summarizes recent studies on nicotinic regulation of neural processing in the cerebral cortex that point to potential mechanisms underlying enhanced cognitive function. Studies from our laboratory focus on nicotinic regulation of auditory cortex and implications for auditory-cognitive processing, but relevant emerging insights from multiple brain regions are discussed. Although the major contributions of the predominant nAChRs containing α7 (homomeric receptors) or α4 and β2 (heteromeric) subunits are well recognized, recent results point to additional, potentially critical contributions from α2 subunits that are relatively sparse in cortex. Ongoing studies aim to elucidate the specific contributions to cognitive and cortical function of diverse nAChRs. IMPLICATIONS This review highlights the therapeutic potential of activating nAChRs in the cerebral cortex to enhance cognitive function. Future work also must determine the contributions of relatively rare but important nAChR subtypes, potentially to develop more selective treatments for cognitive deficits.
Collapse
Affiliation(s)
- Susan M Gil
- Department of Neurobiology and Behavior, Center for Hearing Research, University of California, Irvine, Irvine, CA
| | - Raju Metherate
- Department of Neurobiology and Behavior, Center for Hearing Research, University of California, Irvine, Irvine, CA
| |
Collapse
|
185
|
Russo M, Carrarini C, Dono F, Rispoli MG, Di Pietro M, Di Stefano V, Ferri L, Bonanni L, Sensi SL, Onofrj M. The Pharmacology of Visual Hallucinations in Synucleinopathies. Front Pharmacol 2019; 10:1379. [PMID: 31920635 PMCID: PMC6913661 DOI: 10.3389/fphar.2019.01379] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
Visual hallucinations (VH) are commonly found in the course of synucleinopathies like Parkinson's disease and dementia with Lewy bodies. The incidence of VH in these conditions is so high that the absence of VH in the course of the disease should raise questions about the diagnosis. VH may take the form of early and simple phenomena or appear with late and complex presentations that include hallucinatory production and delusions. VH are an unmet treatment need. The review analyzes the past and recent hypotheses that are related to the underlying mechanisms of VH and then discusses their pharmacological modulation. Recent models for VH have been centered on the role played by the decoupling of the default mode network (DMN) when is released from the control of the fronto-parietal and salience networks. According to the proposed model, the process results in the perception of priors that are stored in the unconscious memory and the uncontrolled emergence of intrinsic narrative produced by the DMN. This DMN activity is triggered by the altered functioning of the thalamus and involves the dysregulated activity of the brain neurotransmitters. Historically, dopamine has been indicated as a major driver for the production of VH in synucleinopathies. In that context, nigrostriatal dysfunctions have been associated with the VH onset. The efficacy of antipsychotic compounds in VH treatment has further supported the notion of major involvement of dopamine in the production of the hallucinatory phenomena. However, more recent studies and growing evidence are also pointing toward an important role played by serotonergic and cholinergic dysfunctions. In that respect, in vivo and post-mortem studies have now proved that serotonergic impairment is often an early event in synucleinopathies. The prominent cholinergic impairment in DLB is also well established. Finally, glutamatergic and gamma aminobutyric acid (GABA)ergic modulations and changes in the overall balance between excitatory and inhibitory signaling are also contributing factors. The review provides an extensive overview of the pharmacology of VH and offers an up to date analysis of treatment options.
Collapse
Affiliation(s)
- Mirella Russo
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Claudia Carrarini
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Fedele Dono
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Marianna Gabriella Rispoli
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Martina Di Pietro
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Vincenzo Di Stefano
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Laura Ferri
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Laura Bonanni
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Stefano Luca Sensi
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Behavioral Neurology and Molecular Neurology Units, Center of Excellence on Aging and Translational Medicine—CeSI-MeT, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Departments of Neurology and Pharmacology, Institute for Mind Impairments and Neurological Disorders—iMIND, University of California, Irvine, Irvine, CA, United States
| | - Marco Onofrj
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
186
|
Kasparbauer AM, Petrovsky N, Schmidt PM, Trautner P, Weber B, Sträter B, Ettinger U. Effects of nicotine and atomoxetine on brain function during response inhibition. Eur Neuropsychopharmacol 2019; 29:235-246. [PMID: 30552041 DOI: 10.1016/j.euroneuro.2018.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/21/2018] [Accepted: 12/01/2018] [Indexed: 12/29/2022]
Abstract
The nicotinic acetylcholine receptor (nAChR) agonist nicotine and the noradrenaline transporter inhibitor atomoxetine are widely studied substances due to their propensity to alleviate cognitive deficits in psychiatric and neurological patients and their beneficial effects on some aspects of cognitive functions in healthy individuals. However, despite growing evidence of acetylcholine-noradrenaline interactions, there are only very few direct comparisons of the two substances. Here, we investigated the effects of nicotine and atomoxetine on response inhibition in the stop-signal task and we characterised the neural correlates of these effects using blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) at 3T. Nicotine (7 mg dermal patch) and atomoxetine (60 mg per os) were applied to N = 26 young, healthy adults in a double-blind, placebo-controlled, cross-over, within-subjects design. BOLD images were collected during a stop-signal task that controlled for infrequency of stop trials. There were no drug effects on behavioural performance or subjective state measures. However, there was a pronounced upregulation of activation in bilateral prefrontal and left parietal cortex following nicotine during successful compared to unsuccessful stop trials. The effect of nicotine on BOLD during failed stop trials was correlated across individuals with a measure of trait impulsivity. Atomoxetine, however, had no discernible effects on BOLD. We conclude that nicotine effects on brain function during inhibitory control are most pronounced in individuals with higher levels of impulsivity. This finding is compatible with previous evidence of nicotine effects on stop-signal task performance in highly impulsive individuals and implicates the nAChR in the neural basis of impulsivity.
Collapse
Affiliation(s)
| | - Nadine Petrovsky
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111 Bonn, Germany
| | - Pia-Magdalena Schmidt
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111 Bonn, Germany
| | - Peter Trautner
- Institute of Experimental Epileptology and Cognition Research, University Hospital of Bonn, Bonn, Germany
| | - Bernd Weber
- Institute of Experimental Epileptology and Cognition Research, University Hospital of Bonn, Bonn, Germany; Center for Economics and Neuroscience, University of Bonn, Bonn, Germany
| | - Birgitta Sträter
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Ulrich Ettinger
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111 Bonn, Germany.
| |
Collapse
|
187
|
Fazari B, Ilieva Decheva C, González García V, Abdel-Hafiz L, Nikolaus S, Hollenberg CP, Huston JP, de Souza Silva MA, Mattern C. Intranasal pregnenolone increases acetylcholine in frontal cortex, hippocampus, and amygdala-Preferentially in the hemisphere ipsilateral to the injected nostril. J Neurochem 2019; 153:189-202. [PMID: 31755558 DOI: 10.1111/jnc.14923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 11/27/2022]
Abstract
This study determined the effects of intranasal pregnenolone (IN-PREG) on acetylcholine (ACh) levels in selected areas of the rat brain, using in vivo microdialysis. Previous studies showed that PREG rapidly reaches the rodent brain after intranasal administration and that direct infusion of PREG and PREG-S into the basal forebrain modulates ACh release in frontal cortex, amygdala, and hippocampus. In the present study, we investigated the effects of IN-PREG on the cholinergic system in the rat brain. In the first experiment, IN-PREG (5.6 and 11.2 mg/ml) or vehicle was applied bilaterally, and we hypothesized that IN-PREG would increase ACh levels in amygdala, hippocampus, and frontal cortex, relative to baseline and vehicle. Dialysate was collected for 100 min, based on pilot data of duration of effect. Bilateral IN-PREG (5.6 and 11.2 mg/ml) increased frontal cortex and hippocampal ACh relative to both baseline and vehicle. Moreover, 11.2 mg/ml PREG increased ACh in the amygdala relative to baseline, the lower dose, and vehicle. Therefore, in the second experiment, IN-PREG (11.2 mg/ml) was applied only into one nostril, with vehicle applied into the other nostril, in order to determine whether ACh is predominantly increased in the ipsilateral relative to the contralateral amygdala. Unilateral application of IN-PREG increased ACh in the ipsilateral amygdala, whereas no effect was observed on the contralateral side, suggesting that PREG was transported from the nostrils to the brain via the olfactory epithelial pathway, but not by circulation. The present data provide additional information on IN-PREG action in the cholinergic system of frontal cortex, amygdala, and hippocampus. This may be relevant for therapeutic IN application of PREG in neurogenerative and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Benedetta Fazari
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Cvetana Ilieva Decheva
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Victoria González García
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Laila Abdel-Hafiz
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.,Institute of Anatomy II, Medical Faculty, Heinrich Heine Universität, Düsseldorf, Germany
| | - Susanne Nikolaus
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Cornelis P Hollenberg
- Institute of Microbiology, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Maria A de Souza Silva
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Claudia Mattern
- M et P Pharma AG, Emetten, Switzerland.,Oceanographic Center, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
188
|
Fernandes P, Pereira D, Watkins PB, Bertrand D. Differentiating the Pharmacodynamics and Toxicology of Macrolide and Ketolide Antibiotics. J Med Chem 2019; 63:6462-6473. [PMID: 31644280 DOI: 10.1021/acs.jmedchem.9b01159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This is a review of the macrolide and ketolide field focusing on differentiating the pharmacodynamics and especially the toxicology of the macrolides and ketolides. We emphasize the diversity in pharmacodynamics and toxicity of the macrolides and ketolides, resulting from even small structural changes, which makes it important to consider the various different compounds separately, not necessarily as a class. The ketolide, telithromycin, was developed because of rising bacterial macrolide resistance but was withdrawn postapproval after visual disturbances, syncope, myasthenia gravis, and hepatotoxicity were noted. These diverse adverse effects could be attributed to inhibition of nicotinic acetylcholine receptors. Solithromycin, a later generation ketolide, was effective in treating bacterial pneumonia, but it was not approved by the U.S. Food and Drug Administration owing, in part, to its structural similarity to telithromycin. This Miniperspective describes that structurally similar macrolides/ketolides have clearly mechanistically distinct effects. Understanding these effects could help in developing and securing regulatory approval of a new macrolide/ketolide that is active against macrolide-resistant pathogenic bacteria.
Collapse
Affiliation(s)
| | - David Pereira
- Ponce De Leon Health, Fernandina Beach, Florida 32034, United States
| | - Paul B Watkins
- Schools of Pharmacy, Medicine and Public Health, Institute for Drug Safety Sciences, University of North Carolina, Chapel Hill, North Carolina 27514, United States
| | - Daniel Bertrand
- HiQScreen SÃrl, 6, Route de Compois, Vesenaz, 1222 Geneva, Switzerland
| |
Collapse
|
189
|
Kloos M, Weigel S, Luksch H. Anatomy and Physiology of Neurons in Layer 9 of the Chicken Optic Tectum. Front Neural Circuits 2019; 13:63. [PMID: 31680877 PMCID: PMC6802604 DOI: 10.3389/fncir.2019.00063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/18/2019] [Indexed: 12/03/2022] Open
Abstract
Visual information in birds is to great extent processed in the optic tectum (TeO), a prominent laminated midbrain structure. Retinal input enters the TeO in its superficial layers, while output is limited to intermediate and deeper layers. In addition to visual information, the TeO receives multimodal input from the auditory and somatosensory pathway. The TeO gives rise to a major ascending tectofugal projection where neurons of tectal layer 13 project to the thalamic nucleus rotundus, which then projects to the entopallium. A second tectofugal projection system, called the accessory pathway, has however not been studied as thoroughly. Again, cells of tectal layer 13 form an ascending projection that targets a nucleus known as either the caudal part of the nucleus dorsolateralis posterior of the thalamus (DLPc) or nucleus uveaformis (Uva). This nucleus is known for multimodal integration and receives additional input from the lateral pontine nucleus (PL), which in turn receives projections from layer 8–15 of the TeO. Here, we studied a particular cell type afferent to the PL that consists of radially oriented neurons in layer 9. We characterized these neurons with respect to their anatomy, their retinal input, and the modulation of retinal input by local circuits. We found that comparable to other radial neurons in the tectum, cells of layer 9 have columnar dendritic fields and reach up to layer 2. Sholl analysis demonstrated that dendritic arborization concentrates on retinorecipient layers 2 and 4, with additional arborization in layers 9 and 10. All neurons recorded in layer 9 received retinal input via glutamatergic synapses. We analyzed the influence of modulatory circuits of the TeO by application of antagonists to γ-aminobutyric acid (GABA) and acetylcholine (ACh). Our data show that the neurons of layer 9 are integrated in a network under strong GABAergic inhibition, which is controlled by local cholinergic activation. Output to the PL and to the accessory tectofugal pathway thus appears to be under strict control of local tectal networks, the relevance of which for multimodal integration is discussed.
Collapse
Affiliation(s)
- Marinus Kloos
- Department of Animal Sciences, Chair of Zoology, Technical University of Munich, Freising, Germany.,Institute of Neuroscience, Technical University of Munich, Munich, Germany
| | - Stefan Weigel
- Department of Animal Sciences, Chair of Zoology, Technical University of Munich, Freising, Germany
| | - Harald Luksch
- Department of Animal Sciences, Chair of Zoology, Technical University of Munich, Freising, Germany
| |
Collapse
|
190
|
Sabec MH, Wonnacott S, Warburton EC, Bashir ZI. Nicotinic Acetylcholine Receptors Control Encoding and Retrieval of Associative Recognition Memory through Plasticity in the Medial Prefrontal Cortex. Cell Rep 2019; 22:3409-3415. [PMID: 29590611 PMCID: PMC5896173 DOI: 10.1016/j.celrep.2018.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/15/2018] [Accepted: 03/02/2018] [Indexed: 01/01/2023] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) expressed in the medial prefrontal cortex have critical roles in cognitive function. However, whether nAChRs are required for associative recognition memory and the mechanisms by which nAChRs may contribute to mnemonic processing are not known. We demonstrate that nAChRs in the prefrontal cortex exhibit subtype-specific roles in associative memory encoding and retrieval. We present evidence that these separate roles of nAChRs may rely on bidirectional modulation of plasticity at synaptic inputs to the prefrontal cortex that are essential for associative recognition memory. Prefrontal α7 nAChRs are critical for encoding of associative recognition memory Prefrontal α4β2 nAChRs are required for retrieval of associative recognition memory α7 and α4β2 nAChRs gate bidirectional plasticity at hippocampal-prefrontal synapses Bidirectional plasticity underlies the role of nAChR in associative recognition
Collapse
Affiliation(s)
- Marie H Sabec
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK.
| | - Susan Wonnacott
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - E Clea Warburton
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Zafar I Bashir
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
191
|
Doguc DK, Deniz F, İlhan İ, Ergonul E, Gultekin F. Prenatal exposure to artificial food colorings alters NMDA receptor subunit concentrations in rat hippocampus. Nutr Neurosci 2019; 24:784-794. [PMID: 31679476 DOI: 10.1080/1028415x.2019.1681065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Exposure to artificial food color additives (AFCAs) has been implicated in the etiology of certain childhood hyperactivity and learning disabilities. N-methyl-D-aspartate receptors and alpha-7 nicotinic acetylcholine receptor (α7 nAChR) are involved in learning and memory. We administered a mixture of AFCAs (erythrosine, ponceau 4R, allura red AC, sunset yellow FCF, tartrazine, amaranth, brilliant blue, azorubine, and indigotine) to female rats during gestation to investigate the effects of prenatal exposure to AFCAs on neurobehavior, spatial learning, and memory in their offspring. We also investigated whether AFCAs modulate NR2A, NR2B, and α7 nAChR protein levels in their offsprings' hippocampi. Although spatial learning and memory were not altered, the offspring of rats exposed to AFCAs exhibited decreased motivation and increased despair-related behavior. NR2A and NR2B protein levels were significantly reduced in female offspring in the experimental group (p < 0.05), whereas α7 nAChR level was not significantly altered. Our results suggest that prenatal exposure to AFCAs may lead to sex-dependent alterations in glutamatergic signaling which may continue into adolescence.
Collapse
Affiliation(s)
- Duygu Kumbul Doguc
- Department of Medical Biochemistry, Medical School, Suleyman Demirel University, Isparta, Turkey
| | - Firdevs Deniz
- Medical Biochemistry Laboratory, Atatürk Government Hospital, Antalya, Turkey
| | - İlter İlhan
- Department of Medical Biochemistry, Medical School, Suleyman Demirel University, Isparta, Turkey
| | - Esin Ergonul
- Department of Medical Education, Medical School, Dokuz Eylul University, İzmir, Turkey
| | - Fatih Gultekin
- Department of Medical Biochemistry, School of Medicine, University of Health Sciences, İstanbul, Turkey
| |
Collapse
|
192
|
Faltine-Gonzalez DZ, Layden MJ. Characterization of nAChRs in Nematostella vectensis supports neuronal and non-neuronal roles in the cnidarian-bilaterian common ancestor. EvoDevo 2019; 10:27. [PMID: 31700598 PMCID: PMC6825365 DOI: 10.1186/s13227-019-0136-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 09/06/2019] [Indexed: 02/01/2023] Open
Abstract
Background Nicotinic and muscarinic acetylcholine receptors likely evolved in the cnidarian–bilaterian common ancestor. Both receptor families are best known for their role at chemical synapses in bilaterian animals, but they also have described roles as non-neuronal signaling receptors within the bilaterians. It is not clear when either of the functions for nicotinic or muscarinic receptors evolved. Previous studies in cnidarians suggest that acetylcholine’s neuronal role existed prior to the cnidarian–bilaterian divergence, but did not address potential non-neuronal functions. To determine the origins of neuronal and non-neuronal functions of nicotinic acetylcholine receptors, we investigated the phylogenetic position of cnidarian acetylcholine receptors, characterized the spatiotemporal expression patterns of nicotinic receptors in N. vectensis, and compared pharmacological studies in N. vectensis to the previous work in other cnidarians. Results Consistent with described activity in other cnidarians, treatment with acetylcholine-induced tentacular contractions in the cnidarian sea anemone N. vectensis. Phylogenetic analysis suggests that the N. vectensis genome encodes 26 nicotinic (nAChRs) and no muscarinic (mAChRs) acetylcholine receptors and that nAChRs independently radiated in cnidarian and bilaterian linages. The namesake nAChR agonist, nicotine, induced tentacular contractions similar to those observed with acetylcholine, and the nAChR antagonist mecamylamine suppressed tentacular contractions induced by both acetylcholine and nicotine. This indicated that tentacle contractions are in fact mediated by nAChRs. Nicotine also induced the contraction of radial muscles, which contract as part of the peristaltic waves that propagate along the oral–aboral axis of the trunk. Radial contractions and peristaltic waves were suppressed by mecamylamine. The ability of nicotine to mimic acetylcholine responses, and of mecamylamine to suppress acetylcholine and nicotine-induced contractions, supports a neuronal function for acetylcholine in cnidarians. Examination of the spatiotemporal expression of N. vectensis nAChRs (NvnAChRs) during development and in juvenile polyps identified that NvnAChRs are expressed in neurons, muscles, gonads, and large domains known to be consistent with a role in developmental patterning. These patterns are consistent with nAChRs functioning in both a neuronal and non-neuronal capacity in N. vectensis. Conclusion Our data suggest that nAChR receptors functioned at chemical synapses in N. vectensis to regulate tentacle contraction. Similar responses to acetylcholine are well documented in cnidarians, suggesting that the neuronal function represents an ancestral role for nAChRs. Expression patterns of nAChRs are consistent with both neuronal and non-neuronal roles for acetylcholine in cnidarians. Together, these observations suggest that both neuronal and non-neuronal functions for the ancestral nAChRs were present in the cnidarian–bilaterian common ancestor. Thus, both roles described in bilaterian species likely arose at or near the base of nAChR evolution.
Collapse
Affiliation(s)
| | - Michael J Layden
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015 USA
| |
Collapse
|
193
|
Ryan AE, Mowry BJ, Kesby JP, Scott JG, Greer JM. Is there a role for antibodies targeting muscarinic acetylcholine receptors in the pathogenesis of schizophrenia? Aust N Z J Psychiatry 2019; 53:1059-1069. [PMID: 31347380 DOI: 10.1177/0004867419864438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Muscarinic receptor dysfunction has been suggested to play an important role in the pathophysiology of schizophrenia. Recently, it has also become clear that immune reactivity directed against neurotransmitter receptors may play a pathogenic role in some cases of schizophrenia. The aim of this review is to summarize the case for muscarinic receptor dysfunction in schizophrenia and the evidence supporting the hypothesis that this dysfunction is related to the development of muscarinic receptor-targeting antibodies. METHOD The article reviews studies of muscarinic receptors and the presence and potential role(s) of anti-muscarinic acetylcholine receptor antibodies in people with schizophrenia. RESULTS There is accumulating evidence that altered or deficient muscarinic signalling underlies some of the key clinical features of schizophrenia. Although the number of studies investigating anti-muscarinic acetylcholine receptor antibodies in schizophrenia is relatively small, they consistently demonstrate that such antibodies are present in a proportion of patients. This evidence suggests that these antibodies could have pathogenic effects or exist as a biomarker to an unknown pathophysiological process in schizophrenia. CONCLUSION The presence of elevated levels of anti-muscarinic acetylcholine receptor antibodies may identify a subgroup of people with schizophrenia, potentially informing aetiopathogenesis, clinical presentation and treatment. To date, all studies have examined antibodies in participants with chronic schizophrenia, who have likely received antipsychotic medication for many years. As these medications modulate immune functions and regulate receptor densities, it is recommended that future studies screen for the presence of anti-muscarinic antibodies in people experiencing their first episode of psychosis.
Collapse
Affiliation(s)
- Alexander E Ryan
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia.,Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia
| | - Bryan J Mowry
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - James P Kesby
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - James G Scott
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia.,Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia.,School of Public Health, The University of Queensland, Brisbane, QLD, Australia.,Metro North Mental Health, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Judith M Greer
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
194
|
Laikowski MM, Reisdorfer F, Moura S. NAChR α4β2 Subtype and their Relation with Nicotine Addiction, Cognition, Depression and Hyperactivity Disorder. Curr Med Chem 2019; 26:3792-3811. [PMID: 29637850 DOI: 10.2174/0929867325666180410105135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/27/2017] [Accepted: 04/05/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Neuronal α4β2 nAChRs are receptors involved in the role of neurotransmitters regulation and release, and this ionic channel participates in biological process of memory, learning and attention. This work aims to review the structure and functioning of the α4β2 nAChR emphasizing its role in the treatment of associated diseases like nicotine addiction and underlying pathologies such as cognition, depression and attention-deficit hyperactivity disorder. METHODS The authors realized extensive bibliographic research using the descriptors "Nicotine Receptor α4β2" and "cognition", "depression", "attention-deficit hyperactivity disorder", besides cross-references of the selected articles and after analysis of references in the specific literature. RESULTS As results, it was that found 179 relevant articles presenting the main molecules with affinity to nAChR α4β2 related to the cited diseases. The α4β2 nAChR subtype is a remarkable therapeutic target since this is the most abundant receptor in the central nervous system. CONCLUSION In summary, this review presents perspectives on the pharmacology and therapeutic targeting of α4β2 nAChRs for the treatment of cognition and diseases like nicotine dependence, depression and attention-deficit hyperactivity disorder.
Collapse
Affiliation(s)
- Manuela M Laikowski
- Laboratory of Natural and Synthetics Products, University of Caxias do Sul, Caxias do Sul, Brazil
| | - Fávero Reisdorfer
- Laboratory of Drug Development and Quality Control, University Federal of Pampa, Brazil
| | - Sidnei Moura
- Laboratory of Natural and Synthetics Products, University of Caxias do Sul, Caxias do Sul, Brazil
| |
Collapse
|
195
|
Chu X, Tae HS, Xu Q, Jiang T, Adams DJ, Yu R. α-Conotoxin Vc1.1 Structure-Activity Relationship at the Human α9α10 Nicotinic Acetylcholine Receptor Investigated by Minimal Side Chain Replacement. ACS Chem Neurosci 2019; 10:4328-4336. [PMID: 31411453 DOI: 10.1021/acschemneuro.9b00389] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
α-Conotoxin Vc1.1 inhibits the nicotinic acetylcholine receptor (nAChR) α9α10 subtype and has the potential to treat neuropathic chronic pain. To date, the crystal structure of Vc1.1-bound α9α10 nAChR remains unavailable; thus, understanding the structure-activity relationship of Vc1.1 with the α9α10 nAChR remains challenging. In this study, the Vc1.1 side chains were minimally modified to avoid introducing large local conformation perturbation to the interactions between Vc1.1 and α9α10 nAChR. The results suggest that the hydroxyl group of Vc1.1, Y10, forms a hydrogen bond with the carbonyl group of α9 N107 and a hydrogen bond donor is required. However, Vc1.1 S4 is adjacent to the α9 D166 and D169, and a positive charge residue at this position increases the binding affinity of Vc1.1. Furthermore, the carboxyl group of Vc1.1, D11, forms two hydrogen bonds with α9 N154 and R81, respectively, whereas introducing an extra carboxyl group at this position significantly decreases the potency of Vc1.1. Second-generation mutants of Vc1.1 [S4 Dab, N9A] and [S4 Dab, N9W] increased potency at the α9α10 nAChR by 20-fold compared with that of Vc1.1. The [S4 Dab, N9W] mutational effects at positions 4 and 9 of Vc1.1 are not cumulative but are coupled with each other. Overall, our findings provide valuable insights into the structure-activity relationship of Vc1.1 with the α9α10 nAChR and will contribute to further development of more potent and specific Vc1.1 analogues.
Collapse
Affiliation(s)
- Xin Chu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Qingliang Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - David J. Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Innovation Center for Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
196
|
Hirano T, Minagawa S, Furusawa Y, Yunoki T, Ikenaka Y, Yokoyama T, Hoshi N, Tabuchi Y. Growth and neurite stimulating effects of the neonicotinoid pesticide clothianidin on human neuroblastoma SH-SY5Y cells. Toxicol Appl Pharmacol 2019; 383:114777. [PMID: 31626844 DOI: 10.1016/j.taap.2019.114777] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/03/2019] [Accepted: 10/05/2019] [Indexed: 10/25/2022]
Abstract
Neonicotinoids are one of most widely used pesticides targeting nicotinic acetylcholine receptors (nAChRs) of insects. Recent epidemiological evidence revealed increasing amounts of neonicotinoids detected in human samples, raising the critical question of whether neonicotinoids affect human health. We investigated the effects of a neonicotinoid pesticide clothianidin (CTD) on human neuroblastoma SH-SY5Y cells as in vitro models of human neuronal cells. Cellular and functional effects of micromolar doses of CTD were evaluated by changes in cell growth, intracellular signaling activities and gene expression profiles. We examined further the effects of CTD on neuronal differentiation by measuring neurite outgrowth. Exposure to CTD (1-100 μM) significantly increased the number of cells within 24 h of culture. The nAChRs antagonists, mecamylamine and SR16584, inhibited this effect, suggesting human α3β4 nAChRs could be targets of neonicotinoids. We observed a transient intracellular calcium influx and increased phosphorylation of extracellular signal-regulated kinase 1/2 shortly after exposure to CTD. Transcriptome analysis revealed that CTD down-regulated genes involved in neuronal function (e.g., formation of filopodia and calcium ion influx) and morphology (e.g., axon guidance signaling and cytoskeleton signaling); these changes were reflected by a finding of increased neurite length during neuronal differentiation. These findings provide novel insight into the potential risks of neonicotinoids to the human nervous system.
Collapse
Affiliation(s)
- Tetsushi Hirano
- Life Science Research Center, University of Toyama, Toyama, Japan.
| | - Satsuki Minagawa
- Life Science Research Center, University of Toyama, Toyama, Japan
| | - Yukihiro Furusawa
- Department of Liberal Arts and Sciences, Toyama Prefectural University, Toyama, Japan
| | - Tatsuya Yunoki
- Department of Ophthalmology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Toshifumi Yokoyama
- Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Nobuhiko Hoshi
- Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Yoshiaki Tabuchi
- Life Science Research Center, University of Toyama, Toyama, Japan
| |
Collapse
|
197
|
Bhuvanendran S, Bakar SNS, Kumari Y, Othman I, Shaikh MF, Hassan Z. Embelin Improves the Spatial Memory and Hippocampal Long-Term Potentiation in a Rat Model of Chronic Cerebral Hypoperfusion. Sci Rep 2019; 9:14507. [PMID: 31601902 PMCID: PMC6787277 DOI: 10.1038/s41598-019-50954-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 09/16/2019] [Indexed: 01/27/2023] Open
Abstract
Alzheimer's disease (AD) is the second most occurring neurological disorder after stroke and is associated with cerebral hypoperfusion, possibly contributing to cognitive impairment. In the present study, neuroprotective and anti-AD effects of embelin were evaluated in chronic cerebral hypoperfusion (CCH) rat model using permanent bilateral common carotid artery occlusion (BCCAO) method. Rats were administered with embelin at doses of 0.3, 0.6 or 1.2 mg/kg (i.p) on day 14 post-surgery and tested in Morris water maze (MWM) followed by electrophysiological recordings to access cognitive abilities and synaptic plasticity. The hippocampal brain regions were extracted for gene expression and neurotransmitters analysis. Treatment with embelin at the doses of 0.3 and 0.6 mg/kg significantly reversed the spatial memory impairment induced by CCH in rats. Embelin treatment has significantly protected synaptic plasticity impairment as assessed by hippocampal long-term potentiation (LTP) test. The mechanism of this study demonstrated that embelin treatment alleviated the decreased expression of BDNF, CREB1, APP, Mapt, SOD1 and NFκB mRNA levels caused by CCH rats. Furthermore, treatment with embelin demonstrated neuromodulatory activity by its ability to restore hippocampal neurotransmitters. Overall these data suggest that embelin improve memory and synaptic plasticity impairment in CCH rats and can be a potential drug candidate for neurodegenerative disease-related cognitive disorders.
Collapse
Affiliation(s)
- Saatheeyavaane Bhuvanendran
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.,Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | | | - Yatinesh Kumari
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Iekhsan Othman
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia.
| |
Collapse
|
198
|
Sun JL, Stokoe SA, Roberts JP, Sathler MF, Nip KA, Shou J, Ko K, Tsunoda S, Kim S. Co-activation of selective nicotinic acetylcholine receptors is required to reverse beta amyloid-induced Ca 2+ hyperexcitation. Neurobiol Aging 2019; 84:166-177. [PMID: 31629115 DOI: 10.1016/j.neurobiolaging.2019.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/27/2019] [Accepted: 09/13/2019] [Indexed: 12/20/2022]
Abstract
Beta-amyloid (Aβ) peptide accumulation has long been implicated in the pathogenesis of Alzheimer's disease (AD). Hippocampal network hyperexcitability in the early stages of the disease leads to increased epileptiform activity and eventually cognitive decline. We found that acute application of 250 nM soluble Aβ42 oligomers increased Ca2+ activity in hippocampal neurons in parallel with a significant decrease in activity in Aβ42-treated interneurons. A potential target of Aβ42 is the nicotinic acetylcholine receptor (nAChR). Three major subtypes of nAChRs (α7, α4β2, and α3β4) have been reported in the human hippocampus. Simultaneous inhibition of both α7 and α4β2 nAChRs mimicked the Aβ42 effects on both excitatory and inhibitory neurons. However, inhibition of all 3 subtypes showed the opposite effect. Importantly, simultaneous activation of α7 and α4β2 nAChRs was required to reverse Aβ42-induced neuronal hyperexcitation. We suggest co-activation of α7 and α4β2 nAChRs is required to reverse Aβ42-induced Ca2+ hyperexcitation.
Collapse
Affiliation(s)
- Julianna L Sun
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA; Molecular, Cellular and Integrative Neurosciences Program, Fort Collins, CO, USA
| | - Sarah A Stokoe
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA; Molecular, Cellular and Integrative Neurosciences Program, Fort Collins, CO, USA
| | - Jessica P Roberts
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA; Molecular, Cellular and Integrative Neurosciences Program, Fort Collins, CO, USA
| | - Matheus F Sathler
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Kaila A Nip
- Cellular and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, USA
| | - Jiayi Shou
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Kaitlyn Ko
- Poudre High School, Fort Collins, CO, USA
| | - Susan Tsunoda
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA; Molecular, Cellular and Integrative Neurosciences Program, Fort Collins, CO, USA
| | - Seonil Kim
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA; Molecular, Cellular and Integrative Neurosciences Program, Fort Collins, CO, USA; Cellular and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
199
|
Cholinergic system and exploratory behavior are changed after weekly-binge ethanol exposure in zebrafish. Pharmacol Biochem Behav 2019; 186:172790. [PMID: 31499145 DOI: 10.1016/j.pbb.2019.172790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/28/2022]
Abstract
Binge drinking is characterized by excessive alcohol consumption in a short period of time and is associated with a poor quality of life. Zebrafish are commonly used to investigate neurochemical, behavioral, and genetic parameters associated with ethanol (EtOH) exposure. However, few studies have used zebrafish as a model to investigate binge EtOH exposure. In order to elucidate the potential neurobehavioral impairments evoked by binge EtOH exposure in zebrafish, animals were immersed in 1.4% EtOH for 30 min three consecutive times with intervals of one week. Neurobehavioral parameters were analyzed immediately following the third exposure, as well as 2 and 9 days later. Brain choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) activities were reduced 9 days after the treatment. Thiobarbituric acid-reactive species and dichlorodihydrofluorescein levels were increased immediately after the treatment, but both returned to normal levels 2 days after the treatment. Catalase and glutathione reductase were impaired 2 and 9 days after the treatment. No alteration was observed in superoxide dismutase and glutathione peroxidase activities. EtOH treatment did not alter brain expression of inflammatory genes such as il-1β, il-10, and tnf-α. Zebrafish displayed anxiolytic-like behavior immediately after the last exposure, though there was no behavioral alteration observed 9 days after the treatment. Therefore, binge EtOH exposure in zebrafish leads to long lasting brain cholinergic alteration, probably related to oxidative stress immediately after the exposure, which is independent of classical inflammatory markers.
Collapse
|
200
|
Askew CE, Lopez AJ, Wood MA, Metherate R. Nicotine excites VIP interneurons to disinhibit pyramidal neurons in auditory cortex. Synapse 2019; 73:e22116. [PMID: 31081950 PMCID: PMC6767604 DOI: 10.1002/syn.22116] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/02/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022]
Abstract
Nicotine activates nicotinic acetylcholine receptors and improves cognitive and sensory function, in part by its actions in cortical regions. Physiological studies show that nicotine amplifies stimulus-evoked responses in sensory cortex, potentially contributing to enhancement of sensory processing. However, the role of specific cell types and circuits in the nicotinic modulation of sensory cortex remains unclear. Here, we performed whole-cell recordings from pyramidal (Pyr) neurons and inhibitory interneurons expressing parvalbumin (PV), somatostatin (SOM), and vasoactive intestinal peptide (VIP) in mouse auditory cortex, in vitro. Bath application of nicotine strongly depolarized and excited VIP neurons, weakly depolarized Pyr neurons, and had no effect on the membrane potential of SOM or PV neurons. The use of receptor antagonists showed that nicotine's effects on VIP and Pyr neurons were direct and indirect, respectively. Nicotine also enhanced the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in Pyr, VIP, and SOM, but not PV, cells. Using Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), we show that chemogenetic inhibition of VIP neurons prevents nicotine's effects on Pyr neurons. Since VIP cells preferentially contact other inhibitory interneurons, we suggest that nicotine drives VIP cell firing to disinhibit Pyr cell somata, potentially making Pyr cells more responsive to auditory stimuli. In parallel, activation of VIP cells also directly inhibits Pyr neurons, likely altering integration of other synaptic inputs. These cellular and synaptic mechanisms likely contribute to nicotine's beneficial effects on cognitive and sensory function.
Collapse
Affiliation(s)
- Caitlin E. Askew
- Department of Neurobiology and Behavior, Center for Hearing ResearchUniversity of California, IrvineIrvineCalifornia
| | - Alberto J. Lopez
- Department of Neurobiology and Behavior, Center for Hearing ResearchUniversity of California, IrvineIrvineCalifornia
| | - Marcelo A. Wood
- Department of Neurobiology and Behavior, Center for Hearing ResearchUniversity of California, IrvineIrvineCalifornia
| | - Raju Metherate
- Department of Neurobiology and Behavior, Center for Hearing ResearchUniversity of California, IrvineIrvineCalifornia
| |
Collapse
|