151
|
Arkhipov AY, Fedorov NS, Nurullin LF, Khabibrakhmanov AN, Mukhamedyarov MA, Samigullin DV, Malomouzh AI. Activation of TRPV1 Channels Inhibits the Release of Acetylcholine and Improves Muscle Contractility in Mice. Cell Mol Neurobiol 2023; 43:4157-4172. [PMID: 37689594 DOI: 10.1007/s10571-023-01403-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/22/2023] [Indexed: 09/11/2023]
Abstract
TRPV1 represents a non-selective transient receptor potential cation channel found not only in sensory neurons, but also in motor nerve endings and in skeletal muscle fibers. However, the role of TRPV1 in the functioning of the neuromuscular junction has not yet been fully established. In this study, the Levator Auris Longus muscle preparations were used to assess the effect of pharmacological activation of TRPV1 channels on neuromuscular transmission. The presence of TRPV1 channels in the nerve terminal and in the muscle fiber was confirmed by immunohistochemistry. It was verified by electrophysiology that the TRPV1 channel agonist capsaicin inhibits the acetylcholine release, and this effect was completely absent after preliminary application of the TRPV1 channel blocker SB 366791. Nerve stimulation revealed an increase of amplitude of isometric tetanic contractions upon application of capsaicin which was also eliminated after preliminary application of SB 366791. Similar data were obtained during direct muscle stimulation. Thus, pharmacological activation of TRPV1 channels affects the functioning of both the pre- and postsynaptic compartment of the neuromuscular junction. A moderate decrease in the amount of acetylcholine released from the motor nerve allows to maintain a reserve pool of the mediator to ensure a longer signal transmission process, and an increase in the force of muscle contraction, in its turn, also implies more effective physiological muscle activity in response to prolonged stimulation. This assumption is supported by the fact that when muscle was indirect stimulated with a fatigue protocol, muscle fatigue was attenuated in the presence of capsaicin.
Collapse
Affiliation(s)
- Arsenii Y Arkhipov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of Russian Academy of Sciences, 2/31 Lobachevsky Street, Box 261, Kazan, Russia, 420111
| | - Nikita S Fedorov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of Russian Academy of Sciences, 2/31 Lobachevsky Street, Box 261, Kazan, Russia, 420111
- Kazan Federal University, 18 Kremlyovskaya Street, Kazan, Russia, 420008
| | - Leniz F Nurullin
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of Russian Academy of Sciences, 2/31 Lobachevsky Street, Box 261, Kazan, Russia, 420111
- Kazan State Medical University, 49 Butlerova Street, Kazan, Russia, 420012
| | | | | | - Dmitry V Samigullin
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of Russian Academy of Sciences, 2/31 Lobachevsky Street, Box 261, Kazan, Russia, 420111
- A.N. Tupolev Kazan National Research Technical University, 10, K. Marx Street, Kazan, Russia, 420111
| | - Artem I Malomouzh
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of Russian Academy of Sciences, 2/31 Lobachevsky Street, Box 261, Kazan, Russia, 420111.
- A.N. Tupolev Kazan National Research Technical University, 10, K. Marx Street, Kazan, Russia, 420111.
| |
Collapse
|
152
|
Emperador-Melero J, Andersen JW, Metzbower SR, Levy AD, Dharmasri PA, de Nola G, Blanpied TA, Kaeser PS. Molecular definition of distinct active zone protein machineries for Ca 2+ channel clustering and synaptic vesicle priming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564439. [PMID: 37961089 PMCID: PMC10634917 DOI: 10.1101/2023.10.27.564439] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Action potentials trigger neurotransmitter release with minimal delay. Active zones mediate this temporal precision by co-organizing primed vesicles with CaV2 Ca2+ channels. The presumed model is that scaffolding proteins directly tether primed vesicles to CaV2s. We find that CaV2 clustering and vesicle priming are executed by separate machineries. At hippocampal synapses, CaV2 nanoclusters are positioned at variable distances from those of the priming protein Munc13. The active zone organizer RIM anchors both proteins, but distinct interaction motifs independently execute these functions. In heterologous cells, Liprin-α and RIM from co-assemblies that are separate from CaV2-organizing complexes upon co-transfection. At synapses, Liprin-α1-4 knockout impairs vesicle priming, but not CaV2 clustering. The cell adhesion protein PTPσ recruits Liprin-α, RIM and Munc13 into priming complexes without co-clustering of CaV2s. We conclude that active zones consist of distinct complexes to organize CaV2s and vesicle priming, and Liprin-α and PTPσ specifically support priming site assembly.
Collapse
Affiliation(s)
| | | | - Sarah R. Metzbower
- Department of Physiology, University of Maryland School of Medicine, Baltimore, USA
| | - Aaron D. Levy
- Department of Physiology, University of Maryland School of Medicine, Baltimore, USA
| | - Poorna A. Dharmasri
- Department of Physiology, University of Maryland School of Medicine, Baltimore, USA
| | | | - Thomas A. Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, USA
| | | |
Collapse
|
153
|
Norman CA, Krishnakumar SS, Timofeeva Y, Volynski KE. The release of inhibition model reproduces kinetics and plasticity of neurotransmitter release in central synapses. Commun Biol 2023; 6:1091. [PMID: 37891212 PMCID: PMC10611806 DOI: 10.1038/s42003-023-05445-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Calcium-evoked release of neurotransmitters from synaptic vesicles (SVs) is catalysed by SNARE proteins. The predominant view is that, at rest, complete assembly of SNARE complexes is inhibited ('clamped') by synaptotagmin and complexin molecules. Calcium binding by synaptotagmins releases this fusion clamp and triggers fast SV exocytosis. However, this model has not been quantitatively tested over physiological timescales. Here we describe an experimentally constrained computational modelling framework to quantitatively assess how the molecular architecture of the fusion clamp affects SV exocytosis. Our results argue that the 'release-of-inhibition' model can indeed account for fast calcium-activated SV fusion, and that dual binding of synaptotagmin-1 and synaptotagmin-7 to the same SNARE complex enables synergistic regulation of the kinetics and plasticity of neurotransmitter release. The developed framework provides a powerful and adaptable tool to link the molecular biochemistry of presynaptic proteins to physiological data and efficiently test the plausibility of calcium-activated neurotransmitter release models.
Collapse
Affiliation(s)
- Christopher A Norman
- University College London Institute of Neurology, University College London, London, WC1N 3BG, UK
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
- Mathematics for Real-World Systems Centre for Doctoral Training, University of Warwick, Coventry, CV4 7AL, UK
| | - Shyam S Krishnakumar
- University College London Institute of Neurology, University College London, London, WC1N 3BG, UK.
- Department of Neurology, Yale Nanobiology Institute, Yale University School of Medicine, New Haven, CT, 06510, USA.
| | - Yulia Timofeeva
- University College London Institute of Neurology, University College London, London, WC1N 3BG, UK.
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK.
| | - Kirill E Volynski
- University College London Institute of Neurology, University College London, London, WC1N 3BG, UK.
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
154
|
Zhang H, Qiu P, Lu Y, Ju X, Chi D, Yew KS, Zhu M, Wang S, Wei R, Hu W. In-Sensor Computing Realization Using Fully CMOS-Compatible TiN/HfO x-Based Neuristor Array. ACS Sens 2023; 8:3873-3881. [PMID: 37707324 DOI: 10.1021/acssensors.3c01418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
With the evolution of artificial intelligence, the explosive growth of data from sensory terminals gives rise to severe energy-efficiency bottleneck issues due to cumbersome data interactions among sensory, memory, and computing modules. Heterogeneous integration methods such as chiplet technology can significantly reduce unnecessary data movement; however, they fail to address the fundamental issue of the substantial time and energy overheads resulting from the physical separation of computing and sensory components. Brain-inspired in-sensor neuromorphic computing (ISNC) has plenty of room for such data-intensive applications. However, one key obstacle in developing ISNC systems is the lack of compatibility between material systems and manufacturing processes deployed in sensors and computing units. This study successfully addresses this challenge by implementing fully CMOS-compatible TiN/HfOx-based neuristor array. The developed ISNC system demonstrates several advantageous features, including multilevel analogue modulation, minimal dispersion, and no significant degradation in conductance (@125 °C). These characteristics enable stable and reproducible neuromorphic computing. Additionally, the device exhibits modulatable sensory and multi-store memory processes. Furthermore, the system achieves information recognition with a high accuracy rate of 93%, along with frequency selectivity and notable activity-dependent plasticity. This work provides a promising route to affordable and highly efficient sensory neuromorphic systems.
Collapse
Affiliation(s)
- Haizhong Zhang
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350116, China
- FZU-Jinjiang Joint Institute of Microelectronics, Jinjiang Science and Education Park, Fuzhou University, Jinjiang 362200, China
| | - Peng Qiu
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350116, China
| | - Yaoping Lu
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350116, China
| | - Xin Ju
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Agency for Science, Technology and Research, Singapore 138634, Singapore
| | - Dongzhi Chi
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Agency for Science, Technology and Research, Singapore 138634, Singapore
| | - Kwang Sing Yew
- Global Foundries, 60 Woodlands Industrial Park D Street 2, Singapore 738406, Singapore
| | - Minmin Zhu
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350116, China
- FZU-Jinjiang Joint Institute of Microelectronics, Jinjiang Science and Education Park, Fuzhou University, Jinjiang 362200, China
| | - Shaohao Wang
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350116, China
- FZU-Jinjiang Joint Institute of Microelectronics, Jinjiang Science and Education Park, Fuzhou University, Jinjiang 362200, China
| | - Rongshan Wei
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350116, China
- FZU-Jinjiang Joint Institute of Microelectronics, Jinjiang Science and Education Park, Fuzhou University, Jinjiang 362200, China
| | - Wei Hu
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
155
|
Tran DM, Son JW, Ju TS, Hwang C, Park BH. Dopamine-Regulated Plasticity in MoO 3 Synaptic Transistors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49329-49337. [PMID: 37819637 DOI: 10.1021/acsami.3c06866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Field-effect transistor-based biosensors have gained increasing interest due to their reactive surface to external stimuli and the adaptive feedback required for advanced sensing platforms in biohybrid neural interfaces. However, complex probing methods for surface functionalization remain a challenge that limits the industrial implementation of such devices. Herein, a simple, label-free biosensor based on molybdenum oxide (MoO3) with dopamine-regulated plasticity is demonstrated. Dopamine oxidation facilitated locally at the channel surface initiates a charge transfer mechanism between the molecule and the oxide, altering the channel conductance and successfully emulating the tunable synaptic weight by neurotransmitter activity. The oxygen level of the channel is shown to heavily affect the device's electrochemical properties, shifting from a nonreactive metallic characteristic to highly responsive semiconducting behavior. Controllable responsivity is achieved by optimizing the channel's dimension, which allows the devices to operate in wide ranges of dopamine concentration, from 100 nM to sub-mM levels, with excellent selectivity compared with K+, Na+, and Ca2+.
Collapse
Affiliation(s)
- Duc Minh Tran
- Division of Quantum Phases and Devices, Department of Physics, Konkuk University, Seoul 05029, Republic of Korea
| | - Jong Wan Son
- Division of Quantum Phases and Devices, Department of Physics, Konkuk University, Seoul 05029, Republic of Korea
- Quantum Spin Team, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Tae-Seong Ju
- Quantum Spin Team, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Chanyong Hwang
- Quantum Spin Team, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Bae Ho Park
- Division of Quantum Phases and Devices, Department of Physics, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
156
|
Wang Z, Zhu W, Li J, Shao Y, Li X, Shi H, Zhao J, Zhou Z, Wang Y, Yan X. Superlow Power Consumption Memristor Based on Borphyrin-Deoxyribonucleic Acid Composite Films as Artificial Synapse for Neuromorphic Computing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49390-49401. [PMID: 37815786 DOI: 10.1021/acsami.3c09300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Memristor synapses based on green and pollution-free organic materials are expected to facilitate biorealistic neuromorphic computing and to be an important step toward the next generation of green electronics. Metalloporphyrin is an organic compound that widely exists in nature with good biocompatibility and stable chemical properties, and has already been used to fabricate memristors. However, the application of metalloporphyrin-based memristors as synaptic devices still faces challenges, such as realizing a high switching ratio, low power consumption, and bidirectional conductance modulation. We developed a memristor that improves the resistive switching (RS) characteristics of Zn(II)meso-tetra(4-carboxyphenyl) porphine (ZnTCPP) by combining it with deoxyribonucleic acid (DNA) in a composite film. The as-fabricated ZnTCPP-DNA-based device showed excellent RS memory characteristics with a sufficiently high switching ratio of up to ∼104, super low power consumption of ∼39.56 nW, good cycling stability, and data retention capability. Moreover, bidirectional conductance modulation of the ZnTCPP-DNA-based device can be controlled by modulating the amplitudes, durations, and intervals of positive and negative pulses. The ZnTCPP-DNA-based device was used to successfully simulate a series of synaptic functions including long-term potentiation, long-term depression, spike time-dependent plasticity, paired-pulse facilitation, excitatory postsynaptic current, and human learning behavior, which demonstrates its potential applicability to neuromorphic devices. A two-layer artificial neural network was used to demonstrate the digit recognition ability of the ZnTCPP-DNA-based device, which reached 97.22% after 100 training iterations. These results create a new avenue for the research and development of green electronics and have major implications for green low-power neuromorphic computing in the future.
Collapse
Affiliation(s)
- Zhongrong Wang
- Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, China
| | - Wenbo Zhu
- Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, China
| | - Jiahang Li
- Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, China
| | - Yiduo Shao
- Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, China
| | - Xiaohan Li
- Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, China
| | - Haowan Shi
- Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, China
| | - Jianhui Zhao
- Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, China
| | - Zhenyu Zhou
- Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, China
| | - Yichao Wang
- Department of Clinical Laboratory Medicine, TaiZhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China
| | - Xiaobing Yan
- Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, China
| |
Collapse
|
157
|
Cheng X, Tang Y, Vidyadhara D, Li BZ, Zimmerman M, Pak A, Nareddula S, Edens PA, Chandra SS, Chubykin AA. Impaired pre-synaptic plasticity and visual responses in auxilin-knockout mice. iScience 2023; 26:107842. [PMID: 37766983 PMCID: PMC10520332 DOI: 10.1016/j.isci.2023.107842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/06/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Auxilin (DNAJC6/PARK19), an endocytic co-chaperone, is essential for maintaining homeostasis in the readily releasable pool (RRP) by aiding clathrin-mediated uncoating of synaptic vesicles. Its loss-of-function mutations, observed in familial Parkinson's disease (PD), lead to basal ganglia motor deficits and cortical dysfunction. We discovered that auxilin-knockout (Aux-KO) mice exhibited impaired pre-synaptic plasticity in layer 4 to layer 2/3 pyramidal cell synapses in the primary visual cortex (V1), including reduced short-term facilitation and depression. Computational modeling revealed increased RRP refilling during short repetitive stimulation, which diminished during prolonged stimulation. Silicon probe recordings in V1 of Aux-KO mice demonstrated disrupted visual cortical circuit responses, including reduced orientation selectivity, compromised visual mismatch negativity, and shorter visual familiarity-evoked theta oscillations. Pupillometry analysis revealed an impaired optokinetic response. Auxilin-dependent pre-synaptic endocytosis dysfunction was associated with deficits in pre-synaptic plasticity, visual cortical functions, and eye movement prodromally or at the early stage of motor symptoms.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
| | - Yu Tang
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
| | - D.J. Vidyadhara
- Department of Neurology, Yale University, CT, USA
- Department of Neuroscience, Yale University, CT, USA
| | - Ben-Zheng Li
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Electrical Engineering, University of Colorado, Denver, Denver, CO, USA
| | - Michael Zimmerman
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Alexandr Pak
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
| | - Sanghamitra Nareddula
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
| | - Paige Alyssa Edens
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
| | - Sreeganga S. Chandra
- Department of Neurology, Yale University, CT, USA
- Department of Neuroscience, Yale University, CT, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University, CT, USA
| | - Alexander A. Chubykin
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
158
|
Li JY, Glickfeld LL. Input-specific synaptic depression shapes temporal integration in mouse visual cortex. Neuron 2023; 111:3255-3269.e6. [PMID: 37543037 PMCID: PMC10592405 DOI: 10.1016/j.neuron.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/07/2023] [Accepted: 07/06/2023] [Indexed: 08/07/2023]
Abstract
Efficient sensory processing requires the nervous system to adjust to ongoing features of the environment. In primary visual cortex (V1), neuronal activity strongly depends on recent stimulus history. Existing models can explain effects of prolonged stimulus presentation but remain insufficient for explaining effects observed after shorter durations commonly encountered under natural conditions. We investigated the mechanisms driving adaptation in response to brief (100 ms) stimuli in L2/3 V1 neurons by performing in vivo whole-cell recordings to measure membrane potential and synaptic inputs. We find that rapid adaptation is generated by stimulus-specific suppression of excitatory and inhibitory synaptic inputs. Targeted optogenetic experiments reveal that these synaptic effects are due to input-specific short-term depression of transmission between layers 4 and 2/3. Thus, brief stimulus presentation engages a distinct adaptation mechanism from that previously reported in response to prolonged stimuli, enabling flexible control of sensory encoding across a wide range of timescales.
Collapse
Affiliation(s)
- Jennifer Y Li
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27701, USA
| | - Lindsey L Glickfeld
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27701, USA.
| |
Collapse
|
159
|
Ding G, Zhao J, Zhou K, Zheng Q, Han ST, Peng X, Zhou Y. Porous crystalline materials for memories and neuromorphic computing systems. Chem Soc Rev 2023; 52:7071-7136. [PMID: 37755573 DOI: 10.1039/d3cs00259d] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Porous crystalline materials usually include metal-organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs) and zeolites, which exhibit exceptional porosity and structural/composition designability, promoting the increasing attention in memory and neuromorphic computing systems in the last decade. From both the perspective of materials and devices, it is crucial to provide a comprehensive and timely summary of the applications of porous crystalline materials in memory and neuromorphic computing systems to guide future research endeavors. Moreover, the utilization of porous crystalline materials in electronics necessitates a shift from powder synthesis to high-quality film preparation to ensure high device performance. This review highlights the strategies for preparing porous crystalline materials films and discusses their advancements in memory and neuromorphic electronics. It also provides a detailed comparative analysis and presents the existing challenges and future research directions, which can attract the experts from various fields (e.g., materials scientists, chemists, and engineers) with the aim of promoting the applications of porous crystalline materials in memory and neuromorphic computing systems.
Collapse
Affiliation(s)
- Guanglong Ding
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - JiYu Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Qi Zheng
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Su-Ting Han
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| |
Collapse
|
160
|
Yiu YH, Leibold C. A theory of hippocampal theta correlations accounting for extrinsic and intrinsic sequences. eLife 2023; 12:RP86837. [PMID: 37792453 PMCID: PMC10550285 DOI: 10.7554/elife.86837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Hippocampal place cell sequences have been hypothesized to serve as diverse purposes as the induction of synaptic plasticity, formation and consolidation of long-term memories, or navigation and planning. During spatial behaviors of rodents, sequential firing of place cells at the theta timescale (known as theta sequences) encodes running trajectories, which can be considered as one-dimensional behavioral sequences of traversed locations. In a two-dimensional space, however, each single location can be visited along arbitrary one-dimensional running trajectories. Thus, a place cell will generally take part in multiple different theta sequences, raising questions about how this two-dimensional topology can be reconciled with the idea of hippocampal sequences underlying memory of (one-dimensional) episodes. Here, we propose a computational model of cornu ammonis 3 (CA3) and dentate gyrus (DG), where sensorimotor input drives the direction-dependent (extrinsic) theta sequences within CA3 reflecting the two-dimensional spatial topology, whereas the intrahippocampal CA3-DG projections concurrently produce intrinsic sequences that are independent of the specific running trajectory. Consistent with experimental data, intrinsic theta sequences are less prominent, but can nevertheless be detected during theta activity, thereby serving as running-direction independent landmark cues. We hypothesize that the intrinsic sequences largely reflect replay and preplay activity during non-theta states.
Collapse
Affiliation(s)
- Yuk-Hoi Yiu
- Fakultät für Biologie & Bernstein Center Freiburg Albert-Ludwigs-Universität FreiburgFreiburgGermany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität MünchenMunichGermany
| | - Christian Leibold
- Fakultät für Biologie & Bernstein Center Freiburg Albert-Ludwigs-Universität FreiburgFreiburgGermany
- BrainLinks-BrainTools, Albert-Ludwigs-Universität FreiburgFreiburgGermany
| |
Collapse
|
161
|
Xu H, Oses-Prieto JA, Khvotchev M, Jain S, Liang J, Burlingame A, Edwards RH. Adaptor protein AP-3 produces synaptic vesicles that release at high frequency by recruiting phospholipid flippase ATP8A1. Nat Neurosci 2023; 26:1685-1700. [PMID: 37723322 DOI: 10.1038/s41593-023-01434-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/14/2023] [Indexed: 09/20/2023]
Abstract
Neural systems encode information in the frequency of action potentials, which is then decoded by synaptic transmission. However, the rapid, synchronous release of neurotransmitters depletes synaptic vesicles (SVs), limiting release at high firing rates. How then do synapses convey information about frequency? Here, we show in mouse hippocampal neurons and slices that the adaptor protein AP-3 makes a subset of SVs that respond specifically to high-frequency stimulation. Neurotransmitter transporters slot onto these SVs in different proportions, contributing to the distinct properties of release observed at different excitatory synapses. Proteomics reveals that AP-3 targets the phospholipid flippase ATP8A1 to SVs; loss of ATP8A1 recapitulates the defect in SV mobilization at high frequency observed with loss of AP-3. The mechanism involves recruitment of synapsin by the cytoplasmically oriented phosphatidylserine translocated by ATP8A1. Thus, ATP8A1 enables the subset of SVs made by AP-3 to release at high frequency.
Collapse
Affiliation(s)
- Hongfei Xu
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Mikhail Khvotchev
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Shweta Jain
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Jocelyn Liang
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Alma Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Robert H Edwards
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA.
| |
Collapse
|
162
|
Xie X, Lu J, Ma T, Cheng Y, Woodson K, Bonifacio J, Bego K, Wang X, Wang J. Linking input- and cell-type-specific synaptic plasticity to the reinforcement of alcohol-seeking behavior. Neuropharmacology 2023; 237:109619. [PMID: 37290535 DOI: 10.1016/j.neuropharm.2023.109619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/15/2023] [Accepted: 05/27/2023] [Indexed: 06/10/2023]
Abstract
The reinforcement of voluntary alcohol-seeking behavior requires dopamine-dependent long-term synaptic plasticity in the striatum. Specifically, the long-term potentiation (LTP) of direct-pathway medium spiny neurons (dMSNs) in the dorsomedial striatum (DMS) promotes alcohol drinking. However, it remains unclear whether alcohol induces input-specific plasticity onto dMSNs and whether this plasticity directly drives instrumental conditioning. In this study, we found that voluntary alcohol intake selectively strengthened glutamatergic transmission from the medial prefrontal cortex (mPFC) to DMS dMSNs in mice. Importantly, mimicking this alcohol-induced potentiation by optogenetically self-stimulating mPFC→dMSN synapse with an LTP protocol was sufficient to drive the reinforcement of lever pressing in operant chambers. Conversely, induction of a post-pre spike timing-dependent LTD at this synapse time-locked to alcohol delivery during operant conditioning persistently decreased alcohol-seeking behavior. Our results establish a causal relationship between input- and cell-type-specific corticostriatal plasticity and the reinforcement of alcohol-seeking behavior. This provides a potential therapeutic strategy to restore normal cortical control of dysregulated basal ganglia circuitries in alcohol use disorder.
Collapse
Affiliation(s)
- Xueyi Xie
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Jiayi Lu
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Tengfei Ma
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Yifeng Cheng
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Kayla Woodson
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Jordan Bonifacio
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Kassidy Bego
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Xuehua Wang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Jun Wang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA.
| |
Collapse
|
163
|
Xiao X, Wang X, Zhu K, Li L, He Y, Zhang J, Li L, Hu H, Cui Y, Zhang J, Zheng Y. BACE1 in PV interneuron tunes hippocampal CA1 local circuits and resets priming of fear memory extinction. Mol Psychiatry 2023; 28:4151-4162. [PMID: 37452089 DOI: 10.1038/s41380-023-02176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
BACE1 is the rate-limiting enzyme for β-amyloid (Aβ) production and therefore is considered a prime drug target for treating Alzheimer's disease (AD). Nevertheless, the BACE1 inhibitors failed in clinical trials, even exhibiting cognitive worsening, implying that BACE1 may function in regulating cognition-relevant neural circuits. Here, we found that parvalbumin-positive inhibitory interneurons (PV INs) in hippocampal CA1 express BACE1 at a high level. We designed and developed a mouse strain with conditional knockout of BACE1 in PV neurons. The CA1 fast-spiking PV INs with BACE1 deletion exhibited an enhanced response of postsynaptic N-methyl-D-aspartate (NMDA) receptors to local stimulation on CA1 oriens, with average intrinsic electrical properties and fidelity in synaptic integration. Intriguingly, the BACE1 deletion reorganized the CA1 recurrent inhibitory motif assembled by the heterogeneous pyramidal neurons (PNs) and the adjacent fast-spiking PV INs from the superficial to the deep layer. Moreover, the conditional BACE1 deletion impaired the AMPARs-mediated excitatory transmission of deep CA1 PNs. Further rescue experiments confirmed that these phenotypes require the enzymatic activity of BACE1. Above all, the BACE1 deletion resets the priming of the fear memory extinction. Our findings suggest a neuron-specific working model of BACE1 in regulating learning and memory circuits. The study may provide a potential path of targeting BACE1 and NMDAR together to circumvent cognitive worsening due to a single application of BACE1 inhibitor in AD patients.
Collapse
Affiliation(s)
- Xuansheng Xiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Xiaotong Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Ke Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Lijuan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Ying He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Jinglan Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Linying Li
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Hanning Hu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Yanqiu Cui
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jianliang Zhang
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yan Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
164
|
Huang F, Ke C, Li J, Chen L, Yin J, Li X, Wu Z, Zhang C, Xu F, Wu Y, Kang J. Controllable Resistive Switching in ReS 2 /WS 2 Heterostructure for Nonvolatile Memory and Synaptic Simulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302813. [PMID: 37530215 PMCID: PMC10558669 DOI: 10.1002/advs.202302813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/10/2023] [Indexed: 08/03/2023]
Abstract
Memristors with nonvolatile storage performance and simulated synaptic functions are regarded as one of the critical devices to overcome the bottleneck in traditional von Neumann computer architecture. 2D van der Waals heterostructures have paved a new way for the development of advanced memristors by integrating the intriguing features of different materials and offering additional controllability over their optoelectronic properties. Herein, planar memristors with both electrical and optical tunability based on ReS2 /WS2 van der Waals heterostructure are demonstrated. The devices show unique unipolar nonvolatile behavior with high Roff /Ron ratio of up to 106 , desirable endurance, and retention, which are superior to pure ReS2 and WS2 devices. When decreasing the channel length, the set voltage can be notably reduced while the high Roff /Ron ratios are retained. By introducing electrostatic doping through the gate control, the set voltage can be tailored in a wide range from 4.50 to 0.40 V. Furthermore, biological synaptic functions and plasticity, including spike rate-dependent plasticity and paired-pulse facilitation, are successfully realized. By employing optical illumination, resistive switching can also be modulated, which is dependent on the illumination energy and power. A mechanism related to the interlayer charge transfer controlled by optical excitation is revealed.
Collapse
Affiliation(s)
- Feihong Huang
- Department of PhysicsEngineering Research Centre for Micro‐Nano Optoelectronic Materials and Devices at Education MinistryFujian Provincial Key Laboratory of Semiconductor Materials and ApplicationsXiamen UniversityXiamen361005P. R. China
| | - Congming Ke
- Department of PhysicsEngineering Research Centre for Micro‐Nano Optoelectronic Materials and Devices at Education MinistryFujian Provincial Key Laboratory of Semiconductor Materials and ApplicationsXiamen UniversityXiamen361005P. R. China
| | - Jinan Li
- Department of PhysicsEngineering Research Centre for Micro‐Nano Optoelectronic Materials and Devices at Education MinistryFujian Provincial Key Laboratory of Semiconductor Materials and ApplicationsXiamen UniversityXiamen361005P. R. China
| | - Li Chen
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315211P. R. China
| | - Jun Yin
- Pen‐Tung Sah Institute of Micro‐Nano Science and TechnologyXiamen UniversityXiamen361005P. R. China
| | - Xu Li
- Department of PhysicsEngineering Research Centre for Micro‐Nano Optoelectronic Materials and Devices at Education MinistryFujian Provincial Key Laboratory of Semiconductor Materials and ApplicationsXiamen UniversityXiamen361005P. R. China
| | - Zhiming Wu
- Department of PhysicsEngineering Research Centre for Micro‐Nano Optoelectronic Materials and Devices at Education MinistryFujian Provincial Key Laboratory of Semiconductor Materials and ApplicationsXiamen UniversityXiamen361005P. R. China
| | - Chunmiao Zhang
- Department of PhysicsEngineering Research Centre for Micro‐Nano Optoelectronic Materials and Devices at Education MinistryFujian Provincial Key Laboratory of Semiconductor Materials and ApplicationsXiamen UniversityXiamen361005P. R. China
| | - Feiya Xu
- Department of PhysicsEngineering Research Centre for Micro‐Nano Optoelectronic Materials and Devices at Education MinistryFujian Provincial Key Laboratory of Semiconductor Materials and ApplicationsXiamen UniversityXiamen361005P. R. China
| | - Yaping Wu
- Department of PhysicsEngineering Research Centre for Micro‐Nano Optoelectronic Materials and Devices at Education MinistryFujian Provincial Key Laboratory of Semiconductor Materials and ApplicationsXiamen UniversityXiamen361005P. R. China
| | - Junyong Kang
- Department of PhysicsEngineering Research Centre for Micro‐Nano Optoelectronic Materials and Devices at Education MinistryFujian Provincial Key Laboratory of Semiconductor Materials and ApplicationsXiamen UniversityXiamen361005P. R. China
| |
Collapse
|
165
|
Wang Y, Yin L, Huang S, Xiao R, Zhang Y, Li D, Pi X, Yang D. Silicon-Nanomembrane-Based Broadband Synaptic Phototransistors for Neuromorphic Vision. NANO LETTERS 2023; 23:8460-8467. [PMID: 37721358 DOI: 10.1021/acs.nanolett.3c01853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Neuromorphic vision has been attracting much attention due to its advantages over conventional machine vision (e.g., lower data redundancy and lower power consumption). Here we develop synaptic phototransistors based on the silicon nanomembrane (Si NM), which are coupled with lead sulfide quantum dots (PbS QDs) and poly(3-hexylthiophene) (P3HT) to form a heterostructure with distinct photogating. Synaptic phototransistors with optical stimulation have outstanding synaptic functionalities ranging from ultraviolet (UV) to near-infrared (NIR). The broadband synaptic functionalities enable an array of synaptic phototransistors to achieve the perception of brightness and color. In addition, an array of synaptic phototransistors is capable of simultaneous sensing, processing, and memory, which well mimics human vision.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Advanced Semiconductors & Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, Zhejiang 311215, China
| | - Lei Yin
- State Key Laboratory of Silicon and Advanced Semiconductor Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Shijie Huang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Rulei Xiao
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures and College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Yiqiang Zhang
- School of Materials Science and Engineering & College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Dongke Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Advanced Semiconductors & Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, Zhejiang 311215, China
| | - Xiaodong Pi
- State Key Laboratory of Silicon and Advanced Semiconductor Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Advanced Semiconductors & Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, Zhejiang 311215, China
| | - Deren Yang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Advanced Semiconductors & Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, Zhejiang 311215, China
| |
Collapse
|
166
|
Kim J, Im C, Lee C, Hwang J, Jang H, Lee JH, Jin M, Lee H, Kim J, Sung J, Kim YS, Lee E. Solvent-assisted sulfur vacancy engineering method in MoS 2 for a neuromorphic synaptic memristor. NANOSCALE HORIZONS 2023; 8:1417-1427. [PMID: 37538027 DOI: 10.1039/d3nh00201b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Recently, two-dimensional transition metal dichalcogenides (TMDs) such as molybdenum disulfide (MoS2) have attracted great attention due to their unique properties. To modulate the electronic properties and structure of TMDs, it is crucial to precisely control chalcogenide vacancies and several methods have already been suggested. However, they have several limitations such as plasma damage by ion bombardment. Herein, we introduced a novel solvent-assisted vacancy engineering (SAVE) method to modulate sulfur vacancies in MoS2. Considering polarity and the Hansen solubility parameter (HSP), three solvents were selected. Sulfur vacancies can be modulated by immersing MoS2 in each solvent, supported by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy analyses. The SAVE method can further expand its application in memory devices representing memristive performance and synaptic behaviors. We represented the charge transport mechanism of sulfur vacancy migration in MoS2. The non-destructive, scalable, and novel SAVE method controlling sulfur vacancies is expected to be a guideline for constructing a vacancy engineering system of TMDs.
Collapse
Affiliation(s)
- Jiyeon Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Changik Im
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Chan Lee
- Department of Chemical and Biological Engineering, College of Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jinwoo Hwang
- Department of Chemical Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi-si, Gyeongsangbuk-do, 39177, Republic of Korea.
| | - Hyoik Jang
- Department of Chemical Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi-si, Gyeongsangbuk-do, 39177, Republic of Korea.
| | - Jae Hak Lee
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
- Samsung Display Company, Ltd., 1 Samsung-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 17113, Republic of Korea
| | - Minho Jin
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Haeyeon Lee
- Department of Chemical and Biological Engineering, College of Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Junyoung Kim
- Inspection Business Unit (IBU), Onto Innovation, 4900 W 78th St, Bloomington, MN 55435, USA
| | - Junho Sung
- Department of Chemical Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi-si, Gyeongsangbuk-do, 39177, Republic of Korea.
| | - Youn Sang Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea.
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
- Department of Chemical and Biological Engineering, College of Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
- Advanced Institutes of Convergence Technology, Gwanggyo-ro 145, Yeongtong-gu, Suwon, 16229, Republic of Korea
| | - Eunho Lee
- Department of Chemical Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi-si, Gyeongsangbuk-do, 39177, Republic of Korea.
| |
Collapse
|
167
|
Brofiga M, Losacco S, Poggio F, Zerbo RA, Milanese M, Massobrio P, Burlando B. Multiple neuron clusters on Micro-Electrode Arrays as an in vitro model of brain network. Sci Rep 2023; 13:15604. [PMID: 37730890 PMCID: PMC10511538 DOI: 10.1038/s41598-023-42168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023] Open
Abstract
Understanding the brain functioning is essential for governing brain processes with the aim of managing pathological network dysfunctions. Due to the morphological and biochemical complexity of the central nervous system, the development of general models with predictive power must start from in vitro brain network engineering. In the present work, we realized a micro-electrode array (MEA)-based in vitro brain network and studied its emerging dynamical properties. We obtained four-neuron-clusters (4N) assemblies by plating rat embryo cortical neurons on 60-electrode MEA with cross-shaped polymeric masks and compared the emerging dynamics with those of sister single networks (1N). Both 1N and 4N assemblies exhibited spontaneous electrical activity characterized by spiking and bursting signals up to global activation by means of network bursts. Data revealed distinct patterns of network activity with differences between 1 and 4N. Rhythmic network bursts and dominant initiator clusters suggested pacemaker activities in both assembly types, but the propagation of activation sequences was statistically influenced by the assembly topology. We proved that this rhythmic activity was ivabradine sensitive, suggesting the involvement of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, and propagated across the real clusters of 4N, or corresponding virtual clusters of 1N, with dominant initiator clusters, and nonrandom cluster activation sequences. The occurrence of nonrandom series of identical activation sequences in 4N revealed processes possibly ascribable to neuroplasticity. Hence, our multi-network dissociated cortical assemblies suggest the relevance of pacemaker neurons as essential elements for generating brain network electrophysiological patterns; indeed, such evidence should be considered in the development of computational models for envisaging network behavior both in physiological and pathological conditions.
Collapse
Affiliation(s)
- Martina Brofiga
- Department of Informatics, Bioengineering, Robotics, Systems Engineering (DIBRIS), University of Genova, Genova, Italy
- ScreenNeuroPharm, Sanremo, Italy
| | - Serena Losacco
- Department of Pharmacy (DIFAR), University of Genova, Genova, Italy
| | - Fabio Poggio
- Department of Informatics, Bioengineering, Robotics, Systems Engineering (DIBRIS), University of Genova, Genova, Italy
| | - Roberta Arianna Zerbo
- Department of Pharmacy (DIFAR), Pharmacology and Toxicology Unit, University of Genova, Genova, Italy
| | - Marco Milanese
- Department of Pharmacy (DIFAR), Pharmacology and Toxicology Unit, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Paolo Massobrio
- Department of Informatics, Bioengineering, Robotics, Systems Engineering (DIBRIS), University of Genova, Genova, Italy.
- National Institute for Nuclear Physics (INFN), Genova, Italy.
| | - Bruno Burlando
- Department of Pharmacy (DIFAR), University of Genova, Genova, Italy
| |
Collapse
|
168
|
Maldonado D, Cantudo A, Perez E, Romero-Zaliz R, Perez-Bosch Quesada E, Mahadevaiah MK, Jimenez-Molinos F, Wenger C, Roldan JB. TiN/Ti/HfO 2/TiN memristive devices for neuromorphic computing: from synaptic plasticity to stochastic resonance. Front Neurosci 2023; 17:1271956. [PMID: 37795180 PMCID: PMC10546015 DOI: 10.3389/fnins.2023.1271956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023] Open
Abstract
We characterize TiN/Ti/HfO2/TiN memristive devices for neuromorphic computing. We analyze different features that allow the devices to mimic biological synapses and present the models to reproduce analytically some of the data measured. In particular, we have measured the spike timing dependent plasticity behavior in our devices and later on we have modeled it. The spike timing dependent plasticity model was implemented as the learning rule of a spiking neural network that was trained to recognize the MNIST dataset. Variability is implemented and its influence on the network recognition accuracy is considered accounting for the number of neurons in the network and the number of training epochs. Finally, stochastic resonance is studied as another synaptic feature. It is shown that this effect is important and greatly depends on the noise statistical characteristics.
Collapse
Affiliation(s)
- David Maldonado
- Departamento de Electronica y Tecnologia de Computadores, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Antonio Cantudo
- Departamento de Electronica y Tecnologia de Computadores, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Eduardo Perez
- Materials Research Department, IHP-Leibniz-Institut fuer innovative Mikroelektronik, Frankfurt an der Oder, Germany
- Mathematics, Computer Science, Physics, Electrical Engineering and Information Technology Department, Brandenburg University of Technology Cottbus-Senftenberg (BTU), Cottbus, Germany
| | - Rocio Romero-Zaliz
- Center for Research in Information and Communication Technologies (CITIC), Andalusian Research Institute on Data Science and Computational intelligence (DaSCI), University of Granada, Granada, Spain
| | - Emilio Perez-Bosch Quesada
- Materials Research Department, IHP-Leibniz-Institut fuer innovative Mikroelektronik, Frankfurt an der Oder, Germany
| | | | - Francisco Jimenez-Molinos
- Departamento de Electronica y Tecnologia de Computadores, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Christian Wenger
- Materials Research Department, IHP-Leibniz-Institut fuer innovative Mikroelektronik, Frankfurt an der Oder, Germany
- Mathematics, Computer Science, Physics, Electrical Engineering and Information Technology Department, Brandenburg University of Technology Cottbus-Senftenberg (BTU), Cottbus, Germany
| | - Juan Bautista Roldan
- Departamento de Electronica y Tecnologia de Computadores, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| |
Collapse
|
169
|
Lee DH, Kim HS, Park KW, Park H, Cho WJ. Enhanced Synaptic Behaviors in Chitosan Electrolyte-Based Electric-Double-Layer Transistors with Poly-Si Nanowire Channel Structures. Biomimetics (Basel) 2023; 8:432. [PMID: 37754183 PMCID: PMC10526377 DOI: 10.3390/biomimetics8050432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/28/2023] Open
Abstract
In this study, we enhance the synaptic behavior of artificial synaptic transistors by utilizing nanowire (NW)-type polysilicon channel structures. The high surface-to-volume ratio of the NW channels enables efficient modulation of the channel conductance, which is interpreted as the synaptic weight. As a result, NW-type synaptic transistors exhibit a larger hysteresis window compared to film-type synaptic transistors, even within the same gate voltage sweeping range. Moreover, NW-type synaptic transistors demonstrate superior short-term facilitation and long-term memory transition compared with film-type ones, as evidenced by the measured paired-pulse facilitation and excitatory post-synaptic current characteristics at varying frequencies and pulse numbers. Additionally, we observed gradual potentiation/depression characteristics, making these artificial synapses applicable to artificial neural networks. Furthermore, the NW-type synaptic transistors exhibit improved Modified National Institute of Standards and Technology pattern recognition rate of 91.2%. In conclusion, NW structure channels are expected to be a promising technology for next-generation artificial intelligence (AI) semiconductors, and the integration of NW structure channels has significant potential to advance AI semiconductor technology.
Collapse
Affiliation(s)
- Dong-Hee Lee
- Department of Electronic Materials Engineering, Kwangwoon University, Gwangun-ro 20, Nowon-gu, Seoul 01897, Republic of Korea; (D.-H.L.); (H.-S.K.); (K.-W.P.)
| | - Hwi-Su Kim
- Department of Electronic Materials Engineering, Kwangwoon University, Gwangun-ro 20, Nowon-gu, Seoul 01897, Republic of Korea; (D.-H.L.); (H.-S.K.); (K.-W.P.)
| | - Ki-Woong Park
- Department of Electronic Materials Engineering, Kwangwoon University, Gwangun-ro 20, Nowon-gu, Seoul 01897, Republic of Korea; (D.-H.L.); (H.-S.K.); (K.-W.P.)
| | - Hamin Park
- Department of Electronic Engineering, Kwangwoon University, Gwangun-ro 20, Nowon-gu, Seoul 01897, Republic of Korea;
| | - Won-Ju Cho
- Department of Electronic Materials Engineering, Kwangwoon University, Gwangun-ro 20, Nowon-gu, Seoul 01897, Republic of Korea; (D.-H.L.); (H.-S.K.); (K.-W.P.)
| |
Collapse
|
170
|
Eggl MF, Chater TE, Petkovic J, Goda Y, Tchumatchenko T. Linking spontaneous and stimulated spine dynamics. Commun Biol 2023; 6:930. [PMID: 37696988 PMCID: PMC10495434 DOI: 10.1038/s42003-023-05303-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023] Open
Abstract
Our brains continuously acquire and store memories through synaptic plasticity. However, spontaneous synaptic changes can also occur and pose a challenge for maintaining stable memories. Despite fluctuations in synapse size, recent studies have shown that key population-level synaptic properties remain stable over time. This raises the question of how local synaptic plasticity affects the global population-level synaptic size distribution and whether individual synapses undergoing plasticity escape the stable distribution to encode specific memories. To address this question, we (i) studied spontaneously evolving spines and (ii) induced synaptic potentiation at selected sites while observing the spine distribution pre- and post-stimulation. We designed a stochastic model to describe how the current size of a synapse affects its future size under baseline and stimulation conditions and how these local effects give rise to population-level synaptic shifts. Our study offers insights into how seemingly spontaneous synaptic fluctuations and local plasticity both contribute to population-level synaptic dynamics.
Collapse
Affiliation(s)
- Maximilian F Eggl
- University of Mainz Medical Center, Anselm-Franz-von-Bentzel-Weg 3, 55128, Mainz, Germany
| | - Thomas E Chater
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Janko Petkovic
- University of Mainz Medical Center, Anselm-Franz-von-Bentzel-Weg 3, 55128, Mainz, Germany
| | - Yukiko Goda
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
- Synapse Biology Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Kunigami-gun, Okinawa, Japan
| | - Tatjana Tchumatchenko
- University of Mainz Medical Center, Anselm-Franz-von-Bentzel-Weg 3, 55128, Mainz, Germany.
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
171
|
Yang C, Su L, Xia K, Li X, Liu Y, Li H. Doping-modulated lateral asymmetric Schottky diode as a high-performance self-powered synaptic device. OPTICS EXPRESS 2023; 31:31061-31071. [PMID: 37710634 DOI: 10.1364/oe.498708] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/25/2023] [Indexed: 09/16/2023]
Abstract
In the post-Moore era, the gradually saturated computational capability of conventional digital computers showing the opposite trend as the exponentially increasing data volumes imperatively required a platform or technology to break this bottleneck. Brain-inspired neuromorphic computing promises to inherently improve the efficiency of information processing and computation by means of the highly parallel hardware architecture to reduce global data transmission. Here, we demonstrate a compact device technology based on the barrier asymmetry to achieve zero-consumption self-powered synaptic devices. In order to tune the device behaviors, the typical chemical doping is used to tailor the asymmetry for energy harvesting. Finally, in our demonstrated devices, the open-circuit voltage (VOC) and power-conversion efficiency (PCE) can be modulated up to 0.77 V and 6%, respectively. Optimized photovoltaic features affords synaptic devices with an outstanding programming weight states, involving training facilitation, stimulus reinforce and consolidation. Based on self-powered system, this work further presents a highly available modulation scheme, which achieves excellent device behaviors while ensuring the zero-energy consumption.
Collapse
|
172
|
Li X, Bi R, Ou X, Han S, Sheng Y, Chen G, Xie Z, Liu C, Yue W, Wang Y, Hu W, Guo SZ. 3D-Printed Intrinsically Stretchable Organic Electrochemical Synaptic Transistor Array. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41656-41665. [PMID: 37610705 DOI: 10.1021/acsami.3c07169] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Organic electrochemical transistors (OECTs) for skin-like bioelectronics require mechanical stretchability, softness, and cost-effective large-scale manufacturing. However, developing intrinsically stretchable OECTs using a simple and fast-response technique is challenging due to limitations in functional materials, substrate wettability, and integrated processing of multiple materials. In this regard, we propose a fabrication method devised by combining the preparation of a microstructured hydrophilic substrate, multi-material printing of functional inks with varying viscosities, and optimization of the device channel geometries. The resulting intrinsically stretchable OECT array with synaptic properties was successfully manufactured. These devices demonstrated high transconductance (22.5 mS), excellent mechanical softness (Young's modulus ∼ 2.2 MPa), and stretchability (∼30%). Notably, the device also exhibited artificial synapse functionality, mimicking the biological synapse with features such as paired-pulse depression, short-term plasticity, and long-term plasticity. This study showcases a promising strategy for fabricating intrinsically stretchable OECTs and provides valuable insights for the development of brain-computer interfaces.
Collapse
Affiliation(s)
- Xiaohong Li
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Ran Bi
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xingcheng Ou
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Songjia Han
- State Key Laboratory of Optoelectronic Materials and Technologies and Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu Sheng
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Guoliang Chen
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhuang Xie
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Chuan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies and Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Wan Yue
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yan Wang
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Weijie Hu
- School of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Shuang-Zhuang Guo
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
173
|
Huang M, Schwacke M, Onen M, Del Alamo J, Li J, Yildiz B. Electrochemical Ionic Synapses: Progress and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205169. [PMID: 36300807 DOI: 10.1002/adma.202205169] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Artificial neural networks based on crossbar arrays of analog programmable resistors can address the high energy challenge of conventional hardware in artificial intelligence applications. However, state-of-the-art two-terminal resistive switching devices based on conductive filament formation suffer from high variability and poor controllability. Electrochemical ionic synapses are three-terminal devices that operate by electrochemical and dynamic insertion/extraction of ions that control the electronic conductivity of a channel in a single solid-solution phase. They are promising candidates for programmable resistors in crossbar arrays because they have shown uniform and deterministic control of electronic conductivity based on ion doping, with very low energy consumption. Here, the desirable specifications of these programmable resistors are presented. Then, an overview of the current progress of devices based on Li+ , O2- , and H+ ions and material systems is provided. Achieving nanosecond speed, low operation voltage (≈1 V), low energy consumption, with complementary metal-oxide-semiconductor compatibility all simultaneously remains a challenge. Toward this goal, a physical model of the device is constructed to provide guidelines for the desired material properties to overcome the remaining challenges. Finally, an outlook is provided, including strategies to advance materials toward the desirable properties and the future opportunities for electrochemical ionic synapses.
Collapse
Affiliation(s)
- Mantao Huang
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Miranda Schwacke
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Murat Onen
- Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jesús Del Alamo
- Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ju Li
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Bilge Yildiz
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
174
|
Ibañez S, Sengupta N, Luebke JI, Wimmer K, Weaver CM. Myelin dystrophy in the aging prefrontal cortex leads to impaired signal transmission and working memory decline: a multiscale computational study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555476. [PMID: 37693412 PMCID: PMC10491254 DOI: 10.1101/2023.08.30.555476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Normal aging leads to myelin alternations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are often correlated with cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First we built a multicompartment pyramidal neuron model fit to monkey dlPFC data, with axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions, to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination in a population of neurons. Lasso regression identified distinctive parameter sets likely to modulate an axon's susceptibility to CV changes following demyelination versus remyelination. Next we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from electron microscopy up to behavior on aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.
Collapse
Affiliation(s)
- Sara Ibañez
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA 02118
- Centre de Recerca Matemàtica, Edifici C, Campus Bellaterra, 08193 Bellaterra, Spain
| | - Nilapratim Sengupta
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA 02118
- Department of Mathematics, Franklin and Marshall College, Lancaster, PA, USA 17604
| | - Jennifer I Luebke
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA 02118
| | - Klaus Wimmer
- Centre de Recerca Matemàtica, Edifici C, Campus Bellaterra, 08193 Bellaterra, Spain
| | - Christina M Weaver
- Department of Mathematics, Franklin and Marshall College, Lancaster, PA, USA 17604
| |
Collapse
|
175
|
Montalban E, Walle R, Castel J, Ansoult A, Hassouna R, Foppen E, Fang X, Hutelin Z, Mickus S, Perszyk E, Petitbon A, Berthelet J, Rodrigues-Lima F, Cebrian-Serrano A, Gangarossa G, Martin C, Trifilieff P, Bosch-Bouju C, Small DM, Luquet S. The Addiction-Susceptibility TaqIA/Ankk1 Controls Reward and Metabolism Through D 2 Receptor-Expressing Neurons. Biol Psychiatry 2023; 94:424-436. [PMID: 36805080 DOI: 10.1016/j.biopsych.2023.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/21/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND A large body of evidence highlights the importance of genetic variants in the development of psychiatric and metabolic conditions. Among these, the TaqIA polymorphism is one of the most commonly studied in psychiatry. TaqIA is located in the gene that codes for the ankyrin repeat and kinase domain containing 1 kinase (Ankk1) near the dopamine D2 receptor (D2R) gene. Homozygous expression of the A1 allele correlates with a 30% to 40% reduction of striatal D2R, a typical feature of addiction, overeating, and other psychiatric pathologies. The mechanisms by which the variant influences dopamine signaling and behavior are unknown. METHODS Here, we used transgenic and viral-mediated strategies to reveal the role of Ankk1 in the regulation of activity and functions of the striatum. RESULTS We found that Ankk1 is preferentially enriched in striatal D2R-expressing neurons and that Ankk1 loss of function in the dorsal and ventral striatum leads to alteration in learning, impulsivity, and flexibility resembling endophenotypes described in A1 carriers. We also observed an unsuspected role of Ankk1 in striatal D2R-expressing neurons of the ventral striatum in the regulation of energy homeostasis and documented differential nutrient partitioning in humans with or without the A1 allele. CONCLUSIONS Overall, our data demonstrate that the Ankk1 gene is necessary for the integrity of striatal functions and reveal a new role for Ankk1 in the regulation of body metabolism.
Collapse
Affiliation(s)
- Enrica Montalban
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France.
| | - Roman Walle
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Julien Castel
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Anthony Ansoult
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Rim Hassouna
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Ewout Foppen
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Xi Fang
- Modern Diet and Physiology Research Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Zach Hutelin
- Modern Diet and Physiology Research Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Sophie Mickus
- Modern Diet and Physiology Research Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Emily Perszyk
- Modern Diet and Physiology Research Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Anna Petitbon
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Jérémy Berthelet
- Université Paris Cité, CNRS, Unité Epigenetique et Destin Cellulaire, Paris, France
| | | | - Alberto Cebrian-Serrano
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Giuseppe Gangarossa
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Claire Martin
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Pierre Trifilieff
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | | | - Dana M Small
- Modern Diet and Physiology Research Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Serge Luquet
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France; Modern Diet and Physiology Research Center, New Haven, Connecticut.
| |
Collapse
|
176
|
Lim T, Lee J, Woo DY, Kwak JY, Jang J. Multifunctional Crystalline InGaSnO Phototransistor Exhibiting Photosensing and Photosynaptic Behavior Using Oxygen Vacancy Engineering. SMALL METHODS 2023; 7:e2300251. [PMID: 37316979 DOI: 10.1002/smtd.202300251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/15/2023] [Indexed: 06/16/2023]
Abstract
A multifunctional optoelectronic device implementing photodetector, photosynapse, and photomemory is of increasing attention for neuromorphic system. This enables multiple devices to be replaced with a single device, which simplifies the structure of complex, highly integrated electronics. Here, a multifunctional c-axis-aligned crystalline indium gallium tin oxide thin-film transistor (TFT) optoelectronic device is demonstrated. The photodetecting and photosynaptic behaviors could be demonstrated by tuning of gate pulse. The device shows a high responsivity of 1.1 × 106 A W-1 to blue light (467 nm) and cutoff frequency (f-3dB ) of 2400 Hz exhibiting high frequency switching using a gate reset pulse. It is possible to implement photosynaptic behavior using persistent photoconductivity effect by applying a gate bias to make the TFT depletion mode. When potentiation and depression of synaptic weight are implemented with light pulse and gate voltage pulse, respectively, 64-state potentiation-depression curves are demonstrated with excellent nonlinearity of 1.13 and 2.03, respectively. When an artificial neural network is constructed with this device for the Modified National Institute of Standards and Technology training pattern recognition simulation, it shows a high pattern recognition accuracy of 90.4%.
Collapse
Affiliation(s)
- Taebin Lim
- Advanced Display Research Center (ADRC), Department of Information Display, Kyung Hee University, Seoul, 02447, South Korea
| | - Jiseob Lee
- Advanced Display Research Center (ADRC), Department of Information Display, Kyung Hee University, Seoul, 02447, South Korea
| | - Dong Yeon Woo
- Center for Neuromorphic Engineering, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Joon Young Kwak
- Center for Neuromorphic Engineering, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- Division of Nanoscience and Technology, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Jin Jang
- Advanced Display Research Center (ADRC), Department of Information Display, Kyung Hee University, Seoul, 02447, South Korea
| |
Collapse
|
177
|
Zhou J, Chen A, Zhang Y, Pu D, Qiao B, Hu J, Li H, Zhong S, Zhao R, Xue F, Xu Y, Loh KP, Wang H, Yu B. 2D Ferroionics: Conductive Switching Mechanisms and Transition Boundaries in Van der Waals Layered Material CuInP 2 S 6. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302419. [PMID: 37352331 DOI: 10.1002/adma.202302419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/30/2023] [Indexed: 06/25/2023]
Abstract
The recently unfolded ferroionic phenomena in 2D van der Waals (vdW) copper-indium-thiophosphate (CuInP2 S6 or CIPS) have received widespread interest as they allow for dynamic control of conductive switching properties, which are appealing in the paradigm-shift computing. The intricate couplings between ferroelectric polarization and ionic conduction in 2D vdW CIPS facilitate the manipulation and dynamic control of conductive behaviors. However, the complex interplays and underlying mechanisms are not yet fully explored and understood. Here, by investigating polarization switching and ionic conduction in the temperature and applied electric field domains, it is discovered that the conducting mechanisms of CIPS can be divided into four distinctive states (or modes) with transitional boundaries, depending on the dynamics of Cu ions in the material. Further, it demonstrates that dynamically-tunable synaptic responsive behavior can be well implemented by governing the working-state transition. This research provides an in-depth, quantitative understanding of the complex phenomena of conductive switching in 2D vdW CIPS with coexisting ferroelectric order and ionic disorder. The developed insights in this work lay the ground for implementing high-performance, function-enriched devices for information processing, data storage, and neuromorphic computing based on the 2D ferroionic material systems.
Collapse
Affiliation(s)
- Jiachao Zhou
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, China
| | - Anzhe Chen
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, China
| | - Yishu Zhang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, China
| | - Dong Pu
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, China
- Joint Institute of Zhejiang University and the University of Illinois at Urbana-Champaign, Zhejiang University, Haining, 314400, China
| | - Baoshi Qiao
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, China
- Joint Institute of Zhejiang University and the University of Illinois at Urbana-Champaign, Zhejiang University, Haining, 314400, China
| | - Jiayang Hu
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, China
| | - Hanxi Li
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, China
| | - Shuai Zhong
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, China
- Center for Brain-Inspired Computing Research, Tsinghua University, Beijing, 100084, China
| | - Rong Zhao
- Center for Brain-Inspired Computing Research, Tsinghua University, Beijing, 100084, China
| | - Fei Xue
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, China
| | - Yang Xu
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, China
- Joint Institute of Zhejiang University and the University of Illinois at Urbana-Champaign, Zhejiang University, Haining, 314400, China
| | - Kian Ping Loh
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Hua Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, China
| | - Bin Yu
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, China
| |
Collapse
|
178
|
Luhmann HJ. Dynamics of neocortical networks: connectivity beyond the canonical microcircuit. Pflugers Arch 2023; 475:1027-1033. [PMID: 37336815 PMCID: PMC10409710 DOI: 10.1007/s00424-023-02830-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
The neocortical network consists of two types of excitatory neurons and a variety of GABAergic inhibitory interneurons, which are organized in distinct microcircuits providing feedforward, feedback, lateral inhibition, and disinhibition. This network is activated by layer- and cell-type specific inputs from first and higher order thalamic nuclei, other subcortical regions, and by cortico-cortical projections. Parallel and serial information processing occurs simultaneously in different intracortical subnetworks and is influenced by neuromodulatory inputs arising from the basal forebrain (cholinergic), raphe nuclei (serotonergic), locus coeruleus (noradrenergic), and ventral tegmentum (dopaminergic). Neocortical neurons differ in their intrinsic firing pattern, in their local and global synaptic connectivity, and in the dynamics of their synaptic interactions. During repetitive stimulation, synaptic connections between distinct neuronal cell types show short-term facilitation or depression, thereby activating or inactivating intracortical microcircuits. Specific networks are capable to generate local and global activity patterns (e.g., synchronized oscillations), which contribute to higher cognitive function and behavior. This review article aims to give a brief overview on our current understanding of the structure and function of the neocortical network.
Collapse
Affiliation(s)
- Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany.
| |
Collapse
|
179
|
Ogunmowo T, Hoffmann C, Pepper R, Wang H, Gowrisankaran S, Ho A, Raychaudhuri S, Cooper BH, Milosevic I, Milovanovic D, Watanabe S. Intersectin and Endophilin condensates prime synaptic vesicles for release site replenishment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554276. [PMID: 37662300 PMCID: PMC10473601 DOI: 10.1101/2023.08.22.554276] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Neurotransmitter is released from dedicated sites of synaptic vesicle fusion within a synapse. Following fusion, the vacated sites are replenished immediately by new vesicles for subsequent neurotransmission. These replacement vesicles are assumed to be located near release sites and used by chance. Here, we find that replacement vesicles are clustered around this region by Intersectin-1. Specifically, Intersectin-1 forms dynamic molecular condensates with Endophilin A1 near release sites and sequesters vesicles around this region. In the absence of Intersectin-1, vesicles within 20 nm of the plasma membrane are reduced, and consequently, vacated sites cannot be replenished rapidly, leading to depression of synaptic transmission. Similarly, mutations in Intersectin-1 that disrupt Endophilin A1 binding result in similar phenotypes. However, in the absence of Endophilin, this replacement pool of vesicles is available but cannot be accessed, suggesting that Endophilin A1 is needed to mobilize these vesicles. Thus, our work describes a distinct physical region within a synapse where replacement vesicles are harbored for release site replenishment.
Collapse
Affiliation(s)
- Tyler Ogunmowo
- Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD USA
| | - Christian Hoffmann
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Renee Pepper
- Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD USA
| | - Han Wang
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | | | - Annie Ho
- Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD USA
| | - Sumana Raychaudhuri
- Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD USA
| | - Benjamin H. Cooper
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ira Milosevic
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Einstein Center for Neuroscience, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Shigeki Watanabe
- Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD USA
| |
Collapse
|
180
|
Dinse HR, Höffken O, Tegenthoff M. Cortical excitability in human somatosensory and visual cortex: implications for plasticity and learning - a minireview. Front Hum Neurosci 2023; 17:1235487. [PMID: 37662638 PMCID: PMC10469727 DOI: 10.3389/fnhum.2023.1235487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
The balance of excitation and inhibition plays a key role in plasticity and learning. A frequently used, reliable approach to assess intracortical inhibition relies on measuring paired-pulse behavior. Moreover, recent developments of magnetic resonance spectroscopy allows measuring GABA and glutamate concentrations. We give an overview about approaches employed to obtain information about excitatory states in human participants and discuss their putative relation. We summarize paired-pulse techniques and basic findings characterizing paired-pulse suppression in somatosensory (SI) and (VI) visual areas. Paired-pulse suppression describes the effect of paired sensory stimulation at short interstimulus intervals where the cortical response to the second stimulus is significantly suppressed. Simultaneous assessments of paired-pulse suppression in SI and VI indicated that cortical excitability is not a global phenomenon, but instead reflects the properties of local sensory processing. We review studies using non-invasive brain stimulation and perceptual learning experiments that assessed both perceptual changes and accompanying changes of cortical excitability in parallel. Independent of the nature of the excitation/inhibition marker used these data imply a close relationship between altered excitability and altered performance. These results suggest a framework where increased or decreased excitability is linked with improved or impaired perceptual performance. Recent findings have expanded the potential role of cortical excitability by demonstrating that inhibition markers such as GABA concentrations, paired-pulse suppression or alpha power predict to a substantial degree subsequent perceptual learning outcome. This opens the door for a targeted intervention where subsequent plasticity and learning processes are enhanced by altering prior baseline states of excitability.
Collapse
|
181
|
Nagaraja RY, Stiles MA, Sherry DM, Agbaga MP, Ahmad M. Synapse-Specific Defects in Synaptic Transmission in the Cerebellum of W246G Mutant ELOVL4 Rats-a Model of Human SCA34. J Neurosci 2023; 43:5963-5974. [PMID: 37491316 PMCID: PMC10436685 DOI: 10.1523/jneurosci.0378-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/30/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023] Open
Abstract
Elongation of very long fatty acids-4 (ELOVL4) mediates biosynthesis of very long chain-fatty acids (VLC-FA; ≥28 carbons). Various mutations in this enzyme result in spinocerebellar ataxia-34 (SCA34). We generated a rat model of human SCA34 by knock-in of a naturally occurring c.736T>G, p.W246G mutation in the Elovl4 gene. Our previous analysis of homozygous W246G mutant ELOVL4 rats (MUT) revealed early-onset gait disturbance and impaired synaptic transmission and plasticity at parallel fiber-Purkinje cell (PF-PC) and climbing fiber-Purkinje cell (CF-PC) synapses. However, the underlying mechanisms that caused these defects remained unknown. Here, we report detailed patch-clamp recordings from Purkinje cells that identify impaired synaptic mechanisms. Our results show that miniature EPSC (mEPSC) frequency is reduced in MUT rats with no change in mEPSC amplitude, suggesting a presynaptic defect of excitatory synaptic transmission on Purkinje cells. We also find alterations in inhibitory synaptic transmission as miniature IPSC (mIPSC) frequency and amplitude are increased in MUT Purkinje cells. Paired-pulse ratio is reduced at PF-PC synapses but increased at CF-PC synapses in MUT rats, which along with results from high-frequency stimulation suggest opposite changes in the release probability at these two synapses. In contrast, we identify exaggerated persistence of EPSC amplitude at CF-PC and PF-PC synapses in MUT cerebellum, suggesting a larger readily releasable pool (RRP) at both synapses. Furthermore, the dendritic spine density is reduced in MUT Purkinje cells. Thus, our results uncover novel mechanisms of action of VLC-FA at cerebellar synapses, and elucidate the synaptic dysfunction underlying SCA34 pathology.SIGNIFICANCE STATEMENT Very long chain-fatty acids (VLC-FA) are an understudied class of fatty acids that are present in the brain. They are critical for brain function as their deficiency caused by mutations in elongation of very long fatty acids-4 (ELOVL4), the enzyme that mediates their biosynthesis, results in neurologic diseases including spinocerebellar ataxia-34 (SCA34), neuroichthyosis, and Stargardt-like macular dystrophy. In this study, we investigated the synaptic defects present in a rat model of SCA34 and identified defects in presynaptic neurotransmitter release and dendritic spine density at synapses in the cerebellum, a brain region involved in motor coordination. These results advance our understanding of the synaptic mechanisms regulated by VLC-FA and describe the synaptic dysfunction that leads to motor incoordination in SCA34.
Collapse
Affiliation(s)
- Raghavendra Y Nagaraja
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Megan A Stiles
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - David M Sherry
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Martin-Paul Agbaga
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Mohiuddin Ahmad
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
182
|
Pope M, Seguin C, Varley TF, Faskowitz J, Sporns O. Co-evolving dynamics and topology in a coupled oscillator model of resting brain function. Neuroimage 2023; 277:120266. [PMID: 37414231 DOI: 10.1016/j.neuroimage.2023.120266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/24/2023] [Accepted: 07/04/2023] [Indexed: 07/08/2023] Open
Abstract
Dynamic models of ongoing BOLD fMRI brain dynamics and models of communication strategies have been two important approaches to understanding how brain network structure constrains function. However, dynamic models have yet to widely incorporate one of the most important insights from communication models: the brain may not use all of its connections in the same way or at the same time. Here we present a variation of a phase delayed Kuramoto coupled oscillator model that dynamically limits communication between nodes on each time step. An active subgraph of the empirically derived anatomical brain network is chosen in accordance with the local dynamic state on every time step, thus coupling dynamics and network structure in a novel way. We analyze this model with respect to its fit to empirical time-averaged functional connectivity, finding that, with the addition of only one parameter, it significantly outperforms standard Kuramoto models with phase delays. We also perform analyses on the novel time series of active edges it produces, demonstrating a slowly evolving topology moving through intermittent episodes of integration and segregation. We hope to demonstrate that the exploration of novel modeling mechanisms and the investigation of dynamics of networks in addition to dynamics on networks may advance our understanding of the relationship between brain structure and function.
Collapse
Affiliation(s)
- Maria Pope
- Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States; School of Informatics, Computing & Engineering, Indiana University, Bloomington, IN 47405, United States.
| | - Caio Seguin
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States
| | - Thomas F Varley
- School of Informatics, Computing & Engineering, Indiana University, Bloomington, IN 47405, United States; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States
| | - Joshua Faskowitz
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States
| | - Olaf Sporns
- Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States; Network Science Institute, Indiana University, Bloomington, IN 47405, United States; Cognitive Science Program, Indiana University, Bloomington, IN 47405, United States
| |
Collapse
|
183
|
Liu G, Wang W, Guo Z, Jia X, Zhao Z, Zhou Z, Niu J, Duan G, Yan X. Silicon based Bi 0.9La 0.1FeO 3 ferroelectric tunnel junction memristor for convolutional neural network application. NANOSCALE 2023; 15:13009-13017. [PMID: 37485606 DOI: 10.1039/d3nr00510k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Computing in memory (CIM) based on memristors is expected to completely solve the dilemma caused by von Neumann architecture. However, the performance of memristors based on traditional conductive filament mechanism is unstable. In this study, we report a nonvolatile high-performance memristor based on ferroelectric tunnel junction (FTJ) Pd/Bi0.9La0.1FeO3 (6.9 nm) (BLFO)/La0.67Sr0.33MnO3 (LSMO) on a silicon substrate. The conductance of this device was adjusted by different pulse stimulation parameter to achieve various synaptic functions because of ferroelectric polarization reversal. Based on the multiple conductance characteristics of the devices and the high linearity and symmetry of weight updating, image processing and VGG8 convolutional neural network (CNN) simulation based on the devices were realized. Excellent results of the image processing are demonstrated. The recognition accuracy of CNN offline learning reached an astonishing 92.07% based on Cifar-10 dataset. This provides a more feasible solution to break through the bottleneck of von Neumann architecture.
Collapse
Affiliation(s)
- Gongjie Liu
- Key Laboratory of brain-like neuromorphic devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, P. R. China.
| | - Wei Wang
- Key Laboratory of brain-like neuromorphic devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, P. R. China.
| | - Zhenqiang Guo
- Key Laboratory of brain-like neuromorphic devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, P. R. China.
| | - Xiaotong Jia
- Key Laboratory of brain-like neuromorphic devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, P. R. China.
| | - Zhen Zhao
- Key Laboratory of brain-like neuromorphic devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, P. R. China.
| | - Zhenyu Zhou
- Key Laboratory of brain-like neuromorphic devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, P. R. China.
| | - Jiangzhen Niu
- Key Laboratory of brain-like neuromorphic devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, P. R. China.
| | - Guojun Duan
- Key Laboratory of brain-like neuromorphic devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, P. R. China.
| | - Xiaobing Yan
- Key Laboratory of brain-like neuromorphic devices and Systems of Hebei Province, College of Electron and Information Engineering, Hebei University, Baoding 071002, P. R. China.
| |
Collapse
|
184
|
Kim J, Song S, Lee JM, Nam S, Kim J, Hwang DK, Park SK, Kim YH. Metal-Oxide Heterojunction Optoelectronic Synapse and Multilevel Memory Devices Enabled by Broad Spectral Photocarrier Modulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301186. [PMID: 37116095 DOI: 10.1002/smll.202301186] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Broad spectral response and high photoelectric conversion efficiency are key milestones for realizing multifunctional, low-power optoelectronic devices such as artificial synapse and reconfigurable memory devices. Nevertheless, the wide bandgap and narrow spectral response of metal-oxide semiconductors are problematic for efficient metal-oxide optoelectronic devices such as photonic synapse and optical memory devices. Here, a simple titania (TiO2 )/indium-gallium-zinc-oxide (IGZO) heterojunction structure is proposed for efficient multifunctional optoelectronic devices, enabling widen spectral response range and high photoresponsivity. By overlaying a TiO2 film on IGZO, the light absorption range extends to red light, along with enhanced photoresponsivity in the full visible light region. By implementing the TiO2 /IGZO heterojunction structure, various synaptic behaviors are successfully emulated such as short-term memory/long-term memory and paired pulse facilitation. Also, the TiO2 /IGZO synaptic transistor exhibits a recognition rate up to 90.3% in recognizing handwritten digit images. Moreover, by regulating the photocarrier dynamics and retention behavior using gate-bias modulation, a reconfigurable multilevel (≥8 states) memory is demonstrated using visible light.
Collapse
Affiliation(s)
- Jeehoon Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seungho Song
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Center for Opto-Electronic Materials and Devices, Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jong-Min Lee
- School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - San Nam
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jaehyun Kim
- Department of Chemistry and Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Do Kyung Hwang
- Center for Opto-Electronic Materials and Devices, Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Nanoscience and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Sung Kyu Park
- School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yong-Hoon Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
185
|
Iborra-Lázaro G, Djebari S, Sánchez-Rodríguez I, Gratacòs-Batlle E, Sánchez-Fernández N, Radošević M, Casals N, Navarro-López JDD, Soto Del Cerro D, Jiménez-Díaz L. CPT1C is required for synaptic plasticity and oscillatory activity that supports motor, associative and non-associative learning. J Physiol 2023; 601:3533-3556. [PMID: 37309891 DOI: 10.1113/jp284248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/26/2023] [Indexed: 06/14/2023] Open
Abstract
Carnitine palmitoyltransferase 1c (CPT1C) is a neuron-specific protein widely distributed throughout the CNS and highly expressed in discrete brain areas including the hypothalamus, hippocampus, amygdala and different motor regions. Its deficiency has recently been shown to disrupt dendritic spine maturation and AMPA receptor synthesis and trafficking in the hippocampus, but its contribution to synaptic plasticity and cognitive learning and memory processes remains mostly unknown. Here, we aimed to explore the molecular, synaptic, neural network and behavioural role of CPT1C in cognition-related functions by using CPT1C knockout (KO) mice. CPT1C-deficient mice showed extensive learning and memory deficits. The CPT1C KO animals exhibited impaired motor and instrumental learning that seemed to be related, in part, to locomotor deficits and muscle weakness but not to mood alterations. In addition, CPT1C KO mice showed detrimental hippocampus-dependent spatial and habituation memory, most probably attributable to inefficient dendritic spine maturation, impairments in long-term plasticity at the CA3-CA1 synapse and aberrant cortical oscillatory activity. In conclusion, our results reveal that CPT1C is not only crucial for motor function, coordination and energy homeostasis, but also has a crucial role in the maintenance of learning and memory cognitive functions. KEY POINTS: CPT1C, a neuron-specific interactor protein involved in AMPA receptor synthesis and trafficking, was found to be highly expressed in the hippocampus, amygdala and various motor regions. CPT1C-deficient animals exhibited energy deficits and impaired locomotion, but no mood changes were found. CPT1C deficiency disrupts hippocampal dendritic spine maturation and long-term synaptic plasticity and reduces cortical γ oscillations. CPT1C was found to be crucial for motor, associative and non-associative learning and memory.
Collapse
Affiliation(s)
- Guillermo Iborra-Lázaro
- Neurophysiology & Behaviour Laboratory, Regional Centre for Biomedical Research (CRIB), Faculty of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Souhail Djebari
- Neurophysiology & Behaviour Laboratory, Regional Centre for Biomedical Research (CRIB), Faculty of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Irene Sánchez-Rodríguez
- Neurophysiology & Behaviour Laboratory, Regional Centre for Biomedical Research (CRIB), Faculty of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Esther Gratacòs-Batlle
- Laboratory of Neurophysiology, Department of Biomedicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Nuria Sánchez-Fernández
- Laboratory of Neurophysiology, Department of Biomedicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Marija Radošević
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya and Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Barcelona, Spain
| | - Juan de Dios Navarro-López
- Neurophysiology & Behaviour Laboratory, Regional Centre for Biomedical Research (CRIB), Faculty of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, Spain
| | - David Soto Del Cerro
- Laboratory of Neurophysiology, Department of Biomedicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Lydia Jiménez-Díaz
- Neurophysiology & Behaviour Laboratory, Regional Centre for Biomedical Research (CRIB), Faculty of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
186
|
Dong Y, Zhao D, Li Y, Zeng Y. An unsupervised STDP-based spiking neural network inspired by biologically plausible learning rules and connections. Neural Netw 2023; 165:799-808. [PMID: 37418862 DOI: 10.1016/j.neunet.2023.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/09/2023]
Abstract
The backpropagation algorithm has promoted the rapid development of deep learning, but it relies on a large amount of labeled data and still has a large gap with how humans learn. The human brain can quickly learn various conceptual knowledge in a self-organized and unsupervised manner, accomplished through coordinating various learning rules and structures in the human brain. Spike-timing-dependent plasticity (STDP) is a general learning rule in the brain, but spiking neural networks (SNNs) trained with STDP alone is inefficient and perform poorly. In this paper, taking inspiration from short-term synaptic plasticity, we design an adaptive synaptic filter and introduce the adaptive spiking threshold as the neuron plasticity to enrich the representation ability of SNNs. We also introduce an adaptive lateral inhibitory connection to adjust the spikes balance dynamically to help the network learn richer features. To speed up and stabilize the training of unsupervised spiking neural networks, we design a samples temporal batch STDP (STB-STDP), which updates weights based on multiple samples and moments. By integrating the above three adaptive mechanisms and STB-STDP, our model greatly accelerates the training of unsupervised spiking neural networks and improves the performance of unsupervised SNNs on complex tasks. Our model achieves the current state-of-the-art performance of unsupervised STDP-based SNNs in the MNIST and FashionMNIST datasets. Further, we tested on the more complex CIFAR10 dataset, and the results fully illustrate the superiority of our algorithm. Our model is also the first work to apply unsupervised STDP-based SNNs to CIFAR10. At the same time, in the small-sample learning scenario, it will far exceed the supervised ANN using the same structure.
Collapse
Affiliation(s)
- Yiting Dong
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China; Brain-Inspired Cognitive Intelligence Lab, Institute of Automation, Chinese Academy of Sciences (CAS), Beijing, China
| | - Dongcheng Zhao
- Brain-Inspired Cognitive Intelligence Lab, Institute of Automation, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yang Li
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China; Brain-Inspired Cognitive Intelligence Lab, Institute of Automation, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yi Zeng
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China; Brain-Inspired Cognitive Intelligence Lab, Institute of Automation, Chinese Academy of Sciences (CAS), Beijing, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences (CAS), Shanghai, China; State Key Laboratory of Multimodal Artifcial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences (CAS), Beijing, China.
| |
Collapse
|
187
|
Arriagada-Diaz J, Flores-Muñoz C, Gómez-Soto B, Labraña-Allende M, Mattar-Araos M, Prado-Vega L, Hinostroza F, Gajardo I, Guerra-Fernández MJ, Bevilacqua JA, Cárdenas AM, Bitoun M, Ardiles AO, Gonzalez-Jamett AM. A centronuclear myopathy-causing mutation in dynamin-2 disrupts neuronal morphology and excitatory synaptic transmission in a murine model of the disease. Neuropathol Appl Neurobiol 2023; 49:e12918. [PMID: 37317811 DOI: 10.1111/nan.12918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 04/30/2023] [Accepted: 06/02/2023] [Indexed: 06/16/2023]
Abstract
AIMS Dynamin-2 is a large GTPase, a member of the dynamin superfamily that regulates membrane remodelling and cytoskeleton dynamics. Mutations in the dynamin-2 gene (DNM2) cause autosomal dominant centronuclear myopathy (CNM), a congenital neuromuscular disorder characterised by progressive weakness and atrophy of the skeletal muscles. Cognitive defects have been reported in some DNM2-linked CNM patients suggesting that these mutations can also affect the central nervous system (CNS). Here we studied how a dynamin-2 CNM-causing mutation influences the CNS function. METHODS Heterozygous mice harbouring the p.R465W mutation in the dynamin-2 gene (HTZ), the most common causing autosomal dominant CNM, were used as disease model. We evaluated dendritic arborisation and spine density in hippocampal cultured neurons, analysed excitatory synaptic transmission by electrophysiological field recordings in hippocampal slices, and evaluated cognitive function by performing behavioural tests. RESULTS HTZ hippocampal neurons exhibited reduced dendritic arborisation and lower spine density than WT neurons, which was reversed by transfecting an interference RNA against the dynamin-2 mutant allele. Additionally, HTZ mice showed defective hippocampal excitatory synaptic transmission and reduced recognition memory compared to the WT condition. CONCLUSION Our findings suggest that the dynamin-2 p.R465W mutation perturbs the synaptic and cognitive function in a CNM mouse model and support the idea that this GTPase plays a key role in regulating neuronal morphology and excitatory synaptic transmission in the hippocampus.
Collapse
Affiliation(s)
- Jorge Arriagada-Diaz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Magister en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Carolina Flores-Muñoz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Bárbara Gómez-Soto
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Magister en Ciencias Médicas, Mención Biología Celular y Molecular, Universidad de Valparaíso, Valparaíso, Chile
| | - Marjorie Labraña-Allende
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Magister en Ciencias Médicas, Mención Biología Celular y Molecular, Universidad de Valparaíso, Valparaíso, Chile
| | - Michelle Mattar-Araos
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Lorena Prado-Vega
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Magister en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Fernando Hinostroza
- Centro de Investigación de Estudios Avanzados del Maule, CIEAM, Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca, Chile
- Escuela de Química y Farmacia, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Ivana Gajardo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Jorge A Bevilacqua
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ana M Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Marc Bitoun
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, F-75013, France
| | - Alvaro O Ardiles
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
- Centro Interdisciplinario de Estudios en Salud, Facultad de Medicina, Universidad de Valparaíso, Viña del Mar, Chile
| | - Arlek M Gonzalez-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
188
|
Asopa A, Bhalla US. A computational view of short-term plasticity and its implications for E-I balance. Curr Opin Neurobiol 2023; 81:102729. [PMID: 37245258 DOI: 10.1016/j.conb.2023.102729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 03/30/2023] [Accepted: 04/25/2023] [Indexed: 05/30/2023]
Abstract
Short-term plasticity (STP) and excitatory-inhibitory balance (EI balance) are both ubiquitous building blocks of brain circuits across the animal kingdom. The synapses involved in EI are also subject to short-term plasticity, and several experimental studies have shown that their effects overlap. Recent computational and theoretical work has begun to highlight the functional implications of the intersection of these motifs. The findings are nuanced: while there are general computational themes, such as pattern tuning, normalization, and gating, much of the richness of these interactions comes from region- and modality specific tuning of STP properties. Together these findings point towards the STP-EI balance combination as being a versatile and highly efficient neural building block for a wide range of pattern-specific responses.
Collapse
Affiliation(s)
- Aditya Asopa
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bengaluru, 560065, India. https://twitter.com/adityaasopa
| | - Upinder S Bhalla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bengaluru, 560065, India.
| |
Collapse
|
189
|
Melin E, Andersson M, Gøtzsche CR, Wickham J, Huang Y, Szczygiel JA, Boender A, Christiansen SH, Pinborg L, Woldbye DPD, Kokaia M. Combinatorial gene therapy for epilepsy: Gene sequence positioning and AAV serotype influence expression and inhibitory effect on seizures. Gene Ther 2023; 30:649-658. [PMID: 37029201 PMCID: PMC10457185 DOI: 10.1038/s41434-023-00399-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/24/2023] [Accepted: 03/16/2023] [Indexed: 04/09/2023]
Abstract
Gene therapy with AAV vectors carrying genes for neuropeptide Y and its receptor Y2 has been shown to inhibit seizures in multiple animal models of epilepsy. It is however unknown how the AAV serotype or the sequence order of these two transgenes in the expression cassette affects the actual parenchymal gene expression levels and the seizure-suppressant efficacy. To address these questions, we compared three viral vector serotypes (AAV1, AAV2 and AAV8) and two transgene sequence orders (NPY-IRES-Y2 and Y2-IRES-NPY) in a rat model of acutely induced seizures. Wistar male rats were injected bilaterally with viral vectors and 3 weeks later acute seizures were induced by a subcutaneous injection of kainate. The latency until 1st motor seizure, time spent in motor seizure and latency to status epilepticus were measured to evaluate the seizure-suppressing efficacy of these vectors compared to an empty cassette control vector. Based on the results, the effect of the AAV1-NPY-IRES-Y2 vector was further investigated by in vitro electrophysiology, and its ability to achieve transgene overexpression in resected human hippocampal tissue was evaluated. The AAV1-NPY-IRES-Y2 proved to be better to any other serotype or gene sequence considering both transgene expression and ability to suppress induced seizures in rats. The vector also demonstrated transgene-induced decrease of glutamate release from excitatory neuron terminals and significantly increased both NPY and Y2 expression in resected human hippocampal tissue from patients with drug-resistant temporal lobe epilepsy. These results validate the feasibility of NPY/Y2 receptor gene therapy as a therapeutic opportunity in focal epilepsies.
Collapse
Affiliation(s)
- Esbjörn Melin
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, 17 Sölvegatan, 221 84, Lund, Sweden.
| | - My Andersson
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, 17 Sölvegatan, 221 84, Lund, Sweden
| | - Casper R Gøtzsche
- CombiGene AB, Medicon Village, 2 Scheelevägen, 223 81, Lund, Sweden
- Department of Neuroscience, Panum Institute, University of Copenhagen, 3B Blegdamsvej, DK-2200, Copenhagen N, Denmark
| | - Jenny Wickham
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, 17 Sölvegatan, 221 84, Lund, Sweden
| | - Yuzhe Huang
- Department of Neuroscience, Panum Institute, University of Copenhagen, 3B Blegdamsvej, DK-2200, Copenhagen N, Denmark
| | - Julia Alicja Szczygiel
- Department of Neuroscience, Panum Institute, University of Copenhagen, 3B Blegdamsvej, DK-2200, Copenhagen N, Denmark
| | - Arnie Boender
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, 17 Sölvegatan, 221 84, Lund, Sweden
| | - Søren H Christiansen
- Department of Neuroscience, Panum Institute, University of Copenhagen, 3B Blegdamsvej, DK-2200, Copenhagen N, Denmark
| | - Lars Pinborg
- Department of Neurology and Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, 9 Blegdamsvej, DK-2100, Copenhagen, Denmark
| | - David P D Woldbye
- Department of Neuroscience, Panum Institute, University of Copenhagen, 3B Blegdamsvej, DK-2200, Copenhagen N, Denmark
| | - Merab Kokaia
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, 17 Sölvegatan, 221 84, Lund, Sweden
| |
Collapse
|
190
|
Li KT, Ji D, Zhou C. Memory rescue and learning in synaptic impaired neuronal circuits. iScience 2023; 26:106931. [PMID: 37534172 PMCID: PMC10391582 DOI: 10.1016/j.isci.2023.106931] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/05/2023] [Accepted: 05/16/2023] [Indexed: 08/04/2023] Open
Abstract
Neuronal impairment is a characteristic of Alzheimer's disease (AD), but its effect on neural activity dynamics underlying memory deficits is unclear. Here, we studied the effects of synaptic impairment on neural activities associated with memory recall, memory rescue, and learning a new memory, in an integrate-and-fire neuronal network. Our results showed that reducing connectivity decreases the neuronal synchronization of memory neurons and impairs memory recall performance. Although, slow-gamma stimulation rescued memory recall and slow-gamma oscillations, the rescue caused a side effect of activating mixed memories. During the learning of a new memory, reducing connectivity caused impairment in storing the new memory, but did not affect previously stored memories. We also explored the effects of other types of impairments including neuronal loss and excitation-inhibition imbalance and the rescue by general increase of excitability. Our results reveal potential computational mechanisms underlying the memory deficits caused by impairment in AD.
Collapse
Affiliation(s)
- Kwan Tung Li
- Department of Physics, Centre for Nonlinear Studies, Beijing–Hong Kong–Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Hong Kong, China
- Research Center for Augmented Intelligence, Research Institute of Artificial Intelligence, Zhejiang Lab, Hangzhou 311100, China
| | - Daoyun Ji
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies, Beijing–Hong Kong–Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
191
|
Fukaya R, Miyano R, Hirai H, Sakaba T. Mechanistic insights into cAMP-mediated presynaptic potentiation at hippocampal mossy fiber synapses. Front Cell Neurosci 2023; 17:1237589. [PMID: 37519634 PMCID: PMC10372368 DOI: 10.3389/fncel.2023.1237589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
Presynaptic plasticity is an activity-dependent change in the neurotransmitter release and plays a key role in dynamic modulation of synaptic strength. Particularly, presynaptic potentiation mediated by cyclic adenosine monophosphate (cAMP) is widely seen across the animals and thought to contribute to learning and memory. Hippocampal mossy fiber-CA3 pyramidal cell synapses have been used as a model because of robust presynaptic potentiation in short- and long-term forms. Moreover, direct presynaptic recordings from large mossy fiber terminals allow one to dissect the potentiation mechanisms. Recently, super-resolution microscopy and flash-and-freeze electron microscopy have revealed the localizations of release site molecules and synaptic vesicles during the potentiation at a nanoscale, identifying the molecular mechanisms of the potentiation. Incorporating these growing knowledges, we try to present plausible mechanisms underlying the cAMP-mediated presynaptic potentiation.
Collapse
Affiliation(s)
- Ryota Fukaya
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Rinako Miyano
- Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | - Himawari Hirai
- Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | - Takeshi Sakaba
- Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| |
Collapse
|
192
|
Xu H, Cao K, Chen H, Abudusalamu A, Wu W, Xue Y. Emotional brain network decoded by biological spiking neural network. Front Neurosci 2023; 17:1200701. [PMID: 37496741 PMCID: PMC10366476 DOI: 10.3389/fnins.2023.1200701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/30/2023] [Indexed: 07/28/2023] Open
Abstract
Introduction Emotional disorders are essential manifestations of many neurological and psychiatric diseases. Nowadays, researchers try to explore bi-directional brain-computer interface techniques to help the patients. However, the related functional brain areas and biological markers are still unclear, and the dynamic connection mechanism is also unknown. Methods To find effective regions related to different emotion recognition and intervention, our research focuses on finding emotional EEG brain networks using spiking neural network algorithm with binary coding. We collected EEG data while human participants watched emotional videos (fear, sadness, happiness, and neutrality), and analyzed the dynamic connections between the electrodes and the biological rhythms of different emotions. Results The analysis has shown that the local high-activation brain network of fear and sadness is mainly in the parietal lobe area. The local high-level brain network of happiness is in the prefrontal-temporal lobe-central area. Furthermore, the α frequency band could effectively represent negative emotions, while the α frequency band could be used as a biological marker of happiness. The decoding accuracy of the three emotions reached 86.36%, 95.18%, and 89.09%, respectively, fully reflecting the excellent emotional decoding performance of the spiking neural network with self- backpropagation. Discussion The introduction of the self-backpropagation mechanism effectively improves the performance of the spiking neural network model. Different emotions exhibit distinct EEG networks and neuro-oscillatory-based biological markers. These emotional brain networks and biological markers may provide important hints for brain-computer interface technique exploration to help related brain disease recovery.
Collapse
Affiliation(s)
- Hubo Xu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Kexin Cao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Hongguang Chen
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
| | - Awuti Abudusalamu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Wei Wu
- State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Yanxue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| |
Collapse
|
193
|
Bliss DP, Rahnev D, Mackey WE, Curtis CE, D'Esposito M. Stimulation along the anterior-posterior axis of lateral frontal cortex reduces visual serial dependence. J Vis 2023; 23:1. [PMID: 37395704 PMCID: PMC10324416 DOI: 10.1167/jov.23.7.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/07/2023] [Indexed: 07/04/2023] Open
Abstract
Serial dependence is an attractive pull that recent perceptual history exerts on current judgments. Theory suggests that this bias is due to a form of short-term plasticity prevalent specifically in the frontal lobe. We sought to test the importance of the frontal lobe to serial dependence by disrupting neural activity along its lateral surface during two tasks with distinct perceptual and motor demands. In our first experiment, stimulation of the lateral prefrontal cortex (LPFC) during an oculomotor delayed response task decreased serial dependence only in the first saccade to the target, whereas stimulation posterior to the LPFC decreased serial dependence only in adjustments to eye position after the first saccade. In our second experiment, which used an orientation discrimination task, stimulation anterior to, in, and posterior to the LPFC all caused equivalent decreases in serial dependence. In this experiment, serial dependence occurred only between stimuli at the same location; an alternation bias was observed across hemifields. Frontal stimulation had no effect on the alternation bias. Transcranial magnetic stimulation to parietal cortex had no effect on serial dependence in either experiment. In summary, our experiments provide evidence for both functional differentiation (Experiment 1) and redundancy (Experiment 2) in frontal cortex with respect to serial dependence.
Collapse
Affiliation(s)
- Daniel P Bliss
- Citizen Science Program, Bard College, Annandale-on-Hudson, NY, USA
| | - Dobromir Rahnev
- School of Psychology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Wayne E Mackey
- Department of Psychology, New York University, New York, NY, USA
| | - Clayton E Curtis
- Department of Psychology, New York University, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
194
|
Lee DH, Park H, Cho WJ. Implementation of Highly Stable Memristive Characteristics in an Organic-Inorganic Hybrid Resistive Switching Layer of Chitosan-Titanium Oxide with Microwave-Assisted Oxidation. Molecules 2023; 28:5174. [PMID: 37446836 DOI: 10.3390/molecules28135174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
This study proposes a high-performance organic-inorganic hybrid memristor for the development of neuromorphic devices in the memristor-based artificial synapse. The memristor consists of a solid polymer electrolyte (SPE) chitosan layer and a titanium oxide (TiOx) layer grown with a low-thermal-budget, microwave-assisted oxidation. The fabricated Ti/SPE-chitosan/TiOx/Pt-structured memristor exhibited steady bipolar resistive switching (BRS) characteristics and demonstrated excellent endurance in 100-cycle repetition tests. Compared to SPE-chitosan memristors without a TiOx layer, the proposed organic-inorganic hybrid memristor demonstrated a higher dynamic range and a higher response to pre-synaptic stimuli such as short-term plasticity via paired-pulse facilitation. The effect of adding the TiOx layer on the BRS properties was examined, and the results showed that the TiOx layer improved the chemical and electrical superiority of the proposed memristor synaptic device. The proposed SPE-chitosan organic-inorganic hybrid memristor also exhibited a stable spike-timing-dependent plasticity, which closely mimics long-term plasticity. The potentiation and depression behaviors that modulate synaptic weights operated stably via repeated spike cycle tests. Therefore, the proposed SPE-chitosan organic-inorganic hybrid memristor is a promising candidate for the development of neuromorphic devices in memristor-based artificial synapses owing to its excellent stability, high dynamic range, and superior response to pre-synaptic stimuli.
Collapse
Affiliation(s)
- Dong-Hee Lee
- Department of Electronic Materials Engineering, Kwangwoon University, Gwangun-ro 20, Nowon-gu, Seoul 01897, Republic of Korea
| | - Hamin Park
- Department of Electronic Engineering, Kwangwoon University, Gwangun-ro 20, Nowon-gu, Seoul 01897, Republic of Korea
| | - Won-Ju Cho
- Department of Electronic Materials Engineering, Kwangwoon University, Gwangun-ro 20, Nowon-gu, Seoul 01897, Republic of Korea
| |
Collapse
|
195
|
Xu H, Scholten K, Li Z, Meng E, Song D. A Library of Polymer-based Microelectrode Array Designs for Recording from the Brain of Different Animal Models. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083000 DOI: 10.1109/embc40787.2023.10340804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Large-scale network recording technology is critical in linking neural activity to behavior. Stable, long-term recordings collected from behaving animals are the foundation for understanding neural dynamics and the plasticity of neural circuits. Penetrating microelectrode arrays (MEAs) can obtain high-resolution neural activity from different brain regions. However, ensuring the longevity of implantable devices and the consistency of neural signals over time remains one big challenge. A potential solution is to use flexible, polymer-based MEAs to minimize the foreign body response and prolong the lifetime of neural interfacing devices. Rodents and nonhuman primates (NHP) are commonly used animal models in neuroscience and neuroengineering studies. Specially designed MEAs that capture morphological features of different animal brains and various brain structures are powerful tools to simultaneously obtain neural activities from multiple brain regions. In this work, we develop a set of prototype designs of polymer MEAs that cover cortical, sub-cortical, and multiple brain regions of rodents and NHP.
Collapse
|
196
|
Sawicki J, Berner R, Loos SAM, Anvari M, Bader R, Barfuss W, Botta N, Brede N, Franović I, Gauthier DJ, Goldt S, Hajizadeh A, Hövel P, Karin O, Lorenz-Spreen P, Miehl C, Mölter J, Olmi S, Schöll E, Seif A, Tass PA, Volpe G, Yanchuk S, Kurths J. Perspectives on adaptive dynamical systems. CHAOS (WOODBURY, N.Y.) 2023; 33:071501. [PMID: 37486668 DOI: 10.1063/5.0147231] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/24/2023] [Indexed: 07/25/2023]
Abstract
Adaptivity is a dynamical feature that is omnipresent in nature, socio-economics, and technology. For example, adaptive couplings appear in various real-world systems, such as the power grid, social, and neural networks, and they form the backbone of closed-loop control strategies and machine learning algorithms. In this article, we provide an interdisciplinary perspective on adaptive systems. We reflect on the notion and terminology of adaptivity in different disciplines and discuss which role adaptivity plays for various fields. We highlight common open challenges and give perspectives on future research directions, looking to inspire interdisciplinary approaches.
Collapse
Affiliation(s)
- Jakub Sawicki
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
- Akademie Basel, Fachhochschule Nordwestschweiz FHNW, Leonhardsstrasse 6, 4009 Basel, Switzerland
| | - Rico Berner
- Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Sarah A M Loos
- DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Mehrnaz Anvari
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
- Fraunhofer Institute for Algorithms and Scientific Computing, Schloss Birlinghoven, 53757 Sankt-Augustin, Germany
| | - Rolf Bader
- Institute of Systematic Musicology, University of Hamburg, Hamburg, Germany
| | - Wolfram Barfuss
- Transdisciplinary Research Area: Sustainable Futures, University of Bonn, 53113 Bonn, Germany
- Center for Development Research (ZEF), University of Bonn, 53113 Bonn, Germany
| | - Nicola Botta
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
- Department of Computer Science and Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Nuria Brede
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
- Department of Computer Science, University of Potsdam, An der Bahn 2, 14476 Potsdam, Germany
| | - Igor Franović
- Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Daniel J Gauthier
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
| | - Sebastian Goldt
- Department of Physics, International School of Advanced Studies (SISSA), Trieste, Italy
| | - Aida Hajizadeh
- Research Group Comparative Neuroscience, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Philipp Hövel
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
| | - Omer Karin
- Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Philipp Lorenz-Spreen
- Center for Adaptive Rationality, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - Christoph Miehl
- Akademie Basel, Fachhochschule Nordwestschweiz FHNW, Leonhardsstrasse 6, 4009 Basel, Switzerland
| | - Jan Mölter
- Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Boltzmannstraße 3, 85748 Garching bei München, Germany
| | - Simona Olmi
- Akademie Basel, Fachhochschule Nordwestschweiz FHNW, Leonhardsstrasse 6, 4009 Basel, Switzerland
| | - Eckehard Schöll
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
- Akademie Basel, Fachhochschule Nordwestschweiz FHNW, Leonhardsstrasse 6, 4009 Basel, Switzerland
| | - Alireza Seif
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| | - Peter A Tass
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California 94304, USA
| | - Giovanni Volpe
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | - Serhiy Yanchuk
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
- Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
- Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| |
Collapse
|
197
|
Gangal H, Xie X, Huang Z, Cheng Y, Wang X, Lu J, Zhuang X, Essoh A, Huang Y, Chen R, Smith LN, Smith RJ, Wang J. Drug reinforcement impairs cognitive flexibility by inhibiting striatal cholinergic neurons. Nat Commun 2023; 14:3886. [PMID: 37391566 PMCID: PMC10313783 DOI: 10.1038/s41467-023-39623-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
Addictive substance use impairs cognitive flexibility, with unclear underlying mechanisms. The reinforcement of substance use is mediated by the striatal direct-pathway medium spiny neurons (dMSNs) that project to the substantia nigra pars reticulata (SNr). Cognitive flexibility is mediated by striatal cholinergic interneurons (CINs), which receive extensive striatal inhibition. Here, we hypothesized that increased dMSN activity induced by substance use inhibits CINs, reducing cognitive flexibility. We found that cocaine administration in rodents caused long-lasting potentiation of local inhibitory dMSN-to-CIN transmission and decreased CIN firing in the dorsomedial striatum (DMS), a brain region critical for cognitive flexibility. Moreover, chemogenetic and time-locked optogenetic inhibition of DMS CINs suppressed flexibility of goal-directed behavior in instrumental reversal learning tasks. Notably, rabies-mediated tracing and physiological studies showed that SNr-projecting dMSNs, which mediate reinforcement, sent axonal collaterals to inhibit DMS CINs, which mediate flexibility. Our findings demonstrate that the local inhibitory dMSN-to-CIN circuit mediates the reinforcement-induced deficits in cognitive flexibility.
Collapse
Affiliation(s)
- Himanshu Gangal
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Xueyi Xie
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Zhenbo Huang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Yifeng Cheng
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Xuehua Wang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Jiayi Lu
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Xiaowen Zhuang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Amanda Essoh
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Yufei Huang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Ruifeng Chen
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, 77843, USA
| | - Laura N Smith
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Rachel J Smith
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Jun Wang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA.
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA.
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
198
|
Zhou M, Fan Y, Xu L, Yu Z, Wang S, Xu H, Zhang J, Zhang L, Liu W, Wu L, Yu J, Yao H, Wang J, Gao R. Microbiome and tryptophan metabolomics analysis in adolescent depression: roles of the gut microbiota in the regulation of tryptophan-derived neurotransmitters and behaviors in human and mice. MICROBIOME 2023; 11:145. [PMID: 37386523 PMCID: PMC10311725 DOI: 10.1186/s40168-023-01589-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 06/01/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Adolescent depression is becoming one of the major public health concerns, because of its increased prevalence and risk of significant functional impairment and suicidality. Clinical depression commonly emerges in adolescence; therefore, the prevention and intervention of depression at this stage is crucial. Recent evidence supports the importance of the gut microbiota (GM) in the modulation of multiple functions associated with depression through the gut-brain axis (GBA). However, the underlying mechanisms remain poorly understood. Therefore, in the current study, we aimed to screen the microbiota out from healthy and depressive adolescents, delineate the association of the targeted microbiota and the adolescent depression, address the salutary effects of the targeted microbiota on anti-depressive behaviors in mice involving the metabolism of the tryptophan (Trp)-derived neurotransmitters along the GBA. RESULTS Here, we found the gut microbiota from healthy adolescent volunteers, first diagnosis patients of adolescent depression, and sertraline interveners after first diagnosis displayed significant difference, the relative abundance of Faecalibacterium, Roseburia, Collinsella, Blautia, Phascolarctobacterium, Lachnospiraceae-unclassified decreased in adolescent depressive patients, while restored after sertraline treatment. Of note, the Roseburia abundance exhibited a high efficiency in predicting adolescent depression. Intriguingly, transplantation of the fecal microbiota from healthy adolescent volunteers to the chronic restraint stress (CRS)-induced adolescent depressed mice significantly ameliorated mouse depressive behaviors, in which the Roseburia exerted critical roles, since its effective colonization in the mouse colon resulted in remarkably increased 5-HT level and reciprocally decreased kynurenine (Kyn) toxic metabolites quinolinic acid (Quin) and 3-hydroxykynurenine (3-HK) levels in both the mouse brain and colon. The specific roles of the Roseburia were further validated by the target bacteria transplantation mouse model, Roseburia intestinalis (Ri.) was gavaged to mice and importantly, it dramatically ameliorated CRS-induced mouse depressive behaviors, increased 5-HT levels in the brain and colon via promoting tryptophan hydroxylase-2 (TPH2) or -1 (TPH1) expression. Reciprocally, Ri. markedly restrained the limit-step enzyme responsible for kynurenine (indoleamine2,3-dioxygenase 1, IDO1) and quinolinic acid (3-hydroxyanthranilic acid 3,4-dioxygenase, 3HAO) generation, thereby decreased Kyn and Quin levels. Additionally, Ri. administration exerted a pivotal role in the protection of CRS-induced synaptic loss, microglial activation, and astrocyte maintenance. CONCLUSIONS This study is the first to delineate the beneficial effects of Ri. on adolescent depression by balancing Trp-derived neurotransmitter metabolism and improving synaptogenesis and glial maintenance, which may yield novel insights into the microbial markers and therapeutic strategies of GBA in adolescent depression. Video Abstract.
Collapse
Affiliation(s)
- Manfei Zhou
- Department of Hygienic Analysis and Detection, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Yichun Fan
- Department of Hygienic Analysis and Detection, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Liuting Xu
- Department of Hygienic Analysis and Detection, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Zheng Yu
- Department of Hygienic Analysis and Detection, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Sizhe Wang
- Department of Hygienic Analysis and Detection, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Huaisha Xu
- Department of Clinical Psychology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing, 210008, China
| | - Jiuping Zhang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210034, China
| | - Linwei Zhang
- Department of Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Wenwei Liu
- Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
| | - Linlin Wu
- Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
| | - Jing Yu
- Department of Hygienic Analysis and Detection, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Honghong Yao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210096, China
| | - Jun Wang
- Department of Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China.
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Rong Gao
- Department of Hygienic Analysis and Detection, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China.
| |
Collapse
|
199
|
Yu Y, Gratton C, Smith DM. From correlation to communication: Disentangling hidden factors from functional connectivity changes. Netw Neurosci 2023; 7:411-430. [PMID: 37397894 PMCID: PMC10312287 DOI: 10.1162/netn_a_00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/02/2022] [Indexed: 01/11/2024] Open
Abstract
While correlations in the BOLD fMRI signal are widely used to capture functional connectivity (FC) and its changes across contexts, its interpretation is often ambiguous. The entanglement of multiple factors including local coupling of two neighbors and nonlocal inputs from the rest of the network (affecting one or both regions) limits the scope of the conclusions that can be drawn from correlation measures alone. Here we present a method of estimating the contribution of nonlocal network input to FC changes across different contexts. To disentangle the effect of task-induced coupling change from the network input change, we propose a new metric, "communication change," utilizing BOLD signal correlation and variance. With a combination of simulation and empirical analysis, we demonstrate that (1) input from the rest of the network accounts for a moderate but significant amount of task-induced FC change and (2) the proposed "communication change" is a promising candidate for tracking the local coupling in task context-induced change. Additionally, when compared to FC change across three different tasks, communication change can better discriminate specific task types. Taken together, this novel index of local coupling may have many applications in improving our understanding of local and widespread interactions across large-scale functional networks.
Collapse
Affiliation(s)
- Yuhua Yu
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Caterina Gratton
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Department of Neurology, Northwestern University, Evanston, IL, USA
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Derek M. Smith
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Department of Neurology, Division of Cognitive Neurology/Neuropsychology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
200
|
He L, Yang Z, Wang Z, Leydecker T, Orgiu E. Organic multilevel (opto)electronic memories towards neuromorphic applications. NANOSCALE 2023. [PMID: 37378458 DOI: 10.1039/d3nr01311a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
In the past decades, neuromorphic computing has attracted the interest of the scientific community due to its potential to circumvent the von Neumann bottleneck. Organic materials, owing to their fine tunablility and their ability to be used in multilevel memories, represent a promising class of materials to fabricate neuromorphic devices with the key requirement of operation with synaptic weight. In this review, recent studies of organic multilevel memory are presented. The operating principles and the latest achievements obtained with devices exploiting the main approaches to reach multilevel operation are discussed, with emphasis on organic devices using floating gates, ferroelectric materials, polymer electrets and photochromic molecules. The latest results obtained using organic multilevel memories for neuromorphic circuits are explored and the major advantages and drawbacks of the use of organic materials for neuromorphic applications are discussed.
Collapse
Affiliation(s)
- Lin He
- Institute of Fundamental and Frontier Sciences (IFFS), University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Zuchong Yang
- Institut national de la recherche scientifique (INRS), Centre Énergie Matériaux Télécommunications, 1650 Boul. Lionel Boulet, Varennes J3X 1S2, Canada.
| | - Zhiming Wang
- Institute of Fundamental and Frontier Sciences (IFFS), University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Tim Leydecker
- Institute of Fundamental and Frontier Sciences (IFFS), University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Emanuele Orgiu
- Institut national de la recherche scientifique (INRS), Centre Énergie Matériaux Télécommunications, 1650 Boul. Lionel Boulet, Varennes J3X 1S2, Canada.
| |
Collapse
|